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Abstract. We give a new characterization of NL as the class of languages whose members
have certificates that can be verified with small error in polynomial time by finite state
machines that use a constant number of random bits, as opposed to its conventional
description in terms of deterministic logarithmic-space verifiers. It turns out that allowing
two-way interaction with the prover does not change the class of verifiable languages,
and that no polynomially bounded amount of randomness is useful for constant-memory
computers when used as language recognizers, or public-coin verifiers. A corollary of our
main result is that the class of outcome problems corresponding to O(log n)-space bounded
games of incomplete information where the universal player is allowed a constant number
of moves equals NL.

1. Introduction

It is known that allowing constant-memory computers to use random bits and to commit
small amounts of error increases their power, both as language recognizers [Fre81], and
as verifiers of membership proofs [CL89, DS92]. In this paper, we examine the effects of
restricting such probabilistic machines (2pfa’s) to use only a constant number of random
bits, independent of the length of the input. We prove that such constant-randomness
2pfa’s are able to verify membership in precisely the languages in NL. This is an interesting
addition to the facts that NL has deterministic logspace verifiers, and NP is the class of
languages that has logspace verifiers that use logarithmically many random bits [CL95].
We obtain this result by demonstrating that such verifiers are equivalent to multihead finite
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automata. Allowing these constant-coin verifiers to use logarithmic space, and to have two-
way interaction with the prover, does not augment the class of verifiable languages. No
nonregular language has such an interactive proof system if the verifier is restricted to use
public coins. We also show that, when used as recognizers, no amount of polynomially-
bounded randomness gives standard 2pfa’s any power beyond their deterministic versions.

The rest of this paper is structured as follows: Section 2 provides the necessary back-
ground. Our results on the new characterization of NL in terms of finite state verifiers, and
the public-coin case, are presented in Section 3. Several variants of the verifier model are
examined in Sections 4 and 5. A characterization of the class of outcome problems corre-
sponding to O(log n)-space bounded games of incomplete information where the universal
player is allowed a constant number of moves is given in Section 6. Section 7 is a conclusion.

2. Preliminaries

For background on interactive proof systems with bounds on the usage of space and/or
randomness, the reader is referred to [Con93b].

The main model of verifier that we will use is a probabilistic Turing machine (PTM)
with a read-only input tape and a single read/write work tape. The input tape holds
the input string between two occurrences of the end-marker symbol ¢, and we assume
that the machine’s transition function never attempts to move the input head beyond the
end-markers. The input tape head is on the left end-marker at the start of the process.
The verifier exchanges information with a prover by writing and reading one symbol at a
time from the communication alphabet Γ in a communication cell. Using this information
channel, the prover attempts to prove the membership of the input string in the language
under consideration. Of course, one should not trust this blindly, and we even allow the
possibility that the prover sends an infinite sequence of symbols, a contingency that could
cause careless verifiers to run forever. The machine also has access to a source of random
bits. The state set of the verifier PTM is Q = R ∪D ∪ {qa, qr}, where R is the set of coin-
tossing states, D is the set of deterministic states, and qa (accept) and qr (reject) are the
halting states. One of the non-halting states is designated as the start state. A configuration
of the verifier is defined to be the 4-tuple consisting of its current internal state, input head
position, work tape content, and work tape head position. Associated with each state q ∈ Q,
there is a communication symbol γq ∈ Γ. The special “null symbol” ǫ is guaranteed to be
a member of Γ. A “communication step” starts when any state q ∈ R ∪D with γq 6= ǫ is
entered, with γq being written in the communication cell. The prover can be modeled as a
prover transition function ρ, which determines the symbol γ ∈ Γ to be written in response,
based on the input string and the entire communication that has taken place so far.1 Let
♦ = {−1, 0,+1} denote the set of possible head movement directions. When the verifier
reads the response of the prover, it behaves according to the verifier transition function δ
as follows: For q ∈ R, δ(q, σ, θ, γ, b) = (q′, θ′, di, dw) indicates that the machine will switch
to state q′, write θ′ on the work tape, move the input head in direction di ∈ ♦, and the
work tape head in direction dw ∈ ♦, if it is originally in state q, scanning the symbols σ,
θ, and γ in the input and work tapes, and the communication cell, respectively, and seeing
the random bit b as a result of the coin toss. For q ∈ D, δ(q, σ, θ, γ) = (q′, θ′, di, dw) has

1This ensures that the prover is not able to detect how many moves have been executed by the verifier
up to the present communication step.
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a similar meaning, but without the randomness. If γq = ǫ, the verifier transition function
described above is applied directly, without any communication.

There are two different definitions of interactive proofs for language membership. We
start with the “strong” definition.

We say that language L has a (private-coin) interactive proof system (IPS) with error
probability ε if there exists a prover P and a verifier V such that

1. for every x ∈ L, the interaction of P and V on input w results in acceptance with
probability at least 1− ε, and,

2. for every x /∈ L, and for any prover P ∗, the interaction of P ∗ and V on input x results
in rejection with probability at least 1− ε.

Interactive proof systems where the verifier accepts every member of the language with
probability 1 are said to have perfect completeness.

IP is the class of languages that have interactive proof systems with polynomial-time
verifiers, and with error probability ε for some ε < 1

2 . IP(〈restriction 1〉, · · · , 〈restriction
k〉) will denote the class of languages that have IPSs with 〈restriction 1〉, · · · , 〈restriction
k〉 [Con93b, CL95]. We will be examining restrictions on expected runtime, worst-case
space (i.e. work tape cells), and random bits. We use the notations cons, log, poly, and

exp to stand for functions that are O(1), O(log n), O(nc), and 2O(nc) for any constant c,
respectively. For instance, IP = IP(poly-time).

We will also be considering the effects of restricting tape head movement on our models.
In the general case, both the input and the work tape heads are allowed to move in both
directions (except when the input head is on an end-marker) or to stay put, as represented
by the set ♦ = {−1, 0,+1} in the definition above. A machine where a particular head is
not allowed to move left is said to have one-way access to the corresponding tape. Heads
which are restricted even further so that they are not allowed to stay put, and must move
right at every step, are called real-time. These features will be represented by the notations
1way-input and rt-input, respectively, in the restriction lists in class names.

Replacing condition 2 in the definition above with the weaker condition

2′. for every x /∈ L, and for any prover P ∗, the interaction of P ∗ and V on input x results
in acceptance with probability at most ε

leads to our definition of the IPw(restriction-list) classes, the counterparts of IP(restriction-
list) with these alternative kinds of verifiers that do not have to halt with high probability
for all inputs. Note that, since these “weak” IPS’s are less constrained than the “strong”
ones of the previous definition, the IP classes are always contained in the corresponding IPw

classes.
A one-way interactive proof system [Con93a] is an IPS where the prover is restricted

so that it maps the set of input strings to the set of sequences from the communication
alphabet.2 For input string w, the prover writes the ith symbol of the corresponding
sequence in the communication cell at the ith time the verifier enters a state q with γq 6= ǫ.
This ensures that the communication between the prover and the verifier is one-way. The
corresponding language classes are named by prefixing the class names mentioned above
with the designation “oneway-”. Note that a one-way IPS can be modeled as a verifier which

2Note the terminological accident here. We have already used the word “one-way” to describe tape heads
which can not move to the left. Unfortunately, IPSs where the prover does all the talking also happen to be
called with this name in the literature. We will be clear about which feature we are referring to throughout
the paper.
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has one-way access to an additional “certificate” tape, on which a purported membership
proof of the input string has been written, without the need to mention a prover or a
communication cell at all, as in the definitions of conventional nondeterministic classes.

The following equalities are trivial:

NP = oneway-IP(poly-time, poly-space, 0-random-bits) (2.1)

NL = oneway-IP(poly-time, log-space, 0-random-bits) (2.2)

Note that specifying 0 as the randomness complexity of the verifier is just a way of saying
that it is deterministic.

Allowing logarithmic amounts of randomness yields the characterization [CL95]

NP = oneway-IP(poly-time, log-space, log-random-bits)
= IP(poly-time, log-space, log-random-bits)

(2.3)

with an improvement in the space bound. Relaxing the randomness bound of the one-way
IPS further does not help on its own, since [Con93a]

oneway-IP(poly-time, log-space) = NP, (2.4)

but allowing interaction as well famously yields [Con91, Sha92]

IP(poly-time, log-space) = PSPACE. (2.5)

A public-coin IPS, also known as an Arthur-Merlin game, is an IPS where the coins of
the verifier can be seen by the prover when they are flipped, thereby ensuring that the prover
always knows the verifier’s configuration during the communication. The public-coin version
of IP(〈restriction 1〉, · · · , 〈restriction k〉) will be named AM(〈restriction 1〉, · · · , 〈restriction
k〉), and the notation will also be extended to the weak definition in a similar way. It is
known [Con89, GS86, Sha92] that

AM(exp-time, log-space) = P, (2.6)

and
AM(poly-time, poly-space) = PSPACE. (2.7)

The relationships in Equations 2.1-2.7 remain true for the weak definition of IPS’s,
since logarithmically bounded space is sufficient to cut off unacceptably long computational
paths. When one considers finite state verifiers, [DS92] which use only a constant amount
of cells on the work tape,3 the difference between the weak and strong definitions becomes
evident.

With no limits on the runtime, or the number of random bits to be used, weak IPS’s
with finite state verifiers exist for a vast class of languages; oneway-IPw(cons-space) contains

every recursively enumerable language, whereas IP(cons-space) is contained in SPACE(22
O(n)

)
[CL89]. It has been proven [DS92] that Arthur-Merlin games with finite state verifiers exist
for languages outside the class of languages recognizable by “stand-alone” 2pfa’s, and that
some languages have linear-time finite state verifiers only if the public-coin restriction is not
enforced, in contrast to Equations 2.5 and 2.7.

We will focus on verifiers which use a constant number of random bits for any input.
In the next section, we will demonstrate an interesting relationship between constant-

space, constant-randomness verifiers and multihead finite automata. A k-head finite au-
tomaton (2nfa(k)) is simply a nondeterministic finite-state machine with k two-way heads

3It is easy to see that such machines can be simulated by machines with longer programs which have no
work tape at all, namely, two-way probabilistic finite automata (2pfa’s) [Fre81].
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that it can direct on a read-only tape containing the input string, flanked by two end-
markers. A configuration of a 2nfa(k) is a tuple consisting of its current state and head
positions. Deterministic multihead finite automata (2dfa(k)’s) are defined analogously. The
classes of languages recognized by these machine families will be denoted as 2NFA(k) and
2DFA(k), respectively. We will also look at probabilistic versions of multihead automata
(2pfa(k)’s). Detailed information about these machines can be found in [HKM11, Mac97].
We note the following important facts that will be used in our proofs.

Fact 2.1.
⋃

k≥1 2NFA(k) = NL [Har72].

Fact 2.2.
⋃

k≥1 2DFA(k) = L [Har72].

Fact 2.3. Every 2nfa(k) (resp., 2dfa(k)) has an equivalent 2nfa(2k) (resp., 2dfa(2k)) that
halts in O(nk) time on every computational branch.4

Multihead finite automata where all heads are restricted to one-way movement (one-
way k-head automata) will be denoted 1nfa(k)’s. The corresponding language classes are
named 1NFA(k). The probabilistic and deterministic versions of these machines will be
denoted 1pfa(k) and 1dfa(k), respectively.

3. 2pfa verifiers with constant randomness and 2nfa(k)’s

We start our examination of the effects of limiting the number of random bits by noting that
machines that are not helped by a prover about their input are very weak when restricted
to work with constant workspace, and polynomially bounded randomness.

Theorem 3.1. For any polynomial p, every 2pfa whose expected number of coin tosses on
halting computational branches is O(p(n)) for input strings of length n recognizes a regular
language with bounded error.

Proof. This is a straightforward modification of the proof (in [DS90]) of the following fact
[DS90, KF91]:

For any polynomial p, 2pfa’s with expected runtime O(p(n)) recognize only the regular

languages with bounded error.

See Appendix A for the details.

Our new characterization of NL is demonstrated by the following lemmas.

Lemma 3.2. For any language L in NL, there exists a weak one-way, constant-space,
constant-randomness IPS that recognizes L with perfect completeness for any desired er-
ror probability ε < 1

2 .

Proof. By Fact 2.1, L is recognized by a 2nfa(k) M . We show how to construct an IPS with
the required properties. As mentioned above, this is equivalent to demonstrating how every
member of L has a membership certificate that can be checked with such a verifier. We
start by building a verifier V that simulates one run of M , by consulting the certificate for
choosing among the nondeterministic branches of M . V uses just r = ⌈log k⌉ random bits
to branch to k computation paths (each path has probability at least 2−r) while scanning
the left input end-marker. Each such path will use its head to track the position of the

4We thank Martin Kutrib, who taught us the proof of this fact.
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corresponding head of M . For every step of the simulation of M , the certificate contains a
symbol conveying the list of k symbols that would be scanned by M ’s heads at this step,
together with an indication of which nondeterministic choice should now be taken by M to
eventually reach the accept state. The ith path of V rejects immediately if it sees that the
present certificate symbol is inconsistent with what the ith head is currently scanning, and
updates its state and head position according to M ’s program and the information given
by the certificate otherwise.

If the input string is accepted byM , the certificate will lead all paths of V to acceptance,
by giving correct information about what the heads are seeing and the nondeterministic
choice at every step, yielding a total acceptance probability of 1. Otherwise, any certificate
must “lie” about at least one head in order to make some paths accept, causing the path
responsible for that head to reject, so the acceptance probability in that case is at most
1 − 2−r. To reduce the unacceptably high error bound for nonmembers, we chain several
copies of V to run one after another,5 on a correspondingly long certificate, and accept if and
only if all copies accept, rejecting otherwise. It is easy to see that a chain of m copies of V
involves an error of (1−2−r)m, and thereforem ≥ log ε

log(1−2−r) iterations are sufficient to obtain

an error of ε, where the total number of random bits used by the resulting verifier would
be O(k log k log 1

ε
). Note that a 2nfa(k) with state set Q has at most |Q|(n + 2)k distinct

reachable configurations on any input of length n, and therefore V runs in polynomial time
for correct proofs of membership.

This result enables us to determine the minimum number of “useful” random bits
required by 2pfa verifiers: A single coin toss would create just two computational paths
with equal probability. Since a probabilistic machine that always responds correctly can
be replaced by its deterministic counterpart, we must have the verifier err for at least one
input string to have any hope of outperforming a two-way deterministic finite automaton.
But the probability of such an error is at least 1

2 in a machine that tosses its coin only once,
which would violate our bounded error condition. Additional random bits can be used to
reduce the error probability as described in the proof of Lemma 3.2, and 2NFA(2), which
contains nonregular languages, has verifiers with two random bits.

The reader should also note that the IPSs of Lemma 3.2 are strictly more powerful than
2pfa’s unaided by a prover, even when the latter are allowed to use an unbounded number
of fair coins, since it is known [Kaņ89, Mac98] that the class of languages recognizable by
such stand-alone 2pfa’s is properly contained in the class L.

The reason why the construction in Lemma 3.2 does not yield an IPS according to the
strong definition is that an evil prover can supply an infinitely long fake certificate that
makes some paths of the verifier enter infinite loops by lying6 about a head that those
paths cannot see, at the cost of being rejected by the path responsible for that head. If
we forgo the guarantee of halting with probability 1 for members of the language, (thereby
losing perfect completeness,) and the capability of reducing the error bound to any desired
nonzero value, settling for an ε that is near (but of course strictly less than) 1

2 , we can
create a strong one-way IPS for any language in NL, as the next lemma shows.

Lemma 3.3. NL ⊆ oneway-IP(cons-space, cons-random-bits).

5Note that the certificate guides the paths of V to position their heads back on the left end-marker and
to start the next round of coin-flipping simultaneously.

6We can assume that the simulated multihead automaton has the desirable property mentioned in Fact
2.3. Any prover that causes a long runtime must therefore be lying.
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Proof. Let L be any language in NL. We first use the construction in the beginning of the
proof of Lemma 3.2 to build a verifier V that uses r = ⌈log k⌉ random bits to simulate one
run of the 2nfa(k) associated with L, accepts correct certificates for members of L with
probability 1, and rejects any incorrect certificate with probability at least 2−r. We then
augment V to obtain a new verifier V ′, which uses r + 1 more random bits, as follows: V ′

rejects directly with probability 2r−1
2r+1 . With the remaining probability, V ′ transfers control

to V .
V ′ accepts correct membership certificates with probability 2r+1

2r+1 , i.e. with an error of
2r−1
2r+1 . Any incorrect certificate is rejected with probability at least 22r+1

22r+1 , yielding a strong

IPS with error bound 22r−1
22r+1 . Note that an honest prover can always supply a certificate

that causes V ′ to halt with probability 1 for members of L within polynomial time; and V ′

can be tricked to running forever by evil provers only with probability at most 22r−1
22r+1 .

We will now show that two-way interaction with the prover does not augment the
power of constant-randomness verifiers, even if they are allowed to use logarithmic space,
and no requirement of halting with probability 1, let alone a time bound, is imposed on
computations for inputs in the language.

Lemma 3.4. IPw(log-space, cons-random-bits) ⊆ NL.

Proof. We start by showing that any language in IPw(log-space, cons-random-bits) has an
IPS with a worst-case polynomial bound on the runtime of the verifier.

Suppose that a language L has a weak IPS with error ε consisting of prover P and
logspace verifier V , which always uses at most r random bits. Assume without loss of
generality that V tosses all of its coins at the start, and then transfers control to the appro-
priate member of S={M1,M2, . . . ,M2r}, where each Mi is a deterministic logspace verifier
corresponding to the ith possible assignment to the r-bit random string. The prover P can
be viewed as communicating with these deterministic verifiers, and eventually convincing
more than half of them to accept the input strings in L. Note that the number of distinct
reachable configurations of any of the Mi is bounded by a polynomial, say, c(n), in the
input length n, and these machines can therefore run for at most c(n) steps between any
two consecutive communication steps.

Some members of S can have the same communication transcript, that is, they can send
precisely the same sequence of symbols to P , and therefore receive the same sequence of
responses. Since this is a private-coin system, P does not know which particular Mi it is
talking to in such cases. From the point of view of P , the state of V at any communication
step is a probabilistic mixture (an “ensemble”) of the configurations of the deterministic
verifiers consistent with the interchange so far. Since such an ensemble can contain at
most 2r elements, the total number of possible ensembles is itself bounded by a polynomial,
say, p(n), in n. We therefore conclude that P does not need to communicate more than
p(n) symbols to convince V for any input string in L, since a longer communication would
necessarily repeat an ensemble and can be shortened without changing the result. It follows
that all accepting branches of V have polynomially bounded runtime for all members of
L when communicating with such a P . One can, if one wishes, then build a new logspace
verifier that simulates V , rejecting when the execution of any Mi has exceeded this time
bound, to obtain a new IPS handling the language L with the same error and randomness
cost.
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Let us now proceed to show that L ∈ NL, by building a one-way IPS with a deterministic
logspace verifier M for L (recalling Equation 2.2). We will use the probabilistic verifier V
described above in our construction. Let us say that V and P use the communication
alphabet Γ, and that V has state set Q = C ∪N , where C = {q ∈ Q | γq 6= ǫ} is the set of
states which communicate with the prover, and N is the set of “noncommunicating” states.
Recall that V starts by randomly picking a member of the set S of 2r deterministic verifiers,
the Mi.

The purported membership certificate that our new verifier M will check consists of
2r tracks, each with alphabet T = Γ ∪ {©,∞}. The ith track is supposed to contain a
transcript of Mi’s communications with the prover about the input x. The ith track square
of the jth certificate symbol contains

• γ, if Mi receives the prover response γ in its jth communication step,
• ©, if Mi performs a halting computation with fewer than j communications, and,
• ∞ otherwise, that is, if Mi enters a nonhalting path of noncommunicating states after
performing fewer than j communications.

To process the jth certificate symbol, M simulates all the Mi’s that are indicated to be on
a halting path on the input x until they reach their jth communication step, terminate, or
are detected to have entered an infinite loop by running more than c(n) steps. M rejects if
it detects a mismatch between the track content and the actual computation of Mi.

Recall that some members of S can have the same communication transcript, and are
therefore indistinguishable by the prover, for the input at hand. Partition S into blocks, each
of which correspond to a different communication transcript. M discovers this partition as
it goes through the certificate. At the start, it considers all the Mi’s as in the same block in
the initial partition. Whenever it scans a new certificate symbol, M refines the partition to
separate the Mi’s that send different symbols, or perform no communication, and rejects if
the certificate is claiming that different prover messages are being received by two verifiers
in the same block of the new partition. If any track contains a communication symbol after
the appearance of a © or an ∞, M rejects. If it detects that the certificate is longer than
p(n) steps, M rejects. M accepts if the certificate survives these tests, and a majority of
the Mi’s are verified to terminate with acceptance.

Clearly, a majority of the members of S accept as a result of their interaction with P
on the input x if and only if x ∈ L. If the input is not in L, there is no prover that can
fool V for more than half of its possible coin strings to cause acceptance together, and no
certificate can make M accept this input.

We have proven that

Theorem 3.5.

oneway-IP(cons-space, cons-random-bits) = NL = IPw(log-space, cons-random-bits).

Let REG denote the set of regular languages. We also have the following to say about the
public-coin versions of these verifiers.

Fact 3.6. AMw(cons-space, cons-random-bits) = REG.

This is a special case of the following theorem.

Theorem 3.7. For any resource bounds r(n) and s(n), where r(n) is computable in space
s(n), and r(n) ∈ O(s(n)), AMw(s-space, r-random-bits) = NSPACE(s).
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Proof. One direction is obvious. For the other direction, we adapt the proof of Lemma 3.4.
Let V be a public-coin verifier utilizing r(n) coins and s(n) space for a language L. We

build a deterministic verifier M . Let the set S consist of the 2r(n) deterministic verifiers (the
Mi’s in the terminology of Lemma 3.4) obtained by hardwiring all possible coin sequences
to V . Since the prover is now free to send different messages to each of these verifiers, we
do not have to worry about checking for consistency among the supplied communication
transcripts of those machines. M can therefore simulate them sequentially, rather than
in parallel, requiring its certificate to just present the transcripts of the communication
between each Mi and the prover one after another. This certificate can be controlled in s(n)
space.

4. Restrictions on heads

4.1. One-way verifiers. In this section, we will show that a relationship similar to the
one established in Section 3 exists between verifiers that are further restricted to perform
one-way access to their input string, and the family of one-way multihead machines, the
1nfa(k)’s.

Theorem 4.1.

oneway-IP(cons-space, cons-random-bits, 1way-input) =
IP(cons-space, cons-random-bits, 1way-input) =

⋃
k≥1 1NFA(k).

Proof. One of the nontrivial inclusions is easy to prove: Replace the 2nfa(k) mentioned in
the proof of Lemma 3.3 with any 1nfa(k), and the construction there yields an equivalent
one-way IPS with a constant-space, constant-randomness verifier that has a one-way input
head.

For the remaining inclusion, suppose that we are given an IPS with a verifier V , which
always uses at most r random bits, and a one-way input head, for a language L. We start
by transforming V to a set S of 2r 1dfa verifiers, each of which simulates a version of V
with a different assignment to the r-bit random string.

We build a 1nfa(2r) M to recognize L. As in the proof of Lemma 3.4, M guesses a
certificate, and simulates V to see if this certificate describes a correct transcription of a
dialogue of V with the prover that ends with the input string being accepted with high
probability. M uses a different head for representing the head position of each machine
in set S. For each newly guessed certificate symbol γ, M goes through all the machines in
S. Each such machine A can either spend a finite number of steps without communicating
with the prover, or enter an infinite loop with no further communication. The number of
distinct configurations of A in this situation equals the number of internal states of V , so
M can detect if A has entered such a loop easily. In this manner, M simulates A until it
determines that A is looping, or has halted, or has communicated. M checks the certificate
for consistency with the information available to the prover, counts the number of the
elements of S that are observed to accept for legitimate certificates, and halts and accepts
if this counter reaches 2r−1 + 1.

If the input is in L, then a prover convinces a majority of the machines in S to accept.
M would then have an accepting computation path corresponding to that prover. If the
input is not in L, there is no prover that can fool more than half of V ’s paths to accept
together, and M therefore has no accepting path for this input.
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The family of one-way multihead automata is known [HKM11] to recognize a proper
subclass of NL that properly contains the regular languages. For instance, the language of
binary palindromes is not a member of this class, but its complement is. We can therefore
conclude that restricting the input head of a verifier to one-way movement does reduce its
overall computational power under these resource bounds.

4.2. Real-time verifiers. The class of languages recognized by real-time nfa(k)’s is pre-
cisely the class of regular languages, since having multiple real-time heads on the same tape
is no different than having a single head. In contrast, we will now show that constant-
randomness finite-state verifiers with real-time access to their input can verify membership
in some non-context-free languages. Consider the language TWIN = {wcw|w ∈ {a, b}∗} on
the alphabet {a, b, c}.

Theorem 4.2. TWIN ∈ oneway-IP(cons-space, cons-random-bits, rt-input).

Proof. We describe the verifier. Use a random bit to split to two branches on the left end-
marker. The first branch immediately starts reading the certificate and comparing it with
the prefix of the input that is followed by the first c, whereas the second branch does not
consult the certificate until it sees a c in the input. The first branch rejects if the comparison
fails, or if it sees that the number of c’s in the input is not 1. The second branch compares
the certificate with the input suffix after the first c, and rejects if that comparison fails.
Both branches use two more random bits during the execution,7 and reject if both these
bits turn out to be zero. They otherwise accept.

Members of TWIN will be verified to be so with probability 3
4 when the certificate is the

substring appearing on either side of the c. No certificate can convince the verifier with
probability greater than 3

8 when the input is not in TWIN.

Note that oneway-IP(cons-space, cons-random-bits, rt-input) also contains some non-
stochastic languages, not recognizable by 2pfa’s with unbounded error. For example,
by using an argument similar to the one for TWIN, it is not hard to show that NH ∈
oneway-IP(cons-space, cons-random-bits, rt-input), where [NH71]

NH = {axbay1bay2b · · · aytb | x, t, y1, · · · , yt ∈ Z
+ and ∃k (1 ≤ k ≤ t), x =

∑k
i=1 yi}.

In our results above, although the input head was real-time, the certificate head was
not, and the algorithms used its capability to stay put in some steps critically. Restricting
the verifiers to having real-time access on both the input and certificate tapes would indeed
reduce the class of languages with constant-space, constant-randomness to REG, since the
construction of Theorem 4.1 can be adapted to obtain an equivalent 1nfa(k) with all heads
working real-time for such a verifier.

5. 2pfa’s with multiple heads

We have seen that constant randomness seems to convey the power of possessing multiple
heads to single-head verifiers. We now turn to machines that already have multiple heads.
In this section, we examine the effect of limiting the number of allowed coin tosses of

7For instance, they may flip coins when scanning the c symbol and the right end-marker.
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2pfa(k)’s, that is, probabilistic multihead automata. This will turn out to be relevant for
understanding the relationship between the class L and its randomized generalizations.

5.1. Two-way heads. Hartmanis’ proof of Facts 2.1 and 2.2 [Har72] is based on a demon-
stration that multihead finite automata and logarithmic-space Turing machines can simulate
each other with polynomial slowdown. This interchangeability, which extends to the prob-
abilistic versions of these models as well [Mac97], will be useful for our analyses in this
section.

Let us consider the minimum amount of useful randomness for stand-alone 2pfa(k)’s.
Of the several modes of recognition associated with probabilistic machines, (i.e. with one-
sided or two-sided, bounded or unbounded error), we take the least restricted one, namely,
two-sided unbounded error, where all and only the strings that are members of the language
in question are to be accepted with any probability greater than 1

2 . We will use the following
variant of Theorem 3.7.

Theorem 5.1. For any resource bounds r(n) and s(n), where r(n) is computable in space
s(n), s(n) is space constructible, and r(n) ∈ O(s(n)), the class of languages recognized with
PTM’s that use at most r(n) random bits and s(n) space is contained in SPACE(s).

Proof. We start with a probabilistic Turing machine M with the properties mentioned in
the statement of the theorem. We build a deterministic Turing machine D as follows.
D computes r(n), and starts to simulate all the 2r(n) deterministic Turing machines that
correspond to different coin sequences of M sequentially on the input. Simulations that are
detected to enter infinite loops (by running more than 2s(n) steps) are cut off. D counts the

simulations that are seen to accept, and accepts if and only if this value exceeds 2r(n)−1. It
is clear that D uses O(s(n)) space, and recognizes the language of M .

Assume that we are given a 2pfa(k), say, P , that uses at most logarithmically many
random bits. There exists a logarithmic-space PTM, say, T , that uses precisely the same
number of coins, and recognizes the same language as P with unbounded error [Mac97].
By Theorem 5.1, this language is in the class L. Note that any language in L is trivially
recognized by a 2pfa(k) that uses no randomness by Fact 2.2, so we conclude that the class
of languages recognized with unbounded error by probabilistic multihead finite automata
that are restricted to use an amount of random bits that is logarithmically bounded in terms
of the input length is identical to the class corresponding to the deterministic versions of
these machines.

Recall that RL is the class of languages recognized with one-sided bounded error by
logspace PTM’s in polynomial time. Theorem 3.1 implies that the logarithmic-randomness
and polynomial-randomness classes for single-head 2pfa’s coincide. An analogous result for
multiple-head 2pfa’s would establish that L = RL.

Let us now turn to multihead finite-state verifiers. By the relationship with logarithmic-
space Turing machines mentioned above, Equations 2.2 through 2.6, as well as our Theorem
3.5, can also be viewed as statements about the power of IPS’s whose verifiers are multihead
finite automata with two-way heads, so we already know that we can use this verifier model
to build IPS’s with zero error for NL, and that constant randomness does not increase their
power. Note that the number of heads of the verifier will depend on the language under
consideration in the constructions for these characterizations.
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If we allow arbitrarily small nonzero error and polynomial randomness, but require that
at most a constant number of coin tosses can be private, we can build an IPS where the
finite-state verifier is a 2pfa(2) with a halting probability of 1 for every language in NL: The
first head runs the algorithm of Lemma 3.2, and the second head performs a random walk
whose expected completion time is a suitably large polynomial (see, for instance, [DS92]).
If this walk completes before the first head announces its decision, the verifier rejects.

5.2. One-way heads. A “stand-alone” finite automaton with k one-way heads using r
coins can be simulated with a 1dfa(k2r) that simulates all the 2r 1dfa(k)’s corresponding
to different coin sequences in parallel, and accepts if a majority of these 1dfa(k)’s accept.
We also know the following about these machines:

Fact 5.2. For every k > 1, the class of languages recognized with bounded error by 1pfa(k)’s
using a constant number of coins strictly contains the class of languages recognized by
1dfa(k)’s. [Fre79, Kut91]

Fact 5.3. For a fixed k > 1, there exists a language recognized by a 1pfa(2) using a constant
number of coins, but not by any 1nfa(k). [Fre79]

Theorem 5.4. Deterministic finite automata with multiple one-way heads can verify mem-
bership in precisely the languages in

⋃
k≥1 1NFA(k) with zero error in linear time.

Proof. Every language in
⋃

k≥1 1NFA(k) can be assumed to have a nondeterministic one-
way multihead finite automaton which recognizes it, and is guaranteed to halt in linear
time. 1dfa(k) verifiers can handle precisely the same languages as 1nfa(k) recognizers by
definition.

By a simple extension of the proof of Theorem 4.1, we have

Theorem 5.5. Finite automata with multiple one-way heads that use at most a constant
amount of random bits independent of their input can verify membership (according to both
the strong and the weak definitions, and with either one-way or two-way communication
with the prover) in precisely the languages in

⋃
k≥1 1NFA(k).

When nonzero bounded error is tolerated, the construction of Theorem 4.1 can be
modified to obtain constant-coin 1pfa(2) verifiers that halt with probability 1 for each
language in

⋃
k≥1 1NFA(k), by simply using the second head as a clock.

6. Private alternation with fixed number of universal moves

Reif [Rei79] defined the private alternating Turing machine (PATM) to model two-person
games of incomplete information, where one of the players is allowed to hide some of its
moves from the other player, as opposed to games of complete information, that are well-
known to be modeled by the alternating Turing machines (ATM’s) of [CKS81], with which
we assume the reader to be familiar. A portion of the memory of a PATM is private to
the universal states, and cannot be read when the machine is in an existential state. The
extreme special case where the existential player cannot see any moves of the universal player
is modeled by the blind alternating Turing machine (BATM), which allows the universal
states to change only that private portion. Language recognition by PATM’s is defined
similarly to that by ATM’s: A string is accepted if and only if there exists a winning
strategy for the existential player in the corresponding game.
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These models are linked to our results by the observation that a language has an IPS
with perfect completeness and just a guarantee that nonmembers will be accepted with
probability less than 1 if and only if it is recognized by a PATM with the same space and
time bounds as the verifier of that IPS: One simply views the coin-tosses of the verifier
as universal moves, and the branchings due to the prover messages as possible existential
moves of the PATM. Our Theorem 3.5 can then be translated to

Theorem 6.1. For any space bound s(n) = O(log n), the class of languages recognized by
s(n)-space PATM’s (or BATM’s) that are allowed to make a constant number of universal
moves equals NL.

For contrast, we recall the corresponding classes when the bound on the number of
universal moves is removed below. (BASPACE(s(n)) (resp. PASPACE(s(n))) denotes the
class of languages recognized by s(n)-space BATM’s (resp. PATM’s).)

Fact 6.2. BASPACE(1) = NSPACE(n). [PR79]

Fact 6.3. PASPACE(1) = E. [PR79]

Fact 6.4. BASPACE(log) = PSPACE. [Rei79]

Fact 6.5. PASPACE(log) = EXPTIME. [Rei79]

7. Open questions

We have been able to represent the relationship between NL and NP in the form

NL = IP(cons-space, cons-random-bits) ⊆ IP(log-space, log-random-bits) = NP.

Further examination of other classes like IP(cons-space, log-random-bits) would be interest-
ing.

Do our results for constant-space verifiers stand when a polynomial bound is imposed
on the overall runtime? Every language that can be verified by a constant-randomness 2pfa
that halts with probability 1 is recognized in linear time by a 2nfa(k) for some k. Does
there exist a language in NL which cannot be recognized in linear time by any 2nfa(k)?

Tables 1 and 2 summarize some of our findings on bounded-randomness 2pfa(k) variants,
both as recognizers, and as verifiers in one-way IPS’s. BPTISP(poly, log) denotes the class
of languages recognized with bounded error by PTM’s operating in polynomial time and
logarithmic space. The cells marked ?1 and ?2 correspond to classes that contain the classes
corresponding to the cells to their left, and are contained in the classes corresponding to
the cells above them. Can one find better characterizations for these classes?

Table 1: Complexity classes associated with different settings of 2pfa variants as bounded-
error recognizers.

randomness complexity: 0 cons log poly

single-head two-way REG REG REG REG

single-head one-way REG REG REG REG

multihead two-way L L L BPTISP(poly, log)
multihead one-way

⋃
k≥1 1DFA(k)

⋃
k≥1 1DFA(k) ?1 ?2
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Table 2: Complexity classes associated with different settings of 2pfa variants as bounded-
error verifiers.

randomness complexity: 0 cons

single-head two-way REG NL

single-head one-way REG
⋃

k≥1 1NFA(k)

multihead two-way NL NL

multihead one-way
⋃

k≥1 1NFA(k)
⋃

k≥1 1NFA(k)

Although we have proved that

IPw(cons-space, cons-random-bits) = IP(cons-space, cons-random-bits),

we are able to reduce the error probabilities to arbitrary desired positive values only for
verification according to the weak definition. Is this also possible for the strong definition?
Similarly, is there a way to reduce the error (which gets worse as the number of heads in the
simulated automaton increases) of single-head verifiers with one-way access to their inputs
to arbitrary desired positive values?

In their study [NY09] of interactive proof systems whose verifiers are quantum finite
automata (qfa’s), Nishimura and Yamakami used a weak model of real-time qfa’s [KW97]
whose stand-alone versions cannot even recognize all regular languages. They showed that
letting such verifiers communicate with a prover results in a proof system which can han-
dle all and only the regular languages. Since general qfa models [Hir10, YS11] that make
full use of the nonclassical features of quantum mechanics are able to simulate any corre-
sponding classical system easily, we conclude that one-way interactive proof systems that
would use qfa’s defined according to this modern approach would be able to handle all
of oneway-IP(cons-space, cons-random-bits, rt-input), outperforming the systems of [NY09],
despite the fact that the latter allow for two-way interaction between the verifier and the
prover. The study of qfa verifiers is an interesting avenue for further research.
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[Fre81] Rūsiņš Freivalds. Probabilistic two-way machines. In Proceedings of the International Symposium
on Mathematical Foundations of Computer Science, pages 33–45, 1981.

[GS86] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems.
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC’86), pages
59–68, 1986.

[Har72] Juris Hartmanis. On non-determinancy in simple computing devices. Acta Informatica, 1:336–344,
1972.

[Hir10] Mika Hirvensalo. Quantum automata with open time evolution. International Journal of Natural
Computing Research, 1(1):70–85, 2010.

[HKM11] Markus Holzer, Martin Kutrib, and Andreas Malcher. Complexity of multi-head finite automata:
Origins and directions. Theoretical Computer Science, 412:83–96, 2011.
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Appendix A. The proof of Theorem 3.1

Our proof of Theorem 3.1 is based on the following [DS90, KF91]

Fact A.1. For any polynomial p, 2pfa’s with expected runtime O(p(n)) recognize only the
regular languages with bounded error.

We start by noting that no such program which respects a worst-case bound b(n) on the
number of random bits that it uses can possibly have a computational path in which a con-
figuration of the form (r, i), where r is a coin-tossing state, and i is a head position, repeats.
Therefore, O(n) is a tight bound on the number of usable random bits under a worst-case
regime. It is also clear that contiguous subsequences of configurations with deterministic
states can have at most linear length in halting computational paths. Therefore, all halting
paths of such a machine have worst-case runtime O(n2). Furthermore, any nonhalting path
must enter an infinite loop of deterministic configurations in O(n2) steps.

When b(n) is a bound on the expected number of coin tosses, it has a similar relationship
with the runtime. Any halting path that tosses k coins has length O(kn). Any nonhalting
path with nonzero probability must toss only a finite number (k) of coins, so it must enter
an infinite deterministic loop within O(kn) steps. So the expected runtime of the halting
paths is O(nb(n)).

We could use Fact A.1 directly to prove Theorem 3.1 if we had a guarantee that the
machines we consider have polynomial expected time. There is no such comfort, however,
since it is easy to demonstrate cases where a sizable ratio of computational paths do not
halt, and expected time is therefore not bounded.

For this reason, we look at the proof of Fact A.1 in detail. One starts by defining a
quantitative measure of the nonregularity of a language L ⊆ Σ∗. For a positive integer n,
two strings w,w′ ∈ Σ∗ are n-dissimilar, written w ≁L,n w′, if |w| ≤ n, |w′| ≤ n, and there
exists a distinguishing string v ∈ Σ∗ with |wv| ≤ n, |w′v| ≤ n, and wv ∈ L iff w′v /∈ L. Let
NL(n) be the maximum k such that there exist k distinct strings that are pairwise ≁L,n. It
can be shown [Kar67, KF90, SB96] that

Fact A.2. If L is not regular, then NL(n) ≥
n
2 + 1 for infinitely many n.

In the rest of the proof, Dwork and Stockmeyer [DS90] develop a technique for con-
structing a Markov chain PA,xy with 2c states that models the computation of a given 2pfa
A with c states on the concatenated string xy, where x and y are given strings. State 1 of
the Markov chain corresponds to M being at the beginning of its computation on the last
symbol of ¢x. (Note that every 2pfa can be modified to start here, without changing the
recognized language. The nonhalting states of the modified 2pfa are {q1, q2, . . . , qc−1}.) For
1 ≤ j ≤ c − 1, state j of the Markov chain corresponds to M being in the configuration
with the machine in state qj and the head on the last symbol of ¢x, and state c + j − 1
corresponds to M being in the configuration with the machine in state qj and the head on
the first symbol of y¢. State 2c − 1 corresponds to a disjunction of rejection, infinite loop
with the head never leaving the region ¢x, and infinite loop within the region y¢. State 2c
corresponds to acceptance. The probability that PA,xy is absorbed in state 2c when started
in state 1 equals the probability that A accepts xy.
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The proof then considers any 2pfa M that recognizes language L in expected time T (n),
and proceeds to establish a lower bound, in terms of NL(n), on T (n). This is accomplished
by showing that, for sufficiently large values of n, if the desired lower bound does not exist,
then there must be two pairwise ≁L,n strings w and w′, with distinguishing string v, such
that the Markov chains PM,wv and PM,w′v are “too close” according to a notion of closeness
defined in [DS90]. In a step crucial for our purposes, ([DS90], page 1015, Lemma 4.2,) it
is proven that, if PM,wv and PM,w′v are so close, and if it is guaranteed that both Markov
chains are absorbed to state 2c−1 or 2c with total probability 1 within expected time T (n),
then the acceptance probabilities of wv and w′v must be so close that they must both be
members (or non-members) of L, contradicting their n-dissimilarity, thereby establishing
the desired bound on T (n). Fact A.1 is then obtained by combining this result with Fact
A.2.

In the case of our machines, the Markov chains produced according to the construction
mentioned above do turn out to be that close to each other, but they do not necessarily
satisfy the guarantee of absorption to state 2c−1 or 2c, sinceM can possibly enter an infinite
loop in which the head shuttles back and forth over the ¢w (resp., ¢w′) and v¢ regions.
Fortunately, this problem goes away on a careful look: Consider all cycles of transitions
that have probability 1 between the two regions in the produced Markov chains. The set
of states appearing in such a cycle is an absorbing class. Furthermore, it is certain that
absorption to either state 2c − 1, or 2c, or one of these loop classes will take place within
expected time nb(n), and the acceptance probability would not change if one redirected
these transitions to state 2c− 1, so Lemma 4.2 of [DS90] still applies, and we can conclude
with the same reasoning as in the proof of Fact A.1 that if b(n) is polynomially bounded,
then L is regular.
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