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Abstract. Tarski initiated a logic-based approach to formal geometry that studies first-
order structures with a ternary betweenness relation (β) and a quaternary equidistance
relation (≡). Tarski established, inter alia, that the first-order (FO) theory of (R2, β,≡) is
decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions
of (R2, β) with unary predicates is decidable. We refute this conjecture by showing that
for all n ≥ 2, the FO-theory of the class of expansions of (Rn, β) with just one unary
predicate is already Π1

1-hard and therefore not even arithmetical. We also define a natural
and comprehensive class C of geometric structures (T, β), where T ⊆ Rn, and show that for
each structure (T, β) ∈ C, the FO-theory of the class of expansions of (T, β) with a single
unary predicate is undecidable. We then consider classes of expansions of structures (T, β)
with a restricted unary predicate, for example a finite predicate, and establish a variety
of related undecidability results. In addition to decidability questions, we briefly study
the expressivities of universal MSO and weak universal MSO over expansions of (Rn, β).
While the logics are incomparable in general, over expansions of (Rn, β), formulae of weak
universal MSO translate into equivalent formulae of universal MSO.

1. Introduction

Decidability of theories of structures and classes of structures is a central topic in various
different fields of computer science and mathematics, with different motivations and objectives
depending on the field in question. In this article we investigate formal theories of geometry
in the framework introduced by Tarski [28, 29]. The logic-based framework was originally
presented in a series of lectures given in Warsaw in the 1920’s. The system is based on
first-order structures with two predicates: a ternary betweenness relation β and a quaternary
equidistance relation ≡. Within this system, β(u, v, w) is interpreted to mean that the point
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v is between the points u and w, while xy ≡ uv means that the distance from x to y is equal
to the distance from u to v. The betweenness relation β can be considered to simulate the
action of a ruler, while the equidistance relation ≡ simulates the action of a compass. See
[27] and [29] for further information about the history and development of Tarski’s geometry.

Tarski established in [28] that the first-order theory of (R2, β,≡) is decidable. In [3],
Aiello and van Benthem pose the question: “What is the complete monadic Π1

1 theory of
the affine real plane?” By affine real plane, the authors refer to the structure (R2, β). The
monadic Π1

1-theory of (R2, β) is of course essentially the same as the first-order theory of the
class of expansions (R2, β, (Pi)i∈N) of the the affine real plane (R2, β) by unary predicates
Pi ⊆ R2. Aiello and van Benthem conjecture that the theory is decidable. Expansions of
(R2, β) with unary predicates are especially relevant in investigations related to the geometric
structure (R2, β), since in this context unary predicates correspond to regions of the plane
R2.

In this article we study structures of the type of (T, β), where T ⊆ Rn and β is the
canonical Euclidean betweenness predicate restricted to T , see Section 2.3 for the formal
definition. Let E

(
(T, β)

)
denote the class of expansions (T, β, P ) of (T, β) with a single

unary predicate. The class E
(
(T, β)

)
is called the unary expansion class of (T, β). We

identify a significant collection of canonical structures (T, β) with an undecidable first-order
theory of E

(
(T, β)

)
. Informally, if there exists a flat two-dimensional region R ⊆ Rn, no

matter how small, such that T ∩R is in a certain sense sufficiently dense with respect to R,
then the first-order theory of E

(
(T, β)

)
is undecidable. If the related density conditions are

satisfied, we say that T extends linearly in 2D, see Section 2.3 for the formal definition. We
prove that for any T ⊆ Rn, if T extends linearly in 2D, then the FO-theory of the unary
expansion class of (T, β

)
is Σ0

1-hard. We also obtain a partial converse to this result. We
observe that T extending linearly in 1D (see Section 2.3 for the definition) is not a sufficient
condition for undecidability of the FO-theory of E

(
(T, β)

)
.

In addition, we establish that for all n ≥ 2, the first-order theory of the unary expansion
class of (Rn, β) is Π1

1-hard, and therefore not even arithmetical. We thereby refute the
conjecture of Aiello and van Benthem from [3]. The results are ultimately based on tiling
arguments. The result establishing Π1

1-hardness relies on the recurrent tiling problem of
Harel [15]—once again demonstrating the usefulness of Harel’s methods.

Our results establish undecidability for a wide range of unary expansion classes of natural
geometric structures (T, β). In addition to (R2, β), such structures include for example the
rational plane (Q2, β), the real unit cube ([0, 1]3, β), and the plane of algebraic reals (A2, β)

— to name a few.
In addition to investigating expansion classes of the type E

(
(T, β)

)
, we also study

expansion classes with a restricted unary predicate. Let n be a positive integer and let
T ⊆ Rn. Let F

(
(T, β)

)
denote the class of structures (T, β, P ), where the set P is a finite

subset of T . We establish that if T extends linearly in 2D, then the first-order theory of
F
(
(T, β)

)
is undecidable. We obtain a Π0

1-hardness result by an argument based on the
periodic torus tiling problem of Gurevich and Koryakov [13]. The torus tiling argument can
easily be adapted to deal with various different kinds of natural restricted expansion classes
of geometric structures (T, β). These include classes with a unary predicate denoting—to
name a few examples—a polygon, a finite union of closed rectangles, and a semialgebraic set
(see [8] for the definition).



UNDECIDABLE FIRST-ORDER THEORIES OF AFFINE GEOMETRIES 3

Our results could turn out useful in investigations concerning logical aspects of spatial
databases. There is a canonical correspondence between (R2, β) and (R, 0, 1, ·,+, <), see [14]
for example. See the survey [18] for further details on logical aspects of spatial databases.

The betweenness predicate is also studied in spatial logic [2]. The recent years have
witnessed a significant increase in the research on spatially motivated logics. Several
interesting systems with varying motivations have been investigated, see for example the
articles [3, 4, 5, 16, 17, 21, 26, 30, 31]. See also the surveys [1] and [6] in the Handbook
of Spatial Logics [2], and the Ph.D. thesis [11]. Several of the above articles investigate
fragments of first-order theories by way of modal logics for affine, projective, and metric
geometries. Our results contribute to the understanding of spatially motivated first-order
languages, and hence they can be useful in the search for decidable (modal) spatial logics.

In addition to studying issues of decidability, we briefly compare the expressivities of
universal monadic second-order logic ∀MSO and weak universal monadic second-order logic
∀WMSO. It is straightforward to observe that in general, the expressivities of ∀MSO and
∀WMSO are incomparable in a rather strong sense: ∀MSO 6≤WMSO and ∀WMSO 6≤ MSO.
Here MSO and WMSO denote monadic second-order logic and weak monadic second-order
logic, respectively. The result ∀WMSO 6≤ MSO follows from known results (see [10] for
example), and the result ∀MSO 6≤WMSO is more or less trivial to prove. While ∀MSO and
∀WMSO are incomparable in general, the situation changes when we consider expansions
(Rn, β, (Ri)i∈I) of the structure (Rn, β), i.e., structures embedded in the geometric structure
(Rn, β). Here (Ri)i∈I is an arbitrary vocabulary and I an arbitrary related index set. We
show that over such structures, sentences of ∀WMSO translate into equivalent sentences of
∀MSO. The result follows immediately from our proof that the expansion class F

(
(Rn, β)

)
is first-order definable with respect to the class E

(
(Rn, β)

)
, see Section 3. The proof is based

on the Heine-Borel theorem.
The structure of the current article is as follows. In Section 2 we define the central

notions needed in the later sections. In Section 3 we compare the expressivities of ∀MSO
and ∀WMSO. In Section 4 we show undecidability of the first-order theory of the unary
expansion class of any geometric structure (T, β) such that T extends linearly in 2D. In
addition, we show that for, n ≥ 2, the first-order theory of the unary expansion class of
(Rn, β) is not arithmetical. In Section 5 we modify the approach in Section 4 and show
undecidability of the FO-theory of any class F

(
(T, β)

)
such that T extends linearly in 2D.

For further information about Tarski and the facts proved by his school regarding
fragments of ordered affine geometry relevant to the current paper, see [27] and [29], and
the papers [23] and [24]. For a comprehensive survey on the development of the axiomatics
of geometries of order, see [22], which, among other things, summarizes the results of [23]
and [24].

This article is an extended version of the conference paper [19].

2. Preliminaries

2.1. Interpretations. Let σ be a purely relational vocabulary, i.e., a vocabulary that does
not contain function symbols or constant symbols. Let τ be a vocabulary that does not
contain function symbols. Let B be a nonempty class of σ-structures and C a nonempty
class of τ -structures. Assume that there exists a surjective map F from C onto B and a
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first-order τ -formula ϕDom(x) in one free variable, x, such that for each structure C ∈ C,
there is a bijection f from the domain of F (C) to the set

{ u ∈ Dom(C) | C |= ϕDom(u) }.
Assume, furthermore, that for each relation symbol R ∈ σ, there is a first-order τ -formula
ϕR(x1, ..., xAr(R)) such that we have

RF (C)(u1, ..., uAr(R)) ⇔ C |= ϕR

(
f(u1), ..., f(uAr(R))

)
for every tuple (u1, ..., uAr(R)) ∈ (Dom(F (C)))Ar(R). Here Ar(R) is the arity of R. We then
say that the class B is uniformly first-order interpretable in C.

Assume that a class of σ-structures B is uniformly first-order interpretable in a class C
of τ -structures. Define a map I from the set of first-order σ-formulae to the set of first-order
τ -formulae as follows.

(1) If k ∈ N≥1 and R ∈ σ is a k-ary relation symbol, then

I(R(x1, ..., xk)) := ϕR(x1, ..., xk),

where ϕR(x1, ..., xk) is a first-order formula for R witnessing the fact that B is uniformly
first-order interpretable in C.

(2) I(x = y) := x = y.
(3) I(¬ϕ) := ¬I(ϕ).
(4) I(ϕ ∧ ψ) := I(ϕ) ∧ I(ψ).
(5) I

(
∃xψ(x)

)
:= ∃x

(
ϕDom(x) ∧ I(ψ(x))

)
.

We call the map I a uniform interpretation of B in C. Also, if A is the class of reducts of
structures B ∈ B to some vocabulary ρ ⊆ σ, the function I is called a uniform interpretation
of A in C.

Lemma 2.1. Let ρ be a purely relational vocabulary and τ a vocabulary not containing
function symbols. Let A be a class of ρ-structure and C a class of τ -structures. Let I be a
uniform interpretation of A in C. Let ϕ be a first-order formula of the vocabulary ρ. Then
the following conditions are equivalent.

(1) There exists a structure A ∈ A such that A |= ϕ.
(2) There exists a structure C ∈ C such that C |= I(ϕ).

Proof. Straightforward.

2.2. Logics and structures. Monadic second-order logic, MSO, extends first-order logic
with quantification of relation symbols ranging over subsets of the domain of a model.
In universal (existential) monadic second-order logic, ∀MSO (∃MSO), the quantification
of monadic relations is restricted to universal (existential) prenex quantification in the
beginning of formulae. The logics ∀MSO and ∃MSO are also known as monadic Π1

1 and
monadic Σ1

1, respectively. Weak monadic second-order logic, WMSO, is a semantic variant
of monadic second-order logic in which the quantified relation symbols range over finite
subsets of the domain of a model. The weak variants ∀WMSO and ∃WMSO of ∀MSO and
∃MSO are defined in the obvious way. For further information on MSO, see for example
[12] and [20].

Monadic second-order logic can be characterized by a variant of the Ehrenfeucht-Fräıssé
game. We will give a short description of the game here. A more detailed description can be
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Figure 1: The figure shows a 3× 2 grid and a 3× 2 torus.

found in [20]. An MSO game is played by two players, the spoiler and the duplicator, on two
structures A and B of the same purely relational vocabulary σ. A round starts by spoiler
picking a structure, A or B, and an element or a subset of that structure. The duplicator

responds by choosing an object of the same type from the other structure. Let ~a and ~b be

the elements and ~A and ~B the subsets chosen in a k-round game from the structures A and

B, respectively. Then the duplicator wins the game iff (~a,~b) defines a partial isomorphism

from (A, ~A) to (B, ~B).
The k-round game characterizes MSO[k], the fragment of MSO up to the quantifier

nesting depth k. More formally: If A and B are two structures of the same purely relational
vocabulary, then the duplicator has a winning strategy in the k-round MSO game on A and
B iff A and B agree on all sentences of MSO[k].

Let L be any fragment of second-order logic. The L-theory of a structure M of a
vocabulary τ is the set of τ -sentences ϕ of L such that M |= ϕ.

Define two binary relations H,V ⊆ N2 × N2 as follows.

• H = {
(
(i, j), (i+ 1, j)

)
| i, j ∈ N }.

• V = {
(
(i, j), (i, j + 1)

)
| i, j ∈ N }.

We let G denote the structure (N2, H, V ), and call it the grid. The relations H and V are
called the horizontal and vertical successor relations of G, respectively. A supergrid is a
structure of the vocabulary {H,V } that has G as a substructure. We denote the class of
supergrids by G.

Let (G, R) be the expansion of G, where R = {
(
(0, i), (0, j)

)
∈ N2 × N2 | i < j }. We

denote the structure (G, R) by R, and call it the recurrence grid.
Let m and n be positive integers. Define two binary relations Hm,n, Vm,n ⊆ (m× n)2 as

follows. (Note that we define m = {0, ...,m− 1}, and analogously for n.)

• Hm,n = H � (m× n)2 ∪ {((m− 1, i), (0, i)) | i < n}.
• Vm,n = V � (m× n)2 ∪ {((i, n− 1), (i, 0)) | i < m}.
We call the structure (m× n,Hm,n, Vm,n) the m× n torus and denote it by Tm,n. A torus
is essentially a finite grid whose east border wraps back to the west border and north border
back to the south border.

2.3. Geometric affine betweenness structures. Let (Rn, d) be the n-dimensional Eu-
clidean space with the canonical metric d. We always assume n ≥ 1. We define the ternary
Euclidean betweenness relation β such that β(s, t, u) iff

d(s, u) = d(s, t) + d(t, u).
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By β∗ we denote the strict betweenness relation, i.e., β∗(s, t, u) iff β(s, t, u) and s 6= t 6= u.
We say that the points s, t, u ∈ Rn are collinear if the disjunction

β(s, t, u) ∨ β(s, u, t) ∨ β(t, s, u)

holds in (Rn, β). We define the first-order {β}-formula

collinear(x, y, z) := β(x, y, z) ∨ β(x, z, y) ∨ β(y, x, z).

Below we study geometric betweenness structures of the type (T, βT ) where T ⊆ Rn

and βT = β � T . Here β � T is the restriction of the betweenness predicate β of Rn to the
set T . To simplify notation, we usually refer to these structures by (T, β).

Let T ⊆ Rn and let β be the corresponding betweenness relation. We say that L ⊆ T is
a line in T if the following conditions hold.

(1) There exist points s, t ∈ L such that s 6= t.
(2) For all s, t, u ∈ L, the points s, t, u are collinear.
(3) Let s, t ∈ L be points such that s 6= t. For all u ∈ T , if β(s, u, t) or β(s, t, u), then u ∈ L.

Let T ⊆ Rn and let L1 and L2 be lines in T . We say that L1 and L2 intersect if L1 6= L2

and L1∩L2 6= ∅. We say that the lines L1 and L2 intersect in Rn if L1 6= L2 and L′1∩L′2 6= ∅,
where L′1, L

′
2 are the lines in Rn such that L1 ⊆ L′1 and L2 ⊆ L′2.

A subset S ⊆ Rn is an m-dimensional flat of Rn, where 0 ≤ m ≤ n, if there exists a
linearly independent set of m vectors v1, . . . , vm ∈ Rn and a vector h ∈ Rn such that S is
the h-translated span of the vectors v1, . . . , vm, in other words

S = {u ∈ Rn | u = h+ r1v1 + · · ·+ rmvm, r1, . . . , rm ∈ R}.
None of the vectors vi is allowed to be the zero-vector. (This is relevant in the case where
m = 1.)

A nonempty set U ⊆ Rn is a linearly regular m-dimensional flat, where 0 ≤ m ≤ n, if
the following conditions hold.

(1) There exists an m-dimensional flat S such that U ⊆ S.
(2) There does not exist any (m− 1)-dimensional flat S such that U ⊆ S.
(3) U is linearly complete, i.e., if L is a line in U and L′ ⊇ L the corresponding line in Rn,

and if r ∈ L′ is a point in L′ and ε ∈ R+ a positive real number, then there exists a
point s ∈ L such that d(s, r) < ε. Here d is the canonical metric of Rn.

(4) U is linearly closed, i.e., if L1 and L2 are lines in U and L1 and L2 intersect in Rn,
then the lines L1 and L2 intersect. In other words, there exists a point s ∈ U such that
s ∈ L1 ∩ L2.

A set T ⊆ Rn extends linearly in mD, where m ≤ n, if there exists a linearly regular
m-dimensional flat S, a positive real number ε ∈ R+ and a point x ∈ S ∩ T such that
{ u ∈ S | d(x, u) < ε } ⊆ T. It is easy show that for example Q2 extends linearly in 2D.

Let T ⊆ Rn, n ∈ N and let β be the corresponding betweenness relation. The class of all
expansions of (T, β) to the vocabulary {β, P}, where P is a unary relation symbol, is called
the unary expansion class of (T, β). By the unary expansion class of (T, β) with a finite
predicate, we mean the class of all expansions of (T, β) to the vocabulary {β, P}, where the
interpretation of P is a finite set.
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2.4. Tilings. A function t : 4 −→ N is called a tile type. Define the set

TILESYMB := { Pt | t is a tile type }
of unary relation symbols. The unary relation symbols in the set TILESYMB are called tile
symbols. The numbers t(i) of a tile symbol Pt are the colours of Pt. The number t(0) is the
top colour, t(1) the right colour, t(2) the bottom colour, and t(3) the left colour of Pt.

We then define a lexicographic linear ordering of tile types. Let t and s be tile types. We
define s < t, if the tuple

(
s(0), s(1), s(2), s(3)

)
is situated below the tuple

(
t(0), t(1), t(2), t(3)

)
with respect to the canonical lexicographic ordering, i.e., s < t if there exists some i ∈ 4
such that

(1) s(i) < t(i), and
(2) s(j) = t(j) for all j such that j < i and j ∈ 4.

If t is a tile type, define N(t) to be the number of tile types s such that s ≤ t. The function
N associates each tile type with a unique positive integer.

Let T be a finite nonempty set of tile symbols. We say that a structure A = (A, V,H),
where V,H ⊆ A2, is T -tilable, if there exists an expansion of A to the vocabulary

{H,V } ∪ { Pt | Pt ∈ T }
such that the following conditions hold.

(1) Each point of A belongs to the extension of exactly one symbol Pt in T .
(2) If uHv for some points u, v ∈ A, then the right colour of the tile symbol Pt s.t. Pt(u) is

the same as the left colour of the tile symbol Pt′ such that Pt′(v).
(3) If uV v for some points u, v ∈ A, then the top colour of the tile symbol Pt s.t. Pt(u) is

the same as the bottom colour of the tile symbol Pt′ such that Pt′(v).

Let s be a tile type such that Ps ∈ T . We say that the grid G is s-recurrently T -tilable, if
there exists an expansion of G to the vocabulary

{H,V } ∪ { Pt | Pt ∈ T }
such that the above conditions (1)− (3) hold, and additionally, there exist infinitely many
points (0, i) ∈ N2 such that Ps

(
(0, i)

)
. Intuitively, this means that the tile symbol Ps occurs

infinitely many times in the leftmost column of the grid G.
Let F be the set of finite, nonempty sets T ⊆ TILESYMB, and let

H := { (t, T ) | T ∈ F , Pt ∈ T }.
Define the following languages

T := { T ∈ F | G is T -tilable },
R := { (t, T ) ∈ H | G is t-recurrently T -tilable },
S := { T ∈ F | there is a torus D which is T -tilable }.

The tiling problem is the membership problem of the set T with the input set F . The
recurrent tiling problem is the membership problem of the set R with the input set H. The
periodic tiling problem is the membership problem of S with the input set F .

Theorem 2.2. [7] The tiling problem is Π0
1-complete.

Theorem 2.3. [15] The recurrent tiling problem is Σ1
1-complete.

Theorem 2.4. [13] The periodic tiling problem is Σ0
1-complete.
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Lemma 2.5. There is a computable function associating each input T to the (periodic)
tiling problem with a first-order sentence ϕT of the vocabulary τ := {H,V } ∪ T such that
for all structures A of the vocabulary {H,V }, the structure A is T -tilable iff there exists an
expansion A∗ of A to the vocabulary τ such that A∗ |= ϕT .

Proof. Straightforward.

Lemma 2.6. There is a computable function associating each input (t, T ) of the recurrent
tiling problem with a first-order sentence ϕ(t,T ) of the vocabulary τ := {H,V,R} ∪ T such
that the grid G is t-recurrently T -tilable iff there exists an expansion R∗ of the recurrence
grid R to the vocabulary τ such that R∗ |= ϕ(t,T ).

Proof. Straightforward.

It is easy to see that the grid G is T -tilable iff there exists a supergrid G′ that is T -tilable.

3. Expressivity of universal MSO and weak universal MSO over affine real
structures (Rn, β)

In this section we investigate the expressive powers of ∀WMSO and ∀MSO. While it is
rather easy to conclude that the two logics are incomparable in a rather strong sense (see
Proposition 3.1), when attention is limited to structures (Rn, β, (Ri)i∈I) that expand the
affine real structure (Rn, β), sentences of ∀WMSO translate into equivalent sentences of
∀MSO.

Let L and L′ be fragments of second-order logic. We write L ≤ L′, if for every vocabulary
σ, any class of σ-structures definable by a σ-sentence of L is also definable by a σ-sentence
of L′. Let τ be a vocabulary such that β 6∈ τ . The class of all expansions of (Rn, β) to the
vocabulary {β} ∪ τ is called the class of affine real τ -structures. Such structures can be
regarded as τ -structures embedded in the geometric structure (Rn, β). We say that L ≤ L′
over (Rn, β), if for every vocabulary τ s.t. β 6∈ τ , any subclass definable w.r.t. the class C of
all affine real τ -structures by a sentence of L is also definable w.r.t. C by a sentence of L′.

We sketch a canonical proof of the following very simple proposition. The result
∀WMSO 6≤ MSO follows from already known results (see [10] for example), and the result
∀MSO 6≤WMSO is easy to prove.

Proposition 3.1. ∀WMSO 6≤ MSO and ∀MSO 6≤WMSO.

Proof Sketch. It is easy to observe that ∀WMSO 6≤ MSO: consider the sentence ∀X∃y ¬Xy.
This ∀WMSO sentence is true in a model iff the domain of the model is infinite. A
straightforward monadic second-order Ehrenfeucht-Fräıssé game argument can be used to
establish that infinity is not expressible by any MSO sentence.

To show that ∀MSO 6≤WMSO, consider the structures (R, <) and (Q, <). The structures
can be separated by a sentence of ∀MSO stating that every subset bounded from above has
a least upper bound. To see that the two structures cannot be separated by any sentence of
WMSO, consider the variant of the MSO Ehrenfeucht-Fräıssé game where the players choose
finite sets in addition to domain elements. It is easy to establish that this game characterizes
the expressivity of WMSO. To see that the duplicator has a winning strategy in a game of
any finite length played on the structures (R, <) and (Q, <), we devise an extension of the
folklore winning strategy in the corresponding first-order game. Firstly, the duplicator can
obviously always pick an element whose betweenness configuration corresponds exactly to
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that of the element picked by the spoiler. Furthermore, even if the spoiler picks a finite set,
it is easy to see that the duplicator can pick his set such that each of its elements respect
the betweenness configuration of the set picked by the spoiler.

We then show that ∀WMSO ≤ ∀MSO and WMSO ≤ MSO over (Rn, β) for any n ≥ 1.

Theorem 3.2 (Heine-Borel). A set S ⊆ Rn is closed and bounded iff every open cover of S
has a finite subcover.

Theorem 3.3. Let C be the class of expansions (Rn, β, P ) of (Rn, β) with a unary predicate
P , and let F ⊆ C be the subclass of C where P is finite. The class F is first-order definable
with respect to C.

Proof. We shall first establish that a set T ⊆ Rn is finite iff it is closed, bounded and consists
of isolated points of T . Recall that an isolated point u of a set U ⊆ Rn is a point such that
there exists some open ball B such that B ∩ U = {u}.

Assume T ⊆ Rn is finite. Since T is finite, we can find a minimum distance between
points in the set T . Therefore it is clear that each point t in T belongs to some open ball B
such that B ∩ T = {t}, and hence T consists of isolated points. Similarly, since T is finite,
each point b in the complement of T has some minimum distance to the points of T , and
therefore b belongs to some open ball B ⊆ Rn \ T . Hence the set T is the complement of
the union of open balls B such that B ⊆ Rn \ T , and therefore T is closed. Finally, since
T is finite, we can find a maximum distance between the points in T , and therefore T is
bounded.

Assume then that T ⊆ Rn is closed, bounded and consists of isolated points of T . Since
T consists of isolated points, it has an open cover C ⊆ Pow(Rn) such that each set in C
contains exactly one point t ∈ T . The set C is an open cover of T , and by the Heine-Borel
theorem, there exists a finite subcover D ⊆ C of the set T . Since D is finite and each set in
D contains exactly one point of T , the set T must also be finite.

We then conclude the proof by establishing that there exists a first-order formula ϕ(P )
stating that the unary predicate P is closed, bounded and consists of isolated points. We
will first define a formula parallel(x, y, t, k) stating that the lines defined by x, y and t, k are
parallel in (Rn, β). We define

parallel(x, y, t, k) := x 6= y ∧ t 6= k ∧
(

(collinear(x, y, t) ∧ collinear(x, y, k))

∨
(
¬∃z(collinear(x, y, z) ∧ collinear(t, k, z))

∧ ∃z1z2(x 6= z1 ∧ collinear(x, y, z1) ∧ collinear(x, t, z2) ∧ collinear(z1, z2, k))
))
.

We will then define first-order {β}-formulae basisk(x0, . . . , xk) and flatk(x0, . . . , xk, z) using
simultaneous recursion. The first formula states that the vectors corresponding to the pairs
(x0, xi), 1 ≤ i ≤ k, form a basis of a k-dimensional flat. The second formula states that
the point z is in the span of the basis defined by the vectors (x0, xi), the origin being x0.
First define basis0(x0) := x0 = x0 and flat0(x0, z) := x0 = z. Then define flatk and basisk

recursively in the following way.

basisk(x0, . . . , xk) := basisk−1(x0, . . . , xk−1) ∧ ¬flatk−1(x0, . . . , xk−1, xk),

flatk(x0, . . . , xk, z) := basisk(x0, . . . , xk)

∧ ∃y0 . . . ∃yk
(
y0 = x0 ∧ yk = z ∧

∧
i≤ k−1

(
yi = yi+1 ∨ parallel(x0, xi+1, yi, yi+1)

))
.
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Figure 2: The figure shows how the formula opentriangle2(y, z, u, x) is interpreted.

We then define a first-order {β, P}-formula sepr(x, P ) asserting that x belongs to an open
ball B such that each point in B \ {x} belongs to the complement of P . The idea is to state
that there exist n+ 1 points x0, . . . , xn that form an n-dimensional triangle around x, and
every point contained in the triangle (with x being a possible exception) belongs to the
complement of P . Every open ball in Rn is contained in some n-dimensional triangle in Rn

and vice versa. We will recursively define first-order formulae opentrianglek(x0, . . . , xk, z)
stating that z is properly inside a k-dimensional triangle defined by x0, . . . , xk, see Figure 2.
First define opentriangle1(x0, x1, z) := β∗(x0, z, x1), and then define

opentrianglek(x0, . . . , xk, z) := basisk(x0, . . . , xk)

∧ ∃y
(
opentrianglek−1(x0, . . . , xk−1, y) ∧ β∗(y, z, xk)

)
.

We are now ready to define sepr(x, P ). Let

sepr(x, P ) := ∃x0 . . . ∃xn
(

opentrianglen(x0, . . . , xn, x)

∧ ∀y
(
(opentrianglen(x0, . . . , xn, y) ∧ y 6= x)→ ¬Py

))
.

Now, the sentence ϕ1 := ∀x
(
¬Px → sepr(x, P )

)
states that each point in the complement

of P is contained in an open ball B ⊆ Rn \ P . The sentence therefore states that the
complement of P is a union of open balls. Since the set of unions of open balls is exactly
the same as the set of open sets, the sentence states that P is closed.

The sentence ϕ2 := ∀x
(
Px → sepr(x, P )

)
clearly states that P consists of isolated

points.
Finally, in order to state that P is bounded, we define a formula asserting that there

exist points x0, . . . , xn that form an n-dimensional triangle around P .

ϕ3 := ∃x0 . . . ∃xn
(

basisn(x0, . . . , xn) ∧ ∀y
(
Py → opentrianglen(x0, . . . , xn, y)

))
The conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 states that P is finite.
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Corollary 3.4. Limit attention to expansions of (Rn, β). Sentences of ∀WMSO translate
into equivalent sentences of ∀MSO, and sentences of WMSO into equivalent sentences of
MSO.

4. Undecidable theories of geometric structures with an affine betweenness
relation

In this section we establish undecidability of the first-order theory of the unary expansion
class

{ (T, β, P ) | P ⊆ T }
of any geometric structure (T, β) that extends linearly in 2D. We also show that the first-order
theories of unary expansion classes of structures (Rn, β) with n ≥ 2 are highly undecidable.
More precisely, we show that the theories of classes based on structures extending linearly
in 2D are Σ0

1-hard, while the theories of classes based on structures (Rn, β) with n ≥ 2
are Π1

1-hard—and therefore not even arithmetical. We establish the results by a reduction
from the (recurrent) tiling problem to the problem of deciding whether a {β, P}-sentence is
satisfied in some expansion (T, β, P ) of (T, β) (respectively, in some expansion (Rn, β, P ) of
(Rn, β)). The argument is based on interpreting supergrids in corresponding {β}-structures.

4.1. Lines and sequences. Let T ⊆ Rn. Let L be a line in T . Any nonempty subset Q
of L is called a sequence in T . Let E ⊆ T and s, t ∈ T . If s 6= t and if u ∈ E for all points
u ∈ T such that β∗(s, u, t), we say that the points s and t are linearly E-connected (in
(T, β)). If there exists a point v ∈ T \E such that β∗(s, v, t), we say that s and t are linearly
disconnected with respect to E (in (T, β)).

Definition 4.1. Let Q be a sequence in T ⊆ Rn. Suppose that for each s, t ∈ Q such that
s 6= t, there exists a point u ∈ T \ {s} such that

(1) β(s, u, t) and
(2) ∀r ∈ T

(
β∗(s, r, u)→ r 6∈ Q

)
, i.e., the points s and u are linearly (T \Q)-connected.

Then we call Q a discretely spaced sequence in T.

Definition 4.2. Let Q be a discretely spaced sequence in T ⊆ Rn. Assume that there exists
a point s ∈ Q such that for each point u ∈ Q, there exists a point v ∈ Q \ {u} such that
β(s, u, v). Then we call the sequence Q a discretely infinite sequence in T . The point s is
called a base point of Q.

Definition 4.3. Let Q be a sequence in T ⊆ Rn. Let s ∈ Q be a point such that there do
not exist points u, v ∈ Q \ {s} such that β(u, s, v). Then we call Q a sequence in T with a
zero. The point s is a zero-point of Q. Notice that Q may have up to two zero-points.

It is easy to see that a discretely infinite sequence has at most one zero-point.

Definition 4.4. Let Q be a discretely infinite sequence in T ⊆ Rn with a zero. Assume
that for each r ∈ T such that there exist points s, u ∈ Q \ {r} with β(s, r, u), there also exist
points s′, u′ ∈ Q \ {r} such that

(1) β(s′, r, u′) and
(2) ∀v ∈ T \ {r}

(
β∗(s′, v, u′)→ v 6∈ Q

)
.

Then we call Q an ω-like sequence in T (cf. Lemma 4.7).
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Lemma 4.5. Let P be a unary relation symbol. There is a first-order sentence ϕω(P ) of the
vocabulary {β, P} such that for every T ⊆ Rn and for every expansion (T, β, P ) of (T, β),
we have (T, β, P ) |= ϕω(P ) if and only if the interpretation of P is an ω-like sequence in T .

Proof. Define

sequence(P ) := ∃xPx ∧ ∀x∀y∀z
(
Px ∧ Py ∧ Pz → collinear(x, y, z)

)
.

The formula sequence(P ) states that P is a sequence. By inspection of Definition 4.1, it is
easy to see that there is a first-order formula ψ such that the conjunction sequence(P ) ∧ ψ
states that P is a discretely spaced sequence. Continuing this trend, it is straightforward to
observe that Definitions 4.2, 4.3 and 4.4 specify first-order properties, and therefore there
exists a first-order formula ϕω(P ) stating that P is an ω-like sequence.

Definition 4.6. Let P be a sequence in T ⊆ Rn and s, t ∈ P . The points s, t are called
adjacent with respect to P , if the points are linearly (T \ P )-connected. Let E ⊆ P × P be
the set of pairs (u, v) such that

(1) u and v are adjacent with respect to P , and
(2) β(z, u, v) for some zero-point z of P .

We call E the successor relation of P .

We let succ denote the successor relation of N, i.e., succ := { (i, j) ∈ N×N | i+ 1 = j }.

Lemma 4.7. Let P be an ω-like sequence in T ⊆ Rn and E the successor relation of P .
There is an embedding from (N, succ) into (P,E) such that 0 ∈ N maps to the zero-point of
P . If T = Rn, then (N, succ) is isomorphic to (P,E).

Proof. We denote by i0 the unique zero-point of P . Since P is a discretely infinite sequence,
it has a base point. Clearly i0 has to be the only base point of P . It is straightforward to
establish that since P is an ω-like sequence with the base point i0, there exists a sequence
(ai)i∈N of points ai ∈ P such that i0 = a0 and ai+1 is the unique E-successor of ai for all
i ∈ N. Define the function h : N→ P such that h(i) = ai for all i ∈ N. It is easy to see that
h is an embedding of (N, succ) into (P,E).

Assume then that T = Rn. We shall show that the function h : N −→ P is a surjection.
Let d denote the canonical metric of R, and let dR be the restriction of the canonical metric
of Rn to the line R in Rn such that P ⊆ R. Let g : R −→ R be the isometry from (R, d) to
(R, dR) such that g(0) = i0 = h(0) and such that for all r ∈ ran(h), we have β

(
i0, g(1), r

)
or

β
(
i0, r, g(1)

)
. Let (R,≤R) be the structure, where

≤R = { (u, v) ∈ R×R | g−1(u) ≤R g−1(v) }.
If ran(h) is not bounded from above w.r.t. ≤R, then h must be a surjection. Therefore
assume that ran(h) is bounded above. By the Dedekind completeness of the reals, there
exists a least upper bound s ∈ R of ran(h) w.r.t. ≤R. Notice that since h is an embedding
of (N, succ) into (P,E), we have s 6∈ ran(h). Due to the definition of E, it is sufficient to
show that { t ∈ P | s ≤R t } = ∅ in order to conclude that h maps onto P .

Assume that the least upper bound s belongs to the set P . Since P is a discretely
spaced sequence, there is a point u ∈ Rn \ {s} such that β(s, u, i0) and

∀r ∈ Rn
(
β∗(s, r, u)→ r 6∈ P

)
.

Now u <R s and the points u and s are linearly (Rn \ P )-connected, implying that s cannot
be the least upper bound of ran(h). This is a contradiction. Therefore s 6∈ P .
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Figure 3: The figure illustrates how a grid is interpreted in a Cartesian frame. The intersec-
tion points of the solid lines correspond to domain points of the grid. See also
figure 4.

Assume, ad absurdum, that there exists a point t ∈ P such that β(i0, s, t). Now, since
P is an ω-like sequence, there exists points u′, v′ ∈ P \ {s} such that β(u′, s, v′) and

∀r ∈ Rn
(
β∗(u′, r, v′)→ r 6∈ P

)
.

We have β(s, u′, i0) or β(s, v′, i0). Assume, by symmetry, that β(s, u′, i0). Now u′ <R s, and
the points u′ and s are linearly (Rn \ P )-connected. Hence, since s 6∈ ran(h), we conclude
that s is not the least upper bound of ran(h). This is a contradiction.

4.2. Geometric structures with an undecidable unary expansion class. Let Q be
an ω-like sequence in T ⊆ Rn and let q0 be the unique zero-point of Q. Assume there exists
a point qe ∈ T \ Q such that β(q0, q, qe) holds for all q ∈ Q. We call Q ∪ {qe} an ω-like
sequence with an endpoint in T . The point qe is the endpoint of Q ∪ {qe}. Notice that the
endpoint qe is the only point x in Q ∪ {qe} such that the following conditions hold.

(1) There do not exist points s, t ∈ Q ∪ {qe} such that β∗(s, x, t).

(2) ∀yz ∈ Q ∪ {qe}
(
β∗(x, y, z)→ ∃v ∈ Q ∪ {qe}β∗(x, v, y)

)
.

Definition 4.8. Let P ⊆ T ⊆ Rn, and let p0, px, py ∈ P . We call the structure

C = (T, β, P, p0, px, py)

a Cartesian frame with domain T , if the following conditions hold.

(1) The points p0, px and py are not collinear, i.e., collinear(p0, px, py) does not hold in the
structure C.
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Figure 4: The figure shows how the tile symbols of a labelled grid are interpreted in a
Cartesian frame. Each tile symbol Pt is associated with the natural number
N(t) (see the Preliminaries section). The number of dots n on the southwest to
northeast diagonal of the rectangle to the northeast of an intersection point x
corresponds to the tile symbol associated with x. The point x is associated with
Pt iff n = N(t).

(2) The set
Px = { u ∈ P | collinear(p0, u, px) holds in C }

is an ω-like sequence with an endpoint in T . The point px is the endpoint of Px.
(3) The set

Py = { u ∈ P | collinear(p0, u, py) holds in C }
is an ω-like sequence with an endpoint in T . The point py is the endpoint of Py.

(4) The point p0 is the zero-point of both Px \ {px} and Py \ {py}.
(5) For each point p ∈ Px \ {px} and q ∈ Py \ {py}, the unique lines Lp and Lq in T such

that p, py ∈ Lp and q, px ∈ Lq, intersect. In other words, there exists a point u ∈ T that
lies on both lines Lp and Lq.

Definition 4.9. Let C = (T, β, P, p0, px, py) be a Cartesian frame. Let p ∈ Px \ {px} and
q ∈ Py \{py} be points and Lp and Lq the lines in T such that p, py ∈ Lp and q, px ∈ Lq. The
point u ∈ T that lies on both lines Lp and Lq is called—rather suggestively—the intersection
point of C corresponding to the pair (p, q). A point u ∈ T is called an intersection point
of the Cartesian frame C, if it is an intersection point of C corresponding some pair (p, q),
where p ∈ Px \ {px} and q ∈ Py \ {py}.

Definition 4.10. Let C = (T, β, P, p0, px, py) be a Cartesian frame. Recall Definition 4.6.
Let Ex be the successor relation of the ω-like sequence Px \ {px} and Ey the successor
relation of Py \ {py}. Let p, p′, q, q′ be points such that (p, p′) ∈ Ex and (q, q′) ∈ Ey. Let
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u be the intersection point of C corresponding to (p, q) and v the intersection point of C
corresponding to (p′, q′). We say that v is the diagonal successor of u in C.

Definition 4.11. Recall the function N that associates each tile type t with the unique
positive integer N(t) (see the Preliminaries section). Let C = (T, β, P, p0, px, py) be a
Cartesian frame and let S 6= ∅ be a finite set of tile symbols. We call C an S-labelled
Cartesian frame if the number of points in P strictly between any intersection point u of C
and its diagonal successor v is in the set {N(t) | Pt ∈ S}. If T ⊆ Rn and S 6= ∅ is a finite
set of tile symbols, we let C(T, S) denote the class of exactly all S-labelled Cartesian frames
with domain T .

Lemma 4.12. Let T ⊆ Rn, n ≥ 2, and let C be the class of all expansions (T, β, P, p0, px, py)
of (T, β) by a unary relation P and constants p0, px, py. There is a computable function
associating each input S to the tiling problem with a first-order {β, P, p0, px, py}-sentence
ϕS

Cf that defines the class of S-labelled Cartesian frames with the domain T with respect to
the class C.

Proof. Straightforward by virtue of Lemma 4.5.

Recall that we let G denote the grid. Let S 6= ∅ be a finite set of tile symbols. We let
GS denote the class of structures A that satisfy the following conditions.

(1) The structure A is an expansion of the grid G to the vocabulary {V,H} ∪ S.
(2) Each point in the domain of A is in the extension of exactly one predicate symbol Pt ∈ S.

Structures in the class GS are called S-labelled grids. Similarly, we let GS denote the class
of structures A that satisfy the following conditions.

(1) The structure A is an expansion of some supergrid to the vocabulary {V,H} ∪ S.
(2) Each point in the domain of A is in the extension of exactly one predicate symbol Pt ∈ S.

Structures in the class GS are called S-labelled supergrids. The class of S-labelled recurrence
grids is defined in the obvious way.

Lemma 4.13. Let T ⊆ Rn be a set that extends linearly in 2D. There is a computable
function I such that for each finite set of tile symbols S 6= ∅, there exists some class
G(T, S) ⊇ GS of S-labelled supergrids such that the function I is a uniform interpretation of
G(T, S) in C(T, S).

Proof. Let S 6= ∅ be a finite set of tile symbols. Let C = (T, β, P, p0, px, py) be an S-labelled
Cartesian frame. We shall show how an S-labelled supergrid GC is interpreted in C. Figures
3 and 4 illustrate the related constructions.

The domain of the interpretation of GC in C will be the set of intersection points of two
sets of lines defined as follows. The first set of lines is formed by connecting the point py to
each of the points u in the set

{x ∈ P | β(p0, x, px)} \ {px},
i.e., each line in the set corresponds to a pair (u, py) for some u 6= px such that β(p0, u, px).
Similarly, the second set of lines is formed by connecting the point px to each of the points
in the set

{x ∈ P | β(p0, x, py)} \ {py}.
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We then define the formulae

ϕDom(u) := ∃xy
(
P (x) ∧ P (y) ∧ β∗(p0, x, px) ∧ β∗(p0, y, py) ∧ β∗(x, u, py) ∧ β∗(y, u, px)

)
∨
(
u 6= px ∧ u 6= py ∧ P (u) ∧

(
β(p0, u, px) ∨ β(p0, u, py)

))
,

ϕH(u, v) := ∃x
(
β(p0, x, py) ∧ β(x, u, v) ∧ β∗(u, v, px)

)
∧ ∀r

(
β∗(u, r, v) → ¬ϕDom(r)

)
,

ϕV (u, v) := ∃x
(
β(p0, x, px) ∧ β(x, u, v) ∧ β∗(u, v, py)

)
∧ ∀r

(
β∗(u, r, v) → ¬ϕDom(r)

)
.

Next we define the following auxiliary formula:

diagonal(u, v) :=∃x
(
ϕDom(x) ∧ ϕH (u, x) ∧ ϕV (x, v)

)
.

Recall the function N that associates each tile type t with the unique positive integer N(t).

Let ∃=N(t)x denote the quantifier stating that there exist exactly N(t) x:s. Now, for each
tile symbol Pt, we define

ϕPt(u) := ∃z∃=N(t)x
(
ϕDom(z) ∧ diagonal(u, z) ∧ P (x) ∧ β∗(u, x, z)

)
.

The formulae ϕDom , ϕH , ϕV and ϕP (t) define the uniform interpretation I.
Call DC := { u ∈ T | C |= ϕDom(u) }, and define the structure

DC = (DC, H
DC , V DC , (PDC

t )Pt∈S),

where

HDC := { (u, v) ∈ DC ×DC | C |= ϕH(u, v) },

V DC := { (u, v) ∈ DC ×DC | C |= ϕV (u, v) },

PDC
t := { u ∈ DC | C |= ϕPt(u) } for each Pt ∈ S.

By Lemma 4.7, it is easy to see that there is and S-labelled grid (G,H, V, (Pt)Pt∈S) such
that there exists an injection f from the domain of the grid to DC such that the following
three conditions hold for all u, v ∈ G and Pt ∈ S:

(1) (u, v) ∈ H ⇔ ϕH

(
f(u), f(v)

)
,

(2) (u, v) ∈ V ⇔ ϕV

(
f(u), f(v)

)
,

(3) u ∈ Pt ⇔ ϕPt

(
f(u)

)
.

Hence there is an S-labelled supergrid GC = (GC, H
GC , V GC , (PGC

t )Pt∈S) such that there
exists a bijection f from GC to DC such that the following conditions hold for all u, v ∈ GC

and Pt ∈ S:

(1) (u, v) ∈ HGC ⇔ ϕH

(
f(u), f(v)

)
,

(2) (u, v) ∈ V GC ⇔ ϕV

(
f(u), f(v)

)
,

(3) u ∈ PGC
t ⇔ ϕPt

(
f(u)

)
.

Let
G(T, S) := { GC ∈ GS | C ∈ C(T, S) }.

Since T extends linearly in 2D, we have GS ⊆ G(T, S). The function I is a uniform
interpretation of G(T, S) in C(T, S).

Lemma 4.14. Let n ≥ 2 be an integer. There is a computable function K such that for
each nonempty set S of tile symbols, the function K is a uniform interpretation of the class
of S-labelled recurrence grids in the class of S-labelled Cartesian frames with domain Rn.

Proof. Straightforward by Lemma 4.7 and the proof of Lemma 4.13.
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Theorem 4.15. Let T ⊆ Rn be a set and β be the corresponding betweenness relation.
Assume that T extends linearly in 2D. The first-order theory of the unary expansion class of
(T, β) is Σ0

1-hard.

Proof. Since T extends linearly in 2D, we have n ≥ 2. Let σ = {H,V } be the vocabulary
of supergrids, and let τ = {β, P, p0, px, py} be the vocabulary of labelled Cartesian frames.
By Lemma 4.12, there is a computable function that associates each input S to the tiling
problem with a first-order τ -sentence that defines the class of S-labelled Cartesian frames
with the domain T with respect to the class of all expansions of (T, β) to the vocabulary
τ . Let ϕS

Cf denote such a sentence. By Lemma 2.5, there is a computable function that
associates each input S to the tiling problem with a first-order σ ∪ S-sentence ϕS such that
a structure A of the vocabulary σ is S-tilable if and only if there is an expansion A∗ of the
structure A to the vocabulary σ ∪ S such that A∗ |= ϕS .

Now recall Lemma 4.13. By Lemma 4.13, since T extends linearly in 2D, there exists a
computable function I such that for each input S to the tiling problem, the function I is
a uniform interpretation of some class G(T, S) ⊇ GS of S-labelled supergrids in the class
C(T, S) of all S-labelled Cartesian frames with the domain T .

Let S be an input to the tiling problem. Define the τ -sentence

ψS := ϕS
Cf ∧ I(ϕS ).

We will prove that for each input S to the tiling problem, the following conditions are
equivalent.

(1) There exists an expansion B of (T, β) to the vocabulary τ such that B |= ψS .
(2) The grid G is S-tilable.

Thereby we establish that there exists a computable reduction from the complement problem
of the tiling problem to the membership problem of the first-order theory of the unary
expansion class of (T, β). Since the tiling problem is Π0

1-complete, its complement problem
is Σ0

1-complete.1

Let S be an input to the tiling problem. Assume first that the grid G is S-tilable.
Therefore there exists an expansion G∗ of the grid G to the vocabulary {H,V } ∪ S such that
G∗ |= ϕS . Now since G∗ ∈ GS ⊆ G(T, S), by Lemma 2.1 there exists an S-labelled Cartesian
frame C with the domain T such that C |= I(ϕS). Since C is an S-labelled Cartesian frame,
we have C |= ϕS

Cf . Therefore C |= ϕS
Cf ∧ I(ϕS). Hence the Cartesian frame C is an expansion

of (T, β) such that C |= ψS .
For the converse, assume that there exists an expansion B of (T, β) to the vocabulary

τ such that we have B |= ψS . Therefore B |= ϕS
Cf and B |= I(ϕS). Since B |= ϕS

Cf ,
the structure B is an S-labelled Cartesian frame with the domain T . Therefore, and
since B |= I(ϕS), we conclude by Lemma 2.1 that A |= ϕS for some S-labelled supergrid
A ∈ G(T, S). Thus there exists a supergrid that is S-tilable. Hence the grid G is S-tilable.

As a partial converse to Theorem 4.15, we note that T extending linearly 1D is not a
sufficient condition for undecidability of even the monadic Π1

1-theory of (T, β). For instance,
the monadic Π1

1-theory of (R, β) is decidable; this follows trivially from the known result
that the monadic Π1

1-theory (R,≤) is decidable, see [9]. Also the monadic Π1
1-theory of

(Q, β) is decidable since the MSO-theory of (Q,≤) is decidable [25].

1It is of course a well-known triviality that the complement A of a problem A is Σ0
1-hard if A is Π0

1-hard.
Choose an arbitrary problem B ∈ Σ0

1. Therefore B ∈ Π0
1. By the hardness of A, there is a computable

reduction f such that x ∈ B ⇔ f(x) ∈ A, whence x ∈ B ⇔ f(x) ∈ A.
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Theorem 4.16. Let n ≥ 2 be an integer. The first-order theory of the unary expansion
class of (Rn, β) is Π1

1-hard.

Proof. The proof is essentially the same as the proof of Theorem 4.15. The main difference is
that we use Lemma 4.14 and interpret a class of labelled recurrence grids instead of a class of
labelled supergrids, and hence obtain a reduction from the recurrent tiling problem instead
of the ordinary tiling problem. Thereby we establish Π1

1-hardness instead of Σ0
1-hardness.

Due to the recurrence condition of the recurrent tiling problem, the result of Lemma 4.7 that
there is an isomorphism from (N, succ) to (P,E)—rather than an embedding—is essential.

Corollary 4.17. Let n ≥ 2 be an integer. The monadic Π1
1-theory of (Rn, β) is not

arithmetical.

5. Geometric structures (T, β) with an undecidable expansion class with a
finite unary predicate

In this section we establish undecidability of the first-order theory of the expansion class

{(T, β, P ) | P ⊆ T is finite}
of any geometric structure (T, β) such that T extends linearly in 2D. More precisely, we
show that any such theory is Π0

1-hard. We prove this by a reduction from the periodic tiling
problem to the problem of deciding satisfiability of {β, P, p0, px.py}-sentences in the class of
expansions of (T, β) by a finite unary predicate P and constants p0, px, py. The argument is
based on interpreting tori in (T, β). Most notions used in this section are inherited either
directly or with minor adjustments from Section 4.

Let Q be a subset of T ⊆ Rn. We say that Q is a finite sequence in T if Q is a finite
nonempty set and the points in Q are collinear.

Definition 5.1. Let T ⊆ Rn and let β be the corresponding betweenness relation. Let
P ⊆ T be a finite set, and let p0, px, py ∈ P . We call the structure

C = (T, β, P, p0, px, py)

a finite Cartesian frame with domain T if the following conditions hold.

(1) The points p0, px and py are not collinear.
(2) For each point p ∈ P and q ∈ P such that β∗(p0, p, px) and β∗(p0, q, py) hold in C, the

unique lines Lp and Lq in T such that p, py ∈ Lp and q, px ∈ Lq, intersect. In other
words, there exists a point u ∈ T that lies on both lines Lp and Lq.

If m and k are positive integers such that

|{u ∈ P | β(p0, u, px) holds in C}| = m+ 2 and

|{u ∈ P | β(p0, u, py) holds in C}| = k + 2,

we call (T, β, P, p0, px, py) an m× k Cartesian frame with domain T .

Definition 5.2. Let C = (T, β, P, p0, px, py) be a finite Cartesian frame. Let p, q ∈ P ,
p 6= px, q 6= py, be points such that β(p0, p, px) and β(p0, q, py) hold in C. Let Lp and Lq

be the lines in T such that p, py ∈ Lp and q, px ∈ Lq. The point u ∈ T that lies on both
lines Lp and Lq is called the intersection point of C corresponding to the pair (p, q). A point
u ∈ T is called an intersection point of the finite Cartesian frame C, if it is an intersection
point of C corresponding to some pair (p, q).
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Definition 5.3. Let C = (T, β, P, p0, px, py) be a finite Cartesian frame. Let p, p′, q, q′ ∈ P
be points such that the following conditions hold.

(1) β(p0, p, p
′) and β∗(p, p′, px) hold in C.

(2) β(p0, q, q
′) and β∗(q, q′, py) hold in C.

(3) There does not exist a point u ∈ P such that β∗(p, u, p′) or β∗(q, u, q′) holds in C.

Let u be the intersection point of C corresponding to (p, q) and v the intersection point of C
correponding to (p′, q′). We say that v is the diagonal successor of u in C.

Definition 5.4. Let C = (T, β, P, p0, px, py) be a finite Cartesian frame and let S be a finite
nonempty set of tile symbols. We call C an S-labelled finite Cartesian frame if the number
of points in P strictly between any intersection point u of C and its diagonal successor v is
in the set {N(Pt) | Pt ∈ S}. We let Cfin(T, S) denote the class of S-labelled finite Cartesian
frames with domain T .

Lemma 5.5. Let T ⊆ Rn, n ≥ 2. Let C be the class of all expansions (T, β, P, p0, px, py) of
(T, β) by a finite unary relation P and constants p0, px and py. There is a computable function
associating each finite nonempty set of tile symbols S with a first-order {β, P, p0, px, py}-
sentence ϕS

fCf that defines the class Cfin(T, S) with respect to the class C.

Proof. Straightforward.

Let S 6= ∅ be a finite set of tile symbols. Let TS denote the class of structures A that
satisfy the following conditions.

(1) The structure A is an expansion of some torus to the vocabulary {V,H} ∪ S.
(2) Each point in the domain of A is in the extension of exactly one predicate symbol Pt ∈ S.

Structures in the class TS are called S-labelled tori.

Lemma 5.6. Let T ⊆ Rn, n ≥ 2. Assume that T extends linearly in 2D. There is a
computable function J such that for all finite sets S 6= ∅ of tile symbols, J is a uniform
interpretation of the class of S-labelled tori in CFin(T, S).

Proof. Let S be a finite nonempty set of tile symbols. Let C = (T, β, P, p0, px, py) be an
S-labelled m × k Cartesian frame. We shall show how to interpret an S-labelled m × k
torus TC in C. The idea behind the interpretation is quite similar to the idea behind the
interpretation in the proof of Lemma 4.13.

Recall the formulae ϕDom , ϕH , ϕV and ϕPt defined in the proof of Lemma 4.13. We shall
now define variants of these formulae suitable for interpreting S-labelled tori in S-labelled
finite Cartesian frames. In the definitions of the new formulae, we shall make use of the old
formulae ϕDom , ϕH , ϕV and ϕPt .

We define

ϕfin
Dom(u) := ϕDom(u) ∧ ∃x∃y

(
ϕDom(x) ∧ ϕDom(y) ∧ ϕH(u, x) ∧ ϕV (u, y)

)
,

ϕfin
H (u, v) := ϕH(u, v) ∨

(
β(p0, v, py) ∧ β(v, u, px) ∧ ∀x

(
β∗(u, x, px)→ ¬ϕfin

Dom(x)
))
,

ϕfin
V (u, v) := ϕV (u, v) ∨

(
β(p0, v, px) ∧ β(v, u, py) ∧ ∀x

(
β∗(u, x, py)→ ¬ϕfin

Dom(x)
))
,

ϕfin
Pt

(u) := ϕPt(u) for each Pt ∈ S.

Let FC := {u ∈ T | C |= ϕfin
Dom(u)}. Define the structure

FC =
(
FC, H

FC , V FC , (P FC
t )Pt∈S

)
,
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where

HFC := {(u, v) ∈ FC × FC | C |= ϕfin
H (u, v)},

V FC := {(u, v) ∈ FC × FC | C |= ϕfin
V (u, v)},

P FC
t := {u ∈ FC | C |= ϕfin

Pt
(u)},

for all Pt ∈ S. It is straightforward to check that there exists an S-labelled m× k torus

TC =
(
D,HTC , V TC , (PTC

t )Pt∈S
)

and a bijection f from D to FC such that the following conditions hold for all u, v ∈ D.

(1) (u, v) ∈ HTC ⇔ ϕfin
H (f(u), f(v)),

(2) (u, v) ∈ V TC ⇔ ϕfin
V (f(u), f(v)),

(3) u ∈ PTC
t ⇔ ϕfin

Pt
(f(u)) for all Pt ∈ S.

Notice that since T extends linearly in 2D, there exist S-labelled finite Cartesian frames of
all sizes m× k with all possible S-labelling configurations in the class Cfin(T, S). We have
hence established that for all finite sets S 6= ∅ of tile symbols, the class of S-labelled tori is
uniformly first-order interpretable in the class of S-labelled finite Cartesian frames with the

domain T . Furthermore, the formulae ϕfin
Dom , ϕfin

H , ϕfin
V and ϕfin

Pt
define the desired uniform

interpretation J .

Theorem 5.7. Let T ⊆ Rn and let β be the corresponding betweenness relation. Assume
that T extends linearly in 2D. The first-order theory of the class {(T, β, P ) | P ⊆ T is finite}
is Π0

1-hard.

Proof. Since T extends linearly in 2D, we have n ≥ 2. Let σ = {H,V } be the vocabulary of
tori, and let τ = {β, P, p0, px, py} be the vocabulary of labelled finite Cartesian frames. By
Lemma 5.5, there is a computable function that associates each input S to the periodic tiling
problem with a first-order τ -sentence that defines the class of S-labelled finite Cartesian
frames with the domain T with respect to the class of all expansions of (T, β) to the
vocabulary τ . Let ϕS

fCf denote such a sentence. By Lemma 5.6, there is a computable
function J such that for all inputs S to the periodic tiling problem, the function J is a
uniform interpretation of the class of S-labelled tori in the class of S-labelled finite Cartesian
frames with domain T . By Lemma 2.5, there is a computable function that associates each
input S to the periodic tiling problem with a first-order σ ∪ S-sentence ϕS such that for all
tori B, the torus B is S-tilable iff there is an expansion B∗ of B to the vocabulary σ ∪ S
such that B∗ |= ϕS .

Let S be a finite nonempty set of tile symbols. Define the first-order τ -sentence

γS := ϕS
fCf ∧ J(ϕS).

We will prove that for each input S to the periodic tiling problem, the following conditions
are equivalent.

(1) There exists an expansion B = (T, β, P, p0, px, py) of (T, β) by a finite unary relation
P ⊆ T and constants p0, px, py ∈ T such that B |= γS .

(2) There exists a torus T such that T is S-tilable.

Thereby we establish that there exists a computable reduction from the complement problem
of the periodic tiling problem to the membership problem of the first-order theory of the
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unary expansion class of (T, β) with a finite predicate. Since the periodic tiling problem is
Σ0
1-complete, its complement problem is Π0

1-complete.
Let S be an input to the periodic tiling problem. First assume that there exists a torus

T such that T is S-tilable. Therefore, by Lemma 2.5, there exists an expansion T∗ of T to the
vocabulary σ ∪ S such that T∗ |= ϕS . Since the function J is a uniform interpretation of the
class of S-labelled tori in the class of S-labelled finite Cartesian frames with the domain T ,
and since T∗ |= ϕS , it follows by Lemma 2.1 that there exists an S-labelled finite Cartesian
frame C with the domain T such that C |= J(ϕS). Since C is an S-labelled finite Cartesian
frame, we have that C |= ϕS

fcf . Therefore C |= ϕS
fcf ∧ J(ϕS). Hence the finite Cartesian frame

C is an expansion of (T, β) by a finite unary relation P ⊆ T and constants p0, px, py ∈ T
such that C |= γS .

For the converse, assume that there exists an expansion B = (T, β, P, p0, px, py) of
(T, β) by a finite unary relation P ⊆ T and constants p0, px, py ∈ T such that B |= γS .
Therefore B |= ϕS

fCf and B |= JS(ϕS). Since B |= ϕS
fCf , the structure B is an S-labelled

finite Cartesian frame with domain T . Therefore, and since B |= J(ϕS), we conclude by
Lemma 2.1 that A |= ϕS holds for some S-labelled torus A. Hence by Lemma 2.5 there
exists a torus that is S-tilable.

6. Conclusions

We have studied first-order theories of unary expansion classes of geometric structures (T, β),
T ⊆ Rn. We have established that for n ≥ 2, the first-order theory of the class of all
expansions of (Rn, β) with a single unary predicate is highly undecidable (Π1

1-hard). This
refutes a conjecture from the article [3] of Aiello and van Benthem. In addition, we have
established the following for any geometric structure (T, β) that extends linearly in 2D.

(1) The first-order theory of the class of expansions of (T, β) with a single unary predicate
is Σ0

1-hard.
(2) The first-order theory of the class of expansions of (T, β) with a single finite unary

predicate is Π0
1-hard.

Geometric structures that extend linearly in 2D include, for example, the rational plane
(Q2, β) and the real unit rectangle ([0, 1]2, β), to name a few.

The techniques used in the proofs can be easily modified to yield undecidability of
first-order theories of a significant variety of natural restricted expansion classes of the affine
real plane (R2, β), such as those with a unary predicate denoting a polygon, a finite union
of closed rectangles, and a semialgebraic set, for example. Such classes could be interesting
from the point of view of applications.

In addition to studying issues of decidability, we briefly compared the expressivities of
universal monadic second-order logic and weak universal monadic second-order logic. While
the two are incomparable in general, we established that over any class of expansions of
(Rn, β), it is no longer the case. We showed that finiteness of a unary predicate is definable
by a first-order sentence, and hence obtained translations from ∀WMSO into ∀MSO and
from WMSO into MSO.

Our original objective to study expansion classes of (Rn, β) was to identify decidable
logics of space with distinguished regions. Due to the ubiquitous applicability of the tiling
methods, this pursuit gave way to identifying several undecidable theories of geometry.
Hence we shall look elsewhere in order to identify well behaved natural decidable logics of
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space. Possible interesting directions include considering natural fragments of first-order
logic over expansions of (Rn, β), and also other geometries. Related results could provide
insight, for example, in the background theory of modal spatial logics.
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