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Abstract. Fix an integer h ≥ 1. In the universe of coloured trees of height at most h, we
prove that for any graph decision problem defined by an MSO1 formula with r quantifiers,
there exists a set of kernels, each of size bounded by an elementary function of r and the
number of colours. This yields two noteworthy consequences. Consider any graph class G

having a one-dimensional MSO1 interpretation in the universe of coloured trees of height h
(equivalently, G being a class of shrub-depth h). First, G admits an MSO1 model checking
algorithm whose runtime has an elementary dependence on the formula size. Second, on G

the expressive powers of FO and MSO1 coincide (which extends a 2012 result of Elberfeld,
Grohe, and Tantau).

1. Introduction

First order (FO) and monadic second-order (MSO) logics play an undoubtedly crucial role
in computer science. Besides traditional tight relations to finite automata and regular
languages, this is also witnessed by their frequent occurrence in the so called algorithmic
metatheorems which have gained increasing popularity in the past few years. The term
algorithmic metatheorem commonly refers to a general algorithmic toolbox ready to be
applied onto a wide range of problems in specific situations, and MSO or FO logic is often
used in the expression of this “range of problems”.

One of the perhaps most celebrated algorithmic metatheorems (and the original mo-
tivation for our research) is Courcelle’s theorem [2] stating that every graph property φ
expressible in the MSO2 logic of graphs (allowing for both vertex and edge set quantifiers)
can be decided in linear fpt time on graphs of bounded tree-width. Courcelle, Makowsky,
and Rotics [5] then have analogously addressed a wider class of graphs, namely those of
bounded clique-width, at the expense of restricting φ to MSO1 logic (i.e., with only vertex
set quantification).
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Regarding Courcelle’s theorem [2] and closely related [1, 5], it is worth to remark that a
solution can be obtained via translating of the respective graph problem to an MSO formula
over coloured trees (which relates the topic all the way back to Rabin’s S2S theorem [21]
and works of Doner [8] and Thatcher and Wright [22]). However, a common drawback of
these metatheorems is that, when their runtime is expressed as O

(
f(φ,width(G)) · |G|

)
,

this function f grows asymptotically as 2
2.
.width(G)

}
a

where the height a depends on φ,
precisely on the quantifier alternation depth of φ (i.e., f is a non-elementary function of
the parameter φ). The latter is not surprising since Frick and Grohe [12] proved that it is
not possible to avoid a non-elementary tower of exponents in deciding MSO properties on
all trees or coloured paths (unless P=NP), and Lampis [18] proved an analogous negative
result even for uncoloured paths (unless EXP=NEXP).

The aforementioned negative results leave room for possible improvement on suitably
restricted subclass(es) of all coloured trees, namely on those avoiding long paths. In this
respect, our first result (Theorem 3.2) gives a new algorithm for deciding MSO properties φ
of rooted coloured trees T of fixed height h. The algorithm (Corollary 3.4) uses so called
kernelization—which means it efficiently reduces the input tree into an equivalent one (the
kernel) of elementarily bounded size; by

22
..
O(|φ|2)

}
h+1

.

In the complexity aspects, our result “trades” quantifier alternation depth of φ from
Courcelle’s theorem for bounded height of the tree. Again, the tower of exponents of (this
time fixed) height h + 1 in the expression is unavoidable unless the Exponential Time
Hypothesis fails, as proved by aforementioned Lampis [18]. We refer to Section 3 for an
exact expression of runtime as well as for an extension to counting MSO logic.

From a more general perspective our algorithm can be straightforwardly applied to any
suitable “depth-structured” graph class via efficient interpretability of logic theories, such as
to graph classes of bounded tree-depth or of bounded shrub-depth [14]. This (asymptotically)
includes previous results of Lampis [17] and Ganian [13] as special cases. Even more, the
scope of our result can be extended to the so called LinEMSO optimization and enumeration
framework, see e.g. in [5], over such graph classes as follows: the algorithmic metatheorems
of [2, 1, 5] (and similar ones) can be treated using finite tree-automata (with non-elementary
numbers of states in general), however, in the universe of a suitable “depth-structured”
graph class only very few of the automaton states correspond to some of the kernels and so
are actually reachable. This in Section 4 concludes the first half of our paper.

There are also other sides of the main result. First, the initial discovery of Theorem 3.2
was the prime motivation for defining shrub-depth in [14], and a key ingredient in the proof
that shrub-depth is stable under MSO1 interpretations, again in [14].

Second, Elberfeld, Grohe, and Tantau [11] prove that FO and MSO2 have equal expressive
power on the graphs of bounded tree-depth. Having Theorem 3.2 at hand, we can provide a
relatively simple alternative proof of this result. Furthermore, using some more sophisticated
combinatorial tools, namely well-quasi-ordering, we prove a new result (Theorem 5.14) that
FO and MSO1 have equal expressive power on any graph class of bounded shrub-depth. In
the converse direction, Elberfeld, Grohe, and Tantau [11] also prove that on monotone graph
classes of unbounded tree-depth, MSO2 is strictly stronger than FO. Unfortunately, due to
lack of a suitable “forbidden substructure” characterization of shrub-depth, we are not yet
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able to prove the analogous converse claim, but we conjecture that a hereditary class on
which FO and MSO1 coincide must have bounded shrub-depth (Conjecture 6.1).

2. Preliminaries

We assume standard terminology and notation of graph theory, see e.g. Diestel [6]. Our
graphs are finite, simple and undirected by default. When dealing with trees, we implicitly
consider them as rooted (with the implicit parent-child tree order) and with unordered
descendants. We use ⊆ for the usual subgraph relation and ⊆i for induced subgraphs. A
graph class C is hereditary if it is closed under the induced subgraph relation, i.e., G ∈ C

and H ⊆i G implies H ∈ C.
A class C of graphs is well-quasi-ordered (WQO) under an order � if, for any infinite

sequence (G1, G2, . . . ) ⊆ C, it is Gi � Gj for some i < j. WQO techniques are very popular
in structural graph theory, and we refer to [6, Chapter 12] for a brief overview. A graph
property Π is preserved under � if the following holds; whenever G ∈ C has the property Π,
every G′ ∈ C such that G′ � G has Π as well. The following simple folklore claim is crucial
in this paper:

Proposition 2.1. Let C be a graph class. If Π is a property preserved under a well-quasi-
order � on C, then there exists a finite set Obst ⊆ C such that; G ∈ C has Π if and only if
H 6� G for all H ∈ Obst.

We informally say that Π from Proposition 2.1 has finitely many obstacles in C. We are
going to use the following well-quasi-ordered graph class.

Theorem 2.2 (Ding [7]). Let m ∈ N be an integer and C be a finite set of colours. The
class of the graphs not containing a path on m vertices as a subgraph and with vertices
coloured by C is well-quasi-ordered under the colour-preserving induced subgraph order ⊆i.

Given a graph G, a tree-decomposition of G is an ordered pair (T,W), where T is a tree
and W = {Wx ⊆ V (G) | x ∈ V (T )} is a collection of bags (vertex sets of G), such that the
following hold:

(1)
⋃
x∈V (T )Wx = V (G);

(2) for every edge e = uv in G, there exists x ∈ V (T ) such that u, v ∈Wx;
(3) for each u ∈ V (G), the set {x ∈ V (T ) | u ∈Wx} induces a subtree of T .

The width of a tree-decomposition (T,W) is (maxx∈V (T ) |Wx|) − 1. The tree-width of G,
denoted tw(G), is the smallest width of a tree-decomposition of G.

Besides tree-width, another useful width measure of graphs is the clique-width of a graph
G. This is defined for a graph G as the smallest number of labels k = cw(G) such that some
labelling of G can be defined by an algebraic k-expression using the following operations:

(1) create a new vertex with label i;
(2) take the disjoint union of two labelled graphs;
(3) add all edges between vertices of label i and label j; and
(4) relabel all vertices with label i to have label j.

Monadic second-order logic (MSO) is an extension of first-order logic (FO) by quantifi-
cation over sets. The quantifier rank qr(φ) is the nesting depth of quantifiers in φ. The
formulas of quantifier rank 0 are called quantifier free. Counting monadic second-order logic
(CMSO) is an extension of MSO which allows use of predicates moda,b(X), where X is a
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set variable. The semantics of the predicate moda,b(X) is that the set X has a modulo b
elements.

Let σ and τ be relational vocabularies and let L ∈ {FO,MSO,CMSO}. A one-
dimensional interpretation1 of τ in σ is a tuple I =

(
ν(x), {ηR(x̄)}R∈τ

)
of L[σ]-formulas

where ν has one free variable and the number of free variables in each ηR is equal to the
arity of R in τ .

• To every σ-structure A the interpretation I assigns a τ -structure AI with the domain
AI = {a | A |= ν(a)} and the relations RI = {ā | A |= ηR(ā)} for each R ∈ τ . We say
that a class C of τ -structures has an interpretation in a class D of σ-structures if there
exists an interpretation I such that for each C ∈ C there exists D ∈ D such that C ' DI ,
and for every D ∈ D the structure DI is isomorphic to a member of C.
• The interpretation I of τ in σ defines a translation of every L[τ ]-formula ψ to an L[σ]-

formula ψI as follows:
– every ∃x.φ is replaced by ∃x.(ν(x) ∧ φI),
– every ∃X.φ is replaced by ∃X.(∀y(y ∈ X → ν(y)) ∧ φI), and
– every occurrence of a σ-atom R(x̄) is replaced by the corresponding formula ηR(x̄).

We have added the adjective “one-dimensional” (interpretation) to indicate that our ν is of
arity one, i.e., that the domain of τ -structures is interpreted in singleton elements of the
σ-structures. Since we use only one-dimensional interpretations throughout the paper, from
now on we will say shortly an “interpretation” to mean a one-dimensional interpretation.

We make use of the following claim:

Lemma 2.3 ([15]). Let I be interpretation of τ in σ. Then for all L[τ ]-formulas φ and all
σ-structures A

A |= φI ⇐⇒ AI |= φ.

A great part of our paper deals with MSO logic of rooted trees, which are structures with
a single parent-child binary relation. For general graphs, however, there are two established
but inequivalent views of them as relational structures. In the one-sorted adjacency model
of graphs, MSO specifically reads as follows:

Definition 2.4 (MSO1 logic of graphs). The language of MSO1 contains the expressions
built from the following elements:

• variables x, y, . . . for vertices, and X,Y, . . . for sets of vertices,
• the predicates x ∈ X and edge(x, y) with the standard meaning,
• equality for variables, the connectives ∧,∨,¬,→, and the quantifiers ∀,∃ over vertex and

vertex-set variables.

MSO2 logic of graphs extends MSO1 by allowing quantification over edge sets. Formally,
one can consider graphs as two-sorted structures (the two sorts being vertex-set and edge-set
of a graph) with adjacency and incidence predicates.

Although our results are concerned also with MSO2, we refrain from giving full definition
of MSO2 logic of graphs, since by the following theorem we can avoid using MSO2 explicitly.

1The name one-dimensional (noncopying) transduction is also used in an algorithmic context, see, e.g., [4].
Transductions mean, however, usually a more general concept than what we define and use here.
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Theorem 2.5 (Courcelle [3], also [4]). Let C be the class of finite graphs of tree-width at
most k (for any fixed k). A property of graphs in C is CMSO2-expressible if, and only if, it
is CMSO1-expressible. Moreover, for any fixed k, if φ is an CMSO2 sentence, the size of an
equivalent CMSO1 sentence φ′ can be bounded by an elementary function of |φ|.2

We often use labelled graphs, i.e. graphs where each vertex can have labels from some
finite set Lab. Labels are modelled by unary predicates. Sometimes we refer to colours
instead of labels; the colour of a vertex is the combination of its labels (each vertex has

exactly one colour, the number of colours is ∼ 2|Lab|).
For an introduction to parameterized complexity we suggest [9]. Here we just recall

that a problem P parameterized by k, i.e., with an input 〈x, k〉 ∈ Σ∗ × N, is fixed parameter

tractable, or fpt, if it admits an algorithm in time O
(
f(k) · |x|O(1)

)
where f is an arbitrary

computable function.

3. Trees of Bounded Height and MSO

The primary purpose of this section is to prove Theorem 3.2; that for any m-coloured tree
T of constant height h there exists an efficiently computable subtree T0 ⊆ T (a kernel) such
that, for any MSO sentence φ of fixed quantifier rank r, it is T |= φ ⇐⇒ T0 |= φ, and the
size of T0 is bounded by an elementary function of r and m (the dependence on h being
non-elementary, though). Particularly, since checking of an MSO property φ can be easily

solved in time O∗
(
2c|φ|

)
on a graph with c vertices (in this case T0) by recursive exhaustive

expansion of all quantifiers of φ, this gives a kernelization-based elementary fpt algorithm
for MSO model checking of rooted m-coloured trees of constant height h (Corollary 3.4).

We need a bit more formal notation. The height 3 h of a rooted tree T is the farthest
distance from its root, and a node is at the level ` if its distance from the root is h− `. For
a node v of a rooted tree T , we call a limb of v a subtree of T rooted at some child node of
v. Our rooted trees are unordered, and they “grow top-down”, i.e. we depict the root on
the top. We switch from considering m-coloured trees to more convenient t-labelled ones,
the difference being that one vertex may have several labels at once (and so m ∼ 2t). We
say that two such rooted labelled trees are l-isomorphic if there is an isomorphism between
them preserving the root and all the labels.

For obtaining the desired kernel, we shall use a concept of reducing a (rooted t-labelled)
tree T as follows.

Definition 3.1 (f -reduction, f -reduced). Let f : N→ N be a function, called a threshold
function. Assuming a node v ∈ V (T ) at level i+ 1 > 0 and a limb B of v such that there
exist at least f(i) other limbs of v in T which are all l-isomorphic to B; we say that T
f-reduces in one step to T − V (B). A tree T f-reduces to T0 ⊆ T if there is a sequence of
one-step f -reductions from T to T0. The tree T0 is f -reduced if no further f -reduction step
is possible.

2We note that the theorem is explicitly stated only for MSO1 and MSO2 in [3, 4] (Theorems 1.44 and 5.22
of [4]). To see that the same holds for CMSO1 and CMSO2 see Section 5.2.6 of [4]. The second part of the
theorem concerning the size of an equivalent CMSO1 formula can be obtained from the proofs. Therefore,
we cannot cite a precise bound of |φ′| in terms of |φ|, but one can read from the proofs that the bound is
actually polynomial and even linear for a fixed k.

3 There is a conflict in the literature about whether the height of a rooted tree should be measured by
the “root-to-leaves distance” or by the “number of levels” (a difference of 1 on finite trees). We adopt the
convention that the height of a single-node tree is 0 (i.e., the former view).
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A straightforward induction shows that any f -reduced t-labelled rooted tree of fixed
height has size bounded with respect to f and t.

3.1. Reduction to kernel. Considering MSO sentences with q element quantifiers and s
set quantifiers, we use the following threshold function R to define our reduced kernel (where
k is an arbitrary integer parameter that will count all the labels used in our proof):

Rq,s,k(i) = q ·Nq,s,k(i)
s, where (3.1)

Nq,s,k(0) = 2k + 1 ≥ 2 and

Nq,s,k(i+ 1) = 2k ·
(
Rq,s,k(i) + 1

)Nq,s,k(i) ≤ 2k ·
(
2q ·Nq,s,k(i)

s)Nq,s,k(i)
(3.2)

Note also that all these values are non-decreasing in the parameters q, s, k.
The idea behind our approach can be simplified as follows. Fix i ≥ 0 and any a ≥ Rq,s,k(i)

where k = t + 3q + s, and choose an arbitrary Rq,s,k-reduced rooted t-labelled tree U of
height i. Then no MSO sentence with q element variables and s set variables can distinguish
between a disjoint copies and a+ 1 disjoint copies of U . Our full result then reads:

Theorem 3.2. Let T be a rooted t-labelled tree of height h, and let φ be an MSO sentence
with q element quantifiers and s set quantifiers. Suppose that u ∈ V (T ) is a node at level
i+ 1 where i < h.

a) If, among all the limbs of u in T , there are more than Rq,s,t+3q+s(i) pairwise l-isomorphic
ones, then let T ′ ⊆ T be obtained by deleting one of the latter limbs from T . Then,
T |= φ ⇐⇒ T ′ |= φ.

b) Consequently, the tree T Rq,s,t+3q+s-reduces to T0 ⊆ T such that T0 itself is Rq,s,t+3q+s-
reduced, and T |= φ ⇐⇒ T0 |= φ.

c) The tree T0 can be computed in linear time from T and φ, and the size of T0 is bounded
by

|V (T0)| ≤ exp(h)
[
(2h+5 − 12) · (t+ q + s)(q + s)

]
.

In the latter expression, exp(i)(x) denotes the i-fold exponential function defined inductively

as follows: exp(0)(x) = x and exp(i+1)(x) = 2exp
(i)(x). Then exp(h)(x) is an elementary

function of x for each particular height h. Note that the runtime bound in c) is within
classical complexity—not parameterized.

In the case of FO logic, a statement analogous to Theorem 3.2 can be obtained using
folklore arguments of finite model theory (even full recursive expansion of all q vertex
quantifiers in φ could “hit” only bounded number of limbs of u and the rest would not
matter). However, in order to obtain suitable explicit bounds, in the case of MSO logic there
are additional nontrivial complications which require careful considerations (in addition to
standard tools) during the proof. Briefly saying, one has to recursively consider the internal
structure of the limbs of u, and show that even an expansion of a vertex-set quantifier in φ
does not effectively distinguish too many of them (and hence some of them remain irrelevant
for the decision whether T |= φ).

Before proceeding with formal proof of Theorem 3.2, we need to clarify the meaning of
the values N :

Lemma 3.3. For any natural i, q, s, and k, there are at most Nq,s,k(i) pairwise non-l-
isomorphic Rq,s,k-reduced rooted k-labelled trees of height ≤ i.
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Proof. This claim readily follows from Equation (3.1) and (3.2) by induction on i. The base
case i = 0 is trivial, and the count includes also the empty tree. A rooted k-labelled tree T
of height ≤ i+ 1 can be described by the label of its root r (2k possibilities), and the set of
its limbs, each one of height ≤ i. This set of limbs can be fully described by the numbers of
limbs (between 0 and Rq,s,k(i)) in every of ≤ Nq,s,k(i) possible l-isomorphism classes. Hence
by (3.2) we have got at most Nq,s,k(i+ 1) possible distinct descriptions of T .

Proof of Theorem 3.2. For clarity, we start with a proof sketch.

(I) We are going to use a so called “quantifier elimination” approach.4 That means,
assuming T |= φ 6⇐⇒ T ′ |= φ, we look at the “distinguishing choice” of the first
quantifier in φ, and encode it in the labelling of T (e.g., when φ ≡ ∃x.ψ, we give new
exclusive labels to the value of x and to its parent/children in T and T ′). By an
inductive assumption, we then argue that the shorter formula ψ cannot distinguish
between these newly labelled T and T ′, which is a contradiction.

(II) The traditional quantifier elimination approach—namely of set quantifiers in φ,
however, might not be directly applicable to even very many pairwise l-isomorphic
limbs in T if their size is unbounded. Roughly explaining, the problem is that a
single valuation of a set variable on these repeated limbs may potentially pairwise
distinguish all of them. Hence additional combinatorial arguments are necessary to
bound the size of the limbs in consideration.

(III) Having resolved technical ((II)), the rest of the proof is a careful composition of
inductive arguments using the formula (3.1) Rq,s,k(i) = q ·Nq,s,k(i)

s.

a) The whole proof goes through by means of contradiction. That is, we assume T |= φ
while T ′ |= ¬φ (a counterexample to Theorem 3.2 a, where T ′ implicitly depends on the
choice of u), up to natural symmetry between φ and ¬φ in this context. Let t′ = t+ 3q + s.
Let B1, . . . , Bp ⊆ T where p > Rq,s,t′(i) ≥ 1 be the pairwise l-isomorphic limbs of u in T , as
anticipated in Theorem 3.2 a). Note that the height of B1 is at most i (but it may possibly
be lower than i).

So, say, T ′ = T − V (B1). We will apply nested induction, primarily targeting the
structure of the sentence φ, or simply the value q + s. For that we assume φ in the prenex
form, i.e., with a leading section of all quantifiers. If q = s = 0, then φ is a propositional
formula which evaluates to true or false without respect to T or T ′. Hence we further assume
q + s > 0. Note also the little trick with choice of t′ = t+ 3q + s which “makes room” for
((I)) adding further labels to T in the course of the proof.

(Minimality setup) To overcome the complication in ((II)), we have to deal with limbs
B1, . . . , Bp of bounded size. So, among all the assumed counterexamples to Theorem 3.2 a)
for this particular φ or symmetric ¬φ, choose one (meaning precisely the choice of T and u
within it) which minimizes the size of B1 (same as the sizes of B2, . . . , Bp). This minimality
choice actually represents a secondary induction in our proof.

We would like to show that the l-isomorphic limbs B1, . . . , Bp are Rq,s,t′-reduced. Suppose
not, and let wk ∈ V (Bk) be a node at level j + 1 ≤ i such that among all the limbs of
wk in Bk there are more than Rq,s,t′(j) pairwise l-isomorphic ones, hereafter denoted by
Dk,1, . . . , Dk,r where r > Rq,s,t′(j). This choice is made for all k = 1, . . . , p symmetrically,

i.e., all the subtrees B−k = Bk − V (Dk,1) where k = 1, . . . , p are pairwise l-isomorphic, too.

4This approach has been inspired by [10], though here it is applied in a wider setting of MSO logic.
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We define a sequence of trees by U0 = T and Uk = Uk−1 − V (Dk,1) for k = 1, . . . , p.
Recall that U0 |= φ. If it ever happened that Uk−1 |= φ but Uk |= ¬φ, then we would consider
Uk−1 and wk in place of T and u above, and hence contradict the choice minimizing B1

(which would be replaced with smaller Dk,1). We may thus say that Up |= φ. We similarly
define U ′1 = T ′ and U ′k = U ′k−1 − V (Dk,1) for k = 2, . . . , p (recall that B1 has been removed
from T ′). With an analogous argument we conclude that U ′p |= ¬φ.

Note that, now, B−1 , . . . , B
−
p are pairwise l-isomorphic limbs of u in Up, and they are

strictly smaller than B1. Since U ′p = Up − V (B−1 ), we may have chosen Up and u in place of
T, u, again contradicting minimality of B1 in the choice above. Indeed, the (original) limbs
B1, . . . , Bp are Rq,s,t′-reduced in T .

(Quantifier elimination: ∃x) As the main induction step we now “eliminate” the leading
quantifier of φ as follows. Suppose first that φ ≡ ∃x. ψ. Let a ∈ V (T ) be such that
T [x = a] |= ψ(x). Clearly, it can be chosen a 6∈ V (B1) since B1 is l-isomorphic to other
B2, . . . , Bp. On the other hand, T ′[x = b] 6|= ψ(x) for all b ∈ V (T ′).

We define a (t + 3)-labelled tree T a which results from T by adding a new label Lx
exclusively to the node a, a new label Lpx exclusively to the parent node of a, and Lcx
to the child nodes of a. A tree T a′ = T a − V (B1) is formed analogously from T ′. Then
we translate the formula ψ(x) with free x into a closed one ψx as defined next: All label
predicates L(x) in ψ(x) are simply evaluated as L(a) over T (which is the same as over T ′).
Any predicate x = y is replaced with Lx(y). Finally, all predicates for edges (x, y) and (y, x)
in this parent-child order are replaced with Lcx(y) and Lpx(y), respectively. It is trivial that
T [x = a] |= ψ(x) ⇐⇒ T a |= ψx, and T ′[x = a] 6|= ψ(x) ⇐⇒ T a′ 6|= ψx.

All the limbs B1, . . . , Bp remain pairwise l-isomorphic in T a unless, say, a ∈ V (Bp).
Even in the latter case we anyway obtain, using (3.1), at least p− 1 > Rq,s,t′(i)− 1 pairwise
l-isomorphic limbs of u in T a, including B1. It is

Rq,s,t′(i)− 1 = q ·Nq,s,t′(i)
s − 1 ≥ (q − 1) ·Nq,s,t′(i)

s ≥ Rq−1,s,t′(i) .

Note also that q − 1 is the number of element quantifiers in ψ, and that the combined
parameter t + 3 + 3(q − 1) + s = t + 3q + s = t′ remains the same. Hence we can apply
the inductive assumption to T a, u, and ψx—concluding that T a |= ψx ⇐⇒ T a′ |= ψx, a
contradiction.

(Quantifier elimination: ∃X) We are finally getting to the heart of the proof. Suppose
now that φ ≡ ∃X.ψ. Let A ⊆ V (T ) be such that T [X = A] |= ψ(X). On the other hand,
T ′[X = A′] 6|= ψ(X) for all A′ ⊆ V (T ′). We define a (t+ 1)-labelled tree TA which results
from T by adding a new label LX precisely to all members of A. Then we translate the
formula ψ(X) with free X into a closed one ψX by replacing every occurrence of y ∈ X with
LX(y). Trivially, T [X = A] |= ψ(X) ⇐⇒ TA |= ψX .

Note again that s − 1 is the number of set quantifiers in ψ, and that the combined
parameter t + 1 + 3q + (s − 1) = t + 3q + s = t′ remains the same. A key observation is
that “casting” the new label LX onto the limbs B1, . . . , Bp may create at most Nq,s,t′(i)
l-isomorphism classes among them. This is simply because, for each k = 1, . . . , p, the
corresponding BA

k carries t+ 1 ≤ t′ labels, it is of the same height as Bk and Rq,s,t′-reduced,
too. Hence, altogether, there are at most Nq,s,t′(i) pairwise non-l-isomorphic choices for such

BA
k by Lemma 3.3.
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So, among all B1, . . . , Bp, there are at least p/Nq,s,t′(i) pairwise l-isomorphic limbs, and
using (3.1),

p

Nq,s,t′(i)
>

Rq,s,t′(i)

Nq,s,t′(i)
= q ·Nq,s,t′(i)

s−1 ≥ Rq,s−1,t′(i).

For simplicity, let the latter limbs be B1, . . . , Bp′ where p ≥ p′ > Rq,s−1,t′(i). Now we

apply the inductive assumption to TA, u, and ψX . Up to symmetry between the limbs,
we get (TA)′ = TA − V (B1) such that TA |= ψX ⇐⇒ (TA)′ |= ψX . Now we can define
A′ ⊆ V (T ′) as the set of those nodes having label LX in (TA)′, and hence (TA)′ |= ψX ⇐⇒
T ′[X = A′] |= ψ(X), a contradiction to the initial assumption.

(Quantifier elimination: ∀) Finally, the cases of universal quantifiers in φ are solved
analogously (¬∃ in place of ∀).
b) This part readily follows by a recursive bottom-up application of a) to the whole tree T .

c) T0 is easily constructed from T by a natural adaptation of the classical linear-time
tree-isomorphism algorithm. Notice that there are no “hidden huge constants” depending
on φ in this algorithm; we simply read the parameters t, q, s by linear-time parsing of φ
and we compute the values of the threshold function Rq,s,t+3q+s “on demand” when we
encounter a limb at level i with (too) many l-isomorphic siblings. We use the simple fact
that Rq,s,k(i) ≥ Rq,s,k(i− 1) and this computation is thus negligible compared to the size of
T .

Since T0 is Rq,s,t′-reduced by b), where t′ = t+ 3q + s, we can consider T0 ⊆ Uh,q,s,t
where Uh,q,s,t is the “maximal” Rq,s,t′-reduced rooted t-labelled tree of height h: Uh,q,s,t
contains (at each level j + 1) precisely Rq,s,t′(j) limbs of every l-isomorphism class of rooted
t′-labelled trees of height ≤ j.

Therefore, by Lemma 3.3, the number of descendants at each level j of Uh,q,s,t is at most
Rq,s,t′(j − 1) ·Nq,s,t′(j − 1). The total number of vertices in Uh,q,s,t is at most

1 +Rq,s,t′(h− 1) ·Nq,s,t′(h− 1) ·
(
1 +Rq,s,t′(h− 2) ·Nq,s,t′(h− 2) · (1 + . . . )

)
≤

≤
h−1∏
i=0

(
1 +Rq,s,t′(i) ·Nq,s,t′(i)

)
. (3.3)

The task is now to estimate, by induction on i, the value 1 +Rq,s,t′(i) ·Nq,s,t′(i) from

above by exp(i+1)
[
(6 · 2i − 2)t′(q + s)

]
. Note that t′ ≥ q + s ≥ 1.

1 +Nq,s,t′(0) ·Rq,s,t′(0) = 1 + q ·
(

2t
′
+ 1
)s+1

≤ 2q · 2(t′+1)(s+1) ≤

≤ 22t′(s+1)+q ≤ 22t′(s+1+q) ≤ 24t′(s+q)



10 J. GAJARSKÝ AND P. HLINĚNÝ

1 +Nq,s,t′(i+ 1) ·Rq,s,t′(i+ 1) = 1 + q ·Nq,s,t′(i+ 1)s+1 = (3.4)

= 1 + q ·
[
2t
′ ·
(
Rq,s,t′(i) + 1

)Nq,s,t′ (i)]s+1
≤

≤ 1 + q ·
[
2t
′ ·
(
2Rq,s,t′(i)

)Nq,s,t′ (i)]s+1
≤

≤ 1 + q ·
[
2t
′ ·
(
2qNq,s,t′(i)

s)Nq,s,t′ (i)]s+1
≤

≤ 1 + q ·
[(
Nq,s,t′(i)

t′+q+s)Nq,s,t′ (i)]s+1
≤

≤ 1 + q ·
[
2(t′+q+s)·Nq,s,t′ (i)

2
]s+1

≤

≤ exp(1)
[
q + (t′ + q + s)(s+ 1) ·Nq,s,t′(i)

2
]
≤

≤ exp(1)
[
22(t′+q+s) ·Nq,s,t′(i)

2
]
≤

≤ exp(1)
[
22(t′+q+s) · 22 exp(i)((6·2i−2)t′(q+s))

]
≤

≤ exp(2)
[
2 exp(i)

(
(6 · 2i − 2)t′(q + s)

)
+ 2(t′ + q + s)

]
≤

≤ exp(2)
[
exp(i)

(
2 · (6 · 2i − 2)t′(q + s) + (t′ + q + s)

)]
≤

≤ exp(2)
[
exp(i)

(
2 · (6 · 2i − 2)t′(q + s) + 2t′(q + s)

)]
=

= exp(2)
[
exp(i)

(
(6 · 2i+1 − 2)t′(q + s)

)]
=

= exp(i+2)
[
(6 · 2i+1 − 2)t′(q + s)

]
With (3.3), we then get

|V (T0)| ≤ |V (Uh,q,s,t)| ≤
h−1∏
i=0

(
1 +Rq,s,t′(i) ·Nq,s,t′(i)

)
≤

≤
h−1∏
i=0

exp(i+1)
[
(6 · 2i − 2)t′(q + s)

]
≤

≤ exp(h)
[
2 · (6 · 2h−1 − 2)t′(q + s)

]
≤

≤ exp(h)
[
(2h+3 − 4) · (t+ 3q + s)(q + s)

]
≤

≤ exp(h)
[
(2h+5 − 12) · (t+ q + s)(q + s)

]
.

Corollary 3.4. Let T be a rooted t-labelled tree of constant height h ≥ 1, and let φ be an
MSO sentence with r quantifiers. Then T |= φ can be decided by an fpt algorithm running
in elementary time

O
(

exp(h+1)
[
2h+5 · r(t+ r)

]
+ |V (T )|

)
= exp(h+1)

(
O(|φ|)2

)
+O (|V (T )|) .

Proof. Let T0 be the kernel obtained in linear time by Theorem 3.2. We (by brute force)
exhaustively expand all the quantifiers of φ into all possible valuations in T0, having at most
2|V (T0)| possibilities for each. By searching this “full valuation tree” in time O

(
2|V (T0)|·(r+1)

)
we decide whether T0 |= φ. Using the size bound on T0 given by Theorem 3.2, where
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r = q + s, it is

2|V (T0)|·(q+s+1) ≤ 2exp
(h)
[
(2h+5−12)·(t+q+s)(q+s)

]
·(q+s+1) ≤

≤ exp(h+1)
[
(2h+5 − 12) · (t+ q + s)(q + s) + (q + s+ 1)

]
≤ exp(h+1)

[
2h+5 · r(t+ r)

]
.

3.2. Counting MSO logic. Theorem 3.2 can be further strengthened by considering CMSO
logic. Although relatively easy, this is not a simple corollary, and the additional issues of
different sort require us to repeat the overall structure of the previous proof as follows.

Theorem 3.5. Let T be a rooted t-labelled tree of height h, let φ be a CMSO sentence with
q element quantifiers and s set quantifiers, and let M be the least common multiple of the b
values of all moda,b predicates occurring in φ.

a) Suppose that u ∈ V (T ) is a node at level i+ 1 where i < h. If, among all the limbs
of u in T , there are more than RM+q,s,t+3q+s(i) pairwise l-isomorphic ones, then let T ′ ⊆ T
be obtained by deleting exactly M of the latter limbs from T . Then, T |= φ ⇐⇒ T ′ |= φ.

b) Consequently, there is a subtree T0 ⊆ T computable in linear time (non-parameterized),
such that T |= φ ⇐⇒ T0 |= φ and the size of T0 is bounded by

|V (T 0)| ≤ exp(h)
[
(2h+5 − 12) · (t+M + q + s)(M + q + s)

]
.

Proof. We closely follow the structure of the proof of Theorem 3.2, and implicitly refer to
its assumptions and notation. In particular, let t′ = t+ 3q + s. Due to the effects of (future)
quantifier elimination onto the moda,b(X) predicates we have to deal in φ also with special

model constants modLa,b (where L is a label of the model): The semantics of modLa,b in U |= ψ
is that the respective model U contains a modulo b nodes holding label L.

a) As in the previous proof, we have a node u in T such that u has many, p >
RM+q,s,t′(i) ≥ M , pairwise l-isomorphic limbs B1, . . . , Bp ⊆ T . We claim that for T ′ =
T − V (B1 ∪ · · · ∪BM ) it holds T |= φ ⇐⇒ T ′ |= φ. This is again proved by induction on
q + s:

For the base of induction, when q = s = 0, φ is a propositional formula and the outcomes
of T |= φ and T ′ |= φ might differ only in the constants modLa,b. However, M is a multiple
of b by definition and the number of (deleted) nodes holding label L in B1 ∪ · · · ∪BM is a
multiple of M , and hence all the involved model constants modLa,b in φ indeed do have the

same value over T as over T ′.
For the induction step with q+ s ≥ 1, we show that the threshold value p > R∗Mq,s,t′(i) :=

RM+q,s,t′(i) is sufficient in this proof. Note that R∗M0,0,t′(i) = M . We again proceed by means

of contradiction; assuming T |= φ while T ′ |= ¬φ up to symmetry between φ and ¬φ. Let
us consider a counterexample which minimizes the size of B1. Then, analogously to the
proof of Theorem 3.2, the l-isomorphic limbs B1, . . . , Bp are R∗Mq,s,t′-reduced or a smaller

counterexample exists (for this φ or ¬φ). The only difference in the argument is that we are
now always removing M -tuples of l-isomorphic limbs instead of single ones.

Then a quantifier elimination argument, essentially same as previous, finishes the
induction step. The argument from the proof of Theorem 3.2 can be simply repeated word
by word, only replacing q with q′ := M + q as in Rq′,s,t′(i).
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b) By a recursive bottom-up application of a) to the whole tree T we obtain a tree T0

which is Rq′,s,t′-reduced, and this T0 is computable in linear time, too. The size bound then
follows from Theorem 3.2c) for q′ = M + q in place of q.

Corollary 3.6. Let T be a rooted t-labelled tree of constant height h ≥ 1, and let φ be an
CMSO sentence. Let M be the least common multiple of the b values of all moda,b predicates
occurring in φ. Then T |= φ can be decided by an fpt algorithm running in elementary time

exp(h+1)
(
O(M + |φ|)2

)
+O (|V (T )|) .

4. Algorithmic Consequences for Graphs

If one considers extending algorithmic scope of the previous section to richer classes of
structures such as general graphs, the first natural choice would be to employ efficient
interpretation of the structures in coloured trees of fixed height together with Corollaries 3.4
and 3.6. This has been the course taken in the conference version of this paper (covering
Lampis [17] and Ganian [13] as special cases) and in a greater generality in [14]. Here we
use another, slightly more complicated, approach which has the advantage of being able to
smoothly incorporate also some wider problem frameworks, such as MSO enumeration and
the LinEMSO optimization framework, and others.

4.1. Smaller tree automata for MSO. Our approach uses tree automata for MSO prop-
erties (cf. Rabin [21], Doner [8] and Thatcher and Wright [22]), and its core idea is to give a
stricter bound on the number of states of such an automaton by showing that each reachable
state is represented by some of our reduced kernels. Recall that the number of states of the
automaton related to, e.g., Courcelle’s MSO2 theorem [2] grows non-elementarily with the
quantifier alternation depth of the formula, and that this is generally unavoidable by Frick
and Grohe [12] already for MSO properties on trees.

However, consider the following situation; we apply the algorithm of, say, Courcelle’s
MSO2 theorem to a class C of graphs which, in an addition to having bounded tree-width,
has an interpretation J in a class of trees of bounded height. Although the related automaton
A has a non-elementary number of states in general, our Theorem 4.1 will show that the
number of states of A reachable by the graphs from C is indeed elementary (in the input
formula). The important part of the formulation of Theorem 4.1 is that we can blindly
bound the number of reachable states of A, without knowing or changing the kind of “tree-
structured” decomposition (cf. the arbitrary interpretation I versus our J in the statement
of Theorem 4.1) used in the original algorithmic metatheorems.

For a class of relational structures S, we say that an MSO interpretation I of S in a
class of rooted trees T is hereditary if, roughly saying, subtrees interpret respective induced
substructures. Formally, for any S ∈ S which is interpreted in T ∈ T with the domain
D ⊆ V (T ), every rooted subtree T ′ ⊆ T interprets by I a structure S′ that is the restriction
of S onto D ∩ V (T ′). Our core claim is now formulated as follows.

Theorem 4.1. Let S be a hereditary class of binary relational structures, ψ a CMSO property
over S, and I a hereditary CMSO interpretation of S in a class T of rooted (labelled) binary
trees. If there exists a hereditary CMSO interpretation J of S in the class Ud of rooted
labelled trees of fixed height d, then the following holds: There is a finite deterministic tree
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automaton Aψ,I accepting the language of those T ∈ T such that T |= ψI (ψ under the
interpretation I); and the number of states of Aψ,I is at most

exp(d+1)
(
O(M + |ψJ |+ ι)2

)
, (4.1)

where (i) ψJ is ψ under the interpretation J , (ii) M is the least common multiple of the b
values of all moda,b predicates occurring in ψJ , and (iii) ι is a constant depending on I,T
but not on ψ.

Recall, again, that sole existence of the automaton Aψ,I follows from Rabin’s [21], while
the selling point of this claim is an elementary size bound on Aψ,I for each fixed d. Note
also that we intentionally formulate the theorem with two interpretations I and J which are
not mutually related in any way (even though an existence of I can be easily derived from
the existence of J). The purpose of this “separation of I from J” has been explained at the
beginning of this section.

Proof. Our approach builds upon the classical Myhill–Nerode regularity tool in automata
theory. We actually apply its tree-automata version [16] – we show that the number of
classes of the congruence relation on trees defined with respect to ψI is bounded as in the
statement of the theorem. The existence of the automaton Aψ,I with the same number of
states then follows.

For a CMSO sentence φ we define an equivalence relation ∼φ on the universe of rooted
(labelled) trees as follows. If T and B2 are rooted trees, and B1 is a limb of a node v ∈ V (T ),
then let T [B1 → B2] denote the tree obtained from T − V (B1) by attaching the root of B2

as a child of v. For this proof, we additionally treat also the case of an “improper limb”
B1 = T and then, specially, T [B1 → B2] = B2. It is

B1 ∼φ B2 if, and only if, T |= φ ⇐⇒ T [B1 → B2] |= φ

over all rooted trees T such that B1 is a limb of T or B1 = T .
We are interested in the equivalence classes of ∼ψI when restricted to rooted subtrees

of the members of T. Let S ∈ S be interpreted by I in a tree T ∈ T (i.e., S ' T I), and let
B be a limb in T . Let S1 and S2 be the induced substructures of S interpreted in B and
T − V (B), respectively. Let U ∈ Ud be an interpretation of S ' UJ under J . Let U1, U2

be two disjoint copies of U , and let U3 be the rooted tree (of height d+ 1) obtained from
U1 ∪ U2 by adding a new root as the parent of the former roots of U1, U2.

Our first claim is that there exists an assignment of additional labels to U3 and an
interpretation J3 of S in U3 such that; (a) J3 depends only on J and on I,T (this will

define our ι), (b) Si ' UJ3i for i = 1, 2, and (c) the additional labelling of U1 within U3 is
independent of T − V (B).

To prove this claim, consider any of the binary relational symbols R over S and
the CMSO formula %(x, y) ≡ R(x, y)I which interprets R into T. Already by Rabin’s
theorem [21]—while simply amended by finite-state moda,b predicates in %—this %(x, y)
has a finite number of equivalence classes with the interpretation of x in V (B) ∩ dom(S)
and y into (V (T ) ∩ dom(S)) \ V (B) (and the same applies also to %(y, x) interpreting
the inverse R−1 in case of a non-symmetric relation). Hence there exists an integer mR

depending only on I,T such that V (S1) has a partition PR with |PR| ≤ mR parts, and
S |= R(x1, y) ⇐⇒ S |= R(x2, y) for any two x1, x2 from the same part of PR and any
y ∈ V (S2). Importantly, the partition PR does not depend at all on S2 and T − V (B).
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We choose ι = 2 +
∑

R over S(mR + mR−1) and assign ι new labels to the nodes of U3

as follows: For i = 1, 2, a separate new label Li is issued to the whole domain of Si in Ui.
Furthermore, on the domain of S1 in U1, every vertex gets one of mR new labels identifying
which part of PR it belongs to. This is repeated for all relational symbols R and their
inverses R−1 over S. On the domain of S2 in U2, the label identifying a part P ∈ PR is
simply given to all the vertices which are adjacent to P via R. The interpretation J3 now
follows naturally; U3 |= R(x, y)J3 if, and only if,

• x, y in the domain of S are from the same one of U1, U2 —formally, L1(x) ∧ L1(y) or
L2(x) ∧ L2(y) —and U3 |= R(x, y)J (since J is hereditary), or
• x, y in the domain of S are from different ones of U1, U2 —formally, L1(x) ∧ L2(y) or vice

versa—and the additional labels in U3 “encode” R(x, y) as defined previously.

This finishes the proof of the first claim; the existence of J3. Note, moreover, that T |=
ψI ⇐⇒ S |= ψ ⇐⇒ U3 |= ψJ3 .

Second, we claim that every equivalence class of ∼ψI contains a special small represen-
tative (not necessarily unique), and so the index of ∼ψI cannot be too large. We apply

Theorem 3.5 a) to ψJ3 and the tree U3, precisely to all nodes of U1 within it. Let U1 reduce
to U0 by this application(s), and let U30 = U3[U1 → U0]. Then U3 |= ψJ3 ⇐⇒ U30 |= ψJ3 .

Since J is hereditary, U J3
0 as a restriction of U J

0 is isomorphic to an induced substructure
S0 ⊆ S1. Let B0 ⊆ B be the subtree giving dom(S0) in the interpretation I, and let

S30 = S − (V (S1) \ V (S0)) ' U J3
30 . Then, again, B I

0 ' S0 and T [B → B0]I ' S30 since I is
hereditary. This B0 will be a representative of the ∼ψI -class of B.

By the previous, we have got T |= ψI ⇐⇒ U30 |= ψJ3 ⇐⇒ S30 |= ψ ⇐⇒ T [B →
B0] |= ψI . This has been so far verified for one particular tree T ∈ T having B as its limb.
Consider now arbitrary T ′ ∈ T having B ⊆ T ′ as its limb or B = T ′, and correspondingly

define S′ ∈ S, S′ ' T ′I and U ′ ∈ Ud such that S′ ' U ′J by the assumptions. If S′1, S
′
2 ⊆ S′ are

the induced substructures interpreted in B and T ′ − V (B), then S′1 = S1. We take U ′1 := U1

and U ′2 a disjoint copy of U ′, and analogously construct U ′3 from U ′1 ∪ U ′2 by adding a new
root. As in the first claim, and emphasizing the condition (c), we get a labelling of U ′3 such

that S′ ' U ′ J33 and S′i ' U ′i
J3 for i = 1, 2. Again by Theorem 3.5 a), for U ′30 = U ′3[U ′1 → U0]

it holds T ′ |= ψI ⇐⇒ S′ |= ψ ⇐⇒ U ′3 |= ψJ3 ⇐⇒ U ′30 |= ψJ3 ⇐⇒ T ′[B → B0] |= ψI .
Consequently, B ∼ψI B0 as desired.

Therefore, the number of equivalence classes of ∼ψI is at most as large as the number of
pairwise non-l-isomorphic RM+q,s,t+3q+s-reduced rooted k-labelled trees (B0) of height ≤ d,

where q, s are the numbers of element and set quantifiers in ψJ3 and t is the number of
labels addressed in ψJ3 . This quantity is at most NM+q,s,t+3q+s(d) by Lemma 3.3. Under

a very rough estimate, q, s ≤ t + 3q + s ≤ O(|ψJ | + ι) by the construction of J3. Using
the calculation of (3.4) (for i + 1 = d, and again with a broad margin) we get that

NM+q,s,t+3q+s(d) < exp(d+1)
(
O(M + |ψJ |+ ι)2

)
. This is an upper bound on the number of

states of desired minimal Aψ,I by the Myhill–Nerode theorem.

4.2. Solving extended MSO properties. Unfortunately, direct algorithmic applicability
of Corollaries 3.4 and 3.6 is limited to pure decision problems (such as, e.g., 3-colourability),
but many practical problems are formulated as optimization ones. The usual way of
transforming optimization problems into decision ones does not work for us since the MSO
language cannot handle arbitrary numbers.
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Figure 1: The path of length 14 has tree-depth 3 + 1 = 4 since it is contained in the closure
of the depicted (red) tree of height 3. It can be proved that this is optimal.

Nevertheless, there is a known solution. Arnborg, Lagergren, and Seese [1] (while
studying graphs of bounded tree-width), and later Courcelle, Makowsky, and Rotics [5] (for
graphs of bounded clique-width), specifically extended the expressive power of MSO logic to
define so-called LinEMSO optimization problems. Briefly saying, the LinEMSO language
allows, in addition to ordinary MSO expressions, to compare between and optimize over
linear evaluational terms.

We follow, for an illustration, a simpler definition of LinEMSO1 given in [5]. Consider
any MSO1 formula ψ(X1, . . . , Xp) with free set variables, and state the following problem
on an input graph G:

opt
{
flin(Z1, . . . , Zp) : Z1, . . . , Zp ⊆ V (G), G |= ψ(Z1, . . . , Zp)

}
,

where opt can be min or max, and flin is a linear evaluational function. It is

flin(Z1, . . . , Zp) =

p∑
i=1

m∑
j=1

ai,j ·∑
x∈Zi

fj(x)


where m and ai,j are (integer) constants and fj are (integer) weight functions on the vertices
of G. Typically flin is just a cardinality function. Such as,

ψ(X) ≡ ∀v, w
(
v 6∈ X ∨ w 6∈ X ∨ ¬ edge(v, w)

)
and “ max |X| ”

describes the maximum independent set problem, or

ψ(X) ≡ ∀v∃w
[
v ∈ X ∨

(
w ∈ X ∧ edge(v, w)

)]
and “ min |X| ”

is the minimum dominating set problem.
The algorithms given in [1, 5] for solving such LinEMSO optimization (and enumeration

as well) problems are implicitly based on a finite tree automaton associated with the formula
ψ in the problem description. Now, Theorem 4.1 can immediately be used to tighten runtime
analysis of each of the mentioned algorithms, when the input is restricted to graph classes
having not only bounded tree-width or clique-width, respectively, but at the same time
being interpretable in a class of trees of fixed height.

This goal first gets us to the following definition:

Definition 4.2 (Tree-depth [19]). The closure cl(F ) of a rooted forest F is the graph
obtained from F by adding from each node all edges to its descendants. The tree-depth
td(G) of a graph G is one more than the smallest height (distance from the root to all leaves)
of a rooted forest F such that G ⊆ cl(F ).

Note that tree-depth is always an upper bound for tree-width. Some useful properties
of it can be derived from the following asymptotic characterization: If L is the length of a
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longest path in a graph G, then dlog2(L+ 2)e ≤ td(G) ≤ L+ 1. See Figure 1. For a simple
proof of this, as well as for a more extensive study of tree-depth, we refer the reader to [20,
Chapter 6]. Here we need the following:

Lemma 4.3. Let d be an integer and Rd denote the class of all rooted d-labelled trees of
height d. The class of all graphs of tree-depth at most d has a hereditary MSO1 interpretation
into Rd+1.

Proof. Let td(G) ≤ d and W be a rooted forest of height d such that G ⊆ cl(W ), and let
T ∈ Rd+1 be obtained from W by adding a new common root. The intended interpretation
identically maps V (G) into V (T ). In particular, each vertex quantifier ∃x . . . is simply
replaced with ∃x.¬L0(x) ∧ . . . , where L0 is a special label given to the root of T .

Every vertex v of G at distance i ≥ 1 from the root of T is given the label Li. Every
vertex v of G, such that there exists an ancestor u of v in T and uv ∈ E(G), is also given
the label Lj where 1 ≤ j < i and j is the distance of u from the root in T . Note that
Li(x) ∧

∧
j>i ¬Lj(x) is true iff x is at the distance i from the root. It is a routine to express

the edge relation η of G as follows: η(x, y) ≡ x 6= y ∧ (α(x, y) ∨ α(y, x)) where

α(x, y) ≡ ancest(x, y) ∧
∨

i=1,...,d

[
Li(x) ∧ Li(y) ∧

∧
j>i

¬Lj(x)
]
.

Here ancest(x, y) means that x is an ancestor of y (the transitive closure of the parental
relation in T ). This is clearly MSO1-expressible (in fact, even FO-expressible on trees of
bounded height).

Corollary 4.4. Let C be a class of graphs of bounded tree-depth. Then every LinEMSO2

problem P can be solved on C by a linear-time fpt algorithm with an elementary runtime
dependence on P. Then same holds also if CMSO2 is allowed in the description of P.

Proof. Let the definition of P be based on an CMSO formula ψ (for simplicity, ψ can be
thought of an CMSO1 formula thanks to Theorem 2.5). Then, by Lemma 4.3, Theorem 4.1
applies here and the runtime analysis of [1] can be tightened to an elementary bound (4.1)
of Theorem 4.1.

In exactly the same way we can claim an analogous statement for LinEMSO1:

Corollary 4.5. Let C be a class of graphs of bounded clique-width, and assume that C has a
hereditary MSO1 interpretation in a class of trees of fixed height. Then every LinEMSO1

problem P can be solved on C by a linear-time fpt algorithm with an elementary runtime
dependence on P, provided a clique-width expression for the input graph is given. Then same
holds also if CMSO1 is allowed in the description of P.

In relation to Corollary 4.5 it becomes interesting to ask what graph classes have an
MSO1 interpretation in a class of trees of fixed height. The answer [14] is mentioned in
another context later in Section 5.2 (Definition 5.4).

5. Consequences for Expressive Power of FO

A non-algorithmic straightforward corollary of Theorem 3.2 is the fact that FO and MSO
logic can express the same collection of properties on classes of trees of bounded height; they
have equal expressive power. Formally:
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Proposition 5.1. Let h, t be integers. If φ is an MSO sentence, then there is an FO
sentence ψh,t such that, for any rooted t-labelled tree T of height at most h, it is T |= φ
⇐⇒ T |= ψh,t.

Proof. Let φ be an MSO sentence with q element quantifiers and s set quantifiers. By
Theorem 3.2, there is a finite set Uφ of pairwise non-l-isomorphic Rq,s,t+3q+s-reduced trees
W such that W |= φ, and T |= φ if and only if the Rq,s,t+3q+s-reduction of T is l-isomorphic
to a member of Uφ.

We write an FO sentence ψh,t ≡ ∃x. root(x) ∧
∨
W∈Uφ τW (x). The intended meaning of

τW is that T |= τW (r) where r ∈ V (T ) if, and only if, the subtree Tr ⊆ T induced on r and
all of its descendants reduces, up to l-isomorphism, to W . Assuming existence of τW for a
moment, we see that T |= φ ⇐⇒ T |= ψh,t.

We build τW recursively by induction on the height of W . For height zero, i.e. when
W is a single vertex, τW (x) simply tests the correct label of x and that x has no children.
Now let W be of height h > 0, with the root w and its limbs Wi,j where i = 1, . . . , a and
j = 1, . . . , bi, such that all Wi,j for j = 1, . . . , bi are l-isomorphic to the same Ui, and Ui
for i = 1, . . . , a are pairwise non-l-isomorphic. Let S denote the set of those Ui for which
bi = Rq,s,t+3q+s(h− 1) (the threshold in Theorem 3.2).

To conclude the proof, we set

τW (x) ≡ ∃ (yi,j : i = 1, . . . , a, j = 1, . . . , bi)
[∧

i,j
parent(x, yi,j)∧

∧
∧

i,j,i′,j′
yi,j 6= yi′,j′ ∧

∧
i,j
τUi(yi,j) ∧

∧
(
∀z. parent(x, z)→

(∨
i,j
z = yi,j ∨

∨
Ui∈S

τUi(z)
))]

,

meaning that; (1) among the limbs of x in T there exist pairwise distinct ones such that,
when recursively reduced, they are in a one-to-one l-isomorphism correspondence to the
limbs of w in W ; and (2) all the other limbs of x in T reduce to ones l-isomorphic to some
Ui reaching the reduction threshold above.

The purpose of this section is to investigate generalizations of Proposition 5.1 to richer
graph classes.

5.1. Case of bounded tree-depth. Elberfeld, Grohe, and Tantau [11] proved that FO
and MSO2 have equal expressive power on the graphs of bounded tree-depth—Theorem 5.2.
Having Theorem 3.2 at hand, we can provide a relatively simple alternative proof of this
result along the construction from Proposition 5.1. Though, in this section we take a different
route, which might look unnecessarily complicated at the first sight, but which allows for a
smooth extension to a new result about the expressive power of FO and MSO1 in Section 5.3.
Along this route we introduce a sophisticated combinatorial tool, namely well-quasi-ordering,
in the logical context.

Theorem 5.2 (Elberfeld, Grohe, and Tantau [11]). Let D denote a class of graphs of
bounded tree-depth (Definition 4.2). Then FO and MSO2 have the same expressive power
on D.

Proof. Let ψ2 be an MSO2 sentence. Since MSO1 has the same expressive power as MSO2

on graphs of bounded tree-width (by Theorem 2.5), we may as well consider an equivalent
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MSO1 sentence ψ. Our alternative proof can be then outlined in three steps (the first two
of which are analogous to Proposition 5.1):

(I) By Lemma 4.3, there is a hereditary MSO1 interpretation J of D in the class U = Ud of
rooted labelled trees of height at most d, for some integer constant d. By Theorem 3.2,
there is a finite set U0 ⊆ U of (f -reduced) kernels; every T ∈ U f -reduces to an
“easily definable” T0 ∈ U0 such that T |= ψJ ⇐⇒ T0 |= ψJ (where the reduction
threshold f depends only on ψ, J, d and we will simply say “reduces” in this proof).

(II) For G ∈ D, hence, G |= ψ is equivalent to saying that G ' T J
G for a tree TG ∈ U such

that TG reduces to a tree in U
ψ,J
0 = {U ∈ U0 : U |= ψJ} (a disjunction of finitely

many cases over the members of Uψ,J0 ).
(III) A problem is that TG is only implicit and we cannot directly address TG (and

reducibility of it to U ∈ U
ψ,J
0 ) from within the resulting FO formula over G. To

resolve this problem, we consider a related hereditary property over G which is
characterized by finitely many obstacles by Theorem 2.2. We use it to build the
desired FO sentence expressing over G that (some) implicit TG reduces to a particular

reduced tree U ∈ U
ψ,J
0 .

The rest of the proof will give the details of crucial step (III).

Let T ∈ U, and let `(T ) denote the domain (vertex set) of T J . We say that a graph
H ∈ D is T -coloured (with respect to implicit J) if H is associated with an injective mapping
from `(T ) into V (H). When dealing with such a coloured graph H we automatically consider
a subgraph relation preserving these colours. The key definition is now that of consistency
with a T -colouring:

Assume a T -coloured graph G ∈ D. We say that G is consistent with its T -colouring
(shortly consistent) if the following holds:

• there exists an induced supergraph H ⊇i G, H ∈ D and a tree TH ∈ U such that H ' T JH ,
the isomorphism mapping of T JH ' H restricted to `(T ) is the given T -colouring of G, and
• T ⊆ TH (sharing the root with T ) and TH reduces to T .

The definition automatically gives that the property of consistency with T is hereditary
(closed under induced colour-preserving subgraphs) on the universe of T -coloured graphs
from D. Therefore, by Theorem 2.2 and Proposition 2.1, there is a finite set Obst(T ) of
T -coloured graphs such that T -coloured G is consistent if and only if G has no induced
subgraph isomorphic to a member of Obst(T ). Consequently, this property can be expressed
by an FO formula consistentT .

We also use one special property of the interpretation J from Lemma 4.3, that J is
“tree-ordered”, meaning that an edge uv in the graph T J may exist only if the interpretation
of u in T is an ancestor of that of v or vice versa. This property, informally, will allow us to
simply identify limbs of T within T J using connectivity: if T1, T2 are two disjoint limbs in
T , then there is no edge between `(T1) and `(T2) in the graph T J .

Now we use the previous to describe the property that G ∈ D reduces to U ∈ U0, i.e.,
that there exists TG ∈ U such that G ' T J

G and TG reduces to U . (Recall that if G reduces
to U , then G |= ψ ⇐⇒ U |= ψJ .) Considering the restriction of the mapping T J

G ' G
to `(U) we say that G reduces to U respecting this U-colouring of G. We introduce the
following shorthand notation:
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• For a tree T ∈ U, let x̂T denote a collection of variables indexed by the elements of `(T ),
i.e., x̂T =

(
xv : v ∈ `(T )

)
. Let x̂T ∪ x̂T ′ stand for a union of two such collections and

z ∈ x̂T mean that z = xv for some member xv of x̂T .
• Let L(T ) be the set of all non-l-isomorphic limbs B ( T that reach the considered

reduction threshold, i.e., if B is of node v ∈ V (T ) and of height i, then at least f(i)− 1
other limbs of v in T are l-isomorphic to B. For B ∈ L(T ) we denote by T � B a tree
such that T �B reduces in one step to T , i.e., T �B results by adding a disjoint copy of
B as a sibling of B into T .
• We write G |= consistentT (x̂T ) in FO to mean that G is consistent with the T -colouring

given by an assignment of x̂T .
• We write G |= connected (x̂T , y, z) to mean that y, z 6∈ x̂T and y and z are connected in
G by a path avoiding all x̂T . Although connectivity is not in FO in general, our formula
connected is FO over D since graphs of bounded tree-depth are hereditary and have
bounded diameter as well [20].

Let T1 ∈ U, and let T0 be a limb of T1 or T0 = T1. We write in FO that G |=
reduceT1,T0(x̂T1 , y) with the following intended (and so far informal) meaning: There exists
a graph H and a tree TH ∈ U such that TH ⊇ T1, and

• G ⊆i H ' T J
H , the elements of `(T1) coincide with the assignment of x̂T1 in G, and TH

reduces to T1,
• the connected component of G− x̂T1 containing y recursively reduces (within the reduction

of TH onto T1) to T0.

This is formally written down as follows

reduceT1,T0(x̂T1 , y) ≡
∨

T2∈L(T0)

∃ ẑT2 . ΨT1,T0,T2 (5.1)

where
ΨT1,T0,T2 ≡

∧
v∈V (T2)

connected (x̂T1 , y, zv) ∧ (5.2)

consistentT1�T2(x̂T1 ∪ ẑT2) ∧
∀y′
[
(connected (x̂T1 , y, y

′) ∧ y′ 6∈ ẑT2) →
reduceT1�T2,T2(x̂T1 ∪ ẑT2 , y′)

]
, (5.3)

except that for T2 of height 0 (i.e., T2 a single node, hence singleton ẑT2 !) it is

ΨT1,T0,T2 ≡ y ∈ ẑT2 ∧ ∀y′(connected (x̂T1 , y, y
′)→ y′ = y)∧

consistentT1�T2
(
x̂T1 ∪ ẑT2

)
. (5.4)

Note that in (5.1) the only role of y is to be a representative of a connected component of
G− x̂T1 ; the outcome of G |= reduceT1,T0(x̂T1 , y) is invariant upon the choice of y from the
same component. Task (III) is now finished with

reduce-toU ≡ ∃ x̂U
{
consistentU (x̂U ) ∧ ∀z (z ∈ x̂U ∨ reduceU,U (x̂U ; z))

}
. (5.5)

Assume that G ∈ D reduces to U ∈ U0. Then, following the steps of this reduction, it is a
simple routine to verify that G |= reduce-toU (one always chooses H = G when speaking
about consistency). On the other hand, assume (5.5) G |= reduce-toU . Fix a satisfying
assignment of x̂U into V (G) as the U -colouring of G. If |`(U)| = |V (G)|, then G ' UJ

by G |= consistentU (x̂U ). Otherwise, for every connected component P0 of G− x̂U choose
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p ∈ P0; hence (5.5) G |= reduceU,U (x̂U ; p). We now analyze the recursive definition (5.1)
of reduceU,U , aiming to show the following claim: the induced subgraph G1 = G[x̂U ∪ P0]
reduces to U respecting the U -colouring induced by x̂U . If this is true for each component
P0 then, clearly, G itself reduces to U .

Let initially U0 = W0 = U , and set W1 = T2 where T2 ∈ L(W0) of height > 0 is a
satisfying branch (any one) of the “big” disjunction in (5.1) and fix a satisfying assignment
of ẑW1 into P0 thereafter. Let U1 = U0 �W1 and (with a negligible abuse of notation)
x̂U1 = x̂U0 ∪ ẑW1 . If |`(W1)| = |P0|, then we are immediately done with the claim by
consistentU1(x̂U1) in (5.2): according to the hereditary property of consistency it is G1 ' UJ1
and ‘U1 → U0’ is a valid reduction step. Otherwise, recursively for every connected component
P1 of G1 − x̂U1 (which is one of components of G− x̂U1 , too) we choose q ∈ P1; hence (5.3)
G |= reduceU1,W1(x̂U1 ; q).

In each recursion branch (say, by DFS on the recursion tree) we continue with the
previous argument at “depth” i ≥ 1: we analyze (5.1) G |= reduceUi,Wi(x̂Ui ; q) over every
connected component Pi 3 q of Gi − x̂Ui , denote by Gi+1 = G[x̂Ui ∪ Pi], and analogously
obtain Wi+1 (= T2 ∈ L(Wi) from a satisfying branch) and Ui+1 = Ui �Wi+1, with an
assignment of ẑWi+1 into Pi. This recursion is finite since the height of Wi+1 strictly
decreases and then generally terminates at (5.4) for Wi+1 of height 0. In this terminal
case we get by (5.4) for ΨUi,Wi,Wi+1 that the assignment of ẑWi+1 is q and {q} = Pi, and

so UJi+1 ' Gi+1 by consistentUi+1 . This finishes the proof since Ui+1, by the construction,
reduces to U .

Notice how much of the previous proof is very general, using just the fact that the graph
class D has some hereditary MSO1 interpretation J in the class U. Interestingly, well-quasi-
ordering of D under induced subgraphs can be derived already from this assumption and
Theorem 2.2. There is, however, one technical point in the proof which heavily depends
on special properties of the interpretation J—it is the use of predicate connected (x̂T , y, z)
in the proof of Theorem 5.2. This is based on a quite unique property of tree-depth, and
before attempting to give a similar result for other graph classes interpretable in U, we have
to find a suitable replacement property in the next section.

5.2. Tree-models and their properties. Graph classes of bounded shrub-depth have
been introduced recently in [14] as those having MSO1 interpretations in the class(es) of
rooted labelled trees of fixed height. Equivalently, they are defined by a very special kind of
a hereditary interpretation:

Definition 5.3 (Tree-model [14]). We say that a graph G has a tree-model of m colours
and depth d if there exists a rooted tree T (of height d) such that

i. the set of leaves of T is exactly V (G),
ii. the length of each root-to-leaf path in T is exactly d,
iii. each leaf of T is assigned one of m colours (T is m-coloured),
iv. and the existence of a G-edge between u, v ∈ V (G) depends solely on the colours of

u, v and the distance between u, v in T .
The class of all graphs having such a tree-model is denoted by TMm(d).

Notice that, in (iv..) of the definition, the existence of an edge uv depends on finite
information. For example, Kn ∈ TM1(1) or Kn,n ∈ TM2(1). Definition 5.3 is further



KERNELIZING MSO PROPERTIES OF TREES OF FIXED HEIGHT 21

Figure 2: The graph obtained from K3,3 by subdividing a matching belongs to TM3(2).

illustrated in Figure 2. It is easy to see that each class TMm(d) is closed under complements
and induced subgraphs, but neither under disjoint unions, nor under subgraphs.

Definition 5.4 (Shrub-depth [14]). A class of graphs S has shrub-depth d if there exists m
such that S ⊆ TMm(d), while for all natural m it is S 6⊆ TMm(d− 1).

Note that Definition 5.4 is asymptotic as it makes sense only for infinite graph classes; the
shrub-depth of a single finite graph is always at most one (0 for empty or one-vertex graphs).
For instance, the class of all cliques has shrub-depth 1. Similarly, although Definition 5.3
does not explicitly specify rules for the existence of edges (iv..), Definition 5.4 suggests a
natural associated FO interpretation J of the class S:

Definition 5.5 (Shrub interpretation). For a graph class S of shrub-depth d, a shrub inter-
pretation of S in the class U of rooted labelled trees of height d is a hereditary interpretation
J satisfying the following: for G ∈ S with a tree-model T of depth d, it is G ' T J1 where T1

inherits T with all the leaf colours, and each leaf v of T1 is additionally equipped with all
labels of the form (i, c) where c is the T -colour of a vertex u adjacent to v in G such that
the distance between u, v in T is 2i.

Lemma 5.6. A shrub interpretation is FO definable for each fixed d.

For more relations of shrub-depth to other established concepts such as cographs or
clique-width we refer the reader to [14]. Here we just summarize:

Proposition 5.7 ([14]). Let G be a graph class and d an integer. Then:

a) If G is of tree-depth ≤ d, then G is of shrub-depth ≤ d.
b) If G is of bounded shrub-depth, then G is of bounded clique-width.

Proposition 5.8. (See also [14] for a more general statement.) Let S be a graph class of
bounded shrub-depth. Assume the graphs of S are arbitrarily coloured from a finite set of
colours. Then S is well-quasi-ordered under the colour-preserving induced subgraph order.

Proof. Consider an infinite sequence (G1, G2, . . . ) ⊆ S, and the corresponding tree-models
(T1, T2, . . . ). Let T+

i , i = 1, 2, . . . , denote the rooted tree with leaf labels composed of the

colours of Ti and the colours in Gi. By Theorem 2.2, T+
1 , T

+
2 , . . . of bounded diameter are

WQO under rooted coloured subtree relation, and, consequently, so are the coloured graphs
G1, G2, . . . , as desired.

For the rest of this section we will focus on the shrub interpretation J associated with
a graph class S of bounded shrub-depth. This allows us to smoothly adapt the notions
introduced during the proof of Theorem 5.2. In particular, `(T ) (the domain of T J) is
now the set of leaves of T and the notion of a T -colouring corresponds to that. We also
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literally adopt the definition of G ∈ S being consistent with its T -colouring. Thanks to
Proposition 5.8, this property can be expressed by an FO formula consistentT (depending
on S), too.

Though, we need a bit stronger and crucial property of separability for T . It deals with a
(T, red, blue)-coloured graph which is a T -coloured graph in which two other (non-T -coloured)
vertices are assigned colours red and blue. When the red vertex is x and the blue one is y
in a graph H, then we call this also a (T, x, y)-colouring of H.

Definition 5.9 (Separability for (T, red, blue)-coloured). Let S be a class of bounded shrub-
depth with a shrub interpretation J in U (cf. Definition 5.5). Assume a (T, red, blue)-coloured
graph G where r, b denote the vertices of colours red and blue, respectively. We say that G
is separating (r from b, implicitly) for T if there exists an induced supergraph H ⊇i G and
a tree TH ∈ U, H ' T JH , such that the following hold:

• T ⊆ TH (sharing the root with T ), the isomorphism mapping of T JH ' H restricted to
`(T ) is the given T -colouring of G, and TH reduces to T ;
• the least common ancestor of the nodes interpreting r, b within TH belongs to V (T ).

Note; separability clearly implies consistency with T . And again by Proposition 5.8,
the separability property can be expressed with an FO formula separableT (x̂T , r, b) over the
universe of (T, r, b)-coloured graphs from S.

To make practical use of the (generally vague) separability property, we have to restrict
our domain to so called unsplittable tree-models, as follows.

Assume T is a tree-model of a graph G, and B is a limb of v ∈ V (T ), such that W
is the set of leaves of B. We say that a tree-model T ′ is obtained from T by splitting B
along X ⊆W if a disjoint copy B′ of B with the same parent v is added into T , and then B
is restricted to all its root-to-leaf paths ending in W \X while B′ is restricted to all such
paths ending in X ′ (the corresponding copy of X). A tree-model T is splittable if some
limb in T can be split along some subset X, making a tree-model T ′ which represents the
same graph G as T does. A tree-model is unsplittable if it is not splittable. Notice that any
tree-model can be turned into an unsplittable one; simply since the splitting process must
end eventually.

An unsplittable shrub interpretation J is an interpretation satisfying Definition 5.5 with
the target class U containing only trees of unsplittable tree-models. We also implicitly
assume that the threshold function f in the definition of ‘f -reduce’ is always at least 2.
Then we claim:

Lemma 5.10. Assume an unsplittable shrub interpretation J in U. For a graph G ' T JG
let TG ∈ U reduce to T0, and associate G with this T0-colouring. Let L1, . . . , Lk denote the
leaf sets of all k subtrees in TG − V (T0). If ∼ is the binary relation on V (G) \ `(T0) defined
as x ∼ y iff the corresponding (T0, x, y)-colouring of G is not separating, then ∼ is a relation
of equivalence whose classes coincide with the sets L1, . . . , Lk.

Before giving a proof, we add the following immediate corollary which may be interesting
on its own (though not used here).

Corollary 5.11. If J is unsplittable, then the partition L1, . . . , Lk from Lemma 5.10 is
unique for given G and T0 (regardless of TG).
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G0 : X W W ′ Y Z : G−G0

?

T0

Figure 3: A situation which cannot happen, in a graph G with an unsplittable tree-model
T0 of an induced subgraph G0 ⊆ G, and with the sets W,W ′, Y and X,Z as in
Lemma 5.13.

Remark 5.12. Note that it is not possible to simply relate which equivalence class of ∼
corresponds to which subtree of TG− V (T0). This is since the definition of separability deals
with a supergraph H ⊇i G and then a tree TH ) TG may reduce to T0 in a different way
than TG does.

Proof of Lemma 5.10. Suppose that x, y belong to distinct ones of the sets L1, . . . , Lk. Then
already H = G in Definition 5.9 witnesses that the (T0, x, y)-coloured graph G is separating,
and so x 6∼ y.

In the other direction, we aim for a contradiction. Two vertices p, q are called twins
with respect to a set R if the neighbourhood of p in R equals that of q in R. Moreover,
P,Q ⊆ V (G) are twin sets in G if there is a bijection h : P → Q such that h is an isomorphism
of G[P ] onto G[Q], and p, h(p) are twins wrt. V (G) \ (P ∪Q) for each p ∈ P .

We assume (up to symmetry) that x, y ∈ L1, but the (T0, x, y)-coloured graph G is
separating for T0. Hence there is a graph H ⊇i G and a tree TH ⊇ T0, H ' T JH , such that
the least common ancestor of x, y within TH belongs to V (T0). If K1, . . . ,Kk′ denote the
sets of leaves of all k′ subtrees in TH − V (T0) then, say, x ∈ K1 but y 6∈ K1. We summarize
what this means according to our definitions:

i. Since TG reduces to T0, the set L1 is the leaf set of a subtree U1 in TG − V (T0), and
this U1 is reducible to U ′1 such that U ′1 is isomorphic to (at least) two disjoint sibling
limbs B,B′ in T0. Clearly, we may assume that x, y are in U ′1. We consider the induced
subgraph G′ = G− (V (U1) \ V (U ′1)), and L′1,M,M ′ ⊆ V (G′) the leaf sets of U ′1, B,B

′,
respectively. Then L′1,M,M ′ are pairwise twin sets in G′ by Definition 5.3.

ii. The same as in (i..) can be claimed for H, TH , and K1 in place of G, TH , and L1; giving
us sets (pairwise twin) K ′1 ⊆ K1 and N,N ′ ⊆ `(T0) in a suitable induced subgraph
of H. We may similarly assume x ∈ K ′1. Moreover, since N,N ′ are the leaf sets of some
limbs in T0, too, each of N,N ′ may either be disjoint or in an inclusion with each of
M,M ′. Consequently, up to symmetry, N can be assumed disjoint from M ′. In the
graph G′ we, in particular, have that for every vertex u ∈ K ′1 ∩ V (G′) there is w ∈ N
such that u,w are twins wrt. (L′1 ∪M ∪M ′) \ (K ′1 ∪N).

Now, we get a contradiction (to being unsplittable) by applying next Lemma 5.13 with
G := G′, W := M, W ′ := M ′, Y := L′1, X := N , Z := K ′1 ∩ V (G′).
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Lemma 5.13. Let G be a graph, and T0 be a tree-model of an induced subgraph G0 ⊆i G.
Let T0 contain two (disjoint) isomorphic limbs B,B′ of a node v, and W,W ′ ⊆ V (G0) be
the sets of leaves of B,B′, respectively. Let X ⊆ V (G0) be a set disjoint from W ′. If there
exist sets Y,Z ⊆ V (G) \ V (G0) such that

a) W,W ′, Y are pairwise twin sets in G0,
b) for each z ∈ Z there is some h(z) ∈ X such that z, h(z) are twins with respect to

(W ∪W ′ ∪ Y ) \ (Z ∪X),
c) Y 6= Y ∩ Z 6= ∅,

then the tree model T0 is splittable.

The statement is illustrated in Figure 3.

Proof. Our aim is to prove that, assuming a) – c) to be true, the limb B in T0 can be
split along the set WZ ⊆W which in the twin set relation (a) corresponds to Y ∩ Z (and
analogously for B′). We take arbitrary z ∈ Y ∩ Z and y ∈ Y \ Z, and denote by w, t ∈W
and w′, t′ ∈ W ′ the vertices such that w,w′ correspond to y and t, t′ to z in the twin set
relation (in particular, t ∈WZ). By Definition 5.3, only the edges between WZ and W \WZ

in G0 are potentially affected by the splitting operation on B, and so it is enough to show
that wt ∈ E(G0) iff w′t ∈ E(G0) to get the desired conclusion.

Assume wt ∈ E(G0). Then yz ∈ E(G) by (a) for the twin pair W,Y . Since y 6∈ Z ∪X,
from (b) and yz ∈ E(G) we get yh(z) ∈ E(G). Then, h(z) ∈ X implies h(z) 6∈ W ′ which
is disjoint from X, and so from (a) for the twin pair W ′, Y it follows w′h(z) ∈ E(G).
Furthermore, w′ 6∈ Z ∪ X, and hence w′z ∈ E(G) from (b). Finally, w′t ∈ E(G) by (a)
for the twin pair W,Y , and w′t ∈ E(G0). In the exactly same way, wt 6∈ E(G0) implies
w′t 6∈ E(G0).

5.3. Case of bounded shrub-depth. We get to the main new result of Section 5:

Theorem 5.14. Let S denote any class of graphs of bounded shrub-depth (Definition 5.4).
Then FO and MSO1 have the same expressive power on S.

Proof. Our proof follows the same steps as that of Theorem 5.2.

(I) Let J be a shrub interpretation (Lemma 5.6) of S in the class U of rooted labelled
trees of height ≤ d, for some integer constant d. By implicitly restricting U we
may assume it is unsplittable. By Theorem 3.2, there is a finite set U0 ⊆ U of
reduced kernels; every T ∈ U reduces to an “easily definable” T0 ∈ U0 such that
T |= ψJ ⇐⇒ T0 |= ψJ .

(II) For G ∈ S, hence, G |= ψ is equivalent to saying that G ' T J
G for a tree TG ∈ U such

that TG reduces to a tree in U
ψ,J
0 = {U ∈ U0 : U |= ψJ} .

(III) It remains to build a desired FO sentence expressing over G that (some) implicit

unsplittable TG reduces to a particular unsplittable tree U ∈ U
ψ,J
0 .

The rest of the proof will again give the details of crucial step (III). Using the tools developed
in Section 5.2 this is now a relatively easy task:

reduceT1,T0(x̂T1 , y) ≡ sep-is-equivalenceT1(x̂T1) ∧
∨

T2∈L(T0)

∃ ẑT2 . ΨT1,T0,T2



KERNELIZING MSO PROPERTIES OF TREES OF FIXED HEIGHT 25

where
ΨT1,T0,T2 ≡

∧
v∈V (T2)

¬ separableT1(x̂T1 , y, zv) ∧

consistentT1�T2(x̂T1 ∪ ẑT2) ∧
∀y′
[
(¬ separableT1(x̂T1 , y, y

′) ∧ y′ 6∈ ẑT2) →
reduceT1�T2,T2(x̂T1 ∪ ẑT2 , y′)

]
,

except that for T2 of height 0 (i.e., T2 a single node, hence singleton ẑT2) it is

ΨT1,T0,T2 ≡ y ∈ ẑT2 ∧ ∀y′(¬ separableT1(x̂T1 , y, y
′)→ y′ = y) ∧

consistentT1�T2
(
x̂T1 ∪ ẑT2

)
.

Here ‘sep-is-equivalenceT (x̂T )’ asserts that the binary relation defined by ‘separableT (x̂T , ·, ·)’
is reflexive, symmetric, and transitive on V (G) \ x̂T , which has a routine FO expression.
Task (III) is now finished with

reduce-toU ≡ ∃ x̂U
{
consistentU (x̂U ) ∧ ∀z (z ∈ x̂U ∨ reduceU,U (x̂U ; z))

}
.

We finally claim that G ∈ S reduces to U ∈ U0 if, and only if, G |= reduce-toU . Under
Lemma 5.10 this is just a plain repetition of the arguments in the proof of Theorem 5.2.

6. Conclusions

Even though our prime motivation was to provide an algorithmic improvement over Cour-
celle’s theorem on “low-depth” variants of tree-width and clique-width, the main importance
of our results probably lies in the fact that they provide deeper understanding of MSO logic
on graph classes interpretable in trees of bounded height. This understanding already played
crucial role in the proofs establishing that FO logic has equal expressive power as MSO on
these graph classes.

We believe that our results and techniques for obtaining them (especially the use of
well-quasi-ordering) could lead to new results in the future. Above all we suggest that there
is likely no major obstacle to suitable extensions of the results of Sections 4 and 5 to classes
of general relational structures. In particular, the notion of shrub-depth extends easily there.

We conclude with a conjecture stating the converse of our result on expressive power or
FO and MSO1 on graph classes of bounded shrub-depth.

Conjecture 6.1. Consider a hereditary (i.e., closed under induced subgraphs) graph class G.
If the expressive powers of FO and MSO1 are equal on G, then the shrub-depth of G is
bounded (by a suitable constant).

Resolving this conjecture would probably require an asymptotic characterization of
shrub-depth in terms of forbidden induced subgraphs. Such characterization would probably
also allow us to answer the following question: Are there hereditary graph classes of
unbounded shrub-depth having an MSO1 model-checking algorithm with elementary run-
time dependence on the formula? For tree-depth and MSO2 the answer is no (unless
EXP=NEXP), because unbounded tree-depth implies the existence of long paths and by
the result of Lampis [18] this in turn implies non-existence of such an algorithm.
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