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Abstract. We address the problem of conditional termination, which is that of defining
the set of initial configurations from which a given program always terminates. First we
define the dual set, of initial configurations from which a non-terminating execution exists,
as the greatest fixpoint of the function that maps a set of states into its pre-image with
respect to the transition relation. This definition allows to compute the weakest non-
termination precondition if at least one of the following holds: (i) the transition relation is
deterministic, (ii) the descending Kleene sequence over-approximating the greatest fixpoint
converges in finitely many steps, or (iii) the transition relation is well founded. We show
that this is the case for two classes of relations, namely octagonal and finite monoid affine
relations. Moreover, since the closed forms of these relations can be defined in Presburger
arithmetic, we obtain the decidability of the termination problem for such loops.

We show that the weakest non-termination precondition for octagonal relations can
be computed in time polynomial in the size of the binary representation of the relation.
Furthermore, for every well-founded octagonal relation, we prove the existence of an effec-
tively computable well-founded witness relation for which a linear ranking function exists.
For the class of linear affine relations we show that the weakest non-termination precondi-
tion can be defined in Presburger arithmetic if the relation has the finite monoid property.
Otherwise, for a more general subclass, called polynomially bounded affine relations, we
give a method of under-approximating the termination preconditions.

Finally, we apply the method of computing weakest non-termination preconditions for
conjunctive relations (octagonal or affine) to computing termination preconditions for pro-
grams with complex transition relations. We provide algorithms for computing transition
invariants and termination preconditions, and define a class of programs, whose control
structure has no nested loops, for which these algorithms provide precise results. More-
over, it is shown that, for programs with no nested control loops, and whose loops are
labeled with octagonal constraints, the dual problem i.e. the existence of infinite runs, is
NP-complete.
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1. Introduction

The termination problem asks whether every computation of a given program ends in a
halting state. The universal termination problem asks whether a given program always
terminates for every possible input configuration. Both problems are among the first ever
to be shown undecidable, by A. Turing [43]. In many cases however, programs will termi-
nate when started in certain configurations, and may1 run forever, when started in other
configurations. The problem of determining the set of configurations from which a program
terminates on all paths is called conditional termination.

In this paper we focus on programs that handle integer variables, performing Pres-
burger arithmetic tests and (possibly non-deterministic) updates. A first observation is
that the set of configurations from which an infinite computation is possible is the greatest
fixpoint of the pre-image preR of the program’s transition relation2 R. This set, called
the weakest recurrent set, and denoted wrs(R) in our paper, is the limit of the descending
sequence pre0R(true),pre

1
R(true),pre

2
R(true), . . ., i.e. wrs(R) =

⋂∞
i=1 pre

n
R(true), if either

(i) the pre-image of the transition relation is continuous (this is the case, for instance,
when the transition relation is deterministic), (ii) the descending Kleene sequence that over-
approximates the greatest fixpoint eventually stabilizes, or (iii) the relation is well founded,
i.e. wrs(R) = ∅. If, moreover, the closed form defining the infinite sequence of precondition
sets {prenR(true)}n≥1 can be defined using a decidable fragment of arithmetic, we obtain
decidability proofs for the universal termination problem.

Contributions of this paper. The main novelty in this paper is of rather theoretical
nature: we show that the non-termination preconditions for integer transition relations
defined as either octagons or linear affine loops with finite monoid property are definable
in quantifier-free Presburger arithmetic. Thus, the universal termination problem for such
program loops is decidable. However, since quantifier elimination in Presburger arithmetic
is a complex procedure, we have developed alternative ways of deriving the preconditions
for non-termination, and in particular:

• for octagonal relations, we use a result from [10], namely that the sequence {Ri}i≥0 is,
in some sense, periodic. Based on this, we develop an algorithm that computes the
weakest non-termination precondition of R in time polynomial in the size of the binary
representation of R. Moreover, we investigate the existence of linear ranking functions and
prove that for each well-founded octagonal relation, there exists an effectively computable
witness relation for R, i.e. a relation that is well-founded if and only if the original relation
is well-founded and, in this case, it also has a linear ranking function.
• for linear affine relations, weakest recurrent sets can be defined in Presburger arithmetic
if we consider several restrictions concerning the transformation matrix. If the matrix A
defining R has eigenvalues which are either zeros or roots of unity, all non-zero eigenvalues
being of multiplicity one (these conditions are equivalent to the finite monoid property
of [5, 21]), then wrs(R) is Presburger definable. Otherwise, if all non-zero eigenvalues of
A are roots of unity, of multiplicities greater or equal to one, wrs(R) can be expressed

1If the program is non-deterministic, the existence of a single infinite run, among other finite runs, suffices
to consider an initial configuration non-terminating.

2This definition is the dual of the reachability set, needed for checking safety properties: the reachability
set is the least fixpoint of the post-image of the transition relation.
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using polynomial terms. In this case, we can systematically issue Presburger termination
preconditions, which are safe under-approximations of the complement of the wrs(R) set.

Unfortunately, in practice, the cases in which the closed form of the sequence of pre-
conditions {prenR(true)}n≥0 is definable in a decidable fragment of arithmetic, are fairly
rare. All relations considered so far are conjunctive, meaning that they can represent only
simple program loops of the form while(condition){body} where the loop body contains
no further conditional constructs. Whereas in reality such simple programs are rare, our
results can be used as building blocks of other termination proof methods [17], which dis-
card lasso-shaped non-termination counterexamples one by one. Our method can be used
for proving non-termination as well, by embedding it into general algorithms, such as [24].

In order to deal with more complicated program loops, we use the method of transition
invariants [34] to compute safe under-approximations of the strongest termination precondi-
tions. Concretely, we compute a transition invariant, which is an over-approximation of the
transitive closure of the transition relation of the program, restricted to the states reachable

from some set of initial configurations. If one can find a finite union R#
1 ∪ . . . ∪ R

#
m of oc-

tagonal relations that is a transition invariant, then we can compute an over-approximation

of the weakest non-termination precondition as wrs(R#
1 ) ∪ . . . ∪ wrs(R#

m). The required
termination precondition is the complement of this set.

This method can infer non-termination preconditions for programs without procedure
calls. It is moreover shown to be complete, and to yield the precise result for a class
of programs without nested loops, called flat. Moreover, we studied a restriction of flat
programs in which all transitions within loops are labeled with octagonal constraints, and
found that, for this restricted class, the problem of existence of infinite runs is NP-complete.

We have implemented the computation of transition invariants and procedure sum-
maries in the Flata tool for the analysis of integer programs. Several experiments on
inferring non-termination preconditions have been performed, and reported.

Roadmap. The paper is organized as follows. Section 2 introduces the notation and some
basic concepts needed throughout the paper. Section 3 defines weakest recurrent sets as
greatest fixpoints of the pre-image of the transition relation. Sections 4 and 5 apply this
definition to the computation of weakest recurrent sets for octagonal and linear affine rela-
tions. Section 6 extends the computation of weakest termination preconditions from simple
conjunctive loops to integer programs, and Section 7 reports on the implementation and
experiments performed on several integer programs. Finally, Section 8 concludes.

The core results presented in this paper have been reported in [11]. In addition to the
work presented in [11], here we improve the time complexity upper bound for the computa-
tion of weakest non-termination preconditions for octagonal relations, and give a polynomial
time algorithm. Moreover, we extend the results from [11] from simple conjunctive program
loops to computing non-termination preconditions for full integer programs (whose transi-
tion rules are defined using quantifier-free Presburger arithmetic), by giving a decidability
result to the universal termination problem, for a class of flat programs, i.e. without nested
loops, and no branching within loops.

1.1. Related Work. The literature on program termination is vast. Most work focuses
however on universal termination, i.e. the question if a program will always terminate on
all inputs, such as the techniques for synthesizing linear ranking functions of Sohn and
Van Gelder [40] or Podelski and Rybalchenko [33], and the more sophisticated method
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of Bradley, Manna and Sipma [13], which synthesizes lexicographic polynomial ranking
functions, suitable when dealing with disjunctive loops. However, not every terminating
program (loop) has a linear (polynomial) ranking function. In this paper, we show that for
an entire class of non-deterministic linear relations, defined using octagons, termination is
always witnessed by a computable octagonal relation that has a linear ranking function.

A closely related work direction investigates the termination of programs abstracted
using size-change graphs, i.e. graphs in which nodes are variables and edges indicate the
decrease of values in a well-founded domain. In [3] the size-change termination problem is
investigated for graphs annotated with difference bounds constraints. It is shown that, even
if the general problem is undecidable, the restriction to size-change graphs with at most one
incoming size-change arc per variable is PSPACE-complete. Our results are incomparable,
since we consider multiple incoming size-change arcs, but restrict the control structure of
the decidable class of programs to be flat, i.e. no nested loops are allowed. Moreover, we
focus on the problem of computing the weakest non-termination precondition for simple
loops labeled with octagonal relations, and solve it using a PTIME algorithm.

Another line of work considers the decidability of termination for simple (conjunctive)
linear loops. Initially, Tiwari [42] showed decidability of termination for affine linear loops
interpreted over reals, while Braverman [14] refined this result by showing decidability over
rationals and over integers, for homogeneous relations of the form C1x > 0 ∧ C2x ≥
0 ∧ x′ = Ax. The non-homogeneous integer case seems to be much more difficult as it is
closely related to the open Skolem’s Problem (see, e.g. [31] for a discussion on this problem):
given a linear recurrence {ui}i≥0, determine whether ui = 0 for some i ≥ 0. The related
problem of existence of linear ranking functions for linear affine loops has been studied in
[4]. This problem has been found to be in PTIME when the program variables range over
mathematical reals, and coNP-complete when they range over integers.

To our knowledge, the first work on proving the existence of non-terminating computa-
tions is arguably [32], in the context of Constraint Logic Programming. Another important
contribution, which considers simple imperative loops, is reported in [24]. The notion of
recurrent sets occurs in this work, however, without the connection with fixpoint theory,
which is introduced in the present work. Finding recurrent sets in [24] is complete with
respect to a predefined set of templates, typically linear systems of rational inequalities.

The work which is closest to ours is probably that of Cook et al. [16]. In that paper,
the authors develop an algorithm for deriving termination preconditions by first guessing
a ranking function candidate (typically the linear term from the loop condition) and then
inferring a supporting assertion which guarantees that the candidate function decreases
with each iteration. The step of finding a supporting assertion requires a fixpoint itera-
tion in order to find an invariant condition. Unlike our work, the authors of [16] do not
address issues related to completeness: the method is not guaranteed to find the weakest
precondition for termination, even in cases when this set can be computed. On the other
hand, it is applicable to a large range of programs extracted from real-life software. To
compare our method with theirs, we tried the examples available in [16]. For those which
are polynomially bounded affine relations, we used our under-approximation method and
have computed termination preconditions, which turn out to be slightly more general than
the ones reported in [16].



DECIDING CONDITIONAL TERMINATION 5

2. Preliminary Definitions

We denote by Z, N and N+ the sets of integers, positive (including zero) and strictly pos-
itive integers, respectively. We denote by Z∞ and Z−∞ the sets Z ∪ {∞} and Z ∪ {−∞},
respectively. In this paper we use a set of variables x = {x1, x2, . . . , xN}, for a given integer
constant N > 0. The set of primed variables is x′ = {x′1, x

′
2, . . . , x

′
N}. These variables are

assumed to be ranging over Z. For a set S ⊆ Z of integers, we denote by minS the smallest
integer s ∈ S, if one exists, and by inf S the largest element m ∈ Z−∞ such that m ≤ s, for
all s ∈ S. If S = ∅, we convene that minS = inf S =∞.

A linear term t(x) over a set of variables in x is a linear combination of the form
a0 +

∑N
i=1 aixi, where a0, a1, . . . , aN ∈ Z. Presburger arithmetic is the first-order logic over

atomic propositions of the form t(x) ≤ 0. Presburger arithmetic has quantifier elimination
and is decidable [35]. Moreover, the satisfiability of its quantifier-free fragment is NP-
complete in the size of the binary representation of the formula [44]. For simplicity, we
consider only formulas in Presburger arithmetic in this paper.

For a first-order logical formula ϕ, let FV (ϕ) denote the set of its free variables. By writ-
ing ϕ(x) we imply that FV (ϕ) ⊆ x. For a formula ϕ(x), we denote by ϕ[t1/x1, . . . , tN/xN ]
the formula obtained from ϕ by syntactically replacing each free occurrence of x1, . . . , xN
with the terms t1, . . . , tN , respectively. For a first-order logical formula ϕ, let Atom(ϕ)
denote the set of atomic propositions in ϕ.

A valuation of x is a function ν : x −→ Z. The set of all such valuations is denoted by
Zx. If ν ∈ Zx, we denote by ν |= ϕ the fact that the formula obtained from ϕ by replacing
each occurrence of xi with ν(xi) is valid. Similarly, an arithmetic formula φR(x,x

′) defining
a relation R ⊆ Zx × Zx is evaluated with respect to two valuations ν1 and ν2, by replacing
each occurrence of xi with ν1(xi) and each occurrence of x′i with ν2(xi). The satisfaction
relation is denoted (ν1, ν2) |= φR. By |= ϕ we denote the fact that ϕ is valid, i.e. logically
equivalent to true. We say that an arithmetic formula ϕ(x) is consistent if there exists
a valuation ν such that ν |= ϕ. We use the symbols ⇒,⇔ to denote logical implication
and equivalence, respectively. The consistency of a formula ϕ is usually denoted by writing
ϕ 6⇔ false. In the following, we will sometimes abuse notation and use the same symbols
for relations (sets) and their defining formulas.

The composition of two relations R1, R2 ⊆ Zx × Zx is defined as R1 ◦ R2 = {(ν, ν ′) ∈
Zx×Zx | ∃ν ′′ ∈ Zx . (ν, ν ′′) ∈ R1 ∧ (ν ′′, ν ′) ∈ R2}. The identity relation on x is defined as
Ix = {(ν, ν) | ν ∈ Zx}. For any relation R ⊆ Zx, we define R0 = Ix and Ri+1 = Ri ◦R, for
all i ≥ 0. The relation Ri is called the i-th power of R in the sequel. With these notations,
R+ =

⋃∞
i=1R

i denotes the transitive closure of R, and R∗ = R+ ∪ Ix denotes the reflexive
and transitive closure of R. A relation R ⊆ Zx × Zx is said to be deterministic if and only
if (ν, ν ′) ∈ R and (ν, ν ′′) ∈ R implies ν ′ = ν ′′, for all ν, ν ′, ν ′′ ∈ Zx. Let preR : 2Z

x

→ 2Z
x

be
the pre-image function defined as preR(S) = {ν | ∃ν

′ ∈ S . (ν, ν ′) ∈ R}, for any S ⊆ Zx.
A function F : 2Z

x

→ 2Z
x

is said to be monotonic if and only if S ⊆ T implies F (S) ⊆
F (T ), for any two sets S, T ⊆ Zx, and ∩-continuous if and only if F (∩∞i=1Si) = ∩

∞
i=1F (Si),

for any infinite sequence {Si}
∞
i=1 of valuation sets, where Si ⊆ Zx for all i ≥ 1. The greatest

fixpoint F is the largest set S such that F (S) = S, and is denoted gfp(F ).
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3. Weakest Preconditions for Non-termination

This section is concerned with the definition of weakest preconditions for non-termination,
and the characterization of such preconditions as greatest fixpoints of the pre-image function.
We also give certain conditions under which these fixpoints are computable as limits of
descending Kleene sequences, and finally, define them using first-order integer arithmetic.

In the rest of this section, let x = {x1, . . . , xN} be a set of variables ranging over
integers, for some constant N > 0. We start by proving several properties of the pre-image
function.

Proposition 3.1. Let R,R′ ⊆ Zx × Zx be relations and S, S′ ⊆ Zx be sets of valuations.
The following hold:

(1) If R ⊆ R′ and S ⊆ S′ then preR(S) ⊆ preR′(S′). Consequently, preR is monotonic.
(2) If 1 ≤ n ≤ m then prenR(S) ⊇ premR (S). Consequently, the sequence {prenR(Z

x)}n≥1 is
descending.

Proof. (1) Let ν ∈ preR(S) be a valuation. Hence there exist ν ′ ∈ S ⊆ S′ such that
(ν, ν ′) ∈ R ⊆ R′. But then ν ∈ preR′(S′). Monotonicity of preR follows by taking R′ = R.
(2) We have:

Zx ⊇ preR(Z
x) since Zx is the universal set

preR(Z
x) ⊇ pre2R(Z

x) by the monotonicity of preR at point (1)
. . .

prenR(Z
x) ⊇ pren+1

R (Zx)

Hence the sequence {prenR}n≥1 is descending.

We next define the notions of ∗-consistent and well-founded relation.

Definition 3.2. A relation R ⊆ Zx × Zx is said to be ∗-consistent if and only if, for any
m ≥ 0, there exists a finite sequence of valuations {νi}

m
i=1, where νi ∈ Zx for all i ≥ 1, such

that (νi, νi+1) ∈ R, for all i = 1, . . . ,m− 1. R is said to be well founded if and only if there
is no infinite sequence of valuations {νi}i≥1, such that νi ∈ Zx and (νi, νi+1) ∈ R, for all
i ≥ 0.

Notice that if a relation is not ∗-consistent, then it is also well founded. However the
dual is not true. For instance, the relation R = {(n, n−1) | n > 0} is both ∗-consistent and
well founded. Also notice that a relation R is ∗-consistent if and only if Ri is consistent for
all i ≥ 1.

Definition 3.3. A set S ⊆ Zx is said to be a non-termination precondition for a relation
R ⊆ Zx × Zx if and only if for each ν ∈ S there exists an infinite sequence of valuations
{νi}i≥0 such that ν = ν0 and νi ∈ Zx, (νi, νi+1) ∈ R, for all i ≥ 0.

If S0, S1, . . . are all non-termination preconditions for R, then the (possibly infinite)
union

⋃
i=0,1,... Si is a non-termination precondition for R as well. The set wnt(R) =

⋃
{S ∈

Zx | S is a non-termination precondition for R} is called the weakest non-termination pre-
condition for R. A relation R is well founded if and only if wnt(R) = ∅. A set S such that
S ∩ wnt(R) = ∅ is called a termination precondition.

Definition 3.4. A set S ⊆ Zx is said to be recurrent for a relation R ⊆ Zx × Zx if and
only if S ⊆ preR(S).
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Notice that if S is a recurrent set for a relation R, then for each ν ∈ S there exists ν ′ ∈ S
such that (ν, ν ′) ∈ R.

Proposition 3.5. Let S0, S1, . . . ∈ Zx be a (possibly infinite) sequence of sets, all of which
are recurrent for a relation R ∈ Zx × Zx. Then their union

⋃
i=0,1,... Si is recurrent for R

as well.

Proof. For each i we have Si ⊆ preR(Si) ⊆ preR(
⋃
j=0,1,... Sj). The last inclusion is by the

monotonicity of preR. Hence
⋃
j=0,1,... Sj ⊆ preR(

⋃
j=0,1,... Sj).

The set wrs(R) =
⋃
{S ∈ Zx | S is a recurrent set for R} is called the weakest recurrent

set for R. By Proposition 3.5, wrs(R) is recurrent for R. The following lemma shows that in
fact, wrs(R) is exactly the set of valuations from which an infinite iteration of R is possible
and, equivalently, the greatest fixpoint of the transition relation’s pre-image.

Lemma 3.6. For every relation R ⊆ Zx × Zx,

wrs(R) = wnt(R) = gfp(preR).

Proof. “wrs(R) = gfp(preR)” By the Knaster-Tarski Fixpoint Theorem3,

gfp(preR) =
⋃
{S | S ⊆ preR(S)} = wrs(R).

“wrs(R) ⊆ wnt(R)” Let ν0 ∈ wrs(R) be a valuation. Then there exists ν1 ∈ wrs(R)
such that (ν0, ν1) ∈ R. Applying this argument infinitely many times, one can construct an
infinite sequence ν0, ν1, ν2, . . . such that (νi, νi+1) ∈ R, for all i ≥ 0. Hence ν0 ∈ wnt(R).

“wnt(R) ⊆ wrs(R)” Let ν0 ∈ wnt(R) be a valuation and let ν0, ν1, ν2, . . . be an arbitrary
infinite sequence such that (νi, νi+1) ∈ R, for all i ≥ 0. Clearly, ν1 ∈ wnt(R) too. Conse-
quently, ν0 ∈ preR(wnt(R)) for each state ν0 ∈ wnt(R) and hence, wnt(R) ⊆ preR(wnt(R)).
Thus, wnt(R) is a recurrent set and hence wnt(R) ⊆ wrs(R).

The following lemma gives sufficient conditions under which wrs(R) can be computed
as the limit

⋂
n≥1 pre

n
R(Z

x) of the infinite descending Kleene sequence:

preR(Z
x) ⊇ pre2R(Z

x) ⊇ pre3R(Z
x) . . .

Lemma 3.7. Let R ⊆ Zx × Zx be a relation such that at least one of the following holds:

(1)
⋂
n≥1 pre

n
R(Z

x) = ∅, or
(2) pren2

R (Zx) = pren1
R (Zx) for some n2 > n1 ≥ 1, or

(3) preR is ∩-continuous.

Then, we have wrs(R) =
⋂
n≥1 pre

n
R(Z

x). Moreover, wrs(R) = ∅ if (1) holds and wrs(R) =
pren1

R (Zx) if (2) holds.

Proof. By Lemma 3.6, wnt(R) = wrs(R) = gfp(preR). Since gfp(preR) is a fixpoint, it
follows that gfp(preR) = prenR(gfp(preR)) for each n ≥ 1. Since gfp(preR) ⊆ Zx, it follows
that prenR(gfp(preR)) ⊆ prenR(Z

x) for each n ≥ 1, by monotonicity of preR (Proposition 3.1).
Hence we obtain that gfp(preR) ⊆ prenR(Z

x) for each n ≥ 1 and consequently:

wnt(R) = wrs(R) = gfp(preR) ⊆
⋂

n≥1

prenR(Z
x)

We distinguish between the three cases from the hypothesis:

3We use the version given as Prop. A.10 in [30], pg. 400.
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(1) We have ∅ ⊆ wrs(R) ⊆
⋂
n≥1 pre

n
R(Z

x) = ∅. Hence, in this case we obtain wrs(R) =⋂
n≥1 pre

n
R(Z

x) = ∅.
(2) Since preR is a monotonic function, the sequence {prenR(Z

x)}n≥1 is descending:

pren1
R (Zx) ⊇ pren1+1

R (Zx) ⊇ . . . ⊇ pren2
R (Zx) = pren1

R (Zx)

Hence, pren1
R (Zx) = prenR(Z

x), for all n ≥ n1, i.e. pre
n1
R (Zx) is a fixpoint of preR, and

thus we obtain: ⋂

n≥0

prenR(Z
x) = pren1

R (Zx) ⊆ gfp(preR)

Since gfp(preR) ⊆
⋂
n≥1 pre

n
R(Z

x), we obtain:

wrs(R) = gfp(preR) =
⋂

n≥1

prenR(Z
x)

Since pren1
R (Zx) is a fixpoint, then

wrs(R) =
⋂

n≥1

prenR(Z
x) =

⋂

1≤n≤n1

prenR(Z
x) = pren1

R (Zx)

(3) If preR is ∩-continuous, then wrs(R) = gfp(preR) =
⋂
n≥1 pre

n
R(Z

x), by Kleene Fixpoint
Theorem [26].

In the next section, we show that Lemma 3.7 is applicable, for different reasons, to both
octagonal (Definition 4.20) and finite-monoid affine (Definition 5.1) relations: octagonal
relations are either well founded (1), or their descending Kleene sequences stabilize (2),
and linear affine relations are ∩-continuous (3). Thus one can compute the weakest non-
termination precondition for these classes as the limit of a descending Kleene sequence.
Next, we show that, for relations satisfying one of the conditions of Lemma 3.7, one can
also define the weakest non-termination precondition in first order arithmetic.

Definition 3.8. Let {Si}i≥1 be an infinite sequence of valuation sets, Si ⊆ Zx, for all i ≥ 1.

The closed form of {Si}i≥1 is a formula Ŝ(k,x) such that, for all n ≥ 1 and all ν ∈ Zx:

ν ∈ Sn ⇔ ν |= Ŝ[n/k]

In the rest of the paper, we shall define the weakest non-termination precondition
wnt(R) for relations R that are octagonal or finite monoid affine. Assuming that at least
one of the hypotheses of Lemma 3.7 holds and that ’preR(k,x) is a closed form of the
sequence {prenR(Z

x)}n≥1, the weakest non-termination precondition of R is equivalent to
the first-order arithmetic formula on the right hand side in the following equivalence:

(wnt(R))(x)⇔ ∀k ≥ 1 .’preR(k,x) (3.1)

In the upcoming developments, we will show that ’preR(k,x) is Presburger definable, for
octagonal and finite monoid affine relations R. As a direct consequence of (3.1), the weakest
non-termination precondition is definable in Presburger arithmetic. Since satisfiability is
decidable for Presburger arithmetic [35], the universal termination problem for octagonal
and finite-monoid affine relations is decidable as well.

Example 3.9. Consider the relation R(x, x′)⇔ x ≥ 0∧x′ = x− 1. The closed form of the
sequence {prenR(Z

x)}n≥1 is ’preR(k, x)⇔ k ≥ 1 ∧ x ≥ k − 1. Then, by (3.1), we have:

(wnt(R))(x)⇔ ∀k ≥ 1 .’preR(k, x)⇔ ∀k ≥ 1 . k ≥ 1 ∧ x ≥ k − 1⇔ false

Hence the relation R is well founded.
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4. Octagonal Relations

Octagonal constraints (also known as Unit Two Variables Per Inequality or UTVPI, for
short) appear in the context of abstract interpretation where they have been extensively
studied as an abstract domain [29]. They are defined syntactically as conjunctions of atomic
propositions of the form ±x±y ≤ c, where x and y are variables and c ∈ Z is an integer con-
stant. They are a generalization of the simpler notion of difference bounds constraints. Since
most results concerning octagons rely on notions related to difference bounds constraints,
we introduce first the latter, for reasons of self-containment.

4.1. Difference Bounds Relations. Difference bounds constraints are also known as
zones in the context of timed automata verification [1] and abstract interpretation [29, 28].
They are defined syntactically as conjunctions of atomic propositions of the form x− y ≤ c,
where x and y are variables and c ∈ Z is an integer constant. Difference bounds constraints
can be represented as matrices and graphs. These matrices (graphs) have a canonical form,
which is used for efficient inclusion checks, and can be computed by the classical Floyd-
Warshall shortest path algorithm [19].

Definition 4.1. A formula φ(x) is a difference bounds constraint if it is a finite conjunction
of atomic propositions of the form xi − xj ≤ aij , 1 ≤ i, j ≤ N , where aij ∈ Z.

For example, the equality constraint x − y = 5 is equivalent to the difference bounds
constraint x−y ≤ 5∧y−x ≤ −5. In practice, difference bounds constraints are represented
either as matrices or as graphs:

Definition 4.2. Let x = {x1, x2, . . . , xN} be a set of variables ranging over Z and φ(x) be
a difference bounds constraint. Then the difference bounds matrix (DBM) representing φ is
the matrix Mφ ∈ ZN×N

∞ such that:

(Mφ)ij =

{
aij if (xi − xj ≤ aij) ∈ Atom(φ)

∞ otherwise

We denote by µ(φ)
def
= max{|c| | (xi − xj ≤ c) ∈ Atom(φ)} the maximal absolute value over

all constants that appear in φ(x).

Weighted graphs are central to the upcoming developments. An integer weighted digraph
is a tuple G = 〈V,E〉, where V is a set of vertices, E ⊆ V ×Z×V is a set of integer-labeled
edges. When G is clear from the context, we denote by u

α
−→ v the fact that (u, α, v) ∈ E. A

path in G is a sequence of the form π : v0
α1−→ v1 · · · vp−1

αp
−→ vp such that (vi−1, αi, vi) ∈ E

for all 1 ≤ i ≤ p. A path is elementary if vi = vj only if i = 1 and j = p. A cycle is a
path of length greater than zero, whose source and destination vertices are the same. An
elementary cycle is a cycle who is elementary.

Definition 4.3. Let x = {x1, x2, . . . , xN} be a set of variables ranging over Z and φ(x)
be a difference bounds constraint. Then φ can be represented as the weighted graph Gφ =

(x,→), where each vertex corresponds to a variable, and there is an edge xi
aij
−−→ xj in Gφ if

and only if there exists a constraint xi − xj ≤ aij in φ, called the constraint graph of φ.
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Clearly, Mφ is the incidence matrix of Gφ. If M ∈ ZN×N
∞ is a DBM, the corresponding

difference bounds constraint is defined as:

∆[M ] ≡
∧

1≤i,j≤N

Mij<∞

xi − xj ≤Mij (4.1)

For two difference bounds matrices M1,M2 ∈ ZN×N
∞ , let min(M1,M2) ∈ ZN×N

∞ be the
matrix defined as (min(M1,M2))ij = min((M1)ij , (M2)ij), for all 1 ≤ i, j ≤ N . We write
M1 = M2 if and only if (M1)ij = (M2)ij for all 1 ≤ i, j ≤ N and M1 ≤ M2 if and only
if (M1)ij ≤ (M2)ij for all 1 ≤ i, j ≤ N . We write M1 < M2 if and only if M1 ≤ M2 and
M1 6= M2. A DBM M is said to be consistent if and only if its corresponding constraint
∆[M ] is consistent (4.1). We denote in the following by ⊥⊥N any inconsistent DBM of size
N ×N . The next definition gives a canonical form for consistent DBMs.

Definition 4.4. A consistent DBM M ∈ ZN×N
∞ is said to be closed if and only if Mii = 0

and Mij ≤Mik +Mkj, for all 1 ≤ i, j, k ≤ N .

Intuitively, the closure of a consistent DBM contains all information induced by the
triangle inequality Mij ≤Mik +Mkj. It is well known that, M is consistent if and only if it
does not contain a negative weight circuit, i.e. there is no sequence of indices 1 ≤ i1, . . . , ip ≤
N such that Mi1i2 + . . .+Mip−1ip +Mipi1 < 0. If M is consistent, then its closure is unique4.

Given a consistent DBM M ∈ ZN×N
∞ , we denote by M∗ the (unique) closed DBM such that

∆[M ] ⇔ ∆[M∗]. The consistency of a DBM can be decided in PTIME by the classical
Floyd-Warshall shortest path algorithm (Algorithm 1), which computes also the closure of
consistent DBMs:

Proposition 4.5. Let M ∈ ZN×N
∞ be a DBM representing a difference bounds constraint

φ. If M is consistent, the output of Algorithm 1 is its closure M∗. Otherwise, if M is
inconsistent, Algorithm 1 will report this fact. The running time of the algorithm is of the
order O(N3 · (N + log2 µ(φ))).

Proof. The correctness proof of the Floyd-Warshall algorithm is standard, e.g. Theorem
3.3.5 in [28] proves that

• eventually Mii < 0 for some 1 ≤ i ≤ N , if M is inconsistent
• the algorithm returns M∗, if M is consistent

Note that inconsistency of M is detected either on line 2 or on line 8.
For each 1 ≤ i, j, k ≤ N , let M0

ij be the value of Mij after the loop on line 1 terminates

and let Mk
ij be the value of Mij after the k-th iteration of the outermost loop on line 4

terminates. For each 0 ≤ k ≤ N , we define µk
def
= max{|Mk

ij | | M
k
ij < ∞}. For each

1 ≤ k ≤ N , we partition the set {(i, j) | 1 ≤ i, j ≤ N} as follows:

Ak = {(i, j) | i 6= k ∧ j 6= k}
Bk = {(i, j) | (i 6= k ∧ j = k) ∨ (i = k ∧ j 6= k)}
Ck = {(k, k)}

We next analyze how the updated of matrix entries depend on one another during the k-th
iteration of the outermost loop and analyze how the changes are propagated. Clearly, each
(i, j) ∈ Ak depends on itself and on 2 entries (i, k), (k, j) ∈ Bk, each (i, j) ∈ Bk depends

4See, e.g. [29], Section 3.2
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on itself and on (k, k) ∈ Ck, and the entry (k, k) ∈ Ck depends only on itself. It is easy to
see, due to the test on line 8, that before executing the update on line 7, Mℓℓ = 0 for each
1 ≤ ℓ ≤ N . Thus, the following holds for each 1 ≤ k ≤ N :

∀(k, k) ∈ Ck . M
k
kk = min(Mk−1

kk ,Mk−1
kk +Mk−1

kk ) = 0

∀(i, k) ∈ Bk . M
k
ik = min(Mk−1

ik ,Mk−1
ik +Mk−1

kk ) = Mk−1
ik ≤ µk−1

∀(k, j) ∈ Bk . M
k
kj = min(Mk−1

kj ,Mk−1
kk +Mk−1

kj ) = Mk−1
kj ≤ µk−1

∀(i, j) ∈ Ak . M
k
ij = min(Mk−1

ij ,Mk−1
ik +Mk−1

kj ) ≤ 2 · µk−1

Hence, µk ≤ 2 ·µk−1 for each 1 ≤ k ≤ N and consequently, µN ≤ 2N ·µ0 = 2N ·µ(φ). Thus,
the min and sum operations at line 7 can be executed in time at most log2 µN which is of
the order O(N + log2 µ(φ)). Since line 7 is iterated N3 times, the complexity of the nested
loops at lines 4–8 is O(N3 · (N + log2 µ(φ))). The loop at lines 1–3 does not add to this
factor.

Algorithm 1 The Floyd-Warshall shortest path algorithm

input a difference bounds matrix M ∈ ZN×N
∞

output M∗ if M is consistent, and report ”inconsistent” otherwise

1: for all i = 1, . . . , N do
2: if Mii < 0 then report ”inconsistent”
3: else Mii ← 0

4: for all k = 1, . . . , N do
5: for all i = 1, . . . , N do
6: for all j = 1, . . . , N do
7: Mij ← min(Mij ,Mik +Mkj)
8: if i = j and Mii < 0 then report ”inconsistent”

The closure of DBMs is needed to check the equivalence and entailment of two difference
bounds constraints. Moreover, it is used for quantifier elimination.

Proposition 4.6. Let φ(x), φ1(x) and φ2(x), where x = {x1, . . . , xN}, be consistent dif-
ference bounds constraints. Then the following hold:

(1) φ1 ⇔ φ2 if and only if M∗
φ1

=M∗
φ2
,

(2) φ1 ⇒ φ2 if and only if M∗
φ1
≤M∗

φ2
.

(3) for any 1 ≤ k ≤ N , there exists a difference bounds constraint ψ(x \ {xk}), such that
ψ ⇔ ∃xk . φ, and M

∗
ψ ∈ ZN−1×N−1

∞ is obtained by eliminating the k-th line and column
from M∗

φ.

Proof. The points (1), (2) and (3), are equivalent to the Theorems 3.4.1, 3.4.2 and 3.6.1
(second point) in [28], respectively.

Difference bounds relations are relations defined by difference bounds constraints over
primed and unprimed variables (e.g. x−x′ ≤ 0). Difference bounds relations have been stud-
ied by Comon and Jurski who showed, in [15], that their transitive closure is Presburger de-
finable. In the rest of this paper, for each difference bounds relation R ⊆ Zx×Zx, we denote
by R(x,x′) any difference bounds constraint that defines R. Each DBMMR(x,x′) ∈ Z2N×2N

∞

corresponding to R(x,x′) is a matrix of dimension 2N × 2N , that can be split into four
matrices of dimension N × N , corresponding to the top-left, bottom-left, top-right and
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bottom-right corners, denoted as �MR(x,x′), �MR(x,x′),M
�

R(x,x′),M�R(x,x′) ∈ ZN×N
∞ . No-

tice the equivalence ∆[�M∗
R(x,x′)]⇔ ∃x

′ . R(x,x′) for every consistent constraint R(x,x′),
by Proposition 4.6 (third point). In the rest of this section, we will often write MR instead
of MR(x,x′), whenever the defining constraint R(x,x′) is clear from the context. In the fol-
lowing, the projection operators are assumed to have lower priority than closure operators,
e.g. �M∗

R stands for �(M∗
R).

Example 4.7. Figure 1(a) shows the constraint graph GR for the difference bounds relation
defined as R(x,x′) ≡ x2 −x

′
1 ≤ −1 ∧ x3 −x

′
2 ≤ 0 ∧ x1 −x

′
3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

Figure 1(b) shows the closed DBM representation of R.

We show next that the composition of two difference bounds relations encoded as DBMs
can be computed in PTIME using Algorithm 1. Let R1, R2 ⊆ Zx × Zx be two difference
bounds relations. We write M1 and M2 for MR1(x,x′) and MR2(x,x′), i.e. the DBMs cor-
responding to the difference bounds constraints R1(x,x

′) and R2(x,x
′), respectively. Let

M12 ∈ Z3N×3N be the following matrix:

M12 =

Ñ
�M1 M1

� ∞

�M1 min(M1�,
�M2) M2

�

∞ �M2 M2�

é
(4.2)

and let M1 ⊙ M2 ∈ Z2N×2N be the matrix obtained by erasing the lines and columns
N + 1, . . . , 2N from the closureM∗

12, ifM12 is consistent, and ⊥⊥2N , otherwise.

Proposition 4.8. Let R1, R2 ⊆ Zx × Zx be two relations defined by the difference bounds
constraints R1(x,x

′) and R2(x,x
′), respectively. Then ∆[MR1(x,x′) ⊙MR2(x,x′)] defines the

composition R1 ◦R2 ⊆ Zx × Zx. Moreover, MR1(x,x′) ⊙MR2(x,x′) can be computed in time

O(N3 · (N + log2(max(µ(R1), µ(R2))))).

Proof. The composition R1◦R2 is defined by the formula ∃y . R1(x,y)∧R2(y,x
′). It is easy

to see that M12 is the DBM corresponding to the conjunction R1(x,y) ∧ R2(y,x
′), after

the elimination of the redundant constraints on y, i.e. the replacement of any conjunction
of the form xi − xj ≤ c∧ xi − xj ≤ d by xi − xj ≤ min(c, d). The existential quantifiers are
eliminated by checking the consistency ofM12, computing its closure, and erasing the lines
and columns N + 1, . . . , 2N (by Proposition 4.6, third point). The time complexity upper
bound is a direct consequence of the complexity of Algorithm 1 (Proposition 4.5) used to
computeM∗

12.

In general, for a DBM M ∈ Z2N×2N
∞ , we defineM⊙1

=M and M⊙n
=M⊙n−1

⊙M , for
any n > 1. An inductive argument shows that the difference bounds constraint ∆[M⊙n

R(x,x′)]

defines Rn, for any difference bounds relation R ⊆ Zx×Zx and n > 0. In the following, we
write Rn(x,x′) for ∆[M⊙n

R(x,x′)].

4.2. Zigzag Automata. In this section we introduce an automata-theoretic model for
reasoning about the powers of a difference bounds relation. Since a difference bounds
relation R ⊆ Zx × Zx is represented by a difference constraint formula R(x,x′), which, in
turn, can be seen as a constraint graph GR (Definition 4.3), the m-th power of R can be
seen as a constraint graph consisting of m copies of GR:
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(a) GR – the constraint graph of R (c) G8R – the 8-times unfolding of GR
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x1 x2 x3 x4 x′1 x′2 x′3 x′4
x1 0 ∞ ∞ 0 ∞ ∞ 0 ∞
x2 ∞ 0 ∞ ∞ −1 ∞ ∞ ∞
x3 ∞ ∞ 0 ∞ ∞ 0 ∞ ∞
x4 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
x′1 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
x′2 ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
x′3 ∞ ∞ ∞ 0 ∞ ∞ 0 ∞
x′4 ∞ ∞ ∞ 0 ∞ ∞ ∞ 0
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(g) A run of A2,4 (Fig. 1 (d)) accepting the word G3.(G1.G2.G3)
2.G4 ∈ Σ+

R (Fig. 1 (e))
which encodes the path from Fig. 1 (f)

Figure 1. Illustration of various notions for a difference bounds relation
R⇔ x2 −x

′
1 ≤ −1 ∧ x3 −x

′
2 ≤ 0 ∧ x1 −x

′
3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.
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Definition 4.9. Let R ⊆ Zx×Zx be a difference bounds relation, where x = {x1, . . . , xN},
and GR be the constraint graph of a difference bounds constraint R(x,x′) defining R. The
n-times unfolding of GR is defined for every n > 0 as:

GnR = (
n⋃

k=0

x(k),→)

where −→ ⊆ (
⋃n
k=0 x

(k))× Z × (
⋃n
k=0 x

(k)), x(k) = {x
(k)
i | 1 ≤ i ≤ N} and for all 0 ≤ k < n,

there is an edge:

• x
(k)
i

c
−→ x

(k)
j if and only if (xi − xj ≤ c) ∈ Atom(R(x,x′))

• x
(k)
i

c
−→ x

(k+1)
j if and only if (xi − x

′
j ≤ c) ∈ Atom(R(x,x′))

• x
(k+1)
i

c
−→ x

(k)
j if and only if (x′i − xj ≤ c) ∈ Atom(R(x,x′))

• x
(k+1)
i

c
−→ x

(k+1)
j if and only if (x′i − x

′
j ≤ c) ∈ Atom(R(x,x′))

where x
(k)
i

c
−→ x

(ℓ)
j stands for (x

(k)
i , c, x

(ℓ)
j ) ∈ −→.

Each constraint in Rn(x,x′) corresponds to a path between extremal5 vertices in GnR.
Notice that, since difference bounds relations are closed under composition (Proposition
4.8), then Rn is a difference bounds relation, for any n > 0. For any given integer n > 0,
assuming that Rn is consistent, Rn is defined by the following difference constraint:

∧
1≤i,j≤N xi − xj ≤ min[Gn

R
]{x

(0)
i −→ x

(0)
j } ∧ x

′
i − x

′
j ≤ min[Gn

R
]{x

(n)
i −→ x

(n)
j } ∧

xi − x
′
j ≤ min[Gn

R
]{x

(0)
i −→ x

(n)
j } ∧ x

′
i − xj ≤ min[Gn

R
]{x

(n)
i −→ x

(0)
j }

(4.3)

where min[Gn
R
]{x

(p)
i −→ x

(q)
j } stands for the minimal weight between all paths among the

extremal vertices x
(p)
i and x

(q)
j in GnR, for p, q ∈ {0, n}.

Example 4.10. Figure 1(c) depicts the 8-times unfolding of GR for the relation R(x,x′) ≡
x2 −x

′
1 ≤ −1 ∧ x3 −x

′
2 ≤ 0 ∧ x1 −x

′
3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0 from Example 4.7.

The set of paths between any two extremal vertices in the unfolding graph GnR of a
difference bounds relation R, for some n > 0, can be seen as words over the finite alphabet
of subgraphs of GR that are accepted by a finite weighted automaton called zigzag automaton
[12]. Intuitively, a zigzag automaton reads, at step i in the computation, all edges between

x(i) and x(i+1) simultaneously. The weight of a transition fired by the zigzag automaton at
step i is the sum of the weights of these edges. A run of a zigzag automaton of length n > 0
will thus encode a path between the extremal vertices in GnR. Since we are interested in the
minimal weight paths (4.3), we aim at computing the minimal weight among all runs of
length n, as a function of n. One of the results of [12] is that the minimal weight functions
are definable in Presburger arithmetic, hence the transitive closures of difference bounds
relations are Presburger definable as well. Moreover, one of the results of [10] is that these
functions generate periodic sequences. In this paper we use zigzag automata to define the
closed form of the sequence {prenR(Z

x)}n≥1 of sets (preconditions) from which larger and
larger executions, of length n = 1, 2, . . . are possible. This section is concerned with the
formal definition of zigzag automata.

5A vertex v is said to be extremal in Gn
R if v ∈ (x(0) ∪ x(n)).
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4.2.1. The Zigzag Alphabet. Without losing generality, we work with a simplified, yet equiv-
alent, form of difference bounds relations. Let R ⊆ Zx×Zx be a difference bounds relation,
and R(x,x′) be a difference bounds constraint defining R. We can replace all atomic propo-
sitions of the form x− y ≤ c in R(x,x′) by conjunctions x− z′ ≤ c ∧ z′ − y ≤ 0, and all
atomic propositions of the form x′ − y′ ≤ c by conjunctions x′ − z ≤ c ∧ z − y′ ≤ 0, for
some variables z ∈ x \ FV (R(x,x′)), one for each replaced atomic proposition, not occur-
ring initially in R(x,x′). We assume further on that any given difference bounds constraint
R(x,x′) does not contain atomic propositions of the form x− y ≤ c or x′− y′ ≤ c, and that
its constraint graph GR is bipartite, i.e. it does only contain edges from x to x′ or vice versa.

We define the zigzag automaton that is used to define the closed form of precondition
sequences {prenR(Z

x)}n≥0, where pre
n
R(Z

x) ⊆ Zx are sets defined only by constraints between
unprimed variables. Since prenR(Z

x) = preRn(Zx), and taking into account the definition
of the n-th powers of R (4.3), these constraints correspond to minimal weight paths of

the form x
(0)
i −→ x

(0)
j in GnR. These paths are represented by words w = w1 . . . wn, as

follows: the symbol wi represents simultaneously all edges of π that involve only nodes from
x(i) ∪ x(i+1), for all 0 ≤ i < n. With these considerations, the alphabet ΣR is the set of
graphs G satisfying the following conditions:

(1) the set of nodes of G is x ∪ x′

(2) for any x, y ∈ x ∪ x′, there is an edge labeled with c ∈ Z from x to y only if (x − y ≤
c) ∈ Atom(φ)

(3) the in-degree and out-degree of each node are at most one
(4) the number of edges from x to x′ equals the number of edges from x′ to x

We denote by Σ+
R the set of all non-empty words using symbols from ΣR. The weight of

any symbol G ∈ ΣR, denoted ω(G), is the sum of the weights that occur on its edges. For
a word w = w1w2 . . . wn ∈ Σ+

R, we define its weight as ω(w) =
∑n
i=1 ω(wi).

Example 4.11. Figure 1(e) shows the zigzag alphabet ΣR for the difference bounds relation
R⇔ x2 −x

′
1 ≤ −1∧ x3 −x

′
2 ≤ 0∧ x1 −x

′
3 ≤ 0∧ x′4−x4 ≤ 0∧ x′3−x4 ≤ 0 from Example 4.7.

4.2.2. The Transition Table of Zigzag Automata. For each pair of variables xi, xj ∈ x =

{x1, . . . , xN}, we define an automaton Aij that encodes all paths from G
n
R, starting in x

(0)
i

and ending in x
(0)
j , for some n > 0. These automata share the same alphabet and transition

table, and differ only by the choice of the sets of initial and final states. The common
transition table is defined as TR = 〈Q, δ〉, where the set of states Q is the set of N -tuples
q = 〈q1, . . . ,qN 〉 of symbols qi ∈ {ℓ, r, ℓr, rℓ,⊥} capturing the direction of the incoming
and outgoing edges of the alphabet symbols: ℓ for a path traversing from right to left, r for
a path traversing from left to right, ℓr for a right incoming and right outgoing path, rℓ for
a left incoming and left outgoing path, and ⊥ when there are no incoming nor outgoing edges
from that node (see Figure 1(g) for an example of the use of states in a zigzag automaton).

The set of transitions δ is the set of transitions of the form q
G
−→ q′ such that for every

1 ≤ i ≤ N :

• qi = ℓ iff G has one edge whose destination is xi, and no other edge involving xi,
• q′

i = ℓ iff G has one edge whose source is x′i, and no other edge involving x′i,
• qi = r iff G has one edge whose source is xi, and no other edge involving xi,
• q′

i = r iff G has one edge whose destination is x′i, and no other edge involving x′i,
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• qi = ℓr iff G has exactly two edges involving xi, one having xi as source, and another as
destination,
• q′

i = rℓ iff G has exactly two edges involving x′i, one having x′i as source, and another as
destination,
• q′

i ∈ {ℓr,⊥} iff G has no edge involving x′i,
• qi ∈ {rℓ,⊥} iff G has no edge involving xi.

The weight of each transition q
G
−→ q′ from δ is the weight of its symbol ω(G). The weight

of a run π : q1
a1−→ q2

a2−→ . . .
an−→ qn+1, n ≥ 1, is defined as ω(π)

def
=
∑n
i=1 ω(ai).

The zigzag automaton recognizing paths from x
(0)
i to x

(0)
j , for two distinct indices

1 ≤ i, j ≤ N , i 6= j, is defined as Aij = 〈TR, Iij , F 〉, where Iij, F ⊆ {ℓ, r, ℓr, rℓ,⊥}
N are the

sets of initial and final states, respectively:

Iij = {q | qi = r, qj = ℓ, qh ∈ {ℓr,⊥}, ∀h ∈ {1, . . . , N} \ {i, j}}
F = {rℓ,⊥}N

The zigzag automaton recognizing elementary cycles that traverse x
(0)
i for some 1 ≤ i ≤ N ,

is defined as Aii = 〈TR, Iii, F 〉 where TR and F are as defined previously and

Iii = {q | qi = ℓr, qh ∈ {ℓr,⊥}, ∀h ∈ {1, . . . , N} \ {i}}

Since the set of states of a zigzag automaton is the set of tuples {ℓ, r, ℓr, rℓ,⊥}N , then
the number of states reachable from an initial state, and co-reachable from a final state is
bounded by 5N . In the following, we denote runs of the form q1

a1−→ q2
a2−→ . . .

an−→ qn+1 in

the zigzag automata by q1
a1...an−−−−→ qn+1. Given words w1, w2 ∈ Σ∗

R and runs π1 = q1
w1−→ q2

and π2 = q2
w2−→ q3 of some zigzag automaton Aij, we write π = π1.π2 to denote their

concatenation q1
w1−→ q2

w2−→ q3.

Example 4.12. Figure 1(d) shows the zigzag automaton A24 of the difference bounds
relation R⇔ x2−x

′
1 ≤ −1 ∧ x3−x

′
2 ≤ 0 ∧ x1−x

′
3 ≤ 0 ∧ x′4−x4 ≤ 0 ∧ x′3−x4 ≤ 0 from

Example 4.7 and Example 4.11. Note that useless6 control states are not shown and hence

the alphabet symbols G6 and G7 are not used. Figure 1(f) shows a path x
(0)
2 −→ . . . −→ x

(0)
4

from G8R which is encoded by the word γ = G3.(G1.G2.G3)
2.G4. Figure 1(g) shows a run of

A24 that accepts γ. The weights of the symbols in the word are ω(G1)=ω(G2)=ω(G4)=0,
ω(G3)=−1, hence ω(γ) = −3.

4.2.3. Language and Periodicity of Zigzag Automata. We recall that GnR denotes the con-
straint graph obtained by concatenating the constraint graph of R to itself n > 0 times. A
run of the zigzag automaton Aij = 〈TR, Iij , F 〉, for some 1 ≤ i, j ≤ N is said to be accepting
if it starts with a state from Iij and it ends with a state from F . The following lemma
relates certain paths in GnR to runs in zigzag automata.

Lemma 4.13 ([12]). Let R(x,x′) be a difference bounds constraint defining a relation and
let GR be its constraint graph. Then for any n ≥ 1 such that Rn(x,x′) is consistent and any
1 ≤ i, j ≤ N , i 6= j, Aij has an accepting run of length n if and only if there exists a path

in GnR, from x
(0)
i to x

(0)
j . Moreover,

(M∗
Rn)ij = min{ω(π) | π is an accepting run in Aij of length n}

6A control state is useless if it is not reachable from an initial state or no final state is reachable from it.
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Furthermore, for any n ≥ 1, Rn(x,x′) is inconsistent if and only if Aii has an accepting
run π such that |π| = n and ω(π) < 0 for some 1 ≤ i ≤ N .

Proof. See [12], Lemma 4.3.

The formula (4.3) defining the powers of a difference bounds relation R says that, if Rn

is consistent, for a given n > 0, then Rn is definable by a closed DBM7 MRn ∈ Z2N×2N . It
follows that the set prenR(Z

x) is defined by �Mn, for any n > 0. Moreover, by (4.3), (�Mn)ij
is the minimum weight among all accepting runs of length n of Aij. In the following, we
show that the sequence of matrices {�MRn}n≥1 is periodic in the following sense:

Definition 4.14. An infinite sequence of integers {mk}
∞
k=1 ∈ Z is said to be periodic if and

only if:
∃b ≥ 1 ∃c ≥ 1 ∃λ0, λ1, . . . , λc−1 ∈ Z . mb+(k+1)c+i = λi +mb+kc+i

for all k ≥ 1 and i = 0, 1, . . . , c − 1. An infinite sequence of matrices {Mk}
∞
k=1 ∈ ZN×N

∞ is
said to be periodic if and only if:

∃b ≥ 1 ∃c ≥ 1 ∃Λ0,Λ1, . . . ,Λc−1 ∈ ZN×N
∞ . Mb+(k+1)c+i = Λi +Mb+kc+i

for all k ≥ 1 and i = 0, 1, . . . , c − 1. The smallest b, c for which the above holds are called
the prefix and period of the periodic sequence, respectively. Λ0,Λ1, . . . ,Λc−1 are called the
rates of the periodic sequence.

Intuitively, the elements situated at equal distances (c ≥ 1) beyond a certain thresh-
old (b ≥ 1) in a periodic sequence, differ by equal quantities. The following proposition
establishes the equivalence between periodic sequences of integers and matrices:

Proposition 4.15. An infinite sequence of matrices {Mk}
∞
k=1 ∈ ZN×N

∞ is periodic if and
only if the sequences {(Mk)ij}

∞
k=1 ∈ Z∞ are periodic, for all 1 ≤ i, j ≤ N . Moreover, the

prefix, period and rates of the {Mk}
∞
k=1 sequence are effectively computable given the prefix,

period and rates of the {(Mk)ij}
∞
k=1 sequences, respectively.

Proof. See Lemma 1 in [10].

Periodicity of integer sequences is preserved by several arithmetic operations, as shown
by the following lemma:

Lemma 4.16. Let {sk}
∞
k=1 ∈ Z∞ and {tk}

∞
k=1 be two periodic sequences of integers, of given

prefix, period and rates. Then the sequences {min(sk, tk)}
∞
k=1, {sk + tk}

∞
k=1 and {⌊sk2 ⌋}

∞
k=1

are periodic, and moreover, their prefix, period and rates are effectively computable, respec-
tively.

Proof. See Lemma 6 in [10].

Formally, a weighted digraph is a tuple G = 〈V,E, ω〉, where V is a set of vertices,
E ⊆ V × V is a set of edges, and ω : E → Z is a weight function. The following theorem
shows that the matrices giving the weights of the minimal weight paths of a given length
in a weighted graph form a periodic sequence of matrices.

Theorem 4.17. Let G = 〈V,E, ω〉 be a weighted graph, V = {v1, . . . , vN} be its set of
vertices, and let {An}n≥1 be the sequence of matrices An ∈ ZN×N

∞ , where for all 1 ≤ i, j ≤ N ,
(An)ij is the minimal weight among all paths of length n from vi to vj in G. Then {An}n≥1

is a periodic sequence, and its prefix, period and rates are effectively computable.

Proof. See, e.g. Theorem 3.3 in [38].

7Since the coefficients of the DBM are minimal weight paths, the triangle inequality holds.
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An important consequence of Theorem 4.17 is that, for a ∗-consistent difference bounds
relation R, the sequence of sets {prenR(Z

x)}n≥1 is definable by a periodic sequence of differ-
ence bounds matrices.

Corollary 4.18. Let R ⊆ Zx × Zx, where x = {x1, . . . , xN}, be a ∗-consistent difference
bounds relation. Then, for all n ≥ 1, the difference bounds constraint ∆[�M∗

Rn ] defines
prenR(Z

x). Moreover, the sequence {�M∗
Rn}n≥1 is periodic, and its prefix, period and rates

are all effectively computable.

Proof. Since R is ∗-consistent, GnR does not have negative cycles, for any n > 0, hence the

minimum min[Gn
R
]{x

(0)
i −→ x

(0)
j } is well defined, for all 1 ≤ i, j ≤ N , i 6= j. Since Rn is

defined by the difference bounds constraint (4.3), and since the triangle inequality:

min
[Gn

R
]
{x

(0)
i −→ x

(0)
j } ≤ min

[Gn
R
]
{x

(0)
i −→ x

(0)
k }+min

[Gn
R
]
{x

(0)
k −→ x

(0)
j }

holds for all pairwise distinct indices 1 ≤ i, j, k ≤ N , then we have:

(�M∗
Rn)ij = min

[Gn
R
]
{x

(0)
i −→ x

(0)
j }

for all 1 ≤ i, j ≤ N , where i 6= j, by the uniqueness of the closure for DBMs. Clearly,

(�M∗
Rn)ii = 0

for all 1 ≤ i ≤ N , by Definition 4.4. Then prenR(Z
x) = preRn(Zx) is defined by the constraint

∃x′ . Rn(x,x′)⇔ ∆[�M∗
Rn ].

To prove that the sequence of matrices {�M∗
Rn}n≥1 is periodic, it is enough to show that,

for all 1 ≤ i, j ≤ N , the sequence of integers {(�M∗
Rn)ij}n≥1 is periodic (by Proposition 4.15).

Clearly {(�M∗
Rn)ii}n≥1 is periodic, because (�M∗

Rn)ii = 0, for all 1 ≤ i ≤ N and all n ≥ 1
(Definition 4.4).

Let TR = 〈Q, δ, ω〉, Q = {q1, . . . , q5N }, be the common transition table of all zigzag
automata Aij = 〈TR, Iij , F 〉 for R. Then, by Theorem 4.17, the sequence {Tm}m≥0 is

periodic, where Tm ∈ Z5N×5N is the matrix defined as: (Tm)kℓ is the minimum weight
among all paths of length m between qk and qℓ in TR, 1 ≤ k, ℓ ≤ 5N . By Lemma 4.13, we
have:

(�M∗
Rn)ij = min{ω(ρ) | ρ is an accepting run of length n in Aij}

= min{(Tm)kℓ | qk ∈ Iij , qℓ ∈ F}

By Lemma 4.16, we obtain that the sequence {�(M∗
Rn)ij}n≥1 is periodic. The effective

computability of the prefix, period, and rates of the {�M∗
Rn}n≥1 sequence follows from the

constructive arguments of Theorem 4.17, Proposition 4.15 and Lemma 4.16, respectively.

Example 4.19. Consider the difference bounds constraint R(x,x′) ≡ x2 −x
′
1 ≤ −1 ∧ x3 −

x′2 ≤ 0∧x1−x
′
3 ≤ 0∧x′4−x4 ≤ 0∧x′3−x4 ≤ 0 from Example 4.7. We compute the sequence

{�M∗
Rn}n≥0. Since R is ∗-consistent, the DBM �M∗

Rn can be defined for each n ≥ 1 as

(�M∗
Rn)ij =

®
0 if i = j

min{ω(ρ) | ρ is a path from x
(0)
i to x

(0)
j in GnR} ∪ {∞} if i 6= j

by (4.3) (see Fig. 1 for G8R). The first 11 elements of the sequence are depicted in Figure 2.
The periodic behavior can be observed for prefix b = 3, period c = 3, and rates Λ0,Λ1,Λ2

defined in Figure 2. For example, �M∗
R6 = �M∗

R3 + Λ0,
�M∗

R9 = �M∗
R6 + Λ0, etc.
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Ñ�M∗

R1
x1 x2 x3 x4

x1 0 ∞ ∞ 0

x2 ∞ 0 ∞ ∞

x3 ∞ ∞ 0 ∞

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R2
x1 x2 x3 x4

x1 0 ∞ ∞ 0

x2 ∞ 0 ∞ −1

x3 ∞ ∞ 0 ∞

x4 ∞ ∞ ∞ 0

é

Ñ�M∗

R3
x1 x2 x3 x4

x1 0 ∞ ∞ −1

x2 ∞ 0 ∞ −1

x3 ∞ ∞ 0 −1

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R4
x1 x2 x3 x4

x1 0 ∞ ∞ −1

x2 ∞ 0 ∞ −2

x3 ∞ ∞ 0 −1

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R5
x1 x2 x3 x4

x1 0 ∞ ∞ −1

x2 ∞ 0 ∞ −2

x3 ∞ ∞ 0 −2

x4 ∞ ∞ ∞ 0

é

Ñ�M∗

R6
x1 x2 x3 x4

x1 0 ∞ ∞ −2

x2 ∞ 0 ∞ −2

x3 ∞ ∞ 0 −2

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R7
x1 x2 x3 x4

x1 0 ∞ ∞ −2

x2 ∞ 0 ∞ −3

x3 ∞ ∞ 0 −2

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R8
x1 x2 x3 x4

x1 0 ∞ ∞ −2

x2 ∞ 0 ∞ −3

x3 ∞ ∞ 0 −3

x4 ∞ ∞ ∞ 0

é

Ñ�M∗

R9
x1 x2 x3 x4

x1 0 ∞ ∞ −3

x2 ∞ 0 ∞ −3

x3 ∞ ∞ 0 −3

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R10
x1 x2 x3 x4

x1 0 ∞ ∞ −3

x2 ∞ 0 ∞ −4

x3 ∞ ∞ 0 −3

x4 ∞ ∞ ∞ 0

é Ñ�M∗

R11
x1 x2 x3 x4

x1 0 ∞ ∞ −3

x2 ∞ 0 ∞ −4

x3 ∞ ∞ 0 −4

x4 ∞ ∞ ∞ 0

é

b = 3, c = 3,Λ0 = Λ1 = Λ2 =

(
0 0 0 −1

0 0 0 −1

0 0 0 −1

0 0 0 0

)

Figure 2. Periodic behavior of the infinite sequence {�M∗
Rn}n≥1 where

R⇔ x2 −x
′
1 ≤ −1 ∧ x3 −x

′
2 ≤ 0 ∧ x1 −x

′
3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

4.3. Octagonal Constraints. Octagonal constraints are a generalization of difference
bounds constraints to conjunctions of atomic propositions of the form ±x ± y ≤ c, c ∈ Z.
An octagonal constraint φ(x1, . . . , xN ) is usually represented by a difference bounds con-
straints φ(y1, . . . , y2N ) where y2i−1 stands for +xi and y2i stands for −xi, with the implicit
requirement that y2i−1 = −y2i, for each 1 ≤ i ≤ N . It is important to notice that this
implicit condition cannot be directly represented as a difference constraint. The class of
integer octagonal constraints is formally defined as follows:

Definition 4.20. A formula φ(x) is an octagonal constraint if it is a finite conjunction of
terms of the form xi−xj ≤ aij , xi+xj ≤ bij or −xi− xj ≤ cij where aij, bij , cij ∈ Z, for all
1 ≤ i, j ≤ N .

We represent octagons as difference bounds constraints over the dual set of variables y =
{y1, y2, . . . , y2N}, with the convention that y2i−1 stands for xi and y2i for −xi, respectively.
For example, the octagonal constraint x1+x2 = 3 is represented as y1−y4 ≤ 3∧y2−y3 ≤ −3.
In order to handle the y variables in the following, we define ı̄ = i − 1, if i is even, and
ı̄ = i+ 1 if i is odd. Obviously, we have ¯̄ı = i, for all i ∈ Z, i ≥ 1. We denote by φ(y) the
difference bounds constraint over y that represents φ(x) and which is defined as follows:

Definition 4.21. Given an octagonal constraint φ(x), x = {x1, . . . , xN}, its difference
bounds representation φ(y), where y = {y1, . . . , y2N} is a conjunction of the following
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difference bounds constraints where 1 ≤ i, j ≤ N , c ∈ Z.

(xi − xj ≤ c) ∈ Atom(φ) ⇔ (y2i−1 − y2j−1 ≤ c), (y2j − y2i ≤ c) ∈ Atom(φ)
(−xi + xj ≤ c) ∈ Atom(φ) ⇔ (y2j−1 − y2i−1 ≤ c), (y2i − y2j ≤ c) ∈ Atom(φ)
(−xi − xj ≤ c) ∈ Atom(φ) ⇔ (y2i − y2j−1 ≤ c), (y2j − y2i−1 ≤ c) ∈ Atom(φ)
(xi + xj ≤ c) ∈ Atom(φ) ⇔ (y2i−1 − y2j ≤ c), (y2j−1 − y2i ≤ c) ∈ Atom(φ)

An octagonal constraint φ is equivalently represented by the DBM M
φ
∈ Z2N×2N

∞ , corre-

sponding to φ. We sometimes writeMφ instead ofM
φ
. We say that a DBMM ∈ Z2N×2N

∞ is

coherent iff Mij =M̄ı̄ for all 1 ≤ i, j ≤ 2N . This property is needed since, for example, an
atomic proposition xi−xj ≤ aij, 1 ≤ i, j ≤ N , can be represented as both y2i−1−y2j−1 ≤ aij
and y2j − y2i ≤ aij. Dually, a coherent DBM M ∈ Z2N×2N

∞ corresponds to the following
octagonal constraint:

Ω[M ] ≡
∧

1≤i,j≤N

M2i−1,2j−1<∞

xi − xj ≤M2i−1,2j−1 ∧

∧
1≤i,j≤N

M2i−1,2j<∞

xi + xj ≤M2i−1,2j ∧

∧
1≤i,j≤N

M2i,2j−1<∞

−xi − xj ≤M2i,2j−1

(4.4)

Given an octagonal constraint φ(x), we have the following equivalences:

φ(x) ⇔ (∃y2, y4, . . . , y2N . φ(y) ∧
∧N
i=1 y2i−1 = −y2i)[xi/y2i−1]

N
i=1

⇔ φ(y)[xi/y2i−1,−xi/y2i]
N
i=1

⇔ Ω[M
φ
]

(4.5)

A coherent DBM M is said to be octagonal-consistent if and only if Ω[M ] is consistent.
For each octagonal constraint φ(x), we define µ(φ) to be the maximal absolute value over

all constants that appear in φ(x), formally: µ(φ)
def
= max{|c| | (±xi ± xj ≤ c) ∈ Atom(φ)}.

Definition 4.22. An octagonal-consistent coherent DBM M ∈ Z2N×2N
∞ is said to be tightly

closed if and only if it is closed and Mij ≤ ⌊
Miı̄

2 ⌋+ ⌊
M̄j

2 ⌋, for all 1 ≤ i, j ≤ N .

The last condition from Definition 4.22 ensures that the knowledge induced by the
implicit conditions yi + yı̄ = 0, which cannot be represented as difference constraints, has
been propagated through the DBM. Since 2yi = yi − yı̄ ≤ Mīı and −2yj = y̄ − yj ≤ M̄j,

we have yi ≤ ⌊
Miı̄

2 ⌋ and −yj ≤ ⌊
M̄j

2 ⌋, which implies yi − yj ≤ ⌊
Miı̄

2 ⌋ + ⌊
M̄j

2 ⌋, thus Mij ≤

⌊Miı̄

2 ⌋ + ⌊
M̄j

2 ⌋ must hold, if M is supposed to be the most precise DBM representation of

an octagonal constraint. Moreover, by taking j = ı̄ in the previous, we have Mīı ≤ 2⌊Miı̄

2 ⌋,
implying that Mīı is necessarily even, if M is tightly closed.

The following theorem from [2] provides an effective way of testing octagonal-consistency
and computing the tight closure of a coherent DBM. Moreover, it shows that the tight
closure of a given DBM is unique and can also be computed with the same worst-case time
complexity as the DBM closure.

Theorem 4.23. ([2]) LetM ∈ Z2N×2N
∞ be a coherent DBM. ThenM is octagonal-consistent

if and only if M is consistent and ⌊
M∗

iı̄

2 ⌋+ ⌊
M∗

ı̄i

2 ⌋ ≥ 0, for all 1 ≤ i ≤ 2N . Moreover, if M
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is octagonal-consistent, the tight closure of M is the DBM M t ∈ Z2N×2N
∞ defined as:

M t
ij = min

®
M∗
ij ,

õ
M∗
īı

2

û
+

ú
M∗
̄j

2

ü´

for all 1 ≤ i, j ≤ 2N where M∗ ∈ Z2N×2N
∞ is the closure of M .

Corollary 4.24. Let φ(x) be an octagonal constraint for some x = {x1, . . . , xN} and N ≥ 1.
Then, consistency of φ can be decided in at most O(N3 · (N + µ(φ))) time. Moreover, it φ
is consistent, M t

φ
can be computed in at most O(N3 · (N + µ(φ))) time as well.

Proof. An immediate consequence of Theorem 4.23 and Proposition 4.5.

Given an octagonal-consistent coherent DBM M ∈ Z2N×2N
∞ , we denote by M t the

(unique) tightly closed DBM such that Ω[M ] ⇔ Ω[M t]. The tight closure of DBMs is
needed for checking equivalence and entailment between octagonal constraints.

Proposition 4.25. Let φ1(x) and φ2(x) be two consistent octagonal constraints. Then,

(1) φ1 ⇔ φ2 if and only if M t
φ1

=M t
φ2
,

(2) φ1 ⇒ φ2 if and only if M t
φ1
≤M t

φ2
.

Proof. Points (1) and (2) are Theorem 4.4.1 (points 4 and 5, respectively) in [28].

Moreover, the following proposition shows that octagonal constraints are closed under
existential quantification.

Proposition 4.26. Let φ(x), where x = {x1, . . . , xN}, be a consistent octagonal constraint.
Further, let 1 ≤ k ≤ N and M ′ be the DBM obtained from M t

φ
by eliminating the lines and

columns 2k − 1 and 2k. Then, M ′ is tightly closed, and

• Ω[M ′]⇔ ∃xk.φ(x)

• ∃xk . φ(x)⇔
Ä
∃y2k−1, y2k . φ(y)

ä
[xi/y2i−1,−xi/y2i]i∈{1,...,N}\{k}

Proof. For the first point, see Theorem 2 in [7]. For the second point, let us define the

substitution σ
def
= [xi/y2i−1,−xi/y2i]i∈{1,...,N}. We first prove that ∆[P ∗][σ]⇔ ∆[P t][σ] for

every octagonal-consistent coherent DBM P ∈ Z2N×2N
∞ . By Theorem 4.23, it is sufficient

to prove that for every 1 ≤ i, j ≤ 2N such that P ∗
īı <∞ and P ∗

̄j <∞, the following holds:

∆[M∗][σ]⇒
Ä
yi − yj ≤ ⌊

P ∗
īı

2
⌋+ ⌊

P ∗
̄j

2
⌋
ä
[σ] (4.6)

Clearly, there exists 1 ≤ k, ℓ ≤ N such that either of the following holds:

(1) i = 2k − 1, j = 2ℓ− 1 (3) i = 2k, j = 2ℓ− 1
(2) i = 2k − 1, j = 2ℓ (4) i = 2k, j = 2ℓ

We give the proof for the first case (the other being symmetric). Then, (4.6) is equivalent

to ∆[M∗][σ]⇒ xk − kℓ ≤ ⌊
P ∗
iı̄

2 ⌋+ ⌊
P ∗
̄j

2 ⌋. Clearly, ∆[P ∗]⇒ (yi − yı̄ ≤ P
∗
īı) ∧ (y̄ − yj ≤ P

∗
̄j)

and consequently,

∆[P ∗][σ] ⇒ (xk + xk ≤ P
∗
īı) ∧ (−xℓ − xℓ ≤ P

∗
̄j)

⇒ xk ≤ ⌊
P ∗
iı̄

2 ⌋ ∧ −xℓ ≤ ⌊
P ∗
̄j

2 ⌋

⇒ xk − xℓ ≤ ⌊
P ∗
iı̄

2 ⌋+ ⌊
P ∗
̄j

2 ⌋

Hence, (4.6) holds.
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y′

2
y2 y4 y′

4

y′

1
y1 y3 y′

3
−2

−2

−3

−3

1

1

1

0

5 5




y1 y2 y3 y4 y′1 y′2 y′3 y′4
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Figure 3. Graph and matrix representation of the difference bounds repre-
sentation R(y,y′) of an octagonal relation R(x,x′) ≡ x1+x2 ≤ 5 ∧ x′1−x1 ≤
−2 ∧ x′2 − x2 ≤ −3 ∧ x′2 − x

′
1 ≤ 1.

LetM∗
p (M t

p, respectively) be the restriction ofM∗
φ
(ofM t

φ
, respectively) to y\{y2k−1, y2k}

and let σp
def
= [xi/y2i−1,−xi/y2i]i∈{1,...,N}\{k}. By Theorem 4.23, it is easy to see that M t

p is

the tight closure of M∗
p and thus ∆[M t

p][σp] = ∆[M∗
p ][σp], by the previous observation. By

the first point of this proposition, ∃xk . φ(x) ⇔ Ω[M t
p]. By Proposition 4.6 (third point),

∆[M∗
p ] ⇔ ∃y2k−1, y2k . φ(y). Next, we observe that Ω[P ] ⇔ ∆[P ][σ] for every coherent

DBM P ∈ Z2N×2N
∞ and hence Ω[M t

p]⇔ ∆[M t
p][σp]. Finally, we combine the equivalences:

∃xk . φ(x)⇔ Ω[M t
p]⇔ ∆[M t

p][σp]⇔ ∆[M∗
p ][σp]⇔

Ä
∃y2k−1, y2k . φ(y)

ä
[σp]

A relation R ⊆ Zx×Zx over a set of variables is an octagonal relation if it can be defined by
an octagonal constraint. The problem of computing the closed forms of octagonal relations
has been studied first in [7], where it was shown that the transitive closures of octagonal
relations are Presburger definable. In [10] we show that the sequence of tightly closed DBM
encodings of the powers of an octagonal relations is periodic, in the sense of Definition 4.15.
Moreover, the prefix, period and rates of this sequence of matrices are effectively computable.
This result is crucial in showing that the weakest non-termination preconditions wrs(R) are
Presburger definable and effectively computable, and moreover, that the well-foundedness
problem for octagonal relations is decidable.

Example 4.27. Consider the octagonal relation R(x1, x2, x
′
1, x

′
2) ≡ x1+x2 ≤ 5∧x′1−x1 ≤

−2∧x′2−x2 ≤ −3∧x
′
2−x

′
1 ≤ 1. Its difference bounds representation is R(y,y′)⇔ y1−y4 ≤

5 ∧ y3 − y2 ≤ 5 ∧ y′1 − y1 ≤ −2 ∧ y2 − y
′
2 ≤ −2 ∧ y

′
3 − y3 ≤ −3 ∧ y4 − y

′
4 ≤ −3 ∧ y

′
3 − y

′
1 ≤

1 ∧ y′2 − y
′
4 ≤ 1, where y = {y1, . . . , y4}. Figure 3(a) shows the graph representation GR.

Note that the implicit constraint y′3−y
′
4 ≤ 1 (represented by a dashed edge in Figure 3(a) is

not tight. The tightening step replaces the bound 1 (crossed in Figure 3(a)) with 0. Figure
3(b) shows the tightly closed DBM representation of R, denoted M t

R.

Proposition 4.28. Let R(x,x′), where x = {x1, . . . , xN}, be an octagonal constraint and
R(y,y′), where y = {y1, . . . , y2N}, be its difference bounds representation. Then, for
each n ≥ 1, consistency of Rn(x,x′) implies consistency of R

n
(y,y′). Consequently, ∗-

consistency of R(x,x′) implies ∗-consistency of R(y,y′).
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Proof. It follows from the definition of consistency of octagonal and difference bounds con-
straints that:

Rn(x,x′) is consistent ⇔ R(x0,x1) ∧ · · · ∧R(xn−1,xn) is consistent
⇔ M

R(x0,x1)∧···∧R(xn−1,xn)
is octagonal-consistent

⇒ M
R(x0,x1)∧···∧R(xn−1,xn)

is consistent

⇔ R(x0,x1) ∧ · · · ∧R(xn−1,xn) is consistent

⇔ R(x0,x1) ∧ · · · ∧R(xn−1,xn) is consistent

⇔ R(x,x′)
n
is consistent

Thus, for each n ≥ 1, consistency of Rn(x,x′) implies consistency of R
n
(y,y′). Thus, if

R(x,x′) is ∗-consistent, then R(y,y′) is ∗-consistent too.

The next proposition shows that the composition of two octagonal relations is octagonal,
and moreover, can be computed in PTIME using the tight closure method of Theorem 4.23.
If R1, R2 ⊆ Zx × Zx are two octagonal relations, defined by two octagonal constraints
R1(x,x

′) and R2(x,x
′), then let M1,M2 ∈ Z4N×4N be the DBM encodings of R1(y,y

′) and
R2(y,y

′), respectively. ThenM12 ∈ Z6N×6N is the matrix defined by Equation (4.2), and
letM1⊙tM2 ∈ Z4N×4N be the matrix obtained by erasing lines and columns 2N+1, . . . , 4N
fromMt

12, ifM12 is octagonal-consistent, and ⊥⊥4N , otherwise.

Proposition 4.29. Let R1(x,x
′) and R2(x,x

′) be two octagonal constraints defining two re-
lations R1, R2 ⊆ Zx×Zx, respectively. Then the octagonal constraint Ω[M

R1(y,y′) ⊙tMR2(y,y′)]

defines the composition R1 ◦ R2. Moreover, M
R1
⊙tMR2

can be computed in time O(N3 ·

(N + log2(max(µ(R1), µ(R2))))).

Proof. Among the lines of the proof of Proposition 4.8. An easy check shows that, if M1

andM2 are coherent, thenM12 is coherent as well. The consistency ofM12 can be checked
in time O(N3 · (N + log2(max(µ(R1), µ(R2))))) by Algorithm 1, and its closure M∗

12 can
be computed during this check. The octagonal consistency of M12 is checked applying
Theorem 4.23, and the same can be done to compute the tight closureMt

12. Clearly, these
steps do not add to the previous complexity upper bound. Finally, the existential quantifier
from ∃x′′ . R1(x,x

′′) ∧R2(x
′′,x′) can be eliminated using Proposition 4.26.

In general, for a DBM M ∈ Z4N×4N
∞ encoding an octagonal constraint R(x,x′), where

x = {1, . . . , N}, we define M⊙1
t = M and M⊙n

t = M⊙n−1
t ⊙t M , for n > 1. A simple

inductive argument based on Proposition 4.29 shows that the n-th power Rn of the relation
R ⊆ Zx×Zx is defined by the octagonal constraint Ω[M⊙n

t ], for all n > 0. In the following,
we denote the formula Ω[M⊙n

t ] by Rn(x,x′). As usual, let R(y,y′) be the difference bounds
constraint encoding R(x,x′), and R

n
(y,y′) be the difference bounds constraint defining the

n-th power of the relation defined by R(y,y′). The following lemma establishes an essential
connection between the DBMs M t

Rn
,M t

R
n ,M∗

R
n ∈ Z4N×4N , leading to a method for the

computation of the transitive closures for octagonal relations [7].

Lemma 4.30. Let x = {x1, . . . , xN} be a set of variables and R ⊆ Zx×Zx be a ∗-consistent
octagonal relation. Then the following hold, for all integers n > 0:

(1) M t
Rn

=M t
R

n, and

(2) (M t
R

n)ij = min

ß
(M∗

R
n)ij ,

õ
(M∗

R
n )iı̄

2

û
+

õ
(M∗

R
n)̄j

2

û™
, for all 1 ≤ i, j ≤ 4N .
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Proof. We prove the first point by induction on n > 0. The base case n = 1 is immediate.

For the induction step n > 1, we have Rn+1(x,x′) = Ω[M
⊙n+1

t

R
], hence:

M t

Rn+1
= M

⊙n+1
t

R

= M
⊙n

t

R
⊙tMR

= M t
Rn
⊙tMR

= M t
R

n ⊙tMR
by the induction hypothesis

= M t

R
n+1 by Proposition 4.29

Since R is ∗-consistent, thenM t
R

n is an octagonal-consistent DBM and we can directly apply

Theorem 4.23 to prove the second point.

The following result shows that the sequence {prenR(Z
x)}n≥1, of a ∗-consistent octagonal

relation R is defined by a periodic sequence of matrices.

Lemma 4.31. Let R ⊆ Zx×Zx be a ∗-consistent octagonal relation. Then, for all n ≥ 1, the
octagonal constraint Ω[�M t

Rn
] defines the set prenR(Z

x). Moreover, the sequence {�M t
Rn
}n≥1

is periodic, and its prefix, period and rates are all effectively computable.

Proof. By Lemma 4.30, for all 1 ≤ i, j ≤ 2N we have:

(M t
Rn)ij = min

®
(M∗

R
n)ij ,

ú
(M∗

R
n)īı

2

ü
+

ú
(M∗

R
n)̄j

2

ü´

By Corollary 4.18, the sequence of matrices {�M∗
R

n}n≥1 is periodic, hence the sequence of

integers {(�M∗
R

n)ij}n≥1 is periodic, for all 1 ≤ i, j ≤ 2N . By Lemma 4.16, the sequence

of integers (M t
Rn

)ij is also periodic, hence the sequence of matrices {�M t
Rn
}n≥1 is periodic,

by Proposition 4.15. The effective computability of the prefix, period, and rates of the
sequence follows from the constructive arguments of Lemma 4.16 and Proposition 4.15.

4.4. Computing Weakest non-termination preconditions in Polynomial Time. In
the rest of this section, let R(x,x′), where x = {x1, . . . , xN} for someN ≥ 1, be an octagonal
relation and R(y,y′), where y = {y1, . . . , y2N}, be its difference bounds representation.

Recall that µ(R)
def
= max{|c| | (±xi ± xj ≤ c) ∈ Atom(R)}.

The main result of this section is an algorithm (Algorithm 3) that computes the weakest
recurrent set of an octagonal relation R in at most O(N4 · (N + log2(µ(R)))) time. The
main insight of the algorithm is that the Kleene sequence {prenR(Z

x)}n≥1 either (1) never
stabilizes, in which case

pre1R(Z
x) ) pre2R(Z

x) ) pre3R(Z
x) ) . . .

and wrs(R) = ∅, or (2) stabilizes after at most 52N steps, in which case

wrs(R) = pre5
2N

R (Zx) = pre5
2N+1
R (Zx) = pre5

2N+2
R (Zx) = . . .

Then, the stability of the sequence can be checked by checking equality between its 52N -th
element with the (52N + 1)-th element. These elements can be computed by fast exponen-
tiation by applying at most O(⌈log2 5

2N + 1⌉) = O(N) relational compositions. We then
show that the absolute values of the coefficients of the octagonal constraint defining the
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set prenR(Z
x) is of the order O(µ(R) ·N · n). Consequently, each of the octagonal composi-

tions performed during fast exponentiation takes at most O(N3 · (log2(µ(R) ·N · 5
2N ))) =

O(N4 · (N +log2(µ(R)))) time, by Proposition 4.29. As a direct consequence of the correct-
ness of this algorithm, one obtains a decision procedure for the termination problem with
the same worst-case complexity, simply by testing the computed wrs(R), itself an octagonal
constraint, for consistency.

The correctness argument of Algorithm 3 for ∗-consistent octagonal relations depends
on Lemmas 4.33, 4.35, and 4.36. First, Lemma 4.33 proves that the weakest recurrent set of
an ∗-consistent octagonal relation R(x,x′) is the limit of the Kleene sequence {prenR(Z

x)}n≥1

and moreover, that the limit is either empty or stabilizes after a finite number of steps. Next,
Lemma 4.35 gives two equivalent conditions for checking well-foundedness of an arbitrary
∗-consistent difference bounds relation R(x,x′). Its main insight is that the instability of
the sequence {prenR(Z

x)}n≥1 (and thus well-foundedness of R) is equivalent to existence
of a negative-weight cycle in zigzag automata. Moreover, it proves that the instability
manifests already after 5N steps (5N is an upper bound on the size of elementary cycles
in zigzag automata). Then, Lemma 4.36 proves that an octagonal relation R(x,x′), where
x = {x1, . . . , xN}, is well founded if and only if its difference bounds representation R(y,y′),
where y = {y1, . . . , y2N}, is well founded. Hence the stability stability bound of 52N applies
for octagonal relations, as a consequence of Lemma 4.35.

The following proposition gives an alternative characterization of periodic sequences of
matrices.

Proposition 4.32. A sequence of matrices {Mk ∈ ZN×N
∞ }∞k=1 is periodic if and only if

there exist integers b ≥ 1, c ≥ 1, and matrices Λ0, . . . ,Λc−1 ∈ Zm×m
∞ such that

Mnc+b+i = n · Λi +Mb+i

for all n ≥ 0 and for all 0 ≤ i < c.

Proof. By induction on n ≥ 0, we prove that Mnc+b+i = n ·Λi+Mb+i, for all n ≥ 0 and for
all 0 ≤ i < c. The base case trivially holds. For the induction step, observe that

Mb+i+(n+1)c = Λi +Mb+i+nc = Λi + n · Λi +Mb+i = (n+ 1) · Λi +Mb+i.

The first equality is by Definition 4.14, the second is by the induction hypothesis.

Given a ∗-consistent octagonal relation R(x,x′) and integers b ≥ 1, c ≥ 1, we denote

by ◊�preR,b,c(k,x) the closed form of the sequence {preb+ncR (Zx)}n≥0. Given a ∗-consistent
octagonal relation R and integers b, c such that b is the prefix and c is the period of the
sequence {�M t

Rn
}n≥1, the following lemma proves that the closed form ◊�preR,b,c(k,x) can

be computed and moreover, one can perform a simple syntactical check on ◊�preR,b,c(k,x) to
compute the weakest recurrent set, which is either ∅ or prebR(Z

x). For a set v of variables,
let OctTerm(v) = {±v1 ± v2 | v1, v2 ∈ v} denote the set of octagonal terms over v.

Lemma 4.33. Let R(x,x′) be an octagonal constraint defining a ∗-consistent relation R ⊆
Zx × Zx, let b be the prefix and c the period of {�M t

Rn
}n≥1. Then, there exists a set of

octagonal terms U ⊆ OctTerm(x) such that

◊�preR,b,c(k,x)⇔
∧

u∈U

u ≤ au + du · k (4.7)



26 M. BOZGA, R. IOSIF, AND F. KONEČNÝ

for some au ∈ Z, du ≤ 0. Moreover, the set U and the coefficients au, du, u ∈ U , are
effectively computable. Furthermore,

wrs(R) =
⋂

n≥1

prenR(Z
x) =

®
∅ if du < 0 for some u ∈ U
prebR(Z

x) otherwise

Proof. The sequence {�M t
Rn
}n≥1 is periodic, by Lemma 4.31. Let Λ0, . . . ,Λc−1 be its rates.

For each u ∈ OctTerm(x), we define indices iu, ju as:

iu = 2k − 1, ju = 2ℓ− 1 if u = xk − xℓ for some 1 ≤ k, ℓ ≤ N
iu = 2k − 1, ju = 2ℓ if u = xk + xℓ for some 1 ≤ k, ℓ ≤ N
iu = 2k, ju = 2ℓ− 1 if u = −xk − xℓ for some 1 ≤ k, ℓ ≤ N

Then, the set of octagonal terms which are bounded in prebR(Z
x) is:

U
def
= {u ∈ OctTerm(x) | (�M t

Rb)iuju <∞}

Since Rn is consistent and �M t
Rn

is coherent for all n ≥ 1, we have:

preb+ncR (Zx) ⇔ Ω[�M t

Rb+nc
] (by Proposition 4.26)

⇔ Ω[�M t

Rb
+ n · Λ0] (by Proposition 4.32)

⇔
∧
u∈U u ≤ (�M t

Rb
)iuju + n · (Λ0)iuju (by Equation (4.4))

(4.8)

for every n ≥ 0. Clearly, (�M t

Rb
)iuju <∞ for each u ∈ U , by definition of U . We prove that

(Λ0)iuju ≤ 0. By contradiction, if (Λ0)iuju > 0, then

(�M t

Rb+c
)iuju = (�M t

Rb
)iuju + (Λ0)iuju > (�M t

Rb
)iuju

by Proposition 4.32. By Proposition 3.1, preb+cR (Zx) ⊆ prebR(Z
x). By Proposition 4.25, we

infer that �M t

Rb+c
≤ �M t

Rb
. Contradiction with (�M t

Rb+c
)iuju > (�M t

Rb+c
)iuju. Hence, we can

define the coefficients au ∈ Z, du ≤ 0 for each u ∈ U as

au
def
= (�M t

Rb
)iuju du

def
= (Λ0)iuju

By Lemma 4.31, the prefix b, the period c, and the rate Λ0 are effectively computable. Con-
sequently, the set U and coefficients au, du, u ∈ U , defined above are effectively computable
too. It follows from (4.8) that the closed form of {preb+ncR (Zx)}n≥0 can now be defined as

◊�preR,b,c(k,x)
def
=

∧

u∈U

u ≤ au + du · k

By Proposition 3.1, pren1
R (Zx) ⊇ pren2

R (Zx) for all n1 ≤ n2. Consequently, we have

that
⋂
n≥1 pre

n
R(Z

x) =
⋂
n≥0 pre

b+cn
R (Zx). The latter set can now be defined as ∀k ≥

0 . ◊�preR,b,c(k,x) which is equivalent to
∧

u∈U

u ≤ inf {au + dun | n ≥ 0}

We have

inf {au + dun | n ≥ 0} =

®
−∞ if du < 0,
au otherwise.

Hence
⋂
n≥1 pre

n
R(Z

x) is the empty set, if du < 0 for some u ∈ U . In this case, condition 3
of Lemma 3.7 holds. Otherwise, we obtain

⋂
n≥1 pre

n
R(Z

x) ≡
∧
u∈U u ≤ au. However, this is

exactly the set prebR(Z
x), since

∧
u∈U (u ≤ au)⇔ ◊�preR,b,c(k,x)[0/k]. In this case, condition
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2 of Lemma 3.7 holds. Thus, we can apply Lemma 3.7 in both cases and conclude that
wrs(R) =

⋂
n≥1 pre

n
R(Z

x). To summarize, wrs(R) = ∅ if du < 0 for some u ∈ U . Otherwise,

wrs(R) = prebR(Z
x).

The following proposition proves that the Kleene sequence {prenR(Z
x)}n≥1 is strictly

descending for arbitrary relation that is both ∗-consistent and well founded.

Proposition 4.34. Let R ⊆ Zx × Zx be a ∗-consistent and well-founded relation. Then,
pren1

R (Zx) ) pren2
R (Zx) for all 1 ≤ n1 < n2. Consequently, the sequence {prenR(Z

x)}n≥1 is
strictly descending.

Proof. By Proposition 3.1, pren1
R (Zx) ⊇ pren2

R (Zx) for all 1 ≤ n1 < n2. For a proof by
contraposition, suppose that pren1

R (Zx) = pren2
R (Zx) some n2 > n1 ≥ 1. Then wrs(R) =

pren1
R (Zx), by Lemma 3.7. Since R is ∗-consistent, then clearly wrs(R) = pren1

R (Zx) 6= ∅
and R is not well founded.

The following two lemmas give several equivalent conditions for checking that a differ-
ence bounds (Lemma 4.35) or an octagonal relation (Lemma 4.36) is well founded. These
conditions will later be used to design an efficient polynomial time algorithm that computes
the weakest recurrent set of an octagonal relation. These conditions also provide the basis
for the proof of existence of a linear ranking functions for well-founded octagonal relations,
which we give in the next section.

Lemma 4.35. Let R(x,x′), where x = {x1, . . . , xN}, be a difference bounds constraint
defining a ∗-consistent relation R ⊆ Zx × Zx and let TR = 〈Q, δ, ω〉 be the transition table
of zigzag automata. Then, the following statements are equivalent:

(1) R is well founded,
(2) pren2

R (Zx) ( pren1
R (Zx) for some n2 > n1 ≥ 5N ,

(3) there exists a zigzag automaton Aij = 〈TR, Iij, F 〉 for some 1 ≤ i, j ≤ N, i 6= j with an
accepting run µ.λ.µ′ where λ is a cycle such that |λ| > 0 and ω(λ) < 0.

Proof. (1⇒ 2) Follows immediately from Proposition 4.34.

(2 ⇒ 3) Let n2 > n1 ≥ 5N be integers such that pren2
R (Zx) ( pren1

R (Zx). Then, �M∗
Rn1 >

�M∗
Rn2 by Proposition 4.6. Since R is ∗-consistent, (�M∗

Rn1 )ii = (�M∗
Rn2 )ii = 0 for each

1 ≤ i ≤ N and hence (�M∗
Rn1 )ij > (�M∗

Rn2 )ij for some 1 ≤ i, j ≤ N, i 6= j. By Lemma 4.13,
Aij has an accepting run π of length |π| = n2 and weight ω(π) = (�M∗

Rn2 )ij .

Let π0
def
= π. We next define, iteratively for i = 1, 2, . . . , an accepting run πi by erasing

an arbitrary cycle λi from πi−1. Note that if |πi−1| ≥ 5N , then πi−1 must contain at least
one cycle λi, by pigeonhole principle (since 5N is the cardinality of the set of control states

in Aij). Clearly |πp| < 5N for some p ≥ 1. Let n
def
= |πp|. We next prove that

Ä p∑

i=1

ω(λi)
ä
< 0

For a proof by contradiction, suppose that (
∑p
i=1 ω(λi)) ≥ 0. Then ω(πp) ≤ ω(π), since

ω(πp) = ω(π)− (
∑p
i=1 ω(λi)). Observe that (the first inequality is by Lemma 4.13):

(�M∗
Rn)ij ≤ ω(πp) ≤ ω(π) = (�M∗

Rn2 )ij
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Since n < 5N ≤ n1 < n2, then prenR(Z
x) ⊇ pren1

R (Zx) ⊇ pren2
R (Zx), by Proposition 3.1.

Consequently, by Proposition 4.6:

(�M∗
Rn)ij ≥ (�M∗

Rn1 )ij ≥ (�M∗
Rn2 )ij

Combining the above inequalities, we obtain that (�M∗
Rn)ij = (�M∗

Rn1 )ij = (�M∗
Rn2 )ij . Con-

tradiction with (�M∗
Rn1 )ij > (�M∗

Rn2 )ij .
Thus, (

∑p
i=1 ω(λi)) < 0 and consequently, there exists 1 ≤ k ≤ p such that ω(λk) < 0.

By definition of πk, there exists µ, µ′ such that πk = µ.λk.µ
′. Since ω(λk) < 0, the run

µ.λk.µ
′ satisfied the requirements of the lemma.

(3 ⇒ 1) Let us denote d = |µ.µ′| and e = |λ|. Since ω(λ) < 0, the infinite sequence
{ω(µ.λn.µ′)}n≥0 is strictly descending and thus inf{ω(µ.λn.µ′)}n≥0 = −∞. By Lemma
4.13, (�M∗

Rd+ne)ij ≤ ω(µ.λn.µ′) for all n ≥ 0 and hence, inf{(�M∗
Rd+ne)ij}n≥0 = −∞. By

Lemma 4.33, wrs(R) =
⋂
n≥1 pre

n
R(Z

x). Next, observe that since R is ∗-consistent, ∆[�M∗
Rn ]

defines prenR(Z
x) for each n ≥ 1. Hence, any formula that defines wrs(R) must imply

xi − xj ≤ inf{(�M∗
Rd+ne)ij}n≥0 = −∞. Since this formula is inconsistent, it follows that

wrs(R) = ∅ and R is well founded.

Lemma 4.36. Let R(x,x′), where x = {x1, . . . , xN}, be an octagonal constraint defining
a ∗-consistent relation R ⊆ Zx × Zx, and let R(y,y′), where y = {y1, . . . , y2N}, be the
difference bounds encoding of R(x,x′). Then, the following statements are equivalent.

(1) R is well founded
(2) R is well founded
(3) pren1

R (Zx) ) pren2
R (Zx) for some integers n1, n2 such that 52N ≤ n1 < n2

Proof. Observe that since R is ∗-consistent, R is ∗-consistent too, by Proposition 4.28.

(1⇒ 3) Follows immediately from Proposition 4.34.

(3 ⇒ 2) We first prove that pren1
R (Zx) ) pren2

R (Zx) implies that pren1

R
(Zy) ) pren2

R
(Zy).

For a proof by contraposition, suppose that pren1

R
(Zy) ⊆ pren2

R
(Zy). By Proposition 3.1,

pren1

R
(Zy) ⊇ pren2

R
(Zy) and consequently, pren1

R
(Zy) = pren2

R
(Zy). Then, �M∗

R
n1 = �M∗

R
n2 ,

by Proposition 4.6. This implies that �M t
R

n1 = �M t
R

n2 , by Lemma 4.30. Consequently,

pren1
R (Zx) = pren2

R (Zx), by Proposition 4.25.

Since 52N ≤ n1 < n2 and pren1

R
(Zy) ) pren2

R
(Zy), then R is well founded, by Lemma

4.35.

(2 ⇒ 1) The sequence {pren
R
(Zy)}n≥1 is strictly descending, by Proposition 4.34. Hence

pre1
R
(Zy) ) pre2

R
(Zy) ) pre3

R
(Zy) ) . . . and it follows from Proposition 4.6 that

�M∗

R
1 > �M∗

R
2 > �M∗

R
3 > . . .

For each n ≥ 1, let 1 ≤ in, jn ≤ 2N be arbitrary integers such that (�M∗
R

n)injn >

(�M∗

R
n+1)injn . Clearly, there exist integers 1 ≤ i, j ≤ 2N such that i = in and j = jn

for infinitely many n ≥ 1. Consequently, for each n ≥ 1 there exists m > n such that
(�M∗

R
n)ij > (�M∗

R
m)ij and hence

inf{(�M∗
R

n)ij}n≥1 = −∞
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By Lemma 4.30, the following holds for each n ≥ 1

(�M t
Rn)ij = min

{
(�M∗

R
n)ij ,

ö(�M∗
R

n)īı

2

ù
+
ö(M∗

R
n)̄j

2

ù}

Thus clearly, since inf{(�M∗
R

n)ij}n≥1 = −∞, then inf{(�M t
R

n)ij}n≥1 = −∞ too. By Equa-

tion (4.4) and coherency of tight encoding, there exist integers 1 ≤ k, ℓ ≤ N such that for
each n ≥ 1, Ω[�M t

Rn
] implies:

(1) xk − xℓ ≤ (�M t
Rn

)2k−1,2ℓ−1 = (�M t
Rn

)ij if i = 2k − 1, j = 2ℓ− 1

(2) xk + xℓ ≤ (�M t
Rn

)2k−1,2ℓ = (�M t
Rn

)ij if i = 2k − 1, j = 2ℓ

(3) −xk − xℓ ≤ (�M t
Rn

)2k,2ℓ−1 = (�M t
Rn

)ij if i = 2k, j = 2ℓ− 1

(4) xℓ − xk ≤ (�M t
Rn

)2ℓ−1,2k−1 = (�M t
Rn

)2k,2ℓ = (�M t
Rn

)ij if i = 2k, j = 2ℓ

Let u ∈ OctTerm(x) be the octagonal term from above (i.e. of the form ±xk ± xℓ).
By Lemma 4.33, wrs(R) =

⋂
n≥1 pre

n
R(Z

x). Since R is ∗-consistent, prenR(Z
x) is defined

by Ω[�M t
Rn

] for each n ≥ 1. Thus, any formula that defines wrs(R) must imply u ≤

inf{(�M t
Rn

)ij}n≥1. This formula is inconsistent, since inf{(�M t
Rn

)ij}n≥1 = −∞. Conse-

quently, wrs(R) = ∅ and R is thus well founded.

The main result of this section is Algorithm 3 which computes the weakest non-termination
precondition of an octagonal relation, in time polynomial in the number of variables and
logarithmic in the maximal absolute value among all coefficients of the relation. As an aux-
iliary procedure, it uses Algorithm 2 to compute exponentially large powers in polynomial
time.

Algorithm 2 Fast Exponentiation Algorithm

input An octagonal constraint R(x,x′) and an integer n ≥ 1
output An octagonal constraint representing Rn(x,x′)

1: function FastPower(R,n)
2: if R⇔ false then
3: return false
4: P ←M t

R0

5: Q←M t

R1

6: for i = 1, . . . , ⌈log2 n⌉ do
7: if Ω[Q]⇔ false then
8: return false
9: if the i-th least significant bit of n is 1 then

10: P ← P ⊙t Q

11: Q← Q⊙t Q [at this point Ω[Q]⇔ R2i(x,x′)]

12: return Ω[P ]

Lemma 4.37. Given an octagonal constraint R(x,x′), where x = {x1, · · · ,xN} for some
N ≥ 1, and an integer n ≥ 1, Algorithm 2 computes Rn(x,x′) in at most O(⌈log2 n⌉ ·N

3 ·
(N + log2 µ(R) + ⌈log2 n⌉)) time. Moreover, µ(Rn) is of the order O(µ(R) ·N · n).
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Proof. Let µP,i (respectively µQ,i) be the maximal absolute value over all integer entries of
P (respectively Q) before executing line 9 during the i-th iteration for i = 1, . . . , ⌈log2 n⌉.
Further, let ni ≥ 0 be an integer such that Ω[P ] ⇔ Rni(x,x′) at line 7 during the i-th

iteration. Notice that before executing line 7, Ω[Q] ⇔ R2i−1
(x,x′) and Ω[P ] ⇔ Rni(x,x′)

where ni ≤ 2i−1. It is easy to see that Ω[Q] is consistent before executing line 9. Since
ni ≤ 2i−1, it then follows that Ω[P ] is consistent before executing line 10 too. Thus,
compositions on lines 10 and 11 are always applied to two consistent relations.

If the test on line 7 passes, then Ω[Q]⇔ R2i−1
⇔ false and consequently, since 2i−1 < n,

Rn ⇔ false too. Thus, the algorithm returns the correct result on line 8. The correctness
of the rest of the algorithm is easy to see.

Lines 2–5 take at most O(N3 · (N + log2 µ(R))) time, by Corollary 4.24. Since the

graph unfolding G2
i

R
, corresponding to R

2i
for each i ≥ 1, has 2N ·2i nodes, each elementary

path in this graph is of length at most 2N · 2i. Thus, (M∗

R
2i
)kℓ ≤ µ(R) · 2N · 2i for all

1 ≤ k, ℓ ≤ 4N whenever R2i is consistent. Tightening clearly does not change this bound.

Since Q ⇔ R2i−1
6⇔ false on line 9, then µQ,i ≤ µ(R) · 2N · 2i−1. By Proposition 4.29,

composition on line 11 can be computed in time O(N3 ·(N+log2(µQ,i))). Since i ≤ ⌈log2 n⌉,
this simplifies to O(N3 · (N + log2 µ(R) + ⌈log2 n⌉)). Since ni ≤ 2i−1, then µP,i ≤ µQ,i and
the same bound applies for the composition on line 10. By the definition of the composition
operator ⊙t and the tight closure operator, the octagonal-consistency check on line 7 can
be taken care of during the preceding assignment to Q, i.e. on line 11 (composition) or on
line 5 (tight closure). Thus, the overall running time of the algorithm is in the order of
O(⌈log2 n⌉ ·N

3 · (N + log2 µ(R) + ⌈log2 n⌉)). Finally, µ(R
n) is asymptotically bounded by

O(µ(R) ·N · n).

Algorithm 3 Weakest non-termination precondition for Octagonal Relations

input An octagonal constraint R(x,x′) where x = {x1, . . . , xN}
output An octagonal constraint representing wnt(R)

1: function WNT(R)
2: V (x,x′)← FastPower(R(x,x′),52N )
3: W (x,x′)← FastPower(R(x,x′),52N + 1)
4: if W ⇔ false or �M t

V > �M t
W then

5: return false
6: else
7: return Ω[�M t

V ]

Theorem 4.38. Let R(x,x′), where x = {x1, . . . , xN} for some N ≥ 1, be an octago-
nal constraint defining a relation R ⊆ Zx × Zx. Then, Algorithm 3 returns an octago-
nal constraint φ(x) that defines wrs(R) in at most O(N4 · (N + log2 µ(R))) time. Also,
µ(φ) = O(µ(R) ·N · 2N ).

Proof. By Lemma 4.37, lines 2 and 3 of the algorithm compute V ⇔ R52N andW ⇔ R52N+1

in at most O(N4 · (N + log2 µ(R))) time and moreover, µ(V ) and µ(W ) are of the order
O(µ(R) ·N · 2N ).

By Corollary 4.24, the test W ⇔ false can be performed in at most O(N3 · (N +
log2 µ(W ))) time. If the test fails, the algorithm returns false. Otherwise, W is consistent
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and moreover, since 52N < 52N + 1, V is consistent too. Then, �M t
V and �M t

W can be
computed and the test �M t

V > �M t
W can be performed in at most O(N3 · (N + log2 µ(W )))

time, by Proposition 4.25 and Corollary 4.24. Also, µ(Ω[�M t
V ]) inherits the upper bound of

µ(V ), by Proposition 4.26.
Consider first the case when R is ∗-consistent. Then clearly W 6⇔ false. Notice that

the test �M t
V > �M t

W is equivalent to pre5
2N

R (Zx) ) pre5
2N+1
R (Zx). If this test passes, R

is well founded, by Lemma 4.36, and the algorithm correctly returns false. Otherwise, if

this test fails, then pre5
2N

R (Zx) = pre5
2N+1
R (Zx) and consequently, wrs(R) = pre5

2N

R (Zx) by
Lemma 3.7 and the algorithm correctly returns Ω[�M t

V ].
Second, consider the case when R is not ∗-consistent. Then clearly wrs(R) = ∅. Hence,

if the test on line 4 passes, the algorithm returns the correct result. To see that the test

on line 4 cannot fail, let us assume, by contradiction, that pre5
2N

R (Zx) = pre5
2N+1
R (Zx) and

pre5
2N+1
R (Zx) 6= ∅. Then, wrs(R) = pre5

2N+1
R (Zx), by Proposition 3.7. Since pre5

2N+1
R (Zx) 6=

∅, then wrs(R) 6= ∅. Contradiction with wrs(R) = ∅.

An immediate consequence of Theorem 4.38 is that the termination problem is decid-
able.

Theorem 4.39. Let R(x,x′), where x = {x1, . . . , xN} for some N ≥ 1, be an octagonal
constraint defining a relation R ⊆ Zx×Zx. The well-foundedness of R(x,x′) can be decided
in at most O(N4 · (N + log2 µ(R))) time.

Proof. By Theorem 4.38, Algorithm 3 computes an octagonal constraint φ(x) that defines
wrs(R) in O(N4 ·(N+log2 µ(R))) time and moreover µ(φ) is in the order of O(µ(R) ·N ·2N ).
Well-foundedness of R can be decided by checking whether φ(x) is consistent. This check
can be performed in time O(N3 · (N + log2 µ(φ))), by Corollary 4.24, which simplifies to
O(N3 · (N + log(µ(R) ·N · 2N ))) = O(N3 · (N + log2 µ(R))).

4.5. On the Existence of Linear Ranking Functions. We first define the notion of
a linear ranking function, using the following notation: if f(x) is a linear term over x of the
form f(x) = a0 +

∑N
i=1 aixi where a0, . . . , aN ∈ Z, then f(x′) denotes the corresponding

term over x′ defined as f(x′)
def
= a0 +

∑N
i=1 aix

′
i.

Definition 4.40. Given a relation defined by R(x,x′), a linear ranking function f : x→ Z

for R(x,x′) is a linear term f(x) such that the following holds:

∃h∀x∀x′ . R(x,x′) ⇒ f(x) > f(x′) ∧ f(x) ≥ h

Intuitively, R(x,x′)⇒ f(x) > f(x′) requires that f is decreasing and R(x,x′)⇒ f(x) ≥ h
requires that f is bounded.

A ranking function for a given relation R constitutes a proof of the fact that R is well
founded. In this section, we show that for any well-founded octagonal relation R(x,x′),
where x = {x1, . . . , xN}, the (strengthened) relation V defined as V (x,x′) ≡ R(x,x′) ∧

∃x′.R52N (x,x′) has a linear ranking function if and only if R is well founded. Note that
if R is well founded, then V is guaranteed to have a linear ranking function even when
R alone does not have one. Moreover, we show that such a linear ranking function can
be computed in polynomial time. The proof is organized as follows. First, we show in
Lemma 4.41 that for each m ≥ 1, strengthening R(x,x′) with ∃x′.Rm(x,x′) preserves the
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(conditional) termination problem, formally: wrs(R) = wrs(Rm) where Rm is defined by
R(x,x′) ∧ ∃x′.Rm(x,x′). As a consequence, wrs(R) = wrs(V ).

In Section 4.5.1, we study the case when R(x,x′) is a well-founded difference bounds
constraint. Here, we first generalize Lemma 4.35 and show that the zigzag automaton of R
is guaranteed to have a negative-weight cycle, whenever the 5N -th power of R is consistent.
Lemma 4.43 and Lemma 4.47 use the structure of this cycle, representing several of the
constraints in R, to show the existence of the linear ranking function for the witness relation

R(x,x′) ∧ ∃x′.RN
2
(x,x′).

Section 4.5.2 then studies octagonal relations. Given an octagonal constraint R(x,x′),
where x = {x1, . . . , xN}, with its difference bounds representation R(y,y′), where y =
{y1, . . . , y2N}, such that R is well founded and the 52N -th power of R is consistent, we first

apply the above result and immediately infer that R(y,y′) ∧ ∃y′.R
4N2

(y,y′) has a linear

ranking function f(y). Then, we prove in Proposition 4.50 that the function defined as f
def
=

f(y)[xi/y2i−1,−xi/y2i]
N
i=1 is a linear ranking function for R(x,x′)∧∃x′.R4N2

(x,x′). For the

case when the 52N -th power is not consistent, it follows easily that R(x,x′)∧∃x′.R4N2
(x,x′)

is not consistent either and hence, trivially, has a linear ranking function. Then, since the

sequence {prenR(Z
x)}n≥1 is descending, it follows that ∃x′.R52N (x,x′) ⇒ ∃x′.R4N2

(x,x′)
and one can thus show that f is also a ranking function for V . Finally, we summarize this
reasoning in Theorem 4.51 and prove that such a linear ranking function can be found in
polynomial time.

Lemma 4.41. Let R ⊆ Zx × Zx be a relation defined by a formula R(x,x′), and m ≥ 1
be an integer. Then wrs(R) = wrs(Rm), where Rm is the relation defined by R(x,x′) ∧
∃x′.Rm(x,x′).

Proof. “⊆” By Proposition 3.1, preR′(S) ⊆ preR(S) for any set S and relations R,R′ such
that R′ ⊆ R. Since Rm ⊆ R, then preRm

(Zx) ⊆ preR(Z
x). Applying this argument n-times,

we infer that prenRm
(Zx) ⊆ prenR(Z

x). Thus, we have:

wrs(Rm) =
⋂
n≥1 pre

n
Rm

(Zx) by Lemma 4.33
⊆

⋂
n≥1 pre

n
R(Z

x)
= wrs(R) by Lemma 4.33

“⊇” We prove the dual. Assume that wrs(R) 6= ∅, i.e. there exists an infinite sequence of
valuations σ = {νi ∈ Zx}i≥0 such that (νi, νi+1) ∈ R, for all i ≥ 0. Then each νi belong to
the set defined by ∃x′ . Rm(x,x′), hence σ is an infinite sequence for the relation defined
by R(x,x′) ∧ ∃x′.Rm(x,x′) as well.

4.5.1. Linear Ranking Function for Difference Bounds Relation. In the rest of this section,
let us fix the set of variables x = {x1, . . . , xN} for some constant N ≥ 1. We first prove the
existence of a negative-weight cycle in a zigzag automaton whenever the 5N -th power of a
well-founded difference bounds relation R(x,x′) is consistent.

Lemma 4.42. Let R(x,x′) be a well-founded difference bounds relation such that R5N (x,x′)
is consistent. Then, there exists a zigzag automaton Aij = 〈TR, Iij , F 〉 for some 1 ≤ i, j ≤ N
with an accepting run µ.λ.µ′ where λ is a cycle such that |λ| > 0 and ω(λ) < 0.
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Proof. If R(x,x′) is ∗-consistent, then the result follows immediately from Lemma 4.35.

In the rest of the proof, let R(x,x′) be a ∗-inconsistent relation such that R5N (x,x′) is

consistent. We first define n
def
= min{i ≥ 1 | Ri(x,x′) is inconsistent}. Clearly, n > 5N .

By Lemma 4.13, there exists 1 ≤ i ≤ N such that Aii has an accepting run π such that
|π| = n and ω(π) < 0. Since n > 5N ≥ |Q|, there must be at least one cycle λ in
π, formally: π = µ.λ.µ′ for some paths µ, µ′ and a cycle λ. Let us denote m = |µ.µ′|.
Clearly m < n. We prove that ω(λ) < 0. By contradiction, suppose that ω(λ) ≥ 0.
Then ω(µ.µ′) = ω(π) − ω(λ) < 0 and hence, by Lemma 4.13, Rm(x,x′) is not consistent.
Since m < n, this contradicts the definition of n as the minimal inconsistent power. Thus,
ω(λ) < 0 and the run µ.λ.µ′ of Aii has the property required by the lemma.

We next prove the existence of a linear decreasing function, based on the existence of
a negative-weight cycle in the zigzag automaton.

Lemma 4.43. Let R(x,x′), where x = {x1, . . . , xN}, be a difference bounds constraint

defining a well-founded relation R ⊆ Zx × Zx such that R5N (x,x′) is consistent. Then,
there exists a linear function f(x) such that ∀x,x′ . R(x,x′)⇒ f(x) > f(x′) is valid.

Proof. By Lemma 4.42, there exist integers 1 ≤ i, j ≤ N such that the zigzag automaton
Aij has an accepting run µ.λ.µ′ where λ is a cycle such that |λ| > 0 and ω(λ) < 0. Let us

write λ as λ = q0
G0−→ q1

G1−→ q2 . . . qp−1
Gp−1
−−−→ q0 where p = |λ| and Gj = (x ∪ x′, Ej) for

some set of edges Ej , 0 ≤ j < p. Recall that Gj is a bipartite graph for each 0 ≤ j < p and
therefore contains edges of the form xi −→ x′j or x′i −→ xj . Consider the following sum of
all constraints represented by edges appearing in λ (note that the sum of weights of these
edges equals ω(λ)):

∑

0≤j<p
1≤i,k≤N

(xk−→x′
i
)∈Ej

(xk − x
′
i) +

∑

0≤j<p
1≤i,k≤N

(x′
k
−→xi)∈Ej

(x′k − xi) ≤
∑

0≤j<p
e∈Ej

ω(e) = ω(λ) (4.9)

Notice that for each 0 ≤ j < p, there exists an accepting run of the form

q
w
−→ q(j−1)mod p

G(j−1) mod p
−−−−−−−→ qj

Gj
−→ q(j+1)mod p

G(j+1)mod p
−−−−−−−→ q(j+2)mod p

w′

−→ q′

for some q, q′ ∈ Q and w,w′ ∈ Σ∗
R. It follows from the definition of zigzag automata that

for each edge e1 : x′k −→ xi ∈ Ej , there exists a unique “successor“ e2 which is of either of
the following forms:

either e2 : xi −→ x′m ∈ Ej if (qj)i = ℓr,
or e2 : x

′
i −→ xm ∈ E(j−1)mod p if (qj)i = ℓ.

(4.10)

Dually, e1 is said to be the unique “predecessor“ of e2. Similarly, for each edge e1 : xk −→
x′i ∈ Ej , there exists a unique successor e2 which is of either of the following forms:

either e2 : x
′
i −→ xm ∈ Ej if (q(j+1)mod p)i = rℓ,

or e2 : xi −→ x′m ∈ E(j+1)mod p if (q(j+1)mod p)i = r.
(4.11)
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Consider the following sum:
∑

0≤j<p
1≤i,k,m≤N
(xk−→x′

i
)∈Ej

(xi−→x′m)∈E(j+1)mod p

(−x′i+xi) +
∑

0≤j<p
1≤i,k,m≤N
(xk−→x′

i
)∈Ej

(x′
i
−→xm)∈Ej

(−x′i+x
′
i) +

∑

0≤j<p
1≤i,k,m≤N
(x′

k
−→xi)∈Ej

(x′
i
−→xm)∈E(j−1)mod p

(−xi+x
′
i) +

∑

0≤j<p
1≤i,k,m≤N
(x′

k
−→xi)∈Ej

(xi−→x′m)∈Ej

(−xi+xi)

(4.12)
and note that every edge e = (xk −→ x′i) ∈ Ej , where 1 ≤ i, j ≤ N, 0 ≤ j < p, is considered
exactly twice in (4.12), since

• e has a unique successor and therefore contributes with the −x′i term in (4.12)
• e has a unique predecessor and therefore contributes with the +xk term in (4.12)

Similarly, every edge (x′k −→ xi) ∈ Ej is considered twice and contributes with terms −xi
and +x′k. Hence, the sum (4.12) is equivalent to the left-hand side of (4.9). Clearly, the
second and the fourth sum in (4.12) evaluate to zero. It follows from Equations (4.11) and
(4.10) that the remaining two sums can be written equivalently as

∑

0≤j<p
(qj)i=r

(−x′i + xi) +
∑

0≤j<p
(qj)i=ℓ

(−xi + x′i) (4.13)

Thus, (4.9) can be written equivalently as
∑

0≤j<p
(qj)i=r

(−x′i + xi) +
∑

0≤j<p
(qj)i=ℓ

(−xi + x′i) ≤ ω(λ) (4.14)

Let f(x) denote the negated sum of all unprimed terms in (4.13) and g(x′) denote the sum of
all primed terms in (4.13). Clearly, f(x) = g(x′)[x/x′] (i.e. g(x′) is the primed counterpart of

f(x)) and (4.14) can be written as g(x′)−f(x) ≤ ω(λ). Recall that f(x′)
def
= a0+

∑N
i=1 aix

′
i

and hence f(x′) = g(x′). We thus obtain:

f(x′)− f(x) ≤ ω(λ) < 0 (4.15)

Hence, f(x) is strictly decreasing, formally: R(x,x′)⇒ f(x) > f(x′).

Example 4.44. (Ex. 4.7 ctd.) We illustrate the construction of a linear decreasing function
for a well-founded relation R(x,x′) ≡ x2 −x

′
1 ≤ −1 ∧ x3 −x

′
2 ≤ 0 ∧ x1 −x

′
3 ≤ 0 ∧ x′4 −x4 ≤

0 ∧ x′3 −x4 ≤ 0 (see also Figure 1). By Lemma 4.35, there exists an accepting run µ.λ.µ′

in a zigzag automaton where λ is a cycle such that ω(λ) < 0. Figure 4 depicts such a run
in A2,4 where µ, λ, and µ′ are labeled with words G3, G1.G2.G3, and G4, respectively. We
have ω(λ) = −1. We follow the construction from Lemma 4.43 and sum the edges that are
present in λ (see the solid edges in G1, G2, and G3 in Figure 4). We obtain

(x1 − x
′
3) + (x3 − x

′
2) + (x2 − x

′
1) + (x′4 − x4) + (x′4 − x4) + (x′4 − x4) ≤ −1

which simplifies to (x1 + x2 + x3 − 3x4) − (x′1 + x′2 + x′3 − 3x′4) ≤ −1. Letting f(x) =
−(x1 + x2 + x3 − 3x4), we have that R(x,x′)⇒ f(x) > f(x′).
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λ
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0000

(a) An accepting run π = µ.λ.µ′ in A24. (b) The graph Hπ.

Figure 4. Constructing the ranking function for a relation (see also Fig. 1)
R(x,x′)⇔ x2−x

′
1 ≤ −1∧x3−x

′
2 ≤ 0∧x1−x

′
3 ≤ 0∧x′4−x4 ≤ 0∧x′3−x4 ≤ 0.

Figure (a) shows a run π that accepts word γ = G3.G1.G2.G3.G4. Figure (b)
shows Gπ, obtained by concatenating the symbols (graphs) of γ. Gπ contains

a single path ρ from x
(0)
2 to x

(0)
4 .

Next, we prove that all functions of Lemma 4.43 are bounded, concluding that they
are indeed ranking functions. Each run π of length n ≥ 1 in the zigzag automaton Aij,
1 ≤ i, j ≤ N , recognizes a word w = G0.G1 . . . Gn−1 where G0, . . . , Gn−1 ∈ ΣR. Assuming
that Eℓ is the set of edges in Gℓ for each 0 ≤ ℓ < n, we define the concatenation of graphs
G0, . . . , Gn−1 as Hπ = (V,E) where V =

⋃n
ℓ=0 x

(ℓ) and

x
(ℓ)
p

c
−→ x

(ℓ+1)
q ∈ E iff xp

c
−→ x′q ∈ Eℓ

x
(ℓ+1)
p

c
−→ x

(ℓ)
q ∈ E iff x′p

c
−→ xq ∈ Eℓ

for all 0 ≤ ℓ < n and 1 ≤ i, j ≤ N . See Figure 4 for an illustration. Supposing that π
traverses a cycle λ in Aij (see the cycle λ in Figure 4), π can be decomposed into a prefix,
the cycle itself and a suffix. By the definition of zigzag automata, Hπ contains exactly one

path8 ρ from x
(0)
i to x

(0)
j and a (possibly empty) set of elementary cycles {ν1, . . . , νp}, p ≥ 0.

For instance, Hπ from Figure 4 contains a single path ρ. The paths {ρ, ν1, . . . , νp} may
traverse the cycle λ several times, however each exit point from the cycle must match
a subsequent entry point (the dotted edges in Figure 4(a) mark such a matching). These
paths from the exit to the corresponding entries give the lower bound on f(x), formally:
Rn(x,x′) ⇒ f(x) ≥ h for some h ∈ Z and sufficiently large n ≥ 1 (Proposition 4.45).
In fact, these paths appear already on graphs GiR for every i≥N2 (Lemma 4.46) and the
“sufficiently large n“ can be thus bounded by N2. Hence the need for a strengthened witness

R(x,x′)∧∃x′.RN
2
(x,x′), as R alone is not enough for proving boundedness of f(x). Lemma

4.47 combines all these results to prove the existence of a ranking function.

Proposition 4.45. Let R(x,x′) be a difference bounds constraint, let π = q0
G0−→ q1

G1−→

. . . −→ qn−1
Gn−1
−−−→ qn, for some n ≥ 1, be an accepting run of a zigzag automaton Agh for

some 1 ≤ g, h ≤ N , and k ∈ {0, . . . , n − 1} be a constant. Then, there exists a bijection

β : {j | (qk)j = r} → {j | (qk)j = ℓ}

8Moreover, this path is acyclic if i 6= j or an elementary cycle if i = j.
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such that for every i ∈ {j | (qk)j = r}, the following formula is valid:

∃b . ∀x . (∃x′ . Rn(x,x′)) ⇒ xβ(i) − xi ≥ b

Proof. We define a shift operator that for every path ρ in GmR , m ≥ 1, of the form ρ =

x
(j1)
i1

c1−→ x
(j2)
i2

c2−→ . . .
cp−1
−−−→ x

(jp)
ip

, p > 1, and every k ∈ Z, returns the path ρ→k defined as:

ρ→k def= x
(j1+k)
i1

c1−→ x
(j2+k)
i2

c2−→ . . .
cp−1
−−−→ x

(jp+k)
ip

Let us assume that Gk = (x ∪ x′, Ek) for each 0 ≤ k < n and let us denote by w the
word G0.G1 . . . Gn−1 accepted by π. Given a path ρ in GnR, let Vρ denote the set of all
vertices traversed by ρ. It follows from the definition of zigzag automata that Hπ contains

one path ν0 that starts in x
(0)
g and ends in x

(0)
h . Hπ may also contain a (possibly empty)

set of elementary cycles {ν1, . . . , νs} for some s ≥ 0. By the definition of zigzag automata,
the sets of vertices Vν0 , . . . , Vνp are pairwise disjoint. By the definition of zigzag automata,
we have:

|{j | (qk)j = r}| = |{j | (qk)j = ℓ}|

Clearly, for every 1 ≤ i ≤ N such that (qk)i = r, there exists ν ∈ {ν0, . . . , νs} such that

x
(k)
i ∈ Vν . Since (qk)i = r, ν goes to the right from x

(k)
i , but it must eventually turn left and

reach x
(k)
j such that (qk)j = ℓ for some 1 ≤ j ≤ N , either in order to reach x

(0)
h (if ν = ν0)

or in order to reach x
(k)
i again (if ν 6= ν0 is a cycle). Without loss of generality, let x

(k)
j be

the first such vertex reachable from x
(k)
i and let us define β(i)

def
= j. Clearly, β is a bijection

from {j | (qk)j = r} to {j | (qk)j = ℓ}. Since x
(k)
j was chosen as the first vertex reachable

from x
(k)
i such that (qk)j = ℓ, it follow that the subpath ρ of ν from x

(k)
i to x

(k)
j traverses

only vertices from
⋃n
m=k x

(m) (since to reach some vertex from
⋃k−1
m=0 x

(m), the path would
have to cross some component (qk)t, 1 ≤ t ≤ N , such that (qk)t = ℓ). Hence, ρ can be

shifted by −k and we obtain a path ρ′ = ρ→(−k) that starts in x
(0)
i and ends in x

(0)
j . Since ρ′

is a path in GnR, then R
n ⇒ xi−xj ≤ ω(ρ

′), by (4.3). Hence, Rn(x,x′)⇒ xβ(i)−xi ≥ −ω(ρ
′)

is valid. As an immediate consequence, the following formulas are valid too:

∀x . (∃x′ . Rn(x,x′)) ⇒ xβ(i) − xi ≥ −ω(ρ
′)

∃b . ∀x . (∃x′ . Rn(x,x′)) ⇒ xβ(i) − xi ≥ b

The next lemma proves, for any two unprimed variables xi, xj , that if the difference

xi − xj is bounded in Rn(x,x′) for some n ≥ 1, it is bounded in RN
2
(x,x′) too.

Lemma 4.46. Let R(x,x′) be a difference bounds constraint. Then, for each 1 ≤ i, j ≤
N, i 6= j and for each n ≥ 1, the following is a valid formula:

∃h . ∀x . (∃x′ . Rn(x,x′))⇒ (xi − xj ≤ h)
⇒

∃h . ∀x . (∃x′ . RN
2
(x,x′))⇒ (xi − xj ≤ h)

Proof. Let us first define, for each n ≥ 1:

Bn
def
= {(i, j) | 1 ≤ i, j ≤ N and there is a path from x

(0)
i to x

(0)
j in GnR }

Clearly, for each n ≥ 1, GnR is a subgraph of Gn+1
R and hence Bn ⊆ Bn+1. Next observe that

for every n ≥ 1, every path ρ from x
(0)
i to x

(0)
j in Gn+1

R can be written as ρ = τ0.ν1.τ1 . . . νp.τp
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for some p ≥ 0 such that τ0, . . . , τp traverse only nodes from x(0)∪x(1) and ν1, . . . , νp traverse

only nodes from x(1) ∪ · · · ∪ x(n+1). Clearly, if νk, 1 ≤ k ≤ p, is a path from x
(1)
i to x

(1)
j for

some 1 ≤ i, j ≤ N , then there also exists a path from x
(0)
i to x

(0)
j in GnR and consequently,

(i, j) ∈ Bn. Hence, we have for all n ≥ 1:

Bn+1 = Bn∪{(i, j) |
1 ≤ i, j ≤ N,∃1 ≤ k1, . . . , kp ≤ N . (k1, k2), (k3, k4), . . . ∈ Bn and GR
has paths x

(0)
i →

+ x
(1)
k1
, x

(1)
k2
→+ x

(1)
k3
, x

(1)
k4
→+ x

(1)
k5
, . . . , x

(1)
kp
→+ x

(0)
j

}

Hence, Bn+1 is a function of Bn and GR. Consequently, if Bn = Bn+1 for some n ≥ 1, then
Bm = Bn for all m ≥ n. Clearly, |Bn| ≤ N2 for any n ≥ 1. Hence, the sequence {Bn}n≥1

stabilizes after at most N2 steps, formally: Bn = BN2 for all n ≥ N2. Consequently, the
implication

(i, j) ∈ Bn ⇒ (i, j) ∈ BN2 (4.16)

holds for all n ≥ N2. In fact, it is also valid for all 1 ≤ n < N2, since we have Bn ⊆ BN2

in this case. Hence, (4.16) holds for all n ≥ 1. Next, observe that:

(i, j) ∈ Bn iff there exists a path ρ from x
(0)
i to x

(0)
j in GnR

iff Rn(x,x′)⇒ (xi − xj ≤ ω(ρ)) is valid (by (4.3))
iff (∃x′ . Rn(x,x′))⇒ (xi − xj ≤ ω(ρ)) is valid
iff ∃h . ∀x . (∃x′ . Rn(x,x′))⇒ (xi − xj ≤ h) is valid

Finally, we combine the above with (4.16) and conclude that for all n ≥ 1 and for all
1 ≤ i, j ≤ N , we have:

(i, j) ∈ Bn ⇔ ∃h . ∀x . (∃x′ . Rn(x,x′))⇒ (xi − xj ≤ h)
⇓

(i, j) ∈ BN2 ⇔ ∃h . ∀x . (∃x′ . RN
2
(x,x′))⇒ (xi − xj ≤ h)

Hence, the lemma holds.

Finally, we show that each decreasing function of Lemma 4.43 is also bounded, conclud-
ing that it is a linear ranking function.

Lemma 4.47. Let R(x,x′) be a difference bounds constraint defining a well-founded relation

R ⊆ Zx×Zx such that R5N (x,x′) is consistent. Then, there exists a linear ranking function

for R(x,x′) ∧ ∃x′.RN
2
(x,x′).

Proof. Let µ.λ.µ′ be an accepting run from Lemma 4.43 where λ is a negative-weight cycle

of the form λ = q0
G0−→ q1

G1−→ q2 . . . qp−1
Gp−1
−−−→ q0 where p = |λ|. Let n = |µ.λ.µ′|. Further,

let f(x) be the the corresponding linear decreasing function constructed in Lemma 4.43
from λ. Recall that f(x) denotes the negated sum of all unprimed terms in

∑

0≤j<p
(qj)i=r

(−x′i + xi) +
∑

0≤j<p
(qj)i=ℓ

(−xi + x′i)

Hence, for each 0 ≤ j < p and 1 ≤ i ≤ N , (qj)i contributes to f(x) with terms:

{−xi} if (qj)i = r,
{+xi} if (qj)i = ℓ,
∅ otherwise.
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Let n
def
= |µ.λ.µ′|. By Proposition 4.45, for each 0 ≤ j < p, there exists a bijection

βj : {i | (qj)i = r} → {i | (qj)i = ℓ}

such that, for each k ∈ {i | (qj)i = r}:

∃h . ∀x . (∃x′ . Rn(x,x′))⇒ (xβj(k) − xk ≥ h)

By Lemma 4.46, we then have:

∃h . ∀x . (∃x′ . RN
2
(x,x′))⇒ (xβj(k) − xk ≥ h)

Clearly:

f(x) =
∑

0≤j<p

∑

1≤k≤N
(qj)k=r

(xβj(k) − xk)

Thus, since each term xβj(i)−xi in the above sum is bounded in ∃x′ . RN
2
(x,x′), it follows

that the sum of these terms is bounded too:

∃h . ∀x . (∃x′ . RN
2
(x,x′))⇒ f(x) ≥ h (4.17)

By Lemma 4.43, we have:

∀x,x′ . R(x,x′)⇒ f(x) > f(x′) (4.18)

Since strengthening the hypothesis of any implication preserves its validity, we can infer
from (4.17) and (4.18) that:

∃h . ∀x,x′ . R(x,x′) ∧ (∃x′.RN
2
(x,x′)) ⇒ f(x) > f(x′) ∧ f(x) ≥ h

Thus, f(x) is a linear ranking function for R(x,x′) ∧ ∃x′.RN
2
(x,x′).

Example 4.48. (Ex. 4.44 ctd.) We illustrate the boundedness of f=−(x1 +x2 +x3−3x4),
by following the arguments of Lemma 4.47 and Proposition 4.45. The cycle λ traverses
control states q0, q1, q2 (see Figure 4). Let us consider the following bijections β0, β1, β2:

β0 = {(1, 4)}, β1 = {(3, 4)}, β2 = {(2, 4)}

(the dotted edges in Figure 4(a) mark these bijections). Next, we define the paths ρ0, ρ1, ρ2
as subpaths of ρ from Figure 4(b)

ρ0
def
= x

(1)
1

0
−→ x

(2)
3

0
−→ x

(3)
2

−1
−→ x

(4)
1

0
−→ x

(5)
3

0
−→ x

(4)
4

0
−→ x

(3)
4

0
−→ x

(2)
4

0
−→ x

(1)
4

ρ1
def
= x

(2)
3

0
−→ x

(3)
2

−1
−→ x

(4)
1

0
−→ x

(5)
3

0
−→ x

(4)
4

0
−→ x

(3)
4

0
−→ x

(2)
4

ρ2
def
= x

(3)
2

−1
−→ x

(4)
1

0
−→ x

(5)
3

0
−→ x

(4)
4

0
−→ x

(3)
4

Note that
ρ0 = x

(1)
1 −→ . . . −→ x

(1)
β(1) Vρ0 ⊆

⋃5
ℓ=1 x

(ℓ)

ρ0
→(−1) = x

(0)
1 −→ . . . −→ x

(0)
β(1) V

ρ
→(−1)
0

⊆
⋃5
ℓ=0 x

(ℓ)

According to Equation (4.3), existence of the path ρ0
→(−1) implies that R4(x,x′)⇒ (x1 −

xβ0(1)) ≤ ω(ρ0
→(−1)) = −1. Clearly, it follows that (∃x′ . R4(x,x′)) ⇒ (xβ0(1) − x1) ≥ 1.

The bijection β0 therefore satisfies the required properties. Next, we apply Proposition 4.46

and infer that (∃x′ . RN
2
(x,x′)) ⇒ (xβ0(1) − x1) ≥ c0 for some c0 ∈ Z. By analogical

reasoning, we infer that

(∃x′ . RN
2
(x,x′))⇒ (xβ1(3) − x3) ≥ c1 for some c1 ∈ Z

(∃x′ . RN
2
(x,x′))⇒ (xβ2(2) − x2) ≥ c2 for some c2 ∈ Z
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Then, we infer:

(xβ0(1) − x1) ≥ c0 ∧ (xβ1(3) − x3) ≥ c1 ∧ (xβ2(2) − x2) ≥ c2
⇔ (x4 − x1) ≥ c0 ∧ (x4 − x3) ≥ c1 ∧ (x4 − x2) ≥ c2
⇒ (x4 − x1) + (x4 − x3) + (x4 − x2) ≥ c0 + c1 + c2
⇔ f(x) ≥ c0 + c1 + c2

Hence, (∃x′ . RN
2
(x,x′)) ⇒ f(x) ≥ c0 + c1 + c2 and thus, f(x) is bounded. Example 4.44

demonstrated that f(x) is decreasing. We conclude that f(x) is a ranking function.
As an experiment, we have tried the iRankFinder [4] tool (complete for integer lin-

ear ranking functions), which failed to discover a ranking function on this example. This
comes with no surprise, since no linear decreasing function that is bounded after the first
iteration exists. However, iRankFinder finds a linear ranking function for the witness

relation R(x,x′) ∧ ∃x′.RN
2
(x,x′) instead. Interestingly, the linear ranking function found

by iRankFinder differs from the one computed in this example only by a constant.

4.5.2. Linear Ranking Functions for Octagonal Relations. In the rest of this section, let us
fix the sets of variables x = {x1, . . . , xN} and y = {y1, . . . , y2N} for some constant N ≥ 1.
The following proposition gives a way to construct a linear ranking function for an octagonal
relation R(x,x′) from any linear ranking function for its difference bounds representation
R(y,y′).

Proposition 4.49. Let R(x,x′) be an octagonal constraint, R(y,y′) be its difference bounds

encoding and let f(y) be a linear ranking function for R(y,y′). Then, the function f(x)
def
=

f(y)[xi/y2i−1,−xi/y2i]
N
i=1, is a linear ranking function for R(x,x′).

Proof. Clearly, f(x) is linear by definition. We have the following equivalences:

R(x,x′)⇔ R(y,y′)[xi/y2i−1,−xi/y2i]
N
i=1 (by Equation (4.5))

f(x) = f(y)[xi/y2i−1,−xi/y2i]
N
i=1 (by definition of f(x))

Since f(y) is a linear ranking function for R(y,y′), the following formula is valid:

∃h . ∀y,y′ . R(y,y′) ⇒ f(y) > f(y′) ∧ f(y) ≥ h

Clearly, its validity is preserved under the substitution [xi/y2i−1,−xi/y2i]
N
i=1 and thus

∃h . ∀x,x′ . ∀R(x,x′) ⇒ f(x) > f(x′) ∧ f(x) ≥ h

is valid too. Hence, f(x) is a linear ranking function for R(x,x′).

The next proposition generalizes Proposition 4.50 and shows how to construct a linear
ranking function for an octagonal relation R(x,x′) ∧ ∃x′.Rn(x,x′) from any linear ranking
function for the difference bounds relation R(y,y′) ∧ ∃y′ . R

n
(y,y′).

Proposition 4.50. Let R(x,x′) be an octagonal constraint, R(y,y′) be its difference bounds
encoding and let f(y) be a linear ranking function for R(y,y′)∧∃y′ . R

n
(y,y′), for a fixed

n ≥ 1. Then, f(x)
def
= f(y)[xi/y2i−1,−xi/y2i]

N
i=1 is a linear ranking function for R(x,x′) ∧

∃x′.Rn(x,x′).
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Proof. Let us first define the following substitution

σ
def
= [x

(0)
i /y

(0)
2i−1,−x

(0)
i /y

(0)
2i , x

(n)
i /y

(n)
2i−1,−x

(n)
i /y

(n)
2i−1]

2N
i=1

Next, observe that (the second equivalence is by Proposition 4.26)

Rn(x(0),x(n)) ⇔ ∃x(1), . . . ,x(n−1) .
∧n−1
i=0 R(x

(i),x(i+1))

⇔
î
∃y(1), . . . ,y(n−1) .

∧n−1
i=0 R(y

(i),y(i+1))
ó
[σ]

⇔ R
n
(y(0),y(n))[σ]

Consequently, we have:
Rn(y,y′)⇔ R

n
(y,y′) (4.19)

Observe that

∃x′ . Rn(x,x′) ⇔
Ä
∃y′ . Rn(y,y′)

ä
[xi/y2i−1,−xi/y2i]Ni=1 (by Proposition 4.26)

⇔ ∃y′ . Rn(y,y′)
⇔ ∃y′ . R

n
(y,y′) (by Equation (4.19))

(4.20)
Consequently, we have:

R(x,x′) ∧ ∃x′ . Rn(x,x′) ⇔ R(y,y′) ∧ ∃x′ . Rn(x,x′)
⇔ R(y,y′) ∧ ∃y′ . R

n
(y,y′) (by Equation (4.20))

Thus, since f(y) is a linear ranking function for R(y,y′) ∧ ∃y′ . R
n
(y,y′), then f(x) is

a linear ranking function for R(x,x′) ∧ ∃x′ . Rn(x,x′), by Proposition 4.49.

Finally, we can combine the above results into the main theorem.

Theorem 4.51. Let R ⊆ Zx × Zx be a relation defined by an octagonal constraint R(x,x′)
and let V ⊆ Zx × Zx be a relation defined by

V (x,x′) ≡ R(x,x′) ∧ ∃x′.R52N (x,x′)

Then, R is well founded if and only if V is well founded if and only if V (x,x′) has a linear
ranking function. Moreover, both V (x,x′) and the linear ranking function are computable
in polynomial time.

Proof. The fact that R(x,x′) is well founded if and only if V (x,x′) is well founded follows
from Lemma 4.41. Thus, if R(x,x′) is not well founded, neither is V (x,x′) and hence,
V (x,x′) has no (linear) ranking function. In the rest of the proof, we show that if R(x,x′)
is well founded, then there exists a linear ranking function for V (x,x′). As a first sub-

case, suppose that R52N (x,x′) is inconsistent. Then clearly, V (x,x′) is inconsistent too
and, trivially, V (x,x′) has a linear ranking function. As a second subcase, suppose that

R52N (x,x′) is consistent. By Proposition 4.28, R
52N

(y,y′) is consistent too. Since R is well
founded, R is well founded too, by Lemma 4.36. Then, by Lemma 4.47, there exists a linear

ranking function f for R(y,y′)∧∃y′.R
4N2

(y,y′). By Proposition 4.50, the function defined

as f
def
= f [xi/y2i−1,−xi/y2i]

N
i=1 is a linear ranking function for R(x,x′) ∧ ∃x′.R4N2

(x,x′),
formally:

∃h . ∀x,x′ . R(x,x′) ∧ (∃x′.R4N2
(x,x′)) ⇒ f(x) > f(x′) ∧ f(x) ≥ 0 (4.21)
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Since 4N2 < 52N for all N ≥ 1, then pre4N
2

R (Zz) ⊇ pre5
2N

R (Zx), by Proposition 3.1. Conse-

quently, ∃x′ . R52N (x,x′)⇒ ∃x′ . R4N2
(x,x′) and therefore

R(x,x′) ∧ (∃x′.R52N (x,x′))⇒ R(x,x′) ∧ (∃x′.R4N2
(x,x′)) (4.22)

Combining (4.21) with (4.22), we infer that f(x) is a linear ranking function for R(x,x′)∧

∃x′.R52N (x,x′).
By Lemma 4.37, V can be computed in at most O(N4 · (N + log2 µ(R))) time and

moreover, µ(V ) is of the order O(µ(R) ·N ·2N ). Consistency of V (x,x′) can then be checked
in at most O(N3 · (N + log2 µ(V ))) = O(N3 · (N + log2 µ(R))) time, by Corollary 4.24. If
V ⇔ false, one can return an arbitrary linear function f(x). Otherwise, if V 6⇔ false, one

can compute V ≡ R(y,y′)∧∃y′.R
4N2

(y,y′), again in at most O(N3 · (N +log2 µ(R))) time,
as a consequence of Proposition 4.26, Proposition 4.25, and Corollary 4.24. Then, a linear
ranking function for R can be computed in time that is polynomial in the bit-size of V (x,x′),
as proved in [4] (see Corollary 4.8 in Section 4.1). It follows easily from Definition 4.20 that
V (x,x′) can be represented using O(log2(µ(V )) · 3 · (2N)2) = O(N2 · (log2N + log2 µ(R)))
bits. Thus, the time needed to compute f is polynomial in µR and N . Finally, one computes

f
def
= f [xi/y2i−1,−xi/y2i]

N
i=1, again in polynomial time.

5. Linear Affine Relations

The previous section was concerned with computing weakest non-termination preconditions
for non-deterministic integer relations (octagonal relations). Here, we present linear affine
relations which are a general model of deterministic transition relations. Linear affine
relations are conjunctions of equalities of the form x′ = a1x1 + . . . + anxn + b, where
a1, . . . , an ∈ Z are integer coefficients, and Presburger definable conditions on the unprimed
variables x1, . . . , xn. First, we show that the weakest recurrent set of a linear affine relation
R can be computed as the limit of a descending Kleene sequence preR(Z

x) ⊇ pre2R(Z
x) ⊇ . . ..

Second, this set can be defined in Presburger arithmetic for a subclass of affine relations
with the finite monoid property (Section 5.3). Finally, we relax the finite monoid condition
and describe a method for generating sufficient termination conditions, i.e. sets S ∈ Zx such
that S ∩ wrs(R) = ∅, for the class of polynomially bounded affine relations (Section 5.4).

Definition 5.1. Let x = 〈x1, . . . , xN 〉 be a vector of variables ranging over Z. A relation
R ⊆ Zx × Zx is said to be an affine relation if it can be defined by a formula R(x,x′) of
the form:

R(x,x′) ⇔ x′ = A× x+ b ∧ φ(x) (5.1)

where A ∈ ZN×N , b ∈ ZN , and φ is a quantifier-free Presburger formula over unprimed
variables only, called the guard of R. The formula x′ = A × x + b, defining a linear
transformation, is called the update of R.
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5.1. Background on Linear Algebra. We first recall several notions of linear algebra,
needed in the following. For a comprehensive textbook on linear algebra, we refer to [37].
A complex number r is said to be a root of the unity if rd = 1 for some integer d > 0. If
A ∈ Zn×n is a square matrix, and v ∈ Zn is a column vector of integer constants, then any
complex number λ ∈ C such that Av = λv, for some complex vector v ∈ Cn, is called an
eigenvalue of A. The vector v in this case is called an eigenvector of A. It is known that the
eigenvalues of A are the roots of the characteristic polynomial PA(x) = det(A − xIn) = 0,
which is an effectively computable univariate polynomial. The minimal polynomial of A is
the polynomial µA of lowest degree such that µA(A) = 0. By the Cayley-Hamilton Theorem,
the minimal polynomial always divides the characteristic polynomial, i.e. the roots of the
former are root of the latter.

If λ1, . . . , λm are the eigenvalues of A, then λp1, . . . , λ
p
m are the eigenvalues of Ap, for all

integers p > 0. A matrix is said to be diagonalizable if and only if there exists a non-singular
matrix U ∈ CN×N and a diagonal matrix with the eigenvalues λ1, . . . , λm occurring on the
main diagonal, such that A = U × D × U−1. This is the case if and only if µA has only
roots of multiplicity one.9

5.2. Termination Preconditions for Deterministic Relations. First, we show that
the pre-image function of a deterministic relation is ∩-continuous. Since affine transforma-
tions are deterministic, this means that their weakest non-termination preconditions can
be computed as limits of descending Kleene sequences. Let x be a set of variables in the
following.

Lemma 5.2. Let R ⊆ Zx × Zx be a deterministic relation. Then, preR is ∩-continuous.

Proof. Let I = {0, . . . , d}, d ∈ N∞, and {Si ⊆ Zx}i∈I be a potentially infinite collection of
sets. We prove that:

preR(
⋂
i∈I Si) =

⋂
i∈I preR(Si).

“⊆” By the monotonicity of preR (Proposition 3.1), we have preR(
⋂
i∈I Si) ⊆ preR(Si) for

all i ∈ I and hence, preR(
⋂
i∈I Si) ⊆

⋂
i∈I preR(Si).

“⊇” Let v ∈
⋂
i∈I preR(Si). Then, there exists vi ∈ Si such that (v, vi) ∈ R for all i ∈ I.

Since R is deterministic, then v0 = vi for all i ∈ I and hence v0 ∈
⋂
i∈I Si. Consequently,

v ∈ preR(
⋂
i∈I Si).

For the rest of this section, we extend the notion of closed form (Definition 3.8) from
sequences of sets S ⊆ Zx to sequences of powers of relations R ⊆ Zx × Zx.

Definition 5.3. Let R ⊆ Zx×Zx be a relation. The closed form of R is a formula “R(k,x,x′)
such that, for all n ≥ 1 and all ν, ν ′ ∈ Zx:

(ν, ν ′) ∈ Rn ⇔ (ν, ν ′) |= “R[n/k]
Next, we prove that the closed form of a deterministic relation can be defined in Pres-

burger arithmetic whenever the closed form of its update can be defined in Presburger
arithmetic. Concretely, whenever the logical definition of a relation R can be split into a
guard and a deterministic update, and the closed form of R can be computed based on the
closed form of the update.

9See e.g. Thm 8.47 in [5].
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Lemma 5.4. Let R ⊆ Zx × Zx, x = {x1, . . . , xN}, be a deterministic relation and ϕ(x) be
a guard. Then the closed form of the relation defined by the formula R(x,x′) ∧ ϕ(x) is:

(÷R ∧ ϕ)(k,x,x′)⇔ “R(k,x,x′) ∧ ∀1 ≤ ℓ < k ∃y . “R(ℓ,x,y) ∧ ϕ(y)
where “R is the closed form of R and y = {y1, . . . , yN}.

Proof. “⇒” Let ν, ν ′ ∈ Zx be a pair of valuations, such that (ν, ν ′) |= (R ∧ ϕ)n, for some

integer n ≥ 1. Then we also have (ν, ν ′) |= (÷R ∧ ϕ)[n/k]. Consequently, there exists
a sequence of valuations ν = ν0, ν1, . . . , νn = ν ′ ∈ Zx, such that (νi, νi+1) |= R ∧ ϕ. By

Definition 5.3, we have that (ν0, νn) |= “R[n/k] and (ν0, νi) |= (“R ∧ ϕ)[i/k], for all i =
0, . . . , n− 1.

”⇐” Let ν, ν ′ ∈ Zx be two valuations such that:

• (ν, ν ′) |= “R[n/k] for some n ≥ 1 and,

• for all i = 0, . . . , n − 1 there exists a valuation νi ∈ Zx such that (ν, νi) |= “R[i/k] and
νi |= ϕ.

Since “R[n/k] defines Rn, by Definition 5.3, there exists a sequence of valuations ν =
ν ′0, ν

′
1, . . . , ν

′
n = ν ′ ∈ Zx such that (ν ′i, ν

′
i+1) |= R. By the fact that R was assumed to be

deterministic, we have νi = ν ′i for all i = 0, . . . , n− 1, hence ν ′i |= ϕ, for all i = 0, . . . , n− 1.

Clearly then (ν, ν ′) |= (÷R ∧ ϕ)[n/k].
Since linear affine relations are deterministic (Definition 5.1), by Lemma 5.2 they are

also ∩-continuous, and the weakest recurrent set of an arbitrary linear affine relation R can
be computed as wrs(R) =

⋂
m≥0 pre

m
R (Z

x), by Lemma 3.7. Hence, the weakest recurrent
set can be defined using the closed form of R:

(wrs(R))(x)⇔ ∀k ≥ 1 . ∃x′ . “R(k,x,x′)

Considering that the formula defining R is of the form Ru(x,x
′) ∧ ϕ(x) where Ru(x,x

′) is
a deterministic update and ϕ(x) is a Presburger guard, we can write the closed form of R
as:

“R(k,x,x′)⇔ “Ru(k,x,x′) ∧ ∀1 ≤ ℓ < k ∃y . “Ru(ℓ,x,y) ∧ ϕ(y)
by Lemma 5.4. Then, the definition of the weakest recurrent set of a linear affine relation
is (after the elimination of the trailing existential quantifier and renaming ℓ with k and y
with x′):

(wrs(R))(x) ⇔ ∀k ≥ 1 . ∃x′ . “Ru(k,x,x′) ∧ ϕ(x′) (5.2)

5.3. Finite Monoid Affine Relations. The class of finite monoid affine relations was
the first class of integer relations for which the transitive closure has been shown to be
Presburger definable, by Boigelot [5]. Informally, an affine relation is a finite monoid relation
if the set of powers of its transformation matrix is finite. Originally, Boigelot characterized
this class by two decidable conditions in [5] (we report on these conditions in Theorem 5.5).
Later, Finkel and Leroux noticed in [21] that Boigelot’s conditions correspond to the finite
monoid property, which is also known to be decidable [27].

Given a vector x = 〈x1, . . . , xN 〉 of variables, an affine transformation

R(x,x′) ⇔ x′ = A× x+ b ∧ ϕ(x)

where A ∈ ZN×N , b ∈ ZN , is said to have the finite monoid property [5, 21] if the monoid
of powers of A, denoted as 〈MA,×〉, where MA = {Ai | i ≥ 0}, is finite. Here A0 = IN
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and Ai = A × Ai−1, for i > 0. It has been shown in [21] that the finite monoid property
can be equivalently characterized by the following two conditions.

Theorem 5.5 ([5, 21]). An affine transformation R(x,x′) ⇔ A × x + b ∧ ϕ(x), where
A ∈ ZN×N and b ∈ ZN , has the finite monoid property if and only if there exists p > 0
such that the following hold:

(1) every eigenvalue of Ap belongs to the set {0, 1}, and
(2) the minimal polynomial µAp(x) of Ap belongs to the set {0, x, x − 1, x(x − 1)} (or,

equivalently, Ap is diagonalizable).

Both conditions in the above theorem are decidable [5, 27]. It was shown in [5, 21, 10]
that the closed form of (the update part of) a linear affine transformation with the finite
monoid property is Presburger definable. This entails the decidability of the universal
termination problem for finite monoid affine relations.

Theorem 5.6. The weakest non-termination precondition of a finite monoid affine relation
is Presburger definable and effectively computable. Consequently, the termination problem
is decidable for finite monoid affine relations.

Proof. Let R ⊆ Zx × Zx be a finite monoid affine relation defined by a formula Ru(x,x
′) ∧

ϕ(x). By Equation (5.2) we have:

(wrs(R))(x)⇔ ∀k ≥ 1 . ∃x′ . “Ru(k,x,x′) ∧ ϕ(x′)

Since both “Ru(k,x,x′) and ϕ(x′) are Presburger formulas, wrs(R)(x) is a Presburger for-
mula as well. Since Presburger arithmetic is decidable [35], the termination problem can
be decided by checking whether wrs(R) = ∅.

5.4. Polynomially Bounded Affine Relations. In the following, we study another sub-
class of affine relations with linear guards and transformation matrices whose eigenvalues
are either zero or roots of the unity.

Definition 5.7. If x = 〈x1, . . . , xN 〉 is a vector of variables ranging over Z, a polynomially
bounded affine relation is a relation defined by a formula of the form:

R(x,x′) ⇔ x′ = A× x+ b ∧ Cx ≥ d (5.3)

where A ∈ ZN×N , C ∈ ZP×N are matrices, and b ∈ ZN , d ∈ ZP are column vectors of
integer constants, for some P > 0, and moreover, all eigenvalues of A are either zero or
roots of the unity.

Note that, if A is a finite monoid matrix, then all eigenvalues of A are either zero or roots
of the unity. Thus, the condition on A is weaker for polynomially bounded affine relations.
However, since the guard of finite monoid relations is more general (Presburger), the two
classes are incomparable.

The closed form of polynomially bounded affine relations cannot be defined in Pres-
burger arithmetic10, thus we renounce defining wrs(R) precisely, and content ourselves with
the discovery of sufficient conditions for termination. Basically, given a linear affine relation

10The closed form R̂(k,x,x′) of a polynomially bounded affine relation is defined by polynomial functions
in k, of arbitrary degrees. It is possible to show that a polynomial function of degree greater than one is not
Presburger definable [23]) .
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R, we aim at finding a disjunction φ(x) of linear constraints on x, such that φ ∧ wrs(R) is
inconsistent without explicitly computing wrs(R). For this, we use several existing results
from linear algebra (see, e.g., [20]). In the following, it is convenient to work with the
equivalent homogeneous form:

R(x,x′) ≡ Chxh ≥ 0 ∧ x′
h = Ahxh ∧ xN+1 = 1

Ah =

Ç
A b
0 1

å
Ch =

(
C −d

)
xh =

Ç
x

xN+1

å (5.4)

The weakest recurrent set of R can be then defined as:

(wrs(R))(x) ≡ ∃xN+1 . ∀k ≥ 0 . ChA
k
hxh ≥ 0 ∧ xN+1 = 1 (5.5)

Definition 5.8. A function f : N→ C is said to be a C-finite recurrence if and only if:

f(n+ d) = ad−1f(n+ d− 1) + . . .+ a1f(n+ 1) + a0f(n), ∀n ≥ 0

for some d ∈ N and a0, a1, . . . , ad−1 ∈ C, with ad−1 6= 0. The polynomial xd − ad−1x
d−1 −

. . . a1x− a0 is called the characteristic polynomial of f .

A C-finite recurrence always admits a closed form.

Theorem 5.9 ([20]). The closed form of a C-finite recurrence is:

f(n) = p1(n)λ
n
1 + . . .+ ps(n)λ

n
s

where λ1, . . . , λs ∈ C are non-zero distinct roots of the characteristic polynomial of f , and
p1, . . . , ps ∈ C[n] are polynomials of degree less than the multiplicities of λ1, . . . , λs, respec-
tively.

Next, we define the closed form for the sequence of powers of A.

Corollary 5.10. Given a square matrix A ∈ ZN×N , we have, for all n > 0:

(An)i,j = p1,i,j(n)λ
n
1 + . . .+ ps,i,j(n)λ

n
s

where λ1, . . . , λs ∈ C are non-zero distinct eigenvalues of A, and p1,i,j, . . . , ps,i,j ∈ C[n] are
polynomials of degree less than the multiplicities of λ1, . . . , λs, respectively.

Proof. If det(A− xIn) = xd − ad−1x
d−1 − . . .− a1x− a0 is the characteristic polynomial of

A, then we have
Ad − ad−1A

d−1 − . . .− a1A− a0 = 0

by the Cayley-Hamilton Theorem. If we define fi,j(n) = (An)i,j , for all n > 0, by multiplying
the above equality with An, we obtain:

An+d = ad−1A
n+d−1 + . . .+ a1A

n+1 + a0A
n

fi,j(n+ d) = ad−1fi,j(n+ d− 1) + . . .+ a1fi,j(n + 1) + a0fi,j(n)

By Theorem 5.9, we have that

(An)i,j = p1,i,j(n)λ
n
1 + . . .+ ps,i,j(n)λ

n
s

for some polynomials p1,i,j, . . . , ps,i,j ∈ C[n] of degrees less than the multiplicities of λ1, . . . , λs,
respectively.
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Lemma 5.11. Given a square matrix A ∈ ZN×N , whose non-zero eigenvalues are all
roots of the unity. Then (An)i,j ∈ Q[n], for all 1 ≤ i, j ≤ N , are effectively computable
polynomials with rational coefficients.

Proof. Assume from now on that all non-zero eigenvalues λ1, . . . , λs of A are such that
λd11 = . . . = λdss = 1, for some integers d1, . . . , ds > 0. The method given in [5] for
testing the finite monoid condition for A gives also bounds for d1, . . . , ds. Then we have
λL1 = . . . λLs = 1, where L = lcm(d1, . . . , ds). As d1, . . . , ds are effectively bounded, so is
L. By Corollary 5.10, we have that, if n is a multiple of L, then (An)i,j = pi,j(n) for
some effectively computable polynomial pi,j ∈ C[n], of degree dij > 0, i.e. for n multiple
of L, An is polynomially definable. But since pi,j(n) assumes real values in an infinity of
points n = kL, k > 0, it must be that its coefficients are all real numbers, i.e. pi,j ∈ R[n].
Moreover, these coefficients are the solutions of the integer system:





pi,j(L) = (AL)i,j
. . .

pi,j((dij + 1)L) = (A(dij+1)L)i,j

Clearly, since A ∈ ZN×N , Ap ∈ ZN×N , for any p > 0. Hence pi,j ∈ Q[n].

We turn now back to the problem of defining wrs(R) for linear affine relations R of the
form (5.5). First notice that, if all non-zero eigenvalues of A are roots of the unity, then the
same holds for Ah (5.4). By Lemma 5.11, one can find rational polynomials pi,j(k) defining

(Akh)i,j, for all 1 ≤ i, j ≤ N . The condition (5.5) becomes a conjunction of the form:

(wrs(R))(x) ≡
n∧

i=1

∀k ≥ 1 . Pi(k,x) ≥ 0 (5.6)

where each Pi = ai,d(x)·k
d+. . .+ai,1(x)·k+ai,0(x) is a polynomial in k whose coefficients are

the linear combinations ai,d ∈ Q[x]. We are looking for a sufficient condition for termination,
which is, in this case, any set of valuations of x that would invalidate (5.6). The following
proposition gives sufficient invalidating clauses for each conjunct above. By taking the
disjunction of all these clauses we obtain a sufficient termination condition for R.

Lemma 5.12. Given a polynomial P (k,x) = ad(x) · k
d + . . . + a1(x) · k + a0(x), for each

valuation ν ∈ Zx there exists an integer n > 0 such that P (n, ν(x)) < 0 if, for some i =
0, 1, . . . , d, we have ad−i(ν(x)) < 0 and ad(ν(x)) = ad−1(ν(x)) = . . . = ad−i+1(ν(x)) = 0.

Proof. Assuming that:

ad−i(ν(x)) < 0 and ad(ν(x)) = ad−1(ν(x)) = . . . = ad−i+1(ν(x)) = 0

for some 0 ≤ i ≤ d, we have P (k, ν(x)) = ad−i(ν(x)) ·k
d+ . . .+a1(ν(x)) ·k+a0(ν(x)). Since

the dominant coefficient ad−i(ν(x)) is negative, the polynomial will assume only negative
values, from some point on.

Example 5.13. Consider the following program [16], and its linear transformation matrix
A.

while (x ≥ 0)
x′ = x+ y
y′ = y + z

A =

Ñ
1 1 0
0 1 1
0 0 1

é
Ak =

Ö
1 k k(k−1)

2
0 1 k
0 0 1

è



DECIDING CONDITIONAL TERMINATION 47

The characteristic polynomial of A is det(A−λI3) = (1−λ)3, hence the only eigenvalue is 1,

with multiplicity 3. Then we compute Ak (see above), and x′ = x+ k · y+ k(k−1)
2 z gives the

value of x after k iterations of the loop. Since only x occurs within the guard of the loop,
the weakest non-termination precondition is: ∀k ≥ 1 . z2 ·k

2+(y− z
2) ·k+x ≥ 0. Lemma 5.12

gives a sufficient condition for termination: (z < 0)∨(z = 0∧y < 0)∨(z = 0∧y = 0∧x < 0).

We can generalize this method further to the case where all eigenvalues of A are of the
form q · r, with q ∈ R and r ∈ C being a root of the unity11. The main reason for not using
this condition from the beginning is that we are, to this point, unaware of its decidability
status. With this condition instead, it is sufficient to consider only the eigenvalues with the
maximal absolute value, and the polynomials obtained as sums of the polynomial coefficients
of these eigenvalues. The result of Lemma 5.11 and the sufficient condition of Lemma 5.12
carry over when using these polynomials instead.

6. Termination Analysis of Integer Programs

In this section, we extend the computation of weakest non-termination preconditions from
simple conjunctive loops to programs with possibly nested loops. The method described
here applies the transition invariants technique, initially developed for proving program
termination [34], to the computation of termination preconditions.

The method can be summarized as follows. Suppose that R is the (possibly dis-
junctive) transition relation of a program. Our method first computes (1) a reachabil-
ity relation, defined as an over-approximation of a restriction of the transitive closure
of the transition relation R+ to a set Init of initial program configurations, formally
Reach ⊇ {(ν, ν ′) | (ν, ν ′) ∈ R+, ν ∈ Init}, and (2) a transition invariant, defined as an
over-approximation of the transitive closure of R restricted to states reachable from the set
of initial configurations, formally TInv ⊇ {(ν, ν ′) | (ν, ν ′) ∈ R+, ν ∈ R∗(Init)}. Then, TInv
is over-approximated with a union R1 ∪ · · · ∪Rm, m ≥ 1, of octagonal relations. Next, the
weakest non-termination precondition wnt(Ri), 1 ≤ i ≤ m, can be computed using tech-
niques from Sections 4 and 5. The weakest non-termination precondition of the program is
then over-approximated by the pre-image of wnt(R1)∪ . . .∪wnt(Rm) via the reachability re-
lation, formally Reach−1(wnt(R1)∪. . .∪wnt(Rm)), or equivalently,

⋃m
i=1Reach

−1(wnt(Ri)).
The complement of this set is then a valid termination precondition.

The technique presented in this section can be further applied to programs with (recur-
sive) procedure calls, by using the program transformation described in [18], which turns
a program P with recursive procedure calls into a program P ′ without procedures such
that wrs(P ) ⊆ wrs(P ′). The main ingredient of this technique is the summarization of
procedures, i.e. computing (an over-approximation of) the relation between the values of
the input parameters and the values returned by the procedure.

6.1. Example. Consider the non-deterministic integer program in Figure 5(a). If x = 0
initially, the program does not enter the main loop, and terminates trivially. Otherwise,
the program may enter an infinite computation. If y ≤ 0 initially, the program can iterate
the third branch of the main loop infinitely many times. Otherwise, if y > 0 initially, the

11A complex number r = cos(θ) + i sin(θ), of absolute value |r| = 1, is a root of the unity if and only if
θ = aπ

b
, for some a, b ∈ N, b 6= 0.
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program can iterate the second branch y times and then iterate the third branch infinitely
many times.

int x,y;
1. while (x != 0) {
2. if (*) {
3. y = x;
4. x = x-1;
5. } else if (y>0) {
6. y = y-1;

} else {
7. skip;

}
8. }

ℓ1 ℓ2

ℓ3ℓ4

ℓ5ℓ6

ℓ7

ℓ8

x 6= 0 ∧ Ix,y

Ix,y

y′ = x ∧ Ix

x′ = x− 1 ∧ Iy

Ix,y

y > 0 ∧ Ix,y

y′ = y − 1 ∧ Ix

y ≤ 0 ∧ Ix,y

x = 0∧
Ix,y

Ix,y

ℓ1

ℓ8

x = 0∧
Ix,y

x 6= 0 ∧

y′ = x ∧ x′ = x− 1

x 6= 0 ∧ y > 0 ∧

y′ = y − 1 ∧ x′ = x

x 6= 0 ∧ y ≤ 0 ∧

x′ = x ∧ y′ = y

(a) (b) (c)

Figure 5. An integer program and its control flow graph

We view programs as control flow graphs labeled with arithmetic formulas. Figure
5(b) depicts the control flow graph of the program in Figure 5(a). We write Ix1,...,xm as
a shorthand for

∧m
i=1 x

′
i = xi. The mechanics of our algorithm computing the weakest

non-termination precondition applied on the above example are described in the following.
First, we reduce the three loops ℓ1 −→ ℓ2 −→ ℓ3 −→ ℓ4 −→ ℓ1, ℓ1 −→ ℓ2 −→ ℓ5 −→ ℓ6 −→ ℓ1 and
ℓ1 −→ ℓ2 −→ ℓ5 −→ ℓ7 −→ ℓ1 in Figure 5(b) into self-loops, obtaining a reduced control flow
graph in Figure 5(c). Then, we compute the transitive summary relation induced by all
non-trivial runs of the program starting and ending at ℓ1 (this notion is formally defined in
the next section). This relation is given in disjunctive normal form:

[[P ]]+(ℓ1, ℓ1) ⇔ R1 ∨R2 ∨R3 ∨R4 ∨R5 ∨R6 ∨R7

R1 ⇔ x ≤ −1 ∧ y′ ≤ x ∧ y′ = x′ + 1
R2 ⇔ y′ ≥ 1 ∧ y′ ≤ x ∧ y′ = x′ + 1
R3 ⇔ y′ ≥ 0 ∧ y′ ≤ y − 1 ∧ x′ = x ∧ x′ ≤ −1
R4 ⇔ x′ ≥ 1 ∧ x′ = x ∧ y′ ≥ 0 ∧ y′ ≤ y − 1
R5 ⇔ x′ = x ∧ x′ ≤ −1 ∧ y′ = y ∧ y′ ≤ 0
R6 ⇔ x′ ≥ 1 ∧ x′ = x ∧ y′ = y ∧ y′ ≤ 0
R7 ⇔ x′ ≥ 1 ∧ y′ ≥ 0 ∧ x′ ≤ x− 1 ∧ y′ ≤ x′

Notice that, since ℓ1 is the initial control state of the program, the set of valuations reached
at ℓ1 is the universal set Zx. A transition invariant of the program is the restriction of
the summary relation to the reachable states, which, in this case, is [[P ]]TInv(ℓ1, ℓ1) =
[[P ]]+(ℓ1, ℓ1). Next, we compute the weakest non-termination precondition of each disjunct
of the transition invariant, obtaining the formulas wnt(R1), . . . ,wnt(R7) below:

wnt(R1) ⇔ x ≤ −1
wnt(R2) ⇔ false
wnt(R3) ⇔ false
wnt(R4) ⇔ false
wnt(R5) ⇔ x ≤ −1 ∧ y ≤ 0
wnt(R6) ⇔ x ≥ 1 ∧ y ≤ 0
wnt(R7) ⇔ false
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The disjunction of these non-termination precondition defines a set of configurations of the
program, from which infinite runs, starting at ℓ1, are guaranteed to exist:

wnt(R1) ∨ · · · ∨wnt(R7)⇔ (x ≤ −1) ∨ (x ≥ 1 ∧ y ≤ 0)

Finally, we compute the pre-image of this set via the (reflexive and transitive) reachability re-
lation defined as [[P ]]∗(ℓ1, ℓ1) = [[P ]]+(ℓ1, ℓ1)∨Ix, obtaining thus the weakest non-termination
precondition of the program:

([[P ]]∗(ℓ1, ℓ1))
−1(wnt(R1) ∨ · · · ∨ wnt(R7)) ⇔

(x ≥ 1 ∧ y ≤ 0) ∨ (x ≥ 1 ∧ y ≥ 1) ∨ (x ≥ 2) ∨ (x ≤ −1) ⇔ x 6= 0

This result matches the intuition. Indeed, the program will terminate if and only if x = 0,
in which case the while loop is never entered. For x 6= 0, the program enters the while

loop and may get stuck into an infinite loop, for every initial value of y.

6.2. Syntax and Semantics. In the following, we abstract from specific programming lan-
guage constructs and assume that programs are represented by control flow graphs whose
edges are labeled by quantifier-free Presburger arithmetic formulas defining relations. For-
mally, an integer program is a tuple P = 〈x, Q, qinit,∆〉, where:

• x is the set of variables of P
• Q are the control states of P

• ∆ is a set of transition rules q
R(x,x′)
−−−−→ q′, where q, q′ ∈ Q are the source and destination

states, and R(x,x′) is a quantifier-free Presburger formula
• qinit is the initial control state of P

Example 6.1. The program whose control flow graph is shown in Figure 5(b) can be
formalized as P = 〈x, Q, ℓ1,∆〉, where x = {x, y}, Q = {ℓ1, . . . , ℓ8}, ∆ = {t1, . . . , t10}, and

t1 = ℓ1
x 6=0 ∧ Ix,y
−−−−−−−→ ℓ2

t2 = ℓ2
Ix,y
−−→ ℓ3

t3 = ℓ3
y′=x ∧ Ix−−−−−−→ ℓ4

t4 = ℓ4
x′=x−1 ∧ Iy
−−−−−−−−→ ℓ1

t5 = ℓ2
Ix,y
−−→ ℓ5

t6 = ℓ5
y>0 ∧ Ix,y
−−−−−−−→ ℓ6

t7 = ℓ6
y′=y−1 ∧ Ix−−−−−−−−→ ℓ1

t8 = ℓ5
y≤0 ∧ Ix,y
−−−−−−−→ ℓ7

t9 = ℓ7
Ix,y
−−→ ℓ1

t10 = ℓ1
x=0 ∧ Ix,y
−−−−−−−→ ℓ8

A configuration of a program P = 〈x, Q, qinit,∆〉 is a pair 〈q, ν〉, where q ∈ Q is a control
state and ν ∈ Zx is a valuation of the variables. Given two configurations 〈q, ν〉 and 〈q′, ν ′〉
of a program P , the configuration 〈q′, ν ′〉 is said to be an immediate successor of 〈q, ν〉 if

and only if q
R(x,x′)
−−−−→ q′ ∈ ∆ and (ν, ν ′) |= R. For any k ≥ 0, a run of length k of the

program P from q to q′ is a finite sequence 〈q0, ν0〉 −→ 〈q1, ν1〉 −→ . . . −→ 〈qk, νk〉, such that
q = q0, q

′ = qk, and 〈qi+1, νi+1〉 is an immediate successor of 〈qi, νi〉, for all 0 ≤ i < k. Given
two configurations 〈q, ν〉 and 〈q′, ν ′〉 of a program P , the configuration 〈q′, ν ′〉 is said to be
a successor of 〈q, ν〉 if there exists a run of length k ≥ 0 from 〈q, ν〉 to 〈q′, ν ′〉. An infinite
run of a program P from a control state q is an infinite sequence 〈q0, ν0〉 −→ 〈q1, ν1〉 −→ . . .
such that q = q0 and 〈qi+1, νi+1〉 is an immediate successor of 〈qi, νi〉 for all i ≥ 0. The
transitive closure of the transition relation [[P ]]+ : (Q × Q) → 2Z

x×Zx

, the reflexive and
transitive closures of the transition relation [[P ]]∗ : (Q×Q)→ 2Z

x×Zx

, and the weakest non-

termination precondition [[P ]]wnt : Q→ 2Z
x

of the program P are defined for each q, q′ ∈ Q
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as follows:

[[P ]]+(q, q′)
def
= {〈ν, ν ′〉 | 〈q, ν〉−→ . . .−→〈q′, ν ′〉 is a run of P of length k≥1}

[[P ]]∗(q, q′)
def
= {〈ν, ν ′〉 | 〈q, ν〉−→ . . .−→〈q′, ν ′〉 is a run of P of length k≥0}

[[P ]]wnt(q)
def
= {ν | 〈q, ν〉−→ . . . is an infinite run of P}

Note that the set of configurations with control state q that are reachable from qinit, can be
defined as the post-image of Zx via [[P ]]∗(qinit, q), i.e. [[P ]]

∗(qinit, q)(Z
x). With this notation,

the strongest transition invariant [[P ]]TInv : (Q × Q) → 2Z
x×Zx

of a program P is defined
for each q, q′ ∈ Q as the restriction of the transitive closure of the transition relation to the
set of reachable configurations:

[[P ]]TInv(q, q′)
def
= {〈ν, ν ′〉 ∈ [[P ]]+(q, q′) | ν ∈

Ä
[[P ]]∗(qinit, q)

ä
(Zx)}

When [[P ]]+, [[P ]]∗, [[P ]]TInv, or [[P ]]wnt is not computable, one may content oneself with
computing the following over-approximations:

[[P ]]+♯ : (Q×Q)→ 2Z
x×Zx

, [[P ]]TInv♯ : (Q×Q)→ 2Z
x×Zx

,

[[P ]]∗♯ : (Q×Q)→ 2Z
x×Zx

, [[P ]]wnt♯ : Q→ 2Z
x×Zx

,

These are arbitrary mappings such that:

[[P ]]+♯ (q, q
′) ⊇ [[P ]]+(q, q′), [[P ]]TInv♯ (q, q′) ⊇ [[P ]]TInv(q, q′),

[[P ]]∗♯ (q, q
′) ⊇ [[P ]]∗(q, q′), [[P ]]wnt♯ (q) ⊇ [[P ]]wnt(q),

for all q, q′ ∈ Q. Any set [[P ]]TInv♯ that satisfies the above inclusion is called a transition
invariant.

6.3. Computing Termination Preconditions for Integer Programs. The following
theorem is used to compute a termination precondition of an integer program, using a
set of precomputed transition invariants. In fact we compute an over-approximation of
the weakest non-termination precondition. The complement of this set is a termination
precondition, i.e. a set of initial configurations from which the program is guaranteed to
terminate.

Theorem 6.2. Let P = 〈x, Q, qinit,∆〉 be a program, [[P ]]∗♯ ⊇ [[P ]]∗ be an over-approximation

of the reflexive and transitive closure of the transition relation, [[P ]]TInv♯ ⊇ [[P ]]TInv be a
transition invariant and, for each q ∈ Q, let Rq,1, . . . , Rq,pq ⊆ Zx × Zx be relations, such

that [[P ]]TInv♯ (q, q) =
⋃pq
k=1Rq,k, for some pq ≥ 1. Let

N
def
=

⋃

q∈Q

(Ä
[[P ]]∗♯ (qinit, q)

ä−1

( pq⋃

k=1

wnt(Rq,k)

))

Then, [[P ]]wnt(qinit) ⊆ N . Moreover, if [[P ]]TInv♯ = [[P ]]TInv and [[P ]]∗♯ = [[P ]]∗, then N =

[[P ]]wnt(qinit).

Proof. We first prove that [[P ]]wnt(qinit) ⊆ N . Let ν0 ∈ [[P ]]wnt(qinit) be a valuation, and
let ρ1 = 〈qinit, ν0〉〈q1, ν1〉〈q2, ν2〉 . . . be an infinite run of P starting with ν0. Since the set
of control states Q is finite, there exists q ∈ Q, and infinitely many integers 1 ≤ ℓ1 < ℓ2 <
ℓ3 < . . . such that q = qℓ1 = qℓ2 = qℓ3 = . . . It follows from the definition of [[P ]]TInv♯
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that 〈νℓj , νℓj+1
〉 ∈ [[P ]]TInv♯ (q, q) for all j ≥ 1. Let µi denote νℓi , for all i ≥ 1. Then

ρ2 = 〈qinit, ν0〉〈q, µ1〉〈q, µ2〉 . . . is an infinite subsequence of ρ1.

Since [[P ]]TInv♯ (q, q) =
⋃pq
k=1Rq,k, it follows from the definition of [[P ]]TInv♯ that for each

1 ≤ k < ℓ, there exists 1 ≤ j ≤ pq such that 〈µk, µℓ〉 ∈ Rq,j. Consequently, there exists
a function f : {(k, ℓ) | 1 ≤ k < ℓ} → {Rq,1, . . . , Rq,pq} such that 〈µk, µℓ〉 ∈ f(k, ℓ) for all
1 ≤ k < ℓ. Let ∼f be the kernel of f , i.e. the equivalence relation defined as 〈k, ℓ〉 ∼f 〈k

′, ℓ′〉
if and only if f(k, ℓ) = f(k′, ℓ′). Clearly, ∼f has finite index, since the range of f is finite.
Consequently, by the Ramsey theorem [36], there exists an infinite sequence of integers
1 ≤ k1 < k2 < k3 < . . . and an equivalence class [(m,n)]∼f

for some 1 ≤ m < n such that
〈ki, ki+1〉 ∼f 〈m,n〉 for all i ≥ 1. Thus, there exists 1 ≤ j ≤ pq such that f(ki, ki+1) = Rq,j
for all i ≥ 1. Consequently, µk1µk2 . . . is an infinite run of Rq,j and hence, µk1 ∈ wnt(Rq,j).
Since 〈ν0, µk1〉 ∈ [[P ]]∗♯ (qinit, q), by the definition of [[P ]]∗♯ , it follows that

ν0 ∈
Ä
[[P ]]∗♯ (qinit, q)

ä−1 Ä
wnt(Rq,j)

ä
⊆
Ä
[[P ]]∗♯ (qinit, q)

ä−1

(
p⋃

k=1

wnt(Rq,k)

)
⊆ N

hence ν0 ∈ N , i.e. [[P ]]wnt(qinit) ⊆ N .

Next, we prove that [[P ]]wnt(qinit) ⊇ N under the assumption that [[P ]]TInv♯ = [[P ]]TInv

and [[P ]]∗♯ = [[P ]]∗. Together with the previous point, this is sufficient to prove that

[[P ]]wnt(qinit) = N . Let ν ∈ N . By the definition of N and since [[P ]]∗♯ = [[P ]]∗, there

exists q ∈ Q, ν0 ∈ Zx, and k ∈ {1, . . . , pq} such that (i) there exists a run ρ from
the configuration 〈qinit, ν〉 to the configuration 〈q, ν0〉, and (ii) ν0 ∈ wnt(Rq,j) for some
j ∈ {1, . . . , pq}. Since ν0 ∈ wnt(Rq,j), there exist infinitely many valuations ν1, ν2, . . . such

that 〈νi, νi+1〉 ∈ Rq,j for all i ≥ 0. Since [[P ]]TInv(q, q) = [[P ]]TInv♯ (q, q) =
⋃pq
k=1Rq,k, we

have that Rq,j ⊆ [[P ]]TInv(q, q) ⊆ [[P ]]+(q, q), by the definition of the strongest transition

invariant [[P ]]TInv(q, q). But then, for each i ≥ 0 there exists a run ρi of strictly positive
length from 〈q, νi〉 to 〈q, νi+1〉. Consequently, ρ.ρ1.ρ2 . . . is an infinite run of P and hence,

ν ∈ [[P ]]wnt(qinit).

Algorithm 4 computes a sound over-approximation of the weakest non-termination pre-
condition of an integer program. It uses a function WNT(R) to compute the weakest
non-termination precondition of an octagonal, finite monoid or polynomially bounded affine
relation. Based on our previous results, WNT(R) is precisely the weakest non-termination
precondition, if R is octagonal (Algorithm 3) or finite monoid affine (Theorems 4.38 and
5.6, respectively), and WNT(R) is an over-approximation of the above, if R is a polyno-
mially bounded affine relation (Equation (5.6) and Lemma 5.12). Let P = 〈x, Q, qinit,∆〉
be an integer program, for which we would like to compute a non-termination precondi-
tion [[P ]]wnt♯ (qinit). Since the set of control states of P is finite, any infinite computation
of P will eventually iterate through the same state q ∈ Q infinitely often. Hence we must
compute non-termination preconditions for all states q ∈ Q, i.e. sets of configurations from
which a computation iterating q infinitely often is possible. For reasons of precision, here
we distinguish two cases:

• If q occurs within only one elementary cycle, then every infinite run involving q infinitely
often must iterate this cycle. If, moreover, the composition of the relations on the cycle
defines an:
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– octagonal relation or a finite monoid affine relation R, then we can compute wnt(R)
precisely (see Theorems 4.38 and 5.6, respectively).

– polynomially bounded affine relation R, then we can compute an over-approximation
of wnt(R) (see Equation (5.6) and Lemma 5.12).

Notice that equivalence of a formula with an octagonal constraint can be decided using
integer linear programming [37], whereas the finite monoid and polynomial boundedness
of an affine relation can be decided using Theorem 5.5 and the decidability of its precon-
ditions [5, 27].

• Otherwise, we compute a transition invariant [[P ]]TInv♯ (q, q) and over-approximate it with

a set of octagonal relations R′
1, . . . , R

′
p, for some p ≥ 1. Since we can compute wnt(R′

i)

for each such octagonal relation, we can apply Theorem 6.2 to obtain [[P ]]wnt(qinit).

Alternatively, one can see the first case above (lines 4-8 of Algorithm 4) as a special case of

Theorem 6.2, in which the transition invariant [[P ]]TInv(q, q) can be safely replaced by the
weakest non-termination precondition wnt(R), since R is the only cycle that can be iterated
infinitely often. Since we consider the pre-image of this set via the reflexive and transitive
closure of the reachability relation [[P ]]∗♯ (qinit, q), we are guaranteed to iterate this loop only
through reachable configurations.

Any procedure for computing transition invariants can be used for the purposes of this
algorithm. For reasons of self-containment, Section 6.4 describes an algorithm for comput-
ing reflexive and transitive closures of the transition relations [[P ]]∗♯ (qinit, q), and transition

invariants [[P ]]TInv♯ (q), for every q ∈ Q. A version of this algorithm was implemented in the

Flata tool [22], and is guaranteed to return the exact reflexive and transitive closures of
the transition relations [[P ]]∗(qinit, q), and the strongest transition invariants of the program

[[P ]]TInv(q), for a specific class of programs, called flat (see Section 6.5). A formal proof of
correctness of Algorithm 4 is given in Section 6.5.

Algorithm 4 Computing a Non-termination Precondition for a Program

input A program P = 〈x, Q, qinit,∆〉
output A non-termination precondition [[P ]]wnt♯ (qinit)

1: function NT PROGRAM(P)
2: N ← ∅
3: for each q ∈ Q do

4: if q
R1−→ . . .

Rn−−→ q is the only elementary cycle involving q in P then
5: R← ∃x1 . . . ∃xn−1 . R1(x,x1) ∧ . . . Rn(xn−1,x

′)
6: if R defines an octagonal, fin. monoid or poly. bounded affine relation then

7: N ← N ∪
Ä
[[P ]]∗♯ (qinit, q)

ä−1Ä
WNT(R)

ä

8: continue
9: find octagonal relations R′

1, . . . , R
′
p s.t. [[P ]]TInv(q, q) ⊆

Ä
R′

1 ∪ · · · ∪R
′
p

ä

10: N ← N ∪
Ä
[[P ]]∗♯ (qinit, q)

ä−1Ä⋃p
j=1WNT(R′

j)
ä

11: return N
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Algorithm 5 Procedure Summary Algorithm

input A program P = 〈x, Q, qinit,∆〉, and distinct control states qin, qout ∈ Q
output An over-approximated transitive closure [[P ]]+♯ (qin, qout)

1: function TransitiveRelation(P, qin, qout)

2: P = 〈x, Q ∪ {q̄in, q̄out}, q̄in,∆ ∪ {q̄in
Ix−→ qin, qout

Ix−→ q̄out}〉

3: for each q ∈ Q \ {q̄in, q̄out} with self-loops q
R1−→ q, . . . , q

Rk−→ q ∈ ∆ do
4: if k = 0 then
5: T ← Ix
6: else
7: if k = 1 and R1 is a finite monoid affine relation then
8: H ← R1

9: else
10: H ← OctagonalHull(R1 ∨ . . . ∨Rk)

11: T ← ReflexiveTransitiveClosure(H)

12: for each q1
P
−→ q and q

Q
−→ q2 such that q 6∈ {q1, q2} do

13: ∆← ∆ ∪ {q1
∃x1∃x2.P (x,x1)∧T (x1,x2)∧Q(x2,x

′)
−−−−−−−−−−−−−−−−−−−−→ q2}

14: Q← Q \ {q}

15: ∆← ∆ \ {q1
R
−→ q2 | q ∈ {q1, q2}}

16: return
∨
{R | (q̄in

R
−→ q̄out) ∈ ∆}

6.4. Computing Transition Invariants. The core of the method for computing tran-
sition invariants, needed by the non-termination precondition Algorithm 3, is a proce-
dure that computes, for any two control states q, q′ ∈ Q of an integer program P =
〈x, Q, qinit,∆〉, an over-approximation [[P ]]+♯ (q, q

′) of the transitive closure [[P ]]+(q, q′). The

reflexive and transitive closure [[P ]]∗♯ (q, q
′) can be computed using the alternative definition:

[[P ]]∗♯ (q, q
′) = [[P ]]+♯ (q, q

′), if q 6= q′, and [[P ]]∗♯ (q, q) = [[P ]]+♯ (q, q) ∪ Ix. Using the reflex-
ive and transitive closure, one can compute an over-approximation of the reachable set,

at any control state q ∈ Q, as: Reach♯P (q) = [[P ]]∗♯ (qinit, q)(Z
x). The transition invariant

[[P ]]TInv♯ (q, q′) given by the transitive closure [[P ]]+♯ (q, q
′) restricted to values from Reach♯P (q)

only: [[P ]]TInv♯ (q, q′) = {〈ν, ν ′〉 ∈ [[P ]]+♯ (q, q
′) | ν ∈ Reach♯P (q)}.

Algorithm 5 computes the over-approximated transitive closures [[P ]]+♯ (q, q
′), that are

the key of our method for computing non-termination preconditions. The idea of this
algorithm is to eliminate control states which are neither initial or final, while introducing
new transitions labeled with compositions of relations between the remaining states.12 In
the beginning (line 2) we create a working copy P of the program by adding two fresh control

states q̄in, q̄out 6∈ Q and two copy transitions q̄in
Ix−→ qin and qout

Ix−→ q̄out. This ensures that
q̄in and q̄out do not occur within loops in P . Then we iterate the following steps, until no
more states can be eliminated. For each control state with (possibly zero) self-loops labeled
with relations R1, . . . , Rk, we compute an over-approximation of the reflexive and transitive
closure T = (R1 ∨ . . . ∨Rk)

∗. Three situations may arise:

• if there is no such loop, i.e. k = 0, T is the identity relation.

12The algorithm resembles the schoolbook method for converting finite automata into regular expressions.
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• if there is only one such loop labeled with a finite monoid affine relation R1, T = R∗
1 can

be computed using one of the techniques from [21, 5, 10].
• otherwise, we compute first the octagonal hullH = (R1∨. . .∨Rk)

oct, and then the reflexive
and transitive closure of the octagonal hull T = H∗, using the algorithm described in [10].
The octagonal hull of a set is the strongest octagonal constraint that defines an over-
approximation of that set. In general, the octagonal hull of a Presburger-definable set
can be computed using integer linear programming [37].

Next, we compose the relation of each incoming transition q1
R
−→ q with T , and with the

relation of each outgoing transition q
Q
−→ q2. We replace the pair of incoming and outgoing

transitions with the transition q1
P◦T◦Q
−−−−→ q2, which does not involve q (line 13), and, finally,

we eliminate q and all transitions involving it from the program (lines 14-15). The result is
the disjunction of all relations occurring on the remaining transitions between the qin and
qout states (line 16), which defines [[P ]]+♯ (qin, qout).

The argument for proving the soundness of Algorithm 5 is that the following invariant
holds, at each iteration of the main loop of the algorithm: after each elimination of a
control state q from a program P (line 14), the transitive closure of the remaining program
P ′ is an over-approximation of the previous one, i.e. for all q1, q2 ∈ Q \ {q}, [[P ]]

+(q1, q2) ⊆
[[P ′]]+(q1, q2). This is the case because the summary relation:

SqP (q1, q2) = {〈ν1, ν2〉 | there is a run 〈q1, ν1〉 −→ . . . −→ 〈q, ν〉 −→ . . . 〈q2, ν2〉 in P}

induced by the set of runs between two configurations 〈q1, ν1〉 and 〈q2, ν2〉, which visits q,
is over-approximated by the composition of P , T and Q (line 13):

SqP (q1, q2)⇒ ∃x1∃x2 . P (x,x1) ∧ T (x1,x2) ∧Q(x2,x
′)

It is to be noticed that each transition q1 −→ q2 introduced at line 13 in the algorithm
corresponds to a path between q1 and q2 in the original control flow graph of the program,
which visits at least once the state q removed at line 14. A formal proof of soundness is
given in Lemma 6.4.

6.5. Flat Integer Programs. In this section, we define a class of integer programs for
which our method computes precisely the weakest non-termination preconditions, as for-
mulas in Presburger arithmetic. As a consequence of the decidability of the satisfiability
problem for Presburger arithmetic [35], the universal termination problem is decidable for
this class. A recent result [9, 8] shows that the reachability problem, i.e. the existence
of a finite run between two control states, in a flat program whose transitions occurring
within loops are labeled by octagonal constraints, is NP-complete. As a byproduct, we
show that the non-termination problem, i.e. the existence of an infinite computation, for
these programs is NP-complete as well.

Definition 6.3. Let P = 〈x, Q, qinit,∆〉 be an integer program. For any elementary cycle

π : q1
R1−→ q2

R2−→ . . . qn
Rn−−→ q1, let λ(π) denote the formula ∃x1, . . . ,xn−1 . R1(x,x1) ∧

. . . ∧Rn(xn−1,x). Then P is said to be flat if and only if:

(1) each control state q ∈ Q belongs to at most one elementary cycle,
(2) for each elementary cycle π in P , λ(π) defines an octagonal, or a finite monoid affine

relation.
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Example 1. Figure 6 depicts a flat integer programs P and its control flow graph. For sim-
plicity, the elementary cycles have been already reduced to one transition, by composition
of all the relations labeling the transitions within them. Since the labels of the self-loops
are octagonal constraints, we can compute their reflexive and transitive closures precisely:

R∗
2,2 ⇔ Ix,y,m,n,y0 ∨ (x′ − x = y′ − y ∧ x′ ≥ x+ 1 ∧m ≥ x′ ∧ Im,n,y0)

R∗
5,5 ⇔ Ix,y,m,n,y0 ∨ (x′ − x = y − y′ ∧ x′ ≥ x+ 1 ∧ n ≥ x′ ∧ Im,n,y0)

wnt(R2,2)⇔ false wnt(R5,5)⇔ false wnt(R8,8)⇔ y = y0

Following the computation of Algorithm 4, the weakest non-termination precondition of the
integer program is:

wnt(P )⇔
∃x′ . R1,2(x,x

′) ∧wnt(R2,2)(x
′) ∨

∃x′ . (R1,2 ◦R
∗
2,2 ◦R2,5)(x,x

′) ∧wnt(R5,5)(x
′) ∨

∃x′ . (R1,2 ◦R
∗
2,2 ◦R2,5 ◦R

∗
5,5 ◦R5,8)(x,x

′) ∧ wnt(R9,9)(x
′)

Since wnt(R2,2) ⇔ wnt(R5,5) ⇔ false, the first two disjuncts are equivalent to false. The
third disjunct, and hence wnt(P ), is equivalent to

wnt(P )⇔ (n = 2m− x ∧m ≥ x+ 1 ∧ n ≥ m+ 1) ∨ (m ≤ x ∧ n ≤ x)

int x,y,y0,m,n;
1. y0 = y;
2. while (x < m) {
3. x=x+1;
4. y=y+1;

}
5. while (x < n) {
6. x=x+1;
7. y=y-1;

}
8. while (y = y0) {
9. skip;
10. }

ℓ1

ℓ2

ℓ5

ℓ8

ℓ10

R1,2 ⇔ y′0 = y ∧ Ix,y,m,n

R2,5 ⇔ x ≥ m ∧ Ix,y,m,n,y0

R2,2 ⇔ x < m ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ Im,n,y0

R5,8 ⇔ R12 ⇔ x ≥ n ∧ Ix,y,m,n,y0

R5,5 ⇔ x < n ∧ x′ = x+ 1 ∧ y′ = y − 1 ∧ Im,n,y0

R8,8 ⇔ y = y0 ∧ Ix,y,m,n,y0

R8,10 ⇔ y 6= y0 ∧ Ix,y,m,n,y0

(a) (b)

Figure 6. A flat integer program and its simplified control flow graph

If P = 〈x, Q, qinit,∆〉 is a flat program, then Algorithm 5 can be shown to return the
precise transitive closures [[P ]]+(q, q′), for any q, q′ ∈ Q. Intuitively, this is the case because
during the state elimination process, at any step, a state q ∈ Q that is chosen to be removed
can have at most one self-loop (line 7 in Algorithm 5), which corresponds to the (at most
one) elementary cycle involving q in ∆. Since, moreover the label of this cycle denotes
an octagonal or finite monoid affine relation, the transitive closure of this relation can be
computed as a Presburger formula, without loss of information, using the algorithm from
e.g. [10]. As a direct consequence, [[P ]]∗(q, q′) can also be computed without loss of precision,
if the program is flat.

Lemma 6.4. Let P = 〈x, Q, qinit,∆〉 be an integer program. Then, the result of Algorithm
5 is a Presburger formula φ(x,x′) that defines an over-approximation of [[P ]]+(qin, qout). If,
moreover, P is flat, φ(x,x′) defines precisely [[P ]]+.
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Proof. Let P i = 〈x, Qi, qin,∆i〉 be the program P at the i-th iteration of the main loop
of the algorithm, i ≥ 0, and P 0 = P . Since for all i ≥ 0, Qi+1 ⊂ Qi (line 14) it is

sufficient to prove that, for all i ≥ 0 we have [[P i]]
+(q̄in, q̄out) ⊆ [[P i+1]]

+(q̄in, q̄out). Moreover,
P 0 = P (line 2) and [[P ]]+ = [[P ]]+ is an easy exercise. Then we obtain that, for all i ≥ 0,
[[P ]]+(qin, qout) ⊆ [[P i]]

+(q̄in, q̄out). The algorithm is bound to terminate, by the fact that the
set of control states Q is finite and the for loop at line 3 is executed once for each control
state q ∈ Q \ {q̄in, q̄out}. Hence the result is an over-approximation of [[P ]]+.

Let q ∈ Qi−1 be a control state chosen at line 3, R1, . . . , Rk be the labels of the self-loops
of q, and let H be the relation computed by the algorithm. For some i > 0, let π be a run
between two configurations 〈q̄in, ν

′〉 and 〈q̄out, ν
′′〉 in P i−1, for some valuations ν ′, ν ′′ ∈ Zx.

It is sufficient to show that each sub-run ρ of π of the form 〈q0, ν0〉 −→ . . . −→ 〈qn, νn〉,
where n ≥ 2, q1 = · · · = qn−1 = q, q0 6= q, and qn 6= q, can be replaced with a sub-run
ρ′ : 〈q0, ν0〉 −→ 〈qn, νn〉 in P i of length 1, thus obtaining a run π′ between 〈q̄in, ν

′〉 and
〈q̄out, ν

′′〉 in P i. Consequently, we have:

〈ν ′, ν ′′〉 ∈ [[P i−1]]
+(q̄in, q̄out)⇒ 〈ν

′, ν ′′〉 ∈ [[P i]]
+(q̄in, q̄out)

and hence [[P ]]+(qin, qout) ⊆ [[P i−1]]
+(q̄in, q̄out) ⊆ [[P i]]

+(q̄in, q̄out).
Let us consider any sub-run ρ of the above form. Since Rj ⊆ H for each 1 ≤ j ≤ k, we

have that (νℓ, νℓ+1) ∈ H for each 1 ≤ ℓ < n − 1, and hence (ν1, νn−1) ∈ H
n−2 ⊆ H∗ = T .

Let q0
P
−→ q and q

Q
−→ qn be transitions in ∆i−1 such that (ν0, ν1) ∈ P and (νn−1, νn) ∈ Q.

Since (ν0, ν1) |= P , (ν1, νn−1) |= T and (νn−1, νn) |= Q, we can choose ρ′ as the transition
labeled by ∃x1∃x2.P (x,x1) ∧ T (x1,x2) ∧Q(x2,x

′), added at line 13.
For the second part of the proof, suppose that the program P is flat. For some

arbitrary i ≥ 0 and two configurations ν ′, ν ′′ ∈ Zx, let π be a run from 〈q̄in, ν
′〉 to

〈q̄out, ν
′′〉 in P i. We show that there exists a run in P i−1 between the same configurations,

proving thus that [[P ]]+i (q̄in, q̄out) ⊆ [[P ]]+i−1(q̄in, q̄out). By the previous point, we obtain

[[P ]]+i (q̄in, q̄out) = [[P ]]+i−1(q̄in, q̄out), and since the choice of i ≥ 0 was arbitrary, we conclude

that [[P ]]+i (q̄in, q̄out) = [[P ]]+(qin, qout).

Let 〈q1, ν1〉 −→ 〈q2, ν2〉 be a step of π such that (ν1, ν2) |= V for some transition t = (q1
V
−→

q2) ∈ (∆i \∆i−1), and let t1 = q1
P
−→ q and t2 = q

Q
−→ q2 be the transitions in ∆i−1 used to

construct t. Since P is flat, there is at most 1 self-loop involving the control state q. If there
is no such self-loop, the algorithm computes T = Ix, hence V (x,x′)⇔ ∃z.P (x, z)∧Q(z,x′).
Consequently, there exists a valuation η ∈ Zx such that (ν1, η) |= P , (η, ν2) |= Q and
thus, there is a run 〈q1, ν1〉 −→ 〈q, η〉 −→ 〈q2, ν2〉 in P i−1. If there is one self-loop, then
the algorithm computes precisely the reflexive and transitive closure T = R∗

1 and hence,
V (x,x′) ⇔ ∃z, z′.P (x, z) ∧ R∗

1(z, z
′) ∧ Q(z′,x′). Since (ν1, ν2) |= V , there exists n ≥ 0,

such that (ν1, ν2) |= ∃z, z
′.P (x, z) ∧ Rn1 (z, z

′) ∧ Q(z′,x′). If n = 0, R0 = Iz and we obtain
a run in P i−1 similarly as in the case with no self-loop. If n ≥ 1, there exist valuations
η0, . . . , ηn ∈ Zx such that (ηℓ, ηℓ+1) ∈ R1 for each 0 ≤ ℓ < n, (ν1, η0) ∈ P , and (ηn, ν2) ∈ Q.
Hence we obtain the run 〈q1, ν1〉 −→ 〈q, η0〉 −→ . . . −→ 〈q, ηn〉 −→ 〈q2, ν2〉 in P i−1. We obtain
thus:

〈ν ′, ν ′′〉 ∈ [[P i]]
+(q̄in, q̄out)⇒ 〈ν

′, ν ′′〉 ∈ [[P i−1]]
+(q̄in, q̄out)

and consequently, [[P i]]
+(q̄in, q̄out) ⊆ [[P i−1]]

+(q̄in, q̄out).
Since the transitive closure of octagonal and finite monoid affine relations is Presburger

definable (see e.g. [10]), Presburger arithmetic is closed under existential quantification,
and since the octagonal hull of a Presburger formula can be computed using integer linear
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programming [37], it follows that the algorithm manipulates and returns only Presburger
formulas.

Moreover, Algorithm 4 will also compute the weakest non-termination precondition for
flat programs. Since every state occurs within at most one elementary cycle, the test on
line 4 of the algorithm will succeed for every state on a loop, and since the formula defining
the composition R of all relations along the cycle is equivalent to an octagonal or a finite
monoid affine relation, the test on line 6 will also succeed. In this case, WNT(R) is bound
to return the weakest non-termination precondition of R, thus the result of Algorithm 4 is
the weakest non-termination precondition of the entire program.

Lemma 6.5. Let P = 〈x, Q, qinit,∆〉 be an integer program. Then, the result of Algorithm
4 is a Presburger formula φ(x,x′) that defines an over-approximation of [[P ]]wnt(qinit). If,

moreover, P is flat, φ(x,x′) defines precisely [[P ]]wnt(qinit).

Proof. Consider the iteration of the for-loop during which the control state q ∈ Q is chosen.
First, suppose that the test at line 4 fails. In this case the algorithm enters line 10, and
the correctness of the assignment at this line follows from Theorem 6.2. Second, suppose
that the test at 4 succeeds. In this case, there is a unique elementary cycle of the form

q
R1−→ . . .

Rn−−→ q, where n ≥ 1. Let R
def
= R1 ◦ · · · ◦ Rn. Then, it follows from the definition

of [[P ]]TInv that:

([[P ]]∗(qinit, q))
−1([[P ]]TInv(q, q))

=

®
ν0 ∈ Zx |

∃ valuations {νi ∈ Zx}i≥1 and runs π0 = 〈qinit, ν0〉 −→
∗ 〈q, ν1〉,

πi = 〈q, νi〉 −→
+ 〈q, νi+1〉 for each i ≥ 1

´

=

®
ν0 ∈ Zx |

∃ valuations {νi ∈ Zx}i≥1 and run π0 = 〈qinit, ν0〉 −→
∗ 〈q, ν1〉

such that (νi, νi+1) ∈ R
+ for each i ≥ 1

´

=

®
ν0 ∈ Zx |

∃ valuations {νi ∈ Zx}i≥1 and run π0 = 〈qinit, ν0〉 −→
∗ 〈q, ν1〉

such that (νi, νi+1) ∈ R for each i ≥ 1

´

=

®
ν0 ∈ Zx |

∃ valuation ν1 ∈ Zx and run π0 = 〈qinit, ν0〉 −→
∗ 〈q, ν1〉

such that ν1 ∈ wnt(R) for each i ≥ 1

´

= ([[P ]]∗(qinit, q))
−1(wnt(R))

Then, the correctness of line 4 follows from Theorem 6.2. Consequently, the algorithm
always returns an over-approximation of [[P ]]wnt(qinit).

Next, suppose that P is flat. Moreover, line 10 is reached if and only if there is no
cycle that involves q, in which case [[P ]]+(q, q) = ∅. Consequently, [[P ]]TInv(q, q) = ∅ and
hence, the algorithm can always choose R′

1 ⇔ false before executing line 10. Previously,
we argued that

([[P ]]∗(qinit, q))
−1([[P ]]TInv(q, q)) = ([[P ]]∗(qinit, q))

−1(wnt(R))

Since P is flat, [[P ]]∗(qinit, q) can be computed precisely as a Presburger formula, by Lemma
6.4. Moreover, R is an octagonal or a finite monoid affine relations and hence, wnt(R) can
be computed precisely as a Presburger formula too, by Theorem 4.38 and 5.6. Hence, the
algorithm returns a Presburger formula that precisely defines [[P ]]wnt(qinit).
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If we restrict the class of flat integer programs further, by considering that only oc-
tagonal constraints appear as labels within the loops of the program, we can characterize
the complexity class for the problem asking for the existence of an infinite run, within this
class of programs. The result is based on a characterization of the reachability problem in
this class of programs. Given a program P = 〈x, Q, qinit,∆〉 and a control state q ∈ Q, the
reachability problem asks for the existence of a run of P from qinit to q.

Theorem 6.6 ([9]). The reachability problem for the class of programs:

POCT =

®
P flat program |

if q
R
−→ q′ is in a cycle, R is an octagonal constraint

otherwise, R is a quantifier-free Presburger formula

´

is NP-complete.

This result can be used in conjunction with Theorem 4.38 to obtain the following:

Theorem 6.7. The problem asking for the existence of an infinite run is NP-complete for
the class of programs POCT .

Proof. Let P = 〈x, Q, qinit,∆〉 be an instance of the POCT class. Since P is a flat program,
each strongly connected component consists of at most one cycle, which is elementary. Let
C1, . . . , Ck be the non-trivial elementary cycles of P , and let q1, . . . , qk be arbitrary control
states belonging to each of these cycles, respectively. Let Ri be the composition of all octag-
onal relations on Ci starting from qi, for all i = 1, . . . , k, respectively. Since all of these rela-
tions are defined by octagonal constraints, their composition can be computed in PTIME,
according to Corollary 4.24. Since PTIME ⊆ PSPACE, the sizes of R1, . . . , Rk are at most
polynomial in the size of P . Then one uses Algorithm 3 to compute wnt(R1), . . . ,wnt(Rk)
in PTIME, respectively (Theorem 4.38). Clearly, the sizes of wnt(R1), . . . ,wnt(Rk) are
also polynomial in the size of P . Finally, we construct P ′ = 〈x, Q ∪ {qnt}, qinit,∆

′〉, where
qnt 6∈ Q is a fresh control state, and:

∆′ = ∆ ∪ {qi
wnt(Ri)−−−−→ qnt | i = 1, . . . , k}

The size of P ′ is bounded by a polynomial in the size of P , and, moreover, P has an infinite
run if and only if the control state qnt is reachable by a finite run of P ′. Hence the existence
of an infinite run is in NP.

To show NP-hardness, let ϕ(x) be an arbitrary quantifier-free Presburger formula, and
consider the following integer program:

qinit
ϕ(x′)
−−−→

true

y
q (6.1)

Clearly, the program (6.1) has an infinite run if and only if ϕ(x) is satisfiable. However, this
is an NP-complete problem, since ϕ is an arbitrary quantifier-free Presburger formula.

7. Experiments

We have validated the methods described in this paper by automatically finding precondi-
tions for termination of all the octagonal running examples, and of several integer programs
synthesized from (i) programs with lists obtained using the translation scheme from [6]
which generates an integer program from a program manipulating dynamically allocated
single-selector linked lists, (ii) VHDL designs such as hardware counter and synchronous



DECIDING CONDITIONAL TERMINATION 59

Table 1. Weakest Non-termination Preconditions for Integer Programs.

Model
Size

Time [s]
Weakest

Non-termination Preconditions||x|| ||Q|| ||∆||

(i) Examples from L2CA [6]

listcounter 4 31 35 1.2 false

listreversal 7 97 107 32.6 false

(ii) VHDL models from [39]

counter 2 6 13 0.8 true

register 2 10 49 1.4 true

synlifo 3 43 1006 1016.4 true

(iii) Examples from [25]

anubhav 29 20 25 3.2 i < 0
cousot 29 31 34 4.0 true

(iv) Examples from [41]

leq 3 5 6 0.6 false

leq.modif 3 5 6 2.4 x < 0 ∧ y < 0
plus 3 7 9 0.7 false

plus.modif 3 7 9 0.9 x < 0 ∨ y < 0

Table 2. Termination preconditions for several program fragments from [16]

Program Cook et al. [16] Linear Affine Loops

if (lvar ≥ 0)
while (lvar < 230)

lvar = lvar << 1;
lvar > 0 ∨ lvar < 0 ∨ lvar ≥ 230 ¬(lvar=0)∨lvar≥230

while (x ≥ N)
x = -2*x + 10;

x > 5 ∨ x+ y ≥ 0 x 6= 10
3 ⇔ true

//@ requires n > 200

x = 0;
while (1)

if (x < n) { x=x+y;
if (x ≥ 200) break; }

y > 0 y>0

LIFO [39], (iii) small C programs with challenging loops and (iv) small recursive Java pro-
grams from [41] translated to non-recursive programs using the procedure summarization
method described in [18].

We have computed the weakest non-termination preconditions reported in Table 1 using
the methods from Section 4 and 6 which we implemented in the Flata tool [22]. By
computing octagonal abstractions of disjuncts of a transition invariant, we have verified
universal termination of the ListCounter and ListReversal programs. Next, we have
verified the Counter and SynLifo programs by computing the precise transition invariant
and then the weakest non-termination precondition, which was empty in both cases. Thus,
these models have infinite runs for any input values, which is to be expected as they encode
the behavior of synchronous reactive circuits. Similarly, we have computed the weakest
non-termination preconditions for numerical programs anubhav, cousot, leq, and plus.

Second, we have compared (Table 2) our method for termination of polynomially
bounded linear affine loops from Section 5 with the examples given in [16], and found
the same termination preconditions as they do, with one exception, in which we can prove
universal termination in integer input values (row 3 of Table 2).
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8. Conclusion

We have presented several methods for deciding conditional termination of several classes
of program loops manipulating integer variables. The universal termination problem has
been found to be decidable for octagonal relations and linear affine loops with the finite
monoid property. For the class of polynomially bounded linear affine loops, we give sufficient
termination conditions. Further, we extend the computation of weakest non-termination
preconditions from simple loops to general programs, and define a class of programs, called
flat, for which this computation yields precise results. Finally, we have implemented our
method in the Flata tool [22] and performed a number of preliminary experiments.

Acknowledgments The authors wish to thank the anonymous reviewers for their impor-
tant contribution to improving the quality of this paper.
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[8] M. Bozga, R. Iosif, and F. Konecný. Safety problems are np-complete for flat integer programs with
octagonal loops. CoRR, abs/1307.5321, 2013.
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