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Abstract. We study a composition operation on monads, equivalently presented as large
equational theories. Specifically, we discuss the existence of tensors, which are combina-
tions of theories that impose mutual commutation of the operations from the component
theories. As such, they extend the sum of two theories, which is just their unrestrained
combination. Tensors of theories arise in several contexts; in particular, in the semantics
of programming languages, the monad transformer for global state is given by a tensor.
We present two main results: we show that the tensor of two monads need not in general
exist by presenting two counterexamples, one of them involving finite powerset (i.e. the
theory of join semilattices); this solves a somewhat long-standing open problem, and con-
trasts with recent results that had ruled out previously expected counterexamples. On the
other hand, we show that tensors with bounded powerset monads do exist from countable
powerset upwards.

1. Introduction

The concept of monad may be regarded as a category-theoretic abstraction of the notion
of equational theory that is insensitive to the choice of syntax. More recently, monads
have gained importance in the theory and practice of programming, where they are now
commonly recognized as a standard formal abstraction for computational effects. In this
context, the combination of theories, or monads, can be seen as modelling the combination
of computational effects, a topic of interest e.g. in the modular semantics of programming
languages.

One way to implement the combination of effects is via monad transformers [3, 19].
Essentially, a monad transformer is a function that sends monads to monads (additional
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properties, such as functoriality, are not in general imposed). Monad transformers form the
core of the treatment of side-effects in the functional programming language Haskell [21].
Besides the fact that due to their lack of structure they say only very little about the math-
ematical foundations of monad combination, monad transformers have been criticized for
their asymmetry [12] which treats one set of effects as the monad transformer and the other
set of effects as an argument of the latter. E.g. the approach via monad transformers hides
the symmetry in the combination of exceptions and I/O: this combination can be obtained
either by applying the I/O monad transformer to the exception monad or by applying the
exception monad transformer to the I/O monad, but this equivalence is not apparent from
the corresponding monad transformer expressions. Moreover, monad transformers are ad
hoc in character, and have been known only for a limited number of effects, a prominent
negative example being nondeterminism.

It has turned out, however, that some of the most important monad transformers have
an elegant abstract description using sum and tensor. Specifically, the monad transformers
for exceptions and I/O constructs a sum, and the monad transformers for state, reader, and
writer construct a tensor [12, 11]. Whereas the sum of two monads is the simplest monad
supporting both given effects without any interaction between them (and corresponds, in
terms of theories, just to taking the disjoint union), the tensor (whose definition goes back
to [7]) moreover requires commutation of these effects over each other, e.g. in case of ten-
soring statefulness with finite nondeterminism one has

(x := a; (b+ c)) = ((x := a; b) + (x := a; c))

and the like. We refer to the general form of this condition as the tensor law. When we view
monads as representations of theories, the tensor law just states that the operations of one
theory are homomorphic with respect to those of the other theory, i.e. it describes algebras
(also known as “models”) of the first theory in the category of algebras of the second.

As indicated above, an important example of the tensor product � is tensoring with
global state, in which case the result is equivalent to application of the state monad
transformer [23], e.g. P � TS = S → P(S × ) where P is the powerset monad and
TS = S → (S × ) is the (global) state monad. One can look at this case from the
opposite perspective and consider it as an application of a nondeterminism monad trans-
former T 7→ P � T . This transformer yields the universal completely additive monad over
T [10], which therefore allows for a generalized Fischer-Ladner decomposition of control
operators, i.e. roughly the translation

if b then p else q := b?; p+ (¬b)?; q

while b do p := (b?; p)⋆; (¬b)?

The catch in all this is that unless one requires both component monads to be ranked,
i.e. generated by a set of algebraic operations, there is no guarantee that sum and tensor
exist [12]. Intuitively, unranked monads arise when the number of values that can partici-
pate in a computation is unbounded. Unbounded non-determinism and continuations are
prominent examples of unranked monads; in particular, it has long been unclear that the
above-mentioned non-determinism monad transformer actually exists. It is comparatively
easy to see that the sum of simple ranked monads with most unranked monads will typically
fail to exist (see, e.g., [13]). The case of tensoring is more subtle. For the specific example
of the (unranked) continuation monad, it has been shown in [11] that the tensor does exist
if the partner monad is ranked. It has been conjectured in op. cit. (p. 30) that the tensor
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of unranked monads does not exist in general, and it has been implicitly indicated (op. cit.,
p. 33) that the tensor of continuations with a suitable unranked monad might serve as a
counterexample, which seemed reasonable insofar as continuations generally constitute a
good source of counterexamples (see, e.g., [24]).

However, two of us (Goncharov and Schröder) have recently proved that the tensor
of two monads always exists if one of them is uniform, a natural criterion that ensures
sufficiently pervasive applicability of the tensor law [9]. The class of uniform monads is sur-
prisingly broad and includes not only countable and unbounded non-determinism (which
implies that the above-mentioned non-determinism monad transformer does after all exist),
but also continuations, thus discharging the latter as a suspect for a potential counterex-
ample to existence of tensors. In summary, prior to the current work (respectively the
conference version [8]), the question of universal existence of monad tensors was open, and
no good candidates for possible counterexamples were known. It should be noted that
the question as such dates back at least to [17], where it appears in the context of early
developments of the categorical foundations of universal algebra.

Having said this, we do settle the question in the negative in the present work. Specif-
ically, we present two countexamples to tensorability. By the above, at least one of the
partner monads in a counterexample must be unranked, and in both our examples, the
other partner is in fact ranked. One of these, originally presented in [8], shows that the
tensor of a well-order monad with a simple free algebra monad (with two binary operations)
fails to exist. In the other example, the ranked partner is finite powerset, while the unranked
partner is less easy to grasp, being defined by a rather involved equational theory.

Moreover, we settle tensorability of non-empty κ-bounded powerset P⋆
κ in the positive

in the remaining cases. Specifically, the uniformity method of [9] proves tensorability of
P⋆
κ for all successor cardinals κ, and as mentioned above we show in the present work that

tensorability fails for κ = ω. We prove that P⋆
κ is tensorable for every uncountable κ;

the proof method is dedicated to this case and does not currently seem to generalize to
other monads, except that tensorability of full bounded powerset follows immediately in
the applicable cases.

The paper is organised as follows. We give an introduction to monads and their algebras
as well as their use in programming language semantics in Section 2. In Section 3, we
discuss tensors and tensor algebras, a notion that goes back to [17], and summarize known
results (and simple new ones) on existence of tensors. In Section 4, we prove tensorability of
uncountably bounded powerset. We then proceed to prove our negative results in Sections 5
and 6. In both counterexamples, tensor algebras appear as a key technical tool in that we
show non-existence of the tensor by exhibiting a family of reachable tensor algebras of
unbounded cardinality.

Note on Foundations. The category-theoretic concept of a monad on Set serves as an
abstraction of the notion of equational theory. The constructions involved are well-known
in the ranked case; we will discuss the situation for the unranked case in detail. To formalize
the correspondence between theories and monads, we shall need to consider theories with
large signatures.

We accordingly work in the von Neumann-Bernays-Gödel (NBG) theory of sets and
classes, which is conservative over ZFC set theory [6]. In NBG, certain classes are sets,
whilst others, such as the class of sets or the class of ordinals, are proper classes. All
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elements of classes are sets. We shall use “small” to indicate that something is a set, and
“large” to indicate that it might be a proper class.

We shall also speak of “hyperlarge” categories such as the category Class of classes.
Whereas a familiar large category has a class of objects, a hyperlarge category has a hyper-
class of objects, and also a hyperclass of morphisms from one object to another. Informally,
a hyperclass is a collection of classes. Formally, our statements involving hyperclasses are
interpreted at the meta-level, in the same way that ZFC users would interpret statements
involving classes: a hyperclass is the extension of a unary formula.

Note that, in NBG, care is needed to represent quotients and tuples of classes in such
a way that they are classes.

• To quotient a class by an equivalence relation, we may either use the Global Axiom of
Choice (“the class of sets is well-orderable”) to represent each equivalence class by a
chosen element, or employ “Scott’s trick” [25] of representing each equivalence class by
its set of elements of least rank.
• Following Morse [20] an ordered pair (X,Y ) of classes is represented as the class X + Y .
More generally a large (i.e. class-indexed) tuple of classes (Xi | i ∈ I) is represented as
the class

∑

i∈I Xi. Consequently a hyperlarge sum or large product of hyperclasses is a
hyperclass, just as a large sum or small product of classes is a class.

There are numerous other foundational options besides the one we have chosen, e.g. de-
veloping a theory of hyperclasses conservative over NBG; interpreting all our statements
directly as properties of constructions on ZFC formulas; or using ZFC with one or even two
Grothendieck universes, at the cost of losing conservativity over ZFC.

2. Monads and Theories

In programming language semantics, monads serve to encapsulate side-effects, a principle
originally due to Moggi [18] that was subsequently introduced into the functional program-
ming language Haskell as the principal means of dealing with impure features [26]. In a
nutshell, the idea is to relocate the side effect from the function arrow into the result type of
a function: a side-effecting function X → Y becomes a pure function X → TY , where TY
is a type of side-effecting computations over Y ; the base example is TY = S → (S × Y ) for
a fixed set S of states, so that functions X → TY are functions that may read and update
a global state.

Formally, a monad on Set consists of a functor T : Set → Set mapping sets X (of
values or, from the point of view of theories, variables) to sets TX (of computations, or
terms modulo equations) and two natural transformations η : id → T and µ : T 2 → T ,
the unit and the multiplication, respectively, subject to the equations µηT = µTη = id
and µTµ = µµT . We usually denote a monad by just its functor part T , with the other
components understood implicitly. On Set, any monad has a unique strength, i.e. comes
equipped with a unique natural transformation X × TY → T (X × Y ) satisfying a number
of conditions [18]. A monad morphism is a natural transformation between the underlying
monad functors satisfying obvious conditions with respect to the unit, the Kleisli extension
(equivalently, multiplication) see e.g. [2] for details. For monads on Set preservation of
strength is automatic.

A monad T on Set induces two categories, the smallest and the largest realization of T
as an adjunction, respectively: the Kleisli category SetT of T has sets as objects and maps
X → TY as morphisms; the unit η : X → TX serves as the identity on X, and composition
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is given by Kleisli composition (f, g) 7→ µ(Tf)g. On the other hand, the Eilenberg-Moore
category SetT of T consists of T -algebras, which are maps of the form α : TX → X such
that αηX = idX and αµX = αTα, and their morphisms. Here, a morphism f : α → β of
T -algebras α : TX → X and β : TY → Y is a map f : X → Y such that fα = βTf .

We now turn to theories. A large signature Σ is a class Σ of operations f each with an
associated small arity α(f). A large theory T = (Σ, E) consists of a large signature Σ and a
class E of equations between Σ-terms. (Formally, an equation is a tuple (X, t, t′) where X
is a set and t and t′ are Σ-terms over X.) An algebra for such a theory is a class equipped
with a Σ-structure satisfying all of the equations in E . The algebra is termed small if its
carrier (not the algebra as a whole) is a set. For each set X we build the free algebra FT (X)
on X as the class of Σ-terms over X taken modulo the equations in T : this may fail to be
small.

More generally, for a category C with small products, a T -algebra in C consists of an

object A of C together with a map Aα(f) fA

−−→ A for each f ∈ Σ such that, for each equation
(X, t, t′) ∈ E , the maps AX → A corresponding to the two terms being equated are equal.

An algebra homomorphism from A to B consists of a map A
k
−→ B in C commuting with all

the operations in the sense that for any f ∈ Σ we have fA · kα(f) = k · f . The category of
T -algebras in C is denoted T -Alg [C]. There is an evident forgetful functor from T -Alg [C]
to C, which creates small products.

Returning to the category of sets, T -Alg [Set] is the category of small T -algebras, and
there is an evident forgetful functor UT from it to Set. There are two ways in which UT

can have a left adjoint (in which case it is even monadic):

Definition 2.1. A large theory T has small free algebras if FT (X) is small for every set
X, and free small algebras if UT has a left adjoint.

It is, then, clear that

(1) every large theory T with small free algebras has free small algebras, where the left
adjoint of UT maps X to FT (X);

(2) every large theory T with free small algebras gives rise to, or presents, a monad in the
standard way, i.e. by composing UT with its left adjoint,

i.e. we have

Large theories
with small free algebras

⊆
Large theories

with free small algebras
→ Monads on Set (2.1)

where the arrow → is intended to denote a map. We make three observations about (2.1).
Firstly the inclusion is strict.

Theorem 2.2. There exists a large theory that has free small algebras but not small free
algebras.

Proof. Let T be the following theory. For the signature we take a constant kα for each
ordinal α and a function f of arity 3. For the equations we take f(kα, kα, x) = k0 for any
α, and f(kα, kβ , x) = x for any distinct α, β. Then the elements of FT (∅) are in bijection
with the set of constants kα, with the action of f completely determined by the equations in
T , so FT (∅) fails to be small, i.e. T does not have small free algebras. On the other hand,
in any small T -algebra A, the interpretations of kα and kβ must be equal for some pair of
distinct ordinals α, β. Then for any x in A we have x = f(kα, kβ , x) = f(kα, kα, x) = k0, so
that A has only one element. Hence UT has a left adjoint, i.e. T has free small algebras.
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Suppose T is a theory with free small algebras that presents the monad T . We call T a
genuinely presenting theory of T if T has small free algebras, and otherwise a spuriously
presenting theory. Thus the theory in the preceding proof spuriously presents the monad
X 7→ 1. We next see that every monad has a genuinely presenting theory.

Definition 2.3. Let (T, η,−∗) be a monad on Set expressed as a Kleisli triple. We define
the large theory ΨT as follows. For the signature, we take for every set X and m ∈ TX an
operation hX,m of arity X. For the equations, we take

• for every set X and a ∈ X, an equation

hX,ηX(a)(px | x ∈ X) = pa.

• for all sets X,Y and m ∈ TX, f : X → TY , an equation

hX,m(hY,f(x)(py | y ∈ Y ) | x ∈ X) = hY,f∗m(py | y ∈ Y ).

Theorem 2.4. Any monad T on Set is genuinely presented by the large theory ΨT . Thus
we have

SetT ∼=Set ΨT -Alg [Set]

where ∼=Set indicates an isomorphism commuting with the forgetful functors to Set.

We exploit the theory ΨT to define algebras in other categories.

Definition 2.5. Let T be a monad on Set. For any category with small products C, we
define the T -algebras in C via

T -Alg [C]
def

= ΨT -Alg [C]

Remark 2.6. T -Alg [C] is equivalent to the category of functors from Set
op
T to C preserving

small products. The latter was used for the same purpose in [5, 11].

We close the circle by seeing that the composite (2.1) does not affect the category of algebras.

Theorem 2.7. Let T be a monad on Set genuinely presented by T . For any category C
with small products, we have

T -Alg [C] ∼=C T -Alg [C]

Theorem 2.7 tells us that the category of algebras depends only on the monad, not on
the choice of genuinely presenting theory. With these conversions in place, we will switch
back and forth freely between monads and large theories as convenient. (Monads are also
formally equivalent to large Lawvere theories [15], which were used in the theory of generic
side-effects in [11].)

The following easy results will be useful.

Proposition 2.8.

(1) Let T0 be a monad on Set genuinely presented by T = (Σ, E), and α : T0 → T1 a
componentwise surjective monad morphism. Then T1 is genuinely presented by the
theory with signature Σ and equation class

E ∪ {(X, t, t′) | αX [t]E = αX [t′]E}.

(2) Let T be a monad on Set genuinely presented by T = (Σ, E). For any set E, the monad
T (−+E) is genuinely presented by the theory with signature Σ extended by a family of
constants (ce | e ∈ E), and equation class E.
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The notion of rank for a monad refers to the arity of the involved algebraic operations.
Formally, a monad is κ-ranked for a regular cardinal κ if the underlying functor preserves
κ-filtered colimits. A monad is ranked if it is κ-ranked for some κ. The κ-ranked monads
on Set are precisely those that are induced by a small theory in which the arity of each
operation is less than κ, so that the ranked monads are precisely those induced by small
theories. Computationally relevant unranked monads include the continuation monad and
the unbounded powerset and are presented further below. It has been shown that the
algebraic view of ranked monads gives rise to computationally natural operations; e.g. the
state monad (with state set S = V L for sets V of values and L of locations) can be
algebraically presented in terms of operations lookup and update [22].

We give some standard examples of computational monads, mostly from [18]:

Example 2.9 (Computational Monads).

(1) Global state: as stated initially, TX = S → (S × X) is a monad (for this and other
standard examples, we omit the description of the remaining data), the well-known
state monad.

(2) Nondeterminism: the generic (unranked) monad for nondeterminism is the one pre-
sented by the covariant powerset functor P. Variants arise on the one hand by restrict-
ing to nonempty subsets, thus ruling out non-termination, and on the other hand by
bounding the cardinality of subsets. We denote nonemptyness by a superscript ⋆, and
cardinality bounds by subscripts. E.g., the monad P⋆

ω1
describes countable non-blocking

nondeterminism. Yet another variant arises by replacing sets with countable multisets,
i.e. maps X → (N ∪ {∞}), thus modelling weighted nondeterminism [4]. Let us denote
by Tmult the corresponding countable multiset monad.

(3) Continuations: The continuation monad maps a set X to the set (X → R)→ R, for a
fixed set R of results. We denote the corresponding unranked monad as TR

cont .
(4) Input/Output: For a given set I of input symbols, the monad TI for input is generated

by a single I-ary operation; this monad is induced by an absolutely free theory, i.e. one
without equations. Similarly, given a set O of output symbols, the monad TO for output
is induced by a family of unary operations indexed over O.

A convenient way of denoting generic computations is the so-called computational metalan-
guage [18], which has found its way into functional programming in the shape of Haskell’s
do-notation. We briefly outline the version of the metalanguage we use below; this version
is deliberately simplistic, as it serves only to elucidate the definition of tensors.

The metalanguage denotes morphisms in the underlying category of a given monad,
using the monadic structure; since we are working over Set, the metalanguage just denotes
maps in our setting. We let a signature Σ consist of a set B of base types, to be interpreted as
sets, and a collection of typed function symbols f : A1 → A2 to be interpreted as functions,
where A1, A2 are types. Here, we assume that the set T of types is generated from the base
types by the grammar

T ∋ A1, A2 ::= 1 | B | A1 ×A2 | TA1 (B ∈ B)

where × is interpreted as set theoretic product, 1 is a singleton set, and T is application
of the given monad. We then have standard formation rules for terms-in-context Γ � t : A,
read ‘term t has type A in context Γ’, where a context is a list Γ = (x1 : A1, . . . , xn : An) of
typed variables (later, contexts will mostly be omitted):
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x : A ∈ Γ

Γ � x : A

f : A→ B ∈ Σ Γ � t : A

Γ � f(t) : B Γ � ⋆ : 1

Γ � s : A Γ � t : B

Γ � 〈s, t〉 : A×B

Γ � t : A×B

Γ � fst t : A

Γ � t : A×B

Γ � snd t : B

Γ � t : A

Γ � ret t : TA

Γ � p : TA Γ, x : A � q : TB

Γ � do x← p; q : TB

Only the operations in the last line are specific to monads; they are called return and binding,
respectively. For binding, we use Haskell’s do-notation. Return is interpreted by the unit η
of the monad, and can be thought of as returning a value. A binding do x← p; q executes
p, binds its result to x, and then executes q, which may use x. Binding is right associative,
i.e. do x← p; y ← q; r = do x← p; (do y ← q; r). It is interpreted using Kleisli composition
and strength, where the latter serves to propagate the context Γ [18]. In consequence, one
has the monad laws

do x← p; ret x = p do x← ret a; p = p[a/x]

do x← (do y ← p; q); r = do y ← p;x← q; r.

Terms of a type TA are called programs. We say that two programs p : TA and q : TB
commute if they satisfy the equation

do x← p; y ← q; ret〈x, y〉 = do y ← q;x← p; ret〈x, y〉 : T (A×B). (2.2)

Remark 2.10. The notion of commutation of programs relates as expected to the standard
notion of commutative monad : a monad is commutative iff all its programs commute.

3. Tensors and Tensor Algebras

We begin by defining tensor of monads in terms of a universal property, just as the coproduct
is defined to be an initial cocone.

Definition 3.1. Let T and S be monads on Set. A cocone from T and S—-that is to say,
a monad R together with morphisms τ : T → R and σ : S → R—is a commuting cocone
when every two programs of the form τX(p) and σY (q) commute (see Section 2). A tensor
product T � S is an initial commuting cocone, i.e. a commuting cocone from which there is
a unique cocone morphism to any commuting cocone.

Just as the coproduct of monads corresponds to the disjoint union of theories [1, 12, 14, 16],
so the tensor can be described in terms of theories.

Definition 3.2. Let T and S be large theories with signatures Σ1 and Σ2 respectively.

(1) Their disjoint union has as its signature the disjoint union of Σ1 and Σ2, and its equa-
tions consist of those of T together with S.



EXPLORING THE BOUNDARIES OF MONAD TENSORABILITY ON SET 9

(2) The tensor product T �S of the theories is on the same signature as the disjoint union,
and has as its equations all those of the disjoint union together with the commutativity
equation

f(g(xij | j ∈ α(g)) | i ∈ α(f)) = g(f(xij | i ∈ α(f)) | j ∈ α(g)) (3.1)

saying that f and g commute for any f ∈ Σ1 and g ∈ Σ2.

Remark 3.3. A theory T with signature Σ is said to be commutative if all its operations
are algebra homomorphisms, that is, if Equation (3.1) holds for all f, g ∈ Σ. Clearly, if T
has small free algebras, then T is commutative iff the monad it presents is commutative.

Tensor algebras can also be viewed as algebras in categories of algebras.

Proposition 3.4. For large theories T and S and category C with small products, we have

(T � S)-Alg [C] ∼=C T -Alg [S-Alg [C]]

As in Section 2 we adapt tensor algebras from theories to monads.

Definition 3.5. Let T and S be monads on Set.

(1) [17] A small (T, S)-tensor algebra is a triple (X,α, β) where X is a set and α and β
are respectively Eilenberg-Moore T - and S-algebra structures on X, such that for all
sets Y,Z and all p ∈ SY , q ∈ TZ, f : Y × Z → X, the following equation, called the
tensor law, holds

β(T (λz. α(Sf ,z p))q) = α(S(λy. β(Tfy, q))p)

where f ,z(y) = fy, (z) = f(y, z) for (y, z) ∈ Y ×Z. Morphisms of (T, S)-tensor algebras
are maps between the respective carriers which are homomorphic for both T and S.
The (large, locally small) category of (T, S)-tensor algebras is denoted (T, S)-TAlg.

(2) For any category with small products C, we define

(T, S)-TAlg [C]
def

= (ΨT � ΨS)-Alg [C]

We then have the following counterpart of Theorems 2.4 and 2.7.

Theorem 3.6. Let T and S be monads on Set.

(1) The two parts of Def. 3.5 agree: we have

(T, S)-TAlg ∼=Set (T, S)-TAlg [Set]

(2) Let T and S be genuinely presenting theories for T and S respectively. For any category
C with small products, we have

(T � S)-Alg [C] ∼=C (T, S)-TAlg [C]

Once again part (2) tells us that the category of tensor algebras depends only on the two
monads, not on the choice of genuinely presenting theories.

Next we relate tensor algebras to the universal property of Def. 3.1. The following result
appears (modulo translation from the language of large Lawvere theories into the language
of monads) in [11].

Theorem 3.7. The tensor product of monads T, S on Set exists if and only if the forgetful
functor from (T, S)-TAlg to Set is monadic, equivalently has a left adjoint. In this case,
the monad induced by the adjunction is the tensor T � S.
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Remark and Definition 3.8. There are essentially three alternatives regarding the exis-
tence of a tensor of monads T, S genuinely presented by large theories T , S.

(1) The tensor theory T �S may fail to have free small algebras, in which case T �S does
not exist.

(2) T �S may have free small algebras but not small free algebras, in which case the tensor
T � S does exist but does not have the expected form; we call such monad tensors
spurious.

(3) T � S may have small free algebras, in which case T � S exists and has the expected
form, i.e. maps a set X to the underlying set of FT �S(X); we call such monad tensors
genuine.

By Theorem 3.6(2) with C = Class, this three-way classification must depend only on the
monads T and S and not on the choice of genuinely presenting theories. We shall say that
a monad T on Set is tensorable when T � S exists for every monad S on Set. If these
tensors are all genuine, T is genuinely tensorable.

It is currently an open question whether spurious monad tensors exist. Our results
established below are always the stronger of the two possible variants: where we show
existence of tensors, we actually show also that the tensor is genuine, and where we show
non-existence, we prove that not even a spurious tensor exists.

The following is a straightforward consequence of Prop. 2.8.

Proposition 3.9. (1) Let T0, T1, T2 be monads on Set, and α : T0 → T1 a componentwise
surjective monad morphism. If T0 � S exists then so does T1 � S and the induced
morphism T0 �S → T1 � S is componentwise surjective. Moreover if T0 � S is genuine
then so is T1 � S.

(2) Let T and S be monads on Set, and E a set. If T �S exists then so does T (−+E)�S
and the induced morphism (T �S)(−+E)→ T (−+E)�S is componentwise surjective.
Moreover if T � S is genuine then so is T (−+ E) � S.

Our negative results will be based on the following simple result.

Definition 3.10. As usual, we say that an algebra is generated by a subset X if it does
not have a proper subalgebra containing X. We say that an algebra is α-reachable for a
cardinal α if it has a generating set X of cardinality |X| ≤ α.

Corollary 3.11. The (possibly spurious) tensor T �S of monads T, S on Set exists if and
only if for every cardinal α, the cardinality of α-reachable small (T, S)-tensor algebras is
bounded.

Proof. ‘Only if ’ : If the tensor exists, then there is a free small (T, S)-tensor algebra over α,
and every α-reachable small (T, S)-tensor algebra is a quotient of it.

‘If ’: To show the forgetful functor from (T, S)-tensor algebras to Set has a left adjoint
under the given assumption, we apply Freyd’s general adjoint functor theorem, since every
set carries only set-many small (T, S)-tensor algebras.

Prior to the current results, the state of research regarding counterexamples to tensorability
was as follows. It is well-known that the tensor of two ranked monads on Set does exist [11],
so that any counterexample needs to involve at least one unranked monad. One unranked
monad that is known to show hard-to-control behaviour in many respects is the continuation
monad. It has been shown in [11] that the tensor of any ranked monad with the continuation
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monad exists, and at the same time it has been conjectured that the continuation monad
fails to be tensorable (i.e. that there exists an unranked monad whose tensor with the
continuation monad fails to exist). However, it has subsequently been shown that all so-
called uniform monads are tensorable [9], and the given proof in fact implies that the tensors
in question are genuine. The class of uniform monads is quite broad and in particular
includes both the powerset monad and the continuation monad, so that these monads are
ruled out as counterexamples to tensorability.

4. Tensoring With Bounded Powerset Monads

As discussed in the last section, it has been shown using the uniformity method that the
unbounded and countable powerset monads as well as their restrictions to non-empty subsets
are tensorable [9], and we will show in Section 5 that the finite powerset monad fails to
be tensorable. Right now, we will show that all non-empty uncountably bounded powerset
monads, i.e. submonads of the powerset monad of the form P⋆

κ, where P⋆
κ(X) denotes

the set of non-empty subsets of X of cardinality less than κ for an uncountable regular
cardinal κ, are genuinely tensorable. (Regularity of κ is equivalent to P⋆

κ actually being
a monad. Requiring κ to be uncountable ensures that P⋆

κ-algebras have countable joins.)
Interestingly, the proof does not seem to relate to any generalization of uniformity. From
genuine tensorability of P⋆

κ, genuine tensorability of the full bounded powerset monad Pκ
(which maps a set X to the set of all subsets of X of cardinality less than κ) is immediate
by Proposition 3.9 (alternatively, the proof below can be adapted to full bounded powerset,
and in fact becomes simpler in the process).

Let T be a monad genuinely presented by T , and let X be a set. Let A be the free
large (P⋆

κ, T )-tensor algebra on X; we need to show that A is small. Let X̂ be the image
of X in A. For any subset Y of A, let T“Y denote the (necessarily small) sub-T -algebra of
A generated by Y , and similarly for P⋆

κ. In general a P⋆
κ-algebra is a semilattice in which

every nonempty subset of size < κ has a supremum; we denote by ≤ the ordering on A
induced by the P⋆

κ-structure.

Lemma 4.1. For any x ∈ A there is t ∈ T“X̂ such that x ≥ t.

Proof. By induction on the complexity of terms. For any x ∈ X̂, we have x ≥ x ∈ T“X̂ .
Next, let x have the form

∨

i∈I xi, where I is a nonempty set of cardinality smaller than

κ, and pick i ∈ I. By the induction hypothesis, we have some t ∈ T“X̂ with t ≤ xi ≤ x.
Finally, let x have the form f(xj | j ∈ α(f)) for some operation f of T . By the

induction hypothesis we can pick (tj ∈ T“X̂ | j ∈ α(f)) with tj ≤ xj for each j ∈ α(f).
Then f(xj | j ∈ α(f)) = f(xj ∨ tj | j ∈ α(f)) = f(xj | j ∈ α(f)) ∨ f(tj | j ∈ α(f)), so that

x ≥ f(tj | j ∈ α(f)) ∈ T“T“X̂ = T“X̂.

Now define a sequence of subsets (Xn | n ∈ N) of A by X0 = X̂ and Xn+1 = P⋆
κ“T“Xn,

and let Xω =
⋃

n∈NXn.

Lemma 4.2. Any x ∈ P⋆
κ“Xω can be written in the form

∨

n∈N>0
xn, with each xn ∈ Xn

Proof. We can write x in the form
∨

i∈I xi with I nonempty and of cardinality < κ and
xi ∈ Xω for all i. For n ∈ N>0, let In = {i ∈ I | xi ∈ Xn}, so that

⋃

n∈N>0
In = I. Pick

(by Lemma 4.1) t ∈ T“X̂ such that t ≤ x, and n0 ∈ N>0 minimal such that In is nonempty.
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Taking xn = t ∈ T“X̂ ⊆ Xn for 0 < n < n0 and xn =
∨

i∈In
xi for n ≥ n0, we obtain

x =
∨

n∈N>0
xn, as required.

Lemma 4.3. T“P⋆
κ“Xω ⊆ P

⋆
κ“Xω

Proof. By Lemma 4.2, any x ∈ T“P⋆
κ“Xω can be expressed as f

(

∨

n∈N>0
xi,n | i ∈ α(f)

)

for some operation f of T and xi,n ∈ Xn. Commutation of the P⋆
κ-structure with f implies

x =
∨

n∈N>0
f(xi,n | i ∈ α(f)) ∈ P⋆

κ“Xω since for each n ∈ N>0 we have f(xi,n | i ∈ α(f)) ∈

T“Xn ⊆ Xn+1 ⊆ Xω.

It follows that A = T“P⋆
κ“Xω, and in particular A is small. Since X was arbitrary, this

implies that the monad tensor P⋆
κ � T exists, and since T was arbitrary, we obtain (using

Proposition 3.9 again)

Theorem 4.4. For every regular cardinal κ > ω, P⋆
κ and Pκ are genuinely tensorable.

5. Finite Powerset Fails to be Tensorable

We now turn to our negative results, i.e. examples of two monads whose tensor fails to
exist. Necessarily, one of these must be unranked. In this section and the next, we present
two examples of this kind. The first, to be discussed presently, involves the finite powerset
monad, which is computationally significant as a monadic model of finite non-determinism;
the unranked partner in the example is a somewhat involved theory that we explain in detail
below. The second example involves to comparatively simple monads, a type of well-order
monad and a free monad; this was actually the first example to be found [8].

In both cases, we construct the unranked partner monad via a large theory. First, we
introduce the theory and show that has small free algebras, and hence induces a monad.
Then we show that the tensor product with the (small) theory of the ranked partner has
arbitrarily large tensor algebras all generated by some particular set. The fact that this
tensor product does not induce a monad is then immediate from Corollary 3.11.

We shall think of Pω as the ‘free bounded semilattice’ monad, that is as the monad
corresponding to the theory of bounded semilattices.

We now define the unranked partner monadM as induced by a large theory TM. The
signature Σ of TM is defined as follows. For any ordinal α, we define α+ to be the least
regular ordinal greater than α. Given a ordinal δ, let Bδ be the set of all triples (α, β, i) of
ordinals such that α < δ, β < α+, i < ω. Let Σκ be the signature consisting of a constant
symbol c and operation symbols fα,β,i of arity Bα for each (α, β, i) ∈ Bκ+1, α > 0 and let
Σ be the (large) union of all the Σκ.

The theory TM consists of equations

fα,β,i(tα′,β′,i′ | (α
′, β′, i′) ∈ Bα) = c (5.1)

whenever the tα′,β′,i′ are terms in variables drawn from some set X of cardinality strictly
smaller than that of α.

We may understand algebras for this theory as follows. Given a Σ-algebra A, a set X,
a map x : X → A, and Σ′ ⊆ Σ, let us denote by 〈x〉Σ′ the Σ′-subalgebra of A generated by
the image of x. Then a TM-algebra is just a Σ-algebra that satisfies the following property:
Given a cardinal κ, a set X of cardinality κ and a map x : X → A, the equation

fα,β,i(aα′,β′,i′ | (α
′, β′, i′) ∈ Bα) = c (5.2)
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holds over 〈x〉Σκ whenever α > κ. Note that this implies

〈x〉Σ = 〈x〉Σκ . (5.3)

Lemma 5.1. The theory TM has small free algebras.

Proof. The free algebra over a set X satisfies (5.3) for κ = |X|.

We denote the monad induced by TM by the above lemma byM. We proceed to construct
a sequence of reachable TM-algebras of unbounded cardinality. For any cardinal δ, put
Mδ = Pω(Bδ). For the definition of the Σ-algebra structure, we need a few technical
preliminaries.

Definition 5.2. Let X be a set, and let (xi | i ∈ ω) be a sequence of elements of X. We
say that a sequence (ai | i ∈ ω) of finite subsets of X subsumes (xi | i ∈ ω) if and only if
there is an infinite subset M of ω such that for any i, j ∈M with i < j we have xi ∈ aj .

It will be helpful to make use of an unusual sort of quantifier: we use ∃cf β < α. φ(β) to

mean ‘the set of β < α such that φ(β) holds is cofinal in α’1. We put a Σ-algebra structure
on Mδ by taking fα,β,i(aα′,β′,i′ | (α

′, β′, i′) ∈ Bα) to be

{(α, β, i)} if α < δ and
∃cf α

′ < α.∃cf β
′ < α′+. (aα′,β′,i′ | i

′ ∈ ω) subsumes ((α′, β′, i′) | i′ ∈ ω)
∅ otherwise

and interpreting c as the empty set. We proceed to show that this does indeed define an
TM-algebra.

Lemma 5.3. If (ai | i ∈ ω) subsumes a sequence (xi | i ∈ ω) of distinct elements of X then
some ai contains at least two elements of that sequence.

Lemma 5.4. For every δ, Mδ is a TM-algebra.

Proof. Suppose for a contradiction that fα,β,i(aα′,β′,i′ | (α
′, β′, i′) ∈ Bα) 6= c = ∅ with

aα′,β′,i′ ∈ 〈x〉Σκ for some x : X →Mδ where |X| = κ and α > κ. Then (α < δ and)

∃cfα
′ < α. ∃cf β

′ < α′+. (aα′,β′,i′ | i
′ ∈ ω) subsumes ((α′, β′, i′) | i′ ∈ ω).

Pick α0 such that κ ≤ α0 < α and the set

C := {β′ < α+
0 | (aα0,β′,i′ | i

′ ∈ ω) subsumes ((α0, β
′, i′) | i′ ∈ ω)}

is cofinal in α+
0 and hence has size α+

0 > α0 ≥ κ. Applying Lemma 5.3, for each β′ ∈ C we
can pick j(β′) and k(β′) 6= k′(β′) such that

(α′
0, β

′, k(β′)) ∈ aα′
0
,β′,j(β′), (α′

0, β
′, k′(β′)) ∈ aα′

0
,β′,j(β′)

and therefore |aα′
0
,β′,j(β′)| > 1. We thus obtained a subset of 〈x〉Σκ

M
of cardinality strictly

greater than κ whose elements are non-singleton sets. However, 〈x〉Σκ can have at most κ
non-singleton elements, for |X| = κ and application of functions from Σκ can only introduce
either singletons or the empty set. Contradiction.

1Recall that a subset C of α is cofinal in α if and only if ∀β < α. ∃γ ∈ C. β ≤ γ
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We now go on to show that the Mδ disprove existence of the tensorM� Pω.

Lemma 5.5. Let X be a set, (xi | i ∈ ω) a sequence of elements of X, and (ai | i ∈ ω) and
(bi | i ∈ ω) sequences of finite subsets of X. Then (ai ∪ bi | i ∈ ω) subsumes (xi | i ∈ ω) if
and only if at least one of (ai | i ∈ ω) and (bi | i ∈ ω) does.

Proof. The ‘if’ direction is immediate. For the other direction, we employ Ramsey’s theorem,
which states that for any coloring of the set of pairs of natural numbers with two colours
there is an infinite set of natural numbers which is monochromatic in the sense that all
the pairs of numbers from that set are the same colour. Without loss of generality, the
set M witnessing that (ai ∪ bi | i ∈ ω) subsumes (xi | i ∈ ω) is the whole of ω. Now for
any i < j < ω, we colour the pair {i, j} red if xi ∈ aj and blue otherwise. In this way we
colour all 2-element subsets of ω. By Ramsey’s theorem, we can find a subset M ′ of ω such
that all pairs from M ′ were given the same colour. If they were all coloured blue, then for
each i and j in M ′ with i < j we have xi ∈ (aj ∪ bj) \ aj ⊆ bj, so (bi | i ∈ ω) subsumes
(xi | i ∈ ω). A similar argument shows that if all pairs from M ′ are coloured red then
(ai | i ∈ ω) subsumes (xi | i ∈ ω).

Lemma 5.6. In Mδ, each map fα,β,i and the constant c commute with the bounded semi-
lattice structure (i.e. the Pω-algebra structure on Mδ); in other words, any Mδ is a small
(M,Pω)-tensor algebra.

Proof. For fα,β,i, the case α ≥ δ is trivial; so assume α < δ. Since (∅ | i ∈ ω) never
subsumes anything, we have fα,β,i(∅ | (α

′, β′, i′) ∈ Bα) = ∅, so fα,β,i commutes with ⊥.
Because of the form of fα,β,i, to check that it commutes with ∨ it is enough to check that
for any two families (aα′,β′,i′ | (α

′, β′, i′) ∈ Bα) and (bα′,β′,i′ | (α
′, β′, i′) ∈ Bα), the following

two conditions are equivalent

• ∃cf α
′ < α. ∃cf β

′ < α′+. (aα′,β′,i′ ∪ bα′,β′,i | i
′ ∈ ω) subsumes ((α′, β′, i′) | i′ ∈ ω)

• either ∃cf α
′ < α. ∃cf β

′ < α′+. (aα′,β′,i′ | i
′ ∈ ω) subsumes ((α′, β′, i′) | i′ ∈ ω)

or ∃cf α
′ < α. ∃cf β

′ < α′+. (bα′,β′,i′ | i
′ ∈ ω) subsumes ((α′, β′, i′) | i′ ∈ ω).

This equivalence is immediate from Lemma 5.5 and the fact that a union of two subsets of
an ordinal α is cofinal in α if and only if at least one of those two subsets is cofinal in α.

Finally, c = ⊥ = ∅ and hence c ∨ c = c, i.e. c also commutes with the semilattice
structure.

Lemma 5.7. Any Mκ is ℵ0-reachable, specifically generated from the countable set X =
{{b} | b ∈ B1} under the operations of Σ and the bounded semilattice structure.

Proof. Let A′ be the subset of Mκ generated in this way. It suffices to prove that for each
α ≤ κ we have {{(α, β, i)} | β < α+ ∧ i < ω} ⊆ A′. If α = 0 this is true by definition.
Otherwise, this is true by induction on α, using the equation

{(α, β, i)} = fα,β,i({(α
′, β′, j) | j < i′} | (α′, β′, i′) ∈ Bα).

We have now shown that B ⊆ A′, and A ⊆ A′ is immediate.

By 3.11, we obtain

Theorem 5.8. The tensor of M and Pω does not exist (not even as a spurious tensor).

Remark 5.9. By Proposition 3.9, the above result implies that every monad that is induced
by a theory that has one binary operation and at most one constant and whose equations
are implied by those of Pω (associativity, commutativity, and idempotence of the binary
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operation, neutrality of the constant if any) fails to be tensorable. In particular, finite non-
empty powerset and both the full and the non-empty versions of the list monad and and
the finite multiset monad, respectively, fail to be tensorable.

6. A Well-Order Monad That Fails to Be Tensorable

As announced above, we now present a second example of two monads whose tensor fails to
exist, originally published in [8]. It involves a well-order monad W, where W(X) consists
of all well-orderings on non-empty subsets of X, plus an error element; the other partner
is ranked, a free monad over two binary operations. The construction follows the same
pattern as in the preceding section: first we introduce a large theory of TW-algebras, then
we show that this theory yields a monad W, and finally we prove that the tensor product
W with the ranked partner does not exist using Corollary 3.11.

Definition 6.1. The theory TW of strict non-empty well-orders has a signature consisting
of a constant ⊥ and a family of operation symbols ικ of arity κ, indexed over all positive
ordinals κ. It imposes the following equations.

(1) Strictness: ικ(wα | α < κ) = ⊥ whenever wα = ⊥ for some α < κ.
(2) Non-repetitiveness: ικ(wα | α < κ) = ⊥ whenever wα1

= wα2
for some α1 < α2 < κ.

(3) Associativity: For every small-ordinal-indexed family (κµ)µ<ν of ordinals κµ > 0,

ικ(wµ,α | µ < ν, α < κµ) = ιν(ικµ(wµ,α | α < κµ) | µ < ν)

where on the left hand side κ =
∑

µ<ν κµ is regarded as having elements 〈µ, α〉 with
µ < ν and α < κµ.

We regard an ordinal κ as the set of all ordinals α < κ unless we explicitly specify otherwise,
as in the associativity law above where we use a more convenient isomorphic representation
of ordinal sums. Even though in the above formulations of strictness and non-repetitiveness
we employ the word ‘whenever’, they may nevertheless be interpreted as sets of equational
axioms.

Now consider a small TW -algebra X. By non-repetitiveness, for every κ whose cardi-
nality exceeds |X|, ικ is identically ⊥, which means that the set of nontrivial operations in
the structure of any particular TW is small. A homomorphism of two TW-algebras (X, ικ)
and (Y, ικ) is a map f : X → Y that commutes with the operations, i.e.

f(ικ(wα | α < κ)) = ικ(f(wα) | α < κ) for w ∈ Xκ.

Lemma and Definition 6.2. The theory TW has small free algebras. The induced monad
W, the strict non-empty well-order monad, maps a small set X to the set

WX = {(Y, ρ) | ∅ 6= Y ⊆ X, ρ a well-order on Y} ∪ {⊥}.

Its unit maps x ∈ X to unique well-order on {x}, and its multiplication concatenates well-
orders in case all its arguments are well-orders whose carriers are pairwise disjoint (so that
the result is again a well-order), and otherwise returns ⊥.

One may alternatively think of the strict non-empty well-order monad as a monad of infinite
non-repetitive non-empty lists, with ⊥ playing the role of an error element that is thrown in
case of repetitions arising by concatenation, and that is propagated through concatenation
by the strictness law.
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Proof. It is easy to see that the elements ofW(X) serve as unique normal forms in FTW (X).

The second monad for our example is very simple, and has finite rank: Let Σ⋆
2,2 be the

free algebra monad for the empty theory in the signature Σ2,2 consisting of just 2 binary
operations.

Lemma 6.3. For every infinite cardinal κ, there exists a 2-reachable small (W,Σ⋆
2,2)-tensor

algebra Wκ such that |Wκ| > κ.

Proof. The domain of Wκ is the union {⊥, 0, 1} ∪ U0
κ ∪ U1

κ ∪ Lκ where the U i
κ and Lκ are

sets of terms defined by infinitary mutual recursion according to the the rules

t ∈Wκ − {0}

〈i, 0, t〉 ∈ U i
κ

where i ∈ {0, 1}, and

t : ν →֒ U0
κ ∪ U1

κ ∀µ. µ+ 1 < ν =⇒
(

t(µ) ∈ U0
κ ⇐⇒ t(µ+ 1) ∈ U1

κ

)

t ∈ Lκ

where ν is an ordinal such that 1 < |ν| ≤ κ and →֒ is read as t being injective (not a
subset inclusion). Notice that U0

κ ∩U
1
κ = ∅, so the second premise says that t(µ) alternates

between U0
κ and U1

κ . Let us define a length map # from Wκ to ordinals as follows: we put
#t = 1 for t ∈ {⊥, 0, 1} ∪ U0

κ ∪ U1
κ , and #t = ν whenever t : ν →֒ U0

κ ∪ U1
κ ∈ Lκ. Note that

this implies #t > 1 iff t ∈ Lκ.
To give a Σ⋆

2,2-algebra structure over Wκ is the same as to define two binary maps
u0, u1 : Wκ ×Wκ →Wκ. For i = 0, 1 we put by definition

• ui(t, t) = t if t ∈ {0, 1} ;
• ui(0, t) = 〈i, 0, t〉 ∈ U i

κ whenever t ∈ {1} ∪ Lκ;
• ui(s, t) = ⊥ in the remaining cases.

We now define a TW-algebra structure on Wκ. We interpret ⊥ by ⊥, and ι1 by id. For ν > 1
and t ∈ (Wκ)

ν we define ιν(t) by the clauses

• ιν(t) = s, provided the map s : ζ → Wκ on ζ =
∑

µ<ν #t(µ) defined as follows is in Lκ:

We regard ζ as consisting of pairs 〈µ, κ〉 where µ < ν and κ < #t(µ). For every such
〈µ, κ〉, put s〈µ, κ〉 = t(µ)(κ) if t(µ) ∈ Lκ, and s〈µ, κ〉 = t(µ) otherwise (in which case
necessarily κ = 0).
• ιν(t) = ⊥ otherwise.

It is then clear by construction that Wκ is 2-reachable (it is generated by 0 and 1), as
the rules defining Lκ and the U i

κ just amount to closure under the ui and ιν as defined
above. Next, we have to check that Wκ is really a TW-algebra. By definition, for every t,
ιν(t) ∈ Lκ∪{⊥}, hence the conditions (1) and (2) of Definition 6.1 are ensured automatically.
Condition (3) is less trivial, but still routine. Finally we need to verify the tensor law. In
the case at hand it amounts to proving the equation

ui(ιν(t), ιν(s)) = ιν(λµ < ν. ui(t(µ), s(µ)))

for every s, t ∈ Wκ, i = 0, 1. It is immediate by definition that both sides of this equation
equal ⊥ unless ν = 1. In the latter case the equation also follows since, by definition,
ι1 = id.
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Finally, we show that |Wκ| > κ. In order to derive a contradiction, assume that
|Wκ| ≤ κ and let ς be an ordinal number such that |Wκ| = |ς|. Let ρ be a bijection
ς → Wκ − {0}. Since |ς| ≤ κ and hence |ς · 2| ≤ κ (since κ is infinite), we can form an
element tρ : ς · 2 →֒ U0

κ ∪ U1
κ of Wκ by putting tρ(ς

′, i) = 〈i, 0, ρ(ς ′)〉 for ς ′ < ς, i = 0, 1.
By varying ρ, we can produce as many such elements as there are isomorphisms from ς to
Wκ − {0}, i.e. strictly more than |ς| = |Wκ|, contradiction.

By Corollary 3.11 we obtain

Theorem 6.4. The tensor of the strict non-empty well-order monad W and Σ⋆
2,2 does not

exist, even as a spurious tensor.

7. Conclusion

Tensors of theories, or monads, capture algebras of one theory in the category of algebras
of the other. For unranked monads, equivalently large theories with small free algebras,
existence of tensors is not self-understood; we call a theory or monad tensorable if its tensors
with all other theories, or monads, respectively, exist. We have given two counterexamples
to tensorability of monads:

• the tensor of the finite powerset monad with a certain somewhat complex unranked monad
fails to exist;
• the tensor of the strict nonempty well-order monad and a simple finitary monad, generated
by two binary operations and no equations, fails to exist.

We have thus settled in the negative the long-standing open question of universal existence
of tensors of monads on Set [17], which has recently reemerged in the perspective of work
on algebraic effects [12, 11]. The negative answer as such is in accordance with expectations,
but the actual counterexamples are rather different from what was previously suspected.

In addition to our negative results, we have established a positive result stating that
all bounded powerset monads—except finite powerset—are (genuinely) tensorable.

Our main motivation for the study of tensors as such is to develop a monadic framework
for non-interference of side-effects, noting that the tensor law precisely amounts to orthog-
onality of the component monads; these ideas will be further developed in future research.
Another topic of further interest is the investigation of tensors over base categories other
than Set, for example the category of ω-complete partial orders.

Acknowledgements. We wish to thank various contributors to the categories mailing list, in
particular Peter Johnstone, for useful insights communicated via the list, and the anonymous
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