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ABSTRACT. Algebras axiomatized entirely by rank 1 axioms are algebras for a functor
and thus the free algebras can be obtained by a direct limit process. Dually, the final
coalgebras can be obtained by an inverse limit process. In order to explore the limits of
this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We
will see that Heyting algebras are special in that they are almost rank 1 axiomatized and
can be handled by a slight variant of the rank 1 coalgebraic methods.

1. INTRODUCTION

Coalgebraic methods and techniques are becoming increasingly important in investigating
non-classical logics, e.g., [31]. In particular, logics axiomatized by rank 1 axioms admit
coalgebraic representation as coalgebras for a functor [2], [20], [28]. We recall that an equa-
tion is of rank 1 for an operation f if each variable occurring in the equation is under the
scope of exactly one occurrence of f. As a result, the algebras for these logics become
algebras for a functor over the category of underlying algebras without the operation f.
Consequently, free algebras are initial algebras in the category of algebras for this functor.
This correspondence immediately gives a constructive description of free algebras for rank
1 logics relative to algebras in the reduced type [14], [1], [8]. Examples of rank 1 logics
(relative to Boolean algebras or bounded distributive lattices) are the basic modal logic
K, basic positive modal logic, graded modal logic, probabilistic modal logic, coalition logic
and so on; see, e.g., [28]. For a coalgebraic approach to the complexity of rank 1 logics
we refer to [28]. On the other hand, rank 1 axioms are too simple—very few well-known
logics are axiomatized by rank 1 axioms. Therefore, one would want to extend the existing
coalgebraic techniques to non-rank 1 logics. However, as follows from [20], algebras for
these logics cannot be represented as algebras for a functor and we cannot use the standard
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construction of free algebras in a straightforward way.

This paper is an extended version of [7]. However, unlike [7], here we give a complete so-
lution to the problem of describing finitely generated free Heyting algebras in a systematic
way using methods similar to those used for rank 1 logics. This paper together with [7]
and [§] is a facet of a larger joint project with Alexander Kurz on coalgebraic treatment
of modal logics beyond rank 1. We recall that an equation is of rank 0-1 for an operation
f if each variable occurring in the equation is under the scope of at most one occurrence
of f. With the ultimate goal of generalizing a method of constructing free algebras for
varieties axiomatized by rank 1 axioms to the case of rank 0-1 axioms, we consider the case
of Heyting algebras (intuitionistic logic, which is of rank 0-1 for f =—). In particular, we
construct free Heyting algebras. For an extension of coalgebraic techniques to deal with the
finite model property of non-rank 1 logics we refer to [25].

Free Heyting algebras have been the subject of intensive investigation for decades. The
one-generated free Heyting algebra was constructed in [26] and independently in [22]. An
algebraic characterization of finitely generated free Heyting algebras is given in [30]. A very
detailed description of finitely generated free Heyting algebras in terms of their dual spaces
was obtained independently in [29], [I7], [4] and [27]. This method is based on a description
of the points of finite depth of the dual frame of the free Heyting algebra. For a detailed
overview of this construction we refer to [12, Section 8.7] and [6], Section 3.2]. Finally, [13]
introduces a different method for describing free Heyting algebras. In [13] the free Heyting
algebra is built on a distributive lattice step-by-step by freely adding to the original lattice
the implications of degree n, for each n € w. [I3] uses this technique to show that every
finitely generated free Heyting algebra is a bi-Heyting algebra. A more detailed account
of this construction, which we call Ghilardi’s construction or Ghilardi’s representation, can
be found in [I0] and [I6]. Based on this method, [16] derives a model-theoretic proof of
Pitts’ uniform interpolation theorem. In [3] a similar construction is used to describe free
linear Heyting algebras over a finite distributive lattice and [24] applies the same method
to construct higher order cylindric Heyting algebras. Recently, in [I5] this approach was
extended to S4-algebras of modal logic. We also point out that in [14] a systematic study
is undertaken on the connection between constructive descriptions of free modal algebras
and the theory of normal forms.

Our contribution is to derive Ghilardi’s representation of finitely generated free Heyting
algebras in a modular way which is based entirely on the ideas of the coalgebraic approach
to rank 1 logics, though it uses these ideas in a non-standard way. We split the process
into two parts. We first apply the initial algebra construction to weak and pre-Heyting
algebras—these are consecutive rank 1 approximants of Heyting algebras. We then use a
non-standard colimit system based on the sequence of algebras for building free pre-Heyting
algebras in the standard coalgebraic framework.

The closest approximants of the rank 1 reducts of Heyting algebras appearing in the lit-
erature are weak Heyting algebras introduced in [I1]. This is in fact why we first treat
weak Heyting algebras. However, Heyting algebras satisfy more rank 1 axioms, namely at
least those of what we call pre-Heyting algebras. While we identified these independently
in this work, these were also identified by Dito Pataraia, also in connection with the study
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of Ghilardi’s constructionl]. The fact that the functor for which pre-Heyting algebras are
algebras yields Ghilardi’s representation by successive application and quotienting out well-
definition of implication is, to the best of our knowledge, new to this paper.

On the negative side, we use some properties particular to Heyting algebras, and thus our
work does not yield a method that applies in general. Nevertheless, we expect that the
approach, though it would have to be tailored, is likely to be successful in other instances
as well. Obtained results allow us to derive a coalgebraic representation for weak and pre-
Heyting algebras and sheds new light on the very special nature of Heyting algebras.

The paper is organized as follows. In Section 2 we recall the so-called Birkhoff (discrete)
duality for distributive lattices. We use this duality in Section 3 to build free weak Heyting
algebras and in Section 4 to build free pre-Heyting algebras. Obtained results are applied
in Section 5 for describing free Heyting algebras. In Section 6 we give a coalgebraic repre-
sentation for weak and pre-Heyting algebras. We conclude the paper by listing some future
work.

2. DISCRETE DUALITY FOR DISTRIBUTIVE LATTICES

We recall that a bounded distributive lattice is a distributive lattice with the least and
greatest elements 0 and 1, respectively. Throughout this paper we assume that all the
distributive lattices are bounded. We also recall that a non-zero element a of a distributive
lattice D is called join-irreducible if for every b,c € D we have that a < bV ¢ implies a < b
or a < c. For each distributive lattice (DL for short) D let (J(D), <) denote the subposet
of D consisting of all join-irreducible elements of D. Recall also that for every poset X a
subset U C X is called a downset if v € U and y < x imply y € U. For each poset X
we denote by O(X) the distributive lattice (O(X),N,U, 0, X) of all downsets of X. Finite
Birkhoff duality tells us that every finite distributive lattice D is isomorphic to the lattice
of all downsets of (J(D), <) and vice versa, every finite poset X is isomorphic to the poset
of join-irreducible elements of O(X). We call (J(D), <) the dual poset of D and we call
O(X) the dual lattice of X.

Recall that a lattice morphism is called bounded if it preserves 0 and 1. Unless stated
otherwise all the lattice morphisms will be assumed to be bounded. The duality between
finite distributive lattices and finite posets can be extended to the duality between the
category DLg, of finite distributive lattices and lattice morphisms and the category Posgy
of finite posets and order-preserving maps. In fact, if h : D — D’ is a lattice morphism,
then the restriction of h”, the lower adjoint of h, to J(D’) is an order-preserving map
between (J(D'),<’) and (J(D),<), and if f : X — X’ is an order-preserving map between
two posets X and X', then f*: O(X) — O(X'), S — [f(S) is \/-preserving and its
upper adjoint (fH)f = f~!: O(X’) — O(X) is a lattice morphism. Moreover, injective
lattice morphisms (i.e. embeddings or, equivalently, regular monomorphisms) correspond to
surjective order-preserving maps, and surjective lattice morphisms (homomorphic images)
correspond to order embeddings (order-preserving and order-reflecting injective maps) that
are in one-to-one correspondence with subposets of the corresponding poset. A particular
case of this correspondence that will be used repeatedly throughout this paper is spelled
out in the following proposition.

Iprivate communication with the first listed author.
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Proposition 2.1. Let D be a finite distributive lattice, X = (J(D), <) its dual poset, and
a,b € D. The least-collapsed quotient of D in which a < b is the dual lattice of the subposet
of X based on the set {y € X |y <a = y < b}.

Proof. By Birkhoff duality, every quotient of D corresponds to a subposet of X. For any
subposet Y C X, the dual quotient is given by

oxX) — o)
U — UnY.

For a,b € D, a corresponds to the downset @ = {x € X | # < a} and similarly for b and we
have N

anY CchnY = VyeY (y<a = y<b).
Clearly, the largest subset Y for which this is trueis Y ={y € X |y <a = y <b}. O

We will also need the following fact.

Proposition 2.2. Let X be a finite set and Fpr(X) the free distributive lattice over X.
Then the poset (J(Fpr(X)),<) of join-irreducible elements of Fpr(X) is isomorphic to
(P(X),2), where P(X) is the powerset of X and each subset S C X corresponds to the
conjunction \ S € Fpr(X). Moreover, for x € X and S C X we have

ANS<ziffvres.

Proof. This is equivalent to the disjunctive normal form representation for elements of
Fpr(X). H

Finally we recall that an element a # 1 in a distributive lattice D is called meet-
irreducible provided, for every b,c € D, we have that b A ¢ < a implies b < a or ¢ < a. We
let M (D) denote the set of all meet-irreducible elements of D.

Proposition 2.3. Let D be a finite distributive lattice. Then for each p € J(D), there
ezists k(p) € M(D) such that p £ k(p) and for each a € D we have

p<a or a<k(p).

Proof. For p € J(D), let k(p) = \/{a € D | p £ a}. Then it is clear that the condition
involving all @ € D holds. Note that if p < k(p) = \/{a € D | p £ a}, then, applying the
join-irreducibility of p, we get a € D with p £ a but p < a, which is clearly a contradiction.
So it is true that p £ k(p). Now we show that x(p) is meet irreducible. First note that
since p is not below k(p), the latter cannot be equal to 1. Also, if a,b £ x(p) then p < a,b
and therefore p < a A b. Thus it follows that a A b £ k(p). This concludes the proof of the
proposition. L]

Remark 2.4. Note that p and k(p) satisfying the condition of Proposition [2.3] are called
a splitting and co-splitting elements of D, respectively. The notions of splitting and co-
splitting elements were introduced in lattice theory by Whitman [32]. It is easy to see
that if for p € D there exists £/'(p) € D satisfying the condition of Proposition 23] then
k' (p) = k(p). Therefore, k(p) € D, satisfying the condition of Proposition [Z.3] is unique.
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3. WEAK HEYTING ALGEBRAS

In this section we introduce weak Heyting algebras and describe finitely generated free weak
Heyting algebras.

3.1. Freely adding weak implications.

Definition 3.1. [I1] A pair (A, —) is called a weak Heyting algebrdd, wHA for short, if A
is a distributive lattice and —: A% — A is a weak implication, that is, a binary operation
satisfying the following axioms for all a, b, c € A:

(1) a—a=1,

(2) a— (bAc)=(a—=Db)A(a— c).

(3) (avb) —wc=(a—c)N(b—c).

4) (a—=bANb—c)<a—ec

It is easy to see that by (2) weak implication is order-preserving in the second coordinate
and by (3) order-reversing in the first. The following lemma gives a few useful properties
of wHAs.

Lemma 3.2. Let (A,—) be a wHA. For each a,b € A we have
(i) a—=b=a— (aND),
(i) 1—=(a—=b) <(1l—=a)—(1—-0D).

Proof. (i) By axiom (2) we have a — (a Ab) = (a — a) A (a — b) and by axiom (1) we have
a— a=1so we obtain a - b=a— (aAD).

(ii) Since the weak implication — is order-reversing in the first coordinate and 1 > 1 — a
we have 1 — (a — b) < (1 — a) — (a — b). By (i) of this lemma we obtain (1 — a) —
(a—=b)=(1—a)—=[(1—=a)A(a—b)]. Now axiom (4) yields (1 = a)A(a = b) <1 —b.
So(l —a)— (a—>b) <(1 —a)— (1 - b). By transitivity of the order we have the
desired result. ]

Let D and D’ be distributive lattices. We let — (D x D) denote the set {a - b:a € D
and b € D'}. We stress that this is just a set bijective with D x D’. The symbol —» is just
a formal notation. For each distributive lattice D we let Fpr(— (D x D)) denote the free
distributive lattice over —(D x D). Moreover, we let

H(D) = Fpr(—(D x D))/~

where &~ is the DL congruence generated by the axioms (1)—(4) seen as relation schemas
for —. The point of view is that of describing a distributive lattice by generators and
relations. That is, we want to find the quotient of the free distributive lattice over the set
— (D x D) with respect to the lattice congruence generated by the pairs of elements of
Fpr(— (D x D)) in (1)—(4) (where — is replaced by —) with a, b, c ranging over D. For an
element a — b € Fpr(— (D x D)) we denote by [a — b]~, the ~ equivalence class of a — b.

The rest of this subsection will be devoted to showing that for each finite distributive
lattice D the poset (J(H (D)), <) is isomorphic to (P(J(D)),<). Below we give a dual
proof of this fact. The dual proof, which relies on the fact that identifying two elements
of an algebra simply corresponds to throwing out those points of the dual that are below
one and not the other (Proposition 2.1]), is produced in a modular and systematic way that

2In [11] weak Heyting algebras are called ‘weakly Heyting algebras’.
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does not require any prior insight into the structure of these particular algebras.

We start with a finite distributive lattice D and the free DL generated by the set
—(DxD)={a—>0bla,be D}

of all formal arrows over D. As follows from Proposition 22, J(Fpr(— (D x D))) is

isomorphic to the powerset of — (D x D), ordered by reverse inclusion. Each subset

S C— (D x D) corresponds to the conjunction A S of the elements of S; the empty set of

course corresponds to 1. Now we want to take quotients of this free distributive lattice with

respect to various lattice congruences, namely the ones generated by the set of instances of

the axioms for weak Heyting algebras.

The relational schema z — z ~ 1.

Here we want to take the quotient of Fpr(— (D x D)) with respect to the lattice congruence
of Fpr,(— (D x D)) generated by the set {(a — a,1) | a € D}. By Proposition 2.1 this
quotient is given dually by the subposet, call it P;, of our initial poset Py = J(Fpr(— (D X
D)), consisting of those join-irreducibles of Fpr( — (D x D)) that do not violate this axiom.
Thus, for S € J(Fpr(— (D x D))), S is admissible provided

Ya € D (/\S§1 = /\Sgawa).

Since all join-irreducibles are less than or equal to 1, it follows that the only join-irreducibles
that are admissible are the ones that are below a — a for all @ € D. That is,viewed as
subsets of — (D x D), only the ones that contain a — a for each a € D:

P ={SeP|a—acsS foreach a € D}.
The relational schema = — (y A z) = (x — y) A (x — 2).

We now want to take a further quotient and thus we want to keep only those join-irreducibles
from P; that do not violate this relational schema. That is, S € P; is admissible provided

Va,b,c (/\Sga—D(b/\c) = AS§Q—>b and /\SSa—»c).
which means
Va,b,c (a—(bAhc)eS <<= a—-beS and a—»ceS).
Let P, denote the poset of admissible join-irreducible elements of P;.
Proposition 3.3. The poset P is order isomorphic to the set
Q:2={f:D—D|Va€eD,f(a)<a}
ordered pointwise.
Proof. An admissible S from P, corresponds to the function fg: D — D given by
fs(@)=A\{beD|a—-beS}
In the reverse direction, a function in ()9 corresponds to the admissible set
Sp={a—=b] f(a) <b}.

The proof that this establishes an order isomorphism is a straightforward verification. [
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The relational schema (zVy) — 2z~ (x — 2) A (y — 2).

We want the subposet of Q5 consisting of those f’s such that
Va,b,c ((avb) »ceS; <= a—-ceS; and b—ceSy).
To this end notice that
Va,b,c ((avb) »ce Sy < (a—+ceS; and b—ce€ Sy))

<~ Va,b,c (flavb)<c <= (f(a)<c and f(b) <c))

— Va,b flavd)= f(a)V f(b).
That is, the poset P3 of admissible join-irreducibles left at this stage is isomorphic to the
o Qs ={f:D— D| f isjoin-preserving and Va € D f(a) < a}.
The relational schema (z - y) A (y —» 2) Sz — z.
It is not hard to see that this yields, in terms of join-preserving functions f : D — D,

Qi={f€Q3|VYae D f(a) < f(f(a))}

={f:D — D| f is join-preserving and Va € D f(a) < f(f(a)) < f(a) < a}

={f:D — D | f is join-preserving and Va € D f(f(a)) = f(a) < a}.
We note that the elements of Q4 are nuclei [I§] on the order-dual lattice of D. Since the
f’sin Q4 are join and 0 preserving, they are completely given by their action on J(D). The

additional property shows that these functions have lots of fixpoints. In fact, we can show
that they are completely described by their join-irreducible fixpoints.

Lemma 3.4. Let f € Qq4, then for each a € D we have
fla)=\/{r e J(D) | f(r)=r<a}.
Proof. Clearly \/{r € J(D) | f(r) =7 < a} < f(a). For the converse, let r be maximal in
J(D) with respect to the property that r < f(a). Now it follows that
r< fla) = f(f(@) = \/{f@ ] J(D)>q< fla)}

Since r is join-irreducible, there is ¢ € J(D) with ¢ < f(a) and r < f(q). Thus r < f(q) <
q < f(a) and by maximality of » we conclude that ¢ = r. Now r < f(q) and ¢ = r yields
r < f(r). However, f(r) < r as this holds for any element of D and thus f(r) = r. Since
any element in a finite lattice is the join of the maximal join-irreducibles below it, we obtain

fla) = \/{r € J(D) | r is maximal in J(D) with respect to r < f(a)}
<\/{reJD)| f(r)=r<fa)} < fla).

Finally, notice that if f(r) =r < f(a) then as f(a) < a, we have f(r) = r < a. Conversely,
if f(r)=r <athenr = f(r)= f(f(r)) < f(a) and we have proved the lemma. O
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Proposition 3.5. The set of functions in QQ4, ordered pointwise, is order isomorphic to the
powerset of J(D) in the usual inclusion order.

Proof. The order isomorphism is given by the following one-to-one correspondence
Qs S PUD))
fo= ApeJD)]|f(p) =p}
fT < T
where fr: D — D is given by fr(a) = \/{p € J(D) | T 3 p < a}. Using Lemma [B.4] it is
straightforward to see that these two assignments are inverse to each other. Checking that

fr is join preserving and satisfies f2 = f < idp is also straightforward. Finally, it is clear
that fr < fgif and only if T C S. []

Next we will prove a useful lemma that will be applied often throughout the remainder of
this paper. Let D be a finite distributive lattice. For a,b € D and T' C J(D) we write
T < a — b provided A\ S7 < a — b, where Sy = Sy, = {a —= b: fr(a) < b}.

Lemma 3.6. Let D be a finite distributive lattice. For each a,b € D and T' C J(D) we

have
T<a—b iff YpeT (p<a impliesp <Db)

Proof.
T=a—b<+< \Sr<a—b
<— a—+be Sy
<~ fr(a) <b
= \/(lanT)<b
< VpeT (p<aimplies p <b).
O

This subsection culminates in the following theorem. Recall that, for a join-irredu-
cible ¢ of a finite distributive lattice, k(q) is the corresponding meet irreducible, recall
Proposition 23]

Theorem 3.7. Let D be a finite distributive lattice and X = (J(D), <) its dual poset. Then
the following statements are true:
(i) The poset (J(H(D)),<) is isomorphic to the poset (P(X),C) of all subsets of X
ordered by inclusion.

(i) J(H(D)) = {[Aggr(a = #(@))]~ | T € X}.

Proof. As shown above, the poset J(H (D)), obtained from J(Fpr(—(D x D))) by removing
the elements that violate the relational schemas obtained from axioms (1)—(4), is isomor-
phic to the poset @4, and @4 is in turn isomorphic to P(J(D)) ordered by inclusion, see
Proposition

In order to prove the second statement, let ¢ € J(D), and consider ¢ — k(q) € Fpr(—
(D x D)). If we represent H(D) as the lattice of downsets O(J(H(D))), then the action of
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the quotient map on this element is given by
Fpr(— (D x D)) — H(D)
q — (q) = {T" € P(J(D)) | ¢ — k(q) € St}

Now
q—k(q) € S = fr(q) < K(

q)
— \/(lgnT') < x(q)
— q¢T.

The last equivalence follows from the fact that a < x(q) if and only if ¢ £ a and the only
element of |q that violates this is ¢ itself (Proposition [Z3]). We now can see that for any
T C J(D) we have

FDL(%(DXD)) — H(D)

(N@—=r@)~ — {T'ePUD)|Ve (¢¢T = q— rlq) € Sr)}
q¥T

={T" e P(J(D)) |¥Yq (¢¢T = q&T)}

={T" e P(J(D)) |¥q (qeT" = qeT)}

— (T' e P(J(D)) | T' C T).

That is, under the quotient map Fpr(— (D x D)) — H(D), the elements A zr(q — £(q))
are mapped to the principal downsets [T, for each T' € P(J(D)) = J(H(D)). Since these
principal downsets are exactly the join-irreducibles of O(J(H(D))) = H(D), we have that

{ Nggrla = r(@))l~ | T CJ(D) } = JH(D)). O

It follows from Theorem B7(1) that if two finite distributive lattices D and D’ have an
equal number of join-irreducible elements, then H (D) is isomorphic to H(D'). To see this,
we note that if |J(D)| = |J(D")|, then (P(J(D)), <) is isomorphic to (P(J(D')),<). This,
by Theorem [37)(1), implies that H(D) is isomorphic to H(D'). In particular, any two non-
equivalent orders on any finite set give rise to two non-isomorphic distributive lattices with
isomorphic H-images.

Remark 3.8. All the results in this section for finite distributive lattices can be generalized
to the infinite case. In the infinite case, however, instead of finite posets we would need
to work with Priestley spaces and instead of the finite powerset we need to work with the
Vietoris space (see Section [6]). As we will see in Sections [3.2], 4] and [B], for our purposes (that
is, for describing finitely generated free weak Heyting, pre-Heyting and Heyting algebras),
it suffices to work with limits of finite distributive lattices. So we will stick with the finite
case, for now, and will consider infinite distributive lattices and Priestley spaces only in
Section 6, where we discuss coalgebraic representation of weak Heyting and pre-Heyting
algebras.
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3.2. Free weak Heyting algebras. In the coalgebraic approach to generating the free
algebra, it is a fact of central importance that H as described here is actually a functor.
That is, for a DL homomorphism h : D — E one can define a DL homomorphism H(h) :
H(D) — H(E) so that H becomes a functor on the category of DLs. To see this, we only
need to note that H is defined by rank 1 axioms. We recall that for an operator f (in our
case f is the weak implication —) an equation is of rank I if each variable in the equation
is under the scope of exactly one occurrence of f and an equation is of rank 0-1 if each
variable in the equation is under the scope of at most one occurrence of f. It is easy to
check that axioms (1)—(4) for weak Heyting algebras are rank 1. Therefore, H gives rise to
a functor H : DL — DL, where DL is the category of all distributive lattices and lattice
morphisms. (This fact can be found in [2], for Set-functors, and in [20] for the general case.)
Moreover, the category of weak Heyting algebras is isomorphic to the category Alg(H) of
the algebras for the functor H. For the details of such correspondences we refer to either of
[, [21, [8], [14], [20]. We would like to give a concrete description of how H applies to DL
homomorphisms. We describe this in algebraic terms here and give the dual construction
via Birkhoff duality.

Let h : D — E be a DL homomorphism. Recall that the dual map from J(E) to J(D)
is just the lower adjoint h’ with domain and codomain properly restricted. By abuse of
notation we will just denote this map by A”, leaving it to the reader to decide what the
proper domain and codomain is. Now H(D) = Fpr(— (D x D))/ ~p, where ~p is the
DL congruence generated by the set of all instances of the axioms (1)—(4) with a,b,c € D.
Also let gp be the quotient map corresponding to quotienting out by ~p. Any lattice

homomorphism
h:D—FE

yields a map
hxh:DxD-—FExEFE

and this of course yields a lattice homomorphism
FDL(h X h) : FDL(_D (D X D)) — FDL(_D (E X E))

Now the point is that Fpr(h x h) carries elements of ~p to elements of ~g (it is an easy
verification and only requires h to be a homomorphism for axiom schemas (2) and (3)).
Thus we have ~pC Ker(qrg o Fpr(h x h)) or equivalently that there is a unique map
H(h): H(D) — H(FE) that makes the following diagram commute

Fpi(— (Dx D)) —2tN _ p (5 (Ex EB))

H(D) -~ --- ()
The dual diagram is
P(D x D) (o) P(E x E)
wi eEt
PD) <-2 PR

D x D) is the embedding, via Q4 and so on into Py as obtained

The map ep : P(D) < P(
T)={a—b|VpeT (p<a=p<b)}. Now in this dual setting, the

above. That is, ep(
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fact that there is a map P(h’) is equivalent to the fact that (h x h)~' o ex maps into the
image of the embedding ep. This is easily verified:

(hxh) N er(T)) ={a—=b|YgeT (¢ <h(a) = q < h(b)}
—{a—=b|VgeT (W(g) <a=h(g) <b)}
={a—b|Vpek(T) (p<a=p<b)}
= ep(h’(T)).

Thus we can read off directly what the map P(hb) is: it is just forward image under h’.
That is, if we call the dual of h : D — E by the name f : J(E) — J(D), then P(f) = f[ ]
where f[] is the lifted forward image mapping subsets of J(F) to subsets of J(D). Finally,
we note that P(f) is an embedding if and only if f is injective, and P(f) is surjective if
and only if f is surjective.

Remark 3.9. It follows from Theorem [B.7(i) that the functor H can be represented as a
composition of two functors. Let B : DLg, — BAg, be the functor from the category of
finite distributive lattices to the category of finite Boolean algebras which maps every finite
distributive lattice to its free Boolean extension—the (unique) Boolean algebra generated
by this distributive lattice. It is well known [2I] that the dual of the functor B is the
forgetful functor from the category of finite posets to the category of finite sets, which maps
every finite poset to its underlying set. Further, let also Hp : BAg, — DLg, be the functor
H restricted to Boolean algebras. That is, given a Boolean algebra A we define Hg(A) as
the free DL over —(B, B) quotiented out by the relational schemas corresponding to the
axioms (1)—(4) of wHAs. Then the functor which is dual to Hp maps each finite set X to
(P(X),C) and therefore H : DLg, — DLg), is the composition of B with Hp.

Since weak Heyting algebras are the algebras for the functor H, we can make use of
coalgebraic methods for constructing free weak Heyting algebras. Similarly to [8], where
free modal algebras and free distributive modal algebras were constructed, we construct
finitely generated free weak Heyting algebras as initial algebras of Alg(H). That is, we
have a sequence of distributive lattices, each embedded in the next:

n — Fpr(n), the free distributive lattice on n generators,
Dy = Fpr(n),
D11 = Do+ H(Dy), where + is the coproduct in DL,
io : Do — Do+ H(Dy) = D; the embedding given by coproduct,
i : Dy — Dy where iy, = idp, + H(ix—1).
For a,b € Dy, we denote by a — b the equivalence class [a — b]~ € H(Dy) C Dg11. Now,

by applying the technique of [1], [2], [8] [14], to weak Heyting algebras, we arrive at the
following theorem.

Theorem 3.10. The direct limit (D, (Dr — D.)x) in DL of the system (D, i : D —
Dy11)k with the binary operation —: D, x D, — D, defined by a —, b = a — b,
for a,b € Dy is the free n-generated weak Heyting algebra when we embed n in D, via
n— Dy — D,.

Now we will look at the dual of (D,,, —). Let Xo = P(n) be the dual of Dy and let

Xi41 = Xo x P(X)
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be the dual of Dg4.
Theorem 3.11. The sequence (Xy)k<, with maps m : Xo X P(Xx) — X defined by

T = idXO X P(Wk_l) i.€. Wk(x,A) = (x,ﬂ'k_l[A])

is dual to the sequence (Dy)k<, with maps iy @ Dy — Dgyq. In particular, the my’s are
surjective.

Proof. The dual of Dy is Xg = P(n), and since Dyy1 = Do + H(Dyg), it follows that
Xi+1 = Xo x P(Xk) as sums go to products and as H is dual to P. For the maps,
mo : Xo X P(Xo) — Xo is just the projection onto the first coordinate since ig is the
injection given by the sum construction. We note that my is surjective. Now the dual
Tk - Xk—i—l = XO X P(Xk) — Xk = X(] X P(Xk—l) of i = idDO +H(ik_1) is idXO X P(ﬁk_l),
which is exactly the map given in the statement of the theorem. Note that a map of the
form X xY — X x Z given by (x,y) — (x, f(y)), where f : Y — Z is surjective if and
only the map f is. Also, as we saw above, P(m) is surjective if and only if 7 is. Thus by
induction, all the 7;’s are surjective. L]

4. PRE-HEYTING ALGEBRAS

In this section we define pre-Heyting algebras which form a subvariety of weak Heyting
algebras and describe free pre-Heyting algebras. We first note that, for any weak Heyting
algebra A, the map from A to A given by a — (1 — a) is meet-preserving and also
preserves 1 by virtue of the first two axioms of weak Heyting algebras. For the same reason,
the map from a distributive lattice D to H (D) mapping each element a of D to [1 — a]~
also is meet-preserving and preserves 1. For Heyting algebras more is true: for a Heyting
algebra B, the map given by b +— (1 — b) is just the identity map and thus, in particular,
it is a lattice homomorphism. In other words, Heyting algebras satisfy additional rank 1
axioms beyond those of weak Heyting algebras.

Definition 4.1. A weak Heyting algebra (A, —) is called a pre-Heyting algebra, pHA for
short, if the following additional axioms are satisfied for all a,b € A:

(5) 1—>0=0,

6) (1—>a)V(l—=0b)=1—(aVbh).

Since these are again rank 1 axioms, we can obtain a description of the free finitely
generated pre-Heyting algebras using the same method as for weak Heyting algebras. Ac-
cordingly, for a finite distributive lattice D, similarly to what we did in the previous section,
we let

K(D) = Fpr(— (D x D))/~
where = is the DL congruence generated by the axioms (1)—(6) viewed as relational schemas
for Fpr,(— (D x D)). This of course means we can just proceed from where we left off in
Section [l and identify the further quotient of H (D) obtained by the schema (1 — a)V (1 —
b) ® 1 — (aVb) for a and b ranging over the elements of D and 1 — 0 & 0. That is, we
need to calculate
K(D) = H(D)/~

where ~ is the DL congruence given by the relational schemas obtained from the axioms

(5)-(6).
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We say that a subset S of a poset (X, <) is rooted if there exists p € S, which we call
the root of S, such that ¢ < p for each g € S. It follows from the definition that a root of a
rooted set is unique. Also a rooted set is necessarily non-empty. We denote by P,(X) the
set of all rooted subsets of (X, <). We also let

root : Pr(X) — X

be the map sending each rooted subset S of X to its root. It is easy to see that root is
surjective and order-preserving.

Theorem 4.2. Let D be a finite distributive lattice and X its dual poset. Then the following
statements are true:
(i) The poset (J(K(D)),<) is isomorphic to the poset (P,(X),C) of all rooted subsets of
X ordered by inclusion.

(i) J( (D)) = {[(1 = 2) A (Ayegggr (@~ (@)= | T € Lo\ {}, € X}.

(ili) The map D — K(D) given by a — [l — alx is an injective lattice homomorphism
whose dual is the surjective order-preserving map root : P.(X) — X.

Proof. (i) By Theorem B.7(i), (J(H (D)), <) is isomorphic to (P(X),<). Thus, we need to
show that the rooted subsets of X are exactly the subsets which are admissible with respect
to relational schemas given by the axioms (5) and (6). For the axiom (5), it may be worth
clarifying the meaning of this relational schema: the 0 (and 1) on the left side are elements
of D, and the expression 1 — 0 is one of the generators of Fpr(— (D x D)), whereas the 0
on the right of the equality is the bottom of the lattice H(D) — we will denote it by 0z (p)
for now. A set S C X is admissible for (5) provided

Now by Lemma 3.6l S <1 — 0 if and only if, for all p € S, p < 1 implies p < 0. Since
the former is true for every p € X and the latter is false for all p € X, the only S € P(X)
satisfying this condition is S = (). On the other hand, as in any lattice, no join-irreducible
in K(D) is below O (p). Thus (5) eliminates S = §.

Weak Heyting implication is meet-preserving and thus order-preserving in the second
coordinate so that we have that 1 — (aVb) > (1 — a) V (1 — b) already in H (D) for every
D. Therefore, a set S C X is admissible with respect to (5) and (6) iff S # () and

S=<1-—=(aVb) implies S <1—-aor S =<1-—b.

Now by Lemma 3.6 S <1 — z iff S C |z, so for non-empty S we need S C |(a V b)
to imply that S C la or S C |b for all a,b € D. This is easily seen to be equivalent to
rootedness: If S C X is rooted and p is its root, then S C |(a V b) implies p < a V b. Thus,
p<aorp<bandsoSClaorSC|b Conversely, if S is admissible then S # () and, as
it is finite, every element of S is below a maximal element of S. If p € S is maximal but
not the maximum of S then S C [(pV a), where a = \/(S\ {p}), but S Z |p and S ¢ la.

(ii) The proof is similar to the proof of Theorem B7|(ii). Recall that for any 7' C X we
have that the join-irreducible {T" € P(X) | T C T} = |T in O(P(X)), which is isomorphic
to H(D), is equal to [\ o7(q — £(q))]~. Also [1 — z]x is join-irreducible and corresponds
to Jx € X. That is,

1 ale = [ A\ (g = 5(0)]~.
gtz
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Thus, in particular, for T C X rooted with root  and 77 = T \ {z}, the join-irreducible
corresponding to T is given by

(A@—s@l~ =[Aa@—=nr@)r N\ (¢ r)~

q¢T gtz q<z,q¢T

=) A N (4= r(@)]=.

q<z,q¢T’

Since this is the case in H(D), it is certainly also true in the further quotient K (D) and
in (i) we have shown that all join-irreducibles of K (D) correspond to rooted subsets of X,
thus the statement follows.

(iii) The map D — K(D) given by a — [1 — a]x is clearly a homomorphism since we
have quotiented out by all the necessary relations: [1 — 1]x = 1g(p) by (1), [l — 0]z =
Ox(py by (5), and the map is meet and join preserving by (2) and (6), respectively. As
we saw in Section 2] the dual of a homomorphism between finite lattices is the restriction
to join-irreducibles of its lower adjoint, that is, our homomorphism is dual to the map
r: Pr(X) — X given by

VI € P.(X)VaeD (r(T)<a <= T=(1-a)).

For T' € Pr(X) we have T' < (1 — a) = /¢ x ,<,(1 — @) if and only if there is an z € X
with 2 < a and T' < (1 — z). Furthermore 7' < (1 — z) if and only if T C | z if and only if
root(T) < x. That is, r(T') < a if and only if root(T) < a so that, indeed, root(T) = r(T).
It is clear that the map root is surjective and thus the dual homomorphism D — K (D) is
injective. L]

The following proposition will be used to obtain some important results in the next section
of this paper.

Proposition 4.3. Let D be a finite distributive lattice and X its dual poset. Let S € Pr(X)
and let x € X. Identifying Pr(X) with J(K (D)) we have the following equivalences

root(S) = x
= S<X1—zbutS£A1— k(z)
<= it is not the case that (S X1 -2 = 5 21— k(x)).

Proof. We first assume that S <1 — x and S A1 — k(x). Then S C |z and S € [k(x).
It follows that for each s € S we have s < x and there is t € S with ¢ £ x(x). Therefore,
by Proposition 23] we have x < t. Since t € S, we obtain ¢ = x. So x € S. This implies
that x is the root of S, which means that root(S) = z. Conversely, suppose root(S) = x.
Then S C |z and x € S. So S <1 — x. On the other hand, we know that y £ k(y),
for each y € J(D). Therefore, z £ k(x) and thus S & |k(z). This implies that S A
1 — k(x). Finally, it is obvious that (S <1 — x and S £ 1 — k(x)) is equivalent to
(it is not the case that (S <1 —- 2 = S <1 — k(x))). This finishes the proof of the
proposition. L]

Since pre-Heyting algebras are the algebras for the functor K, we can construct free pre-
Heyting algebras from the functor K as we constructed them for free weak Heyting algebras.
Given an order-preserving map f : X — X’ between two finite posets X and X’ we define
Pr(f) : Pr(X) — Pr(X') by setting P,(f) = f[]. It is easy to see that this is the action of
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the functor P, dual to K. Then we will have the analogues of Theorems [3.10] and 3.I1] for
free pre-Heyting algebras.
We consider the following sequence of distributive lattices:

Dy = Fpr(n),

Dyi1= Do+ K(Dy),

i9 : Doy — Do+ K(Dy) = D; the embedding given by coproduct,
T - Dk — Dk+1 where i = idDo + K(ik_l).

Similarly to weak Heyting algebras we have the following description of free pre-Heyting
algebras.

Theorem 4.4. The direct limit (D, (D — D,)r) in DL of the system (Dy,ix : Dy —
Dy11)k with the binary operation —: Dy, x D,, — D,, defined by a —, b = a — b, for
a,b € Dy is the free n-generated pre-Heyting algebra.

Let Xy be the dual of Dy and let
X1 = Xo X Ppr(Xg)
be the dual of Dg4.
Theorem 4.5. The sequence (Xy)k<w with maps 7 : Xo X Pr(Xy) — Xy defined by
T = idx, X Pr(mp—1) t.e. mp(z,A) = (x,mp-1][A])

is dual to the sequence (Dy)k<, with maps iy : Dy — Dgyq. In particular, the my’s are
surjective.

Proof. The proof is analogues to the proof of Theorem [B.1T1 L]

5. HEYTING ALGEBRAS

In this section we will apply the technique of building free weak and pre-Heyting algebras
to describe free Heyting algebras. We recall the following definition of Heyting algebras
relative to weak Heyting algebras.

Definition 5.1. [I8] A weak Heyting algebra (A, —) is called a Heyting algebra, HA for
short, if the following two axioms are satisfied for all a,b € A:

(7) b<a—b,

(8) aN(a—b)<b.

Lemma 5.2. Let (A,—) be a weak Heyting algebra. Then (A,—) is a Heyting algebra iff
for each a € A we have
1—a=a.

Proof. Let (A, —) be a weak Heyting algebra satisfying 1 — a = a for each a € A. Then for
each a,b € Awehaveb=1— b= (1Va) — b. By Definition BII(3), (1Va) - b= (1 — b)A
(a = b) =bA(a —b). Sob < a— band (7) is satisfied. Now aA(a — b) = (1 — a)A(a — b).
By Definition B.1J(4), (1 = a)A(a —b) <1 —=>b=>b. SoaA(a — b) <band (8) is satisfied.
Conversely, by (7) we have that b <1 — b, and by (8), 1 > b=1A(1 —b) <b. O
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Let D be a finite distributive lattice. We have seen how to build the free weak Heyting
algebra and the free pre-Heyting algebra over D incrementally. Let F4(D) denote the free
HA freely generated by the distributive lattice D. Further let F7; (D) denote the elements
of Fga(D) of —-rank less than or equal to n. Then each F}j (D) is a distributive lattice
and the lattice reduct of Fa(D) is the direct limit (union) of the chain

D = Fg (D) C Fjy4(D) C Fi4(D)...

and the implication on Fya(D) is given by the maps —: (F& ,(D))? — Fptl(D) with
(a,b) — (a — b). Further, since any Heyting algebra is a pre-Heyting algebra and the
inclusion Fy; (D) C FE;I(D) may be seen as given by the mapping a — (1 — a), the
natural maps sending generators to generators make the following colimit diagrams commute

D K(D) s K(K(D)) 2~ ...

-k

D;j‘L FI&A(D)(j—l) F%A(D)i>

Notice that under the assignment a — (1 — a), the equation (7) becomes 1 - b <a — b
which is true in any pHA by (2), and (8) becomes (1 — a) A (a — b) < (1 — b) which is
true in any pHA by virtue of (4). So these equations are already satisfied in the steps of the
upper sequence. However, an easy calculation shows that for D the three-element lattice
1 — (u—0)and (1 - u) — (1 — 0) are not equal (where u is the middle element) thus
the implication is not well-defined on the limit of the upper sequence. We remedy this by
taking a quotient with respect to the relational schema corresponding to
9) l1-(@a—=b=01—a)—(1—0>)

in the second iteration of the functor K and onwards. This equation, which is a particularly
trivial family of instances of Frege’s axiom a — (b — ¢) = (a — b) — (a — ¢) is of course
true in intuitionistic logic but may not be of much interest there. From the algebraic
perspective, this relational scheme is of course very natural as it exactly ensures that the
assignment a — 1 — a preserves implication. As we will see subsequently, (9) will make
sure that the embedding of each element of the constructed sequence in the next in an
—-homomorphism. We proceed, as we’ve done throughout this paper by identifying the
dual correspondent of this equation.

Proposition 5.3. Let D be a finite distributive lattice and X its dual poset. Further, let 0
be a congruence on K(K(D)). Then the following are equivalent:
(i) For all a,b € D the inequality [(1 — a) — (1 — b)] < [I — (a — b)] holds in
K(K(D))/0;
(ii) For all z,y € X the inequality [(1 — z) — (1 — k(y))] < [1 = (z — k(y))] holds in
K(K(D))/0
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Proof. (i) implies (ii) is clear since (ii) is a special case of (i). We prove that (ii) implies (i)
(leaving out the brackets [ ] of the quotient map).

(twa)=1=b=(\ =)=\ 1-=rp)

X>z<a X3y£b

= N\ (@ =2) = (1 —=rly)

X3z<a
X3y£b

< A\ (= (@ —=rly)

X>z<a
X3y£b

=1— /\ (@—&()

X>z<a
Xoy£b

=1— (a —b)).
[

We are now ready to translate this into a dual property which we will call (G) after
Ghilardi who introduced it in [13].

Proposition 5.4. Let X, be a finite poset, X1 a subposet of Pr.(Xy), and X a subposet of
Pr(X1). Fori=1,2, let (x); be the condition

zxeTeX, = T,={xznT)eX;

If the conditions (x)1 and (x)2 both hold then the following are equivalent:

(i) Yz,y € Xo the inequalities

(1= 2) = (1= r(y)] < [1 = (= &(y))] hold in O(Xa);
(ii)) Vi e Xo VT e T VS € Xj
(S<T = IT" 7 (T'<T and root(S) = root(T")). (G)

Proof. First we prove that (i) implies (ii). To this end suppose (i) holds and let T' € 7 € X5
and S € X;. Suppose that for all T € 7 either T £ T or root(S) # root(T”). Now consider

mr = {T N 7. By (x)2 we have that 77 € X3. Then we have r00t(S) # root(T") for all
T" € 7. Thus, letting x = root(S) and using the observation in Proposition [£3] we obtain

VT' € 7 root(T') # x
VI'err (T'=21—-z = T <1 k(z))
X (1—=z)— (1 — k()
7 21— (2 — Kk(x))
VI € mp T <z — k(z)
VI'"ermrVyeT (y<z = y<kx))
vT' € 1 xgT

xegT.

trrruee
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The two implications come from the fact that we assume that (i) holds and because, in
particular, T € 7p. Now we have z = ro0ot(S) € S but ¢ T so S « T and we have proved
(i) by contraposition.

Now suppose (ii) holds, let z,y € Xy, and let 7 € X3 such that 7 < (1 - z) — (1 —
k(y)). Then

T2(1—=z)—(1-—k(y)
e VTer (T=<1—-z = T=1-=ky)
= Vet (T'<lz = T <l|k(y)).

We want to show that T' < z — k(y) for each T' € 7. That is, that for all z € T" we have
z < x implies z < k(y). So let z € T with z < z. By (x); we have that T, = |zNT € X;.
Since T, < T it follows by (ii) that

Irer (T' <T and z = root(T) = root(T")).

Now x > z = root(T,) = root(T") implies that 7" < |z and thus we have 7" < |k(y). In
particular, z = root(T") < k(y). That is, we have shown that for all z € T', if z < z then
z < k(y) as required. Il

Our strategy in building the free n-generated Heyting algebra will be to start with D,
the free n-generated distributive lattice, embed it in K (D), and then this in a quotient of
K(K(D)) obtained by quotienting out by 1 — (a — b) = (1 — a) — (1 — b) for a,b € D.
For the further iterations of K this identification is iterated. The following is the general
situation that we need to consider, viewed dually:

Xo <L P(Xo) <L P(PH(Xo))

1 |

X, - To0t Pr(X1)

|

Xo

We now consider the following sequence of finite posets

Xo = J(Fpr(n))(=P(n))

X1 = Pr(Xo)

forn>1 X,p1={reP.(X,)|VTerTVSeX,
(S<T = 37" e7 (T'<T and root(S) = root(T"))}.
We denote by V the sequence
Xy & x; <X,
For n > 1, we say that V satisfies (x), if
reTeX, = T,={znT)ecX,.

Lemma 5.5. V satisfies (x), for each n > 1 and the root maps root : X,,11 — X, are
surjective for each n > 0.
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Proof. X7 consists of all rooted subsets of Xy and thus (x); is clearly satisfied. Now let
n > 2. We assume that T € 7 € X,, and we show that 70 = [T N7 also belongs to X,,. So
let U € 77, S € X, and S < U. Then since U € 7, there exists U’ € 7 such that U’ < U
and root(S) = root(U"). But U € 7p implies that U < T'. Therefore we have U’ < T and so
U’ € 7p. Thus, 77 € X,, and V satisfies (), for each n > 1. Finally, we show that all the
root maps are surjective. To see this, assume U € X,,. We show that (U € X, 1. Suppose
T € JU and for some S € X,, we have S < T. Then S € U and by setting 7" = S we easily
satisfy the condition (G). Finally, note that root(JU) = U and thus root : Xp41 — X, is
surjective. L]

Let A be the system
D(] (l) D1 (i> D2 e

of distributive lattices dual to V. For each n > 0, i, : D, — Dyp41, is a lattice homomor-
phism dual to root. By Theorem A.2[(iii) i, (a) = [1 — alx, for a € D,,. By Lemma[5.5] root
is surjective, so each i, is injective. Each X1 C P,.(X,,) so that each D,,11 is a quotient
of K(D,,) and thus, for each n, we also have implication operations:

—n: Dnp X Dy — Dy
(a,b) +— [a—1].

Here [a — b] is the equivalence class of a — b as an element in D, ;. Let D,, be the limit of
A in the category of distributive lattices then D,, is naturally turned into a Heyting algebra.

Lemma 5.6. The operations —,, can be extended to an operation —,, on D, and the algebra
(D, —w) is a Heyting algebra.

Proof. The colimit D, of A may be constructed as the union of the D,s with D,, identified
with the image of 4, : D, < Dy, 41. It is then clear that the operations —,: D, x D, —
Dy 41 yield a total, well-defined binary operation on the limit D,, provided, for all n € w
and all a,b € D,,, we have i,1(—, (a,b)) =—p+1 (in(a), i, (b)). But this is exactly

1 —=p41(@—nb)=(1 =y, a) =pt1 (1 =4 b).

As we’ve shown in Corollary 5.4land Lemmal[5.5], the sequence V, and thus the dual sequence
A have been defined exactly so that this holds. It remains to show that the algebra (D,,, —
) is a Heyting algebra. Let a € D,, then there is some n > 0 with a € D,. Now
a —, a=a—, a € Dyyy. Since D,y is a further quotient of K(D,,) and a —, a = 1
already in K(D,), this is certainly also true in D,41 and 1p,., = 1p, so the equation
(1) of weak Heyting algebras is satisfied in (D,,, —,). Similarly each of the equations (2)—
(4) are satisfied in (D, —,) so that it is a weak Heyting algebra. Finally, note that as
in(a) =1 —, a for each a € D,, and n € w, we have a = 1 —, a for each a € D,. By
Lemma [5.2] this implies that (D,,,—) is a Heyting algebra. ]
Corollary 5.7. For each n € w, if Dqy is the n-generated free distributive lattice, then
(D, —) constructed above is the n-generated free Heyting algebra.

Proof. Let Fra(n) denote the free HA freely generated by n generators. This is of course
the same as the free HA generated by D, Fa(D), where D is the free distributive lattice
generated by n elements. As discussed at the beginning of this section this lattice is the
colimit (union) of the chain

D = Fy4(D) C Fy4(D) C Fz4(D) ...
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and the implication on Fga(D) is given by the maps —: (Fp ,(D))?> — Fpt'(D) with
(a,b) — (a — b). Further, the natural maps sending generators to generators make the
following colimit diagrams commute

U

ngo) FI%IA(D)CJ.—1> FfIA(D)i>

Now, the system A is obtained from the upper sequence by quotienting out by the equations
1 —=p41 (@ —=pb) = (1 =, a) =pt1 (1 =, b) for each n > 0. Since these equations all hold
for the lower sequence, it follows that the D, s are intermediate quotients:

U S

Dy 2~ D¢ Dy ¢

. L

D¢> FIIJA(D)¢> F}ﬁ(p)i>

Therefore, Fya(n) is a homomorphic image of D,. Moreover, any map f : n — B with
B a Heyting algebra defines a unique extension f : F A(n) — B such that foi=f,
where i : n — Fg4(n) is the injection of the free generators. Since ¢ actually maps into the
sublattice of F4(n) generated by n, which is the initial lattice D = Dy in our sequences,
composition of f with the quotient map from D, to Fga(n) shows that D, also has the
universal mapping property (without the uniqueness). The uniqueness follows since D,
clearly is generated by n as HA (since Dy is generated by n as a lattice, D; is generated by
Dy using —p, and so on). Since the free HA on n generators is unique up to isomorphism
and D,, has its universal mapping property and is a Heyting algebra, it follows it is the free
HA (and the quotient map from D, to Fga(n) is in fact an isomorphism). Il

6. A COALGEBRAIC REPRESENTATION OF WHAS AND PHAS

In this section we discuss coalgebraic semantics for weak and pre-Heyting algebras. A
coalgebraic representation of modal algebras and distributive modal algebras can be found
in [1], [19] and [23], [8], respectively.

We recall that a Stone space is a compact Hausdorff space with a basis of clopen sets.
For a Stone space X, its Vietoris space V(X) is defined as the set of all closed subsets of
X, endowed with the topology generated by the subbasis
(1) U ={F e V(X): F CU},
(2) QU={F e V(X): FNU # 0},
where U ranges over all clopen subsets of X. It is well known that X is a Stone space iff
V(X) is a Stone space. Let X and X’ be Stone spaces and f : X — X’ be a continuous
map. Then V(f) = f[ ] is a continuous map between V(X) and V(X’). We denote by
V' the functor on Stone spaces that maps every Stone space X to its Vietoris space V(X)
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and maps every continuous map f to V(f). Every modal algebra (B,) corresponds to a
coalgebra (X, : X — VX) for the Vietoris functor on Stone spaces [I], [19]. Coalgebras
corresponding to distributive modal algebras are described in [23] and [8]. We note that
modal algebras as well as distributive modal algebras are given by rank 1 axioms. Using
the same technique as in Section 3, one can obtain a description of free modal algebras and
free distributive modal algebras [1], [14], [8].

Our goal is to characterize coalgebras corresponding to weak Heyting algebras and pre-
Heyting algebras. Recall that a Priestley space is a pair (X, <) where X is a Stone space
and < is a reflexive, antisymmetric and transitive relation satisfying the Priestley separation
azxiom:

If x,y € X are such that x £ y, then there exists a clopen downset U
withy € U and z ¢ U.

We denote by PS the category of Priestley spaces and order-preserving continuous maps. It
is well known that every distributive lattice D can be represented as a lattice of all clopen
downsets of the Priestley space of its prime filters. Given a Priestley space X, let V,.(X) be
a subspace of V(X)) of all closed rooted subsets of X. The same proof as for V(X) shows
that V,.(X) is a Stone space.

Lemma 6.1. Let X be a Priestley space. Then
(1) (V(X), Q) is a Priestley space.
(2) (Vi(X),<Q) is a Priestley space.

Proof. (1) As we mentioned above V(X) is a Stone space. Let F, F' € V(X) and F € F’.
Then there exists € F' such that = ¢ F’. Since every compact Hausdorff space is normal,
there exists a clopen set U such that F/ C U and x ¢ U. Thus, F' € OU and F ¢ OU. All
we need to observe now is that for each clopen U of X, the set (JU is a clopen C-downset
of V(X). But this is obvious.

The proof of (2) is the same as for (1). O

Let (X, <) and (X', <) be Priestley spaces and f : X — X’ a continuous order-preserving
map. Then it is easy to check that V' (f) = f[] is a continuous order-preserving map between
(V(X),<Q) and (V(X'),C), and V,.(f) = f] ] is a continuous order-preserving map between
(Va(X),<C) and (V;(X'),C). Thus, V and V, define functors on the category of Priestley
spaces.

Definition 6.2. (Celani and Jansana [11]) A weak Heyting space is a triple (X, <, R) such
that (X, <) is a Priestley space and R is a binary relation on X satisfying the following
conditions:

(1) R(x) ={y € X : xRy} is a closed set, for each = € X.

(2) For each x,y,z € X if v <y and xRz, then yRz.

(3) For each clopen set U C X the sets [R|(U) ={x € X : R(x) CU} and (R)(U) = {x €
U:R(x)NU # 0} are clopen.

Let (X,<,R) and (X', <', R') be two weak Heyting spaces. We say that f : X — X' is
a weak Heyting morphism if f is continuous, <-preserving and R-bounded morphism (i.e.,
for each z € X we have fR(z) = R f(x)). Then the category of weak Heyting algebras is
dually equivalent to the category of weak Heyting spaces and weak Heyting morphisms [I1].
We will quickly recall how the dual functors are defined on objects. Given a weak Heyting
algebra (A, —) we take a Priestley dual X4 of A and define R4 on X4 by setting: for each
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z,y € X4, vRay if for each a,0 € A, a - b € z and b € x imply b € y. Conversely, if
(X, <, R) is a weak Heyting space, then we take the distributive lattice of all clopen downsets
of X and for clopen downsets U,V C X we defineU -V ={z e X : R(x)NU CV}.

Remark 6.3. In fact, Celani and Jansana [11] work with clopen upsets instead of downsets
and the inverse of the relation R. We chose working with downsets to be consistent with
the previous parts of this paper.

Theorem 6.4. The category of weak Heyting spaces is isomorphic to the category of Vietoris
coalgebras on the category of Priestley spaces.

Proof. Given a weak Heyting space (X, <,R). We consider a coalgebra (X,R(.) : X —
V(X)). The map R(.) is well defined by Definition [6.2(1). It is order-preserving by Def-
inition [6.2(2) and is continuous by Definition 6.2(3). Thus, (X,R(.) : X — V(X)) is a
V-coalgebra. Conversely, let (X,a : X — V(X)) be a V-coalgebra. Then (X, R, ), where
xRy iff y € a(x), is a weak Heyting space. Indeed, R being well defined and order-
preserving imply conditions (1) and (2) of Definition [6.2] respectively. Finally, a being
continuous implies condition (3) of Definition That this correspondence can be lifted
to the isomorphism of categories is easy to check. ]

We say that a weakly Heyting space (X, <, R) is a pre-Heyting space if for each x € X
the set R(zx) is rooted.

Theorem 6.5.

(1) The category of pre-Heyting algebras is dually equivalent to the category of pre-Heyting
spaces.

(2) The category of pre-Heyting spaces is isomorphic to the category of Vi-coalgebras on
the category of Priestley spaces.

Proof. (1) By the duality of weak Heyting algebras and weak Heyting spaces it is sufficient
to show that a weak Heyting algebra satisfies conditions (5)—(6) of Definition [A.1] iff R(x)
is rooted. We will show, as in Theorem 2] that the axiom (5) is equivalent to R(x) # 0,
for each x € X, while axiom (6) is equivalent to R(z) having a unique maximal element.
Assume that a weak Heyting space (X, <, R) validates axiom (5). Then in the weak Heyting
algebra of all clopen downsets of X we have X — () = (). Thus for each x € X we have
R(z) C 0 iff z € 0. Thus, for each x € X we have R(z) # (). Now suppose for each clopen
downsets U, V' C X the following holds X — (UUV) C (X — U)U(X — V). Then we have
that R(z) C UUV implies R(z) C U or R(x) C V. Since R(x) is closed and X is a Priestley
space, we have that every point of R(z) is below some maximal point of R(z). We assume
that there exists more than one maximal point of R(x). Then the same argument as in [5]
Theorem 2.7(a)] shows that there are clopen downsets U and V such that R(x) CU UV,
but R(z) Z U, R(z) € V. This is a contradiction, so R(z) is rooted. On the other hand, it
is easy to check that if R(x) is rooted for each x € X, then (5) and (6) are valid. Finally, a
routine verification shows that this correspondence can be lifted to an isomorphism of the
categories of pre-Heyting algebras and pre-Heyting spaces.

The proof of (2) is similar to the proof of Theorem The extra condition on pre-
Heyting spaces obviously implies that a map R(.) : X — V,.(X) is well defined and conversely
(X,a: X — V(X)) being a coalgebra implies that R, (x) is rooted for each z € X. The
rest of the proof is a routine check. ]
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Thus, we obtained a coalgebraic semantics/representation of weak and pre-Heyting
algebras.

7. CONCLUSIONS AND FUTURE WORK

In this paper we described finitely generated free (weak, pre-) Heyting algebras using an
initial algebra-like construction. The main idea is to split the axiomatization of Heyting
algebras into its rank 1 and non-rank 1 parts. The rank 1 approximants of Heyting algebras
are weak and pre-Heyting algebras. For weak and pre-Heyting algebras we applied the
standard initial algebra construction and then adjusted it for Heyting algebras. We used
Birkhoff duality for finite distributive lattices and finite posets to obtain the dual charac-
terization of the finite posets that approximate the duals of free algebras. As a result, we
obtained Ghilardi’s representation of these posets in a systematic and modular way. We
also gave a coalgebraic representation of weak and pre-Heyting algebras.

There are a few possible directions for further research. As we mentioned in the intro-
duction, although we considered Heyting algebras (intuitionistic logic), this method could
be applied to other non-classical logics. More precisely, the method is available if a signature
of the algebras for this logic can be obtained by adding an extra operator to a locally finite
variety. Thus, various non-rank 1 modal logics such as S4, K4 and other more compli-
cated modal logics, as well as distributive modal logics, are the obvious candidates. On the
other hand, one cannot always expect to have such a simple representation of free algebras.
The algebras corresponding to other many-valued logics such as MV-algebras, [-groups,
BC K-algebras and so on, are other examples where this method could lead to interesting
representations. The recent work [9] that connects ontologies with free distributive algebras
with operators shows that such representations of free algebras are not only interesting from
a theoretical point of view, but could have very concrete applications.

Acknowledgements The first listed author would like to thank Mamuka Jibladze and
Dito Pataraia for many interesting discussions on the subject of the paper. The authors are
also very grateful to the anonymous referees for many helpful suggestions that substantially
improved the presentation of the paper.

REFERENCES

[1] S. Abramsky. A Cook’s tour of the finitary non-well-founded sets. In S. A. et al., editor, We Will Show
Them: Essays in honour of Dov Gabbay, pages 1-18. College Publications, 2005.

[2] J. Addmek and V. Trnkovd. Automata and algebras in categories, volume 37 of Mathematics and its
Applications (East European Series). Kluwer, Dordrecht, 1990.

[3] S. Aguzzoli, B. Gerla, and V. Marra. Godel algebras free over finite distributive lattices. Annals of Pure
and Applied Logic, 155(3):183-193, 2008.

[4] F. Bellissima. Finitely generated free Heyting algebras. J. Symbolic Logic, 51(1):152-165, 1986.

[5] G. Bezhanishvili and N. Bezhanishvili. Profinite Heyting algebras. Order, 25(3):211-223, 2008.

[6] N. Bezhanishvili. Lattices of Intermediate and Cylindric Modal Logics. PhD thesis, University of Ams-
terdam, 2006.

[7] N. Bezhanishvili and M. Gehrke. Free Heyting algebras: revisited. In CALCO 2009, volume 5728 of
LNCS, pages 251-266. Springer-Verlag, 2009.

[8] N. Bezhanishvili and A. Kurz. Free modal algebras: A coalgebraic perspective. In CALCO 2007, volume
4624 of LNCS, pages 143—157. Springer-Verlag, 2007.

[9] H. Bruun, D. Coumans, and M. Gehrke. Distributive lattice-structured ontologies. In CALCO 2009,
volume 5728 of LNCS, pages 267-283. Springer-Verlag, 2009.



24

(10]
(11]

(12]
(13]

(32]

N. BEZHANISHVILI AND M. GEHRKE

C. Butz. Finitely presented Heyting algebras. Technical report, BRICS, Arhus, 1998.

S. Celani and R. Jansana. Bounded distributive lattices with strict implication. Math. Log. Q.,
51(3):219-246, 2005.

A. Chagrov and M. Zakharyaschev. Modal Logic. The Clarendon Press, 1997.

S. Ghilardi. Free Heyting algebras as bi-Heyting algebras. Math. Rep. Acad. Sci. Canada XVI., 6:240—
244, 1992.

S. Ghilardi. An algebraic theory of normal forms. Annals of Pure and Applied Logic, 71:189-245, 1995.
S. Ghilardi. Continuity, freeness, and filtrations. Technical report, Universita DegliStudi di Milano,
2010. Available at http://homes.dsi.unimi.it/ ghilardi/allegati/research.html.

S. Ghilardi and M. Zawadowski. Sheaves, Games and Model Completions. Kluwer, 2002.

R. Grigolia. Free algebras of non-classical logics. “Metsniereba”, Tbilisi, 1987. (in Russian).

P. T. Johnstone. Stone spaces. Cambridge University Press, Cambridge, 1982.

C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoretical Computer Science, 327(1-2):109-134,
2004.

A. Kurz and J. Rosicky. The Goldblatt-Thomason theorem for coalgebras. In CALCO 2007, volume
4624 of LNCS, pages 342-355. Springer-Verlag, 2007.

A. Nerode. Some Stone spaces and recursion theory. Duke Math. J., 26:397-406, 1959.

I. Nishimura. On formulas of one variable in intuitionistic propositional calculus. J. Symbolic Logic,
25:327-331, 1960.

A. Palmigiano. A coalgebraic view on positive modal logic. Theoretical Computer Sceince, 327:175-195,
2004.

D. Pataraia. High order cylindric algebras. 2011. In preparation.

D. Pattinson and L. Schroder. Beyond rank 1: Algebraic semantics and finite models for coalgebraic
logics. In FOSSACS 2008, volume 4962 of LNCS, pages 66-80. Springer, 2008.

L. Rieger. On the lattice theory of Brouwerian propositional logic. Acta Fac. Nat. Univ. Carol., Prague,
189:1-40, 1949.

V. Rybakov. Rules of inference with parameters for intuitionistic logic. J. Symbolic Logic, 57(3):912-923,
1992.

L. Schroder and D. Pattinson. PSPACE bounds for rank-1 modal logics. In Proc. 21st IEEE Symposium
on Logic in Computer Science (LICS 2006), pages 231-242, 2006.

V. Shehtman. Rieger-Nishimura ladders. Dokl. Akad. Nauk SSSR, 241(6):1288-1291, 1978.

A. Urquhart. Free Heyting algebras. Algebras Universalis, 3:94-97, 1973.

Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem, and F. Wolter, editors, Handbook
of Modal Logic, pages 331-426. Elsevier, 2007.

P. Whitman. Splittings of a lattice. Amer. J. Math., 65:179-196, 1943.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany



	1. Introduction
	2. Discrete duality for distributive lattices
	3. Weak Heyting algebras
	3.1. Freely adding weak implications
	3.2. Free weak Heyting algebras

	4. Pre-Heyting algebras
	5. Heyting algebras
	6. A coalgebraic representation of wHAs and PHAs
	7. Conclusions and future work
	References

