
Logical Methods in Computer Science
Vol. 9(3:6)2013, pp. 1–31
www.lmcs-online.org

Submitted Feb. 25, 2012
Published Aug. 28, 2013

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY

NEIL GHANI a, PATRICIA JOHANN b, AND CLÉMENT FUMEX c

a,c University of Strathclyde, Glasgow G1 1XH, UK
e-mail address: {neil.ghani, clement.fumex}@strath.ac.uk

b Appalachian State University, Boone, NC 28608, USA
e-mail address: johannp@cs.appstate.edu

Abstract. This paper extends the fibrational approach to induction and coinduction
pioneered by Hermida and Jacobs, and developed by the current authors, in two key
directions. First, we present a dual to the sound induction rule for inductive types that
we developed previously. That is, we present a sound coinduction rule for any data type
arising as the carrier of the final coalgebra of a functor, thus relaxing Hermida and Jacobs’
restriction to polynomial functors. To achieve this we introduce the notion of a quotient

category with equality (QCE) that i) abstracts the standard notion of a fibration of relations
constructed from a given fibration; and ii) plays a role in the theory of coinduction dual
to that played by a comprehension category with unit (CCU) in the theory of induction.
Secondly, we show that inductive and coinductive indexed types also admit sound induction
and coinduction rules. Indexed data types often arise as carriers of initial algebras and
final coalgebras of functors on slice categories, so we give sufficient conditions under which
we can construct, from a CCU (QCE) U : E → B, a fibration with base B/I that models
indexing by I and is also a CCU (resp., QCE). We finish the paper by considering the
more general case of sound induction and coinduction rules for indexed data types when
the indexing is itself given by a fibration.

1. Introduction

Iteration operators provide a uniform way to express common and naturally occurring pat-
terns of recursion over inductive types. Expressing recursion via iteration operators makes
code easier to read, write, and understand; facilitates code reuse; guarantees properties of
programs such as totality and termination; and supports optimising program transforma-
tions such as fold fusion and short cut fusion. Categorically, iteration operators arise from
the initial algebra semantics of data types: the constructors of an inductive type are mod-
elled as a functor F , the data type itself is modelled as the carrier µF of the initial F -algebra
in : F (µF) → µF , and the iteration operator fold : (FA → A) → µF → A for µF is the
map sending each F -algebra h : FA→ A to the unique F -algebra morphism from in to h.

Initial algebra semantics therefore provides a comprehensive theory of iteration that is
i) principled, in that it ensures that programs have rigorous mathematical foundations that

2012 ACM CCS: [Theory of computation]: Semantics of reasoning—Program semantics—Categorical
semantics.

Key words and phrases: induction, coinduction, fibrations.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:6)2013

c© N. Ghani, P. Johann, and C. Fumex
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. GHANI, P. JOHANN, AND C. FUMEX

can be used to give them meaning; ii) expressive, in that it is applicable to all inductive
types — i.e., all types that are carriers of initial algebras — rather than just to syntactically
defined classes of data types such as polynomial ones; and iii) sound, in that it is valid in
any model — set-theoretic, domain-theoretic, realisability, etc. — in which data types are
interpreted as the carriers of initial algebras.

Final coalgebra semantics gives an equally comprehensive understanding of coinductive
types. The destructors of a coinductive type are modelled as a functor F , the data type
itself is modelled as the carrier νF of the final F -coalgebra out : νF → F (νF), and the
coiteration operator unfold : (A → FA) → A → νF for νF is the map sending each F -
coalgebra k : A→ FA to the unique F -coalgebra morphism from k to out . Final coalgebra
semantics thus provides a theory of coiteration that is as principled, expressive, and sound
as that for induction.

Since induction and iteration are closely linked, we might expect initial algebra semantics
to give a principled, expressive, and sound theory of induction as well. But most theories
of induction for a data type µF , where F : B → B, are sound only under significant
restrictions on the category B, the functor F , or the form and nature of the property to be
established. Recently, however, a conceptual breakthrough in the theory of induction was
made by Hermida and Jacobs [9]. They first showed how to lift an arbitrary functor F on a

base category B of types to a functor F̂ on a category of properties over those types. Then,
taking the premises of an induction rule for µF to be an F̂ -algebra, their main theorem shows
that such a rule is sound if the lifting F̂ preserves truth predicates. Hermida and Jacobs
work in a fibrational, and hence axiomatic, setting and treat any notion of property that can
be suitably fibred over B. Moreover, they place no stringent requirements on B. Thus, they
overcome two of the aforementioned limitations. But since they give sound induction rules
only for polynomial data types, the limitation on the functors treated remains in their work.
The current authors [5] subsequently removed this final restriction to give sound induction
rules for all inductive types under conditions commensurate with those in [9].

In this paper, we extend the existing body of work in three key directions. First,
Hermida and Jacobs developed a fibrational theory of coinduction to complement their
theory of induction. But this theory, too, is sound only for polynomial data types, and
so does not apply to final coalgebras of some key functors, such as the finite powerset
functor. In this paper, we derive a sound fibrational coinduction rule for every coinductive
type. Secondly, data types arising as initial algebras of functors are fairly simple. More
sophisticated data types — e.g., untyped lambda terms and red-black trees — are often
modelled as inductive indexed types arising as initial algebras of functors on slice categories,
presheaf categories, and similar structures. In this paper, we derive sound induction rules
for such inductive indexed types. We do this by considering first the special case of indexing
via slice categories, and then the general case where indexing is itself given by a suitable
fibration. Finally, since we can derive sound induction rules for inductive types and inductive
indexed types, and sound coinduction rules for coinductive types, we might expect to be
able to derive sound coinduction rules for coinductive indexed types, too. In this paper, we
confirm that this is the case and, again, consider first the special case of indexing via slice
categories and then the general situation.

We now describe the structure of the rest of this paper. After describing the results in
each section, we give a concrete example of a widely-used data type and a corresponding
logic for which the results of that section can derive a sound induction or coinduction rule, as
appropriate, but for which such a rule cannot be derived from previously known techniques

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 3

of comparable generality. We thus show that our framework not only facilitates an abstract
conceptualisation that reveals the essence of induction and coinduction, but also significantly
advances the state-of-the-art by being instantiable to a larger class of data types and logics
than ever before. The rest of this paper is structured as follows.

• In Section 2, we recall the fibrational approach to induction pioneered in [9] and extended
in [5]. We also present a number of fibrations, each of which captures a different logic of
interest. Finally, we recall conditions under which the fibrational induction rule we derive
in [5] can be instantiated to give a sound concrete induction rule for any inductive data
type with respect to any such logic.

• In Section 3 we extend the fibrational approach to coinduction from [9] to derive a coin-
duction rule that can be instantiated to give a sound concrete coinduction rule for any
coinductive data type. We illustrate this by deriving a sound coinduction rule for the coin-
ductive data type determined by the finite powerset functor. This functor is fundamental
in the theory of bisimulation and labelled transition systems, but it is not a polynomial
functor and so cannot be handled using the techniques of Hermida and Jacobs.

• In Section 4 we use slice categories to model indexing of data types, and thus to give
sound concrete induction rules for all inductive indexed data types. We apply this result
to derive a sound induction rule for inductive type determined by indexed containers with
respect to the families fibration, and then further specialise this rule to the inductive
indexed data type of untyped lambda terms. The data type of untyped lambda terms is
not determined by a polynomial functor, so the sound induction rule we derive for it is
not simply an instantiation of Hermida and Jacobs’ results.

• In Section 5 we use slice categories again, this time to give sound concrete coinduction
rules for all coinductive data types. We apply our results to derive sound coinduction
(i.e., bisimulation) rules for coinductive types determined by indexed containers. These
coinductive types are equivalent to Hancock and Hyvernat’s interaction structures [10].
However, since they are not determined by polynomial functors, the coinduction rules we
derive for them are not simply instantiations of Hermida and Jacobs’ results.

• In Section 6 we study fibrational indexed induction by generalising the indexing of data
types from slice categories to fibrations. We derive an induction rule that extends the
one in Section 4 and show how it can be instantiated to give sound induction rules for
set-indexed data types. Set-indexing occurs, for example, in mutually recursive definitions
of data types.

• In Section 7 we similarly study fibrational indexed coinduction, derive a coinduction rule
that extends the one in Section 5, and point out that this rule can be instantiated to give
sound coinduction rules for set-indexed data types.

• In Section 8 we summarise our conclusions and discuss related work and possibilities for
future research.

This paper is a revised and expanded version of the conference paper [4]. Whereas the
conference paper covers only indexing modelled by slice categories, this paper also treats
general indexing. Accordingly, the material in Sections 6 and 7 is entirely new.

2. Induction in a Fibrational Setting

Fibrations support a uniform axiomatic approach to induction and coinduction that is widely
applicable and abstracts over the specific choices of the category in which types are inter-
preted, the functor on that category giving rise to the data type whose rules are to be

4 N. GHANI, P. JOHANN, AND C. FUMEX

constructed, and the predicate those rules may be used to establish. This is advantageous
because i) the semantics of data types in languages involving recursion and other effects
usually involves categories other than Set; ii) in such circumstances, the standard set-based
interpretations of predicates are no longer germane; iii) in any setting, there can be more
than one reasonable notion of predicate; and iv) fibrations allow induction and coinduction
rules for many classes of data types to be obtained by the instantiation of a single generic
theory, rather than developed on an ad hoc basis. The genericness supported by fibrations
provides a predictive power that is the hallmark of any good scientific theory.

2.1. Fibrations in a Nutshell. We begin with fibrations. More details can be found in,
e.g., [12, 18].

Definition 2.1. Let U : E → B be a functor. A morphism g : Q → P in E is cartesian
above a morphism f : X → Y in B if Ug = f and, for every g′ : Q′ → P in E with Ug′ = fv
for some v : UQ′ → X, there exists a unique h : Q′ → Q in E such that Uh = v and gh = g′.

A fibration is simply a functor U : E → B that guarantees a large supply of cartesian
morphisms. The exact definition is as follows:

Definition 2.2. Let U : E → B be a functor. Then U is a fibration if for every object P
of E and every morphism f : X → UP in B, there is a cartesian morphism above f with
codomain P .

If U : E → B is a fibration, we call B the base category of U and E its total category.
Objects of E are thought of as properties, objects of B are thought of as types, and U is
thought to map each property P in E to the type UP about which it is a property. An object
P in E is said to be above its image UP under U , and similarly for morphisms. For any
object X of B, we write EX for the fibre above X, i.e., for the subcategory of E comprising
objects above X and morphisms above the identity morphism idX on X. Morphisms within
a fibre are said to be vertical.

If U : E → B is a fibration, P is an object of E , and f : X → UP , we write f §P for the
cartesian morphism above f with codomain P . We omit the subscript P when it can be

inferred from context. As with all entities defined via universal properties, f §P is defined up

to isomorphism; we write f∗P for the domain of f §P . If f : X → Y is a morphism in the base
of a fibration, then the function mapping each object P of EY to f∗P extends to a functor
f∗ : EY → EX called the reindexing functor induced by f . If we think of f as performing
type-level substitution, then f∗ can be thought of as lifting f to perform substitution of
types into predicates.

Example 2.3. The category Fam(Set) has as objects pairs (X,P) with X a set and P :
X → Set. We call X the domain of (X,P) and write P for (X,P) when convenient. A
morphism from P : X → Set to P ′ : X ′ → Set is a pair (f, f∼) of functions f : X → X ′ and
f∼ : ∀x : X.P x→ P ′(f x). The functor U : Fam(Set) → Set mapping (X,P) to X is called
the families fibration. Here, the cartesian morphism associated with the object P : Y → Set
in Fam(Set) and the morphism f : X → Y in Set is the morphism (f, id) in Fam(Set) from
Pf : X → Set to P .

Example 2.4. The arrow category of B, denoted B→, has morphisms of B as its objects. A
morphism from f : X → Y to f ′ : X ′ → Y ′ in B→ is a pair (α1, α2) of morphisms in B such

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 5

that the following diagram commutes:

X
α1 //

f
��

X ′

f ′

��
Y α2

// Y ′

The codomain functor cod : B→ → B maps an object f : X → Y of B→ to the object Y of
B. If B has pullbacks, then cod is a fibration, called the codomain fibration over B. Indeed,
given an object f : X → Y in the fibre above Y and a morphism f ′ : X ′ → Y in B, the
pullback of f along f ′ gives the cartesian morphism above f ′. Similarly, the domain functor
dom : B→ → B is a fibration, called the domain fibration over B. No conditions on B are
required.

A useful restriction of the previous fibration considers (equivalence classes of) monic
maps only:

Example 2.5. Let B be a category with pullbacks. Let Sub(B) be the category of subobjects
of B, i.e., let the objects of Sub(B) be equivalence classes of monos (where m : X → I and
n : X → I are equivalent iff they are isomorphic in the slice category B/I). The subobject
fibration over B is the fibration U : Sub(B) → B that sends an equivalence class [m] to
the codomain of m. Reindexing is well-defined because the pullback of a mono along any
morphism is again a mono. Note that every fibre Sub(B)I is a preorder, and thus that U is
a fibred preorder. Fibred preorders can be thought of logically as modelling just provability,
rather than proofs themselves.

The following fibration appears as Example 4.8.7 (iii) in [12]:

Example 2.6. Let CL be the category of complete lattices with functions preserving all
joins between them. If X is a complete lattice, then a subset A ⊆ X is admissible if A is
closed under joins inX. We write ASub(CL) for the category whose objects are pairs (X,A),
where X is a complete lattice and A is an admissible subset of X, and whose morphisms
from (X,A) to (Y,B) are morphisms f : X → Y in CL such that x ∈ A implies f(x) ∈ B.
Admissible subsets of complete lattices form a fibration U : ASub(CL) → CL. Indeed, if
(Y,B) is an object in ASub(CL), if f : X → Y in CL, and if we define f∗(Y,B) = (X, {x ∈
X | f(x) ∈ B}), then f∗(Y,B) is actually an object of ASub(CL) since f preserves joins.
Moreover, a cartesian morphism f § : f∗(Y,B) → (Y,B) is given by f itself.

2.1.1. Bifibrations. We will later need the generalisation of the notion of a fibration to
that of a bifibration. Since bifibrations are defined in terms of opfibrations, we begin by
defining these. Abstractly, U : E → B is an opfibration if Uop : Eop → Bop is a fibration.
This characterisation has the merit of allowing us to use duality to establish properties of
opfibrations from properties of fibrations, but a more concrete definition can be obtained by
unwinding the characterisation above.

Definition 2.7. Let U : E → B be a functor. A morphism g : P → Q in E is opcartesian
above a morphism f : X → Y in B if Ug = f and, for every g′ : P → Q′ in E with Ug′ = vf
for some v : Y → UQ′, there exists a unique h : Q → Q′ in E such that Uh = v and hg = g′.

6 N. GHANI, P. JOHANN, AND C. FUMEX

Just as a fibration is simply a functor that has a plentiful supply of cartesian morphisms in its
domain, so an opfibration is a functor that has a plentiful supply of opcartesian morphisms
in its domain. We have:

Definition 2.8. If U : E → B is a functor, then U is an opfibration if for every object P of E
and every morphism f : UP → Y in B there is an opcartesian morphism in E above f with
domain P . A functor U is a bifibration if it is simultaneously a fibration and an opfibration.

If U is an opfibration, P is an object of E and f : UP → Y is a morphism of B, then
we denote the opcartesian morphism above f with domain P by fP§ and note that, as with
cartesian morphisms, this is defined up to isomorphism. We write ΣfP for the codomain

of fP§ and omit the superscript P when it can be inferred from context. If f : X → Y is a
morphism in the base of an opfibration, then the function mapping each object P of EX to
ΣfP extends to a functor Σf : EX → EY called the opreindexing functor induced by f . The
following useful result is from [13]:

Lemma 2.9. Let U : E → B be a fibration. Then U is a bifibration iff, for every morphism
f : X → Y in B, f∗ has a left adjoint Σf .

Both the families fibration and the codomain fibration are opfibrations, and thus bifi-
brations. In the families fibration, if f : X → Y is a function, and P : X → Set is an
object of Fam(Set) above X, then the associated opcartesian morphism has as codomain
the function from Y to Set that maps y ∈ Y to the disjoint union

⊎
{x∈X|fx=y} Px. The

first component of the opcartesian morphism is f , and its second component maps x ∈ X
and p ∈ Px to the pair (x, p). In the codomain fibration, if f : X → Y is a morphism in the
base category and g : Z → X is above X, then we can construct the opcartesian morphism
consisting of the pair of morphisms (idZ , f) from g to fg. In general, the subobject fibration
over B is not an opfibration, and hence not a bifibration. However, as shown in Lemma 4.4.6
of [12], if B is a regular category then it is.

2.1.2. Beck-Chevalley Conditions and Fibred Adjunctions. Beck-Chevalley conditions are
used to guarantee that reindexing satisfies desirable commutativity properties. See [12] for
an expanded treatment of the following discussion.

Definition 2.10. Let U : E → B be a bifibration. We say that U satisfies the Beck-Chevalley
condition (for opreindexing) if for any pullback square

A
t //

s
��

❴
✤

B

f
��

C g
// D

in B, the canonical natural transformation Σst
∗ .
−→ g∗Σf defined as

Σst
∗ Σst∗ηf
−−−−→ Σst

∗f∗Σf
∼=
−→ Σss

∗g∗Σf
ǫsg∗Σf
−−−−→ g∗Σf

is an isomorphism. Here, ηf is the unit of the adjunction Σf ⊣ f∗ and ǫs is the counit of
the adjunction Σs ⊣ s

∗.

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 7

It is easy to check that the families fibration, the codomain fibration, and the fibration of
admissible subsets of complete lattices satisfy the Beck-Chevalley condition. In addition, the
subobject fibration over B satisfies the Beck-Chevalley condition if B is regular. In addition,
we have:

Lemma 2.11. Let U : E → B be a bifibration that satisfies the Beck-Chevalley condition.
Then for any mono f : X → Y in B,

(1) the functor Σf : EX → EY is full and faithful, and
(2) any opcartesian morphism above f is also cartesian.

Given that fibrations are the fundamental structures used in this paper, it is natural
to ask what morphisms between such structures might be. In general, we can consider this
question in a setting where the fibrations can have different base categories. However, for our
purposes we only need consider the special case where the base categories of the fibrations
involved are the same. In this situation we have the following definition:

Definition 2.12. Let B be a category. Given two fibrations U : E → B and U ′ : E ′ → B
with base category B, a fibred functor from U to U ′ above B is a functor H : E → E ′ such
that H preserves cartesian morphisms and the following diagram commutes:

E

U ��❃
❃❃

❃❃
❃❃

❃
H // E ′

U ′
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

B

One of the key points about fibred functors is that they allow us to define fibred adjunc-
tions, and thus to lift standard categorical structures to the fibred setting. In the special
case when the base categories of the fibrations are the same, a fibred adjunction is defined
as follows:

Definition 2.13. Let B be a category and U : E → B and U ′ : E ′ → B be fibrations. Given
two fibred functors G : U → U ′ and F : U ′ → U above B, we say that G is a fibred right
adjoint of F above B iff G is right adjoint to F and the unit (or, equivalently, counit) of the
adjunction F ⊣ G is vertical. We say that the adjunction F ⊣ G is a fibred adjunction above
B.

Henceforth, we speak only of fibred functors and fibred adjunctions, and leave implicit the
fact they are above a particular category.

The definition of a fibred adjunction can be given an alternative form in terms of a
collection of adjunctions between corresponding fibres of fibrations and a coherence property
linking these adjunctions together. To see this, we first introduce the following helpful
notation. Given fibrations U : E → B and U ′ : E ′ → B, a fibred functor F : U → U ′, and an
object X of B, we denote by FX : EX → E ′

X the restriction of F to the fibre EX . We know
the image of FX lies within E ′

X because F is fibred. We have:

Lemma 2.14. Let B be a category, let U : E → B and U ′ : E ′ → B be fibrations, and
let G : U → U ′ be a fibred functor. Then G has a fibred left adjoint iff the following two
conditions hold:

(1) for any X in B, GX has a left adjoint FX , and
(2) for every morphism f : X → Y in B with associated reindexing functors f∗ and f †

with respect to Uand U ′, respectively, the canonical natural transformation from FXf
†

8 N. GHANI, P. JOHANN, AND C. FUMEX

to f∗FY obtained as the transpose1 of ρ(f †η) is an isomorphism. Here, ρ : f †GY FY →
GXf

∗FY arises from the fact that G, and hence GX , preserves cartesian morphisms.

Suppose X is in B and P is in E ′
X in the setting of Lemma 2.14. Then FP = FXP , and if

η is the unit of F ⊣ G and ηX is the unit of FX ⊣ GX , then ηP = (ηX)P .
We conclude this section with a lemma about (non-fibred) adjunctions and the preser-

vation of cartesian and opcartesian morphisms.

Lemma 2.15. Let U : E → B and U ′ : E ′ → B be fibrations. Further, let F : E → E ′

and G : E ′ → E be adjoint functors F ⊣ G with vertical unit (or equivalently, counit) such
that U = U ′F and U ′ = UG. Then the functor F preserves opcartesian morphisms and the
functor G preserves cartesian morphisms.

Proof. We prove only that G preserves cartesian morphisms; the second result is then ob-
tained by dualising. Let f : X → Y be a morphism in B and let u : Q → P be the cartesian
morphism above f in E ′. We will prove that Gu is cartesian above f in E . To do this, let
l : R → GP be a morphism in E above fg for some g in B. Then the transpose ǫP (Fl) of
l is above fg in E ′ because the counit ǫ of the adjunction F ⊣ G is vertical. We then have
a unique morphism v : FR → Q in E ′ above g such that uv = ǫP (Fl) since u is cartesian.
Because η is vertical, this gives us a unique morphism (Gv)ηR : R→ GQ in E above g such
that (Gu)(GvηR) = l.

2.2. Fibrational Induction in Another Nutshell. At the heart of Hermida and Jacobs’
approach to induction is the observation that if U : E → B is a fibration and F : B → B is a
functor, then F can be lifted to a functor F̂ : E → E and the premises of the induction rule
for µF can be taken to be an F̂ -algebra. Hermida and Jacobs observed that, crucially, this
lifting must be truth-preserving. We define these terms now.

Definition 2.16. Let U : E → B be a fibration and F : B → B be a functor. A lifting of
F with respect to U is a functor F̂ : E → E such that UF̂ = FU . If each fibre EX has a
terminal object, and if reindexing preserves terminal objects, then we say that U has fibred
terminal objects. In this case, the map assigning to every X in B the terminal object in
EX defines a full and faithful functor KU that is called the truth functor for U and is right
adjoint to U . We omit the subscript on KU when this can be inferred. A lifting F̂ of F is
said to be truth-preserving if KF ∼= F̂K.

The families fibration has fibred terminal objects: the terminal object in the fibre above
X is the function mapping each x ∈ X to the one-element set. The codomain fibration
cod also has fibred terminal objects: the terminal object in the fibre above X is idX . The
subobject fibration has fibred terminal objects: the terminal object in the fibre above X is
the equivalence class of idX . A truth-preserving lifting F→ of F with respect to cod is given
by the action of F on morphisms. Truth-preserving liftings of functors with respect to the
families fibration and the subobject fibration over a regular category can be obtained from
the results of this section.

As mentioned in the introduction, in the fibrational approach to induction the premises
of an induction rule for a data type µF are taken to be an F̂ -algebra α : F̂P → P . But

1If F ⊣ G : C → D, then the transpose of a morphism f : FX → Y is (Gf)ηX and the transpose of
a morphism g : X → GY is ǫY (Fg), where η : IdC → GF and ǫ : FG → IdD are the unit and counit,
respectively, of the adjunction F ⊣ G.

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 9

what about the conclusion of such an induction rule? Since its premises are an F̂ -algebra, it
is reasonable to expect its conclusion to be the unique mediating morphism from the initial
F̂ -algebra to α. But this expectation is thwarted because an initial F̂ -algebra is not, in
general, guaranteed to exist. We therefore seek conditions ensuring that, for every functor
F on the base category of a fibration U , its lifting F̂ has an initial algebra. Moreover, our
examples below suggest that the carrier of this initial F̂ -algebra should be K(µF), where K
is the truth functor for U . Fortunately, we already know that any truth-preserving lifting
F̂ of F defines a functor K-AlgF : AlgF → Alg F̂ mapping an F -algebra α : FX → X to

the F̂ -algebra Kα : KFX ∼= F̂KX → KX. Soundness of the induction rule thus turns out
to be equivalent to requiring that applying K-AlgF to the initial F -algebra gives the initial

F̂ -algebra. We capture this discussion formally as follows:

Definition 2.17. Let U : E → B be a fibration with truth functor K : B → E and let
F : B → B be a functor whose initial algebra has carrier µF . We say that a truth-preserving
lifting F̂ of F defines a sound induction rule for µF in U if the functor K-AlgF : AlgF →
Alg F̂ preserves initial objects.

We will omit explicit reference to U when it is clear from context. In the situation of
Definition 2.17, the generic fibrational induction rule is given by

indF : (∀P : EX). (F̂ P → P) → K(µF) → P

and its soundness ensures that if α : F̂P → P is above f , then indF P α is above fold f .
To see how the above categorical definition of an induction rule corresponds to our

intuitive understanding, we look at an example before returning to the general discussion of
fibrational induction.

Example 2.18. The data type Nat of natural numbers is µN , where N is the functor on
Set defined by N X = 1 +X. A lifting N̂ of N from Set to Fam(Set) is given by

N̂P (inl ∗) = 1

N̂P (inr n) = P n

An N̂ -algebra with carrier P : Nat → Set can be given by in : 1 + Nat → Nat and
in∼ : ∀t : 1 +Nat . N̂P t→ P (in t). Since in (inl ∗) = 0 and in (inr n) = n+1, we see that
in∼ consists of an element h1 : P 0 and a function h2 : ∀n : Nat . P n → P (n + 1). These
are exactly the premises of the standard induction rule we learn on the playground. As for
the conclusion of the induction rule, we first note that fold in = id, so that the induction
rule has as its conclusion a morphism of predicates from KNat to P whose first component
is id . The second component will be a function with type ∀n : Nat . 1 → Pn, i.e., a function
that gives, for n ∈ Nat , a proof in Pn. This is exactly as expected.

Definition 2.17 naturally leads us to ask for conditions on a fibration U guaranteeing that
a truth-preserving lifting of a functor F defines a sound induction rule for µF . Hermida and
Jacobs’ key theorem states that a sufficient condition is that U be a comprehension category
with unit.

Definition 2.19. A comprehension category with unit (CCU) is a fibration U : E → B
with a truth functor KU that has a right adjoint {−}U . In this case, {−}U is called the
comprehension functor for U .

10 N. GHANI, P. JOHANN, AND C. FUMEX

We omit the subscript on {−}U when this can be inferred from context.
The families fibration is a CCU: the comprehension functor maps a predicate P : X →

Set to the set Σx :X. Px. The fibration cod is the canonical CCU: the comprehension functor
is the domain functor dom : B→ → B mapping f : X → Y in B→ to X. The subobject
fibration over a category B is a CCU: the comprehension functor maps an equivalence class
to the domain of a (chosen) representative. As shown in [9], truth-preserving liftings for
CCUs define sound induction rules. That is,

Theorem 2.20. Let U : E → B be a CCU and F : B → B be a functor whose initial algebra
has carrier µF . Then every truth-preserving lifting F̂ of F with respect to U defines a sound
induction rule for µF .

The proof of this theorem is conceptually simple: Hermida and Jacobs show that under
the assumptions of the theorem, each functor K-AlgF has a right adjoint and therefore
preserves all colimits, including the initial object. This very elegant theorem shows that
fibrations provide just the right structure to derive sound induction rules for inductive
types whose underlying functors have truth-preserving liftings. And it’s amazing to see
such structure captured so smoothly as the existence of a pair of adjoints to the fibration
itself. However, there is still one missing ingredient, namely, a set of conditions under which
functors are guaranteed to have truth-preserving liftings. Hermida and Jacobs [9] provided
truth-preserving liftings, and thus sound induction rules, only for polynomial functors. This
situation was rectified in [5], where it was shown that every functor has a truth-preserving
lifting with respect to every CCU that is also a bifibration. Such CCUs are called Lawvere
categories.

Definition 2.21. A fibration U : E → B is a Lawvere category if it is a CCU that is also a
bifibration.

If ǫ is the counit of the adjunction K ⊣ {−} for a CCU U , then πP = UǫP defines a
natural transformation π : {−} → U . Moreover, π extends to a functor π : E → B→ in the
obvious way.

Lemma 2.22. Let U : E → B be a Lawvere category. Then π has a left adjoint I : B→ → E
defined by I (f : X → Y) = Σf (KX).

For any functor F , the composition F̂ = IF→π : E → E defines a truth-preserving lifting
with respect to the Lawvere category U [6]. Here, F→ is the lifting given after Definition 2.16

of F to the total category of the codomain fibration. Concretely, F̂P = ΣFπPKF{P}. Thus,
if U is a Lawvere category and F has an initial algebra µF , then Theorem 2.20 guarantees
that F̂ defines a sound induction rule for µF . Indeed, we have:

Theorem 2.23. If U : E → B is a Lawvere category and F : B → B is a functor whose
initial algebra has carrier µF , then there exists a sound induction rule for µF in U .

If B has pullbacks, so that the functor cod is actually a fibration, then the following diagram
establishes that we have actually given a uniform modular construction of a lifting with
respect to any Lawvere category by factorisation through the lifting for cod :

E

U ��❄
❄❄

❄❄
❄❄

❄

π
,,

⊤ B→

I

kk

cod}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

B

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 11

3. Coinduction

In [9], Hermida and Jacobs augmented their sound fibrational induction rules for carriers
of initial algebras of polynomial functors with a sound coinduction rule for carriers of final
coalgebras of polynomial functors. The goals of this section are to recall the results of
Hermida and Jacobs, and to extend them to give sound coinduction rules for carriers of final
coalgebras of functors.

Hermida and Jacobs begin by observing that coinduction is concerned with relations.
Given a fibration U whose total category is thought of as a category of predicates, they
therefore construct a new fibration Rel(U) whose total category is thought of as a category
of relations.

Definition 3.1. Let U : E → B be a fibration where B has products, and let ∆ : B → B be
the diagonal functor sending an object X to X×X. Then the fibration Rel(U) : Rel(E) → B
is obtained by the pullback of U along ∆. We call Rel(U) the relations fibration for U .

That the pullback of a fibration along any functor is a fibration is well-known [14],
and the process of pulling back a fibration along a functor F to obtain a new fibration is
called change of base along F . Since an opfibration from E to B is a fibration from Eop

to Bop, change of base preserves opfibrations as well as fibrations, and therefore preserves
bifibrations. Below we denote the pullback of any functor F : A → B along a functor
G : B′ → B by G∗F : G∗A → B′. The objects of G∗A are pairs (X,Y) such that GX = FY ,
and G∗F maps the pair (X,Y) to the object X. We write Y for (X,Y) in G∗A when
convenient.

If U : E → B is a bifibration, then change of base along a natural transformation
α : F → G induces an adjunction between F ∗E and G∗E . We have:

Lemma 3.2. For U : E → B a bifibration and α : F → G a natural transformation with
F,G : A → B. There is an adjunction

F ∗E

F ∗U !!❉
❉❉

❉❉
❉❉

❉

Σα
,,

⊥ G∗E
α∗

ll

G∗U}}③③
③③
③③
③③

A

with

Σα(X,P) = (X, ΣαXP)

α∗(X,Q) = (X, (αX)
∗Q)

Furthermore, if U satisfies the Beck-Chevalley condition and the components of α are monos,
then Σα is full and faithful.

Proof. Straightforward from the definitions of Σα and α∗ and Lemmas 2.9 and 2.11.

Definition 3.1 entails that the fibre of Rel(E) above X is the fibre EX×X . A morphism
from (X,Y) to (X ′, Y ′) in Rel(E) consists of a pair of morphisms α : X → X ′ and β : Y → Y ′

such that Uβ = α×α. Change of base is well-known to preserve fibred terminal objects [8].
It therefore preserves truth functors, so that Rel(U) has a truth functor whenever U does.
This is given by KRel(U)X = KU (X ×X).

12 N. GHANI, P. JOHANN, AND C. FUMEX

Example 3.3. Let U be the families fibration. Then the fibre of Rel(U) above a set X
consists of functions R : X ×X → Set. These are, as intended, just (set-valued) relations.
The truth functor for Rel(U) maps a set X to the relation R : X×X → Set that maps each
pair (x, x′) to the one-element set.

In the inductive setting, truth-preserving liftings were needed. In the coinductive setting,
we need equality-preserving liftings, where the equality functor is defined as follows:

Definition 3.4. Let U : E → B be a bifibration where B has products, and let K be the
truth functor for U . Let δ : IdB → ∆ be the diagonal natural transformation for ∆ with
components δX : X → X×X, and let Σδ : E → Rel(E) be the functor mapping an object P
above X to the object ΣδXP . Note that ΣδXP is above X ×X in E and above X in Rel(E).
The equality functor for U is the functor EqU : B → Rel(E) defined by EqU = ΣδK. The
functor EqU maps each morphism f to the unique morphism above f × f induced by the
naturality of δ at f and the opcartesian morphism (δX)KX§ . If EqU has a left adjoint QU ,
then QU is called the quotient functor for U .

We suppress the subscripts on EqU and QU when convenient. The notion of an equality-
preserving lifting of a functor is then defined as follows:

Definition 3.5. Let U : E → B be a bifibration where B has products, suppose U has a
truth functor, and let F : B → B be a functor. A lifting F̂ of F with respect to Rel(U) is

said to be equality-preserving if Eq F ∼= F̂ Eq.

Just as truth-preserving liftings are the key to defining induction rules, equality-preserving
liftings are the key to defining coinduction rules. The following definition is pleasantly dual
to Definition 2.17:

Definition 3.6. Let U : E → B be a bifibration where B has products, suppose U has a
truth functor, and let F : B → B be a functor whose final coalgebra has carrier νF . We
say that an Eq-preserving lifting F̂ of F defines a sound coinduction rule for νF in U if
the functor Eq-CoAlgF : CoAlgF → CoAlg F̂ sending each F -coalgebra α : X → FX to the

F̂ -coalgebra Eq α : EqX → EqFX ∼= F̂EqX preserves terminal objects.

As before, we omit explicit reference to U when it is clear from context.
As in [9], there is a simple condition under which Eq-preserving liftings define sound

coinduction rules, namely, that U has a quotient functor. Note the duality: in the inductive
setting the truth functor K must have a right adjoint, whereas in the coinductive setting
the equality functor Eq must have a left adjoint.

Theorem 3.7. Let U : E → B be a bifibration where B has products, suppose U has a truth
functor and a quotient functor, and let F : B → B be a functor whose final coalgebra has
carrier νF . Then every equality-preserving lifting F̂ of F with respect to Rel(U) defines a
sound coinduction rule for νF .

As before, Hermida and Jacobs’ proof is conceptually simple: If U has a quotient functor,
then each functor Eq-CoAlgF has a left adjoint and hence preserves all limits, including the

terminal object. As a result, the carrier of the final F̂ -coalgebra is obtained by applying Eq
to the final F -coalgebra, and the generic fibrational coinduction rule is therefore given by

coindF : (∀R : Rel(E))(R → F̂R) → R→ Eq(νF)

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 13

Soundness of the rule ensures that if α : R → F̂R is above f , then coindFRα is above
unfold f .

As was the case for induction, Hermida and Jacobs provided Eq-preserving liftings
only for polynomial functors, and thus sound coinduction rules only for carriers of their
final coalgebras. The outstanding issue is then to establish a set of conditions under which
functors are guaranteed to have equality-preserving liftings.

3.1. Generic Coinduction For All Coinductive Types. The first contribution of this
paper is to give a sound coinduction rule for every coinductive type, i.e., for every data
type that is the carrier νF of the final coalgebra for a functor F . This entails determining
conditions sufficient to guarantee that functors have equality-preserving liftings. To do this,
we step back a little and show how to construct liftings that can be instantiated to give both
the truth-preserving liftings required for deriving sound induction rules and, by duality, the
equality-preserving liftings required for deriving sound coinduction rules.

Lemma 3.8. Define a quotient category with equality (QCE) to be a fibration U : E → B
with a full and faithful functor E : B → E such that UE = IdB and E has a left adjoint Q
with unit η. Let F : B → B be a functor, and define functors ρ, J , and F̌ by

ρ : E → B→ J : B→ → E F̌ : E → E
ρP = UηP J (f : X → Y) = f∗EY F̌ = J F→ ρ

Then UF̌ = FU (i.e., F̌ is a lifting of F) and F̌E ∼= EF .

Proof. To prove UF̌ = FU , note that the morphisms ρP each have domain UP , that
dom F→ ρ = FU , and that UJ = dom . Together these give UF̌ = UJF→ρ = FU . To
prove F̌E ∼= EF , we first assume that i) for every X in B, ρEX is an isomorphism in B,
and ii) for every isomorphism f in B, J f ∼= E(dom f). Then since UE = IdB, we have
that i) and ii) imply that F̌E = JF→ρE ∼= E dom F→ρE = EFUE = EF . To discharge
assumption i), note that the counit ǫ : QE → Id of Q ⊣ E is a natural isomorphism
because E is full and faithful. We thus have that Eǫ is also a natural isomorphism and,
using the equality Eǫ . ηE = idE , that ηE is a natural isomorphism as well. As a result,
ρE = UηE is a natural isomorphism. To discharge ii), let f be an isomorphism in B. Since
cartesian morphisms above isomorphisms are isomorphisms, we have Jf = f∗(E (codf)) ∼=
E (codf) ∼= E(domf). Here, the first isomorphism is witnessed by f § and the second by
Ef−1.

Although it is not needed in our work, we observe that if U is a QCE, then ρ is left adjoint
to J . The proof is a straightforward application of the universal property of reindexing; see
Lemma 2.2.10 in [3]. The lifting F̌ has as its dual the lifting F̂ given in the following lemma.

Lemma 3.9. Let U : E → B be an opfibration, let K : B → E a full and faithful functor such
that UK = IdB, and let C : E → B be a right adjoint to K with counit ǫ. Let F : B → B be
a functor, and define functors π, I, and F̂ by

π : E → B→ I : B→ → E F̂ : E → E

πP = UǫP I (f : X → Y) = ΣfKY F̂ = I F→ π

Then UF̂ = FU (i.e., F̂ is a lifting of F) and F̂K ∼= KF .

14 N. GHANI, P. JOHANN, AND C. FUMEX

Proof. By dualisation of Lemma 3.8. The setting on the left below with U an opfibration is
equivalent to the setting on the right with U a fibration.

⊢

EC

��
U
��

⊣

EopC

��
U
��

B
K

??⑧⑧⑧⑧⑧⑧⑧⑧

IdB

// B Bop
K

<<②②②②②②②②

IdBop
// Bop

We can instantiate Lemmas 3.8 and 3.9 to derive both the truth-preserving lifting for
all functors from [5] (presented above) and an equality-preserving lifting for all functors.
The latter gives the sound induction rules for inductive types presented in [5], and the
former gives our sound coinduction rules for all coinductive types. To obtain the lifting for
induction, let U : E → B be a Lawvere category, K be the truth functor for U , and C be
the comprehension functor for U . Since a Lawvere category is an opfibration, Lemma 3.9
ensures that any functor F : B → B lifts to a truth-preserving lifting F̂ : E → E . This is
exactly the lifting of [5]. To obtain the lifting for coinduction, let U : E → B be a bifibration
satisfying the Beck-Chevalley condition, let B have products, and let K be a truth functor
for U . Now, consider the relations fibration Rel(U) for U , and let Eq be the equality functor
for U . Since δ is a mono, since Eq = ΣδK, and since both K and Σδ are full and faithful,
Lemma 2.11 ensures that Eq is full and faithful. Moreover, since, for every X in B, EqX is
in the fibre of Rel(U) above X, we have Rel(U)Eq = IdB. We can therefore take E to be
Eq in Lemma 3.8 provided Eq has a left adjoint Q. In this case, every functor F : B → B
has an equality-preserving lifting F̌ : Rel(E) → Rel(E), and so if F has a final coalgebra νF ,
then νF has a sound coinduction rule. We record this in the following theorem. Henceforth,
we call a QCE of the form Rel(U) obtained by change of base of U along ∆ by the above
construction, and for which the functor E is thus the equality functor for U , a relational
QCE.

Theorem 3.10. If Rel(U) : Rel(E) → B is a relational QCE obtained from a fibration
U : E → B, and if F : B → B is a functor whose final coalgebra has carrier νF , then there
exists a sound coinduction rule for νF in U.

Just as cod is the canonical CCU, if dom is the canonical QCE. Indeed, if U is dom :
B→ → B, if E is the functor mapping each X in B to idX , and if Q is cod : B→ → B,
then F̌ is exactly F→. Thus, just as the lifting F̂ with respect to an arbitrary fibration
U satisfying the hypotheses of Lemma 3.9 can be modularly constructed from the specific
lifting F→ with respect to cod [5], so the lifting F̌ with respect to an arbitrary fibration
U satisfying the hypotheses of Lemma 3.8 can be modularly constructed from the specific
lifting F→ with respect to dom .

What we have seen is that dom plays a role in the coinductive setting similar to that
played by cod in the inductive one. We think of a morphism f : X → Y in the total
category of cod as a predicate on Y whose proofs constitute X. Intuitively, f maps each p
in X to the element y in Y about which it is a proof. Similarly, we think of a morphism
f : X → Y in the total category of dom as a relation on X, the quotient of X by which has
equivalence classes comprising Y . Intuitively, f maps each x in X to its equivalence class
in that quotient.

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 15

The following two examples of relational QCEs appear in Propositions 4.8.6 and 4.8.7(iii)
in [12].

Example 3.11. Let B be a regular category. The relations fibration for the subobject
fibration U : Sub(B) → B is a relational QCE iff B has coequalisers. In this case, the equality
functor maps an object X of B to the equivalence class of δX : X → X×X in Sub(B). The
quotient functor maps an equivalence class [m], with m = 〈m0,m1〉 : R X×X, to the
codomain X/R of the coequaliser cR of m0 and m1:

R
m0

))

m1

55 X
cR // X/R

Example 3.12. Consider the fibration U : ASub(CL) → CL of admissible subsets of com-
plete lattices and its associated relations fibration U ′ : Rel(ASub(CL)) → CL. We have that
U ′ is a relational QCE. Indeed, the equality functor Eq : CL → Rel(ASub(CL)) maps a
complete lattice X to the admissible subset {(x, x) | x ∈ X} ⊆ X×X. The quotient functor
Q : Rel(ASub(CL)) → CL maps an admissible subset R ⊆ X×X to the complete lattice
{x ∈ X | ∀(y, y′) ∈ R, y ≤ x iff y′ ≤ x}.

Example 3.13. As we have seen, if U is the families fibration, then the fibre above X in
Rel(U) consists of functions R : X ×X → Set. We think of these functions as constructive
relations, with R(x, x′) giving the set of proofs that x is related to x′. In Lemma 3.8 we
can take U to be the families fibration, E to map each set X to the relation eqX defined
by eqX(x, x

′) = 1 if x = x′ and eqX(x, x
′) = 0 otherwise, and Q to map each relation

R : X × X → Set to the quotient X/R of X by the least equivalence relation containing
R. We can then instantiate Lemma 3.8 by taking ρ : Rel(U) → Set→ to map a relation
R : X ×X → Set to the quotient map ρR : X → X/R, taking J : Set→ → Rel(U) to map
f : X → Y to the relation f̄ mapping (x, x′) to 1 if fx = fx′ and to 0 otherwise, and taking
F̌ : FA× FA→ Set to be given by F̌R = FρR.

The following example demonstrates that our approach goes beyond the current state-of-
the-art. We derive the coinduction rule for finitary hereditary sets in the relations fibration
for the families fibration. Finitary hereditary sets are elements of the carrier of the final
coalgebra of the functor Pfin mapping a set to its finite powerset. Since Pfin is not polyno-
mial, it lies outside the scope of Hermida and Jacobs’ work [9]. In fact, as far as we aware,
the coinduction rule for finitary hereditary sets that we derive in the next example is more
general than any appearing elsewhere in the literature; indeed, the relations in Rel(U) are
not required to be equivalence relations. The functor Pfin is, however, important, not least
because a number of canonical coalgebras are built from it. For example, a finitely branching
labelled transition system with state space S and labels from an alphabet A is a coalgebra
with carrier S for the functor Pfin(A×−).

Example 3.14. By Example 3.13, the lifting P̌fin maps a relation R : A × A → Set

to the relation P̌finR : PfinA × PfinA → Set defined by P̌finR = PfinρR. Thus, if X

and Y are finite subsets of A, then (X,Y) ∈ P̌finR iff PfinρRX = PfinρRY . Since the
action of Pfin on a morphism f maps any subset of the domain of f to its image under

f , PfinρRX = PfinρRY iff (∀x : X). (∃y : Y). xR̃y ∧ (∀y : Y). (∃x : X). xR̃y, where

R̃ = ρR is the least equivalence relation containing R. From P̌fin we have that the resulting

coinduction rule has as its premises a P̌fin -coalgebra, i.e., a function α : A → PfinA and

16 N. GHANI, P. JOHANN, AND C. FUMEX

a function α† : (∀a, a′ : A). aRa′ → (αa) P̌finR (αa′). If we regard α : A → PfinA as a

transition function, i.e., if we define a → b iff b ∈ αa, then α† is a bisimulation whenever
R is an equivalence relation. In this case, the coinduction rule thus asserts that any two
bisimilar states have the same interpretation in the final coalgebra. However, when R is
not an equivalence relation, α† is slightly weaker since it only requires transitions to map
R-related elements R̃-related elements. Since it is easier to prove that two elements are
R̃-related than it is to prove them R-related, our coinduction rule is slightly stronger than
might be expected at first glance.

4. Indexed Induction

Data types arising as initial algebras and final coalgebras on traditional semantic categories
such as Set and ωcpo⊥ are of limited expressivity. More sophisticated data types arise as
initial algebras of functors on their indexed versions. To build intuition about the resulting
inductive indexed types, first consider the inductive type List X of lists of X. It is clear
that defining List X for some particular type X does not require any reference to List Y
for Y 6= X. That is, each type List X is inductive all on its own. We call List an indexed
inductive type to reflect the fact that it is a family of types, each of which is inductive. By
contrast, for each n in Nat , let Fin n be the data type of n-element sets, and consider the
inductive definition of the Nat-indexed type Lam : Nat → Set of untyped λ-terms up to
α-equivalence with free variables in Fin n. This type is given by

i : Fin n
Var i : Lam n

f : Lam n a : Lam n
App f a : Lam n

b : Lam (n+ 1)
Abs b : Lam n

Unlike List X, the type Lam n cannot be defined in isolation using only the elements of
Lam n that have already been constructed. Indeed, the third inference rule above shows that
elements of Lam (n + 1) are needed to construct elements of Lam n. In effect, then, all of
the types Lam n must be inductively constructed simultaneously. We call Lam an inductive
indexed type to reflect the fact that it is an indexed type that is defined inductively.

There is considerable interest in inductive and coinductive indexed types. If types are
interpreted in a category B, and if I is a set of indices considered as a discrete category,
then an inductive I-indexed type can be modelled by the initial algebra of a functor on
the functor category I → B. Alternatively, indices can be modelled by objects of B, and
inductive I-indexed types can be modelled by initial algebras of functors on slice categories
B/I. Coinductive indexed types can similarly be modelled by final coalgebras of functors
on slice categories.

Initial algebra semantics for inductive indexed types has been developed extensively [2,
16]. Pleasingly, no fundamentally new insights were required: the standard initial algebra
semantics needed only to be instantiated to categories such as B/I. By contrast, the theory of
induction for inductive indexed types has received comparatively little attention. The second
contribution of this paper is to derive sound induction rules for inductive indexed types by
similarly instantiating the fibrational treatment of induction to appropriate categories. The
key technical question to be solved turns out to be the following: Given a Lawvere category of
properties fibred over types, can we construct a new Lawvere category fibred over indexed
types from which sound induction rules for inductive indexed types can be derived? To
answer this question, we first make the simplifying assumption that the inductive indexed

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 17

types of interest arise as initial algebras of functors on slice categories, i.e., functors F :
B/I → B/I, where I is an object of B. We treat the general case in Section 6.

We conjecture that the total category of the fibration with base B/I that we seek should
be a slice category of E . We therefore make the canonical choice to slice over KI, where K
is the truth functor for U . We then define U/I : E/KI → B/I by (U/I) (f : P → KI) =
(Uf : UP → I). Here, cod (Uf) really is I because UK = Id .

We first show that U/I is indeed a bifibration. We do this by proving a more general
result that we can reuse in Section 5.

Lemma 4.1. Let U : E → B be a fibration (bifibration) with a functor F : A → E and
G : A → B such that UF = G. This, of course, uniquely determines G. For any I in A,
the functor U/F : E/FI → B/GI is a fibration (resp., bifibration).

Proof. Let α : Y → GI and β : X → GI be objects of B/GI, and let φ : Y → X be a
morphism in B/GI from α to β, i.e., let φ be such that α = βφ. Let f : P → FI be an object

of E/FI such that (U/F)f = Uf = β, and let φ§P : φ∗P → P be the cartesian morphism

in E above φ with respect to U . Then φ§P is a morphism in E/FI with domain fφ§P and
codomain f , and it is cartesian above φ with respect to U/F . Thus, U/F is a fibration if
U is. Now, let g : Q → FI be an object of E/FI such that (U/F)g = Ug = α, and let

φQ§ : Q→ ΣφQ be the opcartesian morphism in E above φ with respect to U . Since α = βφ,

the opcartesianness of φQ§ ensures that there is a unique morphism k : ΣφQ → FI in E

above β such that g = kφQ§ . Then φQ§ is a morphism in E/FI with domain g and codomain

k, and it is opcartesian above φ with respect to U/F . Thus, U/F is an opfibration if U is.
Combining these results gives that if U is a bifibration then so is U/F .

We can now show that U/I is a bifibration as desired.

Lemma 4.2. If U : E → B is a fibration (bifibration) with a truth functor K and I is an
object of B, then U/I is a fibration (resp., bifibration).

Proof. This follows from Lemma 4.1 by taking F to be the truth functor K for U and G to
be IdB, and then observing that, for this instantiation, U/F is precisely the fibration U/I
defined before Lemma 4.1.

There is an alternative characterisation of E/KI that both clarifies the conceptual basis
of our treatment of indexed induction and simplifies our calculations. The next lemma is
the key observation underlying this characterisation.

Lemma 4.3. Let U : E → B be a fibration with truth functor K, let I be an object of B,
and let α : X → I. Then (E/KI)α ∼= EX .

Proof. One half of the isomorphism maps the object f : P → KI of (E/KI)α to P . For
the other half, note that since truth functors map objects to terminal objects, and since
reindexing preserves terminal objects, we have that α∗KI is terminal in EX . Thus, for any

object Q above X, we get a morphism from Q to KI by composing α§
KI and the unique

morphism ! from Q to α∗KI. Since ! is vertical and α§
KI is above α, this composition is

above α. Thus each object Q in EX maps to an object of (E/KI)α. It is routine to verify
that these maps constitute an isomorphism.

18 N. GHANI, P. JOHANN, AND C. FUMEX

By Lemma 4.3 we can identify objects (morphisms) of (E/KI)α and objects (resp.,
morphisms) of EX . This gives our abstract characterisation of U/I:

Lemma 4.4. Let U : E → B be a fibration with a truth functor and let I be an object of B.
Then U/I can be obtained by change of base of U along dom : B/I → B.

Proof. As noted in Section 3, the pullback of a fibration along a functor is a fibration. The
objects (morphisms) of the fibre above α : X → I of the pullback of U along dom are the
objects (resp., morphisms) of EX . By Lemma 4.3, the pullback of U along dom is therefore
U/I.

As observed just after Definition 3.1, pulling back a fibration along a functor pre-
serves fibred terminal objects so, by Lemma 4.4, U/I has fibred terminal objects if U
does. Concretely, the truth functor KU/I : B/I → E/KI maps an object f : X → I
to Kf : KX → KI. To see that U/I is a Lawvere category if U is, we must also show that
KU/I has a right adjoint if KU does. For this, we use an abstract theorem due to Hermida [7]
to transport adjunctions across pullbacks along fibrations.

Lemma 4.5. Let F ⊣ G : A → B be an adjunction with counit ǫ, and let U : E → B be a
fibration. Then the functor U∗F : U∗A → E has a right adjoint GU : E → U∗A mapping
each object E to the object (ǫ∗UEE,GUE).

Lemma 4.6. Change of base along a fibration preserves CCUs, i.e., if U : E → B is a CCU
and U ′ : E ′ → B is a fibration, then the pullback U ′∗U is a CCU.

Proof. We already have that U ′∗U is a fibration with fibred terminal objects. To see that
KU ′∗U has a right adjoint, consider the pullback of KU along U∗U ′. This pullback is given
by E ′, KU ′∗U : E ′ → U ′∗E , and U ′ : E ′ → B. Note that U∗U ′ is a fibration since it is obtained
by pulling U ′ back along U . Lemma 4.5 then ensures that, since KU has a right adjoint, so
does KU ′∗U . Thus U ′∗U is a CCU.

If U : E → B is a fibration, I is an object of B, and U ′ is dom : B/I → B, then
the comprehension functor for U ′∗U — i.e., for U/I — maps an object f : P → KI to
(Uf)πP : {P} → I. Combining Lemma 4.6 and the fact that change of base preserves
bifibrations, we have:

Lemma 4.7. Let U : E → B be a Lawvere category and U ′ : E ′ → B be a fibration. Then
U ′∗U — i.e., U/I — is a Lawvere category.

Theorem 4.8. Let U : E → B be a Lawvere category, let I be an object of B, and let
F : B/I → B/I be a functor whose initial algebra has carrier µF . Then there exists a sound
induction rule for µF in U/I.

We can use Theorem 4.8 to derive a sound induction rule for the indexed containers of
Morris and Altenkirch [16].

Example 4.9. If I is a set, then the category of I-indexed sets is the fibre Fam(Set)I . An
I-indexed set is thus a function X : I → Set, and a morphism h from X to X ′, written
h : X →I X

′, is a function of type (Πi : I).Xi → X ′i. Morris and Altenkirch denote this
category I → Set and define an I-indexed container to be a pair (S,P) with S : I → Set and
P : (Πi : I). Si → I → Set. An I-indexed container defines a functor [S,P] : (I → Set) →
I → Set by [S,P]Xi = (Σs : Si). P i s →I X. Thus, if t : [S,P]X i, then t is of the form

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 19

(s, f). If g : X →I Y is a morphism of I-indexed sets, then [S,P]g maps a pair (s, f) to
(s, gf).

If i ∈ I, then we can think of Si as a collection of operators that produce data of sort
i, and we can think of P as assigning to every i and every operator producing data of sort
i an I-indexed collection of positions in which data is stored. That is, P i s j is the set of
positions associated with the operator s where data of sort j must be stored. This shapes
and positions metaphor is also reflected in the functor associated with an indexed container,
since we can think of [S,P]Xi as containing terms of sort i produced by (S,P) whose input
data is drawn from X. Such a term consists of an operator s producing data of sort i and,
for each position storing data of sort j, an element of X of sort j.

The initial algebra of [S,P] is denoted in : [S,P]WS,P →I WS,P . Since I → Set is
equivalent to Set/I, we can use the results of this section to extend those of [16] by giving
sound induction rules for data types of the form WS,P . A predicate over an I-indexed set X
is a function Q : (Πi : I).Xi → Set. To simplify notation, this is written Q : X →I Set. The

lifting [̂S,P] of [S,P] maps each Q : X →I Set to the predicate [̂S,P]Q : [S,P]X →I Set

defined by [̂S,P]Qi (s, f) = (Πj : I). (Πp : P i s j). Q j (f j p). Altogether, this gives the
following sound induction rule for WS,P :

(Πi :I). (Π(s, f) : [S,P]WS,P i). ((Πj :I). (Πp :P i s j). Q j(f j p) → Qi(in i (s, f))))
→ (Πi :I). (Πt :WS,P i). Q i t

While admittedly rather dense in its type-theoretic formulation, the above induction
rule is conceptually clear. The premise says that, for any term in i (s, f) in WS,P i, we must
be able to prove that a property Q :WS,P →I Set holds at in i (s, f) if Q is assumed to hold
of all the immediate subterms of in i (s, f). The conclusion of the rule says that Q holds
for all terms. Of course this is what we naturally expect, and our point is precisely that we
can derive it in a principled manner from the fibrational approach to induction rather than
simply having to postulate that it is reasonable.

We can instantiate the above induction rule for WS,P for the data type of untyped
lambda terms from the beginning of this section. The resulting induction rule cannot be
derived using Hermida and Jacobs’ techniques because the data type of untyped lambda
terms is not the initial algebra of a polynomial functor. The resulting rule is precisely what
we expect. For any predicate Q : Lam →Nat Set:

(Πn : Nat . Πj : Fin n. Q n (V ar j)) →
(Πn : Nat . Πu, v : Lam n. Q n u→ Q n v → Q n (App u v)) →
(Πn : Nat . Πt : Lam (n+1). Q (n+1) t→ Q n (Abs t)) →
Πn : Nat . Πt : Lam n. Q n t

5. Indexed Coinduction

We now present our third contribution, namely sound coinduction rules for coinductive
indexed types. Examples of such types are infinitary versions of inductive indexed types,
such as infinitary untyped lambda terms and interaction structures. Following the approach
of Section 4, we consider indexing by slice categories in this section. In more detail, we show
that for any relational QCE over a base category B and for any object I of B, change of
base along dom : B/I → B yields a relational QCE over B/I.

20 N. GHANI, P. JOHANN, AND C. FUMEX

Recall that if B has products and U : E → B is a bifibration that satisfies the Beck-
Chevalley condition and has truth functor K, then the equality functor Eq for U is given
by Eq = ΣδK. Let Rel(U) : Rel(E) → B be a relational QCE, so that Eq has a left adjoint
Q. To define a relational QCE over B/I we must first see that B/I has products. But
the product of f and g in B/I is determined by their pullback: if W , j : W → Z, and
i : W → X give the pullback of f and g, then their product in B/I is the morphism fi or,
equivalently, gj. Below, we write f2 for the product of f : X → I with itself in B/I and
XfX for the domain of f2. Now, if B has pullbacks, then we can construct the relations
fibration Rel(U/I) : Rel(E/KI) → B/I from the pullback of U/I along the product functor
∆/I : B/I → B/I mapping f to f2. Concretely, an object of Rel(E/KI) above f : X → I
is an object of E/KI above f2 with respect to U/I. This is, in turn, equivalent to an object
of E above XfX with respect to U .

5.1. The Equality Functor for U/I. In Section 4 we showed that if U is a bifibration
where B has products, and U has a truth functor K, then for any object I of B, U/I is a
bifibration that has a truth functor whose action is also that of K, and so is denoted K as
well. Furthermore, we have just seen that if B has pullbacks, then B/I also has products.
Thus, by Definition 3.4, U/I has an equality functor EqU/I . To define this functor concretely,
note that the component of the diagonal natural transformation δ/I : IdB/I → ∆/I at
f : X → I is the mediating morphism in the diagram below on the left. Thus, EqU/I maps

an object f : X → I of B/I to the unique morphism above f2 in the diagram on the right
induced by the opcartesian morphism m above (δ/I)f :

X

id

##

(δ/I)f
""

id

XfX

i

��

j //
❴
✤ X

f

��

KI

X
f

// I KX

Kf

99sssssssssss

m
// Σ(δ/I)fKX

EqU/If

OO

Note that if U satisfies the Beck-Chevalley condition, so that opreindexing for U defines a
full and faithful functor, then the fact that the action of opreindexing for U/I is the same
as opreindexing for U means that opreindexing for U/I defines a full and faithful functor as
well. Since truth functors are always full and faithful, so is EqU/I = Σδ/IKU/I .

5.2. The Quotient Functor for U/I. Whereas defining the equality functor for U/I was
straightforward, defining its quotient functor is actually tricky. To do so, for each object I of
B, we we write Rel(U)/I : Rel(E)/Eq I → B/I for the fibration obtained as the instantiation
of Lemma 4.1 in which Eq : B → Rel(E) plays the role of F and Rel(U) plays the role of U .
Concretely, the objects of Rel(E)/Eq I above f : X → I are morphisms α : P → Eq I, for
some object P of Rel(E), such that Uα = ∆f . Our first result identifies conditions under
which Rel(U)/I is a QCE.

Lemma 5.1. Let U : E → B be a fibration, let B have pullbacks, let I be an object of B, and
let Rel(U) : Rel(E) → B be a relational QCE. Then Rel(U)/I is a QCE.

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 21

Proof. Let Eq : B → Rel(E) and Q : Rel(E) → B be the equality and quotient functors for
U , respectively. We construct a full and faithful functor E′ : B/I → Rel(E)/Eq I such that
(Rel(U)/I)E′ = IdB/I , and a left adjoint Q′ for E′, as follows. Take E′ to be Eq. Then E′

is full and faithful since Eq is. Moreover, for any f : X → I, Definition 3.4 ensures that Eq f
is above f × f with respect to U , so (Rel(U)/I)E′f = f , and thus (Rel(U)/I)E′ = IdB/I .

Finally, we define Q′ to map each object α : P → Eq I of Rel(E)/Eq I to its transpose
α′ : QP → I under the adjunction Q ⊣ Eq. That Q′ ⊣ E′ follows directly from Q ⊣ Eq.

We can now define the quotient functor for Rel(U/I) using the functor Q′ from the
proof of Lemma 5.1. The key step is to use Lemma 3.2 to define an adjunction τ ⊣ σ such
that the following diagram commutes:

Rel(E/KI)

Rel(U/I) %%❑❑
❑❑

❑❑
❑❑

❑❑

τ ..
⊥ Rel(E)/Eq I
σ

mm

Rel(U)/Iyyrrr
rr
rr
rr
r

B/I

Then if E′ and Q′ are the functors witnessing the fact that Rel(U)/I is a QCE, composition-
ality of adjoints ensures that σE′ and Q′τ give equality and quotient functors for Rel(U/I),
respectively.

Lemma 5.2. The above adjunction τ ⊣ σ holds.

Proof. In order to prove this lemma, we first instantiate Lemma 4.1, with Eq playing the
role of F and ∆ playing the role of G, to obtain the fibration U/Eq : E/Eq I → B/I×I. We
then have the following three changes of base:

Rel(E/KI)

Rel(U/I)
��

//

❴
✤

E/KI

U/I
��

//

❴
✤

E/Eq I

U/Eq
��

Rel(E)/Eq Ioo

Rel(U)/I
��

✤
❴

B/I
∆/I

// B/I
δI◦_

// B/I×I B/I
×

oo

Here, the functor δI ◦ _ maps f : X → I to δI ◦ f : X → I×I, and _×_ maps f to
f×f : X×X → I×I. The square on the left is a pullback square by definition of Rel(U/I),
and the one on the right is a pullback square by direct calculation. To see that the middle
square is a pullback square, first observe that since every morphism δI : I → I×I is a mono,
Lemma 2.11 ensures that each opcartesian morphism (δI)§ : KI → Eq I is also cartesian.
For any f : X → I, the fibre above f of the pullback of U/Eq along (δI)§ : KI → Eq I
consists of all morphisms of the form g : P → EqI such that Ug = δI ◦ f . Similarly, the
fibre of U/I above f consists of all morphisms of the form g : P → KI such that Ug = f .
The universal property of (δI)§ considered as a cartesian morphism ensures that these two
fibres are isomorphic, and thus that U/I is indeed the pullback of U/Eq along δI ◦ _.

Now, let f : X → I be a morphism in B, and let i and j be the projections for the
pullback square defining XfX. The universal property of the product X × X ensures the
existence of a morphism vf : XfX → X×X such that π1v = i and π2v = j. Moreover, by the
universal property of the pullback of f along itself, vf is a mono. In fact, it is easy to check
that there is a natural transformation v : dom ◦∆/I → ∆ ◦ dom whose component at any f
is given by vf . Finally, v extends to a natural transformation α : (δI ◦ _) ◦∆/I → _ × _.

22 N. GHANI, P. JOHANN, AND C. FUMEX

Indeed, for any f , the fact that πn ◦ f×f ◦ vf = f2 = πn ◦ δI ◦ f
2 for n ∈ {1, 2} ensures that

the diagram

XfX

f2

��

vf // X ×X

f×f
��

I
δI

// I × I

commutes by the universal property of the product I × I. By Lemma 3.2, α induces the
desired adjunction.

Recall that our candidate for the quotient functor QU/I for Rel(U/I) is Q′τ . To see that
Q′τ ⊣ EqU/I , we need only verify that EqU/I is σE′. It is routine to check that τEqU/I = E′,

from which EqU/I = σE′ follows. We therefore have that Rel(U/I), together with EqU/I
and QU/I as defined above, form a relational QCE. Thus, by Theorem 3.10, we have

Theorem 5.3. Let U : E → B, where B has products and pullbacks, be a bifibration that
satisfies the Beck-Chevalley condition. Suppose U has a truth functor. Let I be an object of
B and F : B/I → B/I be a functor whose final coalgebra has carrier νF . Then there exists
a sound coinduction rule for νF in U/I.

We can use the results of this section to give a sound coinduction rule for final coalgebras
of indexed containers that is dual to the sound induction rule of Example 4.9.

Example 5.4. Let (S,P) be an I-indexed container with final coalgebra out : MS,P →I

[S,P]MS,P . A relation above an I-indexed set X : I → Set is an I-indexed family of
relations Ri on Xi. The relational lifting of [S,P] maps a relation R above an I-indexed
set X to the relation R′ above the I-indexed set [S,P]X that relates (s, f) ∈ [S,P]Xi and
(s′, f ′) ∈ [S,P]Xi iff s = s′ and, for all j : I and p : P i s j, f j p is related to f ′ j p in the
least equivalence relation containing Rj. This gives the following notion of bisimulation for
[S,P]-coalgebras k : X →I [S,P]X. Let ρ0(s, f) = s and ρ1(s, f) = f . Then if x, x′ ∈ Xi,
then x ∼i x

′ iff ρ0(kx) = ρ0(kx
′) and, for all j : I and p : P i (π0(kx)) j, we have that

ρ1(kx)jp ∼j ρ1(kx
′)jp. As in Example 3.14, the coinduction rule thus asserts that any two

bisimilar states have the same interpretation in the final coalgebra.

Stepping back, we see that the above coinduction rule is as expected. To understand
it, we think of a term t : MS,P as being part of a transition system whose terms are the
subterms of t (including t itself), and suppose there is a transition from every subterm to
each of the immediate subterms of that term. Then two terms are bisimilar iff they share
the same root operator and each of their subterms are bisimilar. The point is, of course,
that the fibrational approach to coinduction derives the rule in a principled manner rather
than simply having to postulate it.

6. Fibred Induction

In Section 4 we saw how the fibrational approach to induction can be instantiated to derive
sound induction rules for inductive indexed types when the indexing is given using slice
categories. Although it provides a good example of how to exploit the abstract power of
fibrations, this instantiation suffers from two limitations:

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 23

• First, the instantiation successfully treats indexing that is modelled by slice categories,
but neither it nor its abstract generalisation can successfully handle more general forms of
indexing. Indeed, in Section 4, the fact that the comprehension functor dom is a fibration
was critical to showing that U/I is a Lawvere category, but the abstract generalisation
of this result does not hold because, in general, a comprehension functor need not be a
fibration. To handle general forms of indexing, we therefore need a genuinely new idea.

• Secondly, in Section 4 we handle I-indexed types by deriving from a Lawvere category
U : E → B a Lawvere category U/I with base category B/I. But this is inelegant
because it requires the construction of a new Lawvere category for every possible index I,
and because the uniformity over I that connects the different fibrations U/I is completely
ignored. Indeed, if we think of fibrations as modelling logics over types, then the results of
Section 4 ostensibly choose entirely different logics for different indices. A better approach
would formalise the uniformity of the fibrations U/I over the indices I.

In this section we extend the work of Section 4 to derive sound induction rules for general
indexed types. This is accomplished by adding an abstraction layer that models the way
types are indexed, and thus allows us to treat indexing modelled by structures other than
slice categories. More specifically, we consider indexed types to be given by a second fibration
r : B → A, so that the objects of B are types indexed by the objects of A. Of course, the
logical layer still forms a fibration U : E → B over types, so we get the following basic
picture, which captures the move from a single fibration U to a fibration U above a fibration
r:

E

rU ��❄
❄❄

❄❄
❄❄

U // B

r��⑦⑦
⑦⑦
⑦⑦
⑦

A

Note that rU is a fibration because the composition of two fibrations is again a fibration.
Taking A to be the category with one object and one morphism, the sound induction rules in
the unindexed setting will be recoverable from the sound induction rules for general indexed
types that we develop in this section; see Example 6.8 below. The sound induction rules in
the indexed setting of Section 4 will similarly be recoverable by taking r to be the codomain
fibration; see Lemma 6.9. In addition, taking r to be the families fibration, we will be able to
derive the sound induction rules for carriers of initial algebras of indexed containers directly,
rather than deriving them indirectly, as we did in Example 4.9, using the equivalence of the
families fibration and the codomain fibration.

Let U : E → B and r : B → A be two fibrations. Then an inductive indexed type with
index a, where a is an object of A, is the carrier µF of the initial algebra of an endofunctor
F : Ba → Ba, where Ba is the fibre of B above a. To derive a sound induction rule for µF
using Theorem 2.23, we will ultimately need a Lawvere category with base Ba; indeed, by
the discussion immediately following Lemma 2.22, this will ensure the existence of a lifting
of F to the total category of that Lawvere category. So, what might we take as that Lawvere
category? Since F has domain Ba rather than all of B, we cannot expect F to lift to the
whole of E . On the other hand, U does restrict to a fibration Ua : Ea → Ba, where Ea is
the fibre of rU above a. As we will see in Corollary 6.6 below, Ua is precisely the Lawvere
category we seek.

24 N. GHANI, P. JOHANN, AND C. FUMEX

We begin by establishing the properties of Ua that we will need. The following lemma
uses change of base to deduce several of them.

Lemma 6.1. Let U : E → B and r : B → A be two fibrations. For any object a in A, the
fibration U restricts to a fibration Ua : Ea → Ba, where Ea is the fibre above a of the fibration
rU . Similarly, if U is an opfibration or a bifibration, then so is Ua. Finally, if U has a truth
functor, then so does Ua.

Proof. The fibration Ua : Ea → Ba arises by change of base of U along the inclusion functor
ia : Ba → B:

Ea

Ua
��

//
❴
✤ E

U
��

Ba
ia

// B

Pulling back an opfibration along a functor produces an opfibration, so Ua is an opfibration
if U is. As a result, Ua is a bifibration if U is. Moreover, change of base preserves truth
functors, so Ua has a truth functor if U does. Indeed, the truth functor for Ua is just the
restriction of the truth functor for U to Ba.

We write Ka for the truth functor for Ua. Note that while a truth functor always restricts to
a subfibration Ua, the existence of a truth functor Ka for every Ua does not necessarily imply
that U itself has a truth functor. For this to be the case, reindexing must preserve truth
functors from one subfibration to another. Of course, if U is a bifibration, then reindexing is
a right adjoint, so it preserves terminal objects, and in this case the individual truth functors
Ka actually do collectively define a truth functor for U .

Our interest in the above results is that they show that the basic structure of a logic
(reindexing, opreindexing, and truth functors) over a fibration of indexed types restricts to
a corresponding logic over types with a specific index. We may therefore consider truth-
preserving (i.e., Ka-preserving) liftings of functors F : Ba → Ba, and ask when such a lifting
defines a sound induction rule for µF . From Theorem 2.20 we know the answer: this occurs
when the fibration Ua : Ea → Ba is a CCU. But now we face a choice. Is it enough to simply
ask that, for every object a of A, Ua is a CCU? Or should we require that these different
CCUs, when taken collectively, ensure that U is a CCU?

While the former choice is indeed possible, we believe that the latter choice better
highlights the uniformity connecting the different fibrations Ua. In fact, we have already
implicitly made the latter choice when we started with a single fibration U and constructed
from it the collection of individual fibrations Ua. Unfortunately, asking that each fibration
Ua is a CCU does not ensure that U itself is a CCU. On the other hand, we cannot simply
require U to be a CCU either, since that is not enough to guarantee that each Ua is a CCU.
But if we require U to be a fibred CCU in the sense of Definition 4.4.5 of [11], then U will
indeed be a CCU whose restriction to each subfibre Ua is also a CCU. We have:

Definition 6.2. Let U : E → B and r : B → A be two fibrations, and let K : B → E the
truth functor for U . We say that U is a fibred CCU above r if K has a fibred right adjoint

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 25

{−} : rU → r:

E

rU ��❄
❄❄

❄❄
❄❄

{−}
++

⊤ B
K

kk

r��⑦⑦
⑦⑦
⑦⑦
⑦

A

That K : r → rU is a fibred functor follows from the fact that K : idB → U is also a fibred
functor (see Lemma 1.8.8 of [12]). A first consequence of Definition 6.2 is that, if a fibration
U : E → B is a fibred CCU above r then U is a CCU. Furthermore, from Lemma 2.14 we
have that if U is a fibred CCU above r, then each fibration Ua is a CCU. In fact, we have
the following correspondence:

Lemma 6.3. Let U : E → B and r : B → A be fibrations. The fibration U is a fibred CCU
above r with fibred adjunction K ⊣ {−} iff U is a CCU with truth functor K : B → E and
comprehension functor {−} : E → B and, for each a in A, the fibration Ua : Ea → Ba is a
CCU with comprehension functor {−}a : Ea → Ba given by restricting {−} to Ea.

Proof. Let U be a CCU with truth functor K : B → E and comprehension functor {−} :
E → B. Further, suppose that, for every a in A, the fibration Ua : Ea → Ba is a CCU
whose comprehension functor {−}a : Ea → Ba is given by restricting {−} to Ea. Then,
by Lemma 2.15, we have that {−} is fibred from rU to r. Moreover, since the adjunction
{−} ⊢ K restricts to the adjunctions {−}a ⊢ Ka, the unit of {−} ⊢ K is vertical with
respect to r. The other direction of the equivalence is straightforward.

We have thus shown that a fibred CCU U above r is just the right structure for deriving
sound induction rules when indexing of types is described by r. We wanted a structure to
guarantee that each Ua is a CCU and that these individual CCUs collectively ensure that
U is also a CCU. Lemma 6.3 shows that a fibred CCU above r guarantees exactly this —
no more, no less.

Definition 6.2 straightforwardly extends to Lawvere categories as follows:

Definition 6.4. Let U : E → B and r : B → A be fibrations. We say that U is a fibred
Lawvere category above r if U is a fibred CCU above r and U is a bifibration.

The next two corollaries are immediate.

Corollary 6.5. Let U : E → B and r : B → A be fibrations. Then U is a fibred Lawvere
category above r iff U is a Lawvere category and, for every a in A, Ua : Ea → Ba is a
Lawvere category whose unit and comprehension are given by the restrictions of the unit and
comprehension, respectively, of U to Ea.

Corollary 6.6. Let U : E → B be a fibred Lawvere category above r : B → A. For any object
a of A and functor F : Ba → Ba, any Ka-preserving lifting F̂ : Ea → Ea of F defines a sound
induction rule for µF . In particular, the canonical Ka-preserving lifting from Section 2
defines a sound induction rule for µF .

Our first example shows that fibred induction is applicable in situations in which indexed
induction is not.

Example 6.7. Consider the mutually recursive data type

zero : evens
n : odds

evenSucc n : evens
n : evens

oddSucc n : odds

26 N. GHANI, P. JOHANN, AND C. FUMEX

If we model types in a category B, then we can model the 2-indexed data type of odds and
evens using the initial algebra of the functor F : B2 → B2 defined by F (E,O) = (O+1, E).
However, we may wish to index data types by sets other than 2. The codomain fibration
cod : Fam(Set)→ → Fam(Set) defines a fibred Lawvere category over the families fibration.
We therefore have the following induction rule in the families fibration for any predicates
P : evens→ Set and Q : odds → Set:

P (zero) →
(Πn : odds.Q(n) → P (evenSucc n)) →
(Πn : evens. P (n) → Q(oddSucc n)) →
(Πn : evens. P (n)) × (Πn : odds.Q(n))

We can also see the induction rule of Theorem 2.23 as an instance of fibred induction:

Example 6.8. Let U : E → B be a Lawvere category. If 1 is the category with one object and
one morphism, then U is a fibred Lawvere category above the fibration r : B → 1. Moreover,
the treatment of induction from Section 2 is equivalent to the treatment of induction for
this fibred Lawvere category.

And we can see indexed induction as an instance of fibred induction:

Lemma 6.9. Let U : E → B be a Lawvere category. The fibration q : E ′ → B→ obtained by
the change of base

E ′

q

��

//
❴
✤ E

U
��

B→

dom
// B

is a fibred Lawvere category above the codomain fibration and, for any I in B, qI = U/I.

Proof. Consider the following setting:

E ′

q

��

//
❴
✤ E

U
��

B→

cod
��

dom
// B

B

By Lemma 4.7, q is a Lawvere category because it arises by change of base along the fibration
dom. Moreover, for any object I of B, the fibration qI can be obtained by the change of
base

EI

qI
��

//
❴
✤ E ′

q

��
BI = B/I

iI
// B→

where iI is the inclusion functor. Thus qI arises as the pullback of U along the composition
of dom : B→ → B and iI : B/I → B→. But this composition is simply dom : B/I → B,

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 27

so it is clearly a fibration. Thus, qI is a Lawvere category, and q is itself a fibred Lawvere
category above the codomain fibration. Finally, qI = U/I by construction.

7. Fibred Coinduction

In this section we extend the methodology of Section 6 to give sound coinduction rules for
coinductive indexed types in the case when the indexing is not modelled by slice categories.
As in Section 6, we consider a fibration r : B → A, where we think of the objects of B as
being indexed by the objects of A, and a fibration U : E → B that we think of as a logic over
B. Our aim is to derive sound coinduction rules for final coalgebras of functors F : Ba → Ba,
where a is any object of A.

Our experience from Section 3 suggests that a minimal requirement for deriving a sound
coinduction rule for a functor F : Ba → Ba is that the fibration Ua is a QCE. As in Section 6,
we want to highlight the uniformity connecting the different fibrations Ua but, unfortunately,
requiring that each fibration Ua is a QCE does not automatically imply that U is a QCE.
On the other hand, if we define a (full) section of a functor F : C → D to be a (resp., full
and faithful) functor E : D → C such that FE = idD then, for fibrations U : E → B and
r : B → A, a (full) section E : B → E of U straightforwardly restricts to a (resp., full)
section Ea : Ba → Ea of Ua for any object a of A. Then, by contrast with the situation in
the inductive case, requiring that each fibration Ua is a QCE with section Ea actually does
ensure that U is a QCE with section E, provided E preserves cartesian morphisms. Indeed,
observing that the notion of a cartesian morphism and the notion of a fibre both make sense
for arbitrary functors whether or not they are fibrations, and extending our notation for
fibres of fibrations to fibres of functors, we have the following:

Lemma 7.1. Let r : B → A be a fibration, and let q : E → A and e : B → E be functors
such that qe = r. The functor e has a left adjoint Q : E → B with vertical unit (or,
equivalently, counit) iff e preserves cartesian morphisms and, for each object a in A, the
restriction ea : Ba → Ea of e has a left adjoint Qa.

Proof. Suppose e preserves cartesian morphisms, let Qa : Ea → Ba be a collection of left
adjoints to the restrictions ea : Ba → Ea of e, and let ηa be the unit of Qa ⊣ ea. We will
prove that, for each a in A and R in Ea, the morphism (ηa)R : R→ eQaR is universal from
R to e (and not just to ea). By part (ii) of Theorem 2 of Chapter 4 of [15], this gives an
adjunction Q ⊣ e. The unit of this adjunction is vertical because it comprises the various
units ηa.

To this end, consider a morphism l : R → eY in E above h : a → b in A. Then

Y is above b, and so there is a cartesian morphism h§Y : h∗Y → Y above h with respect

to r. Because e preserves cartesian morphisms, we know that e(h§Y) is cartesian above h

with respect to q. Thus l = e(h§Y)u for a unique vertical morphism u : R → e(h∗Y) with
respect to q. Now, since u is in Ea, we can use the universal property of (ηa)R to deduce a
unique morphism g : QaR→ h∗Y in Ba such that u = e(g)ηR. Therefore, we have a unique

morphism f = h§Y g such that l = e(f)ηR.
Conversely, suppose Q is left adjoint to e with vertical unit. Then e preserves cartesian

morphisms by Lemma 2.15, and the adjunction Q ⊣ e restricts to adjunctions Qa ⊣ ea
because the unit of Q ⊣ e is vertical and qe = r.

28 N. GHANI, P. JOHANN, AND C. FUMEX

We can now give the central definitions we need to state our sound coinduction rules
for coinductive indexed types.

Definition 7.2. Let U : E → B and r : B → A be two fibrations, and let E : B → E a full
section of U . We say that U is a QCE above r if E has a left adjoint Q : E → B and the
adjunction Q ⊣ E is fibred above A:

E

rU ��❄
❄❄

❄❄
❄❄

Q

33⊤ B
E

ss

r��⑦⑦
⑦⑦
⑦⑦
⑦

A

Note that, in this case, both E and Q are necessarily fibred. A weak QCE above r is similar
to a QCE above r, except that the left adjoint to E need not be fibred (although E itself
must still be).

With this definition in place, we have the following analogue of Corollary 6.5:

Lemma 7.3. Let U : E → B and r : B → A be fibrations. Then U is a weak QCE above
r iff U is a QCE and, for any object a of A, Ua : Ea → Ba is a QCE whose full section
and quotient functors are given by the restrictions of the full section and quotient functors,
respectively, of U to Ea.

Proof. If U is a weak QCE above r, then the fact that U and the fibrations Ua are QCEs is
straightforward. For the other direction, we observe that the unit (equivalently, counit) of
Q ⊢ E is vertical. Lemma 2.15 therefore guarantees that E preserves cartesian morphisms,
i.e., is fibred.

Corollary 7.4. Let U : E → B be a weak QCE above r : B → A. For any object a of
A and functor F : Ba → Ba, any Ea-preserving lifting F̌ : Ea → Ea of F defines a sound
coinduction rule for νF . In particular, the canonical Ea-preserving lifting from Section 3
defines a sound coinduction rule for νF .

We can see Theorem 3.10 as a special case of Corollary 7.4.

Example 7.5. Let U : E → B be a relational QCE. If 1 is the category with one object
and one morphism, then U is a weak QCE above the fibration r : B → 1. Moreover, the
treatment of coinduction from Section 3 is equivalent to the treatment of coinduction for
this weak QCE above r.

We can also see Theorem 5.3 as a special case of Corollary 7.4. This entails constructing,
from the data assumed in Lemma 5.1, a weak QCE above the codomain fibration cod . To
do this, we first define an analogue of a relational QCE in the setting where we are working
above a fibration r. We have the following definition:

Definition 7.6. Let U : E → B be a bifibration with truth functor K : B → E , let r : B → A
be a fibration, and assume that r has fibred cartesian products, i.e., products in the fibres
that are preserved by reindexing. Let ∆r : r → r be the fibred diagonal functor mapping
each object X in Ba to the product with itself in Ba. Then, the relations fibration above r
is defined to be the fibration Relr(U) : Relr(E) → B above r that is obtained by change of
base of U along ∆r. If δr : IdB → ∆r is the diagonal natural transformation for ∆r, then
the equality functor for U above r is defined to be the functor Eqr : B → Relr(E) that maps

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 29

an object X of B to ΣδrKX. Furthermore, if Eqr has a left adjoint Qr, then Qr is called
the quotient functor for U above r. A relational QCE above r is a QCE above r obtained
via this construction. A weak relational QCE above r is similar to a relational QCE above
r, except that the left adjoint to the fibred equality functor need not be fibred.

The main difficulty in constructing a weak relational QCE U above a fibration r is
proving that the equality functor for U is fibred. If B has pullbacks and r : B→ → B is the
codomain fibration, then r has fibred products given by pullbacks. In this case, we write
∆→ : B→ → B→ for the functor mapping an object f in (B→)I to the product f2 of f
with itself in the fibre (B→)I . We denote the diagonal natural transformation for ∆→ by
δ→ : IdB→ → ∆→.

Lemma 7.7. Let U : E → B be a bifibration with a truth functor, and suppose U satisfies
the Beck-Chevalley condition. Furthermore, assume that B has products and pullbacks. Let
U ′ : E ′ → B→ be obtained from U by change of base along the fibration dom , and let
Rel(U ′) : Rel(E ′) → B→ be obtained from U ′ by change of base along ∆→ : B→ → B→:

Rel(E ′)

Rel(U ′)
��

//
❴
✤ E ′

U ′

��

//
❴
✤ E

U
��

B→
∆→

// B→

dom
// B

Finally, let Σδ→ : E ′ → Rel(E ′) be the functor that maps an object (h : UP → I, P) of E ′ to
the object (h2,Σδ→h P) of Rel(E ′). Then Σδ→ is a fibred functor from cod◦U ′ to cod◦Rel(U ′).

Proof. Let (h : UP → I, P) be an object of E ′, let f : J → I be a morphism of B, and
consider the pullback (X,ψ : X → J, φ : X → UP) of h along f . Then the cartesian

morphism above f with codomain (h, P) is the morphism (f, φ§P) : (ψ, φ
∗P) → (h, P) in E ′.

We must show that the morphism Σδ→(f, φ§P) : Σδ→ψ φ
∗P → Σδ→h P is cartesian.

We begin by considering the morphism (f, φ) : ψ → h in B→. The fact that (X,ψ, φ)
is a pullback means that (f, φ) is cartesian. Because ∆→ is fibred, we know that ∆→(f, φ)
is cartesian. Thus, if ∆→(f, φ) = (f, α), then (XfX,ψ

2, α) is the pullback of h2 along f .
From part b of Exercise 8 on page 72 of [15], together with the facts that (X,ψ, φ) and
(XfX,ψ

2, α) are pullbacks, we have that (X, δ→ψ , φ) is the pullback of δ→h along α. The
Beck-Chevalley condition thus ensures that Σδ→ψ φ

∗P is isomorphic to α∗Σδ→h P . Letting Q

stand for Σδ→h P , we therefore have that Σδ→(f, φ§P) is (α§
Q, (f, α)). Since α§

Q, is cartesian

with respect to U by definition, and since (f, α) is cartesian with respect to cod , we have

that Σδ→(f, φ§P) is cartesian with respect to cod ◦Rel(U ′), as required.

Lemma 7.8. Let U : E → B be a bifibration such that the Beck-Chevalley condition holds
and B has pullbacks. Let Rel(U) : Rel(E) → B be the relational QCE derived from U , with
equality functor Eq : B → Rel(E) and quotient functor Q : Rel(E) → B. Then the bifibration
Rel(U ′) : Rel(E ′) → B→ obtained from the following change of base

Rel(E ′)

Rel(U ′)
��

//
❴
✤ E ′

U ′

��
B→

∆→
// B→

is a weak QCE above cod. In addition, for any I in B, Rel(U ′)I ∼= Rel(U/I).

30 N. GHANI, P. JOHANN, AND C. FUMEX

Proof. We have the following situation:

Rel(E ′)

Rel(U ′)
��

//
❴
✤ E ′

U ′

��

//
❴
✤ E

U
��

B→

cod
$$■

■■
■■

■■
■■

■ ∆→
// B→

cod
��

dom
// B

B

Let I be an object of B. First, by the same reasoning as in the proof of Lemma 6.9 we have
that U ′

I = U/I. Now, note that if iI : B/I → B→ is the inclusion functor, then ∆→iI = ∆/I.
Thus, Rel(U ′)I is obtained by change of base of U/I along the functor ∆/I, i.e., the fibrations
Rel(U ′)I and Rel(U/I) coincide. Moreover, the equality functor Eq→ : B→ → Rel(E ′) is
defined by Σδ→K

→, where K→ is the truth functor for U ′. Then Eq→ restricts to the
equality functor EqU/I since δ/I is the restriction of δ→ to the corresponding fibres. This

ensures that the equality functors for Rel(U ′)I and Rel(U/I) coincide. Finally, because
adjoints are defined up to isomorphism, the quotient functors for Rel(U ′)I and Rel(U/I)
coincide. Putting this all together, we have that Rel(U ′)I and Rel(U/I) are in fact the
same QCE. Now, each restriction Eq→a of Eq→ has a left adjoint Q→

a . Moreover, Eq→

preserves cartesian morphisms because K→ preserves cartesian morphisms by construction,
and Lemma 7.7 ensures that Σδ→ preserves cartesian morphisms. By Lemma 7.1, we have
that Q→ is a left adjoint to Eq→, and thus that Rel(U ′) is a weak QCE above cod .

The coinduction rule for the mutually recursive data type of odds and evens in the
families fibration shows that fibred coinduction is applicable in situations where indexed
coinduction is not.

8. Conclusions, Related Work, and Future Work

In this paper, we have extended the fibrational approach to induction and coinduction
pioneered by Hermida and Jacobs, and further developed by the current authors, in three key
directions: we have given sound coinduction rules for all (unindexed) coinductive types, and
we have extended our results from the unindexed setting to the indexed one to derive sound
induction and coinduction rules for all inductive and coinductive indexed types. We derived
our rules for indexed types first in the case when indexing is modelled by the codomain
fibration, and then in the case when it is modelled by an arbitrary fibration.

The work of Hermida and Jacobs is most closely related to ours, but there is, of course,
a large body of work on induction and coinduction in a broader setting. In dependent type
theory, for example, data types are usually presented along with elimination rules that are
exactly induction rules. Along these lines, [17] has heavily influenced the development of
induction in Coq. Another important strand of related work concerns inductive families and
their induction rules [2]. On the coinductive side, papers such as [1, 19, 20] have had immense
impact in bringing bisimulation into the mainstream of theoretical computer science.

There are several directions for future work. First, we would like to explore more
applications of the results in Sections 6 and 7. More generally, we would like to exploit
the predictive power of our theory to provide induction and coinduction rules for advanced
data types — such as inductive recursive types — for which these rules are not discernible
by sheer intuition. In such circumstances, our generic fibrational approach should provide

INDEXED INDUCTION AND COINDUCTION, FIBRATIONALLY 31

rules whose use is justified by their soundness proofs. In a different direction, we would
like to see our induction and coinduction rules for advanced data types incorporated into
implementations such as Agda and Coq.

Acknowledgement We thank the reviewers for their helpful comments and suggestions.

References

[1] P. Aczel and P. Mendler. A Final Coalgebra Theorem. Proceedings, Category Theory and Computer

Science, pp. 357–365, 1989.
[2] P. Dybjer. Inductive Families. Formal Aspects of Computing 6(4), pp. 440–465, 1994.
[3] C. Fumex. Induction and Coinduction Schemes in Category Theory. PhD Thesis. University of

Strathclyde, 2012.
[4] C. Fumex, N. Ghani, and P. Johann. Indexed Induction and Coinduction, Fibrationally. Proceedings,

Conference on Algebra and Coalgebra on Computer Science, pp. 176–191, 2011.
[5] N. Ghani, P. Johann, and C. Fumex. Fibrational Induction Rules for Initial Algebras. Proceedings,

Computer Science Logic, pp. 336–350, 2010.
[6] N. Ghani, P. Johann, and C. Fumex. Generic Fibrational Induction. Logical Methods in Computer

Science 8(2), 2012.
[7] C. Hermida. Some properties of Fib as a Fibred 2-Category. Journal of Pure and Applied Algebra

134(1), pp. 83–109, 1993.
[8] C. Hermida. Fibrations, Logical Predicates and Related Topics. Dissertation, University of Edin-

burgh, 1993.
[9] C. Hermida and B. Jacobs. Structural Induction and Coinduction in a Fibrational Setting. Infor-

mation and Computation 145, pp. 107–152, 1998.
[10] P. G. Hancock and P. Hyvernat. Programming Interfaces and Basic Topology. Annals of Pure and

Applied Logic 137(1-3), pp. 189–239, 2006.
[11] B. Jacobs, Categorical Type Theory. PhD Thesis, University of Nijmegen, 1991.
[12] B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics,

Volume 141, 1999.
[13] B. Jacobs. Comprehension Categories and the Semantics of Type Dependency. Theoretical Computer

Science 107, pp. 169–207, 1993.
[14] B. Jacobs. Quotients in Simple Type Theory. Mathematics Institute, 1994.
[15] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
[16] P. Morris and T. Altenkirch. Indexed Containers. Proceedings, Logic in Computer Science, pp. 277–

285, 2009.
[17] Frank Pfenning and C. Paulin-Mohring. Inductively Defined Types in the Calculus of Constructions.

Proceedings, Mathematical Foundations of Programming Semantics, pp. 209–228, 1989.
[18] D. Pavlovič. Predicates and Fibrations. Dissertation, University of Utrecht, 1990.
[19] J. Rutten. Universal Coalgebra: A Theory of Systems. Theoretical Computer Science 249(1), pp.

3–80, 2000.
[20] D. Turi and J. Rutten. On the Foundations of Final Coalgebra Semantics. Mathematical Structures

in Computer Science 8(5), pp. 481–540, 1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Induction in a Fibrational Setting
	2.1. Fibrations in a Nutshell
	2.2. Fibrational Induction in Another Nutshell

	3. Coinduction
	3.1. Generic Coinduction For All Coinductive Types

	4. Indexed Induction
	5. Indexed Coinduction
	5.1. The Equality Functor for U/I
	5.2. The Quotient Functor for U/I

	6. Fibred Induction
	7. Fibred Coinduction
	8. Conclusions, Related Work, and Future Work
	References

