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Abstract. An integer polynomial p of n variables is called a threshold gate for a Boolean
function f of n variables if for all x ∈ {0, 1}n f(x) = 1 if and only if p(x) > 0. The weight
of a threshold gate is the sum of its absolute values.

In this paper we study how large a weight might be needed if we fix some function and

some threshold degree. We prove 2Ω(22n/5) lower bound on this value. The best previous

bound was 2Ω(2n/8) (Podolskii, 2009).

In addition we present substantially simpler proof of the weaker 2Ω(2n/4) lower bound.
This proof is conceptually similar to other proofs of the bounds on weights of nonlinear
threshold gates, but avoids a lot of technical details arising in other proofs. We hope that
this proof will help to show the ideas behind the construction used to prove these lower
bounds.

1. Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function. A threshold gate for the Boolean function f
is an integer polynomial p(x) of n variables x = (x1, . . . , xn) such that for any x ∈ {0, 1}n

we have f(x) = 1 if and only if p(x) > 0. In other words, for all x ∈ {0, 1}n it is true that
f(x) = sgn p(x), where we adopt the following definition of the sign function: sgn(t) = 1 if
t > 0 and sgn(t) = 0 otherwise.

Thus, threshold gates are just representations of Boolean functions as the signs of the
polynomials. The formal study of such representations started in 1968 with the seminal
monograph of Minsky and Papert [9]. Since then representations of this form found a lot
of applications in circuit complexity, structural complexity, learning theory and communi-
cation complexity (see, for example [17, 7, 2, 20]).
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Two key complexity measures of threshold gates are their degree and their weight. The
degree deg p of a threshold gate p is just the degree of the polynomial. The weight W (p) of
a threshold gate p is the sum of absolute values of all its coefficients.

The complexity measures of a Boolean function f related to these complexity measures
of threshold gates are the minimal threshold degree of a threshold gate for f which we
denote by deg± f and call the threshold degree and the minimal weight of a threshold gate
for f . Both of these complexity measures play an important role in theoretical computer
science (see the references above). In this paper we are interested in the minimal possible
value of the weight of a threshold gate for some function f when the degree of the threshold
gate is bounded. It is convenient to denote by W (f, d) the minimal weight of a threshold
gate of degree at most d for f . Note that this value is defined only if d > deg± f . It is also

not hard to see that for all f we have deg± f 6 n and W (f, n) 6 2O(n) (just consider the
polynomial p such that p(x) = f(x) for all x).

The first results on the value of W (f, d) were proven for d = 1. In [11] (see also [10]
and [6]) it was proven that for all f with deg± f = 1 it is true that W (f, 1) = nO(n). For a

long time only lower bounds of the form W (f, 1) = 2Ω(n) were known (see [12] for one of the
early results). Tight lower bound was proven in [6], that is the function f with deg± f = 1

was constructed such that W (f, 1) = nΩ(n).
Concerning higher degree d, upper bound can be easily extended from the case d = 1.

Namely for all f with deg± f 6 d it is true (and easy to see) that W (f, d) = nO(dnd)

(see [18, 3, 15]). Note that this upper bound is much worse than for the case d = 1.

Concerning the lower bounds, it is rather easy to see that the bound nΩ(n) can be translated
from the case d = 1 to arbitrary d (see the discussion preceding Theorem 1.2). The first
lower bound improving this was given in [15] and showed that the upper bound stated above
is actually tight for constant d. That is, for any constant d the function f of the threshold

degree d was constructed in [15] such that W (f, d) = nΩ(nd) (constant in Ω here depends
on d). It is implicit in [15] though that the argument works for nonconstant d also and the
resulting lower bound (with the dependence on d) is

(n
d

) 1
2
( n
2d

)d−o((n
d
)d)

. (1.1)

For this result another proof was given in [1]. Some other results on large degree threshold
gates which are not directly connected to the problem we consider have appeared in [5, 2,
19, 14, 16, 4].

Thus it turns out that the required weight grows with the growth of the degree d. In
this paper we are interested in how large it might grow (note that for d = n the weight is

small again: W (f, n) = 2O(n)). That is we study the value

W = max
d

max
f : deg±(f)6d

W (f, d).

The lower bound (1.1) works even for d depending linearly on n and so gives doubly expo-
nential lower bound on this value. But it works only for d 6 (n − c)/32, where c is some

constant, so the best lower bound we get from [15] is 2Ω(2n/8).
In this paper we prove the following bound.

Theorem 1.1. W > 2Ω(22n/5).
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We note that the best upper bound known is simple 2O(n2n) (this can be deduced from
the upper bound for the case d = 1 and the fact that there are at most 2n monomials).

To prove our lower bound we adopt the strategy of [15] and provide a unified treatment
of the argument of that paper. In short, the proof strategy is as follows. Starting from
some function of the threshold degree 1 (with some additional properties) that requires
large weight when represented by degree-1 threshold gates we construct its “d-dimensional”
generalization in a very specific way. For this generalization we are able to prove a lower
bound for degree-d threshold gates and due to the specific features of our generalization we
can prove a strong lower bound.

In the paper [15] the construction of the function starts with the function constructed
by H̊astad in [6] to prove the optimal lower bound for the case d = 1. This helps to get n
in the base of the exponent in the lower bound and thus to prove a strong lower bound for
the case of constant d. On the other hand, H̊astad’s function is very complicated and has
desired properties only for large enough number of variables (16 variables). This does not
allow us to prove a lower bound for d close to n. In this paper we start with a much simpler
functions having required properties starting from just 3 variables. With this function we
cannot get n in the base of the exponent, but on the other hand we are able now to prove
bounds for much larger d and thus to get better lower bound on W .

We start exposition of our result by giving a simpler proof of the weaker bound of

2Ω(2n/4). In this proof we are able to avoid a lot of technical complications arising in the
proof of [15] and make the function for which we prove the bound much simpler (here we
use as a starting function of the threshold degree 1 well known “greater than” function).
We hope that this makes the proof easier to read and helps to show the ideas behind the
construction which were not very clear in [15].

After that we define another starting function and explain how to change the proof to

get W > 2Ω(22n/5) lower bound. The idea here is not only that we can prove the bound for
larger d, but also that, roughly speaking, choosing the good function we can remove the
constant 2 from the denominator of the term

(
n
2d

)
in the exponent in the bound (1.1).

Besides representation of Boolean functions as f : {0, 1}n → {0, 1}, also representation
of the form f : {−1,+1}n → {−1,+1} turns out to be useful in complexity theory. Here
−1 corresponds to “true” and 1 corresponds to “false”. For this representation we can also
consider threshold gates and also define corresponding measures of the functions. Note that
we can switch from one representation to another one by a simple linear transform. Thus the
threshold degree of the function does not depend on the representation and the threshold
weight may change only by the 2n multiplicative factor (see [8] for more information on the
relations between the threshold weights in these two settings). Since this factor is very small
compared to our lower bound, our result is true for both representations and in the proof
we can choose the one of two presentations of Boolean functions which is more convenient
to us. For the proof of the weaker bound we will use {0, 1} variables and for the stronger
one — {−1, 1} variables.

We note in the conclusion that if we have the lower bound S on the minimal weight
for the function of n variables and for the degree d, it is easy to translate it to exactly
the same bound S for n′ = n + c and d′ = d + c for any c, even depending on n (see, for
example, [16], Corollary 1). This observation allows us to deduce strong lower bounds on
weights of threshold gates of degree close to n.
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Theorem 1.2. For any ǫ > 0 and d 6 (1 − ǫ)n there is an explicit function f such that

W (f, d) = 22
Ω(n)

. For any d 6 n − 2(1 + ǫ) log n there is an explicit function f such that

W (f, d) = 2Ω(n1+ǫ).

The rest of the paper is devoted to the formulation and the proof of our results. In
Sections 2 and 3 we give a simple proof for the weaker bound: in the former we construct
the function for which in the latter we prove the lower bound. In Section 4 we explain how
to change the proof to give the stronger bound.

2. Construction of the Function

In this section we present the construction of the function for which we prove a weaker form
of our bound. Our function is the generalization of the GT function.

Definition 1. For Boolean x, y ∈ {0, 1}k let GT(x, y) = 1 iff x > y, where x = (x1, . . . , xk)
and y = (y1, . . . , yk) are considered as binary representations of integers with xk and yk
being the most significant bits.

Our function will depend on n = 2m variables

(x, y) = (x1, . . . , xm, y1, . . . , ym) ∈ {0, 1}n.

Let us fix some k1, . . . , kd such that
∑d

i=1 ki = m and partition the input variables x and y
in d groups of size k1, . . . , kd, that is

(x, y) = (x1, x2, . . . , xd, y1, y2, . . . , yd),

where xi, yi ∈ {0, 1}ki for all i.
Let us denote by [k] the set {1, . . . , k}. Let us denote by <1 the following ordering of

the set [k]: 1, 2, 3, . . . , k − 1, k, and by <0 the reverse ordering: k, k − 1, k − 2, . . . , 2, 1. We
will use these orders on the sets [k1], . . . , [kd]. It will always be clear from the context which
set we consider.

Let us denote by numil the ordinal number of l ∈ [k] w.r.t. the order <i.
To define our function we need to define a specific order on the set K = [k1]× . . .× [kd].

The construction below is essentially the same as in [15]. Our order will be similar to the
lexicographic one, that is to compare two tuples from K we will compare their components
one by one until we find the difference. But as opposed to the lexicographic order, where
each component of the tuples is compared w.r.t. the same ordering, in our order of the
tuples components might be compared w.r.t. different orderings. Moreover, the ordering in
which we compare the current component depends not only on the ordinal number of the
component but on the values of previous components of the tuples.

Formally, suppose we want to compare tuples α = (α1, . . . , αd) ∈ K and β = (β1, . . . , βd) ∈
K. First we compare α1 and β1 w.r.t. the ordering <1. If they are not equal then we have
already compared the tuples: the larger the first component is the larger the tuple is. If
they are equal we proceed to the second components. To compare them we use the following
recursive rule to choose the next order.

Assume that the order <il to compare the lth components of the tuples is already
determined and it happens that αl = βl. The order to compare (l + 1)st components is
determined by the ordinal number of αl (which coincides with βl by the assumption) w.r.t.
the order <il . Namely,

il+1 = numilαl (mod 2). (2.1)
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Case d = 2

In other words, we compare the (l + 1)st coordinates w.r.t. the order <0 if αl has even
ordinal number w.r.t. the order <il and we compare (l + 1)st coordinates w.r.t. the order
<1 otherwise.

To say it the other way, we associate with the coordinates of any tuple α = (α1, . . . , αd) ∈
K the orders <i1 , . . . , <id according to the rule (2.1). We use these orders to compare the co-
ordinates of α with the coordinates of other tuples. Note that for two tuples α = (α1, . . . , αd)
and β = (β1, . . . , βd) the orders corresponding to their components coincides until we meet
the first difference. After the first difference the orders corresponding to the components
might be different in α and β but we do not need to compare the coordinates any further.

Let us denote by numα,lαl the ordinal number of the lth component of α w.r.t. the
corresponding order.

It is not hard to describe the order we constructed in the case d = 2. Let us represent
the pairs (α1, α2) by the points on the plane (see Figure).

The first component α1 is associated with the horizontal axis, and the second component
α2 – with the vertical axis. The arrows indicate the direction from the smaller pairs to the
larger ones.

In the case d > 2 the constructed order is not so easy to describe. However, as our
proof goes by induction, we always consider only two consecutive coordinates of the tuple.
Thus we will be in the situation that is very similar to the case d = 2. The only difference
is that the order on the first coordinate might be different from <1.

Now we can define our function.

Definition 2. For a given (x, y) = (x1, x2, . . . , xd, y1, y2, . . . , yd), where xi = (xi1, . . . , x
i
ki
), yi =

(yi1, . . . , y
i
ki
) ∈ {0, 1}ki let α = (α1, . . . , αd) ∈ K be the largest tuple w.r.t. the introduced

order such that
∏d

i=1(x
i
αi

− yiαi
) 6= 0. Then let

f(x1, . . . , xd, y1, . . . , yd) = sgn

d∏

i=1

(xiαi
− yiαi

).

If there is no such α let f(x1, . . . , xd, y1, . . . , yd) = 1.
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Note that if d = 1 our function is exactly the GT function.

3. 2Ω(2n/4) Lower Bound

First we note that our function is computable by a degree d threshold gate.

Lemma 3. deg±(f) 6 d.

Proof. Let

α1, α2, . . . , α|K|

be the list of all elements ofK written w.r.t. the introduced order. For any αj = (αj
1, . . . , α

j
d)

let tj be the product

tj =
d∏

i=1

(xi
αj
i

− yi
αj
i

).

Note that for any j and any input (x, y) we have |tj | 6 1.
Consider the polynomial

p(x, y) =

|K|∑

j=1

2jtj.

We claim that it sign-represents our function.
Indeed, let us fix some input (x, y). If for this input all tj are zeros then f(x, y) = 1

and p(x, y) = 0. Otherwise, let αj be maximal w.r.t. the introduced order such that tj 6= 0.
Then all ti for i > j are zeros, and the coefficients of p are chosen in such way that the
contribution of tj is greater than the sum of contributions of all ti for i < j. Thus the sign
of p(x, y) is the same as the sign of tj .

Now we proceed to the main result of this section.

Theorem 3.1. Let ki > 2 be even for i < d and kd > 3. Then

deg±(f) = d

W (f, d) > 2
(kd−2)

d−1∏
i=1

ki −d

Remark. We can state an analogous theorem for arbitrary ki > 2 for i < d and not only for
even. However, with this assumption the proof and the bound are cleaner and at the same

time the theorem still gives 2Ω(2n/4) bound.

First we give some corollaries of Theorem 3.1 and then proceed to the proof.
If we let ki = 2 for i < d and kd = 3 in Theorem 3.1 we get

W > W (f,
n− 2

4
) > 22

n−6
4 −d.

More generally,

Corollary 4. For all n and all d 6
n−2
4 there exists (explicit) function f of n variables

such that
W (f, d) > 2(2⌊

n−2
4d

⌋)d−(2⌊n−2
4d

⌋)d−1−d.

Proof. Let ki = 2⌊n−2
4d ⌋ for i < d, kd = 2⌊n−2

4d ⌋+1, consider the function from Theorem 3.1

on the first 2
∑d

i=1 ki variables and leave other variables inessential.



LOWER BOUND ON WEIGHTS OF LARGE DEGREE THRESHOLD FUNCTIONS 7

Analogously we can prove other bounds. For example we can prove the following bound
with a simpler formulation

W (f, d) > 2(2⌊
n−4
4d

⌋)d−d.

3.1. Proof of Theorem 3.1. Let us consider an arbitrary threshold gate p for f of the
degree at most d. That is, for any x, y ∈ {0, 1}m we have

f(x, y) = sgn(p(x, y)).

It will be convenient for us to work in variables

uij = xij − yij, vij = xij + yij. (3.1)

So after substituting
xij = (uij + vij)/2, yij = (uij − vij)/2

and multiplying the polynomial by 2d to make the coefficients integer we obtain the poly-
nomial p′ in the variables uij , vij that sign-represents f . That is

f(x, y) = sgn(p′(x− y, x+ y)).

It is easy to see that the weight of the new polynomial is almost the same as the weight of
p (compared to the value of our bound). Namely, we have the following bound.

Lemma 5. W (p′) 6 2dW (p).

Proof. Consider one monomial g of p of the degree l 6 d. We can think of the transformation
above as of substituting each variable by the sum (or the difference) of two variables and then
multiplying everything by 2d−l. After opening the brackets we will have 2l new monomials
each of the weight 2d−l, so the overall weight of the new monomials coming from the
monomial g is 2d times the coefficient of g. Since this happens for all monomials, the upper
bound on the weight of the polynomial p′ as stated follows.

Remark. A similar bound holds in the other direction too, but we do not need it.

Now we have to prove that

W (p′) > 2(kd−2)
∏d−1

i=1 ki .

First we will prove that we can assume that p′ has a nice structure. Lemmas similar to the
next one appeared in [6, 15] (see [16] for a more general version).

Lemma 6. If we substitute by 0 all coefficients of the monomials of p′ in which the variables
from one of the groups u1, . . . , ud do not appear, the resulting polynomial q will also sign-
represent f .

Proof. Let I be the set of inputs (x, y) to f such that xi 6= yi for all i = 1, . . . , d. This
condition implies that for each such input there is an α = (α1, . . . , αd) ∈ K such that

d∏

i=1

(xiαi
− yiαi

) 6= 0.

This means that the value of the function is determined by the sign of this product for the
largest such α.
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Consider an arbitrary input (x, y) from I and consider an arbitrary i ∈ [d]. Let us per-
mute the variables xi with the variables yi. It is not hard to see that after such permutation
the function f changes sign, and so p′ also should change sign.

Now let us see what happens with p′(u, v). Note, that after this permutation all variables
u and v remains the same except ui which changes sign. Let us denote by A the sum of all
monomials of p′ which contain even number of variables from ui and by B the sum of all
monomials of p′ which contain odd number of variables from ui, so

p′(u, v) = A(u, v) +B(u, v).

Note that after our permutation of variables A remains the same and B changes sign. Since
p′ changes sign we have that the absolute value of B is greater then the absolute value of
A. We proved that this happens for any input from I, so the sign of f is determined by
the sign of B for all such inputs. So we can erase all monomials from A and the resulting
polynomial will still sign-represent f for all inputs from I.

Repeating this argument for all i ∈ [d] we obtain a threshold gate q for f such that
each monomial of q contains odd number of variables from each of the groups u1, . . . , ud.
But the degree of q is at most d, so it is only possible that each monomial of q contains one
variable from each of the groups u1, . . . , ud (and no variables from v1, . . . , vd).

We have proved that the new polynomial q sign-represents f correctly for all inputs
from I. Now note, that for any input from {0, 1}n \ I there is an i ∈ [d] such that xi = yi,
or equivalently, all variables from ui are zeros. By the definition the value of the function
f on such input is 1 and the value of q is 0, so q sign-represents f for these inputs also.

As a byproduct of the proof of this lemma we have the following corollary.

Corollary 7. deg±(f) = d.

Since W (p′) > W (q) it is enough to prove that

W (q) > 2(kd−2)
∏d−1

i=1 ki .

Now we need a lemma concerning degree 1 threshold gates for GT. The argument is
quite standard (see [12, 13]).

Lemma 8. Let p =
∑k

i=1 wiui be a degree 1 threshold gate for GT(x, y) where x, y ∈ {0, 1}k.
Then for j > 2

wj > 2j−2w1 > 0 (3.2)

and
wj > wj−1. (3.3)

Proof. We will actually prove that for each j wj > 0 and for each j > 2

wj >

j−1∑

i=1

wi. (3.4)

The inequality (3.3) follows from this immediately and the inequality (3.2) is easy to
prove by induction.

To prove the inequality (3.4) we consider the specific input

u = (

j−1︷ ︸︸ ︷
−1, . . . ,−1, 1, 0 . . . , 0).
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It is easy to see that on this input the function GT is 1, and this means that p(u) > 0. It
is easy to see that the inequality (3.4) follows.

To prove that wj > 0 just let uj = −1 and ui = 0 for i 6= j. GT is zero for such input,
so p(u) < 0.

It will be convenient for us to consider two variants of the GT function: we denote by
GT1 the usual GT function and by GT0 the analogous function, but now on the reversed
input. That is, GT0(x, y) = 1 if and only if x > y, where x = (x1, . . . , xk), y = (y1, . . . , yk)
are considered as binary representations of integer numbers where the most significant bits
are x1, y1. It is easy to see that if

p =

k∑

i=1

wiui

is a threshold gate for GT0 then we have

wj−1 > wj

and
wn−j+1 > 2j−2wn > 0,

where j = 2, . . . n.
Now we can prove the main lemma.

Lemma 9. For all l 6 d if α ∈ K is such that numα,iαi = 1 for all i > l and β =
(α1, . . . , kl − αl + 1, . . . , αd). Then

wβ > wα2
(kd−2)

∏d−1
i=l ki .

The idea is the following: we fix variables in all groups u1, . . . , ud except one. Then
the function f becomes essentially the GT function and we can apply Lemma 8. Repeating
this trick we can accumulate the large factor due to the specific construction of our order.
More specifically the proof goes by the induction on the decreasing l. For the base of the
induction l = d we fix all variables except ud and applying inequality (3.2) immediately
obtain the desired result. For the induction step we first apply the induction hypothesis
to l + 1 and then apply inequality (3.3) to the lth coordinate. Then we can again apply
induction hypothesis to l + 1 and so forth. In this way we can apply induction hypothesis
kl times and obtain the desired result. We proceed to the detailed proof.

Proof. The proof goes by the induction on the decreasing l.

The base of induction l = d. We fix all variables ui except ud in the following way. For
any i let uiαi

= 1 and uij = 0 for all j 6= αi.

Now we have a function in variables ud and it is not hard to see that this function
coincides with either GT0, or GT1. Applying the inequality (3.2) (or the corresponding
inequality for GT0) for j = kd we obtain

wβ > 2kd−2wα.
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Induction step. To show the lemma for l < d we repeat several times the following proce-
dure consisting of two steps. After the ith application of the procedure we will get a tuple
αi such that numαi,lα

i
l = i + 1 and numαi,jα

i
j = 1 for all j > l. To unify the notation we

denote α0 = α.
During the procedure we will not change the values of the first l − 1 coordinates. This

means that for all tuples we consider, the order corresponding to the lth coordinate is the
same. Let us assume without loss of generality that this order is <1. This in particular
means that αl = 1.

We also will not change the coordinates αl+2, . . . , αd. Note, that this means that if
numαi,l+1α

i
l+1 is odd (as in the beginning) then all

numαi,l+2α
i
l+2, . . . ,numαi,dα

i
d

are equal to 1.
Step 1. We apply the induction hypothesis for the coordinate l+ 1. We have that for

α̃i+1 = (α1, . . . , α
i
l , kl+1 − αi

l+1 + 1, . . . , αd)

wα̃i+1 > wαi2(kd−2)
∏d−1

i=l+1 ki .

Note that now the ordinal number of l + 1st coordinate (w.r.t. the corresponding order) is
kl+1.

Step 2. We fix all variables uj except ul in the following way: for any j let uj
α̃i+1
j

= 1

and ujm = 0 for all m 6= α̃i+1
j . Now we have a function in the variables ul and it is not

hard to see that this function coincides with GT1 (this happens because we agreed that the
order corresponding to the lth component is <1, if it were <0 we would have GT0 here).
We apply the inequality (3.3) to the coordinate l. After that we get

αi+1 = (α1, . . . , αl + i+ 1, kl+1 − αi
l+1 + 1, . . . , αd)

such that
wαi+1 > wα̃i+1 .

Due to the rule (2.1) defining the order on the next component of the tuple we have that
the order on the l + 1st component changes. This means that the ordinal number of the
l + 1st coordinate w.r.t. the corresponding order is again 1. ¿From this we have, as we
stated above, that for all j > l + 1 it is true that numαi+1,jα

i+1
j = 1. So now we are again

in the position to apply Step 1.
We repeat these two steps until the lth coordinate of α̃i reaches kl (in the end we repeat

Step 1, we are unable to repeat Step 2 since the lth coordinate is already kl and can not be
increased, so in the end we get α̃i for suitable i). Since the lth coordinate increases by 1 at
each iteration (on Step 2) we can repeat Step 2 kl − 1 times and Step 1 kl times. Thus in
the end we get the vector α̃kl and it is easy to see that

wα̃kl > wα

kl∏

j=1

2(kd−2)
∏d−1

i=l+1 ki = wα2
(kd−2)

∏d−1
i=l ki .

Let us check that β = α̃kl . It is easy to see that during this process only the coordinates l
and l + 1 of α change. In the end of the process coordinate l has the number kl w.r.t. the

order corresponding to the lth coordinate of α. This means that α̃kl
l = kl − αl + 1 = βl.

Note also that from this and from the evenness of kl we have that αl and α̃kl
l define different
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orders on the next coordinates. Now let us see what happens with the coordinate l + 1.

After the process the ordinal number of α̃kl
l+1 w.r.t. the order corresponding to the (l+1)st

component of α̃kl is equal to kl+1. This means that the ordinal number of α̃kl
l+1 w.r.t. the

other ordering is 1. Since orders corresponding to the (l+1)st coordinates of α and α̃kl are

different we have that α̃kl
l+1 = αl+1 = βl+1 (recall that numα,l+1αl+1 = 1).

It is easy to prove Theorem 3.1 now. Applying Lemma 9 with l = 1 we get

wβ > wα2
(kd−2)

∏d−1
i=1 ki .

Now, it is easy to see that wα > 0 (just substitute u1α1
= −1, uiαi

= 1 for all i 6= 1 and

uij = 0 for all i and all j 6= αi). We conclude that wα > 1 and

wβ > 2(kd−2)
∏d−1

i=1 ki .

4. Improved Lower Bound

In this section we improve the argument of the previous sections to obtain the better lower
bound. More precisely we prove

W > 2Ω(22n/5).

We will work with Boolean variables {−1,+1}, so we change the definition of the sgn-
function: sgn(x) = 1 if x > 0 and sgn(x) = −1 otherwise.

The idea is to use another function instead of GT as a building block in our construction.
Indeed, we may try to carry out the proof if we use any function f : {−1,+1}n → {−1,+1}
which can be defined in the following terms: consider uniform linear forms L1(x), . . . , Lk(x)
and for any x ∈ {−1,+1}n let f(x) be the sign of Li(x), where i is the maximal index such
that Li(x) is nonzero. Here uniformity of linear forms is required to make the symmetry
argument of Lemma 6 work. Note also that we can use different functions on different
coordinates and in fact there is sense in it since the last coordinate plays a very different
role than the other coordinates. Actually, we have already used different functions in
different coordinates when we choose numbers of variables ki to be different for different i.

Note that the function GT in coordinates 1, . . . , d− 1 is not very economical. Indeed,
we use 2k variables and get only k iterations in one coordinate in the proof of Lemma 9
(that is, kl applications of Step 1 in the proof of this lemma). So we can have about n/2k

coordinates with k iterations each, so we have bound of approximately 2Ω(kn/2k). If with
some other function we can have more iterations with less variables, we will be able to
improve the bound.

We prove that for any k > 3 there is a function which with the use of k variables allows
us to make k − 1 iterations.

Definition 10. For x = (x1, . . . , xk) ∈ {−1,+1}k let g(x1, . . . , xk) be equal to −xk if the
bits x1, . . . , xk are not all equal and let it be xk if they are all equal.

This function can be easily represented by a linear threshold gate:

g(x1, . . . , xk) = sgn(
k−1∑

i=1

xi − (k − 2)xk).
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But to make g to be suitable as a building block in our combinatorial construction
we have to express it in terms of linear forms L1(x), . . . , Lk(x) (otherwise we are not able
to define our ordering). Consider k linear form: Li(x) = xi − xi+1 (Li will play a role
of ui in the previous proof) for i = 1, . . . , k − 1 and L0(x) = x1 + xk. The alternative
(equivalent) definition of g is that g(x) is equal to the sign of the last nonzero in the
sequence L0(x), L1(x), L2(x), . . . , Lk−1(x). Note that now it is more convenient for us to
start the numeration of Li from 0. The reason for this is that the actual benefit we will get
only from linear forms L1, . . . , Lk−1. The form L0 is needed only for technical reasons (the
same role was previously played by the variables vi).

Note that in the proof of the weaker bound we needed actually not one base function,
but two of them. They were very similar though: GT0 and GT1. In the case of the stronger
bound two functions will differ more substantially. Again, g1 is just the function g we defined
above. As for g0 we let g0(x) be x1 if not all bits of the input are equal and g0(x) = −x1 if
all bits of input are equal. That is now we not only reverse the order of variables but also
multiply the value of the function by −1. Note that g0(x) is equal to the sign of the last
nonzero in the sequence −L0(x), Lk−1(x), Lk−2(x), . . . , L1(x).

Now we can apply the previous proof scheme with the functions g1 and g0 on the first
d − 1 components and with GT on the last component. We denote the new function by f
again. Below we state what changes in the proof.

For the new function the construction of the ordering is the same except that we use
different orderings <

′

0 and <
′

1 on the first d − 1 coordinates, namely we let <′
1 to be

0, 1, 2, . . . , k− 2, k − 1 and <′
0 to be 0, k − 1, k − 2, . . . , 2, 1, that is, 0 is always the smallest

element. The orderings on the last coordinate remains the same as before (as well as the
rule (2.1) defining the ordering on each next coordinate).

In the Definition 2 we now have only variables x1, x2, . . . , xd, yd and we let

f(x) = sgn((−1)c1+...+cd−1Lα1(x
1)Lα2(x

2) . . . Lαd−1
(xd−1)(xdαd

− ydαd
))

for the largest α for which the expression is nonzero, where ci = 1 if αi = 0 and the order
corresponding to the i-th coordinate of α is <′

0 and ci = 0 otherwise. If there is no such α
(which can happen only if xd = yd) we let f(x) to be 1. Note that the number of variables

n =
∑d−1

i=1 ki + 2kd is almost twice less than before.
The theorem we prove has the following form.

Theorem 4.1. Let ki > 3 be odd for i < d and kd > 3. Then

deg±(f) = d

W (f, d) > 2(kd−2)
∏d−1

i=1 (ki−1)−d logn

The proof of the theorem follows the same lines with minor changes. For the sake of
completeness we present the details.

Let us consider an arbitrary threshold gate p for f of degree at most d. That is, for
any x1, . . . , xd−1, xd, yd we have

f(x1, . . . , xd−1, xd, yd) = sgn(p(x1, . . . , xd−1, xd, yd)).

It will be convenient for us to work in the variables

uij = Lj(x
i)

for i = 1, . . . , d− 1 and
udj = xdj − ydj , vdj = xdj + ydj .
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So after substituting

xij = (ui0 − ui1 − . . .− uij−1 + uij + . . . + uik−1)/2

for i = 1, . . . , d− 1 and

xdj = (udj + vdj )/2, ydj = (udj − vdj )/2

and multiplying the polynomial by 2d to make the coefficients integer we obtain the poly-
nomial p′ in the variables uij , vdj that sign-represents f . That is

f(x1, . . . , xd−1, xd, yd) = sgn(p′(u1, . . . , ud−1, ud, vd)).

It is easy to see that the weight of the new polynomial is almost the same as the weight of
p (compared to the value of our bound). Namely, we have the following bound.

Lemma 11. W (p′) 6 ndW (p).

Proof. Consider one monomial g of p of degree l 6 d. We can think of the transformation
above as of substituting each variable by the sum of at most maxi ki 6 n variables and then
multiplying everything by 2d−l. After opening the brackets we will have at most nl new
monomials each of weight 2d−l, so the overall weight of the new monomials coming from the
monomial g is at most nd times the coefficient of g. Since this happens for all monomials,
the upper bound on the weight of the polynomial p′ as stated follows.

Next we prove that we can assume that p′ has a nice structure.

Lemma 12. If we substitute by 0 all coefficients of the monomials of p′ in which the
variables from one of the groups u1, . . . , ud do not appear, the resulting polynomial q will
also sign-represent f .

Proof. Let I be the set of inputs (x, y) to f such that xd 6= yd. This condition implies that
for each such input there is an α = (α1, . . . , αd) ∈ K = [k1 − 1]0 × . . . × [kd−1 − 1]0 × [kd]
such that

u1α1
u2α2

. . . ud−1
αd−1

(xdαd
− ydαd

) 6= 0,

where by [k]0 we denote the set {0, . . . k}. This means that the value of the function is
determined by the sign of this product for the largest such α.

Consider an arbitrary input (x, y) from I. Let us first permute the variables xd with
the variables yd. It is not hard to see that after such permutation the function f changes
sign, and so p′ should also change sign.

Now let us see what happens with p′(u1, . . . , ud, vd). Note, that after this permutation
all variables u and vd remains the same except ud which changes sign. Let us denote by A
the sum of all monomials of p′ which contain even number of variables from ud and by B
the sum of all monomials of p′ which contain odd number of variables from ud, so

p′(u, vd) = A(u, vd) +B(u, vd).

Note that after our permutation of variables A remains the same and B changes sign. Since
p′ changes sign we have that the absolute value of B is greater then the absolute value of
A. We proved that this happens for any input from I, so the sign of f is determined by
the sign of B for all such inputs. So we can erase all monomials from A and the resulting
polynomial will still sign-represent f for all inputs from I.
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Now consider an arbitrary i ∈ [d − 1]. Let us substitute the vector xi by the vector
−xi. Again, it is not hard to see that after such substitution the function f changes sign,
and so p′ also should change sign.

Let us see what happens with p′(u1, . . . , ud, vd). Note, that after this substitution all
variables u and vd remains the same except ui which changes sign. Let us denote by A the
sum of all monomials of p′ which contain even number of variables from ui and by B the
sum of all monomials of p′ which contain odd number of variables from ui, so

p′(u, vd) = A(u, vd) +B(u, vd).

After our substitution A remains the same and B changes sign. Again, we can erase all
monomials from A and the resulting polynomial will still sign-represent f for all inputs from
I.

Repeating this argument for all i ∈ [d− 1] we obtain a threshold gate q for f such that
each monomial of q contains odd number of variables from each of the groups u1, . . . , ud.
But the degree of q is at most d, so it is only possible that each monomial of q contains one
variable from each of the groups u1, . . . , ud (and no variables from vd).

We have proved that the new polynomial q sign-represents f correctly for all inputs
from I. Now note, that for any input from {−1, 1}n \ I we have xd = yd, or equivalently,
all variables from ud are zeros. By the definition the value of the function f on such input
is 1 and the value of q is 0, so q sign-represents f for these inputs also.

As a byproduct of the proof of this lemma we have the following corollary.

Corollary 13. deg±(f) = d.

Since W (p′) > W (q) it is enough to prove that

W (q) > 2(kd−2)
∏d−1

i=1 (ki−1).

We present now the analog of Lemma 8.

Lemma 14. Let p =
∑k−1

i=0 wiui be a degree 1 threshold gate for g1(x) where x ∈ {−1,+1}k.
Then for j = 0, 1, . . . , k − 1 we have wj > 0 and for j = 2, . . . , k − 1 we have wj > wj−1.

For the function g0 analogous statement is true.

Lemma 15. Let p =
∑k−1

i=0 wiui be a degree 1 threshold gate for g0(x) where x ∈ {−1,+1}k.
Then we have w0 < 0, for j = 1, . . . , k− 1 we have wj > 0 and for j = 2, . . . , k− 1 we have
wj−1 > wj .

Proof of Lemma 14. To show the first part of the lemma for j 6= 0 let x1 = . . . = xj = −1
and xj+1 = . . . = xk = 1. Then g1(x) = −1 and thus p(x) = −2wj < 0.

For j = 0 let x1 = . . . = xk = −1. Then again g1(x) = −1 and p(x) = −2w0 < 0.
To show the second part let xj = −1 and xl = 1 for l 6= j. Then we have g1(x) = −1

and p(x) = 2(wj−1 − wj + w0) < 0. And thus wj > wj−1 + w0 > wj−1.

Proof of Lemma 15. For j 6= 0 letting x1 = . . . = xj = −1, xj+1 = . . . = xk = 1 we have
−wj < 0. Letting x1 = . . . = xk = 1 we have w0 < 0 (note that we have −L0 in the
sequence defining g0). For j = 2, . . . , k − 1 letting xj = 1 and xl = −1 for l 6= j we have
−wj−1 + wj − w0 < 0 and thus wj−1 > wj since w0 is negative.
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The analog of Lemma 9 is very similar to the previous version, but becomes a little bit
clumsy since we distinguish cases of l = d and l < d.

Lemma 16. For all l 6 d if α ∈ K is such that numα,iαi = 1 for all i > l and β =
(α1, . . . , kl − αl + δl,d, . . . , αd), where δl,d is a Kronecker delta (that is δij = 1 if i = j and
δij = 0 otherwise) then

wβ > wα2
(kd−2)

∏d−1
i=l (ki−1).

Concerning the proof of the lemma, the base of the induction remains completely the
same (note, that the statement is the same also). As for the induction step, it also remains
the same but now we can apply the induction hypothesis kl − 1 times instead of kl times in
the previous proof. For the sake of completeness we present the proof.

Proof. This proof repeats the proof of Lemma 9 almost literally.
The proof goes by induction on decreasing l.

The base of induction l = d. We fix all variables ui except ud in the following way. For
any i let uiαi

= 1 and uij = 0 for all j 6= αi (see the proof of Lemma 14 on how to do this).

Now we have a function in variables ud and it is not hard to see that this function
coincides with either GT0, or GT1. Applying the inequality (3.2) (or the corresponding
inequality for GT0) for j = kd we obtain

wβ > 2kd−2wα.

Induction step. To show the lemma for l < d we repeat several times the following proce-
dure consisting of two steps. After the ith application of the procedure we will get a tuple
αi such that numαi,lα

i
l = i + 1 and numαi,jα

i
j = 1 for all j > l. To unify the notation we

denote α0 = α.
During the procedure we will not change the values of the first l − 1 coordinates. This

means that for all tuples we consider, the order corresponding to the lth coordinate is the
same. Let us assume without loss of generality that this order is <′

1. This in particular
means that αl = 1.

We also will not change the coordinates αl+2, . . . , αd. Note, that this means that if
numαi,l+1α

i
l+1 is odd (as in the beginning) then all

numαi,l+2α
i
l+2, . . . ,numαi,dα

i
d

are equal to 1.
Step 1. We apply the induction hypothesis for the coordinate l+ 1. We have that for

α̃i+1 = (α1, . . . , α
i
l , kl+1 − αi

l+1 + δl+1,d, . . . , αd)

wα̃i+1 > wαi2(kd−2)
∏d−1

i=l+1(ki−1).

Note that now the ordinal number of l + 1st coordinate (w.r.t. the corresponding order) is
kl+1 − 1 + δl+1,d.

Step 2. We fix all variables uj except ul in the following way: for any j let uj
α̃i+1
j

= 1

and ujm = 0 for all m 6= α̃i+1
j . Now we have a function in the variables ul and it is not

hard to see that this function coincides with g1 (this happens because we agreed that the
order corresponding to the lth component is <′

1, if it were <′
0 we would have g0 here).
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We apply the inequality from Lemma 14 to the coordinate l. After that we get αi+1 =
(α1, . . . , αl + i+ 1, kl+1 − αi

l+1 + δl+1,d, . . . , αd) such that

wαi+1 > wα̃i+1 .

Due to the rule (2.1) defining the order on the next component of the tuple we have that
the order on the l + 1st component changes. This means that the ordinal number of the
l + 1st coordinate w.r.t. the corresponding order is again 1. ¿From this we have, as we
stated above, that for all j > l + 1 it is true that numαi+1,jα

i+1
j = 1. So now we are again

in the position to apply Step 1.
We repeat these two steps until the lth coordinate of α̃i reaches kl − 1 (in the end we

repeat Step 1, we are unable to repeat Step 2 since the lth coordinate is already kl − 1
and can not be increased, so in the end we get α̃i for suitable i). Since the lth coordinate
increases by 1 at each iteration (on Step 2) we can repeat Step 2 kl − 2 times and Step 1
kl − 1 times. Thus in the end we get the vector α̃kl−1 and it is easy to see that

wα̃kl−1 > wα

kl−1∏

j=1

2(kd−2)
∏d−1

i=l+1(ki−1) = wα2
(kd−2)

∏d−1
i=l (ki−1).

Let us check that β = α̃kl−1. It is easy to see that during this process only the
coordinates l and l + 1 of α changes. In the end of the process coordinate l has the
number kl − 1 w.r.t. the order corresponding to the lth coordinate of α. This means that

α̃kl−1
l = kl − αl = βl. Note also that from this and from the oddness of kl we have that

αl and α̃kl−1
l define different orders on the next coordinates. Now let us see what happens

with the coordinate l + 1. After the process the ordinal number of α̃kl−1
l+1 w.r.t. the order

corresponding to the (l+ 1)st component of α̃kl−1 is equal to kl+1 − 1 + δl+1,d. This means

that the ordinal number of α̃kl−1
l+1 w.r.t. the other ordering is 1. Since orders corresponding

to the (l + 1)st coordinates of α and α̃kl−1 are different we have that α̃kl−1
l+1 = αl+1 = βl+1

(recall that numα,l+1αl+1 = 1).

To conclude the proof of our lower bound we have to choose the values of ki to maximize
the lower bound we have. It is not hard to see that the optimal way is to take kd = 3 as
before and to take k1 = k2 = . . . = kd−1, let us denote the value of them by k. Then the
exponent of our bound will be about (k − 1)n/k. Simple analysis shows that the maximum

(over integers) is attained when k = 5. Thus we have a lower bound of 22
2(n−6)/5−n.

To prove the first part of Theorem 1.2 we can just let m = 5
4ǫn and consider the function

from the previous paragraph with m variables. Then we have the lower bound 2Ω(22m/5) for
the degree m/5 threshold gates and applying the observation preceding Theorem 1.2 we get
the desired bound. For the second part of the theorem let m = 5

2(1 + ǫ) log n.
Finally we note that the result of [15] can also be reproved by the same argument and

with better constants if we use H̊astad’s function in the last coordinate and g function in
other coordinates.
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