
Logical Methods in Computer Science
Vol. 10(2:1)2014, pp. 1–47
www.lmcs-online.org

Submitted Jan. 13, 2013
Published Apr. 4, 2014
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Abstract. String rewriting systems have proved very useful to study monoids. In good
cases, they give finite presentations of monoids, allowing computations on those and
their manipulation by a computer. Even better, when the presentation is confluent and
terminating, they provide one with a notion of canonical representative of the elements of
the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of
presentation, from the setting of monoids to the much more general setting of n-categories.
One of the main purposes of this article is to give a progressive introduction to the notion
of higher-dimensional rewriting system provided by polygraphs, and describe its links with
classical rewriting theory, string and term rewriting systems in particular. After introducing
the general setting, we will be interested in proving local confluence for polygraphs presenting
2-categories and introduce a framework in which a finite 3-dimensional rewriting system
admits a finite number of critical pairs.

Recent developments in category theory have established higher-dimensional categories
as a fundamental theoretical setting in order to study situations arising in various areas
of mathematics, physics and computer science. A nice survey of these can be found in [2],
explaining how the use of category theory enables one to unify these apparently unrelated
fields of science, by revealing that their intrinsic algebraic structures are in fact closely
connected. In the last decade, higher-dimensional categories have therefore emerged as
a tool of everyday use for many scientists. The motivation behind the concept of higher
dimensions here is that, in order to have a fine-grained understanding of the algebraic
structures at stake, one should not only consider morphisms between objects involved, but
also morphisms between morphisms (i.e. 2-dimensional morphisms), morphisms between
morphisms between morphisms (i.e. 3-dimensional morphisms), and so on. For example, the
starting point of algebraic topology [16] is that one should not consider points and paths
between them in topological spaces, but also homotopies between paths, and can be refined
by also considering homotopies between homotopies and so on.

The categorical structures considered nowadays are thus becoming more and more
complex, which enables them to capture many details, but the proofs are becoming more and
more complicated too, and we are facing the urge for new tools, both of a theoretical and
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practical nature, in order to make them easier and more manageable. In particular, many
proofs of even conceptually simple facts involve showing the commutativity of diagrams
which are big both in size and dimension: for example, the proof that a commutative strong
monad on a symmetric monoidal category (which is a particular 3-category) is the same
notion as a symmetric monoidal monad involves checking the commutativity of many large
diagrams as detailed in the appendix of [9], as another example, the very definition of
tricategories (a weak form of 3-category) as well as the associated morphisms takes up pages,
not to mention the associated coherence theorem [8, 15]. These are, among many other,
striking examples of the fact that we are slowly approaching the size limits of diagrams that
can be computed by hand in a decent time, or decently written on paper. Moreover, these
computations do not really constitute the conceptually interesting part of the work, and are
often considered as “routine checks” because they are very repetitive and systematic. . . which
is a good point from a computer scientist’s point of view: we have hope to be able to develop
software to check and automate them!

With this goal in mind, rewriting theory is a natural candidate for providing powerful
tools in order to study these algebraic structures. Its uses have proven very useful for
example to construct and manipulate presentations of monoids, which are descriptions of
monoids by generators and relations: a string rewriting system is simply a presentation
of a monoid where the relations are oriented so that they form rewriting rules. When the
rewriting system is normalizing (which is in particular the case when it is locally confluent
and terminating), it provides one with a notion of canonical representative of words modulo
the relations, which turns out to be crucial to manipulate the presentations. Starting from
this point, Burroni has introduced the notion of polygraph [5], rediscovering Street and
Power’s computads [36, 32], generalizing the notion of presentation from monoids to higher-
dimensional categories, thus providing us with a good notion of higher-dimensional rewriting
system, which is able to describe and manipulate free n-categories modulo equations on
n-cells. This was later on used intensively by Lafont in order to construct presentations
of various monoidal categories [22] and further studied by Guiraud [10, 11, 12, 13] and
Malbos [14].

However, much more than a mere adaptation of the well-known techniques of rewriting
theory is needed here. In particular, Lafont discovered a very interesting fact: contrarily
to string or term rewriting systems, these generalized rewriting systems can give rise to
an infinite number of critical pairs, even when they are finite! In this article, we will be
interested in extending techniques for computing critical pairs (we will not detail techniques
for showing termination [11]). Its main contribution is to address this problem, in the case of
3-dimensional rewriting systems, by generalizing the notion of critical pair in order to recover
a finite number of critical pairs for finite rewriting systems. The present work constitutes a
first step in the direction of generalizing rewriting theory to higher dimensions, but a lot of
efforts remain to be done in order to achieve the task.

Unfortunately, the idea of higher-dimensional rewriting system does not seem to have
spread very much among the community of rewriting theory. We believe this is partly due
to the fact that its fundamental concepts are scattered in various papers, which sometimes
require a strong categorical background, or are even sometimes considered as “folklore”.
In order to address this, we have done our best to gradually introduce the topic, in a way
accessible to people familiar with rewriting theory [1, 37] and basic (1-dimensional) category
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theory [26], and tried to write an introductory article on the subject. We have favored
the exposition instead of handling directly the most technical matters, trying to provide
intuitions about the structures involved, and giving bibliographical references for the reader
interested in details concerning a particular point. Likewise, a completely formal and more
abstract presentation of all the contributions of the author in the article – as well as the other
developments exposed by the author in [30] – shall be presented in a subsequent article [31].
We feel that an introductory paper such as this one was really necessary first, in order for
the new developments to be accessible to a broad audience.

We first recall in Section 1 the notion of higher-dimensional rewriting system provided
by polygraphs and explain its links with string and term rewriting systems. The following
Section 2 describes how these rewriting systems provide a good notion of presentation of
n-categories. Finally, we explain in Section 3 why a finite 3-dimensional rewriting system
can give rise to an infinite number of critical pairs and introduce a theoretical setting to
overcome this issue, and conclude in Section 4.

1. Towards higher-dimensional rewriting systems

In order to generalize the notion of rewriting system to higher dimensions, one should follow
the principles established by topology and category theory: a 0-dimensional rewriting system
should be a set of “points” and an (n+ 1)-dimensional rewriting system should consist of
rules which rewrite rewriting paths in an n-dimensional rewriting system. Informally, one
should think of the well-known situation arising in the study of λ-calculus: if we consider the
λ-terms modulo α-conversion as 0-dimensional terms, the rules for β-reduction would play
the role of a 1-dimensional rewriting system, and the rules for standardization [7], which
rewrite any reduction sequence into a “standard” one, would play the role of a 2-dimensional
rewriting system because they rewrite rewriting paths.

The idea is quite appealing, but it is not clear at first how the classical rewriting
frameworks should fit in this picture, and one should first try to understand in a uniform
way the two major examples of rewriting theory: string rewriting systems and term rewriting
systems. Namely, string rewriting systems should intuitively be part of 2-dimensional
rewriting systems because they rewrite words which can be considered as 1-dimensional
objects: a word abc can be seen geometrically as a path

a // b // c //

Similarly, term rewriting systems should be part of 3-dimensional rewriting systems because
they rewrite terms which can be considered as 2-dimensional objects, if we picture a term
as a 2-dimensional diagram, using the representation often used for sharing graphs: for
example, the term f(x, g(y, z)) can be represented by

x y z

g

f
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However, this intuition does not give precise directions about how a 4-dimensional rewriting
system should be defined for example. It turns out that generalizing a bit the settings of
string and term rewriting systems reveals an inductive pattern in the definition of these
rewriting frameworks, whose discovery motivated the definition of polygraphs, which can be
considered as the good notion of higher-dimensional rewriting system. We shall begin by
explaining this in details.

1.1. Graphs and 1-dimensional rewriting systems.

1.1.1. Definition. Rewriting systems in dimension 1 should be defined in the most simple
way. The fact that a topological space of dimension 0 is a point suggests that we should
define a 0-signature simply as a set E0, whose elements are called (0-dimensional) terms. A
1-dimensional rewriting system on the signature E0 is a set of rules rewriting a term into
another term. It therefore consists of a set E1, whose elements are the rules, together with
two functions s, t : E1 → E0 which to every rule r ∈ E1 associate its source s(r) and its
target t(r). In other words, a 1-rewriting system is a diagram

E0 E1

soo

t
oo (1.1)

in the category Set (the category whose objects are sets and morphisms are functions). We
sometimes write

r : A → B

to indicate that r is a rule with A as source and B as target and say that A one-step
rewrites by r to B. We simply write A→ B when there exists a rule r : A→ B, write →∗
for the transitive closure of the relation →, and say that a term A rewrites to a term B
when A→∗ B.

1.1.2. The free category generated by a rewriting system. Notice that a rewriting system of
the form (1.1) can also be seen as a graph with E0 as set of vertices and E1 as set of edges,
the functions s and t indicating the source and the target of an edge. Such a graph generates
a free category C which is the smallest category with E0 as set of objects and containing
all the edges r : A→ B in E1 as morphisms. We write E∗1 for the set of morphisms of this
category, and s∗, t∗ : E∗1 → E0 for the functions which to every morphism of this category
associate its source and target respectively. Since the set E∗1 contains the set E1, there is an
injection i1 : E1 → E∗1 . Moreover, since C is the free category generated by the graph (1.1),
E∗1 is the smallest set containing E1 and closed under identities and composition: E∗1 is the
set of paths in the graph, with concatenation as composition and empty paths as identities,
with the obvious source and target functions s∗1 and t∗1. The data generated by this free
construction can be summarized by a diagram

E1

s

~~ t~~
i1
��

E0 E∗1
s∗oo

t∗
oo

in Set, together with the composition morphism E∗1 ×E0 E
∗
1 → E∗1 which to every pair of

composable morphisms associate their composition (i.e. the concatenation of the two paths)
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and the identity morphism E0 → E∗1 which to every object in E0 associates an identity
morphism (i.e. the empty path on this object): these two last operations define a structure

of category on the graph E0 E∗1
s∗oo

t∗
oo (a category is a graph together with composition

and identity operations satisfying axioms). Moreover, the diagram above “commutes” in the
sense that

s∗ ◦ i = s and t∗ ◦ i = t

which expresses the fact that if r : A→ B is an arrow in the graph, then it has the same
source and target if we see it as a path of length 1 in the graph. Notice that, by definition,
a term A rewrites to a term B when there exists a path from A to B in the graph, i.e. when
there exists a morphism from A to B in the generated category: the morphisms of the freely
generated category can be seen as rewriting sequences.

Example 1.1. Let us give examples of categories generated by graphs.

(1) Consider the graph with two edges E0 = A,B and two arrows f : A→ B and g : B → A

A
f

++ B
g

kk

i.e. formally

E0 = {A,B} E1 = {f, g} s(f) = t(g) = A t(f) = s(g) = B

It generates a category which has the words of the form (fg)∗ as morphisms from A
to A (where the star denotes the Kleene star), (fg)∗f from A to B, g(fg)∗ from B to
A, and (gf)∗ from B to B, i.e. formally E∗1 = (fg)∗ ] g(fg)∗ ] (fg)∗f ] (gf)∗.

(2) The following graph with one vertex and one arrow

∗ 1ee

generates a category with one object isomorphic to the category whose morphisms are
natural integers N with addition as composition and 0 as identity.

(3) More generally, given a set Σ, the graph GΣ with one object ∗ and Σ as set of arrows
(all from ∗ to ∗) generates a category isomorphic to the category with one object and
the free monoid Σ∗ on Σ as set of morphisms, with concatenation as composition and
empty word as identity. In other words, the category generated by GΣ is essentially the
same as the free monoid Σ∗ generated by Σ.

1.2. String and 2-dimensional rewriting system.

1.2.1. String rewriting systems. Suppose given an alphabet E1. We write E∗1 for the free
monoid generated by E1 and i1 : E1 → E∗1 for the injection sending a letter of the alphabet to
the corresponding word with only one letter. A string rewriting system R on the alphabet E1

is usually defined as a relation R ⊆ E∗1 × E∗1 over the free monoid generated by E1. One
says that a word u one-step rewrites to a word v, what we write u⇒ v, when there exists
two words w1, w2 ∈ E∗1 such that

u = w1u
′w2 v = w1v

′w2 and (u′, v′) ∈ R (1.2)
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If we write ⇒∗ for the reflexive and transitive closure of the relation ⇒, a word u rewrites
to a word v when u⇒∗ v.

In order to make the definition closer to the one given in previous section, we can make
a small generalization and allow to have two distinct rules both rewriting the same word u
to the same word v, by giving names to the rules. Such a string rewriting system can
be formalized as a set E2 whose elements are the (names of) the rules together with two
functions s1, t1 : E2 → E∗1 indicating respectively the source and target of a rule:

E1

i1
��

E2
s1

~~ t1~~
E∗1

and again we write ρ : u⇒ v to indicate that ρ ∈ E2 is a rule with s1(ρ) = u and t1(ρ) = v.

Example 1.2. One can for example consider the rewriting system on an alphabet with two
letters a, b and a rule ba⇒ ab, which would be formalized by

E1 = {a, b} E2 = {ρ} s1(ρ) = b⊗ a t1(ρ) = a⊗ b
where ⊗ denotes the concatenation operation on words.

More details and examples of uses of such rewriting systems are given in Section 2.1.1.

1.2.2. 2-dimensional rewriting systems. Remember that our general plan is to express
2-dimensional rewriting systems as rewriting on 1-dimensional rewriting paths. In order to
do so, one should have in mind that a set is “the same as” a graph with one vertex. Formally,
there exist two functors

Set
F --

Graph∗
G

ll

which are inverse one of each other, where Graph∗ is the full subcategory of Graph (the
category of graphs) whose objects are graphs with only one vertex: the functor F sends a
set Σ to the graph with one vertex ∗ and Σ as set of arrows (all going from ∗ to ∗) and the
functor G sends a graph with one vertex to its set of edges. Similarly, a monoid is “the same
as” a category with one object, the multiplication and unit of a monoid corresponding to
the composition and identity of the category. For instance, we have explained in the last
point of Example 1.1 that the free monoid generated by a set is, with respect to this point
of view, “the same as” the free category generated by the graph corresponding to the set.

Therefore, instead of having a mere set as alphabet, one might equivalently declare that
an alphabet is a 1-dimensional rewriting system

E0 E1

s0oo

t0
oo (1.3)

as defined in Section 1.2, with the set E0 being reduced to one element. Again, this does
not bring more information than the set E1 itself, since the set E0 is uniquely defined up to
a canonical isomorphism (it contains only one object) and the functions s0, t0 : E1 → E0 are
uniquely defined because E0 is terminal in Set. If we write E∗1 for the set of morphisms of
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the category generated by the graph (1.3) as in previous section, a 2-dimensional rewriting
system can thus be defined as a diagram

E1

i1
��

s0

~~ t0~~

E2
s1

~~ t1~~
E0 E∗1

s∗0oo

t∗0

oo

(1.4)

in Set, with E0 containing only one element, together with a structure of category on the
graph

E0 E∗1

s∗0oo

t∗0

oo (1.5)

It turns out that the supposition that the set E0 is reduced to one element is not
necessary in order to proceed with the usual developments of string rewriting theory. We
thus drop this condition in the following and suppose that an alphabet for a 2-dimensional
rewriting system is any 1-dimensional rewriting system. This amounts to generalizing string
rewriting systems to the case where the letters a : A→ B are typed (with A as source and B
as target), and to consider only composable string of letters as words (the words are thus
also typed). In order for substitution to be well-defined, we have to suppose that a word
u : A→ B can only be rewritten to a word v : A′ → B′ of the same type (i.e. A′ = A and
B′ = B). It is enough to suppose that this property is satisfied for the rules, which amounts
to impose the further axiom that in any 2-dimensional rewriting system (1.4), the equations

s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1
are satisfied (these are sometimes called the globular equations). An example of such a
rewriting system is given in Section 1.2.5.

1.2.3. The free 2-category generated by a rewriting system. In the same way that a 1-di-
mensional rewriting system freely generates a 1-category (i.e. a category), a 2-dimensional
rewriting system freely generates a 2-category: it is the smallest 2-category with (1.5) as
underlying category and the containing the elements of E2 as 2-cells. We recall that the
notion of 2-category is defined as follows.

Definition 1.3. A 2-category C consists of the following data.

– A class C0 of 0-cells.
– A category C(A,B) for every pair of 0-cells A and B. Its objects f : A → B are called

1-cells, its morphisms α : f ⇒ g : A→ B are called 2-cells, composition is written ◦ and
called vertical composition, and identities are called vertical identities.

– A functor ⊗A,B,C : C(A,B) × C(B,C) → C(A,C) for every objects A, B and C called
horizontal composition (we will drop the subscripts of ⊗ in the following).

– A 1-cell idA : A→ A for every object A called vertical identity.

These should be such that the following properties are satisfied.

– Horizontal composition is associative: for every 0-cells A, B, C and D, for every 1-cells
f, f ′ : A → B, g, g′ : B → C and h, h′ : C → D, for every 2-cells α : f ⇒ f ′, β : g ⇒ g′

and γ : h⇒ h′,

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h) (α⊗ β)⊗ γ = α⊗ (β ⊗ γ) (f ′ ⊗ g′)⊗ h′ = f ′ ⊗ (g′ ⊗ h′)
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– Horizontal identities are neutral elements for horizontal composition: for every 0-cells A
and B, for every 1-cells f, f ′ : A→ B, for every 2-cell α : f ⇒ f ′,

idA ⊗ f = f = f ⊗ idB ididA
⊗ α = α = α⊗ ididB

idA ⊗ f ′ = f ′ = f ′ ⊗ idB

If we write E∗2 for the set of 2-cells of the 2-category generated by the 2-rewriting
system (1.4), i2 : E2 → E∗2 for the canonical injection expressing the inclusion of E2 into E∗2
and s∗1, t

∗
1 : E2 → E∗1 , we thus get a diagram

E1

i1
��

s0

~~ t0~~

E2
s1

~~ t1~~
i2
��

E0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo

in Set, together with a structure of 2-category on the 2-graph

E0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo

which commutes in the sense that

s∗1 ◦ i2 = s1 and t∗1 ◦ i2 = t1

In the same way as previously, the 2-cells of this 2-category correspond to the rewriting
paths: a (typed) word u : A → B rewrites to a (typed) word w : A → B if and only if
there exists a 2-cell α : u ⇒ v : A → B. In particular, if there is only one 0-cell, this
notion of rewriting corresponds the usual notion of rewriting for string rewriting systems.
As previously, notice that a 1-cell is rewritten into a parallel 1-cell, i.e. a 1-cell having the
same source and same target.

1.2.4. A diagrammatic notation for 2-cells. Before going on describing how to incorporate
string rewriting systems in our framework, we shall try to understand a bit more 2-categories,
and the previous construction.

Given a 2-category C, a 2-cell α : u⇒ v : A→ B is often written diagrammatically as

A

u
&&

v

88α⇓ B

With this notation, vertical composition corresponds to vertical juxtaposition: the compos-
ite β ◦ α : u⇒ w : A→ B of a pair of 2-cells α : u⇒ v : A→ B and β : v ⇒ w : A→ B is
denoted by

A

u

��
v //

w

EE
α⇓
β⇓

B (1.6)

and the horizontal composition α ⊗ β : (u ⊗ v) ⇒ (u′ ⊗ v′) : A → C of a pair of 2-cells
α : u ⇒ u′ : A → B and β : v ⇒ v′ : B → C corresponds diagrammatically to horizontal
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juxtaposition

A

u
&&

u′
88α⇓ B

v
&&

v′
88β⇓ C (1.7)

For every 1-cell u : A→ B, a vertical identity 2-cell

A

u
&&

u

88idf⇓ B

should be given which acts as neutral element for vertical composition.
The functoriality of the horizontal composition implies a last fundamental identity called

the exchange law. Given four 2-cells α, β, α′ and β′ as in the diagram

A

u

��
v //

w

EE
α⇓
β⇓

B

u′

��
v′ //

w′

EE
α′⇓

β′⇓
C (1.8)

there are two ways to compose them altogether: either first vertically and then horizontally
or the converse. The exchange law which is satisfied in any 2-category states that these two
composites are equal:

(β ◦ α)⊗ (β′ ◦ α′) = (β ⊗ β′) ◦ (α⊗ α′)
Thanks to this, the diagram (1.8) is not ambiguous. This law can equivalently be reformulated
slightly differently as the Godement law : given two 2-cells α and β as in (1.7), the following
identity is always satisfied:

(idu′ ⊗ β) ◦ (α⊗ idv) = (α⊗ idv′) ◦ (idu ⊗ β) (1.9)

1.2.5. An example. Consider a 2-dimensional rewriting system of the form (1.4) with

E0 = {A,B} E1 = {f, g} E2 = {ρ}
and source and target map defined by

s0(f) = t0(g) = A t0(f) = s0(g) = B s1(ρ) = f ⊗ g ⊗ f ⊗ g t1(ρ) = f ⊗ g
i.e. using the previously introduced notations

f : A→ B g : B → A ρ : f ⊗ g ⊗ f ⊗ g ⇒ f ⊗ g : A→ B

In particular, the 1-rewriting system playing the role of signature for this 2-rewriting system
is the one given in first point of Example 1.1, and the ⊗ operation denotes the composition
of the category it generates.

As explained earlier, A and B should be seen as types for words, f and g should be
seen as the letters of the signature and the ⊗ operation as the concatenation for words (we
thus sometimes omit it and write fg instead of f ⊗ g). These letters are typed and one only
considers words obtained by composing compatible letters; for example f ⊗ g ⊗ f is a word
of type A→ B, graphically represented as the path

A
f // B

g // A
f // B
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whereas f ⊗ f does not make sense. Finally, ρ is a rewriting rule, which we may represent
as a 2-cell

B
g // A

ρ⇓

f // B
g

��
A

f
77

f
// B g

// A

(1.10)

which transforms a word into another.
The rewriting paths are the morphisms in the 2-category generated by the 2-rewriting

system: its 2-cells are formal vertical and horizontal composites of rules quotiented by the
axioms of 2-categories. Vertical compositions correspond to sequences of rewriting: if a
word u rewrites to a word v, which is witnessed by a morphism α : u⇒ v, and the word v
rewrites to a word w, which is witnessed by a morphism β : v ⇒ w, then the composite
morphism β ◦ α : u ⇒ w witnesses the fact that u rewrites to w, which is represented
diagrammatically in (1.6). Horizontal compositions correspond similarly to rewritings done
in parallel: if a word u rewrites to u′ by α : u⇒ u′ and a word v rewrites to v′ by β : v ⇒ v′

then u⊗ v rewrites to u′ ⊗ v′ by α⊗ β, as shown in (1.7). For example, the usual condition
for one-step rewrites (1.2) can be recovered as follows: the generator ρ rewrites fgfg into fg,
so, given two words u : C → A and v : A → D (where C and D are either A or B), the
word ufgfgv rewrites to ufgv, which is witnessed by the morphism

idu ⊗ ρ⊗ idv : u⊗ f ⊗ g ⊗ f ⊗ g ⊗ v ⇒ u⊗ f ⊗ g ⊗ v : C → D

which can be represented as

B
g // A

ρ⇓

f // B
g

��
C

u

��

u

EEidu⇓ A

f
77

f ++

A

v

��

v

EEidv⇓ D

B
g

;;

We usually omit drawing the identity 2-cells and simply write

B
g // A

ρ⇓

f // B
g

��
C

u // A

f
77

f
// B g

// A
v // D

for this 2-cell.
As another example of the fact that 2-cells represent rewriting paths, consider the word

fgfgfg which can be rewritten to fg:

fgfgfg ⇒ fgfg ⇒ fg

Actually, there are two such rewriting paths because, in the first step, the rule ρ can be
applied either on the left or on the right of the word. These two distinct paths correspond
to the morphisms

ρ ◦ (ρ⊗ f ⊗ g) and ρ ◦ (f ⊗ g ⊗ ρ)
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respectively represented diagrammatically by

B
g // A

ρ⇓

f // B
g

��
A

f --

f
77

f
// B g

// A
f // B

g // A

B
g

77

ρ⇓

(1.11)

and

B
g // A

ρ⇓

f // B
g

��
A

f --

f // B
g // A

f
77

f
// B g

// A

B

ρ⇓
g

77

Notice that it is also possible in this setting to express the rewriting of two disjoint parts of
a word in parallel, such as

ρ⊗ ρ : fgfgfgfg ⇒ fgfg

which is represented diagrammatically by

B
g // A

f //

ρ⇓

B
g

��

B
g // A

f //

ρ⇓

B
g

��
A

f
//

f
77

B g
// A

f
//

f
77

B g
// A

1.2.6. String diagrams. The diagrammatic notation for cells in 2-categories introduced in
Section 1.2.4 is quite useful and convenient. However, from such diagrams, it is sometimes
difficult to get intuitions about the way morphisms should be manipulated and having
another, more “geometrical”, representation of morphisms can be very useful. Such a
notation was formally introduced by Joyal and Street [17] and is called string diagrams.

We shall first explain this notation on an example. Consider the 2-cell ρ in the 2-category
described in previous section, whose diagrammatic representation is given in (1.10). We can
consider this 2-cell as a device with four typed inputs respectively of type f , g, f and g,
which produces two outputs respectively of type f and g. It is thus natural to depict it as

f

B

g
A

f

B

g

A ρ A

f
B

g

The 2-cell ρ is represented by the point in the center, each of the 1-cells in its input
(resp. output) correspond to a wire going in (resp. out of) it. The portions of the plane
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delimited by the wires correspond to 0-cells at the source or target of the 1-cells corresponding
to the delimiting wires. Since, in this representation, 2-cells consist of points linked by
strings (or wires), it is called a string diagram.

Vertical composition amounts to vertically juxtaposing diagrams and “linking the wires”,
whereas horizontal composition is given by horizontal juxtaposition of diagrams. The two
diagrams for composition (1.6) and (1.7) are thus drawn respectively by

u

α

A v B

β

w

and

u v

A α B β C

u′ v′

and vertical identities are represented by wires. For example, the string-diagrammatic
notation of the morphism (1.11) is

f

B

g
A

f

B

g f

B

g

ρ A

A B A

ρ

f
B

g

These diagrams should be considered modulo planar continuous deformations. In
particular, the Godement exchange law (1.9) is satisfied

u v

α

β

u′ v′

=

u v

β

α

u′ v′

because the diagram on the left can be deformed into the diagram on the right, and more
generally, it can be checked that all the axioms of 2-categories are satisfied.

1.3. Term and 3-dimensional rewriting systems.
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1.3.1. Term rewriting systems. In the same way string rewriting systems can be generalized
to 2-dimensional rewriting systems, which rewrite rewriting paths in 1-dimensional rewriting
systems, term rewriting systems can be generalized to 3-dimensional rewriting systems which
rewrite rewriting paths in 2-dimensional rewriting systems.

A signature (Σ, a) consists of a set Σ called alphabet, whose elements are called symbols,
together with a function a : Σ→ N which to every symbol f ∈ Σ associates its arity. We
also suppose fixed a set V ar of variables. A term is either a variable x ∈ V ar or of the
form f(t1, . . . , tn) where the ti are terms and f is a symbol of arity n. Given two terms t
and u and a variable x, we denote by t[u/x] the term obtained from t by substituting all
the occurrences of the variable x by u. We write Σ∗ for the set of terms generated by the
signature Σ. A substitution σ : V ar → Σ∗ is a function which to every variable associates a
term. Given a term t, we write t[σ] for the term obtained from t by replacing every variable x
by σ(x). A term rewriting system R on such a signature is a set R ⊆ Σ∗ × Σ∗ of pairs of
terms. A term t one-step rewrites to a term u, what we write t V u, when there exists a
rule (l, r) ∈ R and a substitution σ such that u = l[σ] and v = r[σ]. We write V∗ for the
transitive closure of the relation V on terms, and say that a term t rewrites to a term u
whenever tV∗ u.

We now generalize the notion of term rewriting system so that it appears as an extension
of 2-dimensional rewriting systems. Having done that, we shall be able to see a term as a
rewriting path in a 2-dimensional rewriting system: a 3-dimensional rewriting system will
thus consist of rewriting rules which relate terms, i.e. rewriting rules which rewrite rewriting
paths in a 2-dimensional rewriting system. We should follow the intuition given by string
diagrams. For example, if we consider a signature Σ = {f, g}, the two symbols f and g
being of arity 2, as mentioned in the introduction, the term f(x, g(y, z)), where x, y and z
are variables, can be drawn as a tree

x y z

g

f

which looks very much like the string-diagrammatic notation for a morphism f ◦ (id⊗ g),
whose diagrammatic notation would be

��
g⇓

// AA//

55

f⇓

In order to make this intuition formal, recall from Example 1.1 that the monoid N of integers
can be seen as the category generated by the graph with only one vertex and one edge: if
we write E0 = {∗} for the set of vertices (∗ being the only vertex) and E1 = {1} for the set
of edges (1 being the only edge, with ∗ both as source and target) and follow the notations
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of Section 1.1.2, we have the diagram

E1

i1
��

s0

~~ t0~~
E0 E∗1

s∗0oo

t∗0

oo

where E∗1
∼= N is the set of morphisms in the category generated by the graph (i.e. the paths

in the graph). For example, the integer 3 corresponds to the path 1⊗ 1⊗ 1:

∗ 1 // ∗ 1 // ∗ 1 // ∗
and more generally an integer n to the composition of n copies of 1. The arity can thus be
seen as an arrow a : Σ → E∗1 . In order to be consistent with the previous notations, we
write E2 instead of Σ and s1 instead of a, since the arity denotes the number of inputs. We
also write t1 : E2 → E∗2 for the constant function equal to 1: it denotes the coarity of a
symbol (its number of outputs), which is always 1 in the setting of term rewriting systems.
The signature of a term rewriting system can thus be specified by a 2-rewriting system

E1

i1
��

s0

~~ t0~~

E2
s1

~~ t1~~
E0 E∗1

s∗0oo

t∗0

oo

where E0 = {∗}, E1 = {1} and t1 is the constant function equal to 1. For example, the
previously considered signature with two symbols f , g of arity 2 is represented by the
2-rewriting system such that

E2 = {f, g} and s1(f) = s1(g) = 1⊗ 1 (1.12)

Any such signature being a 2-rewriting system, it generates a 2-category C with E∗2
as set of 2-cells. As previously, we write i2 : E2 → E∗2 for the canonical injection and
s∗1, t

∗
1 : E∗2 → E∗1 for the maps associating to each 2-cell its source and target respectively.

Since E0 = {∗}, the 2-category C has only one 0-cell ∗. Since E1 = {1}, the 1-cells of
the 2-category C are in bijection with N (as explained above). It is easy to show that the
2-cells α : n⇒ 1 : ∗ → ∗ of C are in bijection with linear terms with variables in x1, . . . , xn:
a term is linear when all the variables x1, . . . , xn appear exactly once in the term, in this
order, e.g. with the signature (1.12), the term f(x1, g(x2, x3)) is linear whereas f(x1, x1)
and g(x2, x1) are not. More generally, the 2-cells α : n ⇒ m : ∗ → ∗ are in bijection with
linear m-uples of terms with n variables x1, . . . , xn. For example, with the signature (1.12),
the term

(f ◦ (f ⊗ id1))⊗ (g ◦ (f ⊗ f))
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which can be represented diagrammatically as

∗
1

��
f⇓

∗
1

��
f⇓

∗
1

��
f⇓

∗

1
66

//

1

CC∗
f⇓

1 // ∗

1
66

//

1

>>∗

1
66

//

g⇓

∗

or string-diagrammatically as

f f f

f g

represents the pair f(f(x1, x2), x3), g(f(x4, x5), f(x6, x7)).
A term rewriting system operating on linear terms can thus be thought as rewriting

rewriting paths in a 2-dimensional rewriting system and be represented as a diagram

E1

i1
��

s0

~~ t0~~

E2

i2
��

s1

~~ t1~~

E3
s2

~~ t2~~
E0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo

(1.13)

where E2 is the alphabet and E3 is the set of rewriting rules, such that rules rewrite a term
into a term of the same type:

s∗1 ◦ s2 = s∗1 ◦ t2 and t∗1 ◦ s2 = t∗1 ◦ t2
and the three conditions below are satisfied:

(1) the set E0 is reduced to one element ∗,
(2) the set E1 is reduced to one element 1,
(3) the function t2 is the constant function equal to 1.

In the following, we drop those three conditions in the general definition of 3-dimensional
rewriting systems. Dropping condition (3) allows us to consider terms with multiple outputs
(whereas terms in term-rewriting systems always have exactly one output). In particular,
we will see in Section 2.2.2 that this enables us to recover the usual setting of (non-linear)
term rewriting systems: non-linearity is obtained by adding to the signature symbols to
explicitly duplicate, erase and swap variables. Dropping condition (2) allows us to consider
typed terms. For example, a symbol f ∈ E2 with s1(f) = A⊗B and t1(f) = C ⊗D, where
A,B,C,D ∈ E1 means that f has two inputs of respective types A and B and two outputs
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of respective types C and D; diagrammatically,

B

��

A
55

C ))

f ⇓

D

GG

A B

f

C D

Finally, dropping condition (1) allows to have typed types, as explained in Section 1.2.
Notice that usually, term rewriting systems are considered to generalize string rewriting

system because a letter can be seen as a symbol of arity 1. While this is true, this is not the
right point of view! At the light of the previous explanations, we see that term rewriting
systems do generalize string rewriting systems in the sense that they rewrite rewriting paths
in string rewriting systems.

1.4. Polygraphs. We believe that the general pattern should have become clear now, and
one can generalize the situation in order to inductively define a notion of n-dimensional
rewriting system. This was formalized by Burroni under the name of n-polygraph [5]. The
article introducing polygraphs was in fact rediscovering the notion of n-computad invented
17 years earlier by Street in its 2-dimensional version [36] and later on generalized to higher
dimensions by Power [32]. We insist here on the contribution of Burroni, who first found
and formalized connections between these general constructions and rewriting theory.

The notion of n-polygraph is defined inductively (on n ∈ N) as follows. A 0-polygraph
is a set E0. Now suppose given an n-polygraph, i.e. a diagram

E0

i0
��

E1

i1
��

s0

~~ t0~~

E2

i2
��

s1

~~ t1~~

. . . En−2

in−2

��

En−1

in−1

��

sn−2

{{ tn−2{{

En
sn−1

|| tn−1||
E∗0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo . . . E∗n−2 E∗n−1

s∗n−2oo

t∗n−2

oo

(1.14)

in Set together with a structure of (n− 1)-category on the (n− 1)-graph

E∗0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo . . . E∗n−2 E∗n−1

s∗n−2oo

t∗n−2

oo

Such a polygraph generates a free n-category, which will be noted E∗, with the previous
(n− 1)-category as underlying (n− 1)-category and containing the elements of En as n-cells,
with source and target indicated by the functions sn−1 and tn−1. We write E∗n for its set of
n-cells, in : En → E∗n for the canonical injection and s∗n−1, t

∗
n−1 : E∗n → E∗n−1 for the source

and target maps. An (n+ 1)-polygraph is then defined as a diagram of the form

E0

i0
��

E1

i1
��

s0

~~ t0~~

E2

i2
��

s1

~~ t1~~

. . . En−2

in−2

��

En−1

in−1

��

sn−2

{{ tn−2{{

En
sn−1

|| tn−1||
in
��

En+1
sn

|| tn||
E∗0 E∗1

s∗0oo

t∗0

oo E∗2

s∗1oo

t∗1

oo . . . E∗n−2 E∗n−1

s∗n−2oo

t∗n−2

oo E∗n

s∗n−1oo

t∗n−1

oo
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in Set, together with the structure of n-category on the n-graph at the bottom of the
diagram, such that

s∗n−1 ◦ sn = s∗n−1 ◦ tn and t∗n−1 ◦ sn = t∗n−1 ◦ tn
We refer the reader to [5] for a detailed definition and to [14] for a more abstract equivalent
definition.

Given an n-polygraph (1.14), the elements of Ek are called k-generators. Notice that E∗0
is the free 0-category (i.e. set) on E0, so E∗0 is isomorphic to E0, and we might as well
decide that they are equal: we have implicitly done this assumption in our presentation of
n-dimensional rewriting systems in order to ease the explanation. Given two n-polygraphs E
and F , a morphism between them consists of a family (fk : Ek → Fk)06k6n of functions such
that sk ◦fk+1 = f∗k ◦sk for every index k, and we write Poln for the category of n-polygraphs.
Every m-polygraph E admits an underlying n-polygraph (with m > n), often written E|n,
thus inducing a forgetful functor Polm → Poln.

2. Presentations of n-categories

A crucial application of polygraphs relies on the fact that they provide us with a notion
of presentation of n-categories: an (n+ 1)-polygraph E can be seen as a description of an
n-category by generators (the elements of Ek with 0 6 k 6 n being generators for k-cells)
quotiented by relations (the elements of En+1). More precisely, an (n + 1)-polygraph E
generates an (n+ 1)-category E∗. The n-category presented by the polygraph E, written E∗

is obtained by quotienting the underlying n-category of E∗ by the relation identifying two
n-cells f and g whenever there exists an (n+ 1)-cell α : f → g in E∗. More generally, one
says that an n-category C is presented by an (n + 1)-polygraph E when C is isomorphic
to E∗.

Presentations of categories are useful in the sense that they can provide us with small
(even sometimes finite) descriptions of categories. This idea of presentation generalizes the
well-known notion of presentation of a monoid (or a group). We begin by recalling this
simple and well studied setting.

2.1. Presentations of categories.

2.1.1. Presentations of monoids. One of the main applications of string rewriting systems,
that we are going to generalize here, is the construction of presentations of a monoid.

Definition 2.1. A presentation 〈Σ | R〉 of a monoid M consists of

– a set Σ of generators,
– a set R ⊆ Σ∗ × Σ∗ of relations

where Σ∗ denotes the free monoid over Σ, such that the monoid M is isomorphic to Σ∗/ ≡R,
where ≡R is the smallest congruence (with respect to concatenation of words) on Σ∗

containing R.

Example 2.2. The additive monoid N admits the presentation with one generator a and
no relation 〈a | 〉. Similarly,

N/2N ∼= 〈a | aa = 1〉 N× N ∼= 〈a, b | ba = ab〉
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and, if we write Sn for the monoid of symmetries on n elements,

Sn
∼= 〈σ1, . . . , σn | σiσi+1σi = σi+1σiσi+1, σ

2
i = 1, σiσj = σjσi〉

How does one construct a presentation 〈Σ | R〉 of a given monoid M? The main difficulty
consists in showing the isomorphism M ∼= (Σ∗/ ≡R) which is a priori difficult because the
second monoid is described as terms modulo a congruence. One of the great usefulness of
string rewriting systems is that, when they are convergent (i.e. terminating and confluent),
they provide one with a notion of normal form of terms modulo the congruence generated
by the rewriting rules. In order to show the isomorphism M ∼= (Σ∗/ ≡R), one can thus try
to follow the following recipe:

(1) Orient the relations in R in order to get a string rewriting system on the alphabet Σ.
(2) Show that the rewriting system is terminating.
(3) Compute the critical pairs of the rewriting system and show that they are joinable.
(4) The two previous points ensure that the rewriting system is convergent. Compute the

normal forms and show that they are in bijection with the elements of M in a way
compatible with multiplication and unit.

It is well known that the joinability of critical pairs checked in (3) implies the local confluence
of the rewriting system. Its confluence can then be deduced by Newman’s lemma provided
that it is terminating (2). The compatibility condition of (4) can be made explicit as
follows. We write (M,×, 1) for the operations of the monoid M , we write w for the normal
form of a word w ∈ Σ∗, and set Σ∗ = { w | w ∈ Σ∗ }. One should provide a pair of
functions f : Σ∗ →M and g : M → Σ∗, which are mutually inverse morphisms of monoids:

f(u⊗ v) = f(u)× f(v) f(ε) = 1 g(m× n) = g(m)⊗ g(n) g(1) = ε

for every u, v ∈ Σ∗ and m,n ∈M , where ⊗ denotes concatenation and ε the empty word.

Example 2.3. We can show that the additive monoid M = N × (N/2N) admits the
presentation 〈a, b | ba = ab, 1 = bb〉, where 1 denotes the empty word:

(1) We orient the rules as follows:

ba⇒ ab and bb⇒ 1

(2) The system is terminating: introduce a suitable measure on words based on the fact
that the rules respectively decrease the number of a after a b, and the total number of b
in a word.

(3) The two critical pairs are joinable:

bba

z� �&
a bab

��
a abbks

bbb

z� �$
b b

b

(4) The normal forms are words of the form anbm with n ∈ N and m ∈ {0, 1}. These are
obviously in bijection with elements of N× (N/2N) and the bijection can be shown to
be a morphism of monoids (see below).
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Since normal forms are canonical representatives of elements of the free monoid Σ∗ over
the alphabet Σ modulo the congruence ≡R, in order to define the morphism f witnessing
the bijection (4), by universal property of the free monoid it is enough to define f on letters
in Σ, extend it as a morphism f : Σ∗ →M and show that the images of two words equivalent
with respect to ≡R are equal, which can be checked by showing that the image by f of any
left member of any rule is equal the corresponding right member. Of course, the explicit
construction of g is not necessary and it is equivalent (and sometimes more natural) to show
that f is both surjective and injective.

Example 2.4. The last step of Example 2.3 can thus be shown as follows:

(4) We define a morphism f : Σ∗ → M as follows. The morphism f is defined on letters
by f(a) = (1, 0), f(b) = (0, 1). The induced morphism f : Σ∗ →M is compatible with the
congruence ≡R:

f(ba) = f(b) + f(a) = (0, 1) + (1, 0) = (1, 1) = (1, 0) + (0, 1) = f(a) + f(b) = f(ab)

and
f(bb) = f(b) + f(b) = (0, 1) + (0, 1) = (0, 0) = f(1)

Conversely, g is defined by g((m,n)) = ambn, which is a morphism of monoids, i.e.

g((m,n) + (m′, n′)) = am+m′bn+n′ = ambnam′bn′

and the two morphisms are mutually inverse

g ◦ f(ambn) = g((m,n)) = ambn and f ◦ g((m,n)) = f(ambn) = (m,n)

This general methodology can be straightforwardly adapted to n-polygraphs in order
to build presentations of n-categories. We detail a few interesting particular cases in the
following.

Remark 2.5. Notice that the method described above is only a “recipe” for constructing
presentations, which works (or can be adapted) in many cases. In fact, it has been shown
by Squier [35, 23], using homological methods, that there exists monoids which admit finite
presentations, but no finite presentation which can be oriented into a convergent rewriting
system. These theoretical considerations aside, convergent presentations are sometimes
difficult to build: in these cases, the following weaker method (used for example in [22]) can
be tried:

(2) Introduce a notion of canonical form for words (which will play the role of previous
normal forms).

(3) Show that every word reduces to a canonical form.
(4) Define a morphism f : Σ∗ →M which is compatible with rewriting rules as previously,

and show that it induces a bijection between the canonical forms and the elements of M .

This variant has the advantage of not requiring to show termination, but it can lead one to
have to consider many cases (many more than critical pairs when the system is convergent).
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2.1.2. Presentations of categories. 2-polygraphs more generally present categories: the case
of a presentation of a monoid is the particular case where the presented category has only
one object. Namely, a 2-polygraph E describes a category which is the smallest category
with the 0-generators in E0 as objects, containing the typed 1-generators in E1 as morphisms,
quotiented by the relations in E2.

Example 2.6. Consider the simplicial category ∆: its objects are natural integers n ∈ N,
where n is seen as the totally ordered set with n elements {0, 1, 2, . . . , n − 1} and mor-
phisms f : m→ n are increasing functions. This category is presented by the 2-polygraph E
with E0 = N, the set E1 contains the two families of 1-generators indexed by integers n, i ∈ N,
such that 0 6 i 6 n,

µn+1
i : n+ 2→ n+ 1 and ηni : n→ n+ 1

and the set E2 of rewriting rules contains the families of 2-generators index by n, i ∈ N
µn+1
j µn+2

i ⇒ µn+1
i µn+2

j+1 for i 6 j,

ηn+1
i ηnj ⇒ ηn+1

j+1 η
n
i for i 6 j,

µn+1
j ηn+1

i ⇒


ηni µ

n
j−1 for i < j,

idn+1 for i = j or i = j + 1,

ηni−1µ
n
j for i > j + 1

In order to show this, the same recipe as previously can be used: the rewriting system can
be shown to be terminating and confluent, the normal forms being terms of the form

ηm−h+k−1
ik

◦ . . . ◦ ηm−hi1
◦ µm−hjh

◦ . . . ◦ µm−1
j1

: m→ n

such that n = m− h+ k, n > ik > . . . > i1 ≥ 0 and 0 6 jh < . . . < j1 < m. We can then
construct a functor F : E∗ → ∆, which is defined as the identity on objects and is defined
on 1-generators by

F (µni ) = k 7→
{
k if k 6 i

k − 1 if k > i
and F (ηni ) = k 7→

{
k if k < i

k + 1 if k ≥ i
The image of the left member of a rule by F can be checked to be equal to the image of the
corresponding right member and it can be shown to be a bijection, see [26] (section VII.5)
for details. A refined way to construct this presentation is hinted in Example 2.18.

2.2. Presentations of 2-categories.

2.2.1. Monoidal categories. Before explaining how term rewriting systems provide us with a
notion of presentation of a Lawvere theory, we need to introduce the notion of monoidal
category. Formally, a monoidal category could be defined as a 2-category (Definition 1.3)
with exactly one 0-cell. However, in the same way that a category with only one object can
be reformulated as a monoid (i.e. a set with operations), a monoidal category is generally
defined as a category with operations.

Definition 2.7. A strict monoidal category (C,⊗, I) consists of a category C together with

– a functor ⊗ : C × C → C, called tensor product,
– an object I of C, called unit,

such that
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– tensor product is associative: for every objects A,B and C, (A⊗B)⊗ C = A⊗ (B ⊗ C)
– units are neutral elements: for every object A, I ⊗A = A = A⊗ I.

The tensor product f⊗g of two morphisms f and g should be thought as the morphism f
“in parallel” with the morphism g. This definition is a particular case of a more general
definition of monoidal categories [26] (which is why it is called strict), however we will only
consider this variant here. A monoidal category (C,⊗, I) as above gives rise to a 2-category,
with only one 0-cell, the 1-cells being the objects of C, the 2-cells being the morphisms of C,
vertical composition being given by the composition of C and horizontal composition being
given by ⊗; and this induces an isomorphism between the category of monoidal categories
and the categories of 2-categories with one object (this is a generalization of the situation
between monoids and categories described in Section 1.2.2). In other words, a monoidal
category is “the same as” a 2-category with one object and we can in particular reuse
the string-diagrammatic notation for morphisms. We thus sometimes implicitly consider a
monoidal category as a 2-category in the following.

Any cartesian category C can be equipped with a structure of monoidal category (C,×, 1),
tensor product being cartesian product and unit being the terminal object – for simplicity,
we consider that cartesian products are strictly associative, which is always true up to
equivalence of categories, but this assumption could have been dropped if we had worked
with the more general notion of (non-strict) monoidal category. The usual notion of monoid
can be generalized from the monoidal category (Set,×, 1) to any monoidal category as
follows.

Definition 2.8. A monoid (M,µ, η) in a monoidal category (C,⊗, I) consists of an object M
equipped with two morphisms

µ : M ⊗M →M and η : I →M

such that the diagrams

M ⊗M ⊗M
idM⊗M

��

µ⊗idM// M ⊗M
µ

��
M ⊗M µ

// M

and

I ⊗M

idM %%

η⊗idM// M ⊗M
µ

��

M ⊗ IidM⊗ηoo

idMyy
M

commute. String-diagrammatically,

M M M

µ

µ

M

=

M M M

µ

µ

M

and

M

η

µ

M

=

M

M

=

M

η

µ

M

Example 2.9. A monoid in (Set,×, 1) is a monoid in the usual sense, a monoid in (Cat,×, 1)
is a monoidal category.

As mentioned before, the tensor product intuitively expresses the possibility of having
two morphisms done in parallel. One sometimes also needs to be able to “swap” two
morphisms, which is formalized by the notion of symmetric monoidal category.
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Definition 2.10. A symmetric monoidal category (C,⊗, I, γ) consists of a monoidal cate-
gory (C,⊗, I) together with a family γ of isomorphisms γA,B : A⊗B → B ⊗A, indexed by
pairs of objects A,B of C and called symmetry, which is natural in the sense that for every
morphisms f : A→ A′ and g : B → B′,

A⊗B
γA,B

��

f⊗g // A′ ⊗B′
γA′,B′

��
B ⊗A

g⊗f
// B′ ⊗A′

and such that for every objects A, B and C the diagrams

A⊗B ⊗ C
γA,B⊗C //

γA,B⊗idC ''

B ⊗ C ⊗A

B ⊗A⊗ C
idB⊗γA,C

77 A⊗B ⊗ C

idA⊗γB,C ''

γA⊗B,C // C ⊗A⊗B

A⊗ C ⊗B
γA,C⊗idB

77

commute, and for every objects A and B,

γB,A ◦ γA,B = idA⊗B

Again, every cartesian category can be equipped with a symmetry using the canonical
isomorphisms A⊗B ∼= B⊗A induced by the cartesian product. The notion of commutative
monoid can thus be generalized to any symmetric monoidal category as follows.

Definition 2.11. A commutative monoid (M,µ, η) in a symmetric monoidal category
(C,⊗, I, γ) is a monoid such that

µ ◦ γM,M = µ

String-diagrammatically,

M M

γM,M

µ

M

=

M M

µ

M

The notion of commutative comonoid (M, δ, ε) with δ : M →M ⊗M and ε : M → I is
defined dually. Interestingly, this notion allows us to characterize cartesian categories among
monoidal categories:

Proposition 2.12. A monoidal category (C,⊗, I) is cartesian, with ⊗ as cartesian product
and I as terminal object, if and only if the category can be equipped with a symmetry γ and
every object A can be equipped with a structure of commutative comonoid (A, δA, εA) which
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is natural in the sense that for every morphism f : A→ B the diagrams

A

δA
��

f // B

δB
��

A⊗A
f⊗f
// B ⊗B

and

A

εA ��

f // B

εB��
I

commute; string-diagrammatically,

A

f

δ

B B

=

A

δ

f f

B B

A

f

ε

=

A

ε

This result was considered for a long time as folklore in category theory. A detailed
proof of this fact is not really difficult and can for example be found in [27]. The intuition
behind this result is however very enlightening: a cartesian category is a monoidal category
in which any object A can be duplicated (by δA : A→ A⊗ A), erased (by εA : A→ I) or
swapped with another object B (by γA,B : A ⊗ B → B ⊗ A)! These operations can also
be thought as the analogous of contraction, weakening and exchange rules respectively in
sequent calculus. We use this result below in order to show that in fact presentations of
Lawvere theories are a particular case of presentations of 2-categories.

2.2.2. Presentations of Lawvere theories. We have seen that string rewriting systems cor-
respond to presentations of monoids. Similarly, we may wonder: what are term rewriting
systems presentations of? It turns out that the right answer for this are particular categories,
called Lawvere theories, which were introduced by Lawvere in his thesis [24].

Definition 2.13. A Lawvere theory is a cartesian category whose objects are integers N
such that 0 is a terminal object and product is given on objects by addition.

Example 2.14. A Lawvere theory Mat of N-valued matrices can be defined as follows. Its
objects are natural numbers and a morphism M : m→ n is a matrix M of size n×m (with
n rows and m columns) with coefficients in N. The composition N ◦M : m→ p of two mor-
phisms M : m→ n and N : n→ p is given by the usual composition N◦M = NM of matrices
and identities are usual identity matrices. This category is cartesian with cartesian product
defined on objects by addition and the cartesian product of two morphisms M : m→ m′

and N : n→ n′ is their direct sum, i.e. the matrix M ×N : m+ n→ m′ + n′ defined as(
M 0
0 N

)
using a block representation of the matrix.

The link with term rewriting systems can be explained as follows. Suppose given a
signature (Σ, a). This signature induces a Lawvere theory LΣ whose morphisms t : m→ n
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are n-uples (t1, . . . , tn) of terms using variables in Xm = {x1, . . . , xm}. The composition
u ◦ t : m→ p of two morphisms t : m → n and u : n → p is the morphism v defined by
substitution as

(u1[t1/x1, . . . , tn/xn] , . . . , up[t1/x1, . . . , tn/xn])

and the identity on an object n is (x1, . . . , xn). This category is cartesian, in particular
the structure of commutative comonoid (1, δ : 1 → 2, ε : 1 → 0) on the object 1 given by
Proposition 2.12 is defined by δ = (x1, x1), ε = () and the symmetry on 1 is γ1,1 = (x2, x1).

Suppose given a term rewriting system R on Σ. We write ≡R for the smallest congruence
on terms containing the rules in R. A term rewriting system R presents a Lawvere theory C
when C is isomorphic to LΣ/ ≡R (the Lawvere theory generated by the signature Σ whose
morphisms are quotiented by the equivalence relation ≡R). Notice that, in order to show
the isomorphism, one can try to apply the method given in Section 2.1.1.

Example 2.15. Consider a term rewriting system corresponding to commutative monoids:
the signature contains two symbols m of arity 2 and e of arity 0, and there are four rewriting
rules

m(m(x, y), z)⇒ m(x,m(y, z)) m(e, x)⇒ x m(x, e)⇒ x m(x, y)⇒ m(y, x)

This rewriting system presents the Lawvere theory Mat of N-valued matrices described in
Example 2.14. In order to show this, one could try to show that the rewriting system is
convergent, but this fails immediately: the rewriting system is not terminating because of
the last rule for commutativity. It is however possible to overcome this difficulty by working
on terms modulo commutativity, but we do not detail this here since a more satisfactory
way of proving the result is mentioned in Example 2.17. In order to provide an intuition
about the result we shall however describe the functor F : (LΣ/≡R)→Mat witnessing the
isomorphism between the two categories, which can be shown to preserve cartesian products.
The functor F is the identity on objects. Suppose given a morphism t : m→ n, constituted
of an n-uple of terms (t1, . . . , tn) with variables in Xm. The image F (t) of the morphism t
is the matrix M of size n×m such that the entry Mi,j is the number of occurrences of the
variable xj in the term ti. For example, the image of the morphism

m(m(x1, x1), x2), e, x2 : 2→ 3

is the matrix 2 1
0 0
0 1


The functor F can be shown to be compatible with the rewriting rules, i.e. the images of
two morphisms equivalent modulo ≡R are equal, for example the morphism

m(x1,m(x2, x1)), m(e, e), m(e, x2) : 2→ 3

is equivalent to the morphism above and has the same image under F . Finally, the functor F
can be shown to be an isomorphism.

The result above is quite interesting because it provides one with a concrete description
of the category generated by the rewriting system which describes the notion of commutative
monoid in a cartesian category: from the result in the example above, it is easy to deduce
the somewhat surprising fact that the category Mat “impersonates” the notion of monoid in
the sense that a monoid in a cartesian category C is “the same as” a functor Mat→ C which
preserves cartesian products (more formally, the category of product-preserving functors
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from Mat to C and cartesian natural transformations between them is equivalent to the
category of monoids in C and morphisms of monoids).

We have explained in Section 1.3.1 that a 3-polygraph (1.13) with E0 = {∗} and
E1 = {1} reduced to exactly one element and t1 indicating that all the 2-generators have
exactly one output reformulate linear term rewriting systems. At the light of Proposition 2.12,
if we allow 2-generators with multiple outputs, (non-linear) term rewriting systems can be
represented by adding 2-generators

δ : 1⇒ 1⊗ 1 ε : 1⇒ 0 γ : 1⊗ 1⇒ 1⊗ 1

which will allow explicit duplication, erasure and swapping of variables. This was first
formalized in [5]:

Proposition 2.16. Suppose given a term rewriting system R on a signature (Σ, a). The
Lawvere theory LΣ/ ≡R generated by the rewriting system (seen as a monoidal category and
thus as a 2-category) is isomorphic to the 2-category E∗ presented by the 3-polygraph E with

E0 = {∗} E1 = {1} E2 = Σ ] {δ, ε, γ} E3 = R ] C
with the expected source and target maps, where the rules in C express the fact that (1, δ, ε)
has a natural structure of commutative comonoid with γ generating the symmetry.

We shall make the source and target maps and the rules in C a bit more explicit. If we
write n, as previously, for the tensor of n copies of the object 1, the map s1 : E2 → E∗1 is
defined by

s1(f) = a(f) s1(δ) = 1 s1(ε) = 1 s1(γ) = 2

for any symbol f ∈ Σ of arity a(f), and similarly t1 is defined by

t1(f) = 1 t1(δ) = 2 t1(ε) = 0 t1(γ) = 2

The rules in C express that (1, δ, ε) should be a commutative comonoid:

(δ ⊗ id1) ◦ δ V (id1 ⊗ δ) ◦ δ (ε⊗ id1) ◦ δ V id1 (id1 ⊗ ε) ◦ δ V id1 γ ◦ δ V δ

and the morphisms corresponding to generators should be natural with respect to every other
morphism corresponding to a generator, e.g. for every element f : 1⇒ 1 of E2, C should
also contain the rules

δ◦f V (f⊗f)◦δ ε◦f V ε γ◦(f⊗ id1) V (id1⊗f)◦γ γ◦(id1⊗f) V (f⊗ id1)◦γ
(similar rules should also be introduced for 2-generators f whose arity or coarity is different
from 1, see [5]). Finally, the rules in R have source and target the terms corresponding to
their left and right member “translated” to explicit manipulations of variables (by using the
morphisms δ, ε and γ) followed by a linear term. For example, if Σ contains two symbols f
and g of arity 2, a rule f(g(x2, x1), x2) V g(x1, x1) will be translated as

f ◦ (g ⊗ id1) ◦ (γ ⊗ id1) ◦ (id1 ⊗ δ) V g ◦ (δ ⊗ ε)
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which is maybe best understood with the corresponding string diagrammatic notation

δ

γ

g

f

V

ε

δ

g

(which is again very close to the usual notation of sharing graphs). This way of representing
variables in terms has been the starting point for numerous series of works trying to formalize
and axiomatize variable binding, e.g. [6].

Example 2.17. The 3-polygraph corresponding to the term rewriting system of monoids
introduced in Example 2.15 is the theory of bicommutative bialgebras, and this polygraph
can be shown directly to present the 2-category Mat using rewriting techniques [22, 28, 29].
A particularly interesting point is that since swapping of variables is now explicit, the rule
expressing commutativity of the monoid is now expressed as

γ

µ

V
µ

where γ and µ are the 2-generators corresponding to symmetry and multiplication respectively:
the rule is not anymore a priori an obstacle to termination (contrarily to the approach of
Example 2.15) because it makes the number of γ generators decrease in the morphisms.
However, no convergent rewriting system for bicommutative bialgebras is currently known.

2.2.3. Presentations of 2-categories. 3-polygraphs provide us with a general notion of pre-
sentation by 0-, 1- and 2-generators and relations (the 3-generators) of a 2-category. Many
examples of such presentations have been studied by Lafont [22]. We briefly recall here some
fundamental examples that he discovered. The notion of critical pair of the corresponding
rewriting systems will be formally introduced in Section 3.2.

Example 2.18. In Example 2.6, we have recalled the presentation of the simplicial cat-
egory ∆. An unsatisfactory point about this presentation is that it is infinite (it has an
infinite number of generators and of relations). Interestingly, one can provide a finite
presentation of this category by considering it as a 2-category (more precisely as a monoidal
category). Namely, a tensor product ⊗ on the category can be defined on objects m and n
by m ⊗ n = m + n and on morphisms f : m → m′ and g : n → n′ as the morphism
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f ⊗ g : m+ n→ m′ + n′

f ⊗ g = i 7→
{
f(i) if i < m

g(i−m) +m′ if i ≥ m
This induces a structure of monoidal category on ∆, with 0 as unit. This monoidal category
admits a presentation by the 3-polygraph E corresponding to the theory of monoids (see
Definition 2.8), with E0 = {∗}, E1 = {1}, E2 = {µ : 2→ 1, η : 0→ 1} and the 3-generators
being

a : µ ◦ (µ⊗ id1) V µ ◦ (id1⊗µ) l : µ ◦ (η⊗ id1) V id1 r : µ ◦ (id1⊗ η) V id1

with the following string diagrammatic representation

µ

µ

a
V

µ

µ

η

µ

l
V

η

µ

r
V

This rewriting system is terminating and its five critical pairs

µ

µ

µ

η

µ

µ

η

µ

µ

η

µ

µ

η η

µ

are joinable (see Section 3.1 for a precise definition of the critical pairs in a 3-polygraph).
The normal forms are described by the following grammar

φ ::=
η

or or

. . .

φ

µ

. . .

One can define a functor F : E∗ → ∆ as follows. The functor is the identity on objects. The
image of µ : 2→ 1 is the constant function m : 2→ 1 (which to 0 and 1 associates 1) and the
image of η : 0→ 1 is the constant function e : 0→ 1. Finally, the functor F can be shown
to be an isomorphism (it is easy to show that there is a one-to-one correspondence between
normal forms in E and functions in ∆). The fact that F is full means that every function
can be expressed as a composite and tensor of m and e. For example, the function f : 4→ 3
whose graph is pictured on the left (such that f(0) = 1, f(1) = 1, f(2) = 1 and f(3) = 2) is
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the image of the morphism on the right:

0 1 2 3

0 1 2

is the image of
µ

η µ

Of course there are many ways to express a given function f using m and e. The fact that
the functor is faithful expresses the fact that if two morphisms obtained by composing and
tensoring µ and η have the same image by F , then they are equivalent modulo the rewriting
rules. Notice that the result of Example 2.6 can be recovered by defining µn+1

i = idi⊗µ⊗idn−i
and ηni = idi ⊗ η ⊗ idn−i.

Example 2.19. The monoidal category Bij is defined similarly as the simplicial category ∆
excepting that its morphisms are bijective functions. This monoidal category admits a
presentation by the 3-polygraph E corresponding to the theory of symmetries, with E0 = {∗},
E1 = {1}, E2 = {γ : 2→ 2} and the 3-generators being

(γ ⊗ id1) ◦ (id1 ⊗ γ) ◦ (γ ⊗ id1) V (id1 ⊗ γ) ◦ (γ ⊗ id1) ◦ (id1 ⊗ γ) γ ◦ γ V id2

whose string diagrammatic representation is

γ

γ

γ

V

γ

γ

γ

γ

γ

V

The monoid of endomorphisms of an object n in the category Bij is the symmetric group Sn

(seen as a monoid). In this sense, the polygraph above provides a finite presentation of all
the symmetric groups at once.

Interestingly, the preceding rewriting system can be shown to be convergent even though
it has an infinite number of critical pairs. Namely, it has the three following obvious critical
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pairs

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

(2.1)

Moreover, for every morphism φ : (1 +m)→ (1 + n), the morphism (2.2)

. . .

γ

γ

γ φ

γ

γ

. . .

(2.2)

can be rewritten in two different ways, giving rise to an infinite number of critical pairs.
Yet, the rewriting system can be shown to be convergent [22]. This contrasts with string or
term rewriting systems, which always admit a finite number of critical pairs when they are
finite. The difference here seems to come essentially from the fact that the generator γ has
multiple outputs as well as multiple inputs.

More recently, these tools have also been applied to more unexpected fields of computer
science. For example, the author has proposed a 3-polygraph presenting a monoidal category
of game semantics for first order propositional logic [29].

3. Representing 2-dimensional critical pairs

One of the main achievement of rewriting theory is to provide us with algorithms to compute
the critical pairs [1], which are at the basis of many advanced tools, to automatically check
the confluence of rewriting systems or do Knuth-Bendix completions for example. The fact
that the number of critical pairs might be infinite for a finite rewriting system seems to
indicate that there is little hope to extend these nice techniques to higher dimensions. We
introduce here new theoretical tools in order to overcome this difficulty.
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In 3-dimensional rewriting systems, it turns out that we can nevertheless recover a
finite description of the critical pairs if we allow ourselves to consider a more general notion
of critical pair. For example, in the case of the presentation of the category Bij given in
Example 2.19, the rewriting system admits a finite number of “critical pairs” if we consider
the diagram on the left of (3.1) as a morphism:

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

(3.1)

Of course, this “diagram” does not formally make sense: it is not a proper string diagram
in the usual sense [17], because of the “punched hole” in the right border. However, one
can make this intuitive approach precise by embedding the 2-category of terms into the free
2-category with adjoints it generates, which string diagrammatically corresponds to adding
the possibility of “bending wires”. The diagram on the left of (3.1) will thus be actually
formalized by a diagram such as the one on the right.

This section certainly constitutes the most novel part of the present paper. However,
the purpose of this article was to introduce the reader to the concept of higher-dimensional
rewriting theory, and to motivate the further developments which are described below. We
detail the construction of the multicategory of compact contexts generated by a 2-polygraph E
and show that the 2-category E∗ it generates can be embedded into it. We also describe
how this setting can be used in order to formulate a unification algorithm for 3-polygraphs.
A preliminary version of a formal exposition of these later works can be found in [31].

3.1. The multicategory of contexts. In order to formalize the notion of critical pair for a
3-polygraph, we need to first formalize the notion of context in the category E∗ generated by
a 2-polygraph E. This methodology can easily be generalized to n-polygraphs, but we only
describe it here in the case of dimension 3 for clarity. Intuitively, a context is a morphism
with multiple typed “holes” or “metavariables”. Since such a context can have multiple
inputs (i.e. multiple holes) and one output (the morphism resulting from filling the holes
with morphisms), the contexts are naturally structured as a multicategory [25].

Definition 3.1. A multicategory M (or colored operad) is given by

– a class M0 of objects,
– a class M1(A1, . . . , An;A) of n-ary operations for every objects A1, . . . , An and A, we

write f : A1, . . . , An → A to indicate that f ∈M1(A1, . . . , An;A),
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– a composition function which to every family of operations fi : A1
i , . . . , A

ki
i → Ai, with

1 6 i 6 n, and f : A1, . . . , An → A, associates a composite operation

f ◦ (f1, . . . , fn) : A1
1, . . . , A

k1
1 , . . . , A

1
n, . . . , A

kn
n → A

that we often simply write f(f1, . . . , fn),
– an operation idA : A→ A, called identity, for every object A,

such that

– composition is associative:

f ◦
(
f1 ◦ (f1

1 , . . . , f
k1
1 ), . . . , fn ◦ (f1

n, . . . , f
kn
n )
)

= (f ◦ (f1, . . . , fn)) ◦ (f1, . . . , f
k1
1 , . . . , f1

n, . . . , f
kn
n )

for every choice of operations f , fi and f ji for which the compositions make sense,
– identities are neutral elements for composition: for every f : A1, . . . , An → A, we have
f ◦ (idA, . . . , idA) = f .

A symmetric multicategory is a multicategory M together with a bijection between the
classes M(A1, . . . , An;A) and M(Aσ(1), . . . , Aσ(n);A) of operations, for every permutation
σ : n→ n, these bijections having to satisfy some coherence axioms that will be omitted
here.

Suppose given a 2-polygraph E. Given a pair of 0-cells A,B ∈ E∗0 and a pair of parallel
1-cells f, g : A→ B in E∗1 , we write E[f ⇒ g] for the polygraph obtained from E by adding a
new 2-generator X : f ⇒ g, i.e. (E[f ⇒ g])2 = E2]{X}, such that s1(X) = f and t1(X) = g.
The 2-cells in E[f ⇒ g]∗ being obtained by tensoring and composing 2-generators in E2]{X},
they can be seen as terms in E∗ with a metavariable X of type f ⇒ g. In particular, any
morphism of E∗ can be seen as a morphism of E[f ⇒ g]∗ which does not use the metavariable
and we write If⇒g : E∗ → E[f ⇒ g]∗ for the corresponding inclusion functor.

By the universal property of the free 2-category E[f ⇒ g]∗ over the polygraph E[f ⇒ g],
for any 2-category D, functor F : E∗ → D and 2-cell α : F (f)⇒ F (g) of D, there exists a
unique functor F [α] : E[f ⇒ g]∗ → D such that

F [α] ◦ If⇒g = F and F (X) = α

where X is the newly added metavariable. A nice understanding of this can be given by
adopting a more abstract definition of polygraphs [14, 31], that we did not give here for the
sake of simplicity. As a particular case, substitution can be defined using this property: given
a 2-cell α : f ⇒ g in E∗2 , when D = E∗ and F : E∗ → E∗ is the identity functor Id, the image
of the image Id[α](β) of a 2-cell β : h⇒ i of E2[f ⇒ g]∗ is denoted by β[α], and corresponds
to the morphism obtained from β by replacing every instance of the metavariable X by α.

We more generally write E[f1 ⇒ g1, . . . , fn ⇒ gn] for (((E[f1 ⇒ g1]) . . .)[fn ⇒ gn]),
extend notation for substitution accordingly, and often write Xi for the newly introduced
variable of type fi ⇒ gi. If we fix an enumeration E2 = {α1, . . . , αn} of the 2-generators
of E, and write fi (resp. gi) for the source (resp. target) of αi, then the polygraph E is
isomorphic to E′[f1 ⇒ g1, . . . , fn ⇒ gn], where E′ is the 2-polygraph obtained from E by
removing all the 2-generators, i.e. E′2 = ∅. Now, given a fixed index k, we write φ : E2 → N
for the function such that ϕ(αi) = 0 if i 6= k, and ϕ(αk) = 1. If we write N for the 2-category
with one 0-cell, one 1-cell, and N as set of 2-cells with addition as vertical composition and 0
as vertical identity, and F : E′∗ → N for the only functor between the 2-categories E′∗
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and N , the deduced functor F [ϕ] : E∗ → N sends a 2-cell β to an integer, which is called
the weight of the 2-generator αk in β and written ‖β‖αk

. The weight ‖β‖α indicates the
number of times a 2-generator α of E occurs in a 2-cell β of E∗. Similarly, the size ‖β‖ of a
2-cell β is the number of 2-generators that it contains, i.e. ‖β‖ =

∑
α∈E2

‖β‖α.

Definition 3.2. The multicategory of contexts of a 2-polygraph E, denoted by KE , is the
symmetric multicategory whose

– objects are pairs of parallel 1-cells f and g of E∗, which are often written f ⇒ g,
– operations α : f1 ⇒ g1 , . . . , fn ⇒ gn → f ⇒ g are the 2-cells α of type f ⇒ g in
E[f1 ⇒ g1, . . . , fn ⇒ gn]∗ such that for every index i, ‖α‖Xi = 1, i.e. every metavariable
occurs exactly once in the morphism,

composition is induced by substitution as expected, the identity idf⇒g : f ⇒ g → f ⇒ g on
f ⇒ g is the variable X : f ⇒ g, and symmetry corresponds to renaming of variables.

Example 3.3. If we consider the 2-polygraph E of symmetries introduced in Example 2.19,
the morphism

(γ ⊗ id1) ◦ (id1 ⊗ γ) ◦ (id1 ⊗ (X2 ◦X1)⊗ id1) ◦ (id1 ⊗ γ) ◦ (γ ⊗ id1)

in E[1⇒ 1, 1⇒ 1] is a morphism in KE(1⇒ 1, 1⇒ 1; 3⇒ 3). Graphically,

γ

γ

X1

X2

γ

γ

In particular, if we restrict to unary operations (operations whose type is of the form
f1 ⇒ g1 → f ⇒ g) the structure of multicategory reduces to a structure of category of
contexts, which acts on the set of 2-cells of the 2-category E∗: if K : f1 ⇒ g1 → f ⇒ g
is a unary context, and α : f1 ⇒ g1 is a 2-cell of C, we often write K(α) : f ⇒ g for the
2-cell K[α] of C obtained from K by substituting the variable by α. More generally, a context
in a 3-polygraph is a context in the underlying 2-polygraph, and if K : f1 ⇒ g1 → f ⇒ g
is a context in a 3-polygraph and r : α V β : f1 ⇒ g1 is a 3-cell in the 3-category E∗, we
write K(r) : K(α) ⇒ K(β) : f ⇒ g for the obvious 3-cell obtained from r by composing
(in dimensions 0 and 1) with identity 2-cells. Notice also that the nullary operations are
precisely the 2-cells of E∗.

It is possible to more generally define a notion of multicategory of contexts KC of any
2-category C, which coincides with the previously given definition in the case where C is of
the form C = E∗ for some 2-polygraph E. We will only need to consider this last case in the
following, which is why we do not give the general definition.
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3.2. Critical pairs in 3-polygraphs. Suppose fixed a 3-polygraph E, freely generating a
3-category E∗. Two coinitial 3-cells

r1 : αV β1 : f ⇒ g : A→ B and r2 : αV β2 : f ⇒ g : A→ B

of this 3-category are joinable when there exists a 2-cell β : f ⇒ g and two 3-cells s1 : β1 V β
and s2 : β2 V β such that s1◦2r1 = s2◦2r2, where ◦2 denotes the composition in dimension 2:

α
r1

w�

r2

�'
β1

s1
�&

β2

s2
x�

β

Given a 3-generator r : α V β and two 2-cells α′ and β′, we write α′ VK,r β′, when
there exists a unary context K such that K(α) = α′ and K(β) = β′. A polygraph is
locally confluent when for every cells such that α VK1,r1 β1 and α VK2,r2 β2, the two
3-cells K1(r1) and K2(r2) are joinable. It is terminating when there is no infinite sequence
α1 VK1,r1 α2 VK2,r2 . . .

The Newman lemma is valid in this framework [14]:

Lemma 3.4. A terminating polygraph is confluent if and only if it is locally confluent.

In some simple cases, termination of polygraphs can be deduced from the fact that all
the rules make the size of morphisms decrease:

Lemma 3.5. If E is a 3-polygraph such that for every 3-generator r : α V β we have
‖α‖ > ‖β‖, then E is terminating.

This simple criterion for showing the termination of a polygraph is often too weak. More
elaborate termination orders for 3-polygraphs have been studied by Guiraud [11]. In this
paper, we are mostly interested in studying local confluence of polygraphs and will not detail
those. The usual notion of critical pair can be extended to the setting of 3-polygraphs as
follows.

Definition 3.6. A unifier of a pair of 2-cells

α1 : f1 ⇒ g1 and α2 : f2 ⇒ g2

in a 2-category C consists of a pair of cofinal unary contexts

K1 : f1 ⇒ g1 → f ⇒ g and K2 : f2 ⇒ g2 → f ⇒ g

such that K1(α1) = K2(α2). A unifier is most general when it is

– non-trivial : there is no binary context

K : f1 ⇒ g1, f2 ⇒ g2 → f ⇒ h

such that
K1 = K ◦ (idf1⇒g1 , α2) and K2 = K ◦ (α1, idf2⇒g2)

– minimal : for every unifier (K ′1,K
′
2) of α1 and α2 such that K1 = K ′′1 ◦K ′1 and K2 = K ′′2 ◦K ′2

for some contexts K ′′1 and K ′′2 , the unary contexts K ′′1 and K ′′2 are invertible.
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Definition 3.7. A critical pair (K1, r1,K2, r2) in a 3-polygraph S consists of a pair of
3-generators

r1 : α1 V β1 : f1 ⇒ g1 and r2 : α2 V β2 : f2 ⇒ g2

and a most general unifier

K1 : f1 ⇒ g1 → f ⇒ g and K2 : f2 ⇒ g2 → f ⇒ g

of α1 and α2. We sometimes say that the 2-cell α = K1(α1) = K2(α2) is a critical pair, by
abuse of language.

Example 3.8. Consider the 3-polygraph E presenting the simplicial category ∆ introduced
in Example 2.18. The morphisms

η η

µ µ

η η

µ

µ

are unifiers of the rules l and r which are not most general because they are respectively
trivial and not minimal. The critical pairs (and thus the most general unifiers) have been
described in Example 2.18.

3.3. Compact 2-categories. As explained in the introduction of the present section, our
aim is intuitively to be able to consider diagrams such as the one on the left of (3.1)
as morphisms. Here, we achieve this by embedding the 2-category E∗ generated by a
polygraph E into the compact 2-category it freely generates. In these categories, every
1-cell admits both a left and right adjoint, which graphically essentially amounts to have the
possibility to bend wires as in the right of (3.1).

The notion of adjunction in the 2-category Cat of categories, functors and natural
transformations can be generalized to any 2-category C as follows [21]. A 1-cell f : A→ B is
left adjoint to a 1-cell g : B → A (or g is right adjoint to f), that we will write f a g, when
there exist two 2-cells η : idA ⇒ f ⊗ g and ε : g ⊗ f ⇒ idB, called respectively the unit and
the counit of the adjunction and depicted respectively by

f g

g f

such that (f ⊗ ε) ◦ (η ⊗ f) = idf and (ε⊗ g) ◦ (g ⊗ η) = idg. These equations are called the
zig-zag laws because of their graphical representation:

f

f

=

f

f

g

g

=

g

g
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The notion of 2-category with adjoints was studied in the case of symmetric monoidal
categories [20] (where they are called compact closed categories), monoidal categories [18]
(where they are called autonomous categories), as well as other variants such as spherical
categories [3]; see [34] for a concise presentation of those.

Definition 3.9. A 2-category is compact when every 1-cell admits both a left and a right
adjoint. A strictly compact 2-category is a compact 2-category in which every 1-cell f : A→ B
has an assigned left adjoint f−1 : B → A and an assigned right adjoint f+1 : B → A. We
write η+

f and ε+
f (resp. η−f and ε−f ) for the unit and the counit of the adjunction f a f+1

(resp. f−1 a f). The following coherence axioms should moreover be satisfied:

– for every pair of composable 1-cells f and g,

(f ⊗ g)−1 = g−1 ⊗ f−1 (f ⊗ g)+1 = g+1 ⊗ f+1

and
η+
f⊗g = (f ⊗ η+

g ⊗ f+1) ◦ η+
f ε+

f⊗g = ε+
g ◦ (g+1 ⊗ ε+

f ⊗ g)

and
η−f⊗g = (g−1 ⊗ η−f ⊗ g) ◦ η−g ε−f⊗g = ε−f ◦ (f ⊗ ε−g ⊗ f−1)

– for every 0-cell A,
id−1
A = idA = id+1

A

and
η+

idA
= idA = ε+

idA
η−idA

= idA = ε−idA

– for every 1-cell f ,
(f+1)−1 = f = (f−1)+1

and
η+
f−1 = η−f ε+

f−1 = ε−f η−
f+1 = η+

f ε−
f+1 = ε+

f

For any 1-cell f : A→ B in a strictly compact 2-category and integer n, the morphism fn

denotes the morphism defined by f0 = f , fn+1 = (fn)+1 and fn−1 = (fn)−1. We also
simply write ηf : B ⇒ f−1 ⊗ f and εf : f ⊗ f−1 ⇒ A for the unit and the counit of the
adjunction between f−1 and f .

In the following, we suppose for simplicity that all the compact categories we consider
are equipped with a structure of strictly compact category. This is not restrictive since
every compact 2-category can be shown to be equivalent to a strict one using an argument
similar to the coherence theorem for compact closed categories [20]. The category of compact
categories is denoted by CCat2.

3.4. Embedding 2-categories into compact 2-categories. There is an obvious forgetful
functor from the category of compact 2-categories to the category of 2-categories, and this
forgetful functor admits a left adjoint. We write AC for the free compact 2-category on a
2-category C (the A here stands for “adjoints”). The construction of this free 2-category is
detailed in [33] and consists essentially in adapting the work of Kelly and Laplaza on compact
closed categories [20] to monoidal categories which are not supposed to be symmetric. We
recall briefly this construction here.

The underlying category of a compact 2-category is naturally equipped with a structure
of “category with formal adjoints” in the following sense:
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Definition 3.10. A category with formal adjoints (C, (−)−1, (−)+1) is a category together
with two functors

(−)−1 : C → Cop and (−)+1 : Cop → C
such that ((−)−1)+1 = idC and ((−)+1)−1 = idCop .

Given a 2-category C, with C|1 as underlying category, the underlying category of AC
is the free category with formal adjoints on C|1. More concretely, this category is the free
category on the graph whose objects are the objects of C|1 as objects and whose arrows
fn : A → B are pairs constituted of an integer n ∈ Z, called a winding number, and a
morphism f : A → B in C if n is even (resp. a morphism f : B → A in C if n is odd),
quotiented by the following equalities:

– for every pair of composable morphisms fn and gn,

fn ⊗ gn =

{
(f ⊗ g)n if n is even

(g ⊗ f)n if n is odd

– for every object A,
(idA)n = idA

The 2-cells of AC are formal vertical and horizontal composites of

– α0 : f0 ⇒ g0, where α : f ⇒ g is a 2-cell of C,
– ηfn : idB ⇒ fn−1 ⊗ fn, for every 1-cell fn : A→ B,
– εfn : fn ⊗ fn−1 ⇒ idA, for every 1-cell fn : A→ B,

quotiented by

– the axioms of 2-categories (see Definition 1.3),
– for every pair of vertically composable 2-cells α0 and β0,

β0 ◦ α0 = (β ◦ α)0

– for every 1-cell f0,
idf0 = (idf )0

– for every pair of horizontally composable 2-cells α0 and β0,

α0 ⊗ β0 = (α⊗ β)0

– for every 1-cell fn,

(fn−1 ⊗ εfn) ◦ (ηfn ⊗ fn−1) = fn−1 and (εfn ⊗ fn) ◦ (fn ⊗ ηfn) = fn

Graphically, if we write respectively

f0

A α B

g0

B B
A

fn−1 fn

fn fn−1

B
A A
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for α0 : f0 ⇒ g0 : A→ B, ηfn and εfn (where fn : A→ B), the four last equalities can be
pictured as follows

f0

α

A B

β

h0

=

f0

A β ◦ α B

h0

f0

A idf B

f0

=

f0

A B

f0

f0 h0

A α B β C

g0 i0

=

f0 h0

A α⊗ β C

g0 i0

fn−1

B A

fn−1

=

fn−1

B A

fn−1

fn

A B

fn

=

fn

A B

fn

The string diagrams for compact categories are studied in [19].

Remark 3.11. If C is the 2-category E∗ generated by a 2-polygraph E, the compact
2-category AC is presented by the 3-polygraph F such that

– F0 = E0

– F1 = { fn | f ∈ E1, n ∈ Z }
– F2 = { α0 | α ∈ E2 } ] { ηfn , εfn | fn ∈ F1 }
– F3 = { lfn , rfn | fn ∈ F1 }
with

lfn : (fn−1 ⊗ εfn) ◦ (ηfn ⊗ fn−1) V fn−1

rfn : (εfn ⊗ fn) ◦ (fn ⊗ ηfn) V fn

and other cells have the obvious source and target. By Lemma 3.5, the polygraph F is
terminating and by Lemma 3.4 it is confluent since all its critical pairs, which are of the
form

B B

fn−1 A fn

and

fn B fn−1

A A

for some 1-cell fn, are joinable.
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Lemma 3.12. With the notations of the preceding remark, if f1, . . . , fm and g1, . . . , gn are
parallel lists of composable morphisms of E∗, then the 2-cells

α : f0
1 ⊗ . . .⊗ f0

m ⇒ g0
1 ⊗ . . .⊗ g0

n

in the underlying 2-category of F which are normal forms (with respect to the rewriting rules
of F ) do not contain any 2-generator ηfk or εfk .

Proof. It is easy to show that a 2-cell α in F ∗ can be written as a composite of morphisms
of the form idg ⊗ β⊗ idh where β is either a 2-cell of C or a morphism of the form ηfk or εfk
(see for example [22]). Suppose that α contains a 2-generator of the form εfk with k > 0. It
can therefore be written as a composite of the form

0 0
. . .

α1

. . .
fk fk−1

. . .εfk

α2

. . .
0 0

The 2-cells α1 and α2 are noted with boxes for clarity and 0 stands for a 1-cell whose winding
number is 0. Since the only generators whose target contain a 1-cell of the form fk are ηk
and ηk+1, the 2-cell α1 is necessarily of one of the three following forms:

0 0 fk 0 0
. . . . . .

α3 α4

. . . . . .
fk

or

0 0
. . .

α5

. . . ηfk . . .

fk−1

α3 α4

. . . . . .
fk

or

0 0
. . .

α5

. . . ηfk+1 . . .

fk+1

α3 α4

. . . . . .
fk

The first case is impossible since k > 0 and we have supposed that all the winding numbers
of the 1-generators occurring in the source of α are 0. The second case is not possible either
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since the morphism α would not be a normal form (the rule lfk−1 could be applied), and the
2-cell α thus contains a 2-generator ηfk+1 . By using a similar argument, α also contains the
2-generator εfk+2 . So, by induction, the 2-cell α would contain all the 2-generators εfk+2i

with i ∈ N and would therefore be a composite of an infinite number of generators. This is
absurd since the 2-cells in F ∗ are inductively generated. We deduce that α does not contain
a 2-generator of the form εfk with k > 0. Similarly, it does not contain a 2-generator ηfk
with k > 0. The cases where k 6 0 are also similar (we construct an infinite sequence of
generators that α would contain, with strictly decreasing winding numbers).

From this, we can deduce that the 2-cells

α : f0
1 ⊗ . . .⊗ f0

m ⇒ g0
1 ⊗ . . .⊗ g0

n

in F ∗ are in bijection with the 2-cells

α : f1 ⊗ . . .⊗ fm ⇒ g1 ⊗ . . .⊗ gn
of C, which shows that the embedding of E∗ into F ∗ is full and faithful (this embedding
is the functor defined as the identity on objects, as f 7→ f0 on 1-cells and as α 7→ α0 on
2-cells). A 2-cell α whose source and target is of the form above is called regular (the regular
2-cells are thus those which are in the image of the embedding). The argument can easily
be generalized to any category C, not necessarily generated by a 2-polygraph (but we will
only make use of the case proved in previous lemma):

Proposition 3.13. The components ηC : C → AC of the unit of the adjunction between
2-categories and compact 2-categories are full and faithful.

This means that given two 0-cells A and B of C, the hom-categories C(A,B) and AC(A,B)
are isomorphic in a coherent way. The 2-category AC thus provides a “larger world” in
which we can embed the 2-category C without losing information.

An interesting observation about compact 2-categories is that, in those, the distinction
between the source and the target of a 1-cell is quite “artificial”. This is formalized by the
following proposition.

Proposition 3.14. If C is a compact 2-category, the sets

Hom(f ⊗ g, h) ∼= Hom(g, f−1 ⊗ h)

are naturally isomorphic by the function

α 7→ (f−1 ⊗ α) ◦ (ηf ⊗ g)

Graphically,

f

B

g

A α C

h

7→

B g

A α C

f−1 h

Similarly, the sets
Hom(f ⊗ g, h) ∼= Hom(f, h⊗ g1)
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are naturally isomorphic by the function

α 7→ (α⊗ g1) ◦ (f ⊗ ηg1)

These bijections are called rotations.

In particular, for any pair of 1-cells f, g : A → B, the set Hom(f, g) is isomorphic to
Hom(idB, f

−1 ⊗ g) and to Hom(f ⊗ g−1, idA). This shows that the notion of “input” and
“output” of 2-cells is fairly artificial in compact 2-categories. Actually, based on these ideas,
it is possible to reformulate equivalently the notion of compact 2-category in a way such
that 2-cells only have one “border” instead of having both a source and a target. We have
called the resulting notion a rotative 2-category, details can be found in [31].

Proposition 3.13 provides us with a full and faithful embedding C → AC of a 2-category C
into the compact 2-category that it freely generates. The interest of this embedding is that
there are “extra morphisms” in AC that can be used to represent “partial compositions” in C.
For example, consider two 2-cells α : f ⇒ f1 ⊗ g ⊗ f2 and β : h1 ⊗ g ⊗ h2 ⇒ h in C. These
can be seen as the morphisms of AC depicted on the left of (3.2) by the previous embedding.

f0

α0

f01 g0 f02

h01 g0 h02

β0

h0

f0

α0

β0

f01 h−1
1 h0 h12 f02

f0

α0

f01 f02

h01 h02

β0

h0

(3.2)
From these two morphisms, the morphism α⊗g β : f0 ⇒ f0

1 ⊗ h−1
1 ⊗ h0 ⊗ h1

2 ⊗ f0
2 , depicted

in the center right of (3.2), can be constructed. This morphism represents the partial
composition of the 2-cells α and β on the 1-cell g: up to rotations, this 2-cell is fundamentally
a way to give a precise meaning to the diagram depicted on the right of (3.2).

3.5. Compact polygraphs. The notion of compact 2-polygraph E is defined as in (1.13),
where E∗1 is now the set of morphisms of the free category with formal adjoints on the
graph (1.1), and E∗2 is the set of 2-cells of the free compact 2-category with the previously
generated category as underlying category with formal adjoints. We write CPol2 for the
category of compact 2-polygraphs.

Similarly, the construction of the multicategory of contexts given in Section 3.1 can be
straightforwardly adapted to compact polygraphs. Given a compact 2-polygraph E, we still
write KE for the multicategory thus generated, whose operations are then called compact
contexts. The setting of compact contexts provides a generalization of partial composition
by allowing a “partial composition of a morphism with itself”. Namely, from a context
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α : (. . . , (fi, gi), . . .)→ (f, g1 ⊗ h⊗ g0) with f : A→ A and h : B → B one can build the
context

ε0
g ◦ (g1 ⊗X ⊗ g0) ◦ α : (. . . , (fi, gi), . . . , (h, idB)) → (f, idA)

where X : h→ idB is a fresh variable. Graphically,

f

α

g1 h g0

X

This operation amounts to merging the outputs of type g1 and g0 of α, thus creating a
“hole” which is formally taken in account as a metavariable in the multicategory of compact
contexts.

3.6. Towards a unification algorithm for 3-polygraphs. Using the partial composi-
tion and merging operations defined above, it is possible to formulate an algorithm for
computing critical pairs in a 3-polygraph, which will proceed as follows. Suppose given a
3-polygraph E. This polygraph generates a 3-category E∗ whose underlying 2-category is
written C (the 2-category C is freely generated by the underlying 2-polygraph E|2 of E).
The 2-category C can be fully and faithfully embedded into the free compact 2-category AC
it generates (Proposition 3.13). In turn, this compact 2-category generates a multicategory
of contexts KAC in which it can be embedded (any 2-cell of AC can be seen as a nullary
context in KAC). Given two rewriting rules

r′ : α′ V β′ : f ′ ⇒ g′ and r′′ : α′′ V β′′ : f ′′ ⇒ g′′

the two 2-cells α′ : f ′ ⇒ g′ and α′′ : f ′′ ⇒ g′′ in C can be seen as 2-cells α′0 : f ′0 ⇒ g′0

and α′′0 : f ′′0 ⇒ g′′0 in AC , which in turn can be seen as nullary contexts in KAC (; f ′0 ⇒ g′0)
and KAC(; f ′′0 ⇒ g′′0) respectively. Our algorithm will compute a unifier of those in the
category of compact contexts, consisting of a pair

K ′ : f ′0 ⇒ g′0, f1 ⇒ g1, . . . , fn ⇒ gn → f ⇒ g

and
K ′′ : f ′′0 ⇒ g′′0, f1 ⇒ g1, . . . , fn ⇒ gn → f ⇒ g

of compact contexts such that

K ′(α′0, idf1⇒g1 , . . . , idfn⇒gn) = K ′′(α′′0, idf1⇒g1 , . . . , idfn⇒gn) (3.3)

which is minimal and non-trivial (in a sense similar to Definition 3.6), up to the symmetry
of the multicategory and rotations. Notice that the usual critical pairs in 3-polygraphs
having 2-generators of arity 1 (e.g. the polygraph of monoids given in Example 2.18) are
recovered as the particular case where the unifiers are such that n = 0 (there is no hole in
the unifier) and the morphism (3.3) is regular, i.e. the morphism (3.3) is in the image of the
embedding of C into KAC . When it is not the case, all the unifiers of α′ and α′′ (in the sense
of Definition 3.6) can be recovered as the contexts of the form

K ◦K ′(idf ′⇒g′ , α1, . . . , αn) and K ◦K ′(idf ′′⇒g′′ , α1, . . . , αn)
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where the αi are morphisms in AC seen as nullary compact contexts and K is a unary
regular compact context. In this sense, the critical pairs in the category of compact contexts
generate all the unifiers in the usual sense, and have the advantage of always being finite in
number for a finite polygraph.

A concrete description of the algorithm is out of the scope of this paper since it requires
the elaboration of an explicit representation of the morphisms in the 2-category E∗ generated
by a 2-polygraph E [30, 31]: up to now we have defined these morphisms using an abstract
universal construction (see Section 1.2.3) however a more concrete representation is needed in
order manipulate them algorithmically. Such a representation was developed by the author,
by describing the 2-cells in E∗ themselves as polygraphs labeled by E (i.e. objects in the slice
category Pol2 ↓E) up to isomorphism. For example, if E is the 2-polygraph corresponding
to the signature of monoids defined in Example 2.18, the morphism µ ◦ (µ ⊗ id1) can be
represented by the polygraph M such that

M0 = {1, 2, 3, 4} M1 = {5 : 1→ 2, 6 : 2→ 3, 7 : 3→ 4, 8 : 1→ 3, 9 : 1→ 4}
and

M2 = {10 : 5⊗ 6⇒ 8, 11 : 8⊗ 7⇒ 9}
(we have chosen to number the generators in an arbitrary order) labeled by the morphism of
polygraphs λ : M → E such that all the 0-, 1- and 2-generators are labeled by ∗, 1 and µ
respectively. Graphically, this corresponds to give different names (or numbers in this case)
to the various instances of generators used to build the morphism:

15 16 17∗2 ∗3
µ10

18∗1 µ11 ∗4

19

Of course, the naming of generators is not canonical which explains why we have to consider
these labeled polygraphs up to isomorphism (this can be seen as some form of α-conversion).
The precise description of this 2-category can be achieved by constructing a structure of
monoidal globular category [4] on the globular category of polygraphs. This will be presented
in detail in further work.

We shall only illustrate how our algorithm works, by giving an example. Consider a
3-polygraph E with one 0-generator ∗, one 1-generator 1 : ∗ → ∗, three 2-cells δ : 1 → 4,
µ : 4→ 1 and σ : 1→ 1 (where 4 denotes 1⊗1⊗1⊗1) and two rewriting rules (3-generators)
whose left members are respectively α = ς ◦ δ and β = µ ◦ ς, where ς = σ ⊗ σ ⊗ σ ⊗ σ,
i.e. string diagrammatically

δ

σ σ σ σ

σ σ σ σ

µ
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The algorithm for unifying these two morphisms will go on as follows. It is non-deterministic
and all the unifiers of the two morphisms (possibly with duplicates) will be obtained as
the collection of all the results of non-failed execution branches the algorithm. It starts
by choosing a 2-generator in each of the morphisms (the gray-colored ones in the diagram
above), and then it will progressively attach new cells to the left one, or link wires together so
that it becomes a most general unifier. If the two chosen 2-generators are not the same then
the algorithm fails (here it does not because both are σ). Since the σ generator selected on
the morphism on the left is linked with a µ generator, the algorithm will start by adding a µ
generator to the morphism on the left and doing a partial composition with it, as shown on
the left of (3.4). The unification is then propagated: the µ generator in the morphism on the
right is connected with four σ generators. The algorithm will non-deterministically choose
one which has not already been unified and will propagate the unification. For example, if
the third σ from the left is selected, the morphism in the middle of (3.4) might be obtained
by adding a new σ generator to the morphism. Non-deterministically, instead of adding
a new generator, the algorithm might choose to merge (using the operation described at
the end of Section 3.5) two inputs or outputs of the morphisms and the morphism on the
right of (3.4) might be obtained as well (in this case a new hole is added to the unifier being
constructed).

δ

σ σ σ σ

µ

δ

σ σ σ σ

σ

µ

δ

σ σ σ σ

µ

(3.4)

Finally, by fully executing the algorithm, the three morphisms below will be obtained as
unifiers (as well as many others).

δ

σ σ σ

σ

σ σ σ

δ

δ

σ σ

σ σ

σ σ

δ

δ

σ σ σ

σ

σ σ

δ

It can be shown that the algorithm terminates and generates all the critical pairs in
compact contexts, and these are in finite number. It is important to notice that the algorithm
generates the critical pairs of a rewriting system R in the “bigger world” of compact contexts,
from which we can generate the critical pairs in the 2-category generated by R (which are
not necessarily in finite number as explained in the introduction). If joinability of the critical
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pairs in compact contexts implies that the rewriting system is confluent, the converse is
unfortunately not true: a similar situation is well known in the study of λ-calculus with
explicit substitutions, where a rewriting system might be confluent without being confluent
on terms with metavariables.

We have done a toy implementation of the algorithm in less than 2000 lines of OCaml,
with which we have been able to successfully recover the critical pairs of rewriting systems
in [22]. Even though we did not particularly focus on efficiency, the execution times are
good, typically less than a second, because the morphisms involved in polygraphic rewriting
systems are usually small (but they can generate a large number of critical pairs). We thus
have hope to be able to build efficient tools in order to help dealing with large algebraic
structures.

4. Future work

We have tried gradually to expose the notion of higher-dimensional rewriting system and to
connect it with the well known and well studied special cases of string and term rewriting
system. We have also introduced the notion of multicategory of compact contexts generated
by a 2-polygraph, which lays the theoretical foundations for unification in polygraphic
2-dimensional rewriting systems. This leaves many research tracks open for future work,
some of which are detailed below.

4.1. A 2-dimensional unification algorithm. We have hinted in Section 3.6 how the
theoretical tools introduced in this article can be used to formulate a unification algorithm
for 3-polygraphs. This algorithm will be described and proven correct in detail in subsequent
work [31]. In particular, we plan to study the precise links between our algorithm and
the usual unification for term rewriting systems, as well as algorithms for (planar) graph
rewriting.

4.2. Compact rewriting systems. The use of compact 2-categories seems to be very
promising, since it provides a bigger world in which unification is simple to handle (there
are a finite number of critical pairs in particular). Moreover, left and right members of
rules in polygraphic rewriting systems are morphisms in 2-categories, but we can extend the
framework to have “compact rewriting rules” whose left and right members are morphisms
in compact 2-categories. There is no known finite convergent polygraphic rewriting system
presenting the category Rel of finite sets and relations [22] (which corresponds to the theory
of qualitative bicommutative bialgebras [29]). We conjecture that such a system does not
exist. However, we believe that it would be possible to have a finite convergent compact
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polygraphic rewriting system containing rules such as

γ

δ

µ

γ

V

δ

γ

γ

µ

where γ is the generator for the symmetry, δ is the comultiplication and µ is the multiplication.
We plan to use our unification algorithm in order to define and study such a rewriting
system. It would also be interesting to adapt the techniques developed by Guiraud to show
termination of polygraphic systems [11].

4.3. Parametric polygraphs. In order to describe those free compact 2-categories, we
had to modify the definition of the notion of polygraph by replacing the free category
construction by a free category with formal adjoints construction, and the free 2-category
construction by a free compact 2-category construction. This suggests that it might be
interesting to investigate a more modular notion of polygraph, parametrized by a series of
adjunctions, which could be used to generate free n-categories with properties (e.g. compact
categories, groupoids, etc.).

4.4. Towards higher dimensions. Since the notion of polygraphic rewriting system can
be generalized to any dimension, we would like to also have a generalization of rewriting
theory to higher dimensions using polygraphic rewriting systems. This would require a more
abstract and general formulation of the unification techniques that are used here, in order
to be able to extend them easily to higher dimensions.

4.5. Practical uses of this work. In some sense, our work can be considered as an
algebraic study of the notion of a bunch of operators linked by planar wires. We believe
that this point of view should be taken seriously and we plan to investigate a possible
application of the polygraphic rewriting techniques to electronic circuits. This could provide
a nice theoretical framework in which we could express and study optimization of integrated
circuits. Another field of application should be the design of an optimizing language for
digital signal processing. Sound effects are often described by diagrammatic notation which
is very close to the string-diagrammatic notation for morphisms in 2-categories generated by
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2-polygraphs. For instance an echo operator is often pictured as

+ d

×a

where + adds to signals, ×a amplifies the signal by a coefficient a < 1 and d delays the signal
for d seconds: the echo is obtained by adding the signal d seconds before, at a lower volume,
to the current signal. The rewriting techniques offered by polygraphs could therefore be
used in order to optimize those circuits using 3-dimensional rewriting systems.
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