Logical Methods in Computer Science
Vol. 8 (2:12) 2012, pp. 1-21 Submitted  Jan. 11, 2011
www.lmcs-online.org Published  Jun. 20, 2012

UNTYPING TYPED ALGEBRAS
AND COLOURING CYCLIC LINEAR LOGIC*

DAMIEN POUS

CNRS (LIG, UMR 5217, Grenoble)
e-mail address: Damien.Pous@ens-lyon.fr

ABSTRACT. We prove “untyping” theorems: in some typed theories (semirings, Kleene
algebras, residuated lattices, involutive residuated lattices), typed equations can be derived
from the underlying untyped equations. As a consequence, the corresponding untyped
decision procedures can be extended for free to the typed settings. Some of these theorems
are obtained via a detour through fragments of cyclic linear logic, and give rise to a
substantial optimisation of standard proof search algorithms.

INTRODUCTION

Motivations. The literature contains many decidability or complexity results for various
algebraic structures. Some of these structures (rings, Kleene algebras [22], residuated lat-
tices [31]) can be generalised to typed structures, where the elements come with a domain
and a codomain, and where operations are defined only when these domains and codomains
agree according to some simple rules. Although such typed structures are frequently en-
countered in practice (e.g., rectangular matrices, heterogeneous binary relations, or more
generally, categories), there are apparently no proper tools to easily reason about these.

This is notably problematic in proof assistants, where powerful decision procedures are
required to let the user focus on difficult reasoning steps by leaving administrative details to
the computer. Indeed, although some important theories can be decided automatically in
Coq or HOL (e.g., Presburger arithmetic [29], elementary real algebra [I15], rings [14]), there
are no high-level tools to reason about heterogeneous relations or rectangular matrices.

In this paper, we show how to extend the standard decision procedures from the untyped
structures to the corresponding typed structures. In particular, we make it possible to use
standard tools to reason about rectangular matrices or heterogeneous relations, without
bothering about types (i.e., matrix dimensions or domain/codomain information). The
approach we propose is depicted below: we study “untyping” theorems that allow one to

1998 ACM Subject Classification: F.4.1, F.4.3.
Key words and phrases: involutive residuated lattices, cyclic linear logic, Kleene algebra, typed algebra,
decision procedures, sequent calculus, proof search.
* Extended version of the abstract that appeared in Proc. CSL’10 [34].
Partially funded by the French projects “Choco”, ANR-07-BLAN-0324 and “PiCoq”, ANR-10-BLAN-0305.

|E5| LOGICAL METHODS © D. Pous
IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:12) 2012 © Creative Commons


http://creativecommons.org/about/licenses

9 D. POUS

prove typed equations as follows: 1) erase type informations, 2) prove the equation using
standard, untyped, decision procedures, and 3) derive a typed proof from the untyped one.

5 decide /5

untyped setting:

erase types rebuich types

typed setting: a="7=b

Besides the theoretical aspects, an important motivation behind this work comes from a Coq
library 5] in which we developed efficient tactics for partial axiomatisations of relations: the
ideas presented here were used and integrated in this library to extend our tactics to typed
structures, for free.

Overview. We shall mainly focus on the two algebraic structures we mentioned above,
since they raise different problems and illustrate several aspects of these untyping theorems:
Kleene algebras [21] and residuated lattices [19].

e The case of Kleene algebras is the simplest one. The main difficulty comes from the
annihilating element (0): its polymorphic typing rule requires us to show that equational
proofs can be factorised so as to use the annihilation laws at first, and then reason using
the other axioms.

e The case of residuated structures is more involved: due to the particular form of axioms
about residuals, we cannot rely on standard equational axiomatisations of these structures.
Instead, we need to exploit an equivalent cut-free sequent proof system (first proposed
by Ono and Komori [3I]), and to notice that this proof system corresponds to the intu-
itionistic fragment of cyclic linear logic [40]. The latter logic is much more concise and
the corresponding proof nets are easier to reason about, so that we obtain the untyping
theorem in this setting. We finally port the result back to residuated lattices by standard
means.

The above sequent proof systems have the sub-formula property, so that they yield decision
procedures, using proof search algorithms. As an unexpected application, we show that
the untyping theorem makes it possible to improve these algorithms by reducing the set of
proofs that have to be explored.

Outline. We introduce our notations and make the notion of typed structure precise in
We study Kleene algebras and residuated lattices in §2|and §3] respectively. The optimisation
of proof search is analysed in §4} we conclude with related work, and directions for future

work in §f]

1. NOTATION, TYPED STRUCTURES

Let & be an arbitrary set of variables, ranged over using letters x,y. Given a signature X,
we let a, b, c range over the set T'(X + X') of terms with variables. Given a set T of objects
(ranged over using letters n,m, p, q), a type is a pair (n,m) of objects (which we denote by
n — m, following categorical notation), a type environment I' : X — T2 is a function from
variables to types, and we will define type judgements of the form I' - a : n — m, to be read
“in environment I', term a has type n — m, or, equivalently, a is a morphism from n to m”.



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 3

By I' - a,b: n — m, we mean that both a and b have type n — m; type judgements will
include the following rule for variables:

I'(z) = (n,m)
I'Fz:n—m

Tv

Similarly, we will define typed equality judgements of the form I' H a = b : n — m: “in
environment I', terms a and b are equal, at type n — m”. Equality judgements will generally

include the following rules, so as to obtain an equivalence relation at each type:
'Fa=b:n—-m
['(z) = (n,m) FFb=c:n—m F'Fa=b:n—m
T
'Fz=z:n—-m 'Fa=c:n—m I'kFb=a:n—-m

S

By taking the singleton set as set of objects (T = {0}), we recover standard, untyped

structures: the only typing environment is () : 2 — ((,0), and types become uninformative
(this corresponds to working in a one-object category; all operations are total functions).

To alleviate notations, since the typing environment will always be either () or an abstract
constant value I', we shall leave it implicit in type and equality judgements, by relying on
the absence or the presence of types to indicate which one to use. For example, we shall
write Fa=0b:n—mforI'-a=0b:n— m, while - a=2b will denote the judgement
OFa=b:0— 0.

The question we study in this paper is the following one: given a signature and a set of
inference rules defining a type judgement and an equality judgement, does the implication
below hold, for all a,b,n,m?

Fa,b:n—m
’ entails Fa=b:n—m .
Fa=5b
In other words, in order to prove an equality in a typed structure, is it safe to remove all
type annotations, so as to work in the untyped underlying structure?

2. KLEENE ALGEBRAS

We study the case of residuated lattices in here we focus on Kleene algebras. In order
to illustrate our methodology, we actually give the proof in three steps, by considering
two intermediate algebraic structures: monoids and semirings. The former admit a rather
simple and direct proof, while the latter are sufficient to expose concisely the main difficulty
in handling Kleene algebras.



4 D. POUS

2.1. Monoids.

Definition 2.1. Typed monoids are defined by the signature {-2,1p}, together with the
following inference rules, in addition to the rules from

Fa:n—m Fb:m—p
—F To To
Fl:n—n Fa-b:n—p Fl=1:n—n
Fa=d:n—m Fb=b:m—p Fa:n—-m

D oD

Fa-b=d -V :n—p Fl-a=a:n—m

Fa:n—>m Fb:m—p Fc:p—q Fa:n—m

DA DO

F(a-b)-c=a-(b-c):n—q Fa-1l=a:n—m

In other words, typed monoids are just categories: 1 and - correspond to identities and
composition. Rules (0) and (D) ensure that equality is reflexive at each type (point (i)
below) and preserved by composition. As expected, equalities relate correctly typed terms
only (i):

Lemma 2.2. (i) If Fa:n—m, then Fa=a:n— m.
(i) If Fa=b:n—m, then Fa,b:n— m.

Moreover, in this setting, type judgements enjoy some form of injectivity (types are not
uniquely determined due to the unit (1), which is typed in a polymorphic way):

Lemma 2.3. If Fa:n—m and Fa:n" — m', then we have n =n’ iff m = m'.

We need another lemma to obtain the untyping theorem: all terms related by the untyped
equality admit the same type derivations.

Lemma 2.4. If Fa = b; then for all n,m, we have Fa:n—>m iff Fb:n — m.
Theorem 2.5. If Fa=band Fa,b:n—m, then Fa=b:n— m.

Proof. We reason by induction on the derivation F a = b; the interesting cases are the
following ones:

e the last rule used is the transitivity rule (T): we have Fa=b, Fb=¢, Fa,c:n—m,
and we need to show that Fa =c:n — m. By Lemma [2.4] we have - b:n — m, so
that by the induction hypotheses, we get Fa=b:n—>mand Fb=c:n — m, and we
can apply rule (T).

e the last rule used is the compatibility of - (D): we have Fa=d', Fb="V, Fa-b,d -V :
n — m, and we need to show that Fa-b=a’ -V :n — m. By case analysis on the typing
judgements, we deduce that Fa:n—p, Fb:p—m, Fa' :n—gq, FV:q— m, for
some p, q. Thanks to Lemmas [2.3] and we have p = ¢, so that we can conclude using
the induction hypotheses (Fa=a":n—pand Fb="b:p— m), and rule (D). O

Note that the converse of T heorem( Fa=0b:n— mentails - a =) is straightforward,
so that we actually have an equivalence.



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 5

2.2. Non-commutative semirings.

Definition 2.6. Typed semirings are defined by the signature {-2, +2, 1o, 00}, together with
the following rules, in addition to the rules from Def. 2.1] and

Fa,b:n—m Fa=d:n—m Fb=b:n—-m
— Tz Tp — P
FO:n—m Fa+b:n—>m Fa+b=a+b:n—>m
Fa:n—>m Fa,b:n—m
z PZ PC
FO=0:n—-m Fa+0=a:n—>m Fa+b=b+a:n—>m
Fabc:n—>m Fa:n—>m Fbc:m—p
PA DP
Fa+b+c=a+((b+c):n—>m Fa-(b+c)=a-b+a-c:n—p
Fa:n—m Fa:n—m Fa:n—m Fbc:p—n
DZ ZD PD
Fa-0=0:n—p FO-a=0:p—=m Fb+c¢)-a=b-a+c-a:p—>m

In other words, typed semiring are categories enriched over a commutative monoid: each
homset is equipped with a commutative monoid structure (typing rules (Tz,TpP) and rules
(P,PZ,PC,PA)), composition distributes over these monoid structures (rules (DP,DZ,PD,ZD)).

Lemma [2:2] is also valid in this setting: equality is reflexive and relates correctly typed
terms only. However, due to the presence of the annihilator element (0), Lemmas and
no longer hold: 0 has any type, and we have F z-0-2 =0 while z - 0 - z only admits I'(x)
as a valid type. Moreover, some valid proofs cannot be typed just by adding decorations:
for example, 0 = 0-a-a = 0 is a valid untyped proof of 0 = 0; however, this proof cannot be
typed if a has a non-square type. Therefore, we have to adopt another strategy: we reduce
the problem to the annihilator-free case, by showing that equality proofs can be factorised
so as to use rules (Pz), (Dz), and (zD) at first, as oriented rewriting rules.

Definition 2.7. Let a be a term; we denote by a| the normal form of a, obtained with the
following convergent rewriting system:

a+0—a O4+a—a 0-a—0 a-0—0
We say that a is strict if a; # 0.

This normalisation procedure preserves types and equality; moreover, on strict terms,
we recover the injectivity property of types we had for monoids:

Lemma 2.8. If Fa:n—m, then Fay:n—mand Fa=a:n— m.

Lemma 2.9. For all strict terms a such that Fa:n — m and Fa:n' — m', we have
n=n'iff m=m.
We can then define a notion of strict equality judgement, where the annihilation laws

are not allowed:

Definition 2.10. We let T = : — _ denote the strict equality judgement

obtained by removing rules (Dz) and (zD), and replacing rules (DP) and (PD) with the



6 D. POUS

following variants, where the factor has to be strict.
Fa:n—m Fbc:m—p ap #0 N
DP
Fta-(b+c)=a-b+a-c:n—p

Fa:n—>m Fbc:p—n a, #0
p

D+
Ft(b+c)-a=b-atc-a:p—m

Using the same methodology as previously, one easily obtain the untyping theorem for
strict equality judgements.

Lemma 2.11. If =1 a = b; then for all n,m, we have Fa:n— m iff Eb:n — m.
Proposition 2.12. If FTa=b and -a,b:n — m, then F-a=0b:n— m.

Note that the patched rules for distributivity, (DP*) and (PDT) are required in order to
obtain Lemma if @ was not required to be strict, we would have +* 0-(z+y) =
0-2+0-y, and the right-hand side can be typed in environment I' = {z — (3,2), y —
(4,2)} while the left-hand side cannot.

We now have to show that any equality proof can be factorised, so as to obtain a strict
equality proof relating the corresponding normal forms:

Proposition 2.13. If Fa =10, then we have - a; =b,.

Proof. We first show by induction that whenever - a = b, a is strict iff b is strict (). Then

we proceed by induction on the derivation F a = b, we detail only some cases:

(D) we have +" ay = @’y and F' b = b/} by induction; we need to show that ++
(a-b), = (a’-b'),. If one of a,a’,b,b’ is not strict, then (a-b), = (a’-b'), = 0, thanks
to (1), so that we are done; otherwise, (a-b); = ay-by, and (a'- V'), =d’| - b'|, so that
we can apply rule (D).

(Dz) trivial, since (a-0); = 0.

(DP) we need to show that F* (a-(b+c)), = (a-b+a-c); if one of a,b,c is not strict,
both sides reduce to the same term, so that we can apply Lemma [2.2|i) (which holds
in this setting); otherwise we have (a-(b+c)), =ay (b +¢)) and (a-b+a-c) =
ay -by +ay - ¢y, so that we can apply rule (DPT). ]

We finally obtain the untyping theorem by putting all together:

Theorem 2.14. In semirings, for all a,b,n,m such that F a,b:n — m, we have Fa =10
iff Fa=b:n—m.

Proof. The reverse implication is straightforward; we prove the direct one. By Lemma [2.8]
using the transitivity and symmetry rules, it suffices to show F ay = b, : n — m. This is
clearly the case whenever 1 a) = by : n — m, which follows from Props. and O



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 7

2.3. Kleene algebras.

Kleene algebras are idempotent semirings equipped with a star operation [21I]; they
admit several important models, among which binary relations and regular languages (the
latter is complete [25], 22]; since equality of regular languages is decidable, so is the equational
theory of Kleene algebras). Like previously, we type Kleene algebras in a natural way,
where star operates on “square” types: types of the form n — n, i.e., square matrices or
homogeneous binary relations.

Definition 2.15. We define typed Kleene algebras by the signature {-2, +2,*1, 1o, 0o}, to-
gether with the following rules, in addition that from Defs. and [2.6, and {I] and where
Fa<b:n— misan abbreviation for Fa+b=0>b:n — m.

Fa:n—n Fa=b:n—n Fa:n—m
——F Ts . . S PI
Fa*:n—n Fa*=b":n—n Fat+a=a:n—>m
Fa:n—n Fa-b<b:n—m Fb-a<b:n—m
SP SL SR
Fl4a-a*=a":n—n Fa*-b<b:n—m Fb-a*<b:n—m

The untyped version of this axiomatisation is that from Kozen [22]: axiom (PI) corresponds
to idempotence of +, the three other rules define the star operation (we omitted the mirror
image of axiom (SP), which is derivable from the other ones [5]). Note that due to rules (SL)
and (SR), we are no longer in a purely equational setting; indeed, the algebra of regular
events is not finitely based [30].

The proof of the untyping theorem for Kleene algebras is obtained along the lines of the
proof for non-commutative semirings. We just highlight the main differences here, complete
proofs are available as Coq scripts [33]. First, it is a simple exercise to check that the
following lemma holds:

Lemma 2.16. For all n, we have F0*=1:n — n.

This allows us to extend the rewriting system from Def. with the rule 0* — 1, so that
the annihilator can also be removed in this setting. In particular, we obtain:

Lemma 2.17. If Fa:n —m, then Fay:n—m and Fa=aj:n— m.
Lemma 2.18. For all strict terms a such that - a:n —m and Fa:n’ — m', we have
n=n'iff m=m'.

Let FT = : —  denote the strict equality judgement obtained like previously
(Def. 2.10)), and where we moreover adapt rules (SL) and (SR) so that b is required to be
strict:

Fta-b<b:n—m bi%OSLJr Ftb-a<b:n—m bi#OS

R+
Fra* - b<b:n—m Frbo-a*<b:n—m

These patched rules (SLT) and (SR™) are required to obtain the following counterpart to
Lemma [2.11} otherwise, we would have +* a*-0 < 0, where the right-hand side has any
type while the type of the left-hand side is constrained by a.

Lemma 2.19. If -1 a = b; then for all n,m, we have Fa:n — m iff Fb:n — m.



8 D. POUS

Proof. Similar to the proof of Lemma Recall that T a < b is an abbreviation for
F*t a+b = b; the rule (sL™) is handled as follows. Suppose that F* a*-b+b = b was
obtained using this rule:
e if Fa*-b+b:n — m,then we necessarily have Fb:n — m;
e conversely, if - b :n — m then we have F a-b+b: n — m by induction. Therefore,
there exists p such that Fa:n — p and Fb:p — m. Since b was required to be strict,
we can use Lemma [2.18| to deduce n = p, - a:n — n, and finally, Fa*-b+b:n— m.

Rule (srR™) is handled symmetrically, and rule (SP) is straightforward. O
The untyping theorem for strict equality follows easily:
Proposition 2.20. If " a=1b and - a,b:n — m, then F*a=0b:n— m.

Proof. Like for Theorem and Prop. we proceed by induction on the untyped deriva-
tion to add type annotations. We detail the case of rule (SLT): suppose that F+ a*-b <b
was obtained using the untyped version of rule (SL™), and F a* - b+ b,b: n — m. Necessar-
ily, Fa:n—nand Fa-b+b:n— m,sothat we have - a-b < b:n — m by induction.
We conclude using the typed version of rule (SL™): Fa*-b<b:n — m. L]

We finally have to prove that Kleene algebra equality proofs can be factorised using the
strict equality judgement:

Proposition 2.21. If +a =10, then we have = a; =b).

Proof. By induction on the derivation, like for Prop. [2.13] We detail only the rules involving

Kleene star:

e (sp): if ay = 0 then (1+a-a*), = (a*), = 1 so that we can apply (0); otherwise,
(I1+a-a*), =1+a; a* and (a*), = ay*: we can apply (SP).

e (SL): suppose that F a*-b < b was obtained using this rule, we have to show that
Ft (a* - b), <by. If by =0 then (a*-b), = 0 and we use rule (z). Otherwise b is strict,
and either ¢y = 0, in which case (a*-b), = 1-b;, and we can use rules (OD) and (PI) to
get FT1-b, <by; orais also strict. In the latter case, we use the induction hypothesis:
" (a-b), <by,ie, Fap by <by, and we conclude using rule (SL™).

e (SR): symmetric to the previous case.

(Note that we implicitly use the fact that normalisation commutes with sum, so that we
have +tap <b iff (a+0b), =by.) ]

Theorem 2.22. In Kleene algebras, for all a,b,n,m such that F a,b:n — m, we have
Fa=biff Fa=b:n—m.

2.4. Non-commutative rings.

Before moving to residuated structures, we briefly discuss the case of non-commutative
rings. Indeed, although rings are quite similar to semirings, they cannot be handled in the
same way.

Definition 2.23. We define typed rings by the signature {-2, +2, —1, 1o, 0o}, together with
the following rules, in addition that from Defs. 2.1 and [2.6] and §I]
Fa:n—m Fa=b:n—m Fa:n—>m

— TI I PI
F—a:n—m F—a=-b:n—-m Fa+(—a)=0:n—m




UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 9

Due to the axiom (PI), we cannot define a simple function to remove annihilators and
obtain a factorisation system. Indeed, we have + a = b iff F a+ (=b) = 0, so that
strictness amounts to provability; we no longer have a simple syntactical criterion. However,
unlike terms of Kleene algebras, terms of non-commutative rings can easily be put in normal
form (by expanding the underlying polynomials and ordering monomials lexicographically—
assuming that the set of variables is ordered). This allows us to obtain the untyping theorem
by reasoning about the normalisation function.

Let (a) denote the normal form of the term a (we do not define formally this standard
function here since we are mainly interested in the methodology).

Proposition 2.24. For all a,b,n, m, we have
(i) Fa=0if (a) = (b);
(ii) of Fa:n—m, then F (a) :n — m;
(iii) of Fa:n—m, then F {a) =a:n— m.

Proof.

(i) Standard: this is the correctness and completeness of the untyped decision procedure:
two expressions are equal if and only if they share the same normal form.
(ii) By a straightforward induction on the typing derivation.
(iii) Also by induction on the typing derivation, it amounts to replaying the standard cor-
rectness proof and checking that it is actually well-typed. L]

The untyping theorem follows immediately:

Corollary 2.25. In non-commutative rings, for all a,b,n,m such that - a,b:n — m, we

have Fa=biff Fa=b:n— m.

Proof. If = a = b then (a) = (b) by the point (i) above, which entails F (a) = (b) : n — m
by reflexivity since F (a) : n — m by (i7), from which we deduce Fa=0b:n — m by (iii).
The converse implication is straightforward, as in the previous sections. ]

3. RESIDUATED LATTICES

We now move to our second example, residuated lattices. These structures also admit binary
relations as models; they are of special interest to reason algebraically about well-founded re-
lations. For example, residuation is used to prove Newman’s Lemma in relation algebras [9].
We start with a simpler structure.

A residuated monoid is a tuple (X, <,-,1,\,/), such that (X,<) is a partial order,
(X,-,1) is a monoid whose product is monotonic (a < a’ and b <V entail a-b < a’-1'), and
\,/ are binary operations, respectively called left and right divisions, characterised by the
following equivalences:

a-b<c & b<a\c & a<c/b
Such a structure can be typed in a natural way, by using the following rules for left and
right divisions:
Fc:n—m Fa:n—p Fec:in—m Fb:p—m

TL TR
Fa\c:p—m Fe/b:n—p




10 D. POUS

lFa U'kd ;b a bl a
Y% Io ——F—— ID Ir IL
o ek 1 Likta-a IFa/b [ b\a
LlUFa LbclFa kb Ll Fa kb Lelka
-~ Fo 2 " FEp . ER . EL
Ll Fa Lb-c;l'Fa lye/bi ksl - a Likb\g;l'Fa

Figure 1. Gentzen proof system for residuated monoids.

Although we can easily define a set of axioms to capture equalities provable in residuated
monoids [19], the transitivity rule (T') becomes problematic in this setting (there is no coun-
terpart to Lemma [2.4)). Instead, we exploit a characterisation due to Ono and Komori [31],
based on a Gentzen proof system for the full Lambek calculus [26]. Indeed, the “cut” rule
corresponding to this system, which plays the role of the transitivity rule, can be elimi-
nated. Therefore, this characterisation allows us to avoid the problems we encountered with
standard equational proof systems. In some sense, moving to cut-free proofs corresponds to
using a factorisation system, like we did in the previous section (Prop. [2.13)).

3.1. Gentzen proof system for residuated monoids.

Let I, k, h range over lists of terms, let [; k denote the concatenation of [ and k, and let €
be the empty list. The Gentzen proof system is presented on Fig. [T} it relates lists of terms
to terms. It is quite standard [I9]: there is an axiom rule (V), and, for each operator, an
introduction and an elimination rule. The axiom rule can be generalised to terms (7), the
cut rule is admissible (ii), and the proof system is correct and complete w.r.t. residuated
monoids (417).

Proposition 3.1. (i) For all a, we have a F a.
(11) For all Ik, k' a,b such that I+ a and k;a; k' b, we have k;l; k' F b.
(#ii) For all a,b, we have a b iff a < b holds in all residuated monoids.

Proof. Point (i) is easy; see [31], 30} [19] for cut admissibility and completeness. O

Type decorations can be added to the proof system in a straightforward way (see Fig. .
However, using this proof system, we were able to prove the untyping theorem only for the
unit-free fragment: we needed to assume that terms have at most one type, which is not
true in the presence of 1. This proof was rather involved, so that we did not manage to
circumvent this difficulty in a nice and direct way. Instead, as hinted in the introduction,
we move to the following more symmetrical setting.

3.2. Cyclic MLL.

The sequent proof system for residuated monoids (Fig. [1]) actually corresponds to a non-
commutative version of intuitionistic multiplicative linear logic (IMLL) [13]: the product (-)
is a non-commutative tensor (®), and left and right divisions (\,/) are the corresponding
left and right linear implications (—o,o—). Moreover, it happens that this system is just
the intuitionistic fragment of cyclic multiplicative linear logic (MLL) [40]. The untyping
theorem turned out to be easier to prove in this setting, which we describe below.



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 11

I'(z) = (n,m) LU'Fa:n—m
— v —— Io ; Eo
xrkFx:n—m eFl1:n—n LLlFa:n—>m
[lFa:n—m U'Fd:m—=p LbellFa:n—m
7 7 Ip 7 Ep
Ll'Fa-a :n—p Lb-cgll'Fa:n—m
Fb:p—>m l;bl—a:n—>mI FI':m—q kbEb:n—m l;c;l’l—a:p—)qE
R R
IFa/b:n—p Lic/b;k;l!'Fa:p—q
Fb:n—p b;ll—a:n—>mI Fl:p—m kEb:m—n l;c;l'l—a:p—>qE
L L
IlFb\a:p—>m Likib\e;U' Fa:p—q

Figure 2. Typed Gentzen proof system for residuated monoids.

We assume a copy X'+ of the set of variables (X'), and we denote by 2 the corresponding
elements which we call dual variables. From now on, we shall consider terms with both kinds
of variables: T(X + X + X1). We keep an algebraic terminology to remain consistent with
the previous sections; notice that using terminology from logic, a term is a formula and a
variable is an atomic formula.

Definition 3.2. Typed MLL terms are defined by the signature {®a, ¥2, 1o, Lo}, together
with the following typing rules:

I'(z) = (n,m) Fa:n—m Fb:m—p
Yy — T o
Fz:n—m Fl:n—n Fa®b:n—p

I(z) = (n,m Fa:n— Fb:m —
)= nm) . hasaom mop
Fxzm:m—>n Fl:n—>n Fa®b:n—p

Tensor (®) and par (%) are typed like the previous dot operation; bottom (L) is typed like
the unit (1); dual variables are typed by mirroring the types of the corresponding variables.
We extend type judgements to lists of terms as follows:

Fa:n—m Fl:m—p

——  TE Tc
Fe:n—n Fal:n—p

(be careful not to confuse F a,b: n — m, which indicates that both a and b have type
n — m, with F a;b : n — m, which indicates that the list a;b has type n — m). Linear
negation is defined over terms and lists of terms as follows:

(x)t 22t 14 (a@b)t 2 bt 3at (a; )t 210t
(et 2z 1t21 (@bt 2 bt @at et

Note that since we are in a non-commutative setting, negation has to reverse the arguments
of tensors and pars, as well as lists. Negation is involutive and mirrors type judgements:

[I>

Lemma 3.3. For alll, I* =1; for alll,n,m, Fl:n—miff Fl*:m—n.



12 D. POUS

) Fl:n N Flia:n l—b;k::n® Fabl:n
Fl:n Fl;l:n Flia®bk:n Fa?®bl:n
F(x):(n,m)A Fa:n—m Flia:m

Fatizim Fal:n

Figure 3. Typed proof system for Cyclic MLL.

If we were using a two-sided presentation of MLL, judgements would be of the form [+ & :
m — n, intuitively meaning “I F k is derivable in cyclic MLL, and lists [ and k have type
m — n”. Instead, we work with one-sided sequents to benefit from the symmetrical nature
of MLL. At the untyped level, this means that we replace [ - k with F [*; k. According to
the previous intuitions, the list I*; k has a square type n — n: the object m is hidden in
the concatenation, so that it suffices to record the outer object (n). Judgements finally take
the form F [ :n, meaning “the one-sided MLL sequent F [ is derivable at type n — n”.

Definition 3.4. Typed cyclic MLL is defined by the sequent calculus from Fig. [3]

Except for type decorations, the system is standard: the five first rules are the logical rules
of MLL [13]. Rule (E) is the only structural rule, this is a restricted form of the exchange
rule, yielding cyclic permutations: sequents have to be thought of as rings [40]. As before,
we added type decorations in a minimal way, so as to ensure that derivable sequents have
square types, as explained above:

Lemma 3.5. For alll,n, if Fl:n then F1l:n—n.

We now give a graphical interpretation of the untyping theorem, using proof nets. Since
provability is preserved by cyclic permutations, one can draw proof structures by putting
the terms of a sequent on a circle [40]. For example, a proof 7 of a sequent F lo,...,[; will
be represented by a proof net whose interface is given by the left drawing below.

l l
lo ! lo ni !

no

li li
Suppose now that the corresponding list admits a square type: F 1 :n — n, ie, Vj <
i, = l; : nj = njqp1, for some ng,...,nip1 with n = ng = n;41. One can add these
type decorations as background colours, in the areas delimited by terms, as we did on the
right-hand side.

The logical rules of the proof system (Fig. |3]) can then be represented by the proof net
constructions from Fig. [4] (thanks to this sequent representation, the exchange rule (E) is
implicit). Since these constructions preserve planarity, all proof nets are planar 3], and the
idea of background colours makes sense. Moreover, they can be coloured in a consistent
way, so that typed derivations correspond to proof nets that can be entirely and consistently
coloured. Therefore, one way to prove the untyping theorem consists in showing that any
proof net whose outer interface can be coloured can be coloured entirely. As an example, we



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 13

Figure 4. Proof nets for Cyclic MLL.

give an untyped derivation below, together with the corresponding proof net. Assuming that
I'(z) =n — m and I'(y) = m — p, the conclusion has type p — p, and the outer interface
of the proof net can be coloured (here, with colours p and n). The untyping theorem will
ensure that there exists a typed proof; indeed, the whole proof net can be coloured in a
consistent way.

A EA
etz Fyys

otz @)yt
Fati(z@y) Byt Fyiyt
Fati((z@y) Byt @yiyt
FLath(e@y) Byt @yyt
Fys Lzt (ey) By oy
FyL7§’L7?xL;((x®y)7?yL)®y

E,A

8 = 9

We now embark in the proof of the untyping theorem for cyclic MLL; the key property is
that the types of derivable sequents are all squares:

Proposition 3.6. If -1 and F1:n — m, then n =m.

Proof. We proceed by induction on the untyped derivation F [, but we prove a stronger
property: “the potential types of all cyclic permutations of [ are squares”, i.e., for all h,k such
that [ = h; k, for all n,m such that F k;h : n — m, n = m. The most involved case is that
of the tensor rule. Using symmetry arguments, we can assume that the cutting point belongs
to the left premise: the conclusion of the tensor rule is F [;1’;a ® b; k, we suppose that the
induction hypothesis holds for I;1’; a and b; k, and knowing that +1;a ® b;k;1: n — m, we
have to show n = m. Clearly, we have +1;a:n —p, Fb;k:p—q,and F1:q— m for
some p, q. By induction on the second premise, we have p = ¢, so that + l';a;l : n — m.
Since the latter list is a cyclic permutation of I;1’;a, we can conclude with the induction
hypothesis on the first premise. L]

Theorem 3.7. In cyclic MLL, if =1 :n — n, then we have 1 iff F1:n.

Proof. The right-to-left implication is straightforward; for the direct implication, we proceed
by induction on the untyped derivation. The previous proposition is required in the case
of the tensor rule: we know that F [;a, F bk, and F l;a® bk : n — n, and we have
to show that + [;a ® b;k : n. Necessarily, there is some m such that F l;a : n — m and
F bk : m — n; moreover, by Prop. [3.6, n = m. Therefore, we can apply the induction
hypotheses (so that Fl;a:n and F b;k : n) and we conclude with the typed tensor rule.[]



14 D. POUS

3.3. Intuitionistic fragment.

To deduce that the untyping theorem holds in residuated monoids, it suffices to show
that the typed version of the proof system from §3.1] corresponds to the intuitionistic frag-
ment of the proof system from Fig. [8] This is well-known for the untyped case, and type
decorations do not add particular difficulties. Therefore, we just give a brief overview of the
extended proof.

The idea is to define the following families of input and output terms (Danos-Regnier
polarities [37, 4]), and to work with sequents composed of exactly one output term and an
arbitrary number of input terms.

in=at ‘ J_’ R ’i@o‘o@i

0= 2 ‘ 1 ‘0®0‘z’73’0‘o?§?2‘
Negation (—) establishes a bijection between input and output terms. Terms of residuated
monoids (IMLL formulae) are encoded into output terms as follows.

la-b] = |a] ® [b] a/b] £ a] B [b]* 2] 22
1] =1 [a\b] £ [a]* 7 [b]

This encoding is a bijection between IMLL terms and MLL output terms; it preserves typing
judgements:

Lemma 3.8. For all a,n,m, we have F-a:n—m iff - |a] :n—m.

(Note that we heavily rely on overloading to keep notation simple.) The next proposition
shows that we actually obtained a fragment of typed cyclic MLL; it requires the lemma
below: input-only lists are not derivable. The untyping theorem for residuated monoids
follows using Thm. 3.7

Lemma 3.9. If F I, then | contains at least one output term.
Proposition 3.10. If Fl,a:n— m, thenlFa:n—m iff F[I|*;]a) :m.

Proof. The forward implication is proved by an induction on the sequent derivation. For
the reverse direction, we actually prove the following stronger property, by induction on the
untyped MLL derivation:

“for all h,a,k,n,m such that we have + |[h|t;|al; |k]*, F hik:n — m,
and Fa:n— m, we have h;kFa:n — m”.
This generalisation is required to handle the exchange rule. We detail only the key cases:
e If the tensor rule was used last, on the output term (which was thus of the form |a-b] =
la] @ [b]):
F k)t la)  F[B)5 K]S
LA La) @ [b); [k
Since Fa-b:n — m,and F h;k : n — m, we have p,q such that + a : n — p,
Fb:p—m, Fh:n—=qgand Fk:q— m. Therefore, by Lemmas [3.3] and [3:8 we
have + |h|*;|a] : ¢ — p, whence p = ¢ by Prop. We can thus apply the induction
hypothesis to the two premises to obtain h - a :n — pand k + b : p — m (using an
empty sequence in both cases). We conclude using rule (ID) from Fig.




UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 15

e [f the tensor rule was used last, on one of the input terms, say on b in h = h1;b; he, with
bt =c®d:

Flhaltie  Fdiha]t la), k"
F lhe) e ® d; [ha )ty |al; k)T

Since |h]y;c is provable and |h|3 contains only input terms, c is necessarily an output
term by Lemma Therefore there is only one possibility ensuring |b] = d*+ % ¢t the
term b must be of the form d’'/c/, with |d'| = d* and || = c.

We have b hy;d /c;hosk:n— mand Fa:n—m,ie, Fhi:n—p, Bd:p—q,
Fd:r—q Fhy:r—s,and Fk:s— m for some p,q,r, s. We first notice that the
provable sequent thJJ—; c has type s — ¢, so that s = ¢ by Prop. |3.6 By induction, we
then deduce ha b ¢ : 7 — ¢ and hy;d';k F a: n — m, and we conclude using rule (ER)
from Fig. []

Corollary 3.11. In residuated monoids, if F l,a : n — m, then we have l - a iff | F a :
n—m.

3.4. Residuated lattices: additives.

The Gentzen proof system we presented for residuated monoids (Fig. |1)) was actually
designed for residuated lattices [31], obtained by further requiring the partial order (X, <)
to be a lattice (X, V,A). Binary relations fall into this family, by considering set-theoretic
unions and intersections. The previous proofs scale without major difficulty: on the logical
side, this amounts to considering the additive binary connectives (&, &). By working in
multiplicative additive linear logic (MALL) without additive constants, we get an untyping
theorem for involutive residuated lattices [39]; we deduce the untyping theorem for residuated
lattices by considering the corresponding intuitionistic fragment (see [33] for proofs).

On the contrary, and rather surprisingly, the theorem breaks if we include additive con-
stants (0, T), or equivalently, if we consider bounded residuated lattices. The corresponding
typing rules are given below, together with the logical rule for top (there is no rule for zero).

Fl:m—n

T —F T _—
0 FT:n—om | FT;l:n

FO:n—m

The sequent z- ® T;y: T ® z gives a counter-example. This sequent basically admits the
two following untyped proofs:

——— BA—— T E.A T
I—ac;acL T I—JU;:lcL I——I—;yL
E, ® — T
I—yl;T l—x;xL@)T T |‘Q?;$L®T;yL
T T ® T T
Fyo TRaz-® T FTQxzm® Ty
T T B T T E.E
Far- Ty TQx Fxm- Ty TQx
However, this sequent admits the square type m — m whenever I'(z) = (n,m) and

I'(y) = (p,q), while the above proofs cannot be typed unless n = ¢ or n = p, respec-
tively. Graphically, these proofs correspond to the proof nets below (where the proof net
construction for rule (T) is depicted on the left-hand side); these proof nets cannot be
coloured unless n = g or n = p.



16 D. POUS

This counter-example for MALL also gives a counter-example for IMALL: the above proofs
translate to intuitionistic proofs of y - (T\z) F T -z, which is also not derivable in the typed
setting, unless n = q or n = p.

The problem is actually even stronger: while S - (T\R) C T - R holds for all homoge-
neous binary relations R, S (by the above untyped proofs, for example), this law does not
hold for arbitrary heterogeneous relations (see Remark below). This shows that we
cannot always reduce the analysis of typed structures to that of the underlying untyped
structures. Here, the equational theory of heterogeneous binary relations does not reduce
to the equational theory of homogeneous binary relations.

Remark 3.12. The containment S - (T\R) C T - R does not necessarily hold for all het-
erogeneous binary relations R, .S, although it holds for all heterogeneous binary relations on
non-empty sets.

Proof. Let A, B,C, D be four sets, let R C B x C be a binary relation from B to C', and
let S € D x A be a binary relation from D to A. To be precise, we denote by T x y the full
relation between sets X and Y (X x Y'), and the containment from the statement can be
rewritten as

S - (TB’A\R) - TD,B ‘R .
For all relations T' C B x A, the relation T\ R is characterised as follows:
T\R={(i,j) e AxC |Vk e B,(k,i)eT — (k,j) € R} .

e if B is the empty set, then R = Tpp- R = ), and by the above characterisation, we
have Tp 4\R = A x C. Therefore, we can contradict the containment by taking any
non-empty relation for S. (Note that this cannot happen in an homogeneous setting: we
have A = B = C = D so that taking the empty set for B forces both R and S to be
empty.)

e if B is not empty, then we have

Tpa\R={(i,j) € Ax C|Vk e B, (ki) € Tpa— (kj) € R}
={(i,j) e AxC|Vk e B, (k,j) € R}
C{(i,j) e AxC |3k e B,(k,j) € R}
={(i,j) e AxC|3keB,(i,k) € TapA(k,j) € R}

=Tap R ;
Therefore, since S C T p 4, we can conclude:
S (Tpa\R)C Tpa-Tap-RCTpp-R .



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 17

Timings (mean over 100000 sequents with 20 variables) Timings (mean over 100000 sequents with 30 leaves)
0.1 ¢ : ; 0.1 ¢ : ;
without opt. g without opt.
with opt. — — - ] [ with opt. — — -
0.01 |- — [
001 | 4 -
I\
L B AR
. 0001 = I T ]
Py I Ao e 0001 L N 4
£ i ;1 E E \ E
= 0.0001 - VAt E - r g 3
L - 4 A\
- r ~A /\ b
r T ] 0.0001 L AN .
1e-05 L == E E <4 El
,/7lﬁ‘ | L I e P
16'06 | | | | | | | 16'05 | | | | | | |
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
size (leaves) variables

Figure 5. Searching times for focused proof search with and without optimisation.

We do not know whether relations on empty sets are required to get such a counter-example
in the model of binary relations. In other words, for the signature of bounded residuated
lattices, does the equational theory of heterogeneous binary relations on non-empty sets
reduce to the equational theory of homogeneous binary relations?

4. IMPROVING PROOF SEARCH FOR RESIDUATED STRUCTURES.

The sequent proof systems we mentioned in the previous section have the sub-formula prop-
erty, so that provability is decidable in each case, using a simple proof search algorithm [30].
Surprisingly, the concept of type can be used to cut off useless branches. Indeed, recall
Prop. B.6 “the types of any derivable sequent are squares”. By contrapositive, given an
untyped sequent [, one can easily compute an abstract ‘most general type and environment’
(n — m,T'), such that I' -1 : n — m holds (taking N as the set of objects, for example);
if n % m, then the sequent is not derivable, and proof search can fail immediately on this
sequent.

We did some experiments with a simple prototype [33]: we implemented focused [2] proof
search for cyclic MALL, i.e., a recursive algorithm composed of an asynchronous phase which
is deterministic and a synchronous phase, where branching occurs (e.g., when applying the
tensor rule (®)). The optimisation consists in checking that the most general type of the
sequent is square before entering the synchronous phases. The overall complexity remains
exponential (provability is NP-complete [32]—PSPACE-complete with additives [20]) but
we get an exponential speed-up: we can abort proof search immediately on approximately
two sequents out of three.

The experimental results are given on Fig. [5| and @raw data is available from [33].
We generate (pseudo) random sequents in normal form with respect to the laws of neutral
elements for multiplicative constants (1 and 1), with a given number of leaves (variables,
dual variables or constants), and where variables are picked in a set of the specified size.
E.g., a® L; bt is a sequent with three leaves and two variables, which can also be considered
as a sequent with three leaves and four variables, where two variables are not used.



18 D. POUS

Proportion of sequents requiring less than a given amount of time
(over 100000 sequents with 30 leaves and 20 variables)

100 R A P Sl S T
7 g !
’ I

80 |- / 1 |
/ I
| I

< !
S 60l f } |
S 1

2 !
£ ! I
2 40 ! 1

9 [ ! ] B
o | |
! I

20 L ! X B

,/ | without opt.
/ I with opt. — — -
0 A P - P PR B P - P I P R M L
1e-06 le-05 0.0001 0.001 0.01 0.1 1 10 100 1000

time (s)

Figure 6. Distribution of searching times.

Each point of Fig. [5] was obtained by timing focused proof search with and without
optimisation, on a set of 100 000 sequents with the given characteristics: fixed number of
variables and varying size on the left-hand side, fixed size and varying number of variables on
the right-hand side. While the optimisation introduces a small amount of overhead for very
small sequents or sequents with few variables, we gain more than one order of magnitude
for larger sequents. One can also notice that the more variables are available, the more
efficient the optimisation is: indeed, sequents with a lot of different variables tend to have
non-square types more easily, so that they can be ruled out more frequently.

We did not report standard deviation in Fig. [5] since it does not make sense in this
setting: we have an unbounded set of potential values, and the actual complexity of proof
search is highly stochastic. Instead, we computed the distribution of searching times: Fig.[0]
shows the proportion of sequents that are solved in a given amount of time, among sequents
with a fixed size and number of variables—here, 30 leaves and 20 variables. While 60%
of the sequents are solved in less that 10~ 5s (with or without optimisation), some of them
require much more time: up to five minutes without optimisation, and up to three seconds
with the optimisation. All in all, the overhead which is paid on ‘easily solved’ sequents gets
compensated by the drastic improvement on ‘harder’ sequents.

5. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

We proved untyping theorems for several standard structures, allowing us to extend decid-
ability results to the typed settings, and to discover an optimisation of proof search for cyclic
linear logic. All results have been formally checked [33] with the Coq proof assistant.

The untyping theorem for typed Kleene algebras is quite important in the ATBR Coq
library [5]: it allows one to use our tactic for Kleene algebras in typed settings, and, in
particular, with heterogeneous binary relations. The underlying decision procedure being
quite involved, we can hardly imagine proving its soundness with respect to typed settings
in a direct way. Even writing a type-preserving version of the algorithm seems challenging.

At another level, we used the untyping theorem for semirings in order to formalise
Kozen’s completeness proof [22] for Kleene algebras. Indeed, this proof heavily relies on



UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 19

matrix constructions, so that having adequate lemmas and tactics for working with possibly
rectangular matrices was a big plus: this allowed us to avoid the ad-hoc constructions Kozen
used to inject rectangular matrices into square ones.

5.1. References and related work.

The relationship between residuated lattices and substructural logics is due to Ono and
Komori [31]; see [I1] for a thorough introduction. Cyclic linear logic was suggested by Girard
and studied by Yetter [40]. To the best of our knowledge, the idea of adding types to the
above structures is new. The axiomatisation of Kleene algebras is due to Kozen [22].

Our typed structures can be seen as very special cases of partial algebras [6], where
the domain of partial operations is defined by typing judgements. Similarly, one could
use many-sorted algebras [16] to mimic types using sorts. Several encodings from partial
algebras to total ones were proposed in the literature [28|, [7]. Although they are quite
general, these results do not apply here: these encodings do not preserve the considered
theory since they need to introduce new symbols and equations; as a consequence, ordinary
untyped decision procedures can no longer be used after the translation. Dojer has shown
that under some conditions, convergent term rewriting systems for total algebras can be used
to prove existence equations in partial algebras [§8]. While it seems applicable to semirings,
this approach does not scale to Kleene algebras or residuated lattices, for which decidability
does not arise from a term rewriting system.

The idea of proving typed equations from untyped ones also appears in the context of
“Pure Type Systems” (PTSs), where one can use either an untyped conversion rule, or a
typed equality judgement. Whether these two possible presentations were equivalent was
open for some time [12]; Adams has shown that this is the case for “functional” PTSs [I],
Herbelin and Siles recently generalised the result to all PTSs [38]. Although the types we use
here are quite basic (i.e., a type is just a pair of abstract objects), our use of cut-free proof
systems and factorisation systems is reminiscent to their use of the Church-Rosser property.
Note however that unlike in functional programming languages, where one usually relies on a
Hindley-Milner type inference algorithm [I7, 27] to rule out ill-typed programs, no inference
algorithm is required with the algebraic theories presented here: such an algorithm would
always succeed since an untyped proof systematically yields a typed proof.

Closer to our work is that of Kozen, who first proposed the idea of untyping typed Kleene
algebras, in order to avoid the aforementioned matrix constructions [24]. He provided a
different answer, however: using model-theoretic arguments, he proved an untyping theorem
for the universal theory of “1-free Kleene algebras”. The restriction to 1-free expressions is
required, as shown by the following counter-example: - 0 = 1 = a = b is a theorem of
semirings, although there are non trivial typed semirings where 0 = 1 holds at some types
(e.g., empty matrices), while a = b is not universally true at other types.

5.2. Handling other structures.

Action algebras |35, (18] are a natural extension of the structures we studied in this
paper: they combine the ingredients from residuated lattices and Kleene algebras. In this
setting, left and right divisions make it possible to obtain a variety rather than a quasi-
variety: inference rules (SL) and (SR), about the star operation, can be replaced by the
following equational axioms:

F(a\a)* = a\a i F(a/a)* =a/a S



20 D. POUS

Although we do not know whether the untyping theorem holds in this case, we can think
of two strategies to tackle this problem: 1) find a cut-free extension of the Gentzen proof
system for residuated lattices and adapt our current proof—such an extension is left as an
open question in [I8], it would possibly entail decidability of the equational theory of action
algebras; 2) find a “direct” proof of the untyping theorem for residuated monoids, without
using a Gentzen proof system, so that the methodology we used for Kleene algebras can
be extended. Also note that we necessarily have to exclude the annihilator element (0):
with divisions, top (T) can be defined as 0/0, so that the counter-example for bounded
residuated lattices ( applies. Consistently, there is no way to remove this element using
a factorisation system: expressions like a - T cannot be simplified.

Kleene algebras with tests [23] are another extension of Kleene algebras, which is useful
in program verification. Their equational theory is decidable, but one cannot rely on a fac-
torisation system to remove annihilators in this setting: like for rings (, the complement
operation of the Boolean algebra is problematic. Moreover, like for Kleene algebras, there
are no known notions of normal form in Kleene algebras with tests, so that the approach
we described in is not possible. Nonetheless, the untyping theorem is likely to hold for
these structures since the Boolean algebras of tests are inherently homogeneous.

Finally, although our methodology for semirings can be adapted to handle the case of
allegories [10] (see [33] for a proof), the cases of distributive and division allegories—where
left and right divisions are added—remains open.

Finally, although our methodology for semirings can be adapted to handle the case of
allegories [10] (see [33] for a proof), the cases of distributive allegories as well as division
allegories—where left and right divisions are added—remain open.

5.3. Towards a generic theory.

The typed structures we focused on can be described in terms of enriched categories,
and the untyping theorems can be rephrased as asserting the existence of faithful functors to
one-object categories. It would therefore be interesting to find out whether category theory
may help to define a reasonable class of structures for which the untyping theorem holds. In
particular, how could we exclude the counter-example with additive constants in MALL?

For structures that are varieties, another approach would consist of using term rewriting
theory to obtain generic factorisation theorems (Lemma which we used to handle the
annihilating element in semirings, would become a particular case). This seems rather
difficult, however, since these kind of properties are quite sensitive to the whole set of
operations and axioms that are considered.

ACKNOWLEDGEMENTS.

We are grateful to Olivier Laurent and Tom Hirschowitz for the highly stimulating discus-
sions we had on linear logic and about this work.

REFERENCES

[1] R. Adams. Pure type systems with judgemental equality. J. Funct. Program., 16(2):219-246, 2006.

[2] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Compu-
tation, 2(3):297-347, 1992.

[3] G. Bellin and A. Fleury. Planar and braided proof-nets for MLL with mix. Archive for Mathematical
Logic, 37:309-325, 1998.



4]
(5]

(6]
(7]

18]
(9]

[10]
[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]
[19]
[20]
21]

22]

[23]
[24]
[25]
[26]
27]
(28]

[29]
[30]
31]
32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]

UNTYPING TYPED ALGEBRAS AND COLOURING CYCLIC LINEAR LOGIC 21

G. Bellin and P. Scott. On the 7-calculus and linear logic. T'CS, 135:11-65, 1994.

T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene algebras. In Proc. ITP, volume
6172 of LNCS, pages 163-178. Springer, 2010.

P. Burmeister. Partial algebra — an introductory survey. In Algebras and Orders, volume 389 of NATO
ASI, pages 1-70. Kluwer Pub., 1993.

R. Diaconescu. An encoding of partial algebras as total algebras. Inf. Process. Lett., 109(23-24):1245—
1251, 2009.

N. Dojer. Applying term rewriting to partial algebra theory. Fund. Inf., 63(4):375-384, 2004.

H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to mathematical induction.
TCS, 179(1-2):103-135, 1997.

P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.

N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated lattices: an algebraic glimpse at substruc-
tural logics. Stud. in Log. and Found. of Math., 151:532, 2007.

H. Geuvers and B. Werner. On the Church-Rosser property for expressive type systems and its conse-
quences for their metatheoretic study. In Proc. LICS, pages 320-329. IEEE, 1994.

J.-Y. Girard. Linear logic. TCS, 50:1-102, 1987.

B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right in Coq. In Proc.
TPHOLs, volume 3603 of LNCS, pages 98-113. Springer, 2005.

J. Harrison. A HOL decision procedure for elementary real algebra. In HUG, volume 780 of LNCS,
pages 426—435. Springer, 1993.

P. Higgins. Algebras with a scheme of operators. Math. Nach., 27:115-132, 1963.

R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the American
Mathematical Society, 146:29-60, 1969.

P. Jipsen. From semirings to residuated Kleene lattices. Stud. Log., 76(2):291-303, 2004.

P. Jipsen and C. Tsinakis. A survey of residuated lattices. Ord. Alg. Struct., 2002.

M. Kanovich. The complexity of neutrals in linear logic. In Proc. LICS, pages 486-495. IEEE, 1995.
S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies, pages
3-41. Princeton University Press, 1956.

D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Inf. and
Comput., 110(2):366-390, 1994.

D. Kozen. Kleene algebra with tests. Trans. PLS, 19(3):427-443, 1997.

D. Kozen. Typed Kleene algebra. Technical Report 98-1669, Cornell Univ., 1998.

D. Krob. Complete systems of B-rational identities. T'CS, 89(2):207-343, 1991.

J. Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65:154-170, 1958.
R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17(3):348-375, 1978.
T. Mossakowski. Relating CASL with other specification languages: the institution level. TCS,
286(2):367-475, 2002.

M. Norrish. Complete integer decision procedures as derived rules in HOL. In Proc. TPHOLs, volume
2758 of LNCS, pages 71-86. Springer, 2003.

M. Okada and K. Terui. The finite model property for various fragments of intuitionistic linear logic.
J. Sym. Log., 64(2):790-802, 1999.

H. Ono and Y. Komori. Logics without the contraction rule. J. Sym. Log., 50(1):169-201, 1985.

M. Pentus. Lambek calculus is NP-complete. TCS, 357(1-3):186—201, 2006.

D. Pous. Web appendix for [34] and this paper, http://perso.ens-1lyon.fr/damien.pous/utas.

D. Pous. Untyping typed algebraic structures and colouring proof nets of cyclic linear logic. In Proc.
CSL, volume 6247 of LNCS, pages 484—498. Springer, August 2010.

V. R. Pratt. Action logic and pure induction. In Proc. JELIA, volume 478 of LNCS, pages 97-120.
Springer, 1990.

V. Redko. On defining relations for the algebra of regular events (Russian). Ukrain. Mat. Z., 16:120-126,
1964.

L. Regnier. Lambda-calcul et réseauzx. Thése de doctorat, Univ. Paris VII, 1992.

V. Siles and H. Herbelin. Equality is typable in semi-full pure type systems. In Proc. LICS, pages 21-30.
IEEE, 2010.

A. Wille. A Gentzen system for involutive residuated lattices. Alg. Univ., 54:449-463, 2005.

D. Yetter. Quantales and (noncommutative) linear logic. J. Sym. Log., 55(1):41-64, 1990.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


http://perso.ens-lyon.fr/damien.pous/utas

	Introduction
	Motivations.
	Overview.
	Outline.

	1. Notation, typed structures
	2. Kleene algebras
	2.1. Monoids
	2.2. Non-commutative semirings
	2.3. Kleene algebras
	2.4. Non-commutative rings

	3. Residuated lattices
	3.1. Gentzen proof system for residuated monoids
	3.2. Cyclic MLL
	3.3. Intuitionistic fragment
	3.4. Residuated lattices: additives.

	4. Improving proof search for residuated structures.
	5. Conclusions and directions for future work
	5.1. References and related work
	5.2. Handling other structures
	5.3. Towards a generic theory

	Acknowledgements.
	References

