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Abstract. We study an alternative model of infinitary term rewriting. Instead of a
metric on terms, a partial order on partial terms is employed to formalise convergence of
reductions. We consider both a weak and a strong notion of convergence and show that
the metric model of convergence coincides with the partial order model restricted to total
terms. Hence, partial order convergence constitutes a conservative extension of metric
convergence, which additionally offers a fine-grained distinction between different levels of
divergence.

In the second part, we focus our investigation on strong convergence of orthogonal
systems. The main result is that the gap between the metric model and the partial order
model can be bridged by extending the term rewriting system by additional rules. These
extensions are the well-known Böhm extensions. Based on this result, we are able to
establish that – contrary to the metric setting – orthogonal systems are both infinitarily
confluent and infinitarily normalising in the partial order setting. The unique infinitary
normal forms that the partial order model admits are Böhm trees.

Introduction

Infinitary term rewriting [14] extends the theory of term rewriting by giving a meaning to
transfinite rewriting sequences. Its formalisation [9] is chiefly based on the metric space of
terms as studied by Arnold and Nivat [2]. Other models for transfinite reductions, using
for example general topological spaces [22] or partial orders [7, 6], were mainly considered
to pursue quite specific purposes and have not seen nearly as much attention as the metric
model. In this paper we introduce a novel foundation of infinitary term rewriting based on
the partially ordered set of partial terms [12]. We show that this model of infinitary term
rewriting is superior to the metric model. This assessment is supported by two findings:
First, the partial order model of infinitary term rewriting conservatively extends the metric
model. That is, anything that can be done in the metric model can be achieved in the partial
order model as well by simply restricting it to the set of total terms. Secondly, unlike the
metric model, the partial order model provides a fine-grained distinction between different
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levels of divergence and exhibits nice properties like infinitary confluence and normalisation
of orthogonal systems.

The defining core of a theory of infinitary term rewriting is its notion of convergence for
transfinite reductions: which transfinite reductions are “admissible” and what is their final
outcome. In this paper we study both variants of convergence that are usually considered in
the established theory of metric infinitary term rewriting: weak convergence [9] and strong
convergence [16]. For both variants we introduce a corresponding notion of convergence
based on the partially ordered set of partial terms.

The first part of this paper is concerned with comparing the metric model and the partial
order model both in their respective weak and strong variants. In both cases, the partial
order approach constitutes a conservative extension of the metric approach: a reduction
in the metric model is converging iff it is converging in the partial order model and only
contains total terms.

In the second part we focus on strong convergence in orthogonal systems. To this end
we reconsider the theory of meaningless terms of Kennaway et al. [17]. In particular, we
consider Böhm extensions. The Böhm extension of a term rewriting system adds rewrite
rules which admit contracting meaningless terms to ⊥. The central result of the second part
of this paper is that the additional rules in Böhm extensions close the gap between partial
order convergence and metric convergence. More precisely, we show that reachability w.r.t.
partial order convergence in a term rewriting system coincides with reachability w.r.t. metric
convergence in the corresponding Böhm extension.

From this result we can easily derive a number of properties for strong partial order
convergence in orthogonal systems:

• Infinitary confluence,
• infinitary normalisation, and
• compression, i.e. each reduction can be compressed to length at most ω

The first two properties exhibit another improvement over the metric model which does not
have either of these. Moreover, it means that each term has a unique infinitary normal form
– its Böhm tree.

The most important tool for establishing these results is provided by a notion of complete
developments that we have transferred from the metric approach to infinitary rewriting [16].
We show, that the final outcome of a complete development is unique and that, in contrast
to the metric model, the partial order model admits complete developments for any set of
redex occurrences. To this end, we use a technique similar to paths and finite jumps known
from metric infinitary term rewriting [14, 21].

Outline. After providing the basic preliminaries for this paper in Section 1, we will briefly
recapitulate the metric model of infinitary term rewriting including meaningless terms and
Böhm extensions in Section 2. In Section 3, we introduce our novel approach to infinitary
term rewriting based on the partial order on terms. In Section 4, we compare both models
and establish that the partial order model provides a conservative extension of the metric
model. In the remaining part of this paper, we focus on the strong notion of convergence.
In Section 5, we establish a theory of complete developments in the setting of partial order
convergence. This is then used in Section 6 to prove the equality of reachability w.r.t. partial
order convergence and reachability w.r.t. metric convergence in the Böhm extension. Finally,
we evaluate our results and point to interesting open questions in Section 7.
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1. Preliminaries

We assume the reader to be familiar with the basic theory of ordinal numbers, orders and
topological spaces [13], as well as term rewriting [24]. In the following, we briefly recall the
most important notions.

1.1. Transfinite Sequences. We use α, β, γ, λ, ι to denote ordinal numbers. A transfinite

sequence (or simply called sequence) S of length α in a set A, written (aι)ι<α, is a function
from α to A with ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α is a limit
ordinal, then S is called open. Otherwise, it is called closed. If α is a finite ordinal, then S
is called finite. Otherwise, it is called infinite. For a finite sequence (ai)i<n or a sequence
(ai)i<ω of length ω, we also use the notation 〈a0, a1, . . . , an−1〉 respectively 〈a0, a1, . . .〉. In
particular, 〈〉 denotes an empty sequence.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β with
cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper) prefix of a sequence T ,
denoted S ≤ T (resp. S < T ), if there is a (non-empty) sequence S′ with S · S′ = T . The
prefix of T of length β is denoted T |β . The binary relation ≤ forms a complete semilattice
(see Section 1.3 below). Similarly, a sequence S is a (proper) suffix of a sequence T if there
is a (non-empty) sequence S′ with S′ · S = T .

Let S = (aι)ι<α be a sequence. A sequence T = (bι)ι<β is called a subsequence of S if
there is a monotone function f : β → α such that bι = af(ι) for all ι < β. To indicate this,
we write S/f for the subsequence T . If f(ι) = f(0) + ι for all ι < β, then S/f is called
a segment of S. That is, T is a segment of S iff there are two sequences T1, T2 such that
S = T1 · T · T2. We write S|[β,γ) for the segment S/f , where f : α′ → α is the mapping
defined by f(ι) = β+ ι for all ι < α′, with α′ the unique ordinal with γ = β+α′. Note that
in particular S|[0,α) = S|α for each sequence S and ordinal α ≤ |S|.

1.2. Metric Spaces. A pair (M,d) is called a metric space if d : M × M → R
+
0 is a

function satisfying d(x, y) = 0 iff x = y (identity), d(x, y) = d(y, x) (symmetry), and
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality), for all x, y, z ∈ M . If d instead of the
triangle inequality, satisfies the stronger property d(x, z) ≤ max {d(x, y),d(y, z)} (strong
triangle), then (M,d) is called an ultrametric space. Let (aι)ι<α be a sequence in a metric
space (M,d). The sequence (aι)ι<α converges to an element a ∈ M , written limι→α aι, if,
for each ε ∈ R

+, there is a β < α such that d(a, aι) < ε for every β < ι < α; (aι)ι<α is
continuous if limι→λ aι = aλ for each limit ordinal λ < α. The sequence (aι)ι<α is called
Cauchy if, for any ε ∈ R

+, there is a β < α such that, for all β < ι < ι′ < α, we have that
d(mι,mι′) < ε. A metric space is called complete if each of its non-empty Cauchy sequences
converges.

1.3. Partial Orders. A partial order ≤ on a set A is a binary relation on A that is transitive,
reflexive, and antisymmetric. The pair (A,≤) is then called a partially ordered set. We use
< to denote the strict part of ≤, i.e. a < b iff a ≤ b and b 6≤ a. A sequence (aι)ι<α in
(A,≤) is called a (strict) chain if aι ≤ aγ (resp. aι < aγ) for all ι < γ < α. A subset D
of the underlying set A is called directed if it is non-empty and each pair of elements in D
has an upper bound in D. A partially ordered set (A,≤) is called a complete semilattice if
it has a least element, every directed subset D of A has a least upper bound (lub)

⊔
D, and

every subset of A having an upper bound also has a least upper bound. Hence, complete
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semilattices also admit a greatest lower bound (glb)
d

B for every non-empty subset B of A.
In particular, this means that for any non-empty sequence (aι)ι<α in a complete semilattice,

its limit inferior, defined by lim infι→α aι =
⊔

β<α

(d
β≤ι<α aι

)
, exists.

It is easy to see that the limit inferior of closed sequences is simply the last element of
the sequence. This is, however, only a special case of the following more general proposition:

Proposition 1.1 (invariance of the limit inferior). Let (aι)ι<α be a sequence in a complete

semilattice and (bι)ι<β a non-empty suffix of (aι)ι<α. Then lim infι→α aι = lim infι→β bι.

Proof. Let a = lim infι→α aι and b = lim infι→β bι. Since (bι)ι<β is a suffix of (aι)ι<α, there
is some δ < α such that bι = aδ+ι for all ι < β. Hence, we know that a =

⊔
γ<α

d
γ≤ι<α aι

and b =
⊔

δ≤γ<α

d
γ≤ι<α aι. Let cγ =

d
γ≤ι<α aι for each γ < α, A = {cγ | γ < α} and

B = {cγ | δ ≤ γ < α}. Note that a =
⊔

A and b =
⊔
B. Because B ⊆ A, we have that

b ≤ a. On the other hand, since cγ ≤ cγ′ for γ ≤ γ′, we find, for each cγ ∈ A, some cγ′ ∈ B
with cγ ≤ cγ′ . Hence, a ≤ b. Therefore, due to the antisymmetry of ≤, we can conclude
that a = b.

Note that the limit in a metric space has the same behaviour as the one for the limit
inferior described by the proposition above. However, one has to keep in mind that – unlike
the limit – the limit inferior is not invariant under taking cofinal subsequences!

With the prefix order ≤ on sequences we can generalise concatenation to arbitrary
sequences of sequences: Let (Sι)ι<α be a sequence of sequences in a common set. The
concatenation of (Sι)ι<α, written

∏
ι<α Sι, is recursively defined as the empty sequence 〈〉 if

α = 0,
(∏

ι<α′ Sι

)
· Sα′ if α = α′ +1, and

⊔
γ<α

∏
ι<γ Sι if α is a limit ordinal. For instance,

the concatenation
∏

i<ω〈i, i + 1〉 yields the sequence 〈0, 1, 1, 2, 2, . . .〉 of length ω, and the
concatenation

∏
ι<α〈ι〉, for any ordinal α, yields the sequence (ι)ι<α.

1.4. Terms. Unlike in the traditional – i.e. finitary – framework of term rewriting, we
consider the set T ∞(Σ,V) of infinitary terms (or simply terms) over some signature Σ and
a countably infinite set V of variables. A signature Σ is a countable set of symbols. Each
symbol f is associated with its arity ar(f) ∈ N, and we write Σ(n) for the set of symbols
in Σ which have arity n. The set T ∞(Σ,V) is defined as the greatest set T such that, for

each element t ∈ T , we either have t ∈ V or t = f(t0, . . . , tk−1), where f ∈ Σ(k), and

t0, . . . , tk−1 ∈ T . A symbol c ∈ Σ(0) of arity 0 is also called a constant symbol, and we use
the shorthand c to denote a term c(). We consider T ∞(Σ,V) as a superset of the set T (Σ,V)
of finite terms.

For each term t ∈ T ∞(Σ,V), we define the set of positions in t, denoted P(t), as the
smallest set of finite sequences in N such that 〈〉 ∈ P(t), and 〈i〉 · π ∈ P(t) whenever
t = f(t0, . . . , tk−1), i < k, and π ∈ P(ti). Given a position π ∈ P(t), we define the subterm

of t at π, denoted t|π, by recursion on π as follows: t|〈〉 = t, and f(t0, . . . , tk−1)|〈i〉·π = ti|π.
Moreover, we write t(π) for the symbol in t at π, i.e. t(π) = f if t|π = f(t0, . . . , tk−1) and
t(π) = v if t|π = v ∈ V. For terms s, t ∈ T ∞(Σ,V) and a position π ∈ P(t), we write t[s]π
for the term t with the subterm at π replaced by s, i.e.

t[s]〈〉 = s, and f(t0, . . . , tk−1)[s]〈i〉·π = f(t0, . . . , ti−1, ti[s]π, ti+1, . . . , tk−1).

Note that while the set of terms T ∞(Σ,V) is defined coinductively, the set of positions of a
term is defined inductively. Consequently, the subterm at a position and substitution at a
position are defined by recursion.



PARTIAL ORDER INFINITARY TERM REWRITING 5

Two terms s and t are said to coincide in a set of positions P ⊆ P(s)∩P(t) if s(π) = t(π)
for all π ∈ P . A position is also called an occurrence if the focus lies on the subterm at that
position rather than the position itself. Two positions π1, π2 are called disjoint if neither
π1 ≤ π2 nor π2 ≤ π1.

A context is a “term with holes”, which are represented by a distinguished variable �.
We write C[, . . . , ] for a context with at least one occurrence of �, and C〈, . . . , 〉 for a context
with zero more occurrences of �. C[t1, . . . , tn] denotes the result of replacing the occurrences
of � in C (from left to right) by t1, . . . , tn. C〈t1, . . . , tn〉 is defined accordingly.

A substitution σ is a mapping from V to T ∞(Σ,V). Its domain, denoted dom(σ), is the
set {x ∈ V | σ(x) 6= x} of variables not mapped to itself by σ. Substitutions are uniquely
extended to functions from T ∞(Σ,V) to T ∞(Σ,V): σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn))

for f ∈ Σ(n) and t1, . . . , tn ∈ T
∞(Σ,V). Instead of σ(s), we shall also write sσ.

On T ∞(Σ,V) a similarity measure sim(·, ·) ∈ N ∪ {∞} can be defined by setting

sim(s, t) = min {|π| | π ∈ P(s) ∩ P(t), s(π) 6= t(π)} ∪ {∞} for s, t ∈ T ∞(Σ,V)

That is, sim(s, t) is the minimal depth at which s and t differ, or ∞ if s = t. Based on

this, a distance function d can be defined by d(s, t) = 2−sim(s,t), where we interpret 2−∞

as 0. Note that 0 ≤ d(s, t) ≤ 1. In particular, d(s, t) = 0 iff s and t coincide, and
d(s, t) = 1 iff s and t differ at the root. The pair (T ∞(Σ,V),d) is known to form a complete
ultrametric space [2]. Partial terms, i.e. terms over signature Σ⊥ = Σ ⊎ {⊥} with ⊥ a fresh
constant symbol, can be endowed with a binary relation ≤⊥ by defining s ≤⊥ t iff s can be
obtained from t by replacing some subterm occurrences in t by ⊥. Interpreting the term ⊥
as denoting “undefined”, ≤⊥ can be read as “is less defined than”. The pair (T ∞(Σ⊥,V),≤⊥)
is known to form a complete semilattice [12]. For a partial term t ∈ T ∞(Σ⊥,V) we use the
notation P6⊥(t) and PΣ(t) for the set {π ∈ P(t) | t(π) 6= ⊥} of non-⊥ positions resp. the set
{π ∈ P(t) | t(π) ∈ Σ} of positions of function symbols. With this, ≤⊥ can be characterised
alternatively by s ≤⊥ t iff s(π) = t(π) for all π ∈ P6⊥(s). To explicitly distinguish them from
partial terms, we call terms in T ∞(Σ,V) total.

1.5. Term Rewriting Systems. A term rewriting system (TRS) R is a pair (Σ, R) consist-
ing of a signature Σ and a set R of term rewrite rules of the form l→ r with l ∈ T ∞(Σ,V)\V
and r ∈ T ∞(Σ,V) such that all variables occurring in r also occur in l. Note that this notion
of a TRS deviates slightly from the standard notion of TRSs in the literature on infinitary
rewriting [14] in that it allows infinite terms on the left-hand side of rewrite rules! This
generalisation will be necessary to accommodate Böhm extensions, which are introduced
later in Section 2.2. TRSs having only finite left-hand sides are called left-finite.

As in the finitary setting, every TRS R defines a rewrite relation →R:

s→R t ⇐⇒ ∃π ∈ P(s), l → r ∈ R,σ : s|π = lσ, t = s[rσ]π

Instead of s →R t, we sometimes write s→π,ρ t in order to indicate the applied rule ρ and
the position π, or simply s→ t. The subterm s|π is called a ρ-redex or simply redex, rσ its
contractum, and s|π is said to be contracted to rσ.

Let ρ : l → r be a term rewrite rule. The pattern of ρ is the context lσ, where σ is the
substitution {x 7→ � |x ∈ V } that maps all variables to �. If t is a ρ-redex, then the pattern
P of ρ is also called the redex pattern of t w.r.t. ρ. When referring to the occurrences in a
pattern, occurrences of the symbol � are neglected.
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Let ρ1 : l1 → r1, ρ2 : l2 → r2 be rules in a TRS R. The rules ρ1, ρ2 are said to overlap

if there is a non-variable position π in l1 such that l1|π and l2 are unifiable and π is not
the root position 〈〉 in case ρ1, ρ2 are renamed copies of the same rule. A TRS is called
non-overlapping if none of its rules overlap. A term t is called linear if each variable occurs
at most once in t. The TRS R is called left-linear if the left-hand side of every rule in R is
linear. It is called orthogonal if it is left-linear and non-overlapping.

2. Metric Infinitary Term Rewriting

In this section we briefly recall the metric model of infinitary term rewriting [16] and some
of its properties. We will use the metric model in two ways: Firstly, it will serve as a
yardstick to compare the partial order model to. But most importantly, we will use known
results for metric infinitary rewriting and transfer them to the partial order model. In
order to accomplish the latter, we shall develop correspondence theorems (Theorem 4.9
and Theorem 4.12) that relate convergence in the metric model and convergence in the
partial order model. Specifically, these correspondence results show that the two notions of
convergence coincide if we restrict ourselves to total terms.

At first we have to make clear what a reduction in our setting of infinitary rewriting is:

Definition 2.1 (reduction (step)). Let R be a TRS. A reduction step ϕ in R is a tuple
(s, π, ρ, t) such that s →π,ρ t; we also write ϕ : s →π,ρ t. A reduction S in R is a sequence
(ϕι)ι<α of reduction steps in R such that there is a sequence (tι)ι<α̂ of terms, with α̂ = α
if S is open and α̂ = α + 1 if S is closed, such that ϕι : tι → tι+1. If S is finite, we write
S : t0 →

∗ tα.

This definition of reductions is a straightforward generalisation of finite reductions. As
an example consider the TRS with the single rule a → f(a). In this system we get a
reduction S : a→∗ f(f(f(a))) of length 3:

S = 〈ϕ0 : a→ f(a), ϕ1 : f(a)→ f(f(a)), ϕ2 : f(f(a))→ f(f(f(a)))〉

In a more concise notation we write

S : a→ f(a)→ f(f(a))→ f(f(f(a)))

Clearly, we can extend this reduction arbitrarily often which results in the following infinite
reduction of length ω:

T : a→ f(a)→ f2(a)→ f3(a)→ f4(a)→ . . .

However, this is as far we can go with this simple definition of reductions. As soon as we go
beyond ω, we get reductions which do not make sense. For example, consider the following
reduction:

T · S : a→ f(a)→ f2(a)→ f3(a)→ f4(a)→ . . . a→ f(a)→ f(f(a))→ f(f(f(a)))

The reduction T of length ω can be extended by an arbitrary reduction, e.g. by the reduction
S. The notion of reductions according to Definition 2.1 is only meaningful if restricted to
reductions of length at most ω. The problem is that the ω-th step in the reduction, viz. the
second step of the form a → f(a) in the example above, is completely independent of all
previous steps since it does not have an immediate predecessor. This issue occurs at each
limit ordinal number. An appropriate definition of a reduction of length beyond ω requires
a notion of continuity to bridge the gaps that arise at limit ordinals. In the next section we
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will present the well-know metric approach to this. Later in Section 3, we will introduce a
novel approach using partial orders.

2.1. Metric Convergence. In this section we consider two notions of convergence based
on the metric on terms as defined in Section 1.4. We consider both the weak [9] and the
strong [16] variant known from the literature. Related to this notion of convergence is a
corresponding notion of continuity. In order to distinguish both from the partial order model
that we will introduce in Section 3 we will use the names weak resp. strong m-convergence

and weak resp. strong m-continuity.
It is important to understand that a reduction is a sequence of reduction steps rather

than just a sequence of terms. This is crucial for a proper definition of strong convergence
resp. continuity, which does not only depend on the sequence of terms that are derived within
the reduction but does also depend on the positions where the contractions take place:

Definition 2.2 (m-continuity/-convergence). LetR be a TRS and S = (ϕι : tι →πι tι+1)ι<α

a non-empty reduction in R. The reduction S is called

(i) weakly m-continuous in R, written S : t0 →֒
m

R . . . , if limι→λ tι = tλ for each limit
ordinal λ < α.

(ii) strongly m-continuous in R, written S : t0 ։
m

R . . . , if it is weakly m-continuous and
for each limit ordinal λ < α, the sequence (|πι|)ι<λ of contraction depths tends to
infinity.

(iii) weakly m-converging to t in R, written S : t0 →֒
m

R t, if it is weakly m-continuous and
t = limι→α̂ tι.

(iv) strongly m-converging to t in R, written S : t0 ։
m

R t, if it is strongly m-continuous,
weakly m-converges to t and, in case that S is open, (|πι|)ι<α tends to infinity.

Whenever S : t0 →֒
m

R t or S : t0 ։
m

R t, we say that t is weakly resp. strongly m-reachable

from t0 in R. By abuse of notation we use →֒m R and ։
m

R as a binary relation to indicate
weakly resp. strongly m-reachability. In order to indicate the length of S and the TRS R, we
write S : t0 →֒

m α
R t resp. S : t0 ։

m α
R t. The empty reduction 〈〉 is considered weakly/strongly

m-continuous and m-convergent for any identical start and end term, i.e. 〈〉 : t ։m R t for all
t ∈ T (Σ,V).

From the above definition it is clear that strong m-convergence implies both weak m-
convergence and strong m-continuity and that both weak m-convergence and strong m-
continuity imply weak m-continuity, respectively. This is indicated in Figure 1. It is im-
portant to recognise that m-convergence implies m-continuity. Hence, only meaningful, i.e.
m-continuous, reductions can be m-convergent.

For a reduction to be weakly m-continuous, each open proper prefix of the underlying
sequence (tι)ι<α̂ of terms must converge to the term following next in the sequence – or,
equivalently, (tι)ι<α̂ must be continuous. For strong m-continuity, additionally, the depth
at which contractions take place has to tend to infinity for each of the reduction’s open
proper prefixes. The convergence properties do only differ from the continuity properties
in that they require the above conditions to hold for all open prefixes, i.e. including the
whole reduction itself unless it is closed. For example, considering the rule a → f(a), the
reduction g(a) → g(f(a)) → g(f(f(a))) → . . . strongly m-converges to the infinite term
g(fω). The first step takes place at depth 1, the next step at depth 2 and so on. Having
the rule g(x) → g(f(x)) instead, the reduction g(a) → g(f(a)) → g(f(f(a))) → . . . is
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strong m-convergence

weak m-convergence strong m-continuity

weak m-continuity

Figure 1. Relation between continuity and convergence properties.

trivially strongly m-continuous but is now not strongly m-convergent since every step in
this reduction takes place at depth 0, i.e. the sequence of reduction depths does not tend to
infinity. However, the reduction still weakly m-converges to g(fω).

In contrast to the strong notions of continuity and convergence, the corresponding weak
variants are independent from the rules that are applied during the reduction. What makes
strong m-convergence (and -continuity) strong is the fact that it employs a conservative
overapproximation of the differences between consecutive terms in the reduction. For weak
m-convergence the distance d(tι, tι+1) between consecutive terms in a reduction (tι →πι

tι+1)ι<λ has to tend to 0. For strong m-convergence the depth |πι| of the reduction steps has

to tend to infinity. In other words, 2−|πι| has to tend to 0. Note that 2−|πι| is a conservative
overapproximation of d(tι, tι+1), i.e. 2−|πι| ≥ d(tι, tι+1). So strong m-convergence is simply
weak m-convergence w.r.t. this overapproximation of d [4]. If this approximation is actually
precise, i.e. coincides with the actual value, both notions of m-convergence coincide.

Remark 2.3. The notion of m-continuity can be defined solely in terms of m-convergence [4].
More precisely, we have for each reduction S = (tι → tι+1)ι<α that S is weakly m-continuous
iff every (open) proper prefix of S|β weakly m-converges to tβ. Analogously, strong m-
continuity can be characterised in terms of strong m-convergence. An easy consequence of
this is that m-converging reductions are closed under concatenation, i.e. S : s →֒m t, T : t →֒m u
implies S · T : s →֒m u and likewise for strong m-convergence.

For the most part our focus in this paper is set on strong m-convergence and its partial
order correspondent that we will introduce in Section 3. Weak m-convergence is well-known
to be rather unruly [23]. Strong convergence is far more well-behaved [16]. Most prominently,
we have the following Compression Lemma [16] which in general does not hold for weak m-
convergence:

Theorem 2.4 (Compression Lemma). For each left-linear, left-finite TRS, s ։
m t implies

s ։m ≤ω t.

As an easy corollary we obtain that the final term of a strongly m-converging reduction
can be approximated arbitrarily accurately by a finite reduction:

Corollary 2.5 (finite approximation). Let R be a left-linear, left-finite TRS and s ։
m t.

Then, for each depth d ∈ N, there is a finite reduction s→∗ t′ such that t and t′ coincide up

to depth d, i.e. d(t, t′) < 2−d.
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Proof. Assume s ։
m t. By Theorem 2.4, there is a reduction S : s ։

m ≤ω t. If S is of finite
length, then we are done. If S : s ։m ω t, then, by strong m-convergence, there is some n < ω
such that all reductions steps in S after n take place at a depth greater than d. Consider
S|n : s→∗ t′. It is clear that t and t′ coincide up to depth d.

As a special case of the above corollary, we obtain that s ։
m t implies s→∗ t whenever

t is a finite term.
An important difference between m-converging reductions and finite reductions is the

confluence of orthogonal systems. In contrast to finite reachability, m-reachability of orthog-
onal TRSs – even in its strong variant – does not necessarily have the diamond property, i.e.
orthogonal systems are confluent but not infinitarily confluent [16]:

Example 2.6 (failure of infinitary confluence). Consider the orthogonal TRS consisting of
the collapsing rules ρ1 : f(x)→ x and ρ2 : g(x)→ x and the infinite term t = g(f(g(f(. . . )))).
We then obtain the reductions S : t ։m gω and T : t ։m fω by successively contracting all ρ1-
resp. ρ2-redexes. However, there is no term s such that gω ։

m s ևm fω (or gω →֒m s ←֓m fω) as
both gω and fω can only be rewritten to themselves, respectively.

In the following section we discuss a method for obtaining an appropriate notion of trans-
finite reachability based on strong m-reachability which actually has the diamond property.

2.2. Meaningless Terms and Böhm Trees. At the end of the previous section we have
seen that orthogonal TRSs are in general not infinitarily confluent. However, as Kennaway
et al. [16] have shown, orthogonal TRSs are infinitarily confluent modulo so-called hyper-

collapsing terms – in the sense that two forking strongly m-converging reductions t ։m t1, t ։
m

t2 can always be extended by two strongly m-converging reductions t1 ։
m t3, t2 ։

m t′3 such
that the resulting terms t3, t

′
3 only differ in the hyper-collapsing subterms they contain.

This result was later generalised by Kennaway et al. [17] to develop an axiomatic theory
of meaningless terms. Intuitively, a set of meaningless terms in this setting consists of terms
that are deemed meaningless since, from a term rewriting perspective, they cannot be distin-
guished from one another and they do not contribute any information to any computation.
Kennaway et al. capture this by a set of axioms that characterise a set of meaningless terms.
For orthogonal TRSs, one such set of terms, in fact the least such set, is the set of root-active

terms [17]:

Definition 2.7 (root-activeness). Let R be a TRS and t ∈ T ∞(Σ,V). Then t is called
root-active if for each reduction t →∗ t′, there is a reduction t′ →∗ s to a redex s. The set
of all root-active terms of R is denoted RAR or simply RA if R is clear from the context.

Intuitively speaking, as the name already suggests, root-active terms are terms that can
be contracted at the root arbitrarily often, e.g. the terms fω and gω from Example 2.6.

In this paper we are only interested in this particular set of meaningless terms. So for
the sake of brevity we restrict our discussion in this section to the set RA instead of the
original more general axiomatic treatment by Kennaway et al. [17].

Since, denotationally, root-active terms cannot be distinguished from each other it is
appropriate to equate them [17]. This can be achieved by introducing a new constant symbol
⊥ and making each root-active term equal to ⊥. By adding rules which enable rewriting
root-active terms to ⊥, this can be encoded into an existing TRS [17]:

Definition 2.8 (Böhm extension). Let R = (Σ, R) be a TRS, and U ⊆ T ∞(Σ,V).
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(i) A term t ∈ T ∞(Σ,V) is called a ⊥,U-instance of a term s ∈ T ∞(Σ⊥,V) if t can be
obtained from s by replacing each occurrence of ⊥ in s with some term in U .

(ii) U⊥ is the set of terms in T ∞(Σ⊥,V) that have a ⊥,U -instance in U .
(iii) The Böhm extension of R w.r.t. U is the TRS BR,U = (Σ⊥, R ∪B), where

B = {t→ ⊥| t ∈ U⊥ \ {⊥}}

We write s →U ,⊥ t for a reduction step using a rule in B. If R and U are clear from
the context, we simply write B and →⊥ instead of BR,U and →U ,⊥, respectively.

A reduction that is strongly m-converging in the Böhm extension B is called Böhm-converging.
A term t is called Böhm-reachable from s if there is a Böhm-converging reduction from s to
t.

The definition of U⊥ is quite subtle and deserves further attention before we move on.
According to the definition, a term t is in U⊥ iff the term obtained from t by replacing
occurrences of ⊥ in t by terms from U is also in U . More illuminating, however, is the
converse view, i.e. how to construct a term in U⊥ from a term in U . First of all, any term in
U is also in U⊥. Secondly, we may obtain a term in U⊥ by taking a term t ∈ U and replacing
any number of subterms of t that are in U by ⊥. For Böhm extensions, this means that we
may contract any term t ∈ U to ⊥, even if we already contracted some proper subterms of
t to ⊥ before.

It is at this point where we, in fact, need the generality of allowing infinite terms on
the left-hand side of rewrite rules: The additional rules of a Böhm extension allow possibly
infinite terms t ∈ U⊥ \ {⊥} on the left-hand side.

Remark 2.9 (closure under substitution). Note that, for orthogonal TRSs, RA is closed
under substitutions and, hence, so is RA⊥ [17]. Therefore, whenever C[t]→RA,⊥ C[⊥], we
can assume that t ∈ RA⊥.

With the additional rules provided by the Böhm extension, we gain infinitary confluence
of orthogonal systems:

Theorem 2.10 (infinitary confluence of Böhm-converging reductions, [17]). Let R be an

orthogonal, left-finite TRS. Then the Böhm extension B of R w.r.t. RA is infinitarily con-

fluent, i.e. s1 և
m
B t ։m B s2 implies s1 ։

m
B t′ ևmB s2.

The lack of confluence for strongly m-converging reductions is resolved in Böhm exten-
sions by allowing (sub-)terms, which where previously not joinable, to be contracted to ⊥.
Returning to Example 2.6, we can see that gω and fω can be rewritten to ⊥ as both terms
are root-active.

In fact, w.r.t. Böhm-convergence, every term of an orthogonal TRS has a normal form:

Theorem 2.11 (infinitary normalisation of Böhm-converging reductions, [17]). Let R be

an orthogonal, left-finite TRS. Then the Böhm extension B of R w.r.t. RA is infinitarily

normalising, i.e. for each term t there is a B-normal form Böhm-reachable from t.

This means that each term t of an orthogonal, left-finite TRS R has a unique normal
form in BR,RA. This normal form is called the Böhm tree of t (w.r.t. RA) [17].

The rest of this paper is concerned with establishing an alternative to the metric notion
of convergence based on the partial order on terms that is equivalent to the Böhm extension
approach.
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3. Partial Order Infinitary Rewriting

In this section we introduce an alternative model of infinitary term rewriting which uses the
partial order on terms to formalise convergence of transfinite reductions. To this end we
will turn to partial terms which, like in the setting of Böhm extensions, have an additional
constant symbol ⊥. The result will be a more fine-grained notion of convergence in which,
intuitively speaking, a reduction can be diverging in some positions but at the same time
converging in other positions. The “diverging parts” are then indicated by a ⊥-occurrence
in the final term of the reduction:

Example 3.1. Consider the TRS consisting of the rules h(x) → h(g(x)), b → g(b) and the
term t = f(h(a), b). In this system, we have the reduction

S : f(h(a), b)→ f(h(g(a)), b) → f(h(g(a)), g(b)) → f(h(g(g(a))), g(b)) → . . .

which alternately contracts the redex in the left and in the right argument of f .

The reduction S weakly m-converges to the term f(h(gω), gω). But it does not strongly

m-converge as the depth at which contractions are performed does not tend to infinity.
However, this does only happen in the left argument of f , not in the other one. Within the
partial order model we will still be able to obtain that S weakly converges to f(h(gω), gω)
but we will also obtain that it strongly converges to the term f(⊥, gω). That is, we will
be able to identify that the reduction S strongly converges except at position 〈0〉, the first
argument of f .

3.1. Partial Order Convergence. In order to formalise continuity and convergence in
terms of the complete semilattice (T ∞(Σ⊥,V),≤⊥) instead of the complete metric space
(T ∞(Σ,V),d), we move from the limit of the metric space to the limit inferior of the complete
semilattice:

Definition 3.2 (p-continuity/-convergence). LetR = (Σ, R) be a TRS and S = (ϕι : tι →πι

tι+1)ι<α a non-empty reduction in R⊥ = (Σ⊥, R). The reduction S is called

(i) weakly p-continuous in R, written S : t0 →֒
p

R . . . , if lim infι→λ tι = tλ for each limit
ordinal λ < α.

(ii) strongly p-continuous in R, written S : t0 ։
p

R . . . , if lim infι→λ cι = tλ for each limit
ordinal λ < α, where cι = tι[⊥]πι . Each cι is called the context of the reduction step
ϕι, which we indicate by writing ϕι : tι →cι tι+1.

(iii) weakly p-converging to t in R, written S : t0 →֒
p

R t, if it is weakly p-continuous and
t = lim infι→α̂ tι.

(iv) strongly p-converging to t in R, written S : t0 ։
p

R t, if it is strongly p-continuous and
S is closed with t = tα+1 or t = lim infι→α cι.

Whenever S : t0 →֒
p

R t or S : t0 ։
p

R t, we say that t is weakly resp. strongly p-reachable
from t0 in R. By abuse of notation we use →֒p R and ։

p
R as a binary relation to indicate

weak resp. strong p-reachability. In order to indicate the length of S and the TRS R, we
write S : t0 →֒

p α
R t resp. S : t0 ։

p α
R t. The empty reduction 〈〉 is considered weakly/strongly

p-continuous and p-convergent for any start and end term, i.e. 〈〉 : t ։p R t for all t ∈ T (Σ,V).

The definitions of weak p-continuity and weak p-convergence are straightforward “trans-
lations” from the metric setting to the partial order setting replacing the limit limι→α by
the limit inferior lim infι→α. On the other hand, the definitions of the strong counterparts



12 PATRICK BAHR

seem a bit different compared to the metric model: Whereas strong m-convergence simply
adds a side condition regarding the depth |πι| of the reduction steps, strong p-convergence
is defined in a different way compared to the weak variant. Instead of the terms tι of the
reduction, it considers the contexts cι = tι[πι]⊥. However, one can surmise some similarity
due to the fact that the partial order model of strong convergence indirectly takes into ac-
count the position πι of each reduction step as well. Moreover, for the sake of understanding
the intuition of strong p-convergence it is better to compare the contexts cι rather with the
glb of two consecutive terms tι ⊓ tι+1 instead of the term tι itself. The following proposition
allows precisely that.

Proposition 3.3 (limit inferior of open sequences). Let (aι)ι<λ be an open sequence in a

complete semilattice. Then it holds that lim infι→λ aι = lim infι→λ(aι ⊓ aι+1).

Proof. Let a = lim infι→λ aι and â = lim infι→λ(aι ⊓ aι+1). Since aι ⊓ aι+1 ≤ aι for each
ι < λ, we have â ≤ a. On the other hand, consider the sets Aα = {aι |α ≤ ι < λ} and

Âα = {aι ⊓ aι+1 |α ≤ ι < λ} for each α < λ. Of course, we then have
d

Aα ≤ aι for all
α ≤ ι < λ, and thus also

d
Aα ≤ aι ⊓ aι+1 for all α ≤ ι < λ. Hence,

d
Aα is a lower bound

of Âα which implies that
d

Aα ≤
d

Âα. Consequently, a ≤ â and, due to the antisymmetry
of ≤, we can conclude that a = â.

With this in mind we can replace lim infι→λ tι in the definition of weak p-convergence
resp. p-continuity with lim infι→λ tι ⊓ tι+1. From there it is easier to see the intention of
moving from tι ⊓ tι+1 to the context tι[⊥]πι in order to model strong convergence:

What makes the notion of strong p-convergence (and p-continuity) strong, similar to
the notion of strong m-convergence (resp. m-continuity), is the choice of taking the contexts
tι[⊥]πι for defining the limit behaviour of reductions instead of the whole terms tι. The
context tι[⊥]πι provides a conservative underapproximation of the shared structure tι ⊓ tι+1

of two consecutive terms tι and tι+1 in a reduction step ϕι : tι →πι tι+1. More specifically,
we have that tι[⊥]πι ≤⊥ tι ⊓ tι+1. That is, as in the metric model of strong convergence, the
difference between two consecutive terms is overapproximated by using the position of the
reduction step as an indicator. Likewise, strong p-convergence is simply weak p-convergence
w.r.t. this underapproximation of tι ⊓ tι+1 [4]. If this approximation is actually precise, i.e.
coincides with the actual value, both notions of p-convergence coincide.

Remark 3.4. As for the metric model, also in the partial order model, continuity can
be defined solely in terms of convergence [4]. More precisely, we have for each reduction
S = (tι → tι+1)ι<α that S is weakly p-continuous iff every (open) proper prefix of S|β
weakly p-converges to tβ. Analogously, strong p-continuity can be characterised in terms of
strong p-convergence. An easy consequence of this is that p-converging reductions are closed
under concatenation, i.e. S : s →֒ t, T : t →֒ u implies S · T : s →֒ u and likewise for strong
p-convergence.

In order to understand the difference between weak and strong p-convergence let us look
at a simple example:

Example 3.5. Consider the TRS with the single rule f(x, y)→ f(y, x). This rule induces
the following reduction:

S : f(a, f(g(a), g(b))) → f(a, f(g(b), g(a))) → f(a, f(g(a), g(b))) → . . .

S simply alternates between the terms f(a, f(g(a), g(b))) and f(a, f(g(b), g(a))) by swapping
the arguments of the inner f occurrence. The reduction is depicted in Figure 2. The picture
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Figure 2. Reduction with stable context.
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(a) Limit w.r.t. weak p-convergence.
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a ⊥

(b) Limit w.r.t. strong p-convergence.

Figure 3. Limits of a p-converging reduction.

illustrates the parts of the terms that remain unchanged and those that remain completely
untouched by the corresponding reduction step by using a lighter resp. a darker shade of
grey. The unchanged part corresponds to the glb of the two terms of a reduction step, viz.
for the first step

f(a, f(g(a), g(b))) ⊓ f(a, f(g(b), g(a))) = f(a, f(g(⊥), g(⊥)))

By symmetry, the glb of the terms of the second step is the same one. It is depicted in
Figure 3a. Let (ti)i<ω be the sequence of terms of the reduction S. By definition, S weakly
p-converges to lim inf i→ω ti. According to Proposition 3.3, this is equal to lim inf i→ω(ti⊓ti+1).
Since ti ⊓ ti+1 is constantly f(a, f(g(⊥), g(⊥))), the reduction sequence weakly p-converges
to f(a, f(g(⊥), g(⊥))).

Similarly, the part of the term that remains untouched by the reduction step corresponds
to the context. For the first step, this is f(a,⊥). It is depicted in Figure 3b. By definition,
S strongly p-converges to lim inf i→ω ci for (ci)i<ω the sequence of contexts of S. As one can
see in Figure 2, the context constantly remains f(a,⊥). Hence, S strongly p-converges to
f(a,⊥). The example sequence is a particularly simple one as both the glbs ti ⊓ ti+1 and
the contexts ci remain stable. In general, this is not necessary, of course.

One can clearly see from the definition that, as for their metric counterparts, weak
resp. strong p-convergence implies weak resp. strong p-continuity. In contrast to the metric
model, however, also the converse implication holds! Since the partial order ≤⊥ on partial
terms forms a complete semilattice, the limit inferior is defined for any non-empty sequence
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of partial terms. Hence, any weakly resp. strongly p-continuous reduction is also weakly
resp. strongly p-convergent. This is a major difference to m-convergence/-continuity. Nev-
ertheless, p-convergence constitutes a meaningful notion of convergence: The final term of
a p-convergent reduction contains a ⊥ subterm at each position at which the reduction is
“locally diverging” as we have seen in Example 3.1 and Example 3.5. In fact, as we will
show in Section 4, whenever there are no ’⊥’s involved, i.e. if there is no “local divergence”,
m-convergence and p-convergence coincide – both in the weak and the strong variant.

Recall that strong m-continuity resp. m-convergence implies weak m-continuity resp.
m-convergence. This is not the case in the partial order setting. The reason for this is that
strong p-convergence resp. p-continuity is defined differently compared to its weak variant.
It uses the contexts instead of the terms in the reduction, whereas in the metric setting
the strong notion of convergence is a mere restriction of the weak counterpart as we have
observed earlier.

Example 3.6. Consider the TRS consisting of the rules ρ1 : h(x) → h(g(x)), ρ2 : f(x) →
g(x) and the reductions

S : f(h(a))→ρ1 f(h(g(a))) →ρ1 f(h(g(g(a)))) →ρ1 . . . and T : f(⊥)→ρ2 g(⊥)

Then the reduction

S · T : f(h(a))→ρ1 f(h(g(a))) →ρ1 f(h(g(g(a)))) →ρ1 . . . f(⊥)→ρ2 g(⊥)

is clearly both strongly p-continuous and -convergent. On the other hand it is neither weakly
p-continuous nor -convergent for the simple fact that S does not weakly p-converge to f(⊥)
but to f(h(gω)).

Nevertheless, by observing that lim infι→α cι ≤⊥ lim infι→α tι since cι ≤⊥ tι for each
ι < α, we obtain the following weaker relation between weak and strong p-convergence:

Proposition 3.7. Let R be a left-linear TRS with s ։
p

R t. Then there is a term t′ ≥⊥ t
with s →֒p R t′.

Proof. Let S = (ϕι : tι →ρι tι+1)ι<α be a reduction strongly p-converging to tα. By induction
we construct for each prefix S|β of S a reduction S′

β = (ϕ′
ι : t′ι →ρι t′ι+1)ι<β weakly p-

converging to a term t′β such that tι ≤⊥ t′ι for each ι ≤ α. The proposition then follows from
the case where β = α.

The case β = 0 is trivial. If β = γ+1, then by induction hypothesis we have a reduction
S′
γ : t′0 →֒

p
R t′γ . Since tγ ≤⊥ t′γ and tγ is a ργ-redex, also t′γ is a ργ-redex due to the left-

linearity of R. Hence, there is a reduction step ϕ′
γ : t′γ → t′β. One can easily see that then

tβ ≤⊥ t′β. Hence, S′
β = S′

γ · 〈ϕ
′
γ〉 satisfies desired conditions.

If β is a limit ordinal, we can apply the induction hypothesis to obtain for each γ < β a
reduction S′

γ = (ϕ′
ι : t′ι →ρι t

′
ι+1)ι<γ that weakly p-converges to t′γ ≥⊥ tγ . Hence, according

to Remark 3.4, S′
β = (ϕ′

ι : t′ι →ρι t
′
ι+1)ι<β is weakly p-continuous. Therefore, we obtain that

S′
β weakly p-converges to t′β = lim infι→β t

′
ι. Moreover, since cι ≤⊥ tι and tι ≤⊥ t′ι for each

ι < β, we can conclude that

tβ = lim inf
ι→β

cι ≤⊥ lim inf
ι→β

tι ≤⊥ lim inf
ι→β

t′ι = t′β.

And indeed, returning to Example 3.6, we can see that there is a reduction

f(h(a))→ρ1 f(h(g(a))) →ρ1 f(h(g(g(a)))) →ρ1 . . . f(h(gω))→ρ2 g(h(gω))
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that, starting from f(h(a)), weakly p-converges to g(h(gω)) which is strictly larger than
g(⊥).

A simple example shows that left-linearity is crucial for the above proposition:

Example 3.8. Let R be a TRS consisting of the rules

ρ1 : a→ a, ρ2 : b→ b, ρ3 : f(x, x)→ c.

We then get the strongly p-converging reduction

f(a, b)→ρ1 f(a, b)→ρ2 f(a, b)→ρ1 f(a, b)→ρ2 . . . f(⊥,⊥)→ρ3 c

Yet, there is no reduction in R that, starting from f(a, b), weakly p-converges to c.

3.2. Strong p-Convergence. In this paper we are mainly focused on the strong notion of
convergence. To this end, the rest of this section will be concerned exclusively with strong
p-convergence. We will, however, revisit weak p-convergence in Section 4 when comparing
it to weak m-convergence.

Note that in the partial order model we have to consider reductions over the extended
signature Σ⊥, i.e. reductions containing partial terms. Thus, from now on, we assume
reductions in a TRS over Σ to be implicitly over Σ⊥. When we want to make it explicit
that a reduction S contains only total terms, we say that S is total. When we say that a
strongly p-convergent reduction S : s ։

p t is total, we mean that both the reduction S and
the final term t are total.1

In order to understand the behaviour strong p-convergence, we need to look at how the
lub and glb of a set of terms looks like. The following two lemmas provide some insight.

Lemma 3.9 (lub of terms). For each T ⊆ T ∞(Σ⊥,V) and t =
⊔

T , the following holds

(i) P(t) =
⋃

s∈T P(s)
(ii) t(π) = f iff there is some s ∈ T with s(π) = f for each f ∈ Σ∪V, and position π.

Proof. Clause ((i)) follows straightforwardly from clause ((ii)). The “if” direction of ((ii))
follows from the fact that if s ∈ T , then s ≤⊥ t and, therefore, s(π) = f implies t(π) = f .
For the “only if” direction assume that no s ∈ T satisfies s(π) = f . Since, s ≤⊥ t for each
s ∈ T , we have π 6∈ P6⊥(s) for each s ∈ T . But then t′ = t[⊥]π is an upper bound of T with
t′ <⊥ t. This contradicts the assumption that t is the least upper bound of T .

Lemma 3.10 (glb of terms). Let T ⊆ T ∞(Σ⊥,V) and P a set of positions closed under

prefixes such that all terms in T coincide in all positions in P , i.e. s(π) = t(π) for all π ∈ P
and s, t ∈ T . Then the glb

d
T also coincides with all terms in T in all positions in P .

Proof. Construct a term s such that it coincides with all terms in T in all positions in P
and has ⊥ at all other positions. That is, given an arbitrary term t ∈ T , we define s as
the unique term with s(π) = t(π) for all π ∈ P , and s(π · 〈i〉) = ⊥ for all π ∈ P with
π · 〈i〉 ∈ P(t) \P . Then s is a lower bound of T . By construction, s coincides with all terms
in T in all positions in P . Since s ≤⊥

d
T , this property carries over to

d
T .

1Note that if S is open, the final term t is not explicitly contained in S. Hence, the totality of S does not
necessarily imply the totality of t.
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Following the two lemmas above, we can observe that – intuitively speaking – the limit
inferior lim inf ι→α tι of a sequence of terms is the term that contains those parts that become
eventually stable in the sequence. Remaining holes in the term structure are filled with ’⊥’s.
Let us see what this means for strongly p-converging reductions:

Lemma 3.11 (non-⊥ symbols in open reductions). Let R = (Σ, R) be a TRS and S : s ։p λ
R t

an open reduction with S = (tι →πι,cι tι+1)ι<λ. Then the following statements are equivalent

for all positions π:

(a) t(π) 6= ⊥.

(b) there is some α < λ such that cι(π) = t(π) 6= ⊥ for all α ≤ ι < λ.

(c) there is some α < λ such that tα(π) = t(π) 6= ⊥ and πι 6≤ π for all α ≤ ι < λ.

(d) there is some α < λ such that tα(π) 6= ⊥ and πι 6≤ π for all α ≤ ι < λ.

Proof. At first consider the implication from ((a)) to ((b)). To this end, let t(π) 6= ⊥ and
sγ =

d
γ≤ι<λ cι for each γ < λ. Note that then t =

⊔
γ<λ sγ . Applying Lemma 3.9 yields

that there is some α < λ such that sα(π) = t(π). Moreover, for each α ≤ ι < λ, we
have sα ≤⊥ cι and, therefore, sα(π) = cι(π). Consequently, we obtain cι(π) = t(π) for all
α ≤ ι < λ.

Next consider the implication from ((b)) to ((c)). Let α < λ be such that cι(π) = t(π) 6=
⊥ for all α ≤ ι < λ. Recall that cι = tι[⊥]πι for all ι < λ. Hence, the fact that cι(π) 6= ⊥
for all α ≤ ι < λ implies that tα(π) = cα(π) and that πι 6≤ π for all α ≤ ι < λ. Since
cα(π) = t(π) 6= ⊥, we also have tα(π) = t(π) 6= ⊥.

The implication from ((c)) to ((d)) is trivial.
Finally, consider the implication from ((d)) to ((a)). For this purpose, let α < λ be

such that (1) π ∈ P6⊥(tα) and (2) πι 6≤ π for all α ≤ ι < λ. Consider the set P consisting of
all positions in tα that are prefixes of π. P is obviously closed under prefixes and, because
of (2), all terms in the set T = {cι |α ≤ ι < λ} coincide in all positions in P . According to
Lemma 3.10, also sα =

d
T coincides with all terms in T in all positions in P . Since π ∈ P

and cα ∈ T , we thereby obtain that cα(π) = sα(π). As we also have tα(π) = cα(π), due to
(2), and π ∈ P6⊥(tα) we can infer that π ∈ P6⊥(sα). Since sα ≤⊥ t, we can then conclude
π ∈ P6⊥(t).

The above lemma is central for dealing with strongly p-convergent reductions. It also
reveals how the final term of a strongly p-convergent reduction is constructed. According to
the equality of ((a)) and ((c)), the final term has the non-⊥ symbol f at some position π iff
some term tα in the reduction also had this symbol f at this position π and no reduction after
that term occurred at π or above. In this way, the final outcome of a strongly p-convergent
reduction consists of precisely those parts of the intermediate terms which become eventually

persistent during the reduction, i.e. are from some point on not subjected to contraction any
more.

Now we turn to a characterisation of the parts that are not included in the final outcome
of a strongly p-convergent reduction, i.e. those that do not become persistent. These parts
are either omitted or filled by the placeholder ⊥. We will call these positions volatile:

Definition 3.12 (volatility). Let R be a TRS and S = (tι →πι tι+1)ι<λ an open p-
converging reduction in R. A position π is said to be volatile in S if, for each ordinal
β < λ, there is some β ≤ γ < λ such that πγ = π. If π is volatile in S and no proper prefix
of π is volatile in S, then π is called outermost-volatile.

In Example 3.1 the position 〈0〉 is outermost-volatile in the reduction S.
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Figure 4. Reduction with two nested volatile positions.

Example 3.13 (volatile positions). Consider the TRS R consisting of the rules

ρ1 : h(x)→ g(x), ρ2 : s(g(x))→ s(h(s(x)))

R admits the following reduction S of length ω:

S : f(s(0), s(h(0))) →ρ1 f(s(0), s(g(0))) →ρ2 f(s(0), s(h(s(0))))

→ρ1 f(s(0), s(g(s(0)))) →ρ2 f(s(0), s(h(s(s(0)))))

The reduction S p-converges to f(s(0),⊥), i.e. we have S : f(s(0), s(h(0))) ։p ω
R f(s(0),⊥).

Figure 4 illustrates the reduction indicating the position of each reduction step by two circles
and a reduction arrow in between. One can clearly see that both π1 = 〈1〉 and π2 = 〈1, 0〉
are volatile in S. Again and again reductions take place at π1 and π2. Since these are the
only volatile positions and π1 is a prefix of π2, we have that π1 is an outermost-volatile
position in S.

As we shall see later in Section 6, volatility is closely related to root-active terms: if
a reduction has a volatile position π, then we find a term in the reduction with a root-
active subterm at π. Conversely, from each root-active term starts a reduction with volatile
position 〈〉 (cf. Proposition 6.9). This connection between volatility and root-activeness is
the cornerstone of the correspondence between p-convergence and Böhm-convergence that
we prove in Section 6.

The following lemma shows that ⊥ symbols are produced precisely at outermost-volatile
positions in open reduction.

Lemma 3.14 (⊥ subterms in open reductions). Let S = (tι →πι tι+1)ι<α an open reduction

p-converging to tα in some TRS. Then, for every position π, we have the following:

(i) If π is volatile in S, then π 6∈ P6⊥(tα).
(ii) tα(π) = ⊥ iff

(a) π is outermost-volatile in S, or

(b) there is some β < α such that tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < α.

(iii) Let tι be total for all ι < α. Then tα(π) = ⊥ iff π is outermost-volatile in S.

Proof. ((i)) This follows from Lemma 3.11, in particular the equivalence of ((a)) and ((c)).
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((ii)) At first consider the “only if” direction. To this end, suppose that tα(π) = ⊥.
In order to show that then ((a)) or ((b)) holds, we will prove that ((b)) must hold true
whenever ((a)) does not hold. For this purpose, we assume that π is not outermost-volatile
in S. Note that no proper prefix π′ of π can be volatile in S as this would imply, according
to clause ((i)), that π′ 6∈ P6⊥(tα) and, therefore, π 6∈ P(tα). Hence, π is also not volatile in S.
In sum, no prefix of π is volatile in S. Consequently, there is an upper bound β < α on the
indices of reduction steps taking place at π or above. But then tβ(π) = ⊥ since otherwise
Lemma 3.11 would imply that tα(π) 6= ⊥. This shows that ((b)) holds.

For the converse direction, we will show that both ((a)) and ((b)) independently imply
that tα(π) = ⊥:

((a)) Let π be outermost-volatile in S. By clause ((i)), this implies π 6∈ P6⊥(tα). Hence,
it remains to be shown that π ∈ P(tα). If π = 〈〉, then this is trivial. Otherwise, π is of
the form π′ · i. Since all proper prefixes of π are not volatile, there is some β < α such that
πβ = π and πι 6≤ π′ for all β ≤ ι < α. This implies that π ∈ P(tβ). Hence, tβ(π

′) = f
is a symbol having an arity of at least i+ 1. Consequently, according to Lemma 3.11, also
tα(π

′) = f . Since f ’s arity is at least i+ 1, also π = π′ · i ∈ P(tα).
((b)) Let β < α such that tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < α. According to

Proposition 1.1, we have that tα =
⊔

β≤γ<α

d
γ≤ι<α cι. Define sγ =

d
γ≤ι<α cι for each

γ < α. Since from β onwards no reduction takes place at π or above, it holds that all cι, for
β ≤ ι < α, coincide in all prefixes of π. By Lemma 3.10, this also holds for all sι and cι with
β ≤ ι < α. Since cβ(π) = tβ(π) = ⊥, this means that sι(π) = ⊥ for all β ≤ ι < α. Recall
that tα =

⊔
β≤γ<α sγ . Hence, according to Corollary 3.9, we can conclude that tα(π) = ⊥.

((iii)) is a special case of ((ii)): If each tι, ι < α, is total, then ((b)) cannot be true.

Clause ((ii)) shows that a ⊥ subterm in the final term can only have its origin either in a
preceding term which already contains this ⊥ which then becomes stable, or in an outermost-
volatile position. That is, it is exactly the outermost-volatile positions that generate ’⊥’s.

We can apply this lemma to Example 3.13: As we have seen, the position π1 = 〈1〉
is outermost-volatile in the reduction S mentioned in the example. Hence, S strongly p-
converges to a term that has, according to Lemma 3.14, the symbol ⊥ at position π1. That
is, S strongly p-converges to f(s(0),⊥).

This characterisation of the final outcome of a p-converging reduction clearly shows that
the partial order model captures the intuition of strong convergence in transfinite reductions
even though it allows that every continuous reduction is also convergent: The final outcome
only represents the parts of the reduction that are converging. Locally diverging parts are
cut off and replaced by ⊥.

In fact, the absence of such local divergence, or volatility, as we call it here, is equivalent
to the absence of ⊥:

Lemma 3.15 (total reductions). Let R be a TRS, s a total term in R, and S : s ։
p

R t.
S : s ։p R t is total iff no prefix of S has a volatile position.

Proof. The “only if” direction follows straightforwardly from Lemma 3.14.
We prove the “if” direction by induction on the length of S. If |S| = 0, then the totality

of S follows from the assumption of s being total. If |S| is a successor ordinal, then the
totality of S follows from the induction hypothesis since single reduction steps preserve
totality. If |S| is a limit ordinal, then the totality of S follows from the induction hypothesis
using Lemma 3.14.
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Moreover, as we shall show in the next section, if local divergences are excluded, i.e. if
total reductions are considered, both the metric model and the partial order model coincide.

4. Comparing m-Convergence and p-Convergence

In this section we want to compare the metric and the partial order model of convergence. In
particular, we shall show that the partial order model is only a conservative extension of the
metric model: If we only consider total reductions, i.e. reductions over terms in T ∞(Σ,V),
then m-convergence and p-convergence coincide both in their weak and strong variant.

The first and rather trivial observation to this effect is that already on the level of single
reduction steps the partial order model conservatively extends the metric model:

Fact 4.1. Let R = (Σ, R) be a TRS, R⊥ = (Σ⊥, R), and s, t ∈ T ∞(Σ⊥,V). Then we have

s→R,π t iff s→R⊥,π t and s is total.

The next step is to establish that the underlying structures that are used to formalise
convergence exhibit this behaviour as well. That is, the limit inferior in the complete semi-
lattice (T ∞(Σ⊥,V),≤⊥) is conservative extension of the limit in the complete metric space
(T ∞(Σ,V),d). More precisely, we want to have that for a sequence (tι)ι<α in T ∞(Σ,V)

lim inf
ι→α

tι = lim
ι→α

tι whenever
lim
ι→α

tι is defined, or

lim inf
ι→α

tι is a total term.

Note that, as a corollary, the above property implies that limι→α tι is defined iff lim infι→α tι
is a total term. In Section 4.1 we shall establish the above property. This result is then used
in Section 4.2 in order to show the desired property that p-convergence is a conservative
extension of m-convergence in both their respective weak and strong variant.

4.1. Complete Semilattice vs. Complete Metric Space. In order to compare the com-
plete semilattice of partial terms with the complete metric space of term, it is convenient
to have an alternative characterisation of the similarity sim(s, t) of two terms s, t, which in
turn provides an alternative characterisation of the metric d on terms. To this end we use
the truncation of a term at a certain depth. This notion was originally used by Arnold and
Nivat [2] to show that the d is a complete ultrametric on terms:

Definition 4.2 (truncation). Let d ∈ N ∪ {∞} and t ∈ T ∞(Σ⊥,V). The truncation t|d of
t at depth d is defined inductively on d as follows

t|0 = ⊥ t|∞ = t

t|d+ 1 =

{
t if t ∈ V

f(t1|d, . . . , tk|d) if t = f(t1, . . . , tk)

More concisely we can say that the truncation of a term t at depth d replaces all subterms
at depth d with ⊥. From this we can easily establish the following two properties of the
truncation:

Proposition 4.3 (truncation). For each two s, t ∈ T ∞(Σ⊥,V) we have

(i) t|d ≤⊥ t for all d ∈ N ∪ {∞}.
(ii) s|d ≤⊥ t implies s|d = t|d for all d ∈ N ∪ {∞} given s is total.
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(iii) s|d = t|d for all d ∈ N iff s = t.

Proof. Straightforward.

Recall that the similarity of two terms is the minimal depth at which they differ resp.
∞ if they are equal. However, saying that two terms differ at a certain minimal depth d
is the same as saying that the truncation of the two terms at that depth d coincide. This
provides an alternative characterisation of similarity:

Proposition 4.4 (characterisation of similarity). For each pair s, t ∈ T ∞(Σ,V) we have

sim(s, t) = max {d ∈ N ∪ {∞} | s|d = t|d}

Proof. Straightforward.

We can use this characterisation to show the first part of the compatibility of the metric
and the partial order:

Lemma 4.5 (metric limit equals limit inferior). Let (tι)ι<α be a convergent sequence in

(T ∞(Σ,V),d). Then limι→α tι = lim infι→α tι.

Proof. If α is a successor ordinal, this is trivial. Let α be a limit ordinal, t̂ = limι→α tι,
and t = lim infι→α tι. Then for each ε ∈ R

+ there is a β < α such that d(t̂, tι) < ε for
all β ≤ ι < α. Hence, for each d ∈ N there is a β < α such that sim(t̂, tι) > d for all

β ≤ ι < α. According to Proposition 4.4, sim(t̂, tι) > d implies t̂|d = tι|d, which, according
to Proposition 4.3, implies t̂|d ≤⊥ tι. Therefore, t̂|d is a lower bound of Tβ = {tι | β ≤ ι < α},

i.e. t̂|d ≤⊥
d

Tβ. Since t =
⊔

β<α

d
Tβ, we also have that

d
Tβ ≤⊥ t. By transitivity, we

obtain t̂|d ≤⊥ t for each d ∈ N. Since t̂ is total, we can thus conclude, according to

Proposition 4.3, that t̂ = t.

Before we continue, we want introduce another characterisation of similarity which
bridges the gap to the partial order ≤⊥. In order to follow this approach, we need the
to define the ⊥-depth of a term t ∈ T ∞(Σ⊥,V). It is the minimal depth of an occurrence of
the subterm ⊥ in t:

⊥-depth(t) = min {|π| | t(π) = ⊥} ∪ {∞}

Intuitively, the glb s ⊓ t of two terms s, t represents the common structure that both
terms share. The similarity sim(s, t) is a much more condensed measure. It only provides
the depth up two which the terms share a common structure. Using the ⊥-depth we can
directly condense the glb s ⊓ t to the similarity sim(s, t):

Proposition 4.6 (characterisation of similarity). For each pair s, t ∈ T ∞(Σ,V) we have

sim(s, t) = ⊥-depth(s ⊓ t)

Proof. Follows from Lemma 3.10.

We can employ this alternative characterisation of similarity to show the second part of
the compatibility of the metric and the partial order:

Lemma 4.7 (total limit inferior implies Cauchy). Let (tι)ι<α be a sequence in T ∞(Σ,V)
such that lim infι→α tι is total. Then (tι)ι<α is Cauchy.



PARTIAL ORDER INFINITARY TERM REWRITING 21

Proof. For α a successor ordinal this is trivial. For the case that α is a limit ordinal, suppose
that (tι)ι<α is not Cauchy. That is, there is an ε ∈ R

+ such that for all β < α there is a
pair β < ι, ι′ < α with d(tι, tι′) ≥ ε. Hence, there is a d ∈ N such that for all β < α there is
a pair β < ι, ι′ < α with sim(tι, tι′) ≤ d, which, according to Proposition 4.6, is equivalent
to ⊥-depth(tι ⊓ tι′) ≤ d. That is,

for each β < α there are β < ι, ι′ < α with ⊥-depth(tι ⊓ tι′) ≤ d (1)

Let sβ =
d

β≤ι<α tι. Then sβ ≤⊥ tι⊓tι′ for all β ≤ ι, ι′ < α, which implies ⊥-depth(sβ) ≤

⊥-depth(tι ⊓ tι′). By combining this with (1), we obtain ⊥-depth(sβ) ≤ d. More precisely,
we have that

for each β < α there is a π ∈ P(sβ) with |π| ≤ d and sβ(π) = ⊥. (2)

Let t = lim infι→α tι. Note that t =
⊔

β<α sβ. Since, according to Lemma 3.9, P(t) =⋃
β<αP(sβ) we can reformulate (2) as follows:

for each β < α there is a π ∈ P(t) with |π| ≤ d and sβ(π) = ⊥. (2’)

Since there are only finitely many positions in t of length at most d, there is some π∗ ∈ P(t)
such that

for each β < α there is a β ≤ γ < α with sγ(π
∗) = ⊥. (3)

Since sβ ≤⊥ sγ , whenever β ≤ γ, we can rewrite (3) as follows:

sβ(π
∗) = ⊥ for all β < α with π∗ ∈ P(sβ). (3’)

Since π∗ ∈ P(t), we can employ Lemma 3.9 to obtain from (3’) that t(π∗) = ⊥. This
contradicts the assumption that t = lim infι→α tι is total.

The following proposition combines Lemma 4.5 and Lemma 4.7 in order to obtain the
desired property that the metric and the partial order are compatible:

Proposition 4.8 (partial order conservatively extends metric). For every sequence (tι)ι<α

in T ∞(Σ,V) the following holds:

lim inf
ι→α

tι = lim
ι→α

tι whenever

lim
ι→α

tι is defined, or

lim inf
ι→α

tι is a total term.

Proof. If limι→α is defined, the equality follows from Lemma 4.5. If lim infι→α tι is total,
the sequence (tι)ι<α is Cauchy by Lemma 4.7. Then, as the metric space (T ∞(Σ,V),d) is
complete, (tι)ι<α converges and we can apply Lemma 4.5 to conclude the equality.

4.2. p-Convergence vs. m-Convergence. In the previous section we have established
that the metric and the partial order on (partial) terms are compatible in the sense that the
corresponding notions of limit and limit inferior coincide whenever the limit is defined or
the limit inferior is a total term. As weak m-convergence and weak p-convergence are solely
based on the limit in the metric space resp. the limit inferior in the partially ordered set,
we can directly apply this result to show that both notions of convergence coincide on total
reductions:

Theorem 4.9 (total weak p-convergence = weak m-convergence). For every reduction S in

a TRS the following equivalences hold:
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(i) S : s →֒p . . . is total iff S : s →֒m . . . , and

(ii) S : s →֒p t is total iff S : s →֒m t.

Proof. Both equivalences follow directly from Proposition 4.8 and Fact 4.1, both of which
are applicable as we presuppose that each term in the reduction is total.

In order to replicate Theorem 4.9 for the strong notions of convergence, we first need
the following two lemmas that link the property of increasing contraction depth to volatile
positions and the limit inferior, respectively:

Lemma 4.10 (strong m-convergence). Let S = (tι →πι tι+1)ι<λ be an open reduction. Then

(|πι|)ι<λ tends to infinity iff, for each position π, there is an ordinal α < λ such that πι 6= π
for all α ≤ ι < λ.

Proof. The “only if” direction is trivial. For the converse direction, suppose that |πι| does
not tend to infinity as ι approaches λ. That is, there is some depth d ∈ N such that there
is no upper bound on the indices of reduction steps taking place at depth d. Let d∗ be the
minimal such depth. That is, there is some α < λ such that all reduction steps in S|[α,λ)
are at depth at least d∗, i.e. |πι| ≥ d∗ holds for all α ≤ ι < λ. Of course, also in S|[α,λ) the
indices of steps at depth d∗ are not bounded from above. As all reduction steps in S|[α,λ)
take place at depth d∗ or below, tι|d

∗ = tι′ |d
∗ holds for all α ≤ ι, ι′ < λ. That is, all terms

in S|[α,λ) have the same set of positions of length d∗. Let P ∗ = {π ∈ P(tn) | |π| = d∗ } be
this set. Since there is no upper bound on the indices of steps in S|[α,λ) taking place at a
position in P ∗, yet, P ∗ is finite, there has to be some position π∗ ∈ P ∗ for which there is
also no such upper bound. This contradicts the assumption that there is always such an
upper bound.

Lemma 4.11 (limit inferior of truncations). Let (tι)ι<λ be a sequence in T ∞(Σ⊥,V) and

(dι)ι<λ a sequence in N such that λ is a limit ordinal and (dι)ι<λ tends to infinity. Then

lim infι→λ tι = lim infι→λ tι|dι.

Proof. Let t = lim infι→λ tι|dι and t̂ = lim infι→λ tι. Since, according to Proposition 4.3,

tι|dι ≤⊥ tι for each ι < λ, we have that t ≤⊥ t̂. Thus, it remains to be shown that also
t̂ ≤⊥ t holds. That is, we have to show that t̂(π) = t(π) holds for all π ∈ P6⊥(t̂).

Let π ∈ P6⊥(t̂). That is, t̂(π) = f 6= ⊥. Hence, by Lemma 3.9, there is some α < λ
with (

d
α≤ι<λ tι)(π) = f . Let P = {π′ | π′ ≤ π} be the set of all prefixes of π. Note that

d
α≤ι<λ tι ≤⊥ tγ for all α ≤ γ < λ. Hence,

d
α≤ι<λ tι and tγ coincide in all occurrences in

P for all α ≤ γ < λ. Because (dι)ι<λ tends to infinity, there is some α ≤ β < λ such that
dγ > |π| for all β ≤ γ < λ. Consequently, since tγ |dγ and tγ coincide in all occurrences of
length smaller than dγ for all γ < λ, we have that tγ |dγ and tγ coincide in all occurrences
in P for all β ≤ γ < λ. Hence, tγ |dγ and

d
α≤ι<λ tι coincide in all occurrences in P for all

β ≤ γ < λ. Hence, according to Lemma 3.10,
d

α≤ι<λ tι and
d

β≤ι<λ tι|dι coincide in all

occurrences in P . Particularly, it holds that (
d

β≤ι<λ tι|dι)(π) = f which in turn implies by

Lemma 3.9 that t(π) = f .

We now can prove the counterpart of Theorem 4.9 for strong convergences:

Theorem 4.12 (total strong p-convergence = strong m-convergence). For every reduction

S in a TRS the following equivalences hold:

(i) S : s ։p . . . is total iff S : s ։m . . . , and
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(ii) S : s ։p t is total iff S : s ։m t.

Proof. It suffices to only prove ((ii)) since ((i)) follows from ((ii)) according to Remark 3.4
resp. Remark 2.3.

Let S = (ϕι : tι →πι,cι tι+1)ι<α be a reduction in a TRS R⊥. We continue the proof by
induction on α. The case α = 0 is trivial. If α is a successor ordinal β + 1, we can reason
as follows

S : t0 ։
p tα total iff S|β : t0 ։

p tβ and tβ →R tα (Remark 3.4, Fact 4.1)

iff S|β : t0 ։
m tβ and tβ →R tα (ind. hyp.)

iff S : t0 ։
m tα (Remark 2.3)

Let α be a limit ordinal. At first consider the “only if” direction. That is, we assume
that S : t0 ։

p tα is total. According to Remark 3.4, we have that S|β : t0 ։
p tβ for each

β < α. Applying the induction hypothesis yields S|β : t0 ։
m tβ for each β < α. That is,

following Remark 2.3, we have S : t0 ։
m . . . . Since cι ≤⊥ tι for all ι < α, we have that

tα = lim infι→α cι ≤⊥ lim infι→α tι. Because tα is total and, therefore, maximal w.r.t. ≤⊥,
we can conclude that tα = lim infι→α tι. According to Proposition 4.8, this also means that
tα = limι→α tι. For strong m-convergence it remains to be shown that (|πι|)ι<α tends to
infinity. So let us assume that this is not the case. By Lemma 4.10, this means that there
is a position π such that, for each β < α, there is some β ≤ γ < α such that the step ϕγ

takes place at position π. By Lemma 3.14, this contradicts the fact that tα is a total term.
Now consider the converse direction and assume that S : t0 ։

m tα. Following Remark 2.3
we obtain S|β : t0 ։

m tβ for all β < α, to which we can apply the induction hypothesis in
order to get S|β : t0 ։

p tβ for all β < α so that we have S : t0 ։
p . . . , according to Remark 3.4.

It remains to be shown that tα = lim infι→α cι. Since S strongly m-converges to tα, we have
that

(a) tα = limι→α tι, and that
(b) the sequence of depths (dι = |πι|)ι<α tends to infinity.

Using Proposition 4.8 we can deduce from ((a)) that tα = lim infι→α tι. Due to ((b)), we
can apply Lemma 4.11 to obtain

lim inf
ι→α

tι = lim inf
ι→α

tι|dι and lim inf
ι→α

cι = lim inf
ι→α

cι|dι.

Since tι|dι = cι|dι for all ι < α, we can conclude that

tα = lim inf
ι→α

tι = lim inf
ι→α

tι|dι = lim inf
ι→α

cι|dι = lim inf
ι→α

cι.

The main result of this section is that we do not loose anything when switching from
the metric model to the partial order model of infinitary term rewriting. Restricted to the
domain of the metric model, i.e. total terms, both models coincide in the strongest possible
sense as Theorem 4.9 and Theorem 4.12 confirm.

At the same time, however, the partial order model provides more structure. Whenever
the metric model can only conclude divergence, the partial order model can qualify the degree
of divergence. If a reduction p-converges to ⊥, it can be considered completely divergent. If
it p-converges to a term that only contains ⊥ as proper subterms, it can be recognised as
being only partially divergent with the diverging parts of the reduction indicated by ’⊥’s,
whereas complete absence of ’⊥’s then indicates complete convergence.

In the rest of this paper we will put our focus on strong convergence. Theorem 4.12
will be one of the central tools in Section 6 where we shall discover that Böhm-reachability
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coincides with strong p-reachability in orthogonal systems. The other crucial tool that we
will leverage is the existence and uniqueness of complete developments. This is the subject
of the subsequent section.

5. Strongly p-Converging Complete Developments

The purpose of this section is to establish a theory of residuals and complete developments in
the setting of strongly p-convergent reductions. Intuitively speaking, the residuals of a set of
redexes are the remains of this set of redexes after a reduction, and a complete development
of a set of redexes is a reduction which only contracts residuals of these redexes and ends in
a term with no residuals.

Complete developments are a well-known tool for proving (finitary) confluence of orthog-
onal systems [24]. It has also been lifted to the setting of strongly m-convergent reductions
in order to establish (restricted forms of) infinitary confluence of orthogonal systems [16].
As we have seen in Example 2.6, m-convergence in general does not have this property.

After introducing residuals and complete developments in Section 5.1, we will show in
Section 5.2 resp. Section 5.3 that complete developments do always exist and that their final
terms are uniquely determined. We then use this in Section 5.4 to show the Infinitary Strip
Lemma for strongly p-converging reductions which is a crucial tool for proving our main
result in Section 6.

5.1. Residuals. At first we need to formalise the notion of residuals. It is virtually equiva-
lent to the definition for strongly m-convergent reduction by Kennaway et al. [16]:

Definition 5.1 (descendants, residuals). Let R be a TRS, S : t0 ։
p α

R tα, and U ⊆ P6⊥(t0).
The descendants of U by S, denoted U//S, is the set of positions in tα inductively defined
as follows:

(a) If α = 0, then U//S = U .
(b) If α = 1, i.e. S : t0 →π,ρ t1 for some ρ : l→ r, take any u ∈ U and define the set Ru as

follows: If π 6≤ u, then Ru = {u}. If u is in the pattern of the ρ-redex, i.e. u = π · π′

with π′ ∈ PΣ(l), then Ru = ∅. Otherwise, i.e. if u = π · w · x, with l|w ∈ V, then
Ru = {π · w′ · x | r|w′ = l|w }. Define U//S =

⋃
u∈U Ru.

(c) If α = β + 1, then U//S = (U//S|β)//S|[β,α)
(d) If α is a limit ordinal, then U//S = P6⊥(tα) ∩ lim infι→α U//S|ι

That is, u ∈ U//S iff u ∈ P6⊥(tα) and ∃β < α∀β ≤ ι < α : u ∈ U//S|ι
If, in particular, U is a set of redex occurrences, then U//S is also called the set of residuals

of U by S. Moreover, by abuse of notation, we write u//S instead of {u} //S.

Clauses ((a)), ((b)) and ((c)) are as in the finitary setting. Clause ((d)) lifts the definition
to the infinitary setting. However, the only difference to the definition of Kennaway et al. is,
that we consider partial terms here. Yet, for technical reasons, the notion of descendants has
to be restricted to non-⊥ occurrences. Since ⊥ cannot be a redex, this is not a restriction
for residuals, though.

Remark 5.2. One can easily see that the descendants of a set of non-⊥-occurrences is again
a set of non-⊥-occurrences. The restriction to non-⊥-occurrences has to be made explicit
for the case of open reductions. In fact, without this explicit restriction the definition would
yield descendants which might not even be occurrences in the final term tα of the reduction.
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For example, consider the system with the single rule f(x)→ x and the strongly p-convergent
reduction

S : fω → fω → . . . ⊥

in which each reduction step contracts the redex at the root of fω. Consider the set U =
{〈〉, 〈0〉, 〈0, 0〉, 〈0, 0, 0〉, . . . } of all positions in tω. Without the abovementioned restriction,
the descendants of U by S would be U itself as the descendants of U by each proper prefix
of S is also U . However, none of the positions 〈0〉, 〈0, 0〉, 〈0, 0, 0〉, · · · ∈ U is even a position
in the final term ⊥. The position 〈〉 ∈ U occurs in ⊥, but only as a ⊥-occurrence. With the
restriction to non-⊥-occurrences we indeed get the expected result U//S = ∅.

The definition of descendants of open reductions is quite subtle which makes it fairly
cumbersome to use in proofs. The lemma below establishes an alternative characterisation
which will turn out to be useful in later proofs:

Lemma 5.3 (descendants of open reductions). Let R be a TRS, S : s ։p λ
R t and U ⊆ P6⊥(s),

with λ a limit ordinal and S = (tι →πι,cι tι+1)ι<λ. Then it holds that for each position π

π ∈ U//S iff there is some β < λ with π ∈ U//S|β and ∀β ≤ ι < λ πι 6≤ π.

Proof. We first prove the “only if” direction. To this end, assume that π ∈ U//S. Hence, it
holds that

π ∈ P6⊥(t) and there is some γ1 < λ such that π ∈ U//S|ι for all γ1 ≤ ι < λ (1)

Particularly, we have that t(π) 6= ⊥. Applying Lemma 3.11 then yields that

there is some γ2 < λ such that πι 6≤ π for all γ2 ≤ ι < λ (2)

Now take β = max {γ1, γ2}. Then it holds that π ∈ U//S|β and that πι 6≤ π for all β ≤ ι < λ
due to (1) and (2), respectively.

Next, consider the converse direction of the statement: Let β < λ be such that π ∈
U//S|β and πι 6≤ π for all β ≤ ι < λ. We will show that π ∈ U//S by proving the stronger
statement that π ∈ U//S|γ for all β ≤ γ ≤ λ. We do this by induction on γ.

For γ = β, this is trivial. Let γ = γ′ + 1 > β. Note that, by definition, U//S|γ =(
U//S|γ′

)
//S|[γ′,γ). Hence, since for the γ′-th step we have, by assumption, πγ′ 6≤ π and

for the preceding reduction we have, by induction hypothesis, that π ∈ U//S|γ′ , we can
conclude that π ∈ U//S|γ .

Let γ > β be a limit ordinal. By induction hypothesis, we have that π ∈ U//S|ι for
each β ≤ ι < γ. Particularly, this implies that π ∈ P6⊥(tβ). Together with the assumption
that πι 6≤ π for all β ≤ ι < γ, this yields that π ∈ P6⊥(tγ) according to Lemma 3.11. Hence,
π ∈ U//S|γ .

The following lemma confirms the expected monotonicity of descendants:

Lemma 5.4 (monotonicity of descendants). Let R be a TRS, S : s ։p R t and U, V ⊆ P6⊥(s).
If U ⊆ V , then U//S ⊆ V//S.

Proof. Straightforward induction on the length of S.
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This lemma can be generalised such that we can see that descendants are defined “point-
wise”:

Proposition 5.5 (pointwise definition of descendants). Let R be a TRS, S : s ։
p

R t and

U ⊆ P6⊥(s). Then it holds that U//S =
⋃

u∈U u//S.

Proof. Let S = (tι →πι,cι tι+1)ι<α. For α = 0 and α = 1, the statement is trivially true. If
α = α′ + 1 > 1, then abbreviate S|α′ and S|[α′,α) by S1 and S2, respectively, and reason as
follows:

U//S = (U//S1)//S2
IH
= (

⋃

u∈U

Vu︷ ︸︸ ︷
u//S1)

︸ ︷︷ ︸
V

//S2
IH
=

⋃

u∈V

u//S2

=
⋃

u∈U

⋃

v∈Vu

v//S2
IH
=

⋃

u∈U

Vu//S2 =
⋃

u∈U

(u//S1)//S2 =
⋃

u∈U

u//S

Let α be a limit ordinal. The “⊇” direction of the equation follows from Lemma 5.4.
For the converse direction, assume that π ∈ U//S. By Lemma 5.3, there is some β < α
such that πι 6≤ π for all β ≤ ι < α and π ∈ U//S|β . Applying the induction hypothesis
yields that π ∈

⋃
u∈U u//S|β , i.e. there is some u∗ ∈ U such that π ∈ u∗//S|β . By employing

Lemma 5.3 again, we can conclude that π ∈ u∗//S and, therefore, that π ∈
⋃

u∈U u//S.

Note that the above proposition fails if we would include ⊥-occurrences in our definition
of descendants: Reconsider the example in Remark 5.2 and assume we would drop the
restriction to non-⊥-occurrences. Then the residuals u//S of each occurrence u ∈ U would
be empty, whereas the residuals U//S of all occurrences would be the root occurrence 〈〉.

Proposition 5.6 (uniqueness of ancestors). Let R be TRS, S : s ։
p

R t and U, V ⊆ P6⊥(s).
If U ∩ V = ∅, then U//S ∩ V//S = ∅.

Proof. We will prove the contraposition of the statement. To this end, suppose that there
is some occurrence w ∈ U//S ∩ V//S. By Proposition 5.5, there are occurrences u ∈ U and
v ∈ V such that w ∈ u//S ∩ v//S. We will show by induction on the length of S that then
u = v and, therefore, U ∩ V 6= ∅. If S is empty, then this is trivial. If S is of successor
ordinal length or open, then u = v follows from the induction hypothesis.

Remark 5.7. The two propositions above imply that each descendant u′ ∈ U//S of a set U
of occurrences is the descendant of a uniquely determined occurrence u ∈ U , i.e. u′ ∈ u//S
for exactly one u ∈ U . This occurrence u is also called the ancestor of u′ by S.

The following proposition confirms a property of descendants that one expects intu-
itively: The descendants of descendants are again descendants. That is, the concept of
descendants is composable.

Proposition 5.8 (descendants of sequential reductions). Let R be a TRS, S : t0 ։
p

R t1,
T : t1 ։

p
R t2, and U ⊆ P6⊥(t0). Then U//S · T = (U//S)//T .

Proof. Straightforward proof by induction on the length of T .
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The following proposition confirms that the disjointness of occurrences is propagated
through their descendants:

Proposition 5.9 (disjoint descendants). The descendants of a set of pairwise disjoint oc-

currences are pairwise disjoint as well.

Proof. Let S : s ։p α t and let U be a set of pairwise disjoint occurrences in s. We show that
U//S is also a set of pairwise disjoint occurrences by induction on α.

For α being 0, the statement is trivial, and, for α being a successor ordinal, the statement
follows straightforwardly from the induction hypothesis. Let α be limit ordinal and suppose
that there are two occurrences u, v ∈ U//S which are not disjoint. By definition, there are
ordinals β1, β2 < α such that u ∈ U//S|ι for all β1 ≤ ι < α, and v ∈ U//S|ι for all β2 ≤ ι < α.
Let β = max {β1, β2}. Then we have that u, v ∈ U//S|β . This, however, contradicts the
induction hypothesis which, in particular, states that U//S|β is a set of pairwise disjoint
occurrences.

For the definition of complete developments it is important that the descendants of
redex occurrences are again redex occurrences:

Proposition 5.10 (residuals). Let R be an orthogonal TRS, S : s ։
p

R t and U a set of

redex occurrences in s. Then U//S is a set of redex occurrences in t.

Proof. Let S = (tι →πι,cι tι+1)ι<α. We proceed by induction on α. For α being 0, the
statement is trivial, and, for α a successor ordinal, the statement follows straightforwardly
from the induction hypothesis.

So assume that α is a limit ordinal and that π ∈ U//S. We will show that t|π is a redex.
From Lemma 5.3 we obtain that

there is some β < α with π ∈ U//S|β and πι 6≤ π for all β ≤ ι < α. (1)

By applying the induction hypothesis, we get that π is a redex occurrence in tβ. Hence,
there is some rule l→ r ∈ R such that tβ|π is an instance of l.

We continue this proof by showing the following stronger claim:

for all β ≤ γ ≤ α tγ |π is an instance of l, and (2)

cι|π is an instance of l for all β ≤ ι < γ (3)

For the special case γ = α the above claim (2) implies that t|π is a redex.
We proceed by an induction on γ. For γ = β, part (2) of the claim has already been

shown and (3) is vacuously true. Let γ = γ′+1 > β. According to the induction hypothesis,
(2) and (3) hold for γ′. Hence, it remains to be shown that both tγ |π and cγ′ |π are instances
of l. At first consider cγ′ |π. Recall that cγ′ = tγ′ [⊥]πγ′

. At first consider the case where π

and πγ′ are disjoint. Then cγ′ |π = tγ′ |π. Since, by induction hypothesis, tγ′ |π is an instance
of l, so is cγ′ |π. Next, consider the case where π and πγ′ are not disjoint. Because of (1),
we then have that π < πγ′ , i.e. there is some non-empty π′ with πγ′ = π · π′. Since R is
non-overlapping, π′ cannot be a position in the pattern of the redex tγ′ |π w.r.t. l. Therefore,
also cγ′ |π is an instance of l. So in either case cγ′ |π is an instance of l. Since cγ′ ≤⊥ tγ , also
tγ |π is an instance of l.

Let γ > β be a limit ordinal. Part (3) of the claim follows immediately from the
induction hypothesis. Hence, cι|π is an instance of l for all β ≤ ι < γ. This and (1) implies
that all terms in the set T = {cι | β ≤ ι < γ } coincide in all occurrences in the set

P =
{
π′

∣∣π′ ≤ π
}
∪
{
π · π′

∣∣ π′ ∈ PΣ(l)
}
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P is obviously closed under prefixes. Therefore, we can apply Lemma 3.10 in order to
obtain that

d
T coincides with all terms in T in all occurrences in P . Since

d
T ≤⊥ tγ , this

property carries over to tγ . Consequently, also tγ |π is an instance of l.

Next we want to establish an alternative characterisation of descendants based on la-
bellings. This is a well-known technique [24] that keeps track of descendants by labelling the
symbols at the relevant positions in the initial term. In order to formalise this idea, we need
to extend a given TRS such that it can also deal with terms that contain labelled symbols:

Definition 5.11 (labelled TRSs/terms). Let R = (Σ, R) be a TRS.

(i) The labelled signature Σl is defined as Σ ∪ {f l | f ∈ Σ}. The arity of the function
symbol f l is the same as that of f . The symbols f l are called labelled ; the symbols
f ∈ Σ are called unlabelled. Terms over Σl are called labelled terms. Note that the
symbol ⊥ ∈ Σ⊥ has no corresponding labelled symbol ⊥l in the labelled signature Σl

⊥.
Likewise, there are no labelled variables.

(ii) Labelled terms can be projected back to the original unlabelled ones by removing the
labels via the projection function ‖·‖ : T ∞(Σl

⊥,V)→ T
∞(Σ⊥,V):

‖⊥‖ = ⊥ ‖x‖ = x for all x ∈ V, and

‖f l(t1, . . . , tk)‖ = ‖f(t1, . . . , tk)‖ = f(‖t1‖ , . . . , ‖tk‖) for all f ∈ Σ(k)

(iii) The labelled TRS Rl is defined as (Σl, Rl), where Rl = {l→ r | ‖l‖ → r ∈ R}.
(iv) For each rule l→ r ∈ Rl, we define its unlabelled original ‖l→ r‖ = ‖l‖ → r in R.

(v) Let t ∈ T ∞(Σ⊥,V) and U ⊆ PΣ(t). The term t(U) ∈ T ∞(Σl

⊥,V) is defined by

t(U)(π) =

{
t(π) if π 6∈ U

t(π)l if π ∈ U

That is,
∥∥t(U)

∥∥ = t and the labelled symbols in t(U) are exactly those at positions in
U .

The key property which is needed in order to make the labelling approach work is that any
reduction in a left-linear TRS that starts in some term t can be lifted for any labelling t′ of
t to a unique equivalent reduction in the corresponding labelled TRS that starts in t′:

Proposition 5.12 (lifting reductions to labelled TRSs). Let R = (Σ, R) be a left-linear TRS,

S = (sι →ρι,πι sι+1)ι<α a reduction strongly p-converging to sα in R , and t0 ∈ T
∞(Σl

⊥,V)
a labelled term with ‖t0‖ = s0. Then there is a unique reduction T = (tι →ρ′ι,πι

tι+1)ι<α

strongly p-converging to tα in Rl such that

(a) ‖tι‖ = sι, ‖ρ
′
ι‖ = ρι, for all ι < α, and

(b) ‖tα‖ = sα.

Proof. We prove this by an induction on α. For the case of α being zero, the statement is
trivially true. For the case of α being a successor ordinal, the statement follows straightfor-
wardly from the induction hypothesis (the argument is the same as for finite reductions; e.g.
consult [24]).

Let α be a limit ordinal. By induction hypothesis, for each proper prefix S|γ of S there
is a uniquely defined strongly p-convergent reduction Tγ in Rl satisfying ((a)) and ((b)).
Since the sequence (S|ι)ι<α forms a chain w.r.t. the prefix order ≤, so does the corresponding
sequence (Tι)ι<α. Hence the sequence T =

⊔
ι<α Tι is well-defined. By construction, Tγ ≤ T

holds for each γ < α, and we can use the induction hypothesis to obtain part ((a)) of the
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proposition. In order to show sα = ‖tα‖, we prove the two inequalities sα ≤⊥ ‖tα‖ and
sα ≥⊥ ‖tα‖:

To show ‖tα‖ ≤⊥ sα, we take some π ∈ P6⊥(‖tα‖) and show that ‖tα‖ (π) = sα(π).
Let f = ‖tα‖ (π). That is, either tα(π) = f or tα(π) = f l. In either case, we can employ
Lemma 3.11 to obtain some β < α such that tβ(π) = f resp. tβ(π) = f l and πι 6≤ π for all
β ≤ ι < α. Since, by ((a)), sβ = ‖tβ‖, we have in both cases that sβ(π) = f . By applying
Lemma 3.11 again, we get that sα(π) = f , too.

Lastly, we show the converse inequality sα ≤⊥ ‖tα‖. For this purpose, let π ∈ P6⊥(sα)
and f = sα(π). By Lemma 3.11, there is some β < α such that sβ(π) = f and πι 6≤ π for all
β ≤ ι < α. Since, by ((a)), sβ = ‖tβ‖, we have that tβ(π) ∈ {f, f

l}. Applying Lemma 3.11
again then yields that tα(π) ∈ {f, f

l} and, therefore, ‖tα‖ (π) = f .

Having this, we can establish an alternative characterisation of descendants using la-
bellings:

Proposition 5.13 (alternative characterisation of descendants). Let R be a left-linear TRS,

S : s0 ։
p

R sα, and U ⊆ P6⊥(s0). Following Proposition 5.12, let T : t0 ։
p

R tα be the unique

lifting of S to Rl starting with the term t0 = s
(U)
0 . Then it holds that tα = s

(U//S)
α . That is,

for all π ∈ P6⊥(sα), it holds that tα(π) is labelled iff π ∈ U//S.

Proof. Let S = (sι →πι sι+1)ι<α and T = (tι →πι tι+1)ι<α. We prove the statement by an
induction on the length α of S. If α = 0, then the statement is trivially true. If α is a
successor ordinal, then a straightforward argument shows that the statement follows from
the induction hypothesis. Here the restriction to left-linear systems is vital.

Let α be a limit ordinal and let π ∈ P6⊥(sα). We can then reason as follows:

tα(π) is labelled iff ∃β < α : tβ(π) is labelled and ∀β ≤ ι < α : πι 6≤ π (Lem. 3.11)

iff π ∈ U//S|β and ∀β ≤ ι < α : πι 6≤ π (ind. hyp.)

iff π ∈ U//S (Lem. 5.3)

5.2. Constructing Complete Developments. Complete developments are usually de-
fined for (almost) orthogonal systems. This ensures that the residuals of redexes are again
redexes. Since we are going to use complete developments for potentially overlapping sys-
tems as well, we need to make restrictions on the set of redex occurrences instead:

Definition 5.14 (conflicting redex occurrences). Two distinct redex occurrences u, v in a
term t are called conflicting if there is a position π such that v = u · π and π is a pattern
position of the redex at u, or, vice versa, u = v · π and π is a pattern position of the redex
at v. If this is not the case, then u and v are called non-conflicting.

One can easily see that in an orthogonal TRS any pair of redex occurrences is non-
conflicting.

Definition 5.15 ((complete) development). Let R be a left-linear TRS, s a partial term in
R, and U a set of pairwise non-conflicting redex occurrences in s.

(i) A development of U in s is a strongly p-converging reduction S : s ։p α t in which each
reduction step ϕι : tι →πι tι+1 contracts a redex at πι ∈ U//S|ι.

(ii) A development S : s ։p t of U in s is called complete, denoted S : s ։p U t, if U//S = ∅.
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This is a straightforward generalisation of complete developments known from the fini-
tary setting and coincides with the corresponding formalisation for metric infinitary rewriting
[16] if restricted to total terms.

The restriction to non-conflicting redex occurrences is essential in order guarantee that
the redex occurrences are independent from each other:

Proposition 5.16 (non-conflicting residuals). Let R be a left-linear TRS, s a partial term in

R, U a set of pairwise non-conflicting redex occurrences in s, and S : s ։U t a development

of U in s. Then also U//S is a set of pairwise non-conflicting redex occurrences.

Proof. This can be proved by induction on the length of S. The part showing that the de-
scendants are again redex occurrences can be copied almost verbatim from Proposition 5.10.
Instead of referring to the non-overlappingness of the system one can refer to the non-
conflictingness of the preceding residuals which can be assumed by the induction hypothesis.
The part of the induction proof that shows non-conflictingness is analogous to Proposi-
tion 5.9.

It is relatively easy to show that complete developments of sets of non-conflicting redex
occurrences do always exists in the partial order setting. The reason for this is that strongly
p-continuous reductions do always strongly p-converge as well. This means that as long
as there are (residuals of) redex occurrences left after an incomplete development, one can
extend this development arbitrarily by contracting some of the remaining redex occurrences.
The only thing that remains to be shown is that one can devise a reduction strategy which
eventually contracts (all residuals of) all redexes. The proposition below shows that a
parallel-outermost reduction strategy will always yield a complete development in a left-
linear system.

Proposition 5.17 (complete developments). Let R be a left-linear TRS, t a partial term

in R, and U a set of pairwise non-conflicting redex occurrences in t. Then U has a complete

development in t.

Proof. Let t0 = t, U0 = U and V0 the set of outermost occurrences in U0. Furthermore,
let S0 : t0 ։

p
V0

t1 be some complete development of V0 in t0. S0 can be constructed by
contracting the redex occurrences in V0 in a left-to-right order. This step can be continued
for each i < ω by taking Ui+1 = Ui//Si, where Si : ti ։

p
Vi

ti+1 is some complete development
of Vi in ti with Vi the set of outermost redex occurrences in Ui.

Note that then, by iterating Proposition 5.8, it holds that

U//S0 · . . . · Sn−1 = Un for all n < ω (1)

If there is some n < ω for which Un = ∅, then S0 · . . . · Sn−1 is a complete development of
U according to (1).

If this is not the case, consider the reduction S =
∏

i<ω Si, i.e. the concatenation of all
’Si’s. We claim that S is a complete development of U . Suppose that this is not the case,
i.e. U//S 6= ∅. Hence, there is some u ∈ U//S. Since all ’Ui’s are non-empty, so are the
’Vi’s. Consequently, all ’Si’s are non-empty reductions which implies that S is a reduction
of limit ordinal length, say λ. Therefore, we can apply Lemma 5.3 to infer from u ∈ U//S
that there is some α < λ such that u ∈ U//S|α and all reduction steps beyond α do not take
place at u or above. This is not possible due to the parallel-outermost reduction strategy
that S adheres.
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Figure 5. A path.

This shows that complete developments of any set of redex occurrences do always exist in
any (almost) orthogonal system. This is already an improvement over strongly m-converging
reductions, which only allow this if no collapsing rules are present or the considered set of
redex occurrences does not contain an infinite set of nested collapsing redexes – also known
as an infinite collapsing tower.

We shall discuss the issue of collapsing rules as well as infinite collapsing towers in more
detail in the subsequent section, where we will show that complete developments are also
unique in the sense that the final outcome is uniquely determined by the initial set of redexes
occurrences.

5.3. Uniqueness of Complete Developments. The goal of this section is to show that
the final term of a complete development is uniquely determined by the initial set of redex
occurrences U . There are several techniques to show that in the metric model. One of
these approaches, introduced by Kennaway and de Vries [14] and detailed by Ketema and
Simonsen [20, 19] for infinitary combinatory reduction systems, uses so-called paths. Paths
are constructed such that they, starting from the root, run through the initial term t of the
complete development, and whenever a redex occurrence of the development is encountered,
the path jumps to the root of the right-hand side of the corresponding rule and jumps back
to the term t when it reaches a variable in the right-hand side.
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Figure 5a illustrates this idea. It shows a path in a term t that encounters two redex
occurrences of the complete development. As soon as such a redex occurrence is encountered,
the path jumps to the right-hand side of the corresponding rule as indicated by the dashed
arrows. Then the path runs through the right-hand side. When a variable is encountered,
the path jumps back to the position of the term t that matches the variable. This jump is
again indicated by a dashed arrow. The path that is obtained by this construction is shown
in Figure 5b. With the collection of the thus obtained paths one can then construct the final
term of the complete development. This technique – slightly modified – can also be applied
in the present setting.

A path consists of nodes, which are connected by edges. We have two kinds of nodes: a
node (⊤, π) represents a location in the term t and a node (r, π, u) represents a location in
the right-hand side r of a rule. These nodes of the form (⊤, π) and (r, π, u) encode that the
path is currently at position π in the term t resp. r. The additional component u provides
the information that the path jumped to the right-hand side r from the redex t|u. Both
nodes and the edges between them are labelled. Each node is labelled with the symbol at
the current location of the path, unless it is a redex occurrence in t or a variable occurrence
in a right-hand side. The labellings of the edges provide information on how the path moves
through the terms: a labelling i represents a move along the i-th edge in the term tree from
the current location whereas an empty labelling indicates a jump from or to a right-hand
side of a rule.

Definition 5.18 (path). Let R be a left-linear TRS, t a partial term in R, and U a set
of pairwise non-conflicting redex occurrence in t. A U,R-path (or simply path) in t is a
sequence of length at most ω containing so-called nodes and edges in an alternating manner
like this:

〈n0, e0, n1, e1, n2, e2, . . .〉

where the ’ni’s are nodes and the ’ei’s are edges. A node is either a pair of the form (⊤, π)
with π ∈ P(t) or a triple of the form (r, π, u) with r the right-hand side of a rule in R,
π ∈ P(r), and u ∈ U . Edges are denoted by arrows →. Both edges and nodes might be
labelled by elements in Σ⊥ ∪ V and N, respectively. We write paths as the one sketched
above as

n0 → n1 → n2 → · · ·

or, when explicitly indicating labels, as

n0
l0 l1→ n1

l2 l3→ n2
l4 l5→ · · ·

where empty labels are explicitly given by the symbol ∅. If a path has a segment of the form
n→ n′, then we say there is an edge from n to n′ or that n has an outgoing edge to n′.

Every path starts with the node (⊤, 〈〉) and is either infinitely long or ends with a node.
For each node n having an outgoing edge to a node n′, the following must hold:

(1) If n is of the form (⊤, π), then
(a) n′ = (⊤, π · i) and the edge is labelled by i, with π · i ∈ P(t) and π 6∈ U , or
(b) n′ = (r, 〈〉, u) and the edge is unlabelled, with t|u a ρ-redex for ρ : l → r ∈ R and

u ∈ U .
(2) If n is of the form (r, π, u), then

(a) n′ = (r, π · i, u) and the edge is labelled by i, with π · i ∈ P(r), or
(b) n′ = (⊤, u · π′) and the edge is unlabelled, with t|u a ρ-redex for ρ : l → r ∈ R, r|π

a variable, and π′ the unique occurrence of r|π in l. .
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Additionally, the nodes of a path are supposed to be labelled in the following way:

(3) A node of the form (⊤, π) is unlabelled if π ∈ U and is labelled by t(π) otherwise.
(4) A node of the form (r, π, u) is unlabelled if r|π is a variable and labelled by r(π) otherwise.

Remark 5.19. The above definition is actually a coinductive one. This is necessary to
also define paths of infinite length. Also in [14] paths are considered to be possibly infinite,
although they are defined inductively and are, therefore, finite.

Remark 5.20. Our definition of paths deviates slightly from the usual definition found in
the literature [16, 20, 21]: In our setting, term nodes are of the form (⊤, π). The symbol ⊤ is
used to indicate that we are in the host term t. In the definitions found in the literature, the
term t itself is used for that, i.e. term nodes are of the form (t, π). Our definition of paths
makes them less dependant on the term t they are constructed in. This makes it easier to
construct a path in a host term from other paths in different host terms. This will become
necessary in the proof of Lemma 5.33. However, we have to keep in mind that the node
labels in a path are dependent on the host term under consideration. Thus, the labelling of
a path might be different depending on which host term it is considered to be in.

Returning to the schematic example illustrated in Figure 5, we can observe how the
construction of a path is carried out: The path starts with a segment in the term t. This
segment is entirely regulated by the rule ((a)); all its edges and nodes are labelled according
to ((a)) and (3). The jump to the right-hand side r1 following that initial segment is
justified by rule ((b)). This jump consists of a node (⊤, u1), unlabelled according to (3),
corresponding to the redex occurrence u1, and an unlabelled edge to the node (r1, 〈〉, u1),
corresponding to the root of the right-hand side r1. The segment of the path that runs
through the right-hand side r1 is subject to rule ((a)); again all its nodes and edges are
labelled, now according to ((a)) and (4). As soon as a variable is reached in the right-hand
side term (in the schematic example it is the variable x) a jump to the main term t is
performed as required by rule ((b)). This jump consists of a node (r1, π, u1), unlabelled
according to (4), where π is the current position in r1, i.e. the variable occurrence, and an
unlabelled edge to the node (⊤, u1 · π

′). The position π′ is the occurrence of the variable
x in the left-hand side. As we only consider left-linear systems, this occurrence is unique.
Afterwards, the same behaviour is repeated: A segment in t is followed by a jump to a
segment in the right-hand side r2 which is in turn followed by a jump back to a final
segment in t.

Note that paths do not need to be maximal. As indicated in the schematic example,
the path ends somewhere within the main term, i.e. not necessarily at a constant symbol or
a variable. What the example does not show, but which is obvious from the definition, is
that paths can also terminate within a right-hand side. A jump back to the main term is
only required if a variable is encountered.

The purpose of the concept of paths is to simulate the contraction of all redexes of the
complete development in a locally restricted manner, i.e. only along some branch of the term
tree. This locality will keep the proofs more concise and makes them easier to understand
once we have grasped the idea behind paths. The strategy to prove our conjecture of
uniquely determined final terms is to show that paths can be used to define a term and that
a contraction of a redex of the complete development preserves a property of the collection
of all paths which ensures that the induced term remains invariant. Then we only have to
observe that the induced term of paths in a term with no redexes (in U) is the term itself.
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The following fact is obvious from the definition of a path.

Fact 5.21. LetR be a left-linear TRS, t a partial term inR, and U a set of redex occurrences
in t.

(i) An edge in a U,R-path in t is unlabelled iff the preceding node is unlabelled.
(ii) Any prefix of a U,R-path in t that ends in a node is also a U,R-path in t.

As we have already mentioned, collapsing rules and in particular so-called infinite collapsing
towers play a significant role in m-convergent reductions as they obstruct complete devel-
opments. Also in our setting of p-convergent reductions they are important as they are
responsible for volatile positions:

Definition 5.22 (collapsing rules). Let R be a TRS.

(i) A rule l → r in R is called collapsing if r is a variable. The unique position of the
variable r in l is called the collapsing position of the rule.

(ii) A ρ-redex is called collapsing if ρ is a collapsing rule.
(iii) A collapsing tower is a non-empty sequence (ui)i<α of collapsing redex occurrences in

a term t such that ui+1 = ui · πi for each i < α, where πi is a collapsing position of
the redex at ui. It is called maximal if it is not a proper prefix of another collapsing
tower.

One can easily see that, in orthogonal TRSs, maximal collapsing towers in the same term are
uniquely determined by their topmost redex occurrence. That is, two maximal collapsing
towers (ui)i<α, (vi)i<α in the same term are equal iff u0 = v0.

As mentioned, we shall use the U,R-paths in a term t in order to define the final term
of a complete development of U in t. However, in order to do that, we only need the
information that is available from the labellings. The inner structure of nodes is only used
for the bookkeeping that is necessary for defining paths. The following notion of traces
defines projections to the labels of paths:

Definition 5.23 (trace). Let R be a left-linear TRS, t a partial term in R, and U a set of
pairwise non-conflicting redex occurrences in t.

(i) Let Π be a U,R-path in t. The trace of Π, denoted trt(Π), is the projection of Π to
the labelling of its nodes and edges ignoring empty labels and the node label ⊥.

(ii) P(t, U,R) is used to denote the set of all U,R-paths in t that end in a labelled node, or
are infinite but have a finite trace. The set of traces of paths in P(t, U,R) is denoted
by T r(t, U,R).

By Fact 5.21, the trace of a path is a sequence alternating between elements in Σ∪V and N,
which, if non-empty, starts with an element in Σ ∪ V. Moreover, by definition, T r(t, U,R)
is a set of finite traces of U,R-paths in t.

As we have mentioned in Remark 5.20, the labelling of a path depends on the host term
under consideration. Hence, also the trace of a path is depended on the host term. That is
why we need to index the trace mapping trt(·) with the corresponding host term t.

Example 5.24. Consider the term t = g(f(g(h(⊥)))) and the TRS R consisting of the two
rules

f(x)→ h(x), h(x)→ x.
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Furthermore, let U be the set of all redex occurrences in t, viz. U =
{
〈0〉, 〈0〉3

}
. The

following path Π is a U,R-path in t:

(⊤, 〈〉)g
0
→ (⊤, 〈0〉)∅

∅
→ (r1, 〈〉, 〈0〉)

h 0
→ (r1, 〈0〉, 〈0〉)

∅ ∅
→ (⊤, 〈0〉2)

g

0
→ (⊤, 〈0〉3)

∅ ∅
→ (r2, 〈〉, 〈0〉

3)
∅ ∅
→ (⊤, 〈0〉4)

⊥

As a matter of fact, Π is the greatest path of t. Hence, according to Fact 5.21, the set of all
prefixes of Π ending in a node is the set of all U,R-paths in t. Note that since Π itself ends
in a labelled node, it is contained in P(t, U,R). The trace trt(Π) of Π is the sequence

〈g, 0, h, 0, g, 0〉

Now consider the term t′ = g(f(g(hω))) and the set U ′ of all its redexes, viz. U ′ =
{〈0〉} ∪

{
〈0〉3, 〈0〉4, . . .

}
. Then the following path Π′ is a U,R-path in t′:

(⊤, 〈〉)g
0
→ (⊤, 〈0〉)∅

∅
→ (r1, 〈〉, 〈0〉)

h 0
→ (r1, 〈0〉, 〈0〉)

∅ ∅
→ (⊤, 〈0〉2)

g 0
→ (⊤, 〈0〉3)

∅

∅
→ (r2, 〈〉, 〈0〉

3)
∅ ∅
→ (⊤, 〈0〉4)

∅ ∅
→ (r2, 〈〉, 〈0〉

4)
∅ ∅
→ (⊤, 〈0〉5)

∅ ∅
→ . . .

Π′ is the greatest path of t′. The trace trt′(Π
′) of Π′ is the sequence

〈g, 0, h, 0, g, 0〉

Since Π′ is infinitely long but has a finite trace, it is contained in P(t′, U,R).

The lemma below shows that there is a one-to-one correspondence between paths in
P(t, U,R) and their traces in T r(t, U,R).

Lemma 5.25 (trt(·) is a bijection). Let R be an orthogonal TRS, t a partial term in R, and

U a set of redex occurrences in t. trt(·) is a bijection from P(t, U,R) to T r(t, U,R).

Proof. By definition, trt(·) is surjective. Let Π1,Π2 be two paths having the same trace. We
will show that then Π1 = Π2 by an induction on the length of the common trace.

Let trt(Π1) = 〈〉. Following Fact 5.21, there are two different cases: The first case is

that Π1 = Π · (⊤, π)⊥, where the prefix Π corresponds to a finite maximal collapsing tower
(ui)i≤α starting at the root of t or Π is empty if such a collapsing tower does not exists. If
the collapsing tower exists, then

Π = (⊤, u0)
∅ ∅
→ (r0, 〈〉, u0)

∅ ∅
→ (⊤, u1)

∅ ∅
→ (r1, 〈〉, u1)

∅ ∅
→ . . .

∅
→ (⊤, uα)

∅ ∅
→

But then also Π2 starts with the prefix Π · (⊤, π) due to the uniqueness of the collapsing
tower and the involved rules. In both cases, Π1 = Π2 follows immediately.

The second case is that Π1 is infinite. Then there is an infinite collapsing tower (ui)i<ω

starting at the root of t. Hence,

Π1 = (⊤, u0)
∅ ∅
→ (r0, 〈〉, u0)

∅ ∅
→ (⊤, u1)

∅ ∅
→ (r1, 〈〉, u1)

∅ ∅
→ . . .

Π1 = Π2 follows from the uniqueness of the infinite collapsing tower.

At first glance one might additionally find a third case where Π1 = Π · (⊤, π)∅
∅
→

(r, 〈〉, π)⊥ with Π a prefix corresponding to a collapsing tower as in the first case. However,
this is not possible as it would require the occurrence of ⊥ in a rule.

Let trt(Π1) = f . Then there are two cases: Either Π1 = Π · (⊤, π)f or Π1 = Π ·

(⊤, π)∅
∅
→ (r, 〈〉, π)f , where the prefix Π corresponds to a finite maximal collapsing tower

(ui)i≤α starting at the root of t or Π is empty if such a collapsing tower does not exists. The
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argument is analogous to the argument employed for the first case of the induction base
above.

Finally, we consider the induction step. Hence, there are the two cases: Either trt(Π1) =
T · 〈i〉 or trt(Π1) = T · 〈i, f〉. For both cases, the induction hypothesis can be invoked by
taking two prefixes Π′

1 and Π′
2 of Π1 and Π2, respectively, which both have the trace T

and, therefore, are equal according to the induction hypothesis. The argument that the
remaining suffixes of Π1 and Π2 are equal is then analogous to the argument for two base
cases.

As mentioned above, the traces of paths contain all information necessary to define
a term which we will later identify to be the final term of the corresponding complete
development. The following definition explains how such a term, called a matching term, is
determined:

Definition 5.26 (matching term). Let R be a left-linear TRS, t a partial term in R, and
U a set of pairwise non-conflicting redex occurrences in t.

(i) The position of a trace T ∈ T r(t, U,R), denoted pos(T ), is the subsequence of T
containing only the edge labels. The set of all positions of traces in T r(t, U,R) is
denoted PT r(t, U,R).

(ii) The symbol of a trace T ∈ T r(t, U,R), denoted symt(T ), is f if T ends in a node label
f , and is ⊥ otherwise, i.e. whenever T is empty or ends in an edge label.

(iii) A term t′ is said to match T r(t, U,R) if P(t′) = PT r(t, U,R) and t′(pos(T )) = symt(T )
for all T ∈ T r(t, U,R).

Returning to the definition of paths, one can see that the label of a node is the symbol
of the “current” position in a term. Similarly, the label of an edge says which edge in the
term tree was taken at that point in the construction of the path. Hence, by projecting to
the edge labels, we obtain the “history” of the path, i.e. the position. In the same way we
obtain the symbol of that node by taking the label of the last node of the path, provided the
corresponding path ends in a non-⊥-labelled node. In the other case that the trace does not
end in a node label, the corresponding path either ends in a node labelled ⊥ or is infinite. As
we will see, infinite paths with finite traces correspond to infinite collapsing towers, which
in turn yield volatile positions within the complete development. Eventually, these volatile
positions will also give rise to ⊥ subterms.

The following lemma shows that there is also a one-to-one correspondence between the
traces in T r(t, U,R) and their positions in PT r(t, U,R):

Lemma 5.27 (pos(·) is a bijection). Let R be an orthogonal TRS, t a partial term in R
and U a set of redex occurrences in t. pos(·) is a bijection from T r(t, U,R) to PT r(t, U,R).

Proof. An argument similar to the one for Lemma 5.25 can be given in order to show that
the composition pos(·)◦ trt(·) is a bijection. Together with the bijectivity of trs(·), according
to Lemma 5.25, this yields the bijectivity of pos(·).

Having this lemma, the following proposition is an easy consequence of the definition of
matching terms. It shows that matching terms do always exists and are uniquely determined:

Proposition 5.28 (unique matching term). Let R be an orthogonal TRS, t a partial term

in R, and U a set of redex occurrences in t. Then there is a unique term, denoted F(t, U,R),
that matches T r(t, U,R).
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Proof. Define the mapping ϕ : PT r(t, U,R) → Σ⊥ ∪ V by setting ϕ(pos(T )) = symt(T ) for
each trace T ∈ T r(t, U,R). By Lemma 5.27, ϕ is well-defined. Moreover, it is easy to see
from the definition of paths, that PT r(t, U,R) is closed under prefixes and that ϕ respects
the arity of the symbols, i.e. π · i ∈ PT r(t, U,R) iff 0 ≤ i < ar(ϕ(π)). Hence, ϕ uniquely
determines a term s with s(π) = ϕ(π) for all π ∈ PT r(t, U,R). By construction, s matches
T r(t, U,R). Moreover, any other term s′ matching T r(t, U,R) must satisfy s′(π) = ϕ(π)
for all π ∈ PT r(t, U,R) and is therefore equal to s.

It is also obvious that the matching term of a term t w.r.t. an empty set of redex
occurrences is the term t itself.

Lemma 5.29 (matching term w.r.t. empty redex set). For any TRS R and any partial term

t in R, it holds that F(t, ∅,R) = t.

Proof. Straightforward.

Remark 5.30. Now it only remains to be shown that the matching term stays invariant
during a development, i.e. that, for each development S : t ։p t′ of U , the matching terms
F(t, U,R) and F(t′, U//S,R) coincide. Since the matching term F(t, U,R) only depends
on the set T r(t, U,R) of traces, it is sufficient to show that T r(t, U,R) and T r(t′, U//S,R)
coincide. The key observation is that in each step s → s′ in a development the paths in
s′ differ from the paths in s only in that they might omit some jumps. This can be seen
in Figure 5a: In a step s → s′ of a development, (some residual of) some redex occurrence
in U is contracted. In the picture this corresponds to removing the pattern, say l1, of the
redex and replacing it by the corresponding right-hand side r1 of the rule. One can see that,
except for the jump to and from the right-hand side r1 the path remains the same.

In order to establish the above observation formally, we need a means to simulate
reduction steps in a development directly as an operation on paths. The following definition
provides a tool for this.

Definition 5.31 (position and prefix of a path). Let R be a left-linear TRS, t a partial
term in R, U a set of pairwise non-conflicting redex occurrences in t, and Π ∈ P(t, U,R).

(i) Π is said to contain a position π ∈ P(t) if it contains the node (⊤, π).
(ii) For each u ∈ U , the prefix of Π by u, denoted Π(u), is defined as Π whenever Π does

not contain u and otherwise as the unique prefix of Π that ends in (⊤, u).

Remark 5.32. It is obvious from the definition that each prefix Π(u) of a path Π ∈ P(t, U,R)
by an occurrence u is the maximal prefix of Π, that does not contain positions that are
proper extensions of u. Hence, if Π contains u, then Π(u) is the maximal prefix of Π that
only contains prefixes of u (including u itself).

The following lemma is the key step towards proving the invariance of matching terms
in developments. It formalises the observation described in Remark 5.30.

Lemma 5.33 (preservation of traces). Let R be an orthogonal TRS, t a partial term in

R, U a set of redex occurrences in t, and S : t ։p t′ a development of U in t. There is a

surjective mapping ϑS : P(t, U,R) → P(t
′, U//S,R) such that trt(Π) = trt′(ϑS(Π)) for all

Π ∈ P(t, U,R).

Proof. Let S = (tι →πι,cι tι+1)ι<α. We prove the statement by an induction on α.
If α = 0, then the statement is trivially true.
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Suppose that α is a successor ordinal β + 1. Let T : t0 ։
p β tβ be the prefix of S

of length β and ϕβ : tβ →πβ
tα the last step of S, i.e. S = T · 〈ϕβ〉. By the induction

hypothesis, there is a surjective mapping ϑT : P(t, U,R) → P(tβ , U
′,R), with U ′ = U//T

and trt(Π) = trtβ (ϑT (Π)) for all Π ∈ P(t, U,R). By a careful case analysis (as done in
[21]), one can show that there is a surjective mapping ϑ : P(tβ , U

′,R)→ P(tα, U
′′,R), with

U ′′ = U ′//〈ϕβ〉 = U//S and trtβ (Π) = trtα(ϑ(Π)) for all Π ∈ P(tβ , U
′,R). Hence, the

composition ϑS = ϑ ◦ ϑT is a surjective mapping from P(t, U,R) to P(t′, U//S,R) and
satisfies trt(Π) = trt′(ϑS(Π)) for all Π ∈ P(t, U,R).

Let α be a limit ordinal. By induction hypothesis, there is a surjective mapping ϑS|ι

for each proper prefix S|ι of S satisfying trt0(Π) = trtι(ϑs|ι(Π)) for all Π ∈ P(t, U,R). Let
Π ∈ P(t, U,R) and Πι = ϑS|ι(Π) for each ι < α. We define ϑS(Π) as follows:

ϑS(Π) = lim inf
ι→α

Π(πι)
ι

At first we have to show that ϑS is well-defined, i.e. that lim infι→αΠ
(πι)
ι is indeed a

path in P(t′, U//S,R), and that it preserves traces. There are two cases to be considered: If
there is an outermost-volatile position π in S that is contained in Πι whenever πι = π, then

there is some β < α with πι 6< π for all β ≤ ι < α. Hence, ϑS(Π) = Π
(π)
β . By Lemma 3.11

and Lemma 3.14, we have that Π
(π)
β ∈ P(t′, U//S,R), in particular because t′(π) = ⊥. Since

the suffix Π′ with Πβ = Π
(π)
β ·Π

′ follows an infinite collapsing tower and is therefore entirely
unlabelled, it cannot contribute to the trace of Πβ. Consequently,

trt(Π)
IH
= trtβ (Πβ) = trt′(Π

(π)
β ) = trt′(ϑS(Π)).

If, on the other hand, there is no such outermost-volatile position, then either the sequence

(Π
(πι)
ι )ι<α becomes stable at some point or the sequence (

d
ι<γ Π

(πι)
ι )γ<α grows monotoni-

cally towards the infinite path ϑS(Π). In both cases well-definedness and preservation of
traces follows easily from the induction hypothesis.

Lastly, we show the surjectivity of ϑS. To this end, assume some Π ∈ P(t′, U//S,R).
We show the existence of a path Π ∈ P(t, U,R) with ϑS(Π) = Π by distinguishing three
cases:

(a) Π ends in a redex node (r, π, u). Hence, u ∈ U//S. According to Lemma 5.3, this means
that there is some β < α such that

πι 6≤ u for all β ≤ ι < α. (1)

Consequently, all terms in {tι | β ≤ ι < α} coincide in all prefixes of u, and each v ∈
U//S with v ≤ u is in U//S|ι for all β ≤ ι < α. Hence, for all β ≤ γ < α we have
Π ∈ P(tγ , U//S|γ ,R) with trt′(Π) = trtγ (Π). By induction hypothesis there is for each
β ≤ γ < α some Πγ ∈ P(t, U,R) that is mapped to Π ∈ P(tγ , U//S|γ ,R) by ϑS|γ

with trt(Πγ) = trtγ (Π). Hence, trt(Πγ) = trt′(Π) which means that all paths Πγ , with
β ≤ γ < α, have the same trace in t and are therefore equal according to Lemma 5.25.
Let us call this path Π. That is, ϑS|γ(Π) = Π for all β ≤ γ < α. Since πγ 6≤ u, we also

have (ϑS|γ(Π))
(πγ ) = Π. Consequently, ϑS(Π) = Π.

(b) Π ends in a term node (⊤, π). Let f = t′(π). If f 6= ⊥, then we can apply Lemma 3.11
to obtain some β < α such that πι 6≤ π for all β ≤ ι < α. Then we can reason as in case
((a)) starting from (1). If f = ⊥, then we have to distinguish two cases according to
Lemma 3.14: If there is some β < α with tβ(π) = ⊥ and πι 6≤ π for all β ≤ ι < α, then



PARTIAL ORDER INFINITARY TERM REWRITING 39

we can again employ the same argument as for case ((a)) starting from (1). Otherwise,
i.e. if π is an outermost-volatile position in S, then we have some β < α such that
πι 6< π for all β ≤ ι < α and such that

for each β ≤ γ < α there is some γ ≤ γ′ < α with π′
γ = π. (2)

Hence, we have for each β ≤ γ < α some Πγ ∈ P(tγ , U//S|γ ,R) and an infinite
collapsing tower (ui)i<ω in U//S|γ with u0 = π such that Πγ is of the form

Π·
∅
→ (r0, 〈〉, u0)

∅ ∅
→ (⊤, u1)

∅ ∅
→ (r1, 〈〉, u1)

∅ ∅
→ . . .

Therefore, trtγ (Πγ) = trt′(Π). By induction hypothesis there is some Πγ ∈ P(t, T,R)

with ϑS|γ(Πγ) = Πγ and trt(Πγ) = trtγ (Πγ). Hence, trt(Πγ) = trt′(Π), i.e. all Πγ have
the same trace in t and are therefore equal according to Lemma 5.25. Let us call this

path Π. Since (ϑS|γ(Π))
(π) = Π

(π)
γ = Π we can use (2) to obtain that ϑS(Π) = Π.

(c) Π is infinite. Hence, Π is of the form

Π′ · (⊤, u0)
∅ ∅
→ (r0, 〈〉, u0)

∅ ∅
→ (⊤, u1)

∅ ∅
→ (r1, 〈〉, u1)

∅ ∅
→ . . .

with (ui)i<ω an infinite collapsing tower in U//S. Consequently, by Lemma 5.3, for
each ui ∈ U//S there is some βi < α such that

ui ∈ U//S|γ and πγ 6≤ uγ for all βi ≤ γ < α. (3)

Since (ui)i<ω is a chain (w.r.t. the prefix order), we can assume w.l.o.g. that (βi)i<ω is
a chain as well. Following Remark 5.7, we obtain for each ui ∈ U//S its ancestor vi ∈ U
with vi//S = ui. Let Π be the unique path in P(t, U,R) that contains each vi and for
each j < ω let Πj be the unique path in P(tβj

, U//S|βj
,R) containing each vi//S|βj

.

Clearly, ϑS|βj
(Π) = Πj. Note that we have for each j < ω that all paths ϑS|ι(Π) with

βj ≤ ι < α coincide in their prefix by uj , which is a prefix of Π. Since additionally

(ui)i<ω is a strict chain and because of (3), we can conclude that ϑS(Π) = Π.

The above lemma effectively establishes the invariance of matching terms during a devel-
opment. Together with Lemma 5.29 this implies the uniqueness of final terms of complete
developments of the same redex occurrences. As a corollary from this, we obtain that de-
scendants are also unique among all complete developments:

Proposition 5.34 (final term and descendants of complete developments). Let R be an

orthogonal TRS, t a partial term in R, and U a set of redex occurrences in t. Then the

following holds:

(i) Each complete development of U in t strongly p-converges to F(t, U,R).
(ii) For each set V ⊆ P6⊥(t) and two complete developments S and T of U in t, respectively,

it holds that V//S = V//T .

Proof. ((i)) Let S : t ։p U t′ be a complete development of U in t strongly p-converging to t′.
By Lemma 5.33, there is a surjective mapping ϑ : P(t, U,R) → P(t′, U ′,R) with trt(Π) =
trt′(ϑ(Π)) for all Π ∈ P(t, U,R), where U ′ = U//S. Hence, it holds that T r(t, U,R) =
T r(t′, U ′,R) and, consequently, F(t, U,R) = F(t′, U ′,R). Since S is a complete devel-
opment of U in t, we have that U ′ = ∅ which implies, according to Lemma 5.29, that
F(t′, U ′,R) = t′. Therefore, F(t, U,R) = t′.

((ii)) Let t′ = t(V ). By Proposition 5.13, both reductions S and T can be uniquely lifted
to reductions S′ and T ′ in Rl, respectively, such that V//S and V//T are determined by the
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t0 t1 tβ tβ+1 tα

s0 s1 sβ sβ+1 sα

v0

U0 U1

vβ

Uβ Uβ+1 Uα

v0//U0 vβ//Uβ

S

Figure 6. The Infinitary Strip Lemma.

final term of S′ and T ′, respectively. It is easy to see that also Rl is an orthogonal TRS and
that S′ and T ′ are complete developments of U in t′. Hence, we can invoke clause ((i)) of
this proposition to conclude that the final terms of S′ and T ′ coincide and that, therefore,
also V//S and V//T coincide.

By the above proposition, the descendants of a complete development of a particular set
of redex occurrences are unique. Therefore, we adopt the notation U//V for the descendants
U//S of U by some complete development S of V . According to Proposition 5.17 and
Proposition 5.34, U//V is well-defined for any orthogonal TRS.

Furthermore, Proposition 5.34 yields the following corollary establishing the diamond
property of complete developments:

Corollary 5.35 (diamond property of complete developments). Let R be an orthogonal

TRS and t ։p U t1 and t ։p V t2 be two complete developments of U respectively V in t. Then

t1 and t2 are joinable by complete developments t1 ։
p

V//U t′ and t2 ։
p

U//V t′.

Proof. By Proposition 5.5, it holds that

(U ∪ V )//U = U//U ∪ V//U = V//U.

Let S : t ։p U t1, T : t ։p V t2, S
′ : t1 ։

p
V//U t′ and T ′ : t2 ։

p
U//V t′′. By the equation above

and Proposition 5.8, we have that S · S′ : t ։p U t1 ։
p

V//U t′ is a complete development of
U ∪ V . Analogously, we obtain that T · T ′ : t ։p V t2 ։

p
U//V t′′ is a complete development of

U ∪ V , too. According to Proposition 5.34, this implies that both S · S′ and T · T ′ strongly
p-converge in the same term, i.e. t′ = t′′.

In the next section we shall make use of complete developments in order to obtain
the Infinitary Strip Lemma for p-converging reductions and a limited form of infinitary
confluence for orthogonal systems.

5.4. The Infinitary Strip Lemma. In this section we use the results we have obtained
for complete developments in the previous two sections in order to establish that a complete
development of a set of pairwise disjoint redex occurrences commutes with any strongly
p-convergent reduction:

Proposition 5.36 (Infinitary Strip Lemma). Let R be an orthogonal TRS, S : t0 ։
p α tα a

strongly p-convergent reduction, and t0 ։
p

U s0 a complete development of a set U of pairwise

disjoint redex occurrences in t0. Then tα and s0 are joinable by a reduction S/T : s0 ։
p sα

and a complete development T/S : tα ։
p

U//S sα.
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Proof. We prove this statement by constructing the diagram shown in Figure 6. The ’Uι’s
in the diagram are sets of redex occurrences: Uι = U//S|ι for all 0 ≤ ι ≤ α. In particular,
U0 = U . All arrows in the diagram represent complete developments of the indicated sets
of redex occurrences. Particularly, in each ι-th step of S the redex at vι is contracted. We
will construct the diagram by an induction on α.

If α = 0, then the diagram is trivial. If α is a successor ordinal β + 1, then we can
take the diagram for the prefix S|β, which exists by induction hypothesis, and extend it to
a diagram for S. The existence of the additional square that completes the diagram for S
is affirmed by Corollary 5.35 since Uβ+1 = Uβ//vβ .

Let α be a limit ordinal. Moreover, let s′α be the uniquely determined final term of a
complete development of Uα in tα. By induction hypothesis, the diagram exists for each
proper prefix of S. Let Tι : s0 ։

p sι denote the reduction at the bottom of the diagram for
the reduction S|ι for each ι < α. The set of all Tι is directed. Hence, T =

⊔
ι<α Tι exists.

Since Tι < T for each ι < α, the diagram for S with T : s0 ։
p sα at the bottom satisfies

almost all required properties. Only the equality of sα and s′α remains to be shown.
Note that, by Proposition 5.9, the redex occurrences in Uα are pairwise disjoint. Let

π ∈ Uα. By Lemma 5.3 and the definition of descendants, there is some β < α such that
π ∈ Uι and vι 6≤ π for all β ≤ ι < α. Hence, for all π′ ∈ vι//Uι with β ≤ ι < α, we also have
π′ 6≤ π. That is, in the remaining reductions tβ ։

p tα and tβ ։
p

Uβ
sβ ։

p sα, no reduction
takes place at a proper prefix of π. Hence, by Lemma 3.11, tβ coincides with tα and sα in
all proper prefixes of π. Since in the reduction tα ։

p
Uα s′α also no reduction takes place at a

proper prefix of π, we obtain that tα and s′α and, thus, also sα and s′α coincide in all proper
prefixes of π.

Let ρ : l → r be the rule for the redex tβ|π and C〈, . . . , 〉,D〈, . . . , 〉 ground contexts
such that l = C〈x1, . . . , xk〉 and r = D〈xp(1), . . . , xp(m)〉 for some pairwise distinct variables
x1, . . . , xk and an appropriate mapping p : {1, . . . ,m} → {1, . . . , k}. Moreover, let tι1, . . . , t

ι
k

be terms such that tι = tι[C〈t
ι
1, . . . , t

ι
k〉]π and sι = sι[D〈t

ι
p(1), . . . , t

ι
p(m)〉]π for all β ≤ ι ≤ α.

The argument in the previous paragraph justifies the assumption of these elements. From
β onward, all horizontal reduction steps in the diagram take place within the contexts
tι[·]π and sι[·]π, respectively, or inside the terms tιi, and all vertical reductions take place
within the contexts tι[C〈, . . . , 〉]π and sι[D〈, . . . , 〉]π, respectively. In particular, we have
tα = tα[C〈t

α
1 , . . . , t

α
k 〉]π and sα = sα[D〈t

α
p(1), . . . , t

α
p(m)〉]π. Let tα →π t′α. This reduction

contracts the redex C〈tα1 , . . . , t
α
k 〉 to the term D〈tαp(1), . . . , t

α
p(m)〉 using rule ρ. Note that a

complete development tα ։
p

Uα s′α contracts, besides π, only redex occurrences disjoint with
π. Hence, t′α and s′α coincide in all extensions of π. Since t′α = tα[D〈t

α
p(1), . . . , t

α
p(k)〉]π (and

sα = sα[D〈t
α
p(1), . . . , t

α
p(m)〉]π), we can conclude that sα and s′α coincide in all extensions of

π.
Since the residual π ∈ Uα was chosen arbitrarily, the above holds for all elements in Uα.

That is, sα and s′α coincide in all prefixes and all extensions of elements in Uα. It remains
to be shown, that they also coincide in positions that are disjoint to all positions in Uα. To
this end, we only need to show that tα and sα coincide in these positions since the complete
development tα ։

p
Uα s′α keeps positions disjoint with all positions in Uα unchanged. Let π

be such a position.
Suppose tα(π) = f 6= ⊥. By Lemma 3.11, there is some β < α such that tβ(π) = f and

vι 6≤ π for all β ≤ ι < α. Note that no prefix π′ of π is in Uβ since otherwise π′ ∈ Uα, by
Lemma 5.3, which contradicts the assumption that π is disjoint to all positions in Uα. Hence,
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sβ(π) = f and π′ 6≤ π for all π′ ∈ vι//Uι and β ≤ ι < α, which means that no reduction step
in sβ ։

p sα takes place at some prefix of π. Thus, we can conclude, according to Lemma 3.11,
that sα(π) = f . Similarly, one can show that sα(π) = f 6= ⊥ implies tα(π) = f .

Suppose tα(π) = ⊥. Hence, according to Lemma 3.14, π is outermost-volatile in S or
there is some β < α such that tβ(π) = ⊥ and vι 6≤ π for all β ≤ ι < α. For the latter case,
we can argue as in the case for tα(π) 6= ⊥ above. In the former case, π is outermost-volatile
in T as well. Thus, by applying Lemma 3.14, we obtain that sα(π) = ⊥. A similar argument
can be employed for the reverse direction.

The reduction S/T constructed in the proof above is called the projection of S by T .
Likewise, the reduction T/S is called the projection of T by S. As a corollary we obtain the
following semi-infinitary confluence result:

Corollary 5.37 (semi-infinitary confluence). In every orthogonal TRS, two reductions t ։p

t2 and t→∗ t1 can be joined by two reductions t2 ։
p t3 and t1 ։

p t3.

Proof. This can be shown by an induction on the length of the reduction t →∗ t1. If it is
empty, the statement trivially holds. The induction step follows from Proposition 5.36.

In the next section we shall, based on the Infinitary Strip Lemma, show that strong
p-reachability coincides with Böhm-reachability, which then yields, amongst other things,
full infinitary confluence of orthogonal systems.

6. Comparing Strong p-Convergence and Böhm-Convergence

In this section we shall show the core result of this paper: For orthogonal, left-finite TRSs,
strong p-reachability and Böhm-reachability w.r.t. the set RA of root-active terms coincide.
As corollaries of that, leveraging the properties of Böhm-convergence, we obtain both infini-
tary normalisation and infinitary confluence of orthogonal systems in the partial order model.
Moreover, we will show that strong p-convergence also satisfies the compression property.

The central step of the proof of the equivalence of both models of infinitary rewriting
is an alternative characterisation of root-active terms which is captured by the following
definition:

Definition 6.1 (destructiveness, fragility). Let R be a TRS.

(i) A reduction S : t ։p s is called destructive if 〈〉 is a volatile position in S.
(ii) A partial term t in R is called fragile if a destructive reduction starts in t.

Looking at the definition, fragility seems to be a more general concept than root-activeness:
A term is fragile iff it admits a reduction in which infinitely often a redex at the root is
contracted. For orthogonal TRSs, root-active terms are characterised in almost the same
way. The difference is that only total terms are considered and that the stipulated reduction
contracting infinitely many root redexes has to be of length ω. However, we shall show
the set of total fragile terms to be equal to the set of root-active terms by establishing a
compression lemma for destructive reductions.

Using Lemma 3.14 we can immediately derive the following alternative characterisations:

Fact 6.2 (destructiveness, fragility). Let R be a TRS.

(i) A reduction S : s ։p t is destructive iff S is open and t = ⊥
(ii) A partial term t in R is fragile iff there is an open strongly p-convergent reduction

t ։p ⊥.
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One has to keep in mind, however, that a closed reduction to ⊥ is not destructive. Such a
notion of destructiveness would include the empty reduction from ⊥ to ⊥, and reductions
that end with the contraction of a collapsing redex as, for example, in the single step
reduction f(⊥) → ⊥ induced by the rule f(x) → x. Such reductions do not “produce” the
term ⊥. They are merely capable of “moving” an already existent subterm ⊥ by a collapsing
rule. In this sense, fragile terms are, according to Lemma 3.15, the only terms which can
produce the term ⊥. This is the key observation for studying the relation between strong
p-convergence and Böhm-convergence.

In order to show that strong p-reachability and Böhm-reachability w.r.t. RA coincide
we will proceed as follows: At first we will show that strong p-reachability implies Böhm-
reachability w.r.t. the set of total fragile terms, i.e. the fragile terms in T ∞(Σ,V). From
this we will derive a compression lemma for destructive reductions. We will then use this to
show that the set RA of root-active terms coincides with the set of total fragile terms. From
this we conclude that strong p-reachability implies Böhm-reachability w.r.t. RA. Finally,
we then show the other direction of the equality.

6.1. From Strong p-Convergence to Böhm-Convergence. For the first step we have
to transform a strongly p-converging reduction in to a Böhm-converging reduction w.r.t. the
set of total fragile terms, i.e. a strongly m-converging reduction w.r.t. the corresponding
Böhm extension B. Recall that, by Theorem 4.12, the only difference between strongly p-
converging reductions and strongly m-converging reductions is the ability of the former to
produce ⊥ subterms. This happens, according to Lemma 3.14, precisely at volatile positions.

We can, therefore, proceed as follows: Given a strongly p-converging reduction we con-
struct a Böhm-converging reduction by removing reduction steps which cause the volatility
of a position in some open prefix of the reduction and then replacing them by a single

→⊥-step.
The intuition of this construction is illustrated in Figure 7. It shows a strongly p-

converging reduction of length ω · 4 from s to t. In order to maintain readability, we restrict
the attention to a particular branch of the term (tree) as indicated in Figure 7a. The picture
shows five positions which are volatile in some open prefix of the reduction. We assume that
they are the only volatile positions at least in the considered branch. Note that the positions
do not need to occur in all of the terms in the reduction. They might disappear and reappear
repeatedly. Each of them, however, appears in infinitely many terms in the reduction, as,
by definition of volatility, infinitely many steps take place at each of these positions. In
Figure 7b, the prefixes of the reduction that contain a volatile position are indicated by a
waved rewrite arrow pointing to a ⊥. The level of an arrow indicates the position which is
volatile. A prefix might have multiple volatile positions. For example, both π2 and π4 are
volatile in the prefix of length ω. But a position might also be volatile for several prefixes.
For instance, π3 is volatile in the prefix of length ω · 2 and the prefix of length ω · 4.

By Lemma 3.14, outermost-volatile positions are responsible for the generation of ⊥ sub-
terms. By their nature, at some point there are no reductions taking place above outermost-
volatile positions. The suffix where this is the case is a nested destructive reduction. The
subterm where this suffix starts is, therefore, a fragile term and we can replace this suffix
with a single →⊥-step. The segments which are replaced in this way are highlighted by
dashed boxes in Figure 7b. As indicated by the dotted lines, this then also includes re-
duction steps which occur below the outermost-volatile positions. Therefore, also volatile
positions which are not outermost are removed as well. Eventually, we obtain a reduction
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(a) Nested volatile positions.
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⊥
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(b) Replacing nested destructive reductions with →⊥ steps.

Figure 7. Turning a p-converging reduction into a Böhm-converging reduction.

without volatile positions, which is, by Lemma 3.15, a strongly m-converging reduction in
the Böhm extension, i.e. a Böhm-converging reduction in the original system:

Proposition 6.3 (strong p-reachability implies Böhm-reachability). Let R be a TRS, U the

set of fragile terms in T ∞(Σ,V), and B the Böhm extension of R w.r.t. U . Then, for each

strongly p-convergent reduction s ։p R t, there is a Böhm-convergent reduction s ։m B t.

Proof. Assume that there is a reduction S = (tι →πι tι+1)ι<α in R that strongly p-converges
to tα. We will construct a strongly m-convergent reduction T : t0 ։

m
B tα in B by removing

reduction steps in S that take place at or below outermost-volatile positions of some prefix
of S and replace them by →⊥-steps.

Let π be an outermost-volatile position of some prefix S|λ. Then there is some ordinal
β < λ such that no reduction step between β and λ in S takes place strictly above π,
i.e. πι 6< π for all β ≤ ι < λ. Such an ordinal β must exist since otherwise π would not
be an outermost-volatile position in S|λ. Hence, we can construct a destructive reduction
S′ : tβ|π ։

p ⊥ by taking the subsequence of the segment S|[β,λ) that contains the reduction
steps at π or below. Note that tβ|π might still contain the symbol ⊥. Since ⊥ is not relevant
for the applicability of rules in R, each of the ⊥ symbols in tβ|π can be safely replaced
by arbitrary total terms, in particular by terms in U . Let r be a term that is obtained in
this way. Then there is a destructive reduction S′′ : r ։

p ⊥ that applies the same rules at
the same positions as in S′. Hence, r ∈ U . By construction, r is a ⊥,U -instance of tβ|π
which means that tβ|π ∈ U⊥. Additionally, tβ|π 6= ⊥ since there is a non-empty reduction
S′ : tβ|π ։

p ⊥ starting in tβ|π. Consequently, there is a rule tβ|π → ⊥ in B. Let T ′ be
the reduction that is obtained from S|λ by replacing the β-th step, which we can assume
w.l.o.g. to take place at π, by a step with the rule tβ|π → ⊥ at the same position π and
removing all reduction steps ϕι taking place at π or below for all β < ι < λ. Let t′ be the
term that the reduction T ′ strongly p-converges to. tλ and t′ can only differ at position π
or below. However, by construction, we have t′(π) = ⊥ and, by Lemma 3.14, tλ(π) = ⊥.
Consequently, t′ = tλ.
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This construction can be performed for all prefixes of S and their respective outermost-
volatile positions. Thereby, we obtain a strongly p-converging reduction T : t0 ։

p
B tα for

which no prefix has a volatile position. By Lemma 3.15, T is a total reduction. Note that B
is a TRS over the extended signature Σ′ = Σ ⊎ {⊥}, i.e. terms containing ⊥ are considered
total. Hence, by Theorem 4.12, T : t0 ։

m
B tα.

6.2. From Böhm-convergence to Strong p-Convergence. Next, we establish a com-
pression lemma for destructive reductions, i.e. that each destructive reduction can be com-
pressed to length ω. Before we continue with this, we need to mention the following lemma
from Kennaway et al. [17]:

Lemma 6.4 (postponement of →⊥-steps). Let R be a left-linear, left-finite TRS and B
some Böhm extension of R. Then s ։m B t implies s ։m R s′ ։m ⊥ t for some term s′.2

In the next proposition we show that, excluding ⊥ subterms, the final term of a strongly
p-converging reduction can be approximated arbitrarily well by a finite reduction. This cor-
responds to Corollary 2.5 which establishes finite approximations for strongly m-convergent
reductions.

Proposition 6.5 (finite approximation). Let R be a left-linear, left-finite TRS and s ։p R t.
Then, for each finite set P ⊆ P6⊥(t), there is a reduction s→∗

R t′ such that t and t′ coincide

in P .

Proof. Assume that s ։p R t. Then, by Proposition 6.3, there is a reduction s ։m B t, where B
is the Böhm extension of R w.r.t. the set of total, fragile terms of R. By Lemma 6.4, there
is a reduction s ։m R s′ ։m ⊥ t. Clearly, s′ and t coincide in P6⊥(t). Let d = max {|π| | π ∈ P }.
Since P is finite, d is well-defined. By Corollary 2.5, there is a reduction s→∗

R t′ such that
t′ and s′ coincide up to depth d and, thus, in particular they coincide in P . Consequently,
since s′ and t coincide in P6⊥(t) ⊇ P , t and t′ coincide in P , too.

In order to establish a compression lemma for destructive reductions we need that frag-
ile terms are preserved by finite reductions. We can obtain this from the following more
general lemma showing that destructive reductions are preserved by forming projections as
constructed in the Infinitary Strip Lemma:

Lemma 6.6 (preservation of destructive reductions by projections). Let R be an orthogonal

TRS, S : t0 ։
p tα a destructive reduction, and T : t0 ։

p
U s0 a complete development of a

set U of pairwise disjoint redex occurrences. Then the projection S/T : s0 ։
p sα is also

destructive.

Proof. We consider the situation depicted in Figure 6. Since S : t0 ։
p tα is destructive, we

have, for each β < α, some β ≤ γ < α such that vγ = 〈〉. If vγ = 〈〉, then also 〈〉 ∈ vγ//Uγ

unless 〈〉 ∈ Uγ . As by Proposition 5.9, Uγ is a set of pairwise disjoint positions, 〈〉 ∈ Uγ

implies Uγ = {〈〉}. This means that if vγ = 〈〉 and 〈〉 ∈ Uγ , then Uι = ∅ for all γ < ι < α.
Thus, there is only at most one γ < α with 〈〉 ∈ Uγ . Therefore, we have, for each β < α,
some β ≤ γ < α such that 〈〉 ∈ vγ//Uγ . Hence, T is destructive.

2Strictly speaking, if s is not a total term, i.e. it contains ⊥, then we have to consider the system that is
obtained from R by extending its signature to Σ⊥.
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As a consequence of this preservation of destructiveness by forming projections, we
obtain that the set of fragile terms is closed under finite reductions:

Lemma 6.7 (closure of fragile terms under finite reductions). In each orthogonal TRS, the

set of fragile terms is closed under finite reductions.

Proof. Let t be a fragile term and T : t →∗ t′ a finite reduction. Hence, there is a destruc-
tive reduction starting in t. A straightforward induction proof on the length of T , using
Lemma 6.6, shows that there is a destructive reduction starting in t′. Thus, t′ is fragile.

Now we can show that destructiveness does not need more that ω steps in orthogonal,
left-finite TRSs. This property will be useful for proving the equivalence of root-activeness
and fragility of total terms as well as the Compression Lemma for strongly p-convergent
reductions.

Proposition 6.8 (Compression Lemma for destructive reductions). Let R be an orthogonal,

left-finite TRS and t a partial term in R. If there is a destructive reduction starting in t,
then there is a destructive reduction of length ω starting in t.

Proof. Let S : t0 ։
p λ ⊥ be a destructive reduction starting in t0. Hence, there is some α < λ

such that S|α : t0 ։
p s1, where s1 is a ρ-redex for some ρ : l → r ∈ R. Let P be the set

of pattern positions of the ρ-redex s1, i.e. P = PΣ(l). Due to the left-finiteness of R, P
is finite. Hence, by Proposition 6.5, there is a finite reduction t0 →

∗ s′1 such that s1 and
s′1 coincide in P . Hence, because R is left-linear, also s′1 is a ρ-redex. Now consider the
reduction T0 : t0 →

∗ s′1 →ρ,〈〉 t1 ending with a contraction at the root. T0 is of finite length
and, according to Lemma 6.7, t1 is fragile.

Since t1 is again fragile, the above argument can be iterated arbitrarily often which yields
for each i < ω a finite non-empty reduction Ti : ti →

∗ ti+1 whose last step is a contraction at
the root. Then the concatenation T =

∏
i<ω Ti of these reductions is a destructive reduction

of length ω starting in t0.

The above proposition bridges the gap between fragility and root-activeness. Whereas
the former concept is defined in terms of transfinite reductions, the latter is defined in terms
of finite reductions. By Proposition 6.8, however, a fragile term is always finitely reducible
to a redex. This is the key to the observation that fragility is not only quite similar to
root-activeness but is, in fact, essentially the same concept.

Proposition 6.9 (root-activeness = fragility). Let R be an orthogonal, left-finite TRS and

t a total term in R. Then t is root-active iff t is fragile.

Proof. The “only if” direction is easy: If t is root-active, then there is a reduction S of length
ω starting in t with infinitely many steps taking place at the root. Hence, S : t ։p ω ⊥ is a
destructive reduction, which makes t a fragile term.

For the converse direction we assume that t is fragile and show that, for each reduction
t →∗ s, there is a reduction s →∗ t′ to a redex t′. By Lemma 6.7, also s is fragile. Hence,
there is a destructive reduction S : s ։

p ⊥ starting in s. According to Proposition 6.8, we
can assume that S has length ω. Therefore, there is some n < ω such that S|n : s→∗ t′ for
a redex t′.
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To prove the other direction of the equality of strong p-reachability and Böhm-reachability
we need the property that strongly m-convergent reductions consisting only of→⊥-steps, i.e.
contractions of RA⊥-terms to ⊥, can be compressed to length at most ω as well. In order
to show this, we will make use of the following lemma from Kennaway et al. [17]:

Lemma 6.10 (⊥,RA-instances). Let RA be the root-active terms of an orthogonal, left-

finite TRS and t ∈ T ∞(Σ⊥,V). If some ⊥,RA-instance of t is in RA, then every ⊥,RA-

instance of t is.

Lemma 6.11 (compression of →⊥-steps). Consider the Böhm extension of an orthogonal

TRS w.r.t. its root-active terms and S : s ։
m

⊥ t with s ∈ T ∞(Σ,V), t ∈ T ∞(Σ⊥,V). Then

there is a strongly m-converging reduction T : s ։m ⊥ t of length at most ω that is a complete

development of a set of disjoint occurrences of root-active terms in s.

Proof. The proof is essentially the same as that of Lemma 7.2.4 from Ketema [18].
Let S = (tι →πι tι+1)ι<α be the mentioned reduction strongly m-converging to tα, and

let π be a position at which some reduction step in S takes place. That is, there is some β
such that πβ = π. We will prove by induction on β that t0|π ∈ RA.

Consider the term tβ|π. Since a →⊥-rule is applied here, we have, according to Re-
mark 2.9, that tβ|π ∈ RA⊥. Let V = P⊥(tβ|π). Hence, for each v ∈ V , there is some
γ < β such that πγ = π · v. Therefore, we can apply the induction hypothesis and get
that t0|π·v ∈ RA for all v ∈ V . It is clear that we can obtain t0|π from tβ|π by replacing
each ⊥-occurrence at v ∈ V with the corresponding term t0|π·v. That is, t0|π is a ⊥,RA-
instance of tβ|π. Because tβ|π ∈ RA⊥, there is some ⊥,RA-instance of tβ|π in RA. Thus,
by Lemma 6.10, also t0|π is in RA. This closes the proof of the claim.

Now let V = P⊥(tα). Clearly, all positions in V are pairwise disjoint. Moreover, for
each v ∈ V , there is a step in S that takes place at v. Hence, by the claim shown above, V
is a set of occurrences in t0 of terms in RA. A complete development of V in t0 leads to tα
and can be performed in at most ω steps by an outermost reduction strategy.

The important part of the above lemma is the statement that only terms in RA are
contracted instead of the general case where a →⊥ -step contracts a term in RA⊥ ⊃ RA.

Finally, we have gathered all tools necessary in order to prove the converse direction of
the equivalence of strong p-reachability and Böhm-reachability w.r.t. root-active terms.

Theorem 6.12 (strong p-reachability = Böhm-reachability w.r.t. RA). Let R be an or-

thogonal, left-finite TRS and B the Böhm extension of R w.r.t. its root-active terms. Then

s ։p R t iff s ։m B t.

Proof. The “only if” direction follows immediately from Proposition 6.9 and Proposition 6.3.
Now consider the converse direction: Let s ։m B t be a strongly m-convergent reduction

in B. W.l.o.g. we assume s to be total. Due to Lemma 6.4, there is a term s′ ∈ T ∞(Σ,V)
such that there are strongly m-convergent reductions S : s ։

m
R s′ and T : s′ ։m ⊥ t. By

Lemma 6.11, we can assume that in s′ ։
m

⊥ t only pairwise disjoint occurrences of root-
active terms are contracted. By Proposition 6.9, each root-active term r ∈ RA is fragile,
i.e. we have a destructive reduction r ։

p
R ⊥ starting in r. Thus, following Remark 2.9,

we can construct a strongly p-converging reduction T ′ : s′ ։
p

R t by replacing each step
C[r]→⊥ C[⊥] in T with the corresponding reduction C[r] ։p R C[⊥]. By combining T ′ with
the strongly m-converging reduction S, which, according to Theorem 4.12, is also strongly
p-converging, we obtain the strongly p-converging reduction S · T ′ : s ։p R t.
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6.3. Corollaries. With the equivalence of strong p-reachability and Böhm-reachability es-
tablished in the previous section, strongly p-convergent reductions inherit a number of im-
portant properties that are enjoyed by Böhm-convergent reductions:

Theorem 6.13 (infinitary confluence). Every orthogonal, left-finite TRS is infinitarily con-

fluent. That is, for each orthogonal, left-finite TRS, s1 և
p t ։p s2 implies s1 ։

p t′ ևp s2.

Proof. Leveraging Theorem 6.12, this theorem follows from Theorem 2.10.

Returning to Example 2.6 again, we can see that, in the setting of strongly p-converging
reduction, the terms gω and fω can now be joined by repeatedly contracting the redex at
the root which yields two destructive reductions gω ։

p ⊥ and fω
։
p ⊥, respectively.

Theorem 6.14 (infinitary normalisation). Every orthogonal, left-finite TRS is infinitarily

normalising. That is, for each orthogonal, left-finite TRS R and a partial term t in R, there

is an R-normal form strongly p-reachable from t.

Proof. This follows immediately from Theorem 6.12 and Theorem 2.11.

Combining Theorem 6.13 and Theorem 6.14, we obtain that each term in an orthogonal
TRS has a unique normal form w.r.t. strong p-convergence. Due to Theorem 6.12, this
unique normal form is the Böhm tree w.r.t. root-active terms.

Since strongly p-converging reductions in orthogonal TRS can always be transformed
such that they consist of a prefix which is a strongly m-convergent reduction and a suf-
fix consisting of nested destructive reductions, we can employ the Compression Lemma for
strongly m-convergent reductions (Theorem 2.4) and the Compression Lemma for destruc-
tive reductions (Proposition 6.8) to obtain the Compression Lemma for strongly p-convergent
reductions:

Theorem 6.15 (Compression Lemma for strongly p-convergent reductions). For each or-

thogonal, left-finite TRS, s ։p t implies s ։p ≤ω t.

Proof. Let s ։p R t. According to Theorem 6.12, we have s ։m B t for the Böhm extension B of
R w.r.t. RA and, therefore, by Lemma 6.4, we have reductions S : s ։m R s′ and T : s′ ։m ⊥ t.
Due to Theorem 2.4, we can assume S to be of length at most ω and, due to Theorem 4.12,
to be strongly p-convergent, i.e S : s ։p ≤ω

R s′. If T is the empty reduction, then we are done.
If not, then T is a complete development of pairwise disjoint occurrences of root-active terms
according to Lemma 6.11. Hence, each step is of the form C[r]→⊥ C[⊥] for some root-active
term r. By Proposition 6.9, for each such term r, there is a destructive reduction r ։

p
R ⊥

which we can assume, in accordance with Proposition 6.8, to be of length ω. Hence, each
step C[r] →⊥ C[⊥] can be replaced by the reduction C[r] ։p ω

R C[⊥]. Concatenating these

reductions results in a reduction T ′ : s′ ։p R t of length at most ω · ω. If S : s ։
p ≤ω

R s′ is of
finite length, we can interleave the reduction steps in T ′ such that we obtain a reduction
T ′′ : s′ ։p ω

R t of length ω. Then we have S · T ′′ : s ։
p ω

R t. If S : s ։
p ≤ω

R s′ has length ω,
we construct a reduction s ։

p
R t as follows: As illustrated above, T ′ consists of destructive

reductions taking place at some pairwise disjoint positions. These steps can be interleaved
into the reduction S resulting into a reduction s ։

p
R t of length ω. The argument for that

is similar to that employed in the successor case of the induction proof of the Compression
Lemma of Kennaway et al. [16].
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We do not know whether full orthogonality is essential for the Compression Lemma.
However, as for strongly m-convergent reductions, the left-linearity part of it is:

Example 6.16 ([16]). Consider the TRS consisting of the rules f(x, x)→ c, a→ g(a), b→
g(b). Then there is a strongly p-converging reduction

f(a, b)→ f(g(a), b)→ f(g(a), g(b)) → f(g(g(a)), g(b)) → . . . f(gω, gω)→ c

of length ω + 1. However, there is no strongly p-converging reduction f(a, b) ։p ≤ω c (since
there is no such strongly m-converging reduction).

We can use the Compression Lemma for strongly p-convergent reductions to obtain a
stronger variant of Theorem 4.12 for orthogonal TRSs:

Corollary 6.17 (strong m-reachability = strong p-reachability of total terms). Let R be

an orthogonal, left-finite TRS and s, t ∈ T ∞(Σ,V). Then s ։m t iff s ։p t.

Proof. The “only if” direction follows immediately from Theorem 4.12. For the “if” direction
assume a reduction S : s ։p t. According to Theorem 6.15, there is a reduction T : s ։p ≤ω t.
Hence, since s is total and totality is preserved by single reduction steps, T : s ։

p ≤ω t is
total. Applying Theorem 4.12, yields that T : s ։m ≤ω t.

Notice the similarity of the above corollary with the Compression Lemma. The Com-
pression Lemma states that the reachability relation ։

m (as well as ։
p ) is the same whether

we consider ordinals beyond ω or not. Analogously, Corollary 6.17 states that the reachabil-
ity relation ։

p on total terms is the same whether we allow partial convergence in between
or not. More apt, however, is the comparison to the following corollary of the Compression
Lemma (cf. Corollary 2.5): s ։m t implies s→∗ t whenever t is a finite term. In other words,
if the final term is finite, we only need finite reductions. Analogously, Corollary 6.17 states
that if the initial term and the final term are total, we only need metric convergence.

7. Conclusions

Infinitary term rewriting in the partial order model provides a more fine-grained notion of
convergence. Formally, every meaningful, i.e. p-continuous, reduction is also p-converging.
However, p-converging reductions can end in a term containing ’⊥’s indicating positions of
local divergence. Theorem 4.9, Theorem 4.12 and Corollary 6.17 show that the partial order
model coincides with the metric model but additionally allows a more detailed inspection
of non-m-converging reductions. Instead of the coarse discrimination between convergence
and divergence provided by the metric model, the partial order model allows different levels
between full convergence (a total term as result) and full divergence (⊥ as result).

The equivalence of strong p-reachability and Böhm-reachability shows that the differ-
ences between the metric and the partial order model can be compensated by simply adding
rules that allow to replicate destructive reductions by →⊥-steps. By this equivalence, we
additionally obtain infinitary normalisation and infinitary confluence for orthogonal systems
– a considerable improvement over strong m-convergence. Both strong p-convergence and
Böhm-convergence are defined quite differently and have independently justified intentions,
yet they still induce the same notion of transfinite reachability. This suggests that this
notion of transfinite reachability can be considered a “natural” choice – also because of its
properties that admit unique normal forms. Nevertheless, while achieving the same goals
as Böhm-extensions, the partial order approach provides a more intuitive and more elegant
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model for transfinite reductions as it does not need the cumbersomely defined “shortcuts”
provided by →⊥-steps, which depend on allowing infinite left-hand sides in rewrite rules.
Vice versa destructive reductions in the partial order model provide a justification for ad-
mitting these shortcuts.

Related Work. This study of partial order convergence is inspired by Blom [6] who investi-
gated strong partial order convergence in lambda calculus and compared it to strong metric
convergence. Similarly to our findings for orthogonal term rewriting systems, Blom has
shown for lambda calculus that reachability in the metric model coincides with reachability
in the partial order model modulo equating so-called 0-undefined terms.

Also Corradini [7] studied a partial order model. However, he uses it to develop a theory
of parallel reductions which allows simultaneous contraction of a set of mutually independent
redexes of left-linear rules. To this end, Corradini defines the semantics of redex contraction
in a non-standard way by allowing a partial matching of left-hand sides. Our definition of
complete developments also provides, at least for orthogonal systems, a notion of parallel
reductions but does so using the standard semantics of redex contraction.

Future Work. While we have studied both weak and strong p-convergence and have com-
pared it to the respective metric counterparts, we have put the focus on strong p-convergence.
It would be interesting to find out whether the shift to the partial order model has similar
benefits for weak convergence, which is known to be rather unruly in the metric model [23].
A starting point in this direction would be to find correspondences between weak and strong
p-convergence. For example, in the metric setting we have that s →֒m R t implies that there
is some t′ with s ։

m
B t′ and t ։

m
B t′ [14, Theorem 12.9.14]. If we had the analogous cor-

respondence for p-convergence, we would immediately obtain infinitary normalisation and
confluence for weak p-convergence.

Moreover, we have focused on orthogonal systems in this paper. It should be easy to
generalise our results to almost orthogonal systems. The only difficulty is to deal with the
ambiguity of paths when rules are allowed to overlay. This could be resolved by consider-
ing equivalence classes of paths instead. The move to weakly orthogonal systems is much
more complicated: For strong m-convergence Endrullis et al. [11] have shown that weakly
orthogonal systems do not even satisfy the infinitary unique normal form property (UN∞),
a property that orthogonal systems do enjoy [16]. Due to Theorem 4.12, this means that
also in the setting of strong p-convergence, weakly orthogonal systems do not satisfy UN∞

and are therefore not infinitarily confluent either! Endrullis et al. [11] have shown that this
can be resolved in the metric setting by prohibiting collapsing rules. However, it is not clear
whether this result can be transferred to the partial order setting.

Another interesting direction to follow is the ability to finitely simulate transfinite reduc-
tions by term graph rewriting. For strong m-convergence this is possible, at least to some
extent [15]. We think that a different approach to term graph rewriting, viz. the double-

pushout approach [10] or the equational approach [1], is more appropriate for the present
setting of p-convergence [8, 3].
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