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Abstract. Stepwise refinement of algebraic specifications is a well known formal method-
ology for program development. However, traditional notions of refinement based on signa-
ture morphisms are often too rigid to capture a number of relevant transformations in the
context of software design, reuse, and adaptation. This paper proposes a new approach
to refinement in which signature morphisms are replaced by logical interpretations as a
means to witness refinements. The approach is first presented in the context of equational
logic, and later generalised to deductive systems of arbitrary dimension. This allows, for
example, refining sentential into equational specifications and the latter into modal ones.

1. Introduction

1.1. Context. The industrial demand for high-assurance software opens a window of op-
portunity for mathematically based development methods, able to design complex systems
at ever-increasing levels of reliability and security.

This paper’s contribution is placed at a specific corner of the broad landscape of formal
methods for software development: that of algebraic specification [EM85, Wir90, ST97,
AKKB99], a family of methods which, having played a pioneering role, constitutes at present
a large and mature body of knowledge and active research.

Such methods have a double origin. On the one hand they can be traced back to early
work on data abstraction and modular decomposition of programs [Par72, Hoa72, LZ74,
Gut75, GH78]. On the other hand, to research on semantics of program specifications
building on results from algebraic logic and model theory. Especially relevant in this respect
is the original work of the so-called ADJ group [GTWW77, GTW78] whose initial algebra

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program reasoning—Program
verification /Program specifications; Semantics and reasoning—Program semantics; Formal languages and
automata theory.

Key words and phrases: Refinement; algebraic specification; deductive system; logical interpretation.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(1:1)2014

© M. A. Martins, A. Madeira, and L. S. Barbosa
CC© Creative Commons

http://creativecommons.org/about/licenses


2 M. A. MARTINS, A. MADEIRA, AND L. S. BARBOSA

semantics was the first, full formal approach to software development put forward. This
double origin, temporally located around mid seventies, is not surprising: compositionality is
both a basic requirement in program development and a major asset in algebraic semantics.

The whole area flourished rapidly from the outset: not only different approaches to
semantics (final, observational, loose) emerged, but also the initial tie to many-sorted equa-
tional logic was soon extended, first to conditional-equational logic, and later to order-
sorted, partial and full first-order among other variants. The emergence of the first effective
algebraic specification languages — Obj [GWM+96] and Clear [BG80] — overlaps an-
other major development: the introduction of institutions by J. Goguen and R. Burstall
[GB92]. Institution theory, which develops model theory independent of the underlying log-
ical system, made possible to decouple specification methodology from the particularities
of whatever semantics one may consider more suitable to a specific problem [Dia08].

Moreover, although for a long time the impact of these methods in industry has been
limited, a successful effort has been made in the last 15 years towards convergence on
generic frameworks with suitable tool support. The Compass and, later, the CoFI initiative
[San01], which lead to the development of Casl [MHST03], are relevant milestones in this
process. Besides Casl, CafeOBJ [DF98] and Maude [CDE+07] are currently used in
several industrial applications and tool development. Actually, research in such methods,
either at a foundational or methodological level, found applications in new, unsuspected
areas — for example, in documenting service interfaces [HRD08] , characterising contracts in
contract-based programming [BH08] or test generation for software composition [YKZZ08].

1.2. Motivation. For the working software engineer, a software component is documented
by an interface, which provides a language through which it interacts with its environment,
and a specification of the intended meaning of the services provided. This specification is
implemented by a concrete piece of software respecting the specified semantics.

Algebraic specification methods build on the observation that these somehow vague
concepts from Software Engineering can be framed rigorously in terms of well-known math-
ematical notions. Thus, an interface corresponds to a signature, i.e., a set of names for the
relevant types, called sorts, and a family of service or operation names, classified by their
arity and input-output sorts. A signature generates a formal language, giving a rigorous
meaning to what we have called before the component’s interaction language. Once fixed a
signature, a specification describes a class of models for that signature, and an implementa-
tion identifies a specific model within such a class. If functions provide suitable abstractions
of the services offered by a software component, this analogy can be made even more con-
crete by identifying interfaces with algebraic signatures, (denotations of) specifications with
classes of algebras, and implementations with specific algebras.

The analogy extends to the entire software development process along which compo-
nents are refined by incrementally adding detail and reducing under-specification. Formally,
this is a process of structural transformations witnessed by signature morphisms, which map
functionally sorts and operations from a signature to another respecting the sort translation
of functional types.

In such a context this paper raises and discusses the following question: can more
flexible notions of refinement emerge from replacing signature morphisms by some weaker
notion of transformation?

The quest for weaker notions of transformation lead us to a different setting, that of
Algebraic Logic [FJP03]. The key conceptual tool is that of a deductive system, i.e., a formal
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language generated by a signature, and a consequence relation. Interrelating such systems,
through maps connecting logical properties, has been studied from early in the last century.
Such maps were called translations and investigated as part of an ambitious programme
addressing tools to handle the multiplicity of logics. As a result, several intuitive notions
of translation are scattered in the literature. Many logicians tailored the notion, for their
own purposes, to relate specific logics and to obtain specific results. In general, however, a
translation is regarded as a map between sets of formulas of different logics such that the
image of a theorem is still a theorem. They were used originally to clarify the relationship
between classical and constructive logics.

Our starting point is the observation that specifications describe classes of models and
those can be naturally associated to deductive systems. Then, translations that both reflect
and preserve consequence relations seem interesting candidates to witness weaker forms
of refinement. In this paper we will single out a specific sort of translations based on
multifunctions, i.e., functions mapping an element to a set of elements. Such translations
are called interpretations and constitute a central tool in the study of equivalent algebraic
semantics (see, e.g., [Wój88, BP89, BP01, BR03, Cze01]). A paradigmatic example is the
interpretation of the classical propositional calculus into the equational theory of Boolean
algebras (cf. [BP01, Example 4.1.2]). This paper explores interpretations between the
deductive systems corresponding to classes of models of specifications as possible witnesses
of refinement steps. The notion seems able to capture a number of transformations which
are difficult to deal with in classical terms. Examples include data encapsulation and the
decomposition of operations into atomic transactions. It also seems promising in the context
of new, emerging computing paradigms which entail the need for more flexible approaches
to what counts as a valid transformation along the development process (see, for example,
[BSR04]).

1.3. Contribution. In this context, the contribution of this paper, which combines and
extends previous results by the authors reported in [MMB09a] and [MMB09b], is twofold.
On the one hand it puts forward a detailed characterisation of refinement witnessed by
interpretations, referred in the sequel as refinement by interpretation, and exemplifies its
potentialities in a number of small, yet illustrative examples.

On the other hand, it renders the whole approach at a sufficiently abstract setting to
be applicable over arbitrary, technically k-dimensional, deductive systems. The dimension
fixes the kind of relationship between terms one is interested in. Dimension 2, for example,
encompasses equations, regarded as instances of a binary predicate asserting, for example,
term equality, bisimilarity, or observational equivalence. Similarly, a unary predicate assert-
ing the validity of a formula is enough to represent a proposition, leading to 1-dimensional
deductive systems. Refinement by interpretation in a general, k-dimensional setting pro-
vides a suitable context to deal simultaneously with deductive systems arising from classes
of models presented in different logics, for example, as a set of equations, propositions or
modal formulas.

1.4. Scope. Once stated the paper’s contributions, it is important to clearly delimit its
scope. First of all it should be stressed that the focus of this paper is not placed on
specifications, understood as syntactic entities which describe in a structured, modular way
classes of models, but rather on the classes of models themselves, which constitute their
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denotations. Deductive systems, the basic tool in our approach, correspond to such classes.
This means that the whole area of specification structuring [ST06] is, for the moment, left
out. Our approach is not concerned with the fact that specifications describing the relevant
classes of models are flat, i.e. given by a finite set of sentences, or structured, i.e., built
by systematic application of a number of operators, such as union, translation or hiding,
all of them well characterised in the literature and implemented in a number of computer-
supported modelling tools.

This does not deny the fundamental importance of specification structuring. Research
on this topic started with the introduction of Clear [BG80], by the end of the seventies,
and its role cannot be underestimated. Actually, the recursive definition of structured
specifications provides basic modular procedures for software composition and architecture.
Moreover structuring operations allows one to go beyond the specification power of simple,
unstructured specifications [Bor02].

Clearly, the approach proposed in this paper can be tuned to specification refinement
in a strict sense. In a recent publication [RMMB11] we showed how refinement by inter-
pretation can be lifted to the level of structured specifications with the usual operators
mentioned above. We believe, however, that by focussing on classes of models this piece of
research acquires a broader scope of application and is worth on its own. In particular, it
pays off when dealing with requirements that cannot be properly formalised in a specifica-
tion (for example, the property that a controller has a finite number of states). Note this
does not entail any loss of expressivity: for each specification, one may recursively compute
its denotation (a signature and a class of models) and work directly with them.

On the other hand, the discussion on which operators should be considered in a spec-
ification calculus is still active. For example, very recently, reference [DT11] introduced
two new operators for specification composition in order to deal with non-protecting im-
portation modes. This further justifies the relevance of a semantic approach as proposed
here.

Another concept to make precise is refinement. The word is taken here in the broad
sense of a transformation mapping an abstract to a more concrete class of models. As such
classes are represented by deductive systems, a refinement will map a deductive system into
another, while preserving the consequence relation. This is in line with the usual meaning
of refinement: all requirements stated at the original level are still valid after refinement.
Moreover, it will be shown in the paper that refinement by interpretation between classes
of models boils down to the standard notion of refinement as inclusion of classes of models
whenever the witnessing interpretation is simply an identity.

Finally, a note on the expressivity of deductive systems. Actually, deductive systems can
play a double role representing both logics, on top of which all the specification machinery
can be developed, and classes of models as discussed above. Clearly, any institution induces,
for each signature, a deductive system through its satisfaction relation, and conversely,
deductive systems may be viewed as special cases of institutions as discussed in [Vou03].
For example, a deductive system may represent the class of Boolean algebras; but the latter
can also be specified as a theory in a suitable institution. Another example is provided by
modal logics which can be regarded as both a deductive system or a theory in the first-order
(FOL) institution through the standard translation.

This provides a uniform view of seemingly different settings, enabling us to discuss how
essentially the same conceptual tool, that of logical interpretation, can be used to interre-
late logics and refine classes of models both regarded as deductive systems. Reciprocally,
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deductive system can be endowed with an algebraic semantics, as discussed in section 4.3.
Note that the quest for such a uniform representation of logics and logical theories pops
up in other contexts, namely on the design of logical frameworks. A prime example is
provided by the logics-as-theories approach proposed by F. Rabe in [Rab08], resorting to
a type theoretical framework, and further developed in the context of the Latin project
[CHK+11].

1.5. Paper structure. Section 2 introduces k-dimensional deductive systems and their
semantics following [BP01]. This paves the way to the formulation of refinement by in-
terpretation in a general setting in sections 4 and 5. Before that, however, in section 3,
the approach is instantiated for the case of algebraic specifications over the institution of
Horn clause logic. This is a popular framework for algebraic specifications which not only
deserves attention on its own, but also provides a simpler setting to build up intuitions.
Finally, section 6 concludes and suggests some problems deserving further attention.

2. Preliminaries

Specifications of complex systems resort to different logics, and even to
their combination. Consequently a characterisation of refinement by in-
terpretation needs to be orthogonal to whatever logic is used in specifi-
cations. This is achieved through the notion of k-dimensional deductive
systems, of which the equational case is just an instance for k = 2. This
section reviews such systems and their semantics, following [BP01], to
provide the background for the sections to follow.

2.1. Deductive systems and translations. Roughly speaking, a deductive system is a
general mathematical tool to reason about formulas in a language generated by a signature.
Formally, it is defined as a pair S = 〈Σ,⊢〉, where Σ is a signature and ⊢ is a substitution-
invariant consequence relation between sets of formulas and individual formulas. Clearly,
any standard sentential logical system, defined in the usual way by a set of axioms and a set
of inference rules (for instance, classical and intuitionist propositional calculus, referred to in
the sequel as CPC and IPC, respectively), is a deductive system. First order logic can also
be formulated as a deductive system [BP89], which shows how broad the concept is. The
formal notion of a deductive system, in this abstract perspective, was originally considered
by  Lukasiewicz and Tarski [Tar56] and intensely studied, from an algebraic point of view,
by many logicians. This gave rise to a new, extremely relevant area of Mathematics, that
of abstract algebraic logic [FJP03].

Although in some literature on algebraic logic this substitution-invariant consequence
relation has been called a logic (cf. [Cze01]), we adopt along the paper the designation of
deductive system used by Blok and Pigozzi [BP89]. This terminology allows us to distinguish
this concept from the habitual meaning logic has in Computer Science, typically understood
as an abstract framework to express specifications and often abstracted as an institution
[GB92, Dia08] or a π-institution [FS88].

As mentioned above, translation maps were introduced in the early 20th century as a
means to interrelate deductive systems. They were first used to understand the relationship
between classical and constructive logics. The well-known Gödel translation of classical logic
into intuitionistic logic has inspired disperse works on comparing different logics by means
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of translations. Illustrative examples include the works of Kolmogorov [Kol77], Glivenko
[Gli29], and Gödel [Göd86] involving classical, intuitionist, and modal logics.

To the best of our knowledge the first general definition of translation between deductive
systems is due to Prawitz and Malmnäs [PM68]. More recently, Wójcicki [Wój88] presented
a systematic study of translations between logics, focussing on inter-relations between sen-
tential logics. And the quest goes on (cf. [MDT09, CG05, CCD09]). At the turn of the
century, Silva, D‘Ottaviano and Sette [SDS99] proposed a general definition of translation
between logics as maps preserving consequence relations. Then, Feitosa and D‘Ottaviano
studied intensively the subclass of translations that preserve and reflect consequence rela-
tions and coined the name conservative translation [FD01].

Conservative translations which are able to relate a formula to a set of formulas, and
are therefore defined as multifunctions, are called interpretations. Those which commute
with substitutions were originally used in abstract algebraic logic to define a very important
class of deductive systems — referred to as algebraisable [BP89]. In particular, they abstract
the strict relationship between classic propositional logic and the class of Boolean algebras.
A deductive system is said to be algebraisable whenever there exists a class K of algebras
such that the consequence relation induced by K is equivalent to the consequence in the
deductive system. Such an equivalence was originally defined by means of two mutually
inverse interpretations. Since then, this link between logic and universal algebra has been
successfully explored. In particular, for an algebraisable deductive system S, properties of
S can be related to algebraic properties of its equivalent algebraic semantics. This kind of
results, of which many examples exist, are often called bridge theorems.

2.2. k-dimensional deductive systems. In order to broaden the spectrum of application
of deductive systems, Blok and Pigozzi et al. [BP01] introduced consequence relations over
k-tuples of formulas, for k a non-zero natural number. k-deductive systems, the result of
this generalisation, are the higher dimensional version of the well known sentential logics.
Their theory provides a unified treatment for several deductive systems such as the ones
corresponding to assertional, equational, and inequational logics. This generalisation also
allows to regard interpretations witnessing algebraisability as a special kind of translations
between k-deductive systems.

An equation, represented in this paper by a formal expression t ≈ t′, can be regarded
as a pair of terms (or formulas) 〈t, t′〉. This, in turn, is an instance of a binary predicate
standing for the equality of two terms. Similarly, a unary predicate asserting the validity
of a formula is enough to represent a proposition. The first observation leads to what will
be characterised in the sequel as a 2-dimensional deductive system, of which the equational
case is a particular instance. The second corresponds, roughly speaking, to sentential logics
in a quite broad sense (to include, for example, first-order predicate logic when suitably
formalised).

In general, adding a k-ary predicate to a strict universal Horn theory without equality,
gives rise to a representation of a k-dimensional deductive system, thus providing a suitable
context to deal simultaneously with different specification logics.

We go even a step further considering k-deductive systems over many sorted languages,
because, in general, software systems manipulate several sorts of data. Almost all notions
can be formulated in this broader setting as discussed later. Note there are other gen-
eralisations that allow the reuse of arguments and tools from abstract algebraic logic in
computer science contexts. Hidden logics, introduced by Pigozzi and Martins in [MP07]
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(see also [Mar07] and [BM13]) are a prime example. They have been efficiently used to
develop specification and verification methodologies for object oriented software systems.
Examples include the Boolean logics, i.e., 1-dimensional multi-sorted logics with Bool as
the only visible sort, and equality-test operations for some of the hidden sorts in place of
equality predicates.

The syntactic support for k-dimensional deductive systems is that of a k-term. Let
Σ = 〈S,Ω〉 be a signature and X = (Xs)s∈S a S-sorted set of variables. A k-term of sort s
over signature Σ is a sequence of k Σ-terms, all of the same sort s, ϕ̄:s = 〈ϕ0 :s, . . . , ϕk−1 :s〉,
abbreviated to ϕ̄ whenever references to sorts can be omitted. A k-variable of sort s is a
sequence of k variables all of the same sort s. TekΣ(X) is the sorted set of all k-terms over
Σ with variables in X, i.e.,

TekΣ(X) = 〈(TeΣ(X)s)
k|s ∈ S〉

where TeΣ(X)s is the set of all terms over Σ, of sort s, with variables in X. Whenever each
TeΣ(X)s, for each sort s in Σ, is non empty, their union acts as the carrier of the Σ-term
algebra freely generated from X, which we denote by TeΣ(X). A substitution on TeΣ(X) is
just an endomorphism over TeΣ(X).

Let us fix some notation and terminology: if ϕ̄(x0 :s0, . . . , xn−1 :sn−1) is a k-term over
Σ, A is a Σ-algebra, and a0 ∈ As0 , . . . , an−1 ∈ Asn−1

, we denote by ϕ̄A(a0, . . . , an−1) the
value ϕ̄ takes in A when variables x0, . . . , xn−1 are instantiated respectively by a0, . . . , an−1.
More precisely, if

ϕ̄(x0, . . . , xn−1) = 〈ϕ0(x0, . . . , xn−1), . . . , ϕk−1(x0, . . . , xn−1)〉,

then ϕ̄A(a0, . . . , an−1) = h(ϕ̄) := 〈h(ϕ0), . . . , h(ϕk−1)〉, where h is any homomorphism from
TeΣ(X) to A such that h(xi) = ai for all i < n.

Let VAR = 〈VARs〉s∈S be an arbitrary but fixed family of countably infinite disjoint
sets VARs of variables of sort s ∈ S. Following a typical procedure in similar contexts
(e.g., [LEW00]), we assume in the sequel VAR fixed for each set of sorts S and large
enough to contain all variables needed. Symbols of variables are obviously disjoint of any
other symbol in the signature. As usual in sentential logic frameworks, we will refer to
formulas (k-formulas) as synonymous to terms (k-terms respectively). Accordingly, we will
denote TeΣ(VAR) by Fm(Σ). Moreover, for each nonzero natural number k, given a sorted
signature Σ, a k-formula of sort s over Σ is any element of (TekΣ(VAR))s. The set of all

k-formulas will be denoted by Fmk(Σ). Also note that an S-sorted subset Γ of k-formulas is
identified with the unsorted set

⋃

s∈S Γs, which allows writing ϕ̄ ∈ Γ to mean that ϕ̄ ∈ Γs,

for some sort s. A set Γ ⊆ Fmk(Σ) is said to be globally finite when Γs is a finite set for
each sort s of Σ, equal to ∅ except for a finite number of them, i.e.,

⋃

s∈S Γs is finite. In this
setting, a k-dimensional deductive system is defined as a substitution-invariant consequence
relation on the set of k-formulas. The following definition generalises the one due to W.
Blok and D. Pigozzi [BP01] for the one-sorted case.

Definition 2.1. A k-dimensional deductive system is a pair L = 〈Σ,⊢L〉, where Σ is a sorted
signature and ⊢L⊆ P(Fmk(Σ)) × Fmk(Σ) is a relation such that, for all Γ ∪ ∆ ∪ {γ̄, ϕ̄} ⊆
Fmk(Σ), the following conditions hold:

(i) Γ ⊢L γ̄ for each γ̄ ∈ Γ;
(ii) if Γ ⊢L ϕ̄, and ∆ ⊢L γ̄ for each γ̄ ∈ Γ, then ∆ ⊢L ϕ̄;
(iii) if Γ ⊢L ϕ̄, then σ(Γ) ⊢L σ(ϕ̄) for every substitution σ.
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A k-deductive system is specifiable if ⊢L is compact (or finitary in the terminology of
abstract algebraic logic), i.e., if, whenever Γ ⊢L ϕ̄, there exists a globally finite subset ∆
of Γ such that ∆ ⊢L ϕ̄. The relation ⊢L, abbreviated to ⊢ whenever L is clear from the
context, is called the consequence relation of L.

It is easy to see that, for any Γ ∪ ∆ ∪ {γ̄, ϕ̄} ⊆ Fmk(Σ), Γ ⊢ γ̄ and Γ ⊆ ∆ imply ∆ ⊢ γ̄.

Every consequence relation ⊢ has a natural extension to a relation between sets of k-
formulas, also denoted by ⊢, defined by Γ ⊢ ∆ if Γ ⊢ ϕ̄ for each ϕ̄ ∈ ∆. Finally, the relation
of interderivability between sorted sets is defined by Γ ⊣⊢ ∆ if Γ ⊢ ∆ and ∆ ⊢ Γ. We
abbreviate Γ ∪ {ϕ̄0, . . . , ϕ̄n−1} ⊢ ϕ̄ and Γ0 ∪ · · · ∪ Γn−1 ⊢ ϕ̄ by Γ, ϕ̄0, . . . , ϕ̄n−1 ⊢ ϕ̄ and
Γ0, . . . ,Γn−1 ⊢ ϕ̄, respectively.

Let L be a (not necessarily specifiable) k-deductive system. A thm of L is a k-formula
ϕ̄ such that ⊢L ϕ̄, i.e., ∅ ⊢L ϕ̄. The set of all theorems is denoted by Thm(L). An inference
rule is a pair 〈Γ, ϕ̄〉 where Γ = {ϕ̄0, . . . , ϕ̄n−1} a globally finite set of k-formulas and ϕ̄ a
k-formula, usually represented as

ϕ̄0, . . . , ϕ̄n−1

ϕ̄n
(2.1)

A rule such as (2.1) is said to be a derivable rule of L if {ϕ̄0, . . . , ϕ̄n−1} ⊢L ϕ̄n. A set of
k-formulas T closed under the consequence relation, i.e., such that T ⊢L ϕ̄ implies ϕ̄ ∈ T ,
is called a theory of L. The set of all theories is denoted by Th(L); it forms a complete
lattice under set-theoretic inclusion, which is algebraic if L is specifiable. Given any set of
k-formulas Γ, the set of all consequences of Γ, in symbols CnL(Γ), is the smallest theory that
contains Γ. It is easy to see that CnL(Γ) = { ϕ̄ ∈ Fmk(Σ) : Γ ⊢L ϕ̄}. Often, a specifiable
k-deductive system is presented in the so-called Hilbert style, i.e., by a set of axioms (k-
formulas) and inference rules. We say that a k-formula ψ̄ is directly derivable from a set Γ
of k-formulas by a rule such as (2.1) if there is a substitution h : Fm(Σ) → Fm(Σ) such
that h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . , h(ϕ̄n−1) ∈ Γ.

Given a set AX of k-formulas and a set IR of inference rules, we say that ψ̄ is derivable
from Γ by AX and IR, in symbols Γ ⊢AX,IR ψ̄, if there is a proof, i.e., a finite sequence
of k-formulas, ψ̄0, . . . , ψ̄n−1 such that ψ̄n−1 = ψ̄, and for each i < n, one of the following
conditions holds:

(i) ψ̄i ∈ Γ,
(ii) ψ̄i is a substitution instance of a k-formula in AX,
(iii) ψ̄i is directly derivable from {ψ̄j : j < i} by one of the inference rules in IR.

It is clear that 〈Σ,⊢AX,IR〉 is a specifiable k-deductive system. Moreover, a k-deductive
system L is specifiable iff there exist possibly infinite sets AX and IR, of axioms and inference
rules respectively, such that, for any k-formulas ψ̄ and any set Γ of k-formulas, Γ ⊢L ψ̄ iff
Γ ⊢AX,IR ψ̄ (see [Cze01] for the one sorted case). This justifies that all the examples of
specifiable deductive systems introduced in this paper are presented by a set of axioms and
inference rules.

If a deductive system L is equal to 〈Σ,⊢AX,IR〉, for some sets AX and IR with |AX∪IR| <
ω, L is said to be finitely axiomatisable. A k-deductive system L′ = 〈Σ,⊢L′〉 is an extension
of the k-deductive system L = 〈Σ,⊢L〉 if Γ ⊢L′ ϕ̄ whenever Γ ⊢L ϕ̄ for all Γ∪{ϕ} ⊆ Fmk(Σ)
(i.e., ⊢L ⊆ ⊢L′). A k-deductive system L′ is an extension by axioms and rules of a specifiable
k-deductive system L if it can be axiomatised by adding axioms and inference rules to the
axioms and rules of some axiomatisation of L.
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2.3. The equational case. Typical examples of k-deductive systems are the ones induced
by algebraic specifications (see Section 3). Given a signature Σ, they are defined over pairs of
Σ-terms 〈t, t′〉, representing equations t ≈ t′, and have therefore dimension k = 2. Similarly,
Σ-conditional equations can be taken as pairs 〈Γ, e〉 where Γ is a globally finite subset of
Fm2(Σ) and e ∈ Fm2(Σ). As a particular case, an equation t ≈ t′ is a conditional equation
without premisses, 〈∅, t ≈ t′〉. In general, a conditional equation 〈{t1 ≈ t′1, . . . , tn ≈ t′n}, t ≈
t′〉 will be written as t1 ≈ t′1 ∧ · · · ∧ tn ≈ t′n → t ≈ t′. In the sequel we will often use Eq(Σ),
instead of Fm2(Σ), for the set of all equations over VAR, and, similarly, Ceq(Σ), for the set
of all Σ-conditional equations over VAR.

Let Γ ∪ {t ≈ t′} ⊆ Fm2(Σ) and A be a Σ-algebra. We write Γ |=A t ≈ t′ if, for every
homomorphism h : Fm(Σ) → A,

h(ξ) = h(η), for every ξ ≈ η ∈ Γ, implies h(t) = h(t′).

For Γ = ∅, ∅ |=A t ≈ t′ is abbreviated to |=A t ≈ t′. An equation t ≈ t′ is an identity of
A if |=A t ≈ t′. Similarly, a conditional equation ξ = t1 ≈ t′1, . . . , tn ≈ t′n → t ≈ t′ is a
quasi -identity of A if {t1 ≈ t′1, . . . , tn ≈ t′n} |=A t ≈ t′, which is simply written as A |= ξ
when clear from the context.

These definitions extend, as expected, to classes of algebras. Given a class of Σ-algebras
K, the (semantic) equational consequence relation |=K determined by K is defined by

Γ |=K t ≈ t′ iff, for every A ∈ K, Γ |=A t ≈ t′.

In this case t ≈ t′ is said to be aK-consequence of Γ. When clear from the context, we simply
write K |= ξ, where ξ = t1 ≈ t′1, . . . , tn ≈ t′n → t ≈ t′, for {t1 ≈ t′1, . . . , tn ≈ t′n} |=K t ≈ t′.
Both |=A and |=K extend to sets of equations C: Γ |=A C iff Γ |=A ξ for each ξ ∈ C, and
respectively for |=K . For a set Φ of quasi-equations, adopting the notational convention
explained above and rather standard in Universal Algebra, A |= Φ stands for A |= ξ for
each ξ ∈ Φ (analogously for a class K of Σ-algebras).

The equational consequence relation |=K satisfies the conditions of Definition 2.1. Hence
it constitutes an example of a 2-deductive system (perhaps the most important one!) often
simply denoted by K.

A class K of Σ-algebras is axiomatised by a set Φ of conditional equations if

K =
{

A | {t1 ≈ t′1, . . . , tn ≈ t′n} |=A t ≈ t′ for all t1 ≈ t′1, . . . , tn ≈ t′n → t ≈ t′ ∈ Φ
}

.

It can be proved that, if K is a class of Σ-algebras axiomatised by a set Φ of conditional
equations, then the relation |=K is specifiable (see [BR03] for the one-sorted case). In this
case it can be defined in the Hilbert style, taking the set of Σ-equations in Φ, together with
reflexivity, as the set of axioms, and the set of Σ-conditional equations in Φ, along with
symmetry, transitivity and congruence rules, as inference rules. Any specifiable equational
deductive system over Σ is the natural extension (by axioms and rules) of the (2-dimensional)
free deductive system over Σ denoted by EQΣ and defined in Figure 1. Note that the
consequence relation associated to EQΣ coincides with |=Alg(Σ), where Alg(Σ) is the class
of all Σ-algebras.

Recall the discussion of the double role played by deductive systems in subsection
1.4. Actually, it is well known that any deductive system can be seen as a π-institution
[FS88], and taking care of some extra technicalities, as an institution. However some special
finitary ones are, in a more natural way, viewed as theories of institutions, i.e., as sets of
sentences equipped with extra features — the deductive apparatus they induce. For instance,
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deductive system EQΣ

axioms

〈x :s, x :s〉

inference rules

〈x :s, y :s〉

〈y :s, x :s〉
〈x :s, y :s〉, 〈y :s, z :s〉

〈x :s, z :s〉
〈x0 :s0 , y0 :s0 〉, . . . , 〈xn−1 :sn−1 , yn−1 :sn−1 〉

〈O(x0 , . . . , xn−1 ),O(y0 , . . . , yn−1 )〉

(for each sort s, operation symbol O : s0 , . . . , sn−1 → s in Σ )

Figure 1: The 2-dimensional free deductive system over Σ.

given a quasivariety of algebras, we can define a (2-dimensional) deductive system over
the set of equations by using the identities and quasidentities that define the quasivariety,
together with the axioms of reflexivity and the inference rules of symmetry, transitivity and
congruence rules. This deductive system can naturally be seen as a theory of the institution
of Horn clause logic.

2.4. k-structures. As discussed in [BP01], a semantics for arbitrary k-deductive systems
needs to go beyond the usual algebraic structures, resorting to algebras endowed with a set
of k-tuples. Formally,

Definition 2.2. A k-structure over a signature Σ = (S,Ω) is a pair A = 〈A,F 〉 where A is
a Σ-algebra and F is a sorted set 〈Fs〉s∈S such that Fs ⊆ Ak

s

In this definition, the sorted set F of designated elements of A, can be regarded as a set
of truth values on A: a formula holds if its interpretation is one of these elements. This is
why F is called a filter : for a deductive system representing the constructive propositional
calculus on a Boolean algebra the notion boils down to the familiar, Boolean filter.

Let A = 〈A,F 〉 be a k-structure. A k-formula ϕ̄:v is said to be a semantic consequence
in A of a set of k-formulas Γ, in symbols Γ |=A ϕ̄, if, for every assignment h : VAR → A,
h(ϕ̄) ∈ Fv whenever h(ψ̄) ∈ Fw for every ψ̄ :w ∈ Γ, where Fs is the component s of the
sorted set F . Notice that the same notation is used for the assignment and its natural
extension to formulas. A k-formula ϕ̄ is valid in A, and conversely A is a model of ϕ̄, if
∅ |=A ϕ̄. A rule such as (2.1) is a validity, or a valid rule, of A, and conversely A is a
model of the rule, if {ϕ̄0, . . . , ϕ̄n−1} |=A ϕ̄n. A formula ϕ̄ is a semantic consequence of a
set of k-formulas Γ for an arbitrary class M of k-structures over Σ, in symbols Γ |=M ϕ̄, if
Γ |=A ϕ̄ for each A ∈ M. It can be proved that |=M is always a k-deductive system, even
if not always specifiable.

Similarly, a k-formula or a rule is a validity of M if it is a validity of each member of
M. A k-structure A is a model of a k-deductive system L if Γ ⊢L ϕ̄ always implies Γ |=A ϕ̄,
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i.e. if every consequence of L is a semantic consequence of A. The special models whose
underlying algebra is the formula algebra, i.e., models of the form 〈Fmk(Σ), T 〉, for T a
theory, are called Lindenbaum-Tarski models. The class of all models of L is denoted by
Mod(L). If L is a specifiable k-deductive system, then A is a model of L iff every axiom
and rule of inference is a validity of A.

In the equational case the semantics based on 2-structures boils down to the traditional
algebraic semantics. More precisely, given a quasi-equational class K of Σ-algebras (i.e.
axiomatised by a set of quasi-equations over Σ), the algebra of any model of the 2-deductive
system induced by K with the identity as its filter belongs to K.

A class of k-structures M is a k-structure semantics of L if ⊢L = |=M. The class of
all models of L forms a k-structure semantics of L. This fact is expressed in a specific
completeness theorem [MP07], stating that, for any k-deductive system L, Γ ⊢L ϕ̄ iff
Γ |=Mod(L) ϕ̄, for every Γ ∪ {ϕ̄} ⊆ Fmk(Σ).

3. Refinement by interpretation: The equational case

This section introduces, exemplifies and discusses the concept of refine-
ment by interpretation — the core contribution of the paper — framed in
the specific, but popular, setting of algebraic specification over the institu-
tion of Horn clause logic.

3.1. Algebraic specification and refinement. This section introduces refinement by
logical interpretation for the specific case of algebraic specifications. As usual (see e.g.,
[ST11]), an algebraic specification SP is considered here as a structured specification over
the institution of Horn clause logic (HCL) [Dia08]. Each SP denotes a pair 〈Σ, [[SP ]]〉 where
Σ is a signature and [[SP ]] is a class of Σ-algebras. The class [[SP ]] of Σ-algebras is called
the model class of SP , and each Σ-algebra in [[SP ]] a model of SP . If ξ is a conditional
equation 〈Γ, e〉 (respectively, an equation e), we write SP |= ξ for Γ |=[[SP ]] e (respectively,
|=[[SP ]] e). Both cases extend, as expected, to sets of conditional equations (respectively,
equations).

When an algebraic specification SP is flat, or basic, its model class [[SP ]] of algebras
is axiomatised by a set Φ of conditional equations. In this case SP is the pair 〈Σ,Φ〉. If
the definition is restricted to formulas over a specific set of Σ-variables X ⊆ VAR, SP is
said X-flat. When Φ is a set of equations the flat specification SP = 〈Σ,Φ〉 is called a
(flat) equational specification. Recall that a class K of Σ-algebras axiomatisable by a set of
equations is called a variety. A variety can also be characterised as a nonempty class K of
Σ-algebras closed under homomorphic images, subalgebras and direct products (cf. [BS81],
[ST11]). This famous result, due to Birkhoff, turns out to be very useful to show that a
given algebraic specification is not an equational specification. In the sequel, for simplicity,
when clear from the context, we refer to algebraic specifications simply as specifications.

In this context stepwise refinement [ST97, Mar06] of specifications refers to the process
through which a complex design is produced by incrementally adding details and reducing
under-specification. This proceeds step-by-step until the class of models becomes restricted
to such an extent that a program can be easily manufactured. Formally, given a specification
SP , the implementation process builds a correct realisation from a concrete enough class of
Σ-models K such that K is a subset of the class of denotations of SP . During this process,
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the specification is enriched according to specific design decisions, iteratively approaching
the intended meaning for the final program.

Starting from an initial abstract specification SP0, refinement builds a chain of specifi-
cations

SP0  SP1  SP2  · · · SPn−1  SPn,

where, for 1 ≤ i ≤ n, SPi−1  SPi represents reverse inclusion of the respective classes of
models. Transitivity of inclusion assures that SP0  SPn. From SP1 onwards each element
in this chain is the result of a refinement step.

In order to deal with more complex requirements along the implementation process,
for example to enable the possibility of renaming, adding or grouping together different
signature components, refinement steps SP ′  SP are traditionally taken up to signature
morphisms. Recall that a signature morphism from Σ = 〈S,Ω〉 to Σ′ = 〈S′,Ω′〉 is a pair
σ = 〈σsort, σop〉, where σsort : S → S′ and σop is a (S∗ × S)-family of functions respecting
the sorts of operation names in Ω, i.e., σop = (σω,s : Ωω,s → Ω′

σ∗

sort(ω),σsort(s)
)ω∈S∗,s∈S (where

for ω = s1 . . . sn ∈ S∗, σ∗sort(ω) = σsort(s1) . . . σsort(sn)).
Given a signature morphism σ : Σ → Σ′ and a Σ′-algebra A, let A↾σ denote the reduct

of A along σ, i.e., for any s ∈ S, s(A↾σ) = σ(s)A, and for all f : s1, . . . , sn → s ∈ Σ,
fA↾σ = σop(f)A. The notation sA and fA refer, respectively, to the carrier of sort s and the
interpretation of operation symbol f in the algebra A. In this context we say that SP ′ is a
refinement of SP witnessed by σ, or simply a σ-refinement, when [[SP ′]] ↾σ ⊆ [[SP ]], where
[[SP ′]]↾σ= {A↾σ |A ∈ [[SP ′]]}.

Having fixed the notation and the basic concepts we may now jump to the kernel of this
section: representing classes of specification models as 2-deductive systems and introduce
interpretations as possible witnesses to the refinement steps.

3.2. Denotations of algebraic specifications as 2-deductive systems. As clarified
in the Introduction (subsection 1.4), our approach is based on the representation of spec-
ifications’ model classes as deductive systems. Our focus is essentially semantic, i.e., on
what specifications denote, and, therefore, the whole theory of refinement by interpretation
discussed here is independent from any specification structuring mechanism.

Actually, any specification SP denotes a class of algebras — its model class, [[SP ]]. This
in turn induces a 2-deductive system according to the procedure sketched in subsection 2.3.
Its consequence relation is |=[[SP ]]. The possibility of this consequence relation being non
finitary, for example if arising from non flat specifications, is also covered in this approach.

As we will see, it turns out that k-deductive systems are an efficient universal tool to
develop, in this way, a theory about all classes of models over a fixed signature. A most
important particular case is that of flat specifications: each of them can be identified with
the deductive system it induces. This observation will be assumed throughout the text and
in the examples. Moreover, using interpretations between the induced deductive systems,
one may go from one model class to another.

In a sense to become clearer below, we say that a specification SP ′ refines another
specification SP by interpretation τ , if τ is an interpretation of SP such that SP |= ξ ⇒
SP ′ |= τ(ξ) for any formula ξ. Before jumping to the technical definition, consider the
following example which, although elementary, may help to build up some intuitions for
this notion of refinement.
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Example 3.1. The introduction of a two-element Boolean algebra together with equality
tests for each sort allows the software engineer to formulate arbitrary universal first-order
axioms as equations in the Boolean sort. The importance of this construction comes from
the fact that, although many of the most natural specification conditions take the form
of universal first-order sentences, only equational and conditional-equational axioms are
guaranteed to possess an initial model. This motivation, as well as equality-test algebras in
general, are extensively discussed in [Pig91].

Consider, thus, two flat specifications S and T. The former has a signature Σ which
declares a sort s and a function f : s −→ s. S has an empty set of axioms; thus, the
corresponding class of models consists of all algebras over its signature. On the other hand,
specification T is depicted in Figure 2.

spec T

sorts

s
ops

ok :−→ s
f : s −→ s
test : s × s −→ s

axioms

test(x , x ) ≈ ok
(test(x , x ′) ≈ ok , test(x ′, x ′′) ≈ ok) → test(x , x ′′) ≈ ok
test(x , x ′) ≈ ok → test(x ′, x ) ≈ ok
test(x , x ′) ≈ ok → test(f (x ), f (x ′)) ≈ ok

Figure 2: Specification T.

It is not difficult to see, by induction on the structure of proofs, that the translation

τ : Eq(Sig(S)) → Eq(Sig(T))
x ≈ x′ 7→ test(x, x′) ≈ ok

interprets S in the sense that the consequence relation induced by S is preserved and reflected
by τ .

An inspection of the signatures of both specifications shows that there exists an unique
signature morphism definable between them: the inclusion ι : Sig(S) → Sig(T). This
morphism induces the identity translation between formulas which, obviously, does not
interpret the specification above. ✸

This kind of anomalies can be circumvented by tailoring refinement to the specific
situation in hands. In the example above equality may be taken as an extralogical predicate
interpreted, roughly speaking, in the second specification as the test operation. However,
such solutions just hold for special cases and have to be redefined case by case. The approach
proposed in this paper aims at providing a uniform, general solution.
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3.3. Translations. A number of notions of translation between logical systems have been
proposed in the literature (see, for example, [Fei97, FD01, BP01, MDT09]).

Definition 3.2 (Translation). Let Σ = (S,Ω), Σ′ = (S′,Ω′) be two signatures. A trans-
lation from Σ to Σ′ is a globally finite sorted multifunction1 τ : Eq(Σ)

/
Eq(Σ′). More

precisely, τ maps each equation in Eq(Σ) into a globally finite S′-sorted set of equations in
Eq(Σ′).

When Σ = Σ′, τ is called a self translation of Σ. In this case, we say that τ commutes
with substitutions if, for every substitution σ, and every equation e ∈ Eq(Σ), τ(σ(e)) =
σ(τ(e)), where, again, the same notation is used to denote the application of a substitution
to a formula or a set of formulas.

Any translation τ : Eq(Σ)

/

Eq(Σ′) can be extended to conditional equations as the
multifunction τ∗ : Ceq(Σ)

/

Ceq(Σ′) given by

τ∗(ξ) = {〈
⋃

t≈t′∈Γ

τ(t ≈ t′), e′〉 | e′ ∈ τ(e)}

for ξ = 〈Γ, e〉 a conditional equation. In the sequel, we identify τ∗ with τ . The reason for
requiring that the image of τs, for each sort s, to be globally finite becomes now clear from
the definition of τ∗. The following lemma establishes an important result.

Lemma 3.3. Let Σ = (S,Ω) be a standard signature and τ a self translation of Σ. Then
the following conditions are equivalent:

(i) τ commutes with substitutions.
(ii) There exist variables x, y ∈ VAR and an S-sorted set of equations E(x, y) in these

two variables such that, for any t ≈ t′ ∈ Eq(Σ)s, τs(t ≈ t′) = Es(t, t
′).

Proof. Assume that τ commutes with arbitrary substitutions, fix distinct variables x, y, and
defineE := τ(x ≈ y). Let FV(E) denote the set of free variables occurring in E, and suppose
FV(E) ⊆ {x, y, r1, r2, . . . }. Let e be a substitution such that e(x) = x, e(y) = y, and e(ri) =
x for all i ≥ 1. By assumption, E(x, y, x, . . . ) = E(e(x), e(y), e(r1), ...) = e(E) = e

(

τ(x ≈

y)
)

= τ
(

e(x) ≈ e(y)
)

= τ(x ≈ y) = E(x, y, r1, r2, . . . ). Hence, {r1, r2, . . . } ⊆ {x, y}. Thus
FV(E) ⊆ {x, y}. We will write E(x, y) to denote that the variables which occur in E are
among x and y. Now, let t ≈ t′ ∈ Eq(Σ), and e be a substitution such that e(x) = t
and e(y) = t′. We have that τ(t ≈ t′) = τ

(

e(x) ≈ e(y)
)

= e
(

τ(x ≈ y)
)

= e
(

E(x, y)
)

=

E
(

e(x), e(y)
)

= E(t, t′). Suppose now that ((ii)) holds. Let α be a substitution in Σ. Then,
for any t ≈ t′ ∈ Eq(Σ),

α(τ(t ≈ t′)) = α(Es(t, t
′)) = Es(α(t), α(t′))) = τ(α(t) ≈ α(t′)) = τ(α(t ≈ t′)).

3.4. Interpretations. Defined as a multifunction, a translation maps a formula into a
set of formulas, and this is what makes translations interesting to establish relationships
between specifications. Recall that a signature morphism maps a term into just another
term.

Not all translations, however, are suitable to capture the meaning of interpreting a
specification into another. The following definition singles out the relevant ones:

1In the sequel, notation m : A

/

B is used for multifunctions m from A to B.
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Definition 3.4 (Interpretation). Let τ be a translation from Σ to Σ′, and SP a specification
over Σ. The translation τ interprets SP if there is a class of algebras K over Σ′ such that,
for any ξ ∈ Ceq(Σ),

SP |= ξ if and only if K |= τ(ξ)

In this case we say that τ interprets SP in K, and K is a τ -interpretation of SP . Moreover,
when K is the denotation of a specification SP ′ we say that τ interprets SP in SP ′, and
SP ′ is a τ -interpretation of SP .

Example 3.5. The interpretation of the specification of Boolean algebras into the class HA
of Heyting algebras is a classical example of an interpretation. Let Σ be the usual signature
of Boolean algebras (and of Heyting algebras). Consider the well known double negation
(propositional) map: ι(t) = ¬¬t.
Let τ be a self translation of Σ defined by

τ(t ≈ t′) = {ι(t) ≈ ι(t′)}

It can be shown that τ interprets the specification of Boolean algebras in the class HA
[BR03]. This is known as Glivenko’s interpretation [Gli29]. It establishes a strict relation-
ship between classical and intuitionistic derivability: if ϕ is a theorem in CPC then ¬¬ϕ is
a theorem in IPC. The result builds a bridge between the algebraic semantics of classical
propositional calculus and that of intuitionistic propositional calculus. ✸

It is not difficult to see that,

Theorem 3.6. Let SP and SP ′ be two algebraic specifications over a signature Σ, and τ
a recursive self translation of Σ that commutes with arbitrary substitutions and interprets
SP in SP ′. If SP is decidable then SP ′ is decidable.

Proof. In [Fei97].

Definition 3.7. Let τ be a translation from Σ to Σ′ and SP a specification over Σ. A
Σ′-algebra A′ is a τ -model of SP if, for any ξ ∈ Ceq(Σ), SP |= ξ implies A′ |= τ(ξ). The
τ -model class of SP , denoted by Modτ (SP ), is the class of all τ -models of SP .

Observe that, for any conditional equation ξ = 〈Γ, e〉, SP |= ξ implies Modτ (SP ) |= τ(ξ).

Theorem 3.8. Let SP be a specification over Σ, and τ a translation from Σ to Σ′ that
interprets SP . Then the class of models Modτ (SP ) is the largest τ -interpretation of SP .

Proof. Suppose that τ interprets SP . Let K be a class of models which is a τ -interpretation
of SP . Then for any ξ ∈ Ceq(Σ), SP |= ξ if and only if K |= τ(ξ). Hence all models in K
are τ -models of SP . Thus, K ⊆ Modτ (SP ).

So, we only need to prove that Modτ (SP ) is a τ -interpretation of SP . Let ξ ∈ Ceq(Σ).
It is clear that SP |= ξ implies Modτ (SP ) |= τ(ξ). Suppose now that Modτ (SP ) |= τ(ξ).
Let K be a class of models that is a τ -interpretation of SP (it exists since τ interprets SP ).
As proved above, K ⊆ Modτ (SP ), hence K |= τ(ξ). Finally, K being a τ -interpretation of
SP entails SP |= ξ.

The next theorem states that if a specification SP is finitely axiomatisable, so is
Modτ (SP ). Therefore there is a flat specification SP τ such that [[SP τ ]] = Modτ (SP ).
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Theorem 3.9. Let τ be a self translation of Σ and SP = 〈Σ,Φ〉 a X-flat specification for
a set X ⊆ VAR of variables. If τ commutes with substitutions then the class of models
denoted by the flat specification SP τ = 〈Σ, τ(Φ)〉 coincides with Modτ (SP ). Moreover, if Φ
is finite then SP τ is finitely axiomatisable.

Proof. On the one hand, we have that, for any A′ ∈ Modτ (SP ) and for any ξ ∈ Ceq(Σ),
SP |= ξ implies A′ |= τ(ξ). In particular, since SP |= Φ, we have that Modτ (SP ) |= τ(Φ)
and hence, Modτ (SP ) ⊆ [[〈Σ, τ(Φ)〉]].

On the other hand, let A ∈ [[〈Σ, τ(Φ)〉]] and ξ = 〈Γ, e〉 be a conditional equation over X
such that SP |= ξ (i.e., Γ |=[[SP ]] e). Then, it can be proved by induction on the length of a
proof of e from Γ in the deductive system |=[[SP ]] induced by SP , that A |= τ(ξ). Therefore
A is a τ -model of SP and so, [[〈Σ, τ(Φ)〉]] ⊆ Modτ (SP ).

Clearly, if Φ is finite then τ(Φ) is also finite. Moreover, it can be proved that τ(Φ)
constitutes an axiomatisation for SP τ .

3.5. Refinement by interpretation. Logical interpretation, as introduced in the previous
section, provides the basic tool for the following definition:

Definition 3.10 (Refinement by interpretation). Let SP be a specification over Σ and τ
a translation from Σ to Σ′ which interprets SP . We say that a specification SP ′ over Σ′

refines SP by interpretation τ , in symbols SP ⇁τ SP
′, if for any ξ ∈ Ceq(Σ)

SP |= ξ ⇒ SP ′ |= τ(ξ)

It is not difficult to see that SP ′ refines SP by interpretation τ whenever τ interprets
SP in [[SP ′]].

Let us consider some examples of refinement by interpretation. The first one is mainly
of theoretical interest: it shows how (a specification of) an Heyting algebra can be regarded
as a refinement of (a specification of) a Boolean algebra.

Example 3.11. Consider the specifications of Boolean and Heyting algebras depicted in
Figures 3 and 4, where DISTLATTICE is the specification of distributive lattices (see,
[BS81]). We assume that a sort bool is declared in DISTLATTICE. Note that in this
example, as in a few others in the sequel, a naive use is made of a few standard operations
for structuring specifications. For example, annotation enrich S means that the (finitary)
specification is obtained by adding new operation symbols, new sorts or/and new axioms to
S. This is done just for syntactical convenience: to represent an equivalent flat specification,
whose existence is trivially shown for both BOOL, HEYTING and all the other cases where
we use the same artifice. What should be kept in mind is that the flat specifications
correspond directly to deductive systems.
As in Example 3.5, the multifunction τ defined by

τ(p ≈ q) = {¬¬p ≈ ¬¬q}

interprets BOOL in HEYTING. To show that BOOL ⇁τ HEYTING just observe that for
any axiom ϕ of BOOL, HEYTING |= τ(ϕ).

A Gödel algebra, also known as a L-algebra [BD74], is a Heyting algebra that satisfies
the pre-linearity condition: (x։ y)∨ (y ։ x) = tt. The class GODEL of all Gödel algebras
forms a subvariety of the class HEYTING and is thus a denotation of a flat specification,
also denoted by GODEL, obtained from the HEYTING specification by adding the extra
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spec BOOL

enrich DISTLATTICE
ops

tt : −→ bool
ff : −→ bool
¬ : bool −→ bool
∧ : bool × bool −→ bool
∨ : bool × bool −→ bool

axioms

p ∨ ¬p ≈ tt

p ∧ ¬p ≈ ff

p ∨ tt ≈ tt

p ∧ ff ≈ ff

Figure 3: A specification of Boolean algebras.

spec HEYTING

enrich DISTLATTICE
ops

tt : −→ bool
ff : −→ bool
¬ : bool −→ bool
∧ : bool × bool −→ bool
∨ : bool × bool −→ bool
։: bool × bool −→ bool

axioms

p ∨ tt ≈ tt

p ∧ ff ≈ ff

p ։ p ≈ tt

(p ։ q) ∧ q ≈ q
p ։ (q ∧ r) ≈ (p ։ q) ∧ (p ։ r)
p ∧ (p ։ q) ≈ p ∧ q
(p ∨ q)։ r ≈ (p ։ r) ∧ (q ։ r)
¬p ≈ p ։ ff

Figure 4: A specification of Heyting algebras.

axiom (x։ y) ∨ (y ։ x) = tt. So GODEL is an example of a refinement by interpretation
of the specification of Boolean algebras. ✸

Our next example, although quite elementary, illustrates a key point. It shows how
refinement by interpretation may capture data encapsulation, i.e., the process of hiding a
specific sort in a specification. This is a relevant issue in algebraic specification, in particular
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spec NAT

sorts

nat
ops

z : −→ nat
s : nat −→ nat
+ : nat × nat −→ nat

axioms

x + z ≈ x
s(x + y) ≈ x + s(y)
s(x ) ≈ s(y) → x ≈ y

Figure 5: A specification of the natural numbers.

when the implementation target is an object-oriented framework: hidden sorts become the
state space of object implementations, as discussed in, e.g., [Fav98, DD05]. In the following
example a specification of the natural numbers is interpreted into another one exclusively
axiomatised by equations of sort bool. Sort nat becomes hidden, or encapsulated, after
refinement.

Example 3.12. Consider the specification NAT of the natural numbers depicted in Figure
5. An alternative specification, NATEQ, is shown in Figure 6, which introduces an equality
test, eq, axiomatised with the congruence property.
NATEQ interprets NAT through multifunction τ defined as

τ(x : nat ≈ y : nat) = {eq(x : nat, y : nat) ≈ tt}

First note that for any equation t ≈ t′ such that NAT |= t ≈ t′, one also has NATEQ
|= eq(t, t′) ≈ tt, since the interpretation of the proof of NAT |= t ≈ t′ is a proof of NATEQ
|= eq(t, t′) ≈ tt. The converse is proved by induction on the length of the proof of NATEQ
|= eq(t, t′) ≈ tt. Hence, any refinement of NATEQ, for example, the one obtained by adding
axiom eq(z, s(z)) ≈ ff, is a refinement by τ of NAT. ✸

Other useful design transformations can similarly be captured as refinements. Our last
example illustrates one of them in which some operations are decomposed or mapped to
transactions, i.e., sequences of operations to be executed atomically.

Example 3.13. Consider the following fragment of a specification of a bank account
management system (BAMS), involving account deposits (operation deposit), withdrawals
(withdraw), and a balance query (bal).

spec BAMS

enrich INT
axioms

bal(deposit(s, i ,n), i) ≈ bal(s, i) + n
bal(withdraw(s, i ,n), i) ≈ max(bal(s, i) − n, 0 )
· · ·



THE ROLE OF LOGICAL INTERPRETATIONS IN PROGRAM DEVELOPMENT 19

spec NATEQ

enrich BOOL
sorts

nat
ops

z : −→ nat
s : nat −→ nat
+ : nat × nat −→ nat
eq : nat × nat −→ bool

axioms

eq(x , x ) ≈ tt

eq(x , y) ≈ tt → eq(y , x ) ≈ tt

eq(x , y) ≈ tt , eq(y , z) ≈ tt → eq(x , z) ≈ tt

eq(x , y) ≈ tt → eq(s(x ), s(y)) ≈ tt

eq(s(x ), s(y)) ≈ tt → eq(x , y) ≈ tt

eq(x + z, x ) ≈ tt

eq(s(x + y), x + s(y)) ≈ tt

Figure 6: Hiding sort nat.

Assume INT as the usual flat specification of integer numbers with arithmetic opera-
tions, and variables s :Sys, i :Ac and n, n′ :Int, where Sys and Ac are the sorts of bank
systems and account identifiers, respectively. The signatures of the main operations are as
follows: deposit : Sys × Ac × Int −→ Sys, withdraw : Sys × Ac × Int −→ Sys and
bal : Sys×Ac −→ Int.
Consider now an implementation B2 where all debit and credit transactions require a previ-
ous validation step. This is achieved through an operation valid : Sys×Ac× Int −→ Int,
which, given a bank system state, an account identifier, and a value to be added or sub-
tracted to the account’s balance, verifies if the operation can proceed or not. In the first
case it outputs the original amount; in the second 0 is returned as an error value. This will
force an invalid deposit or withdrawal to have no effect (0 will be added to, or subtracteded
from the account’s balance). Although this is a quite common form of error recovery (in-
voking the intended operation with its identity element), note that, for the purpose of this
example, the concrete behaviour of operation valid is not relevant as long as an integer is
returned. The axioms for B2 include,

spec B2

enrich INT
axioms

· · ·
bal(deposit(s, i , valid(s, i ,n)), i) ≈ bal(s, i) + valid(s, i ,n)
bal(withdraw(s, i , valid(s, i ,n)), i) ≈ max(bal(s, i) − valid(s, i ,n), 0 )

The interpretation τ1 : Eq(ΣBAMS)

/

Eq(ΣB2), defined by
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τ1(t ≈ t′) =
{

γ ≈ γ′|γ ∈ τ#1 (t) and γ′ ∈ τ#1 (t′)
}

, where

τ#1 (x) = {x} for x ∈ VAR

τ#1 (f(t1, t2, t3)) =
{

f(t′1, t
′
2, valid(t′1, t

′
2, t

′
3)) |

∧

i=1..3

t′i ∈ τ#1 (ti)
}

for f ∈ {deposit,withdraw}

τ#1 (f(t1, . . . , tn)) =
{

f(t′1, . . . , t
′
n) |

∧

i=1..n

t′i ∈ τ#1 (ti)
}

for f /∈ {deposit,withdraw}

witnesses a refinement in which isolated calls to the operations are mapped to validated
transactions.

It might also be the case that some operations can be executed with or without valida-
tion, as in, for example,

spec B3

enrich INT
axioms

· · ·
bal(deposit(s, i , valid(s, i ,n)), i) ≈ bal(s, i) + valid(s, i ,n)
bal(deposit(s, i ,n), i) ≈ bal(s, i) + n
bal(withdraw(s, i , valid(s, i ,n)), i) ≈ max(bal(s, i) − valid(s, i ,n), 0 )

Clearly, B3 refines BAMS through the interpretation τ2 : Eq(ΣBAMS)

/

Eq(ΣB3),

τ#2 (x) = {x} for x ∈ VAR

τ#2 (deposit(t1, t2, t3)) =
{

deposit(t′1, t
′
2, valid(t′1, t

′
2, t

′
3)), deposit(t′1, t

′
2, t

′
3) |

∧

i=1..3

t′i ∈ τ#2 (ti)
}

τ#2 (withdraw(t1, t2, t3)) =
{

withdraw(t′1, t
′
2, valid(t′1, t

′
2, t

′
3)) |

∧

i=1..3

t′i ∈ τ#2 (ti)
}

τ#2 (f(t1, . . . , tn)) =
{

f(t′1, . . . , t
′
n) |

∧

i=1..n

t′i ∈ τ#2 (ti)
}

for f /∈ {deposit,withdraw}

Finally, the reader is invited to check that B4 is a refinement of BAMS through interpreta-

tion τ3 : Eq(ΣBAMS) → Eq(ΣB4), defined similarly to τ#2 but for the withdraw case which
becomes

τ#3 (withdraw(t1, t2, t3)) =
{

cf(withdraw(t′1, t
′
2, valid(t′1, t

′
2, t

′
3))) |

∧

i=1..3

t′i ∈ τ#3 (ti)
}

where the specification B4 not only forces all operations to be validated, but may also require
an additional step to check the integrity of the account state before a debit operation is
executed. This step is abstracted in an operation cf : Sys −→ Sys. Therefore, operation
withdraw is decomposed into a three step transaction:
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spec B4

enrich INT
axioms

· · ·
bal(deposit(s, i , valid(s, i ,n)), i) ≈ bal(s, i) + valid(s, i ,n)
bal(deposit(s, i ,n), i) ≈ bal(s, i) + n
bal(cf(withdraw(s, i , valid(s, i ,n))), i) ≈ max(bal(s, i) − valid(s, i ,n), 0 ) ✸

3.6. Stepwise refinement revisited. Having illustrated some typical applications of re-
finement by interpretation, it is legitimate to ask how does it relate to classical refinement
based on signature morphisms. Let us first recall the standard definition:

Definition 3.14 (σ-Refinement). Let σ : Σ → Σ′ be a signature morphism. The specifica-
tion SP ′ over Σ′ is a σ-refinement of SP , in symbols SP  σ SP

′, if

[[SP ′]]↾σ ⊆ [[SP ]]

where [[SP ′]] ↾σ= {A ↾σ |A ∈ [[SP ′]]}. We write SP  SP ′ whenever it is witnessed by the
identity.

Note that, as we associate a fixed set of variables VAR to each signature, the usual
notion of signature morphism has to be extended so that terms with variables from VAR
can still be handled. Therefore we assume that each signature morphism σ : Σ → Σ′ has a
component σvar on variables, namely an injective mapping from

⋃

s∈S VARs to
⋃

s∈S′ VAR′
s

such that, for every variable x ∈ VARs, σvar(x) ∈ VARσsort(s). This allows for the definition
of σ∗, the extension of σ to terms given by σ∗(x) = σvar(x), for each variable x, and by
σ∗(f(t1, . . . , tn)) = σop(f)(σ∗(t1), . . . , σ∗(tn)), for each term f(t1, . . . , tn) in Σ.

Since the composition of two signature morphisms is still a signature morphism, refine-
ments can be composed vertically: if SP0  σ1

SP1 and SP1  σ2
SP2 then SP0  σ2◦σ1

SP2.
This is simply a consequence of reducts being functorial.

The so called satisfaction lemma [GB92] is at the basis of classical refinement. Actually,
theorem 3.16 below, whose proof relies on the satisfaction lemma, provides an important
characterisation of σ-refinements.

Lemma 3.15 (Satisfaction Lemma). Let Σ and Σ′ be signatures, σ : Σ → Σ′ a signature
morphism, A′ a Σ′-algebra, and ξ a conditional equation. Then,

A′ |= σ(ξ) iff A′ ↾σ|= ξ

Theorem 3.16. Let σ : Σ → Σ′ be a signature morphism, SP = 〈Σ,Φ〉 a X-flat specifica-
tion and SP ′ a specification over Σ′. Then, SP  σ SP

′ iff SP ′ |= σ(Φ).

Proof. Suppose that SP  σ SP
′. Then, for any A′ ∈ [[SP ′]], A′ ↾σ∈ [[SP ]], i.e., A′ ↾σ|= Φ.

Hence, by Lemma 3.15, A′ |= σ(Φ). On the other hand, suppose SP ′ |= σ(Φ). Then, for
any A′ ∈ [[SP ′]], A′ |= σ(Φ). By Lemma 3.15 A′ ↾σ|= Φ, and hence, A′ ↾σ∈ [[SP ]]. Therefore
SP  σ SP

′.
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A relationship between σ-refinement and refinement by interpretation can now be de-
scribed as follows.

Theorem 3.17. Let SP be a specification over Σ, and τ a translation from Σ to Σ′ which
interprets SP . If there is a specification SP τ whose denotation coincides with Modτ (SP ),
then, for every SP ′ over Σ′, SP τ  SP ′ implies SP ⇁τ SP

′.

Proof. Suppose SP τ  SP ′, i.e., [[SP ′]] ⊆ [[SP τ ]]. Thus, any algebra A′ ∈ [[SP ′]] is a τ -
model of SP . Therefore for any ξ ∈ Ceq(Σ), SP |= ξ implies SP ′ |= τ(ξ). I.e., SP ⇁τ SP

′.

Theorem 3.18. Let SP be a specification over Σ and τ a translation from Σ to Σ′. If τ in-
terprets SP and there is a specification SP τ whose class of models coincides with Modτ (SP ),
then the following conditions are equivalent:

SP ⇁τ SP
′ (3.1)

SP τ  SP ′ (3.2)

Proof. Suppose that SP ⇁τ SP ′. Since any A ∈ [[SP ′]] is a τ -model, [[SP ′]] ⊆ [[SP τ ]].
Hence, SP τ  SP ′. The converse implication is just Theorem 3.17.

An immediate corollary is

Corollary 3.19. Let SP = 〈Σ,Φ〉 be a X-flat specification and τ a translation from Σ to
Σ′ which interprets SP and Modτ (SP ) is axiomatised by τ(Φ). Then, SP ′ |= τ(Φ) implies
SP ⇁τ SP

′.

Proof. Let SP τ be the flat specification 〈Σ′, τ(Φ)〉. By hypothesis [[SP τ ]] = Modτ (SP ).
Suppose that SP ′ |= τ(Φ). Then [[SP ′]] ⊆ [[SP τ ]], which entails SP τ  SP ′. By Theorem
3.17, since [[SP τ ]] = Modτ (SP ), we conclude SP ⇁τ SP

′.

This paves the way to address the following question: given that any mapping can be
regarded as a multifunction, when does a σ-refinement via signature morphism become a
refinement by interpretation?

First note that a signature morphism σ : Σ → Σ′ induces a translation τ : Ceq(Σ) →
Ceq(Σ′). This is defined, for each 〈Γ, e〉 ∈ Ceq(Σ), by τ(〈Γ, t ≈ t′〉) = 〈{σ(t) ≈ σ(t′)|t ≈
t′ ∈ Γ}, σ(t) ≈ σ(t′)〉. Then,

Lemma 3.20. Let SP be a specification over Σ, σ : Σ → Σ′ an injective signature mor-
phism, and τ the translation induced by the signature morphism σ. Then τ interprets SP .

Proof. Let K = {A′|A′ ↾σ∈ [[SP ]]}. Let ξ ∈ Ceq(Σ), and suppose SP |= ξ. Let A′ ∈ K.
Since A′ ↾σ∈ [[SP ]] we have that A′ ↾σ|= ξ and, by Lemma 3.15, A′ |= σ(ξ). Therefore
K |= τ(ξ). Suppose now K |= τ(ξ) and let A ∈ [[SP ]]. Since σ is injective there is B ∈ K
such B ↾σ= A. Thus B |= τ(ξ) and, by Lemma 3.15, B ↾σ|= ξ, i.e., A |= ξ. Hence SP |= ξ.
Therefore σ interprets SP .

Next theorem shows that refinement by interpretation is, actually, a generalisation of
σ-refinement whenever the signature morphism σ is injective.

Theorem 3.21. Let SP and SP ′ be two specifications over Σ and Σ′ respectively, and
σ : Σ → Σ′ an injective signature morphism. Let τ be the translation induced by the
signature morphism σ. Then, SP  σ SP

′ implies SP ⇁τ SP
′.
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Proof. By the previous theorem τ interprets SP . Suppose SP  σ SP
′, i.e., [[SP ′]]↾σ⊆ [[SP ]].

Let ξ ∈ Ceq(Σ) such that SP |= ξ. Let A′ ∈ [[SP ′]]. Then A′ ↾σ∈ [[SP ]] and so A′ ↾σ|= ξ. By
Lemma 3.15, A′ |= σ(ξ). Hence SP ′ |= σ(ξ). Therefore SP ⇁τ SP

′.

Finally, we show that, in the flat case, the two concepts of refinement coincide:

Theorem 3.22. Let σ : Σ → Σ′ be an injective signature morphism, SP = 〈Σ,Φ〉 a X-
flat specification and SP ′ a specification over Σ′. Let τ be the translation induced by the
signature morphism σ . Then SP  σ SP

′ iff SP ⇁τ SP
′.

Proof. Suppose SP ⇁τ SP
′. Since SP |= Φ, SP ′ |= σ(Φ). By Theorem 3.16 SP  σ SP

′.

It should be noted at this point that the discussion concerning composition of refinements
by interpretation is not straightforward. In fact, horizontal composition is still an open
question (see section 6). For vertical composition an additional property has to be imposed
on the components’ interpretations. Formally,

Theorem 3.23. Let SP , SP ′ and SP ′′ be three specifications over Σ, Σ′ and Σ′′ respectively.
Let τ be a translation from Σ to Σ′ and ρ a translation from Σ′ to Σ′′ Suppose that SP ⇁τ

SP ′, SP ′ ⇁ρ SP
′′ and that there exists a specification SP τ over Σ′ such that [[SP τ ]] =

Modτ (SP ) and ρ interprets SP τ . Then SP ⇁ρ◦τ SP
′′.

Proof. Since τ interprets SP , Modτ (SP ) also interprets SP . Let ξ ∈ Ceq(Σ). Then SP |=
ξ ⇔ Modτ (SP ) |= τ(ξ) ⇔ SP τ |= τ(ξ). But, since ρ interprets SP τ , this is equivalent
to K |= ρ(τ(ξ)), for some class K of Σ′′-algebras. Thus, ρ ◦ τ interprets SP . On the other
hand, suppose SP |= ξ. Since SP ⇁τ SP

′, SP ′ |= τ(ξ). And, from SP ′ ⇁ρ SP
′′ we have

SP ′′ |= ρ(τ(ξ)). Therefore, putting everything together, SP ⇁ρ◦τ SP
′′.

3.7. Going generic. This section introduced refinement by interpretation in the specific
setting of algebraic specification over the institution of Horn clause logic. Our discussion
built on the fact that each specification which is flat, or equivalent to a flat specification,
induces a 2-dimension deductive system corresponding to its class of models. This made
possible the use of interpretations to reason about the refinement of specifications.

A similar discussion could have been made directly over 2-dimension deductive systems.
Revisiting specification T in example 3.1 in such setting will lead to the deductive system
depicted in Figure 7. On its turn, specification S in the same example corresponds to
the deductive system EQΣ for the relevant signature Σ (see Figure 1 in Subsection 2.3).
Note that we are now considering an arbitrary binary predicate and not necessarily the
equality relation. It may stand, for example, for bisimilarity or other form of observational
equivalence. This explains the need for the explicit introduction of axioms and inference
rules which would otherwise be assumed for equality.
Clearly the translation

〈x, x′〉 7→ 〈test(x, x′), ok〉

interprets EQΣ. In the sequel, this generalisation will be carried on further, leading to a
theory of refinement by interpretation over arbitrary k-dimensional deductive systems. We
will resort to a Casl-inspired notation to describe (finitary) deductive systems (coming
from algebraic specifications or not), as illustrated in Figure 7.



24 M. A. MARTINS, A. MADEIRA, AND L. S. BARBOSA

deductive system DT

sorts

s
ops

ok :−→ s
f : s −→ s
test : s × s −→ s

axioms

〈test(x , x ), ok〉

inference rules

〈test(x , x ′), ok〉 〈test(x ′, x ′′), ok〉

〈test(x , x ′′), ok〉

〈test(x , x ′), ok〉

〈test(x ′, x ), ok〉

〈test(x , x ′), ok〉

〈test(f (x ), f (x ′)), ok〉

Figure 7: Deductive system DT

4. Logical interpretation in a general setting

This section generalises translations and logical interpretations to ar-
bitrary k-dimensional deductive systems. In particular, the case of k-
dimensional systems possessing an algebraic semantics is discussed in
some detail.

4.1. Translations. The first step to generalise refinement by interpretation from the equa-
tional case is to define the notion of translation in the general setting of k-dimensional
deductive systems. The following definition generalises Definition 3.2, still assuming that,
for each signature, the set VAR of variables is locally countably infinite.

Definition 4.1 (Translation). Let Σ and Σ′ be two signatures. A (k, l)-translation from Σ
to Σ′ is a globally finite sorted multifunction τ : Fmk(Σ)

/

Fml(Σ′), i.e., for any s ∈ S and
ϕ̄ ∈ Fmk(Σ)s, τs(ϕ̄) is a globally finite S′-sorted set of l-formulas over Σ′.

As before, τ is called a self translation of Σ whenever Σ and Σ′ coincide. In this case,
we say that τ commutes with substitutions if for every substitution σ and every formula
ϕ̄ ∈ Fmk(Σ) τ(σ(ϕ̄)) = σ(τ(ϕ̄)). The translation can be specified by giving, for each sort s,
the image τs(x̄:s) for a k-variable x̄:s (see Example 4.4). Given a (k, l)-translation τ and an
inference rule ξ = 〈Γ, ϕ̄〉, we write τ(ξ) for the set of inference rules {〈τ(Γ), ψ̄〉 : ψ̄ ∈ τ(ϕ̄)}.

A self (k, l)-translation τ is schematic if there is a S-sorted set ∆ of l-formulas, where
for each s, ∆s(x̄) is a set of l-formulas over Σ′ in the k-variable 〈x0 : s, . . . , xn−1 : s〉 such
that, for any ϕ̄ ∈ Fmk(Σ)s, τs(ϕ̄) = ∆s(ϕ0, . . . , ϕk−1).We say that a (k, l)-translation is
functional if the image of each k-formula is a singleton. Schematic (2,2)-translations were
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deductive system SLV

enrich EQΣ

axioms

〈p, p ∧ p〉
〈p ∧ q , q ∧ p〉
〈p ∧ (q ∧ r), (p ∧ q) ∧ r〉

Figure 8: Semilattices as algebras.

first used in [Mad08]. Finally, the following result is the obvious generalisation of Lemma
3.3 from Section 3.

Lemma 4.2. Let Σ be a standard signature and τ a self (k, l)-translation of Σ. Then the
following conditions are equivalent:

(i) τ commutes with substitutions.
(ii) There exists a k-variable x̄ = 〈x0, . . . , xk−1〉 and a S-sorted set ∆(x̄) of l-formulas in

x̄ such that, for any ϕ̄ ∈ Fmk(Σ)s, τs(ϕ̄) = ∆s(ϕ̄).

4.2. Interpretations. Similarly to the equational case not all translations lead to refine-
ments. Hence, we start by generalising the definition of interpretation.

Definition 4.3 (Interpretation). Let τ be a (k, l)-translation from Σ to Σ′, and L a k-
deductive system over Σ. We say that τ interprets L if there is a l-deductive system L′ over
Σ′ such that, for any Γ ∪ {ϕ̄} ⊆ Fmk(Σ), Γ ⊢L ϕ̄ if and only if τ(Γ) ⊢L′ τ(ϕ̄). In this case
we say that τ interprets L in L′ and L′ is a τ -interpretation of L.

To illustrate this more general notion of an interpretation, consider the following exam-
ples which capture a change of logic paradigm. Integrating such a move in the refinement
process, by witnessing refinement steps with this sort of interpretations, was, from the
outset, the motivation for this generalisation.

Example 4.4 (CPC vs. Boolean algebras). The deductive system encoding the equational
logic of Boolean algebras LBA interprets classical propositional logic (CPC), both over the
one-sorted signature Σ = {→,∧,∨,¬,⊤,⊥}, under the schematic, self (1,2)-translation
τ(p) = {〈p,⊤〉}. Moreover, the deductive system LHA, induced by the class of Heyting alge-
bras HA, also provides an interpretation of CPC under the translation ν(p) = {〈¬¬p,⊤〉}.
This translation also interprets CPC into LBA which shows that an interpretation may not
be unique [BR03].

Reciprocally, as one would expect, CPC also interprets LBA, under the (2,1)-translation
ρ(〈p, q〉) = {p→ q, q → p}. ✸

Example 4.5 (Semilattices into posets). A semilattice can be regarded either as an algebra
or as a partial order structure. Such a duality, often useful in specifications, can be expressed,
in a natural way, by an interpretation, actually an equivalence between two 2-deductive
systems over the one-sorted signature Σ = {∧} (see [BP01]) depicted in Figures 8 and 9.
The schematic translation τ , defined by the multifunction τ(〈p, q〉) = {〈p, q〉, 〈q, p〉}, wit-
nesses the interpretation of SLV by SLP.
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deductive system SLP

axioms

〈p, p〉
〈p, p ∧ p〉
〈p ∧ q , p〉
〈p ∧ q , q〉

inference rules

〈x , y〉, 〈y , z 〉

〈x , z 〉

〈x0 , y0 〉, 〈x1 , y1 〉

(x0 ∧ x1 , y0 ∧ y1 〉

Figure 9: Semilattices as order structures.

✸

Clearly, interpretations compose in the sense that if L′ is a τ -interpretation of L and
L′′ is a ρ-interpretation of L′ then ρ◦τ interprets L in L′′. Other properties need further in-
vestigation. The following subsection explores a class of interpretations specifically relevant
for software design.

4.3. Towards an algebraic semantics. There are k-deductive systems to which an al-
gebraic specification can be associated, thus providing an alternative semantics (called al-
gebraic semantics in the context of algebraic logic). It is well known [BR03] that this
association is not unique and may not exist. Our investigation starts with the following
definition which generalises Definition 3.7:

Definition 4.6 (τ -model). Let τ be a (k, l)-translation from Σ to Σ′ and L a k-deductive
system over Σ. An l-structure A is a τ -model of L if for any Γ ∪ {ϕ̄} ⊆ Fmk(Σ), Γ ⊢L ϕ̄
implies τ(Γ) |=A τ(ϕ̄). The class of all τ -models of L, denoted by Modτ (L), is called the
τ -model class of L.

As mentioned above, the semantic consequence associated to a class of k-structures
defined over Fmk(Σ), is always a k-deductive system even if it fails to be specifiable. Hence,
|=Modτ (L) is a deductive system which we will denote by Lτ . Furthermore,

Theorem 4.7. Let τ be a (k, l)-translation from Σ to Σ′ and L a k-deductive system over
Σ. If τ interprets L, then the l-deductive system Lτ is a τ -interpretation of L; moreover,
this is the τ -interpretation of L with the largest class of models.

Proof. Suppose that τ interprets L. Let L′ be a specification which is a τ -interpretation of
L. Then for any Γ∪{ϕ̄} ⊆ Fmk(Σ), Γ ⊢L ϕ̄ iff τ(Γ) ⊢L′ τ(ϕ̄) iff τ(Γ) |=Mod(L′) τ(ϕ̄). Hence
all models of L′ are τ -models of L. Thus, Mod(L′) ⊆ Modτ (L).
So, it is enough to prove that Lτ is a τ -interpretation of L. Let Γ ∪ {ϕ̄} ⊆ Fmk(Σ). It
is clear that Γ ⊢L ϕ̄ implies τ(Γ) ⊢Lτ τ(ϕ̄). Suppose now that τ(Γ) ⊢Lτ τ(ϕ̄). Let L′
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be a specification that is a τ -interpretation of L (it exists since τ interprets L). Since,
Mod(L′) ⊆ Modτ (L), τ(Γ) ⊢L′ τ(ϕ̄). Thus Γ ⊢L ϕ̄ because L′ is a τ -interpretation of L.

Our focus on algebraic specifications entails the need for paying special attention to
(k, 2)-translations, which, mapping k-formulas to 2-formulas, provide a way to relate an
arbitrary k-deductive system to a suitable class of algebras. For the remaining of this
section we will consider a 2-formula 〈t, t′〉 as an equation t ≈ t′.

Let τ be a (k, 2)-translation from Σ to Σ′ and L a k-deductive system. A class K of
Σ-algebras is said to be a τ -algebraic semantics of L if τ interprets L in |=K . Thus, we
define the algebraic model class Kτ

L
over Σ′ as the class of algebraic reducts of the τ -models

L taking the identity as a filter. Formally,

Kτ
L = {A|〈A,△A〉 is a τ -model},

which paves the way to the following corollary:

Corollary 4.8. Given a (k, 2)-translation τ from Σ to Σ′, and a k-deductive system L
over Σ, if there is a τ -algebraic semantics of L, then the class Kτ

L
is the largest τ -algebraic

semantics of L, i.e., with the largest class of models. Moreover, Kτ
L
is finitely axiomatised

whenever L is finitely axiomatisable.

In practice, however, it may happen that Kτ
L

is too wide for the envisaged purposes,
namely to discuss implementations. The following theorem gives a sufficient and necessary
condition for a subclass of Kτ

L to be a τ -algebraic semantics of L. Similar results are
well known for sentential logics [BR03]. In this paper, however, we reformulate them for
k-dimensional and many sorted logics, since they are a vehicle to sufficient and necessary
conditions for a deductive system to have an algebraic semantics. Consider, therefore, the
mapping τL,K : Th(L) → Th(K) defined by τL,K(T ) = CnK(τ(T )), for all T ∈ Th(L).
Then,

Lemma 4.9. Let L be a deductive system, τ a self (k, 2)-translation of Σ which commutes
with substitutions and K ⊆ Kτ

L
. The following conditions are equivalent:

(i) K is a τ -algebraic semantics of L.
(ii) τL,K is injective.

Proof. Let T1, T2 ∈ Th(L) and ᾱ ∈ T1. Suppose τL,K(T1) = τL,K(T2). We have that
τ(ᾱ) ⊆ τ(T1) ⊆ τL,K(T1) = τL,K(T2), i.e., τ(T2) |=K τ(ᾱ). Since K is an τ -algebraic
semantics of L, T2 ⊢L ᾱ, i.e., ᾱ ∈ T2. Thus T1 ⊆ T2. Similarly, we can prove that T2 ⊆ T1.
We conclude that τL,K is injective.

Conversely, let Γ ∪ {ᾱ} ⊆ Fmk(Σ). Since K is a class of algebraic reducts of τ -models
of L, we have that Γ ⊢L ᾱ implies τ(Γ) |=K τ(ᾱ). Now, suppose τ(Γ) |=K τ(ᾱ). Thus,
CnK(τ(Γ)) = CnK(τ(Γ ∪ {ᾱ})). Since Γ ⊆ CnL(Γ), we have that τ(Γ) ⊆ τ(CnL(Γ)).
Thus CnK(τ(Γ)) ⊆ CnK(τ(CnL(Γ))) = τL,K(CnL(Γ)). To prove the reverse inclusion, let
t ≈ t′ ∈ τL,K(CnL(Γ)).Thus {τ(ξ) : Γ ⊢L ξ} |=K t ≈ t′. Again, since K is a class of

algebraic reducts of τ -models of L, for all t ≈ t′ ∈ Fm2(Σ), we have that Γ ⊢L ξ implies
τ(Γ) |=K τ(ξ). Hence τ(Γ) |=K t ≈ t′, i.e., t ≈ t′ ∈ CnK(τ(Γ)). Therefore, for all
Γ ⊆ Fmk(Σ), τL,K(CnL(Γ)) = CnK(τ(Γ)). Thus, τL,K(CnL(Γ)) = τL,K(CnL(Γ ∪ {ᾱ})).
Since τL,K is injective, CnL(Γ) = CnL(Γ ∪ {ᾱ}), i.e., Γ ⊢L ᾱ.
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Lemma 4.9 and the fact that class Kτ
L is a τ -algebraic semantics, entail another impor-

tant result: if L has a τ -algebraic semantics, then any extension of L also has a τ -algebraic
semantics, for τ a self (k, 2)-translation of Σ commuting with substitutions. This is recorded
in Theorem 4.11 below, whose proof requires the following lemma.

Lemma 4.10. Let L be a specifiable k-deductive system and τ a self (k, 2)-translation of Σ
which commutes with substitutions. Suppose K = Kτ

L
is an τ -algebraic semantics of L. If

L′ is an extension of L, and K ′ = Kτ
L
then τL′,K ′ equals τL,K restricted to Th(L′).

Proof. Let T ∈ Th(L′). Since L′ is an extension of L, K ′ ⊆ K, and |=K ′ is an extension
of |=K . Hence CnK(τ [T ]) ⊆ CnK ′(τ [T ]), i.e., τL,K[T ] ⊆ τL′,K ′[T ]. For the reverse inclusion
note that K ′ can be axiomatised by a set of axioms and a set of inference rules. It is not
difficult to see that CnK(τ [T ]) contains all substitution instances of the axioms of |=K ′

and is closed under the inference rules of |=K ′ . Let α ∈ Thm(L′) and e be a substitution.
Since Thm(L′) is closed under substitutions, ⊢L′ e(α). Thus for all T ∈ Th(L′), we have
that e(α) ∈ T . As τ commutes with arbitrary substitutions, e[τ(α)] = τ [e(α)] ⊆ τ [T ] ⊆
CnK(τ [T ]). Thus CnK(τ [T ]) contains all substitution instances of axioms of |=K ′ . Now,
let {αi : i < n} ⊢L′ β be an inference rule of L′ and e a substitution such that {e[τ(αi)] :
i < n} ⊆ CnK(τ [T ]), i.e., τ [T ] |=K e[τ(αi)] for all i < n. Since τ commutes with arbitrary
substitutions, e[τ(αi)] = τ [e(αi)] for all i < n, i.e., τ [T ] |=K τ [e(αi)], for all i < n. As K is
an algebraic semantics of L, it follows that T ⊢S e(αi) for all i < n, i.e., {e(αi) : i < n} ⊆ T .
By structurality of L′, {e(αi) : i < n} ⊢L′ e(β). Since T ∈ Th(L′), we have that e(β) ∈ T .
Thus e[τ(β)] = τ [e(β)] ⊆ τ [T ] ⊆ CnK(τ [T ]). Therefore CnK(τ [T ]) is closed under the
inference rules of K ′. By the characterisation of a theory in a deductive system, we have
proved that CnK(τ [T ]) ∈ Th(K ′). Since τ [T ] ⊆ CnK(τ [T ]) and CnK ′(τ [T ]) is the least L′-
theory that contains τ [T ], we have that CnK ′(τ [T ]) ⊆ CnK(τ [T ]), i.e., τL′,K ′[T ] ⊆ τL,K[T ].

The following main result can now be proved:

Theorem 4.11. Let L be a specifiable k-deductive system and τ a self (k, 2)-translation of
Σ which commutes with substitutions. If L has an τ -algebraic semantics, then any extension
of L has a τ -algebraic semantics as well.

Proof. Let K be a τ -algebraic semantics of L. Let L′ be an extension of L and K ′ = Kτ
L′ . By

Corollary 4.8, the class Kτ
L

is a τ -algebraic semantics. Since, by Lemma 4.9, the mapping
τL,K is injective, we have, by Lemma 4.10, that the mapping τL′,K ′ is also injective. Again
by Lemma 4.9, K ′ is a τ -algebraic semantics of L′.

5. Refinement by interpretation: The general case

This section revisits the notion of refinement by interpretation in the gen-
eral setting of arbitrary k-dimensional deductive systems, and illustrates
the design flexibility it entails.

As before, our concern is to put forward a precise, but flexible notion of what counts
for a valid refinement step in software design. Our starting point is the following syntactic-
grounded notion,
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Definition 5.1 ((Logical) refinement). Let Σ and Σ′ be two signatures such that Σ ⊆ Σ′,
and L,L′ two k-deductive systems over Σ and Σ′, respectively. We say that L′ is a (logical)
refinement of L, in symbols L L′, if for any Γ ∪ {ϕ̄} ⊆ Fmk(Σ),

Γ ⊢L ϕ̄⇒ Γ ⊢L′ ϕ̄.

Note that, when L is specifiable, L L′ if all the axioms of L are theorems of L′ and
the theories of L′ are compatible with the inference rules of L.

Example 5.2. Modal logic S5G forms a (logical) refinement of CPC. Consider the modal
signature Σ = {→,∧,∨,¬,⊤,⊥,✷}. Modal logic K is obtained from CPC by adding the

symbol ✷ to the signature, the axiom ✷ (p→ q) → (✷ p → ✷ q) and the inference rule
p

✷ p
.

Logic S5G, on the other hand, enriches the signature of K with the symbol ✸, and K itself
with the axioms ✷ p → p, ✷ p → ✷✷ p and ✸ p→ ✷✸ p [BP01]. Hence, since the signature
of both systems contains the signature of CPC and their presentations result from the
introduction of extra axioms and inference rules to the CPC presentation, we have, by the
previous fact that CPC K and CPC S5G (actually, CPC K S5G). Thus, refining
CPC in this way, we acquire enough expressivity to state properties over propositions like
it is necessary that φ (by ✷φ) and it is possible that φ (by ✸φ). This kind of refinement
makes possible the accommodation of a new type of requirements, modally expressed, along
the refinement process. ✸

Theorem 5.3. Let Σ be a signature and L and L′ two k-deductive systems over Σ. Then
the following conditions are equivalent

(i) L L′

(ii) Mod(L′) ⊆ Mod(L).

Proof. (i) ⇒ (ii). Suppose L  L′. Let A ∈ Mod(L′) and Γ ∪ {ϕ̄} ⊆ Fmk(Σ). Suppose
Γ ⊢L ϕ̄. We have by (i) that Γ ⊢L′ ϕ̄ and hence Γ ⊢A ϕ̄. Therefore A ∈ Mod(L).
ii) ⇒ i). Suppose Mod(L′) ⊆ Mod(L). Let Γ ∪ {ϕ̄} ⊆ Fmk(Σ). Suppose Γ ⊢L ϕ̄. Let
A ∈ Mod(L′). By ii) we have A ∈ Mod(L) and hence Γ ⊢A ϕ̄. Therefore, by Completeness,
Γ ⊢L′ ϕ̄.

A coarser and more flexible definition of refinement, however, is provided by the notion
of logical interpretation, as already shown in the equational case. Formally,

Definition 5.4 (Refinement by interpretation). Let L be a k-deductive system over Σ and
τ a (k, l)-translation from Σ to Σ′, which interprets L. We say that a l-deductive system
L′ over Σ′ refines the deductive system L via the interpretation τ , in symbols L ⇁τ L′, if
for any Γ ∪ {ϕ̄} ⊆ Fmk(Σ),

Γ ⊢L ϕ̄ ⇒ τ(Γ) ⊢L′ τ(ϕ̄).

The requirement that τ has to interpret L is necessary in order to enforce some control
over the class of models of the deductive system L′. In particular, this guarantees that
Mod(L′) has to be smaller than Modτ (L).

The following two examples illustrate this general notion of refinement at work.

Example 5.5. Any subclass of the class of Boolean algebras induces a refinement by inter-
pretation of CPC, based on the usual (1,2)-translation τ given by τ(p) = {〈p,⊤〉}). ✸
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deductive system ORDBAMS

axioms

〈n,n〉 〈i , i〉 〈x , x 〉
〈n,n + 0 〉
〈n + 0 ,n〉
〈n + n ′,n ′ + n〉
. . .
〈bal(deposit(x , i ,n), i) , bal(x , i) + n〉
〈bal(x , i) + n , bal(deposit(x , i ,n), i)〉
〈bal(withdraw(x , i ,n), i) , max(bal(x , i) − n, 0 )〉
〈max(bal(x , i) − n, 0 ) , bal(withdraw(x , i ,n), i)〉
· · ·

inference rules

〈n,n ′〉 〈n ′,n〉

〈n,n ′′〉

〈n,n ′〉

〈n + n ′′,n ′ + n ′′〉

〈n,n ′〉

〈−n ′,−n〉

〈n,n ′〉

〈s(n), s(n ′)〉

〈x , y〉 〈i , j 〉

〈bal(x , i), bal(y , j )〉

〈x , y〉 〈i , j 〉

〈bal(y , j ), bal(x , i)〉

〈x , y〉 〈i , j 〉 〈n,n ′〉 〈n ′,n〉

〈deposit(x , i ,n), deposit(y , j ,n ′)〉

〈x , y〉 〈i , j 〉 〈n,n ′〉 〈n ′,n〉

〈withdraw(x , i ,n),withdraw(y , i ,n)〉

· · ·
〈x , y〉

〈y , x 〉

Figure 10: Revisiting BAMS.

Example 5.6. Consider the fragment of the specification BAMS, of a toy bank account
management system, given in Example 3.13, regarded as a 2-deductive system. Suppose
we intend to refine this system by imposing that the balance of each account has to be
positive. This cannot be easily expressed in (strict) equational logic. However, it can be
captured as a refinement by interpretation. Actually, consider the 2-deductive system over
Σ sketched in Figure 10, in which n, n′, n′′ are variables of sort Int, x, y of sort Sys and
i, j of sort Ac. Notice that only a few axioms and inference rules are shown for illustration
purposes. Intuitively we intend to interpret differently the binary predicates: as equality
for the carriers of Ac and Sys; as ≤ for the integers.

Let us take a fixed-semantics approach by fixing the Int component as the integers endowed
with the usual operations. Consider, thus, the following subclasses of the model class of
BAMS and ORDBAMS, respectively:
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BAMSZ = {
〈

A,F
〉

∈ Mod(BAMS) : AInt = Z&FInt = idZ}

ORDBAMSG = {
〈

A,G
〉

∈ Mod(ORDBAMS) : AInt = Z&GInt = ≤}

Notice that a structure 〈A,F 〉 reduces to an algebra when, for each sort, the corresponding
filter in F is the identity. Let τ be the (2,2)-translation defined schematically by

τInt(〈n, n
′〉) = {〈n, n′〉, 〈n′, n〉}

τAc(〈i, j〉) = {〈i, j〉}

τSys(〈x, y〉) = {〈x, y〉}

The underlying intuition is that an equation n ≈ n′ of sort Int is translated into two
inequalities n ≤ n′ and n ≤ n′. Clearly, |=ORDBAMSZ is a τ -interpretation of |=BAMSZ .
Therefore, the deductive system which extends ORDBAMS to capture the extra requirement
〈0, bal(x, i)〉 is obtained as a τ -refinement of the original one. ✸

We complete the discussion of refinement by interpretation in this general setting by
establishing its connection to classical, signature morphism based refinement. What follows
lifts the corresponding discussion in subsection 3.6 to the level of k-deductive systems and
their interpretations:

Theorem 5.7. Let L and L′ be a k-deductive system over Σ and l-deductive system over
Σ′ respectively. Let τ be a (k, l)-translation from Σ to Σ′. Then the following conditions are
equivalent

(i) L⇁τ L′;
(ii) L′ is a refinement of some τ -interpretation of L (i.e., there is a l-deductive system

L0 which τ -interprets L and L0  L′).

Proof. Suppose L ⇁τ L′. Then, by Theorem 4.7, Mod(L′) is a subclass of the class of τ -
models of L, i.e., Mod(L′) ⊆ Mod(Lτ ). Therefore, by Theorem 5.3, Lτ  L′. So, condition
(ii) holds for L0 = Lτ .

Suppose now there is a l-deductive system L0 which τ -interprets L and L0  L′. Let
Γ ∪ {ϕ̄} ⊆ Fmk(Σ). Then

Γ ⊢L ϕ̄⇔ τ(Γ) ⊢L0 τ(ϕ̄) ⇒ τ(Γ) ⊢L′ τ(ϕ̄).

The equivalence holds since τ interprets L in L0. The implication holds since Lτ  L′.
Therefore, L⇁τ L′.

Example 5.8. Suppose a requirements specification is provided in CPC, but an implemen-
tation is sought in which the system properties are expected to be shown in a constructive
way resorting, for example, to a theorem prover. This entails the need for refactoring
the specification to some variant of intuitionist logic. Based on Theorem 5.7 we have
CPC ⇁τ HA ⇁ρ IPC, with τ(p) = {〈¬¬p,⊤〉} and get ρ(〈p, q〉) = {p → q, q → p} doing
the job. ✸

The discussion concerning the composition of refinements by interpretation is not
straightforward. For vertical composition one gets, similarly to what happens in the equa-
tional case,
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Theorem 5.9. Let L, L′ and L′′ be k, l and m-deductive systems over Σ, Σ′ and Σ′′

respectively. Let τ be a (k, l)-translation from Σ to Σ′ and ρ a (l,m)-translation from Σ′ to
Σ′′. Suppose that L⇁τ L′, L′ ⇁ρ L′′ and ρ interprets Lτ . Then L⇁ρ◦τ L′′

Proof. Directly from the fact that L ⇁τ L′ and L′ ⇁ρ L′′ we have that Γ ⊢L ϕ̄ implies

ρ(τ(Γ)) ⊢L′′ ρ(τ(ϕ̄)) for any Γ ∪ {ϕ̄} ⊆ Fmk(Σ).
On the other hand, by hypothesis, for any Γ, {ϕ̄} ⊆ Fmk(Σ),

Γ ⊢L ϕ̄⇔ τ(Γ) ⊢Lτ τ(ϕ̄) ⇔ ρ(τ(Γ)) ⊢(Lτ )ρ ρ(τ(ϕ̄))

and hence, ρ ◦ τ interprets L. Therefore, L⇁ρ◦τ L′′.

On the other hand, horizontal composition of refinements via interpretation is still a
topic of current research, which leads us to the conclusions of this paper.

6. Concluding

6.1. Related work. The idea of relaxing what counts as a valid refinement of a specifi-
cation by replacing signature morphisms by logical interpretations is, to the best of our
knowledge, new. This piece of research was directly inspired by the first author’s work
on algebraic logic, where the notion of interpretation plays a fundamental role (see, e.g.,
[BP89, BP01, BR03, Cze01]) and occurs in different variants. Rather than reviewing ex-
haustively this area, we shall concentrate in what appears to be the closest approach, in the
literature, to the notion of an interpretation proposed in the paper — that of conservative
translation intensively studied by Feitosa and D’Ottaviano [Fei97, FD01]. Recall that a con-
servative translation is a map between deductive system which reflects and preserves logical
consequence. It corresponds thus to an interpretation arising from a functional translation
with k = l = 1, i.e., between sentential languages.

The conjunction property, as characterised in the following definition, allows us to
add to the fact that all conservative translations are interpretations (insofar functions are
particular cases of multi-functions), its converse, although in a restricted form. Similar
properties, also concerning other connectives, have been studied in the framework of the
theory of institutions (see [Tar85]).

Definition 6.1. A k-deductive system L over Σ has the conjunction property if, for any
{ϕ̄i|i ∈ I} ⊆ Fmk(Σ), for I finite, there exists a ξ̄ ∈ Fmk(Σ) such that {ϕ̄i|i ∈ I} ⊣⊢L ξ̄. In
this case, we denote ξ̄ by

∧

L{ϕ̄i|i ∈ I}.
In the presence of this property, we define the associated function of a translation τ

between two deductive systems over Σ and Σ′ as follows

fτ : Fmk(Σ) → Fml(Σ′)
ϕ̄ 7→

∧

L′ τ(ϕ̄).

We may now incorporate in the approach proposed in this paper the important tool
given in Lemma 6.3:

Lemma 6.2. Let τ be a self-translation between two 1-deductive systems L and L′ over
the signature Σ. Then, if L′ has the conjunction property, τ is an interpretation iff its
associated function is a conservative translation.
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Proof. First we prove that fτ (Γ) ⊣⊢L′ τ(Γ): since for any ξ ∈ fτ (Γ) there is a γ ∈ Γ such
that ξ =

∧

L′ τ(γ), we have, by the conjunction property of L′, that τ(γ) ⊣⊢L′ ξ and, by (ii)
of Definition 2.1, that τ(Γ) ⊢L′ fτ (Γ). Analogously, since for each γ ∈ Γ there is a ξ ∈ fτ (Γ)
such ξ =

∧

L′ τ(γ) ⊣⊢L′ τ(γ), we have, by (ii) of Definition 2.1, that fτ (Γ) ⊢L′ τ(Γ). Hence,

for any interpretation τ and for all Γ, {ϕ} ⊆ Fm1(Σ),

Γ ⊢L ϕ⇔ τ(Γ) ⊣⊢L′ fτ (Γ) ⊢L′ τ(ϕ) ⊣⊢L′ fτ (ϕ),

which implies that fτ is a conservative translation. In a similar way, if fτ is a conservative
translation, τ is an interpretation.

The connection to conservative translations turns out to be very useful in practice. The
following theorem, which builds on results in [FD01], provides a sufficient condition for a
translation to be an interpretation.

Theorem 6.3. Let τ be a (k, l)-translation from Σ to Σ′, L a k-deductive system over
Σ and L′ a l-deductive system over Σ′. Suppose that τ is functional and injective. If
τ(CnL(Γ)) = CnL′(τ(Γ)), for every set of formulas Γ, then τ interprets L in L′.

Proof. From the inclusion τ(CnL(Γ)) ⊆ CnL′(τ(Γ)) we have that Γ ⊢L ϕ̄ ⇒ τ(Γ) ⊢L′ τ(ϕ̄).
Suppose now that τ(ϕ̄) ∈ CnL′(τ(Γ)) = τ(CnL(Γ)). Hence there is a ψ̄ ∈ CnL(Γ) such that
τ(ϕ̄) = τ(ψ̄). Since τ is injective ϕ̄ = ψ̄, and so, ϕ̄ ∈ CnL(Γ), i.e., Γ ⊢L ϕ̄.

The approach to refinement proposed in this paper, in particular when specialised to
2-dimension deductive systems, should also be related to the extensive work of Maibaum,
Sadler and Veloso in the 70’s and the 80’s, as documented, for example, in [MSV84, MVS85].
The authors resort to interpretations between theories and conservative extensions to define
a syntactic notion of refinement according to which a specification SP ′ refines a specification
SP if there is an interpretation of SP ′ into a conservative extension of SP . It is shown
that these refinements can be vertically composed, therefore entailing stepwise development.
This notion is, however, somehow restrictive since it requires all maps to be conservative,
whereas in program development it is usually enough to guarantee that requirements are
preserved by the underlying translation. Moreover, in their approach, the interpretation
edge of a refinement diagram needs to satisfy extra properties.

As related work one should also mention [FM93, Vou13] where interpretations between
theories are studied in the abstract framework of π-institutions. The first reference is a
generalisation of the work of Maibaum and his collaborators, whereas the second one gen-
eralises the way algebraic semantics on sentential logics is dealt with in abstract algebraic
logic to the abstract setting of π-institutions. Similar developments could arise by consid-
ering institutions and their (co-)morphisms [GB92, Dia08, Tar96]. The work of Meseguer
[Mes89] on general logics, in which a theory of interpretations between logical systems is
developed, should also be mentioned.

Our own approach to refinement by interpretation can be placed between these general
works and the original contribution of Maibaum. Actually, on the one hand, we deal with
general k-deductive systems therefore subsuming all frameworks above which are based on
equational or first order logic (i.e., on specific instances of k-deductive systems). On the
other hand, however, our results are formulated in terms of a concrete and intuitive notion
of a deductive system; their scaling to an abstract, institutional level is still to be done.
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6.2. Conclusions and future work. The paper introduced a new notion of refinement
and started the development of a corresponding theory of refinement by interpretation. The
results obtained and their applications seem promising, in the sense that a number of useful
transformations of (classes of models of) specifications are captured as refinement steps. In
order to clarify the scope of our results we should point out that the development in Section
3 can be straightforwardly generalised as to apply to any Horn fragment of a structural
logic L (i.e., a logic whose axioms have the form

∧

H → c, where H ∪ {c} is a subset of
the atomic formulas of the logic, with H possibly empty). All one has to do is to represent
such a fragment by the natural equivalent deductive system taking the atomic formulas of
L as its set of formulas and a presentation given by the axiomatisation of L.

The generalisation made along sections 4 and 5 turns it relevant to the specification
meta-level, i.e., whenever an implementation step requires a change in the underlying logic.
This often arises in formal software development with the need for accommodating new
requirements (as in Example 5.6) or when a particular theorem prover, embodying a specific
logic, is to be used for design validation (as in Example 5.8). Our most recent work [MMB13]
is another generalisation effort aiming at reframing this notion of refinement in a categorical
setting based on a characterisation of abstract logics as coalgebras for the closure system
contravariant functor [Pal02] upon the category Set of sets and functions.

To conclude we would like to remark again the ’semantic’ perspective from which this
work was developed, as extensively discussed in the Introduction. This entails the need for
further research on how refinement by interpretation, which is entirely based on properties
of arbitrary deductive systems, can be smoothly combined with concrete specification struc-
turing operations. Preliminary work on this topic is reported in [RMMB11] in which the
emphasis is shifted to specifications. Current work in this direction includes the development
of a refinement calculus of structured specifications over a π-institution.

As a general remark we would like to stress again that the approach developed in
this paper can be applied to any notion of algebraic specification based on any fixed set
of specification structuring combinators, further justifying the relevance of the ’semantic’
perspective adopted in this paper.

A practical limitation of this approach of reducing the specifications to their class of
models is that often such classes have infinitely many models. However in some cases
subclasses possessing the same theory can be considered instead. For instance, if the class
is a finitely generated quasivariety K [Gor98], and consequently the associated 2-deductive
system is finitary with a presentation given by the axiomatisation of the quasivariety, we
can replace K by the set of its generators which induces the same deductive system. An
example is the class of Boolean Algebras which are generated (actually, as a variety) by the
two-element Boolean algebra.

From an application point of view, this ’semantic’ approach seems to have its own
potentialities which we would like to recall. Actually, in a number of cases it is relevant,
and even mandatory, to start the implementation procedure from a set of models that
does not come from a structured specification. This can be the case when reusing designs
(a recurrent strategy in Engineering) or even to express meta-requirements that cannot
be easily accommodated within the classic refinement procedure. Focussing on classes of
models, on the other hand, makes possible to deal with requirements that cannot be properly
formalised in a specification. Note this does not entail any loss of expressivity. The approach
proposed in this paper can be tuned to specification refinement in a strict sense: for each
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specification, one may recursively compute its denotation (a signature and a class of models)
and work directly with it.

In general, we believe that this approach has a real application potential, namely to deal
with specifications spanning through different specification logics. Particularly deserving to
be considered, but still requiring further investigation, are observational logic [BHK03],
hidden logic [Roş00, MP07, Mar07, Mar08] and behavioural logic [Hen97]. In all of these
cases the satisfaction of requirements is discussed up to some particular satisfaction relation
and their verification is checked with respect to relations obtained by replacing strict equality
by its underlying notion of satisfaction. In this context, a semantics based on k-structures
paves the way to the unification of all of these approaches. Actually, in all of them, models
consist of algebras whose k-structures are of the form 〈A,Θ〉, where Θ captures the particular
satisfaction relation in each formalism. In particular, the strict models of a (classical)
algebraic specification SP consist of algebras A whose k-data structure 〈A,∆A〉 is a model
of |=Mod(SP ).

Naturally, most of the models of software specifications are not admissible choices as
implementations. Therefore, the choice of adequate filters along the implementation process
becomes a crucial, although not trivial task. This should be driven by the system nature
(for example, adopting observational equality to deal with objects with encapsulated data).
A similar concern is, moreover, shared by other general approaches to formal development,
as, for example, [Hen97] in the context of behavioral logic.

A lot of other questions remain to be answered. One such topic, as mentioned above,
concerns horizontal composition of refinements by interpretation; vertical composition rais-
ing no special problems as shown in theorems 3.23 and 5.9. To illustrate the kind of results
we are investigating suppose, for example, that τ interprets SP in SP ′. The challenge
would be to prove that τ also interprets an enrichment of SP by axioms in an appropriate
sub-specification of SP ′. A closely related issue is the extension of this approach to the level
of (structured) specifications. We believe that this can be captured in a somehow standard
way, which will be most relevant in studying the interplay between horizontal (i.e., archi-
tectural) and vertical (i.e., implementation driven) levels of specification composition. For
example, the union of two specifications will correspond to the union of the corresponding
consequence relations. Actually, a structured specification also defines a class of models
and therefore induces a deductive system.

Another topic to explore is the equivalence of algebraic specifications up to logical
interpretation. As a starting point, it would be worth to explore the relation ≡ defined
as follows: SP ≡ SP ′ if there are interpretations τ and ρ such that SP ⇁τ SP ′ and
SP ′ ⇁ρ SP . It is not difficult to see that SP |= ξ implies SP |= ρ(τ(ξ)) and SP ′ |= η
implies SP ′ |= τ(ρ(η)). More challenging seems to be a stronger equivalence, studied
in the context of equivalence between deductive systems [CG05, BP89], which requires
interpretations to be mutually inverse.

Last but not least, framing refinement by interpretation in the context of recent works
on heterogeneous specification, raises interesting questions and opens the opportunity for
computer-based support. Actually, classical translations between logics (e.g., modal into
first-order or the latter into equational logic) are at the basis of Hets [MML07, Mos05,
MML09], the heterogeneous specification framework. To go further in this direction entails
the need to regard interpretations from an institutional point of view [Dia08], as some sort
of comorphisms, and develop on top of it a calculus of refinements by interpretation.
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