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Abstract. We show that the higher-order matching problem is decidable using a game-
theoretic argument.
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1. Introduction

Higher-order unification is the problem given an equation t = u containing free variables
is there a solution substitution θ such that tθ and uθ have the same normal form? The
terms t and u are from the simply typed lambda calculus and the same normal form is
with respect to βη-equivalence. Higher-order matching is the particular instance when the
term u is closed; can t be pattern matched to u? Although higher-order unification is
undecidable (even if free variables are only second-order [6]), higher-order matching was
conjectured to be decidable by Huet [7]. If matching is decidable then it is known to have
non-elementary complexity [17, 23]. Decidability has been proved for the general problem
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2 C. STIRLING

up to order 4 (by showing decidability of observational equivalence of lambda terms) and
for various special cases [12, 13, 14, 15, 3]. Comon and Jurski define tree automata that
characterise all solutions to a 4th-order problem, thereby, showing that they form a regular
set [2]. Loader showed that matching is undecidable for the variant definition of the same
normal form that only uses β-equivalence by encoding lambda definability as matching [10]:
see [8] for a proof that uses the halting problem. An excellent source of information about
unification and matching is [5].

In this paper, we confirm Huet’s conjecture that higher-order matching is decidable.
The proof first appeals to Padovani’s and Schubert’s reduction of matching to the (dual)
interpolation problem [14, 13] and is then in the tradition described by Dowek [5]: “these
[decidability] proofs are rather technical . . . because they all proceed by transforming po-
tential solutions into smaller ones cutting and pasting term pieces”. The proof method is
partly inspired by model-checking games (such as in [19]) where a model, a transition graph,
is traversed relative to a property and players make choices at appropriate positions. Given
a (dual) interpolation problem P , we define a game where the model is a closed lambda
term t in η-long normal form that is a potential solution to P ; game-playing moves around
the term t (dependent on P ). The game captures the dynamics of β-reduction on t without
changing it (using substitution). Unlike model-checking games, play may arbitrarily jump
around a term because of binding.

The principal virtue of the game is that small pieces of a solution term can be understood
in terms of sequences of positions in the game and how they, thereby, contribute to solving
the problem P . We identify regions of a term, “tiles”, and classify them according to these
intervals of play. Two transformations that preserve solution terms are introduced. With
these, we show that 3rd-order matching is decidable using the small model property: if
there is a solution to a problem then there is a small solution to it. In [20], we introduced
the game and two more transformations that uniformly solved known subcases of matching
(including 4th-order). The key observation for decidability at 3rd-order is the tree-model
property: each play descends a branch of a solution term because of the paucity of binding.
For higher-orders, the idea is to induce as far as possible the tree-model property, to tame
play jumping within a term due to binding. The mechanism for doing this involves unfolding
a lambda term with respect to game playing which is analogous to unravelling a transition
system in modal logic. Unfolding involves “tile lowering”, copying regions of a term down its
branches. The proof of decidability at higher-order uses unfolding and from its combinatorial
properties the small model property follows.

In Section 2 we introduce higher-order matching and (dual) interpolation and in Sec-
tion 3 we define some basic ingredients of the problem. In Section 4 we describe the
tree-checking game that characterises (dual) interpolation and in Section 5 some properties
of the resulting game are highlighted. In Section 6 we identify tiles as regions of terms and
define their plays and in Section 7 we show that 3rd-order matching is decidable using a tree
model property of game playing; the first step in this argument is to define a partition of
each play in a game. The definition of partition is extended to all orders in Section 8. This
then forms the basis for the notion of tile unfolding that is described in Section 9 and how
it leads to decidability of matching via the small model property. The complexity analysis
is the size of a smallest term, if there is one, that solves a problem. However, the bounds
are extremely coarse. Finally, we conclude with general remarks and ideas for future work.
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2. Matching and dual interpolation

Simple types are generated from a single base type 0 using the binary→ operator. For
simplicity, we assume only one base type: everything that is to follow can be extended to
arbitrary many base types. A type is 0 or A→ B where A and B are types. If A 6= 0 then it
has the form A1 → . . .→ An → 0, assuming→ associates to the right, which we abbreviate
to (A1, . . . , An,0) following Ong [11]. A standard definition of order is: the order of 0 is 1
and the order of (A1, . . . , An,0) is k + 1 where k is the maximum of the orders of the Ais.

Terms of the simply typed lambda calculus are built from a countable set of typed
variables x, y, . . . and constants a, f, . . . (so, each variable and constant has a unique type).

Definition 2.1. The set of simply typed lambda terms is the smallest set T such that

(1) if x (f) has type A then x : A ∈ T (f : A ∈ T ),
(2) if t : B ∈ T and x : A ∈ T then λx.t : A→ B ∈ T ,
(3) if t : A→ B ∈ T and u : A ∈ T then (tu) : B ∈ T .

The order of a typed term t : A is the order of its type A.
In a sequence of unparenthesised applications, we adopt the usual convention that

application associates to the left; so tu1 . . . uk is ((. . . (tu1) . . .)uk). The usual definitions
of free and bound variable occurrences and when a typed term is closed are assumed.
Moreover, we assume the standard definitions and properties of α-equivalence, β-reduction,
η-reduction and βη-equivalence, =βη, such as strong normalisation of β-reduction: see for
instance, Barendregt [1].

Definition 2.2. A matching problem is an equation v = u where v, u : A and u is closed.
The order of the problem is the maximum of the orders of the free variables x1, . . . , xn in
v. A solution is a sequence of terms t1, . . . , tn such that v{t1/x1, . . . , tn/xn} =β η u where
v{t1/x1, . . . , tn/xn} is the simultaneous substitution of ti for each free occurrence of xi in v
for each i : 1 ≤ i ≤ n.

The decision question is: given a matching problem, does it have a solution? It suffices
to consider the case when A = 0: a problem v = u of type (A1, . . . , An,0) reduces to the
equivalent problem vf1 . . . fn = uf1 . . . fn of type 0 where each fi : Ai is a fresh constant
which is not allowed in solution terms. Equivalent variants of matching include the “range
question” and the “pattern matching problem” [18, 8].

As described by Huet [7], every simply typed lambda calculus term is βη-equivalent to
a unique term in η-long normal form,

(1) if t : 0 then it is u : 0 where u is a constant or a variable, or u t1 . . . tk where u :
(B1, . . . , Bk,0) is a constant or a variable and each ti : Bi is in η-long normal form,

(2) if t : (A1, . . . , An,0) then t is λy1 . . . yn.t
′ where each yi : Ai and t′ : 0 is in η-long

normal form.

Throughout, we write λz1 . . . zn for λz1 . . . λzn. A term is well-named if each occurrence of
a variable y within a lambda abstraction is unique. In the following, we assume that a term
in normal form is always in η-long normal form; consequently, β-equality and β η-equality
coincide (for instance, see [22]).

Definition 2.3. Assume u : 0 and each vi : Ai, 1 ≤ i ≤ n, is a closed term in normal form
and x : (A1, . . . , An,0).

(1) x v1 . . . vn = u is an interpolation equation.
(2) x v1 . . . vn 6= u is an interpolation disequation.
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(3) A finite family of interpolation equations x vi1 . . . v
i
n = ui, where i : 1 ≤ i ≤ m, with the

same free variable x, is an interpolation problem P .
(4) A finite family of interpolation equations and disequations x vi1 . . . v

i
n ≈i ui, when i : 1 ≤

i ≤ m, with the same free variable x and where each ≈i ∈ {=, 6=}, is a dual interpolation
problem P .

(5) The type of problem P is that of x and the order of P is the order of x.
(6) A solution of P of type A is a closed term t : A in normal form such that for each

equation t vi1 . . . v
i
n =β ui and, in the case of dual interpolation, for each disequation

t vi1 . . . v
i
n 6=β ui. We write t |= P if t is a solution of P .

Conceptually, (dual) interpolation is simpler than matching because there is a single
variable x that appears at the head of each (dis)equation. However, Schubert shows that a
matching problem of order n reduces to an interpolation problem of order at most n+2 and
Padovani shows it reduces to a dual interpolation problem of order n, [14, 13]. Consequently,
the higher-order matching problem reduces to the following decision question.

Decision Question Given a (dual) interpolation problem P , is there a term t |= P?

It is this question that is solved positively in the rest of the paper. Throughout, we assume
a fixed dual interpolation problem P of type A whose order is greater than 1 (as an order
1 problem is easily decided). A problem P has the form x vi1 . . . v

i
n ≈i ui, 1 ≤ i ≤ m, where

the normal form terms vij and ui are well-named and no pair share bound variables.

3. Preliminaries

We start with some examples of interpolation problems.

Example 3.1. The following is a 4th-order problem

xλy1y2.y1y2 = fa
xλy3y4.y3(y3y4) = f(fa)

with x : (((0,0),0,0),0) and f : (0,0).

Example 3.2. The problem x(λz.z) = f(λx1x2x3.x1x3)a has order 3 where x has type
((0,0),0) and f : (((0,0),0,0,0),0,0) assuming x2 : 0.

Example 3.3. The next equation, due to Luke Ong, is 5th-order

x(λy1y2.y1(λy3.y2(y1(λy4.y3))) = h(g(h(ha)))

with x : ((((0,0),0), (0,0),0),0) and g, h : (0,0).

A right term u of an interpolation (dis)equation xv1 . . . vn ≈ u may contain bound
variables, such as f(λx1x2x3.x1x3)a of Example 3.2. Let X = {x1, . . . , xk} be the set of
bound variables in u and let C = {c1, . . . , ck} be a fresh set of constants where each ci has
the same type as xi.

Definition 3.4. The ground closure of a closed term w, whose bound variables belong to
X, with respect to C, written Cl(w,X,C), is defined inductively:

(1) if w = a : 0 then Cl(w,X,C) = {a},
(2) if w = f w1 . . . wn then Cl(w,X,C) = {w} ∪

⋃
{Cl(wi,X,C) | 1 ≤ i ≤ n},

(3) if w = λxj1 . . . xjn .u then Cl(w,X,C) = Cl(u{cj1/xj1 , . . . , cjn/xjn},X,C).
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If u = f(λx1x2x3.x1x3)a then its ground closure with respect to {c1, c2, c3} is the set of
terms {u, c1c3, c3, a}. The ground closure of h(g(h(ha))) of Example 3.3 with respect to
the empty set is its subterms {h(g(h(ha))), g(h(ha)), h(ha), ha, a}. An element of a ground
closure always has base type; in the case of a right term u of an interpolation (dis)equation,
its ground closure with respect to a set of constants consists of all subterms of type 0 when
free variables xi are replaced with constants ci of the same type.

We also identify subterms of left terms vj of a (dis)equation x v1 . . . vn ≈ u relative to
the finite set C of constants for u. Such a subterm may contain free variables and may have
a higher-order type.

Definition 3.5. The subterms of w relative to C, written Sub(w,C), is defined inductively
using an auxiliary set Sub′(w,C):

(1) if w is a variable or a constant then Sub(w,C) = Sub′(w,C) = {w},
(2) if w is xw1 . . . wn then Sub(w,C) = Sub′(w,C) = {w} ∪

⋃
{Sub(wi, C) | 1 ≤ i ≤ n},

(3) if w is f w1 . . . wn then Sub(w,C) = Sub′(w,C) = {w} ∪
⋃
{Sub′(wi, C) | 1 ≤ i ≤ n},

(4) if w is λy1 . . . yn.v then Sub(w,C) = {w} ∪ Sub(v,C) and Sub′(w,C) =⋃
{Sub(v{ci1/y1, . . . , cin/yn}, C) | cij ∈ C has the same type as yj}.

The subterms of λz.z relative to {c1, c2, c3}) of Example 3.2 is {λz.z, z}. If instead of
λz.z the left term of this example is v = λz.f(λz1z2z3.z1z2)z, then Sub(v, {c1, c2, c3}) is
{v, f(λz1z2z3.z1z2)z, c1c2, c1c3, c2, c3, z}: bound variables directly beneath a constant are
replaced in their body by constants in C with the same type.

Given the problem P with (dis)equations x vi1 . . . v
i
n ≈i ui, i : 1 ≤ i ≤ m, for each i

let Xi be the (possibly empty) set of bound variables in ui and Ci be a corresponding set
of new constants (that do not occur in P ), the forbidden constants. We are interested in
closed terms t in normal form where t |= P and t does not contain forbidden constants.

Definition 3.6. Assume P is the fixed dual interpolation problem of type A.

(1) T is the set of subtypes of A including A and the subtypes of subterms of ui.
(2) For each i, the right subterms are Ri = Cl(ui,Xi, Ci) and R =

⋃
{Ri | 1 ≤ i ≤ m}.

(3) For each i, the left subterms are Li = Ci∪
⋃
{Sub(vij , Ci) | 1 ≤ j ≤ n} and L =

⋃
{Li | 1 ≤

i ≤ m}.
(4) The arity of P , α, is the largest width k of any type (A1, . . . , Ak,0) ∈ T.

Clearly, the sets T, R and L are each finite and α is bounded with respect to a given problem
P . In Example 3.1, the set of forbidden constants C1∪C2 is empty and R is {f(fa), fa, a},
L1 is {λy1y2.y1y2, y1y2, y2} and its arity is 2.

Definition 3.7. The right size, δ(u), of a right term u relative to its constants C is defined
inductively:

(1) if u = a : 0 then δ(u) = 0,
(2) if u = fw1 . . . wk then δ(u) = 1 +

∑
{δ(wi) | 1 ≤ i ≤ k},

(3) if u = λxi1 . . . xik .w, then δ(u) = δ(w{ci1/xi1 , . . . , cik/xik}).

Definition 3.8. The right size for P , δ, is
∑
{δ(ui) | 1 ≤ i ≤ m} of its right terms.

For instance, δ(h(g(h(ha)))) = 4 and δ(f(λx1x2x3.x1x3)a) = 2. If the right size δ for P is
0, then each (dis)equation in P has restricted form x v1 . . . vn ≈ a where a : 0. Padovani
proved that dual interpolation is decidable for this special case, the atoms case, by showing
decidability of observational equivalence within minimal models [12].
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4. Tree-checking games

We introduce a game-theoretic characterisation of dual interpolation inspired by model-
checking games (such as in [19]) where a model, a transition graph, is traversed relative to a
property and players make choices at appropriate positions. Similarly, in the following game
the model is a putative solution term t that is traversed relative to the dual interpolation
problem. The central motivation is to model the dynamics, β-reduction, without changing
t by substituting into it. Because of binding play may jump around t.

A potential solution term t for P has the right type, is in normal form, is well-named
(with variables that are disjoint from variables in P ) and does not contain forbidden con-
stants. Term t is represented as a tree, tree(t). If t is y : 0 or a : 0 then tree(t) is the single
node labelled with t. In the case of u v1 . . . vk when u is a variable or a constant, we assume
that a dummy lambda with the empty sequence of variables is placed directly above any
subterm vi : 0 in its tree representation. With this understanding, if t is u v1 . . . vk then
tree(t) consists of the root node labelled u and k-successors, tree(v1),. . .,tree(vk). We use
the notation t ↓i t

′ to represent that tree t′ is the ith successor of the root node of t. We
also use the standard abbreviation λy for λy1 . . . yn for some n ≥ 0, so y is possibly the
empty sequence of variables. If t is λy.v then tree(t) consists of the root node labelled λy
and a single successor tree(v), so t ↓1 tree(v).

For ease of exposition, we allow t to range over lambda terms, their trees and their root
nodes: the context will make it clear which is meant. The introduction of dummy lambdas
is a slight extension to η-long normal form; they make term trees more homogeneous, allow
for an easier analysis of game playing and, as we shall see in later sections, they are useful
for individuating regions of a term and for defining region transformations.

Example 4.1. A solution t from [2] for the problem of Example 3.1 is the following term
λz.z(λx.f(z(λu.x)b))(z(λy.z(λs.s)y)a). For instance, if v = λy1y2.y1y2 then the normal
form of tv is fa.

t v =β v(λx.f(v(λu.x)b))(v(λy.v(λs.s)y)a)
=β λx.f(v(λu.x)b)(v(λy.v(λs.s)y)a)
=β f(v(λu.v(λy.v(λs.s)ya))b)
=β f(λu.(v(λy.v(λs.s)y)a)b)
=β f(v(λy.v(λs.s)y)a)
=β f(λy.(v(λs.s)y)a)
=β f(v(λs.s)a)
=β f((λs.s)a)
=β fa

The tree for t (without indices on edges) is depicted in Figure 1. For instance, in this tree
(6) ↓1 (7) and (6) ↓2 (9). Each node (which we have uniquely identified with a natural
number) is labelled with a λz, a variable or a constant. A node labelled with a constant
or variable of type 0 is a leaf of the tree (such as node (10)). A node labelled with a
higher-order constant or variable of type (B1, . . . , Bk,0) has precisely k-successor nodes
each labelled with a λy (which may be dummy). A node labelled with a λz has a single
successor which is labelled with a constant or a variable. Therefore, every even level of the
tree (when the root is at level 0) is a lambda node.

Innocent game semantics following Ong in [11] provides a possible game-theoretic foun-
dation for (dual) interpolation. Given a potential solution term t and a (dis)equation
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xvi1 . . . v
i
n ≈i ui there is the game board in Figure 2. Player Opponent chooses a branch

of ui. Then, there is a finite play that starts at the root of t and may repeatedly jump in
and out of t and in and out of the vij ’s. At a constant a : 0 play ends. At other constants
f , player Proponent tries to match Opponent’s choice of branch. Proponent wins, when
the play finishes, if the sequence of constants encountered matches the branch chosen by
Opponent (assuming a mechanism for forbidden constants). Play, for example, may reach
yj in t and then jump to vij , as it is this subtree that is applied to λy at the root of t, and

then when at xk in vij play may return to t to an immediate successor of yj labelled λz; play

then may proceed to zl and return to a successor of xk in vij, and so on. Game semantics
models β-reduction on the fixed structure of Figure 2 without changing it using substitu-
tion. This is the rationale for the tree-checking game1. However, the game that we now
define starts from the assumption that only t is the common structure for the problem P .
Moreover, in later sections, we shall define transformations on t justified by game playing
which introduces an asymmetry between it and the argument terms vij of P which are fixed.

Consequently, we insist that play is always in the term t. Jumping in and out of the vij ’s
is coded using states, as play traverses t. The game also avoids the justification pointers of
game semantics by appealing to iteratively defined look-up tables.

The tree-checking game G(t, P ) is played by one participant, player ∀, the refuter who
attempts to show that t is not a solution of P . It appeals to a finite set of states involving
elements of L and R from Definition 3.6: L are the subterms of the vij ’s and R are those of
the ui’s, both modulo the forbidden constants. There are four kinds of state, as follows.

• An argument state has the form q[(l1, . . . , lk), r] where each lj ∈ L (and k can be 0) and
r ∈ R. Such a state will only occur at a node in t labelled λz1 . . . zk where each lj has
the same type as zj : l1 . . . lk are the subterms that are applied to the subterm rooted at
λz1 . . . zk. A state q[( ), r] occurs at a node of t labelled with a dummy lambda.
• A value state has the form q[l, r] where l ∈ L and r ∈ R. This state can only occur at
a node of t labelled with a variable y which has the same type as l: l is the subterm of
some vij that play at y would jump to in game semantics.

• An empty state has the form q[−, r] where r ∈ R and can only occur at a node of t labelled
with a higher-order constant f : (B1, . . . , Bk,0) when r has the form fu1 . . . uk.
• A final state is either q[∀ ], winning for the refuter, or q[∃ ], losing for the refuter.

As play traverses t, there are two kinds of free variables: those in the current subtree
of t (such as yj in Figure 2) and those in the left terms of a current argument or value
state q[(l1, . . . , lk), r] or q[l, r] (such as xk in Figure 2). A free variable in a subtree of t is
associated with a single left subterm (an element of L) and a free variable in a left subterm l
of an argument or value state is associated with a unique subtree of t. So, the game appeals
to look-up tables or nested environments θ ∈ Θk and ξ ∈ Ξk at a position k ≥ 1 that are
defined iteratively.

Definition 4.2. The sets of partial mappings Θk and Ξk are defined iteratively as follows.

(1) Θ1 = {θ1} and Ξ1 = {ξ1} where both θ1 and ξ1 are empty (that is, have no entries).
(2) For k > 1, θ ∈ Θk iff θ is a partial map from variables that are labels of nodes in t to

triples lξj where l ∈ L, j < k and ξ ∈ Ξj.

1I am indebted to Luke Ong for pointing out there is a close formal relationship between the tree-checking
game and game semantics.



DECIDABILITY OF HIGHER-ORDER MATCHING 9

(3) For k > 1, ξ ∈ Ξk iff ξ is a partial map from variables that can occur in terms of L to
triples t′θj where t′ is a subtree of t, j < k and θ ∈ Θj.

A variable y in t may be associated with a left subterm l ∈ L which contains free variables:
hence, the need for θ(y) to be a triple lξj as ξ records the values of the free variables in
l as determined at the earlier position j: we include the position j which is crucial to the
understanding of game playing in later sections, when relationships between positions are
analysed. Similarly, a variable z in a left subterm may be associated with a subtree of t
which contains free variables; so, ξ(z) = t′θj where θ has entries for the free variables in t′

at the earlier position j. Initially, at the beginning of play when there are no free variables
and no previous moves, θ ∈ Θ1 and ξ ∈ Ξ1 are both empty. The look-up tables play the
same role as environments for abstract machines of the lambda calculus (such as a Krivine
machine). So the game will simulate the evaluation of a branch of the normal form in the
same way abstract machines compute closures. However, unlike these abstract machines,
the game here essentially depends on η-long normal forms.

Definition 4.3. A play of G(t, P ) is a sequence of positions t1q1θ1ξ1, . . . , tnqnθnξn where

(1) each ti is a node of t and t1 is the root node of t,
(2) each qi is a state, qn is a final state and q1 is decided as follows: ∀ chooses a (dis)equation

x vi1 . . . v
i
n ≈i ui in P and q1 = q[(vi1, . . . , v

i
n), ui],

(3) for each i, θi ∈ Θi and ξi ∈ Ξi,
(4) position tm+1qm+1θm+1ξm+1, m < n, is determined by a single move in Figure 3 from

position tmqmθmξm according to the label at tm.

The initial position of a play of G(t, P ) is t1q[(l1, . . . , ln), r]θ1ξ1 where t1 is the initial
node of t labelled λy1 . . . yn for some y1, . . . , yn and xl1 . . . ln ≈ r is a (dis)equation in P . At
this position we are interested whether (t1θ1)(l1ξ1) . . . (lnξ1) =β r where the look-up tables
are viewed as substitutions: initially, they are empty because there are no free variables
in the terms t, l1, . . . , ln . The initial position is the same as an initial position in game
semantics, except the terms lj and r in the game here are part of the state (and the choice
of branch in r will take place as play proceeds).

The possible moves from position m to m + 1 in a play are listed in Figure 3 and are
divided into three groups that depend on the label at tm of position m. Group A covers the
case when it is a λy, group B a constant f (whose type is not 0) and group C a variable
y. For look-up tables θm+1 and ξm+1, we assume that the substitution notation also stands
for function updating: µ′ = µ{ν1/y1, . . . , νk/yk} means that the entries in µ′ are the same
as in µ except for the yi’s, as µ

′(yi) = νi for each yi, 1 ≤ i ≤ k. This notation is permitted
even if k = 0.

Consider group A moves when position m is at the node tm labelled λy1 . . . yj, j ≥ 0,
so qm has the form q[(l1, . . . , lj), r] where each li has the same type as yi. (If j = 0 then the
position is at a dummy lambda.) The “interpretation” of position m in terms of β-reduction
(see the proof of Theorem 5.7) is whether (tmθm)(l1ξm) . . . (ljξm) =β r. Node tm has a sin-
gle successor tm+1 and so play descends to it. However, the subtree at tm+1 may contain
free occurrences of the yi’s (when j > 0): the interpretation of each such occurrence is liξm
because tm = λy1 . . . yj.tm+1 and so θm+1 is an updated version of θm reflecting this associ-
ation of the yi’s with the li’s and the look-up table ξm at position m. Move A1 is when tm+1

is labelled with a : 0. We can now immediately decide whether (tmθm)(l1ξm) . . . (ljξm) =β r
just by comparing r and a; so position m+1 is final (and won by the refuter if r is different
from a). For move A2, if tm+1 is labelled with f : (B1, . . . , Bk,0) and r does not have the
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A. tm is labelled λy1 . . . yj and j ≥ 0. Assume qm = q[(l1, . . . , lj), r].
Then, tm+1 = t′ such that tm ↓1 t′, θm+1 = θm{l1ξmm/y1, . . . , ljξmm/yj} and qm+1,
ξm+1 are defined by cases on the label at tm+1.
1. a : 0. Then, ξm+1 = ξm. If r = a then qm+1 = q[∃ ] else qm+1 = q[∀ ].
2. f : (B1, . . . , Bk,0). Then, ξm+1 = ξm. If r = fs1 . . . sk then qm+1 = q[−, r] else

qm+1 = q[∀ ].
3. y : B. If θm+1(y) = lξi, then ξm+1 = ξ and qm+1 = q[l, r].

B. tm is labelled f : (B1, . . . , Bk,0). Assume qm = q[−, fs1 . . . sk].
1. Then, θm+1 = θm, ξm+1 = ξm and ∀ chooses d : 1 ≤ d ≤ k and tm+1 = t′ such that

tm ↓d t′ and qm+1 is by cases on sd.
sd : 0. Then qm+1 = q[( ), sd].
sd = λxi1 . . . xin .s. Then qm+1 = q[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}].

C. tm is labelled y. Assume qm = q[l, r].
If l : 0 then ξm+1 = ξm else l = λz1 . . . zj .w and tm ↓i t′i, 1 ≤ i ≤ j, and ξm+1 =
ξm{t

′

1θmm/z1, . . . , t
′

jθmm/zj}. Elements tm+1, qm+1 and θm+1 are by cases on l.
1. a or λz1 . . . zj .a where a : 0. Then, tm+1 = tm and θm+1 = θm.

If r = a then qm+1 = q[∃ ] else qm+1 = q[∀ ].
2. c : (B1, . . . , Bk,0). Then θm+1 = θm.

If r 6= cs1 . . . sk then tm+1 = tm and qm+1 = q[∀ ] else r = cs1 . . . sk and ∀ chooses
d : 1 ≤ d ≤ k, and tm+1 = t′ such that tm ↓d t′ and qm+1 is by cases on sd.
sd : 0. Then qm+1 = q[( ), sd].
sd = λxi1 . . . xin .s. Then qm+1 = q[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}].

3. fw1 . . . wk or λz1 . . . zj .fw1 . . . wk. Then tm+1 = tm and θm+1 = θm.
If r 6= fs1 . . . sk, then qm+1 = q[∀ ] else r = fs1 . . . sk and ∀ chooses d : 1 ≤ d ≤ k
and qm+1 is by cases on sd.
sd : 0. Then qm+1 = q[wd, sd].
sd = λxi1 . . . xin .s and wd = λy1 . . . yn.w

′. Then qm+1 =
q[w′{ci1/y1, . . . , cin/yn}, s{ci1/xi1 , . . . , cin/xin}].

4. x l1 . . . lk or λz1 . . . zj .x l1 . . . lk where k ≥ 0.
If ξm+1(x) = t′θi then tm+1 = t′, θm+1 = θ and qm+1 = q[(l1, . . . , lk), r].

Figure 3: Game moves

form fs1 . . . sk then qm+1 = q[∀ ] as we now know that (tmθm)(l1ξm) . . . (ljξm) 6=β r. If
r = fs1 . . . sk then position m + 1 is tm+1q[−, r]θm+1ξm+1 where ξm+1 = ξm. Move A3 is
when tm+1 is labelled with a variable y. Thus, y is a free variable occurrence in the tree
tm+1 whose interpretation is θm+1(y) = lξi decided at the earlier position i ≤ m. So, ξm+1

is set to ξ (as it interprets the free variables in l in qm+1 = q[l, r]).
The B move covers the case when tm is labelled with a constant f : (B1, . . . , Bk,0);

because of move A2, we only need to consider it when the state is qm = q[−, fs1 . . . sk] for
some s1, . . . , sk. The “interpretation” of such a position m is whether (tmθm) =β fs1 . . . sk.
In which case tm = ft′1 . . . t

′

k. So, (tmθm) =β fs1 . . . sk if, and only if, for each d : 1 ≤ d ≤ k,
t′dθm =β sd. The refuter ∀ chooses such a d. The delicacy is that sd may be of higher type, of
the form λxi1 . . . xin .s and so, therefore, t′d is labelled λy′1 . . . y

′

n for some y′1, . . . y
′

n because it
has the same type: position m+1 is then t′dq[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}]θm+1ξm+1

where θm+1 = θm, and ξm+1 = ξm: here we are making use of the forbidden constants cij .
If sd has ground type then qm+1 = q[( ), sd] (as the label at t′d is a dummy lambda).
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Group C moves cover the case where tm is labelled with a variable y. The “interpreta-
tion” of position m, tmq[l, r]θmξm, is whether (lξm)(t′1θm) . . . (t′jθm) =β r where for j ≥ 0,

tm ↓i t′i when 1 ≤ i ≤ j. If j > 0 then l = λz1 . . . zj .w for some z1, . . . , zj and the free
occurrences of zi in w are associated with t′iθm at position m; so, ξm+1 is an updated ver-
sion of ξm reflecting this association. When j = 0, l = w and the interpretation is whether
lξm =β r. For both cases l = λz1 . . . zj .w and l = w play proceeds by examining the “head”
of w. Move C1 covers the case where it is a : 0 (which is possibly a forbidden constant). We
can now immediately decide whether (lξm)(t′1θm) . . . (t′jθm) =β r just by comparing l and r.

Move C2 covers the case where l is a forbidden constant c at higher type (B1, . . . , Bj,0). If
r 6= cs1 . . . sj then we know that c(t′1θm) . . . (t′jθm) 6=β r and, so qm+1 = q[∀ ]. If r = cs1 . . . sj
then c(t′1θm) . . . (t′jθm) =β r if, and only if, for each d, (t′dθm) =β sd. As with B1, the re-
futer ∀ chooses such a d. Again we need to specially deal with the case that sd has higher
type. Move C3 deals with the case that w is fw1 . . . wk. Again, if r does not have the
form fs1 . . . sk then qm+1 = q[∀ ] as we now know that (lξm)(t′1θm) . . . (t′jθm) 6=β r. If

r = fs1 . . . sk then (lξm)(t′1θm) . . . (t′jθm) =β r if, and only if, for each d, (wdξm+1) =β sd.
Therefore, ∀ chooses such a d. For the next position, again we need to deal with the possi-
bility that sd is of higher type: if sd = λxi1 . . . xin .s then wd which has the same type must
be of the form λy1 . . . yn.w

′ for some y1, . . . , yn; so we must substitute the same forbidden
constant for each xij and yj; so qm+1 is q[w′{ci1/y1, . . . , cin/yn}, s{ci1/xi1 , . . . , cin/xin}].
If sd : 0 then the next position m + 1 is tm+1q[wd, sd]θm+1ξm+1 where tm+1 = tm and
θm+1 = θm. Move C4 covers the case when w = xl1 . . . lk, k ≥ 0. Therefore, x is a free vari-
able in l whose interpretation ξm+1(x) = t′θi which was determined at the earlier position
i ≤ m; so, x is associated with the subtree t′ of t and play therefore jumps to it.
∀ can exercise choice, by carving out a branch of a right term of a (dis)equation modulo

forbidden constants, with moves B1, C2 and C3. The look-up tables are used in earnest
with moves A3 and C4 to interpret the two kinds of free variable. Move C4 allows play to
jump elsewhere in the term tree (always to a node labelled with a lambda): it also opens
the possibility that play can repeatedly be at the same node of t. With moves A1–A3, B1
and C2 (unless play finishes) control passes down the term tree while it remains stationary
in the case of C1 and C3.

Definition 4.4. If t1q1θ1ξ1, . . . , tnqnθnξn is a play of G(t, P ) then player ∀ wins the play if
the final state is q[∀ ] and she loses it otherwise (if the final state is q[∃ ]).

Example 4.5. Let P be the problem x(λz.z) = u where u = f(λx1x2x3.x1x3)a of Exam-
ple 3.2. The bound variables in the right term u are {x1, x2, x3}; so, assume corresponding
forbidden constants C = {c1, c2, c3}. Let t = λy.y(y(f(λxz1z2.x(yz2))(ya))): tree(t) is de-
picted in Figure 4. G(t, p) consists of two plays that descend t. (For 3rd-order problems
P play cannot jump around a term tree, as we observe in Section 7.) Both plays start as
follows where we have supplied which move is applied to produce the next position: the
initial component of each position is a node of t.

(1) q[(λz.z), u] θ1 ξ1
(2) q[λz.z, u] θ2ξ2 θ2 = θ1{(λz.z)ξ11/y} ξ2 = ξ1 A3
(3) q[( ), u] θ3ξ3 θ3 = θ2 ξ3 = ξ1{(3)θ22/z} C4
(4) q[λz.z, u] θ4ξ4 θ4 = θ2 ξ4 = ξ1 A3
(5) q[( ), u] θ5 ξ5 θ5 = θ2 ξ5 = ξ1{(5)θ24/z} C4
(6) q[−, u] θ6 ξ6 θ6 = θ2 ξ6 = ξ5 A2
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Figure 4: A solution term with order 3 for Example 4.5

The initial state is an argument state q[(λz.z), u] and control is at node (1). Play descends
from node (1) to (2) calling the value λz.z by A3. Next, by C4, because z is the head
variable in the body of λz.z, has no arguments and is associated with node (3), the next
state is the argument state q[( ), u] and control is at (3). Play descends from (3) to (4)
calling the value λz.z by A3. Again by C4, z is the head variable in the body of λz.z, has
no arguments and is now associated with (5), the next state is the argument state q[( ), u]
and control is at (5). A2 is then applied (because the right term u in the state has f as
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(1) q[(v), fa] θ1 ξ1
(2) q[v, fa] θ2ξ2 θ2 = θ1{vξ11/z} ξ2 = ξ1 A3
(3) q[(y2), fa] θ3ξ3 θ3 = θ2 ξ3 = ξ1{(3)θ22/y1, (11)θ22/y2} C4
(4) q[−, fa] θ4ξ4 θ4 = θ2{y2ξ33/x} ξ4 = ξ3 A2
(5) q[( ), a] θ5 ξ5 θ5 = θ4 ξ5 = ξ4 B1
(6) q[v, a] θ6 ξ6 θ6 = θ4 ξ6 = ξ1 A3
(7) q[(y2), a] θ7 ξ7 θ7 = θ4 ξ7 = ξ1{(7)θ46/y1, (9)θ46/y2} C4
(8) q[y2, a] θ8 ξ8 θ8 = θ4{y2ξ77/u} ξ8 = ξ3 A3
(11) q[( ), a] θ9 ξ9 θ9 = θ2 ξ9 = ξ3 C4
(12) q[v, a] θ10ξ10 θ10 = θ2 ξ10 = ξ1 A3
(13) q[(y2), a] θ11ξ11 θ11 = θ2 ξ11 = ξ1{(13)θ210/y1, (19)θ210/y2} C4
(14) q[v, a] θ12ξ12 θ12 = θ2{y2ξ1111/y} ξ12 = ξ1 A3
(15) q[(y2), a] θ13 ξ13 θ13 = θ12 ξ13 = ξ1{(15)θ1212/y1, (17)θ1212/y2} C4
(16) q[y2, a] θ14 ξ14 θ14 = θ12{y2ξ1313/s} ξ14 = ξ13 A3
(17) q[( ), a] θ15 ξ15 θ15 = θ12 ξ15 = ξ13 C4
(18) q[y2, a] θ16 ξ16 θ16 = θ12 ξ16 = ξ11 A3
(19) q[( ), a] θ17 ξ17 θ17 = θ2 ξ17 = ξ11 C4
(20) q[ ∃ ] θ18 ξ18 θ18 = θ2 ξ18 = ξ11 A1

Figure 5: The play of Example 4.6 on the tree in Figure 1

head constant) and control passes from (5) to (6). Move B1 is now applied and there is a
∀ choice as to which branch of u to take. If direction 1 is chosen then play continues as
follows.

(7) q[(c1, c2, c3), c1c3] θ7 ξ7 θ7 = θ2 ξ7 = ξ5 B1
(8) q[c1, c1c3] θ8 ξ8 θ8 = θ2{c1ξ57/x, c2ξ57/z1, c3ξ57/z2} ξ8 = ξ5 A3
(9) q[( ), c3] θ9 ξ9 θ9 = θ8 ξ9 = ξ5 C2
(10) q[λz.z, c3 ] θ10ξ10 θ10 = θ8 ξ10 = ξ5 A3
(11) q[( ), c3] θ11 ξ11 θ11 = θ8 ξ11 = ξ5{(11)θ810/z} C4
(12) q[c3, c3] θ12 ξ12 θ12 = θ8 ξ12 = ξ5 A3
(12) q[ ∃ ] θ13 ξ13 θ13 = θ8 ξ13 = ξ5 C1

Forbidden constants are introduced for replacing x1, x2, x3 in the body of u to give the
right term c1c3 and as arguments (c1, c2, c3) for the variables x, z1, z2 bound at (7); see the
updated look-up table θ8. At (8) the value c1 is called using move A3 and then by C2,
control proceeds to (9) and the right term becomes the argument c3 of c1. At (10) the value
λz.z is called again by A3 and by C4 as z is the head variable and is associated with node
(11) control passes to it (with the empty sequence of arguments). Finally, at (12), the value
c3 is called by A3, and then by C1, ∀ loses the play. She also loses if direction 2 is chosen
at position 7 as the reader can verify.

Example 4.6. Let P be the first equation of Example 3.1 x v = fa where v = λy1y2.y1y2
(which is a 4th-order problem). The tree t of Figure 1 solves P as was demonstrated in
Example 4.1 through β-reduction. The single play in G(t, P ) is presented in Figure 5. The
initial state is q[(v), fa] at the root of t. By move A3, play descends to node (2) calling the
value v. Next by C4 because y1 is the head variable in the body of v, is associated with the
subtree at (3) and has argument y2 play moves to (3) with argument state q[(y2), fa]. By
A2 play descends to node (4) labelled f and then move B1 is applied without a choice for
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∀ because the type of f : (0,0) has arity one, and so the play descends to node (5) with a
change in the right term of the state from fa to a. By move A3 play descends to node (6)
calling the value v again. By C4 because the head variable y1 is associated with the subtree
at (7) and has argument y2 play moves to (7). By move A3, play descends to (8). The entry
θ8(x) is y2ξ33, so the state is q[y2, a]. By move C4 because ξ3(y2) = (11)θ22, that is, y2 is
associated with the subtree rooted at (11), play jumps from node (8) to node (11). If node
(8) were labelled u then because the entry θ8(u) = y2ξ77 the state would again be q[y2, a];
play would then jump to node (9) because ξ7(y2) = (9)θ46. Play descends from node (11)
to (12), (13), (14), (15) and (16) and jumps to node (17) and descends to (18) and then
jumps to node (19) before descending to node (20) by move A1, where the refuter loses the
play.

Example 4.7. We now examine the equation of Example 3.3 which illustrates play jumping
in more detail and how the game moves, especially A3 and C4, essentially depend on η-long
normal forms Let P be the equation

x(λy1y2.y1(λy3.y2(y1(λy4.y3))) = h(g(h(ha)))

and let t be λz.z(λz1.z(λx1.z1(x1(z1a)))λx2.gx2)λz2.hz2 which is a solution; t as a tree is
depicted in Figure 6. The single play for G(t, P ) is presented in Figure 7 where the following
abbreviations for left and right subterms are employed.

v = λy1y2.y1(λy3.y2(y1(λy4.y3)))
v1 = λy3.y2(y1(λy4.y3))
v2 = y1(λy4.y3)
v3 = λy4.y3
u = h(g(h(ha)))
u1 = g(h(ha))
u2 = h(ha)

Play starts at node (1) with state q[(v), u] and by A3 descends to (2). The head variable
of the body of v is y1 which has argument v1 and so play moves to (3) by C4 with state
q[(v1), u]. Similarly, it descends to (4) by A3 and then to (5) by C4 with state q[(v1), u] at
which point it moves to (6) which is labelled z1; θ6(z1) = v1η33 and the head variable of
the body of v1 is y2 and its argument is v2; so, play jumps to (17) with state q[(v2), u]. It
then descends to (18), (19) and (20) with state q[v2, u1]; the head variable of v2 is y1 and it
has argument v3; so play returns to (3) with state q[(v3), u1]. It then descends to (4) and
(5) and moves to (6); the head variable of the body of v3 is y3 which is associated with
node (7), as ξ14(y3) = (7)θ66. Play proceeds to (8), jumps to (13), reaches (16) and then
returns to (5) and so on. Player ∀ eventually loses when play reaches (12) as the reader can
check.

Definition 4.8. If P is a (dual) interpolation problem then ∀ loses the game G(t, P ) if and
only if

(1) for every equation in P , ∀ loses every play whose initial state is given from it,
(2) for each disequation in P , ∀ wins some play whose initial state is given from it.

The game characterises dual interpolation.

Theorem 4.9. ∀ loses G(t, P ) if, and only if, t |= P .
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Figure 6: A 5th order term tree for Example 4.7

Proof. The simply typed λ-calculus is strongly normalising and is Church-Rosser modulo
α-equivalence. For every term t there is an m such that t reduces to normal form using at
most m β-reductions (whatever the reduction strategy). Therefore, for any position tiqiθiξi
of a play of G(t, P ) we say that it m-holds (m-fails) if qi = q[∃ ] (qi = q[∀ ]) and when qi is
not final, by cases on ti and qi (and look-up tables become delayed substitutions)

• if ti = λy, qi = q[(l1, . . . , lk), r] and t′ is (tiθi)l1ξi . . . lkξi then t′ =β r (t′ 6=β r) and t′

reduces to normal form with at most m β-reductions,
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(1) q[(v), u] θ1 ξ1
(2) q[v, u] θ2ξ2 θ2 = θ1{vξ11/z} ξ2 = ξ1 A3
(3) q[(v1), u] θ3ξ3 θ3 = θ2 ξ3 = ξ1{(3)θ22/y1, (17)θ22/y2} C4
(4) q[v, u] θ4ξ4 θ4 = θ2{v1ξ33/z1} ξ4 = ξ1 A3
(5) q[(v1), u] θ5 ξ5 θ5 = θ4 ξ5 = ξ1{(5)θ44/y1, (13)θ44/y2} C4
(6) q[v1, u] θ6 ξ6 θ6 = θ4{v1ξ55/x1} ξ6 = ξ3 A3
(17) q[(v2), u] θ7 ξ7 θ7 = θ2 ξ7 = ξ3{(7)θ66/y3} C4
(18) q[−, u] θ8 ξ8 θ8 = θ2{v2ξ77/z2} ξ8 = ξ7 A2
(19) q[( ), u1] θ9 ξ9 θ9 = θ8 ξ9 = ξ7 B1
(20) q[v2, u1] θ10ξ10 θ10 = θ8 ξ10 = ξ7 A3
(3) q[(v3), u1] θ11ξ11 θ11 = θ2 ξ11 = ξ7 C4
(4) q[v, u1] θ12ξ12 θ12 = θ2{v3ξ711/z1} ξ12 = ξ1 A3
(5) q[(v1), u1] θ13 ξ13 θ13 = θ12 ξ13 = ξ1{(5)θ1212/y1, (13)θ1212/y2} C4
(6) q[v3, u1] θ14 ξ14 θ14 = θ12{v1ξ1313/x1} ξ14 = ξ7 A3
(7) q[( ), u1] θ15 ξ15 θ15 = θ6 ξ15 = ξ14{(7)θ1414/y4} C4
(8) q[v1, u1] θ16 ξ16 θ16 = θ6 ξ16 = ξ5 A3
(13) q[(v2), u1] θ17 ξ17 θ17 = θ4 ξ17 = ξ5{(9)θ616/y3} C4
(14) q[−, u1] θ18 ξ18 θ18 = θ4{v2ξ1717/x2} ξ18 = ξ17 A2
(15) q[( ), u2] θ19 ξ19 θ19 = θ18 ξ19 = ξ17 B1
(16) q[v2, u2] θ20 ξ20 θ20 = θ18 ξ20 = ξ17 A3
(5) q[(v3), u2] θ21 ξ21 θ21 = θ4 ξ21 = ξ17 C4
(6) q[v1, u2] θ22 ξ22 θ22 = θ4{v3ξ1721/x1} ξ22 = ξ3 A3
(17) q[(v2), u2] θ23 ξ23 θ23 = θ2 ξ23 = ξ3{(7)θ2222/y3} C4
(18) q[−, u2] θ24 ξ24 θ24 = θ2{v2ξ2323/z2} ξ24 = ξ23 A2
(19) q[( ), ha] θ25 ξ25 θ25 = θ24 ξ25 = ξ23 B1
(20) q[v2, ha] θ26ξ26 θ26 = θ24 ξ26 = ξ23 A3
(3) q[(v3), ha] θ27ξ27 θ27 = θ2 ξ27 = ξ23 C4
(4) q[v, ha] θ28ξ28 θ28 = θ2{v3ξ2327/z1} ξ28 = ξ1 A3
(5) q[(v1), ha] θ29 ξ29 θ29 = θ28 ξ29 = ξ1{(5)θ2828/y1, (13)θ2828/y2} C4
(6) q[v3, ha] θ30 ξ30 θ30 = θ28{v1ξ2929/x1} ξ30 = ξ23 A3
(7) q[( ), ha] θ31 ξ31 θ31 = θ22 ξ31 = ξ23{(7)θ3030/y4} C4
(8) q[v3, ha] θ32 ξ32 θ32 = θ22 ξ32 = ξ17 A3
(9) q[( ), ha] θ33 ξ33 θ33 = θ6 ξ33 = ξ32{(9)θ2232/y4} C4
(10) q[v1, ha] θ34 ξ34 θ34 = θ6 ξ34 = ξ3 A3
(17) q[(v2), ha] θ35 ξ35 θ35 = θ2 ξ35 = ξ3{(11)θ634/y3} C4
(18) q[−, ha] θ36 ξ36 θ36 = θ2{v2ξ3535/z2} ξ36 = ξ35 A2
(19) q[( ), a] θ37 ξ37 θ37 = θ36 ξ37 = ξ35 B1
(20) q[v2, a] θ38ξ38 θ38 = θ36 ξ38 = ξ35 A3
(3) q[(v3), a] θ39ξ39 θ39 = θ2 ξ39 = ξ35 C4
(4) q[v, a] θ40ξ40 θ40 = θ2{v3ξ3539/z1} ξ40 = ξ1 A3
(5) q[(v1), a] θ41 ξ41 θ41 = θ40 ξ41 = ξ1{(5)θ4040/y1, (13)θ4040/y2} C4
(6) q[v3, a] θ42 ξ42 θ42 = θ40{v1ξ4141/x1} ξ42 = ξ35 A3
(11) q[( ), a] θ43 ξ43 θ43 = θ6 ξ43 = ξ35{(7)θ4242/y4} C4
(12) q[ ∃ ] θ44 ξ44 θ44 = θ6 ξ44 = ξ43 A1

Figure 7: A 5th-order play
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• if ti = f , qi = q[−, r] and t′ is tiθi then t′ =β r (t′ 6=β r) and t′ reduces to normal form
with at most m β-reductions,
• if ti = z, qi = q[l, r] and ti ↓j t

′

j, 1 ≤ j ≤ k for k ≥ 0, and t′ is (lξi)t
′

1θi . . . t
′

kθi then t′ =β r

(t′ 6=β r) and t′ reduces to normal form with at most m β-reductions.

The proof is done by invoking as a measure a pair of integers, first the size of right term in
qi and second the maximal number of β-reductions needed for t′ to reduce to normal form;
the pair is ordered with the lexicographic ordering. The following properties are easy to
show by case analysis.

(1) If tiqiθiξi m-holds then qi = q[∃ ] or for any next position ti+1qi+1θi+1ξi+1 there is an
m′ such that it m′ holds and either m′ ≤ m or the size of the right term in qi+1 is
strictly smaller than in qi.

(2) If tiqiθiξi m-fails then qi = q[∀ ] or there is an m′ and a next position ti+1qi+1θi+1ξi+1

that m′-fails and either m′ ≤ m or the size of the right term in qi+1 is strictly smaller
than in qi.

For instance, assume tiqiθiξi m-holds, ti = λy1 . . . yk, ti ↓1 ti+1 = y, ti+1 ↓j t′j for 1 ≤

j ≤ p and qi = q[(l1, . . . , lk), r]. Therefore, θi+1 = θi{l1ξii/y1, . . . , lkξii/yk}, qi+1 = q[l, r]
and ξi+1 = ξ′ when θi+1(y) = lξ′n. So, ti = λy1 . . . yk.y t

′

1 . . . t
′

p and by assumption
(tiθi)l1ξi . . . lkξi =β r. With k β-reductions we obtain (lξi+1)t

′

1θi+1 . . . t
′

pθi+1 and posi-
tion ti+1qi+1θi+1ξi+1, therefore, (m − k)-holds. Next, assume tiqiθiξi m-holds, ti = f ,
qi = q[−, fs1 . . . sk] and ti ↓j t′j for 1 ≤ j ≤ k. By assumption, (ft′1 . . . t

′

k)θi =β fs1 . . . sk.

So, t′jθi =β sj. Consider any choice of next position. If sj : 0 then qi+1 = q[( ), sj],

ti+1 = t′j and θi+1 = θi. Therefore, t
′

jθi+1 =β sj and so this next position m′-holds for some

m′ and sj is strictly smaller than fs1 . . . sk. Alternatively, sj = λxi1 . . . xin .s. Therefore,
t′j = λz1 . . . zn.t

′ and t′θi{ci1/z1, . . . , cin/zn} =β s{ci1/xi1 , . . . , cin/xin}m
′-holds for somem′

provided that the cij ’s are new (which is guaranteed as they are forbidden constants). So the
next position m′-holds and the right term of qi+1 = q[(ci1 , . . . , cin), s{ci1/xi1 , . . . , cin/xin}]
is strictly smaller than fs1 . . . sk. Assume tiqiθiξi m-holds and ti = y, qi = q[l, r], l =
λz1 . . . zk.w, w = z l1 . . . lp, ti ↓j t′j for 1 ≤ j ≤ k and ξi+1(z) = t′′θ′n; so, ti+1 = t′′ and

θi+1 = θ′. By assumption, ((λz1 . . . zk.w)ξi)(t
′

1θi) . . . (t
′

kθi) =β r. With k β-reductions the
left term in this equation becomes (ti+1θi+1)l1ξi+1 . . . lpξi+1 and so the next position (m−k)-
holds. All other cases of (1) are close to one of these three, and the proof of (2) is also very
similar. The only cases where the measure, size of right term in state and the number of
β-reductions to normal form, does not decrease are applications of A3 when tm is labelled
with a dummy lambda and C4 when l = w of Figure 3. As a supplementary argument we
show that there cannot be an indefinite sequence of such applications of A3 followed by C4
by examining the index j that is called at these positions; namely, θi+1(y) = lξj in the case
of A3 and ξi+1(x) = t′θ′j in the case of C4; this index must be strictly decreasing in such
repeated sequence of applications of A3 followed by C4.

The result now follows: if t |= P then for each initial position that starts from an
equation there is an m such that it m-holds and for each disequation there is an m such
that it m-fails. Conversely, if t 6|= P then there is an initial position for some equation that
m-fails or for some disequation there is an m such that it m-holds.

The game is analogous to a model-checking game in the sense that deciding a possibly
complex temporal property of a transition graph can be formulated as a game whose arena
is the graph and where the moves are locally small steps that traverse it; similarly, the
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complex property whether t solves P is here formalised as a game whose arena is t involving
locally small steps and local moves. In both cases, play proceeds until one definitely knows
an outcome.

5. Properties of game playing

In the following we let π, σ, . . . range over plays in a game G(t, P ). The total number
of different plays is at most the sum of the number of branches in the right terms u of P .
For instance, in the case of Example 4.7 whose right term is h(g(h(ha))) there is a single
play. We now examine some properties of plays and introduce relationships between play
positions that uses the play indices in the look-up tables.

Remark 5.1. Theorem 4.9 allows one to restrict the set of constants that can appear in
a potential solution term t for P . Let d : 0 be a new constant that does not occur in any
right term u of a (dis)equation in P (and which is also not a forbidden constant). Without
loss of generality, we can assume that any potential solution term t to P only contains the
constant d and constants that occur in the right terms of P : a similar observation is made
in [13]. The justification appeals to moves A1 and A2 of Figure 3. Assume t |= P . Control
in a play associated with an interpolation equation in P can never be at a node in t labelled
with a constant that does not occur in a right term (as ∀ would win the play). If control
in a play associated with an interpolation disequation in P is at a node t′ labelled with a
constant that does not occur in a right term then replacing t′ in t with a single node labelled
d preserves ∀’s win.

Definition 5.2.

(1) The length of π, |π|, is the number of positions tiqiθiηi in π.
(2) The ith position of π is π(i) where 1 ≤ i ≤ |π|.
(3) The sequence of positions π(i), . . . , π(j), i ≤ j, is written π(i, j).

We write t ∈ π(i), q ∈ π(i), θ ∈ π(i) and ξ ∈ π(i) when π(i) = tqθξ and t 6∈ π(i) means
that π(i) = t′qθξ and t 6= t′. We shall describe a sequence of positions π(i, j) as an interval.

Definition 5.3. The right term of state q[(l1, . . . , lk), r], q[−, r] or q[l, r] is the term r. Each
li is a left term of q[(l1, . . . , lk), r] and l is the left term of q[l, r].

Definition 5.4. The interval π(i, j) is ri, right term invariant, if q ∈ π(i) and q′ ∈ π(j)
share the same right term r. It is nri if it is not ri and q′ ∈ π(j) is not a final state.

Clearly, if π(i, j) is ri then every state at every position in this interval shares the same
right term. For instance, when π is the play of Figure 5, the interval π(5, 17) is ri as all its
states share the right term a; also, each position in π(6, 17) is the result of moves A3 or C4.
The outcome of the other moves in Figure 3, A1, A2, B1, C1, C2 and C3, depend on the
right term of the state.

Fact 5.5. If π(i, j) is ri and tj ∈ π(j) is labelled λy for some y then each position in
π(i+ 1, j) is the result of move A3 or C4 of Figure 3.

Intervals that are ri do not directly contribute to the solution of P .

Fact 5.6. If tiqiθiξi, . . . , tnqnθnξn is a sequence of positions that is ri, tn is labelled λy and
q{r′/r} is state q with right term r′ instead of r, then tiqi{r

′/r}θiξi, . . . , tnqn{r
′/r}θnξn is

also a sequence of positions that is ri.
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Consider a position tqθξ of a play. If there is a free occurrence of y in the subtree t
then θ(y) is defined; similarly, if there is a free occurrence of a variable z in a left term
of q then ξ(z) is defined. In contrast, if there is a bound occurrence of y, a node labelled
λy1 . . . yk with y = yj, in the subtree t then θ(y) is not defined and similarly, if there is a
bound occurrence of z in a left term of q then ξ(z) is not defined.

Proposition 5.7. Assume π(i) = tqθξ.

(1) If λy1 . . . yk labels a node in the subtree rooted at t then for each j : 1 ≤ j ≤ k, θ(yj) is
undefined.

(2) If y occurs free in the subtree rooted at t then θ(y) is defined.
(3) If q = q[l, r] or q[(l1, . . . , lk), r] and λz1 . . . zm occurs in l or in some lj, 1 ≤ j ≤ k, then

for any n : 1 ≤ n ≤ m, ξ(zn) is not defined.
(4) If q = q[l, r] or q[(l1, . . . , lk), r] and z occurs free in l or in some lj, j : 1 ≤ j ≤ k, then

ξ(z) is defined.

Proof. We prove this by induction on the position i in a play π. We also show by induction
on i that if π(i+ 1) = t′ q′ θ′ ξ′ then the following additional four properties hold.

• For any y, if θ′(y) = lξ′′j and λz1 . . . zm occurs in l, then for any n : 1 ≤ n ≤ m, ξ′′(zn)
is not defined.
• For any y, if θ′(y) = lξ′′j and z occurs free in l, then ξ′′(z) is defined.
• If ξ′(z) = t′′θ′′j and λy1 . . . yk labels a node in the subtree rooted at t′′ then for i : 1 ≤
i ≤ k, θ′′(yi) is undefined.
• If ξ′(z) = t′′θ′′j and y occurs free in the subtree rooted at t′′ then θ′′(y) is defined.

For the base case, consider an initial position π(1) = t1 q[(v
i
1, . . . , v

i
n), ui] θ1ξ1 where t1 is the

root node of t labelled λz1 . . . zn. There are no free variables in t or in the vij ’s. Moreover,

both θ1 and ξ1 are empty; therefore (1) to (4) hold. Now we need to show the additional
properties for π(2) = t′q′θ′ξ′: by definition θ′ = θ1{v

i
1ξ11/z1, . . . , v

i
nξ11/zn} and ξ′ = ξ1.

Therefore, these properties hold. Consider next the general case for position π(i). If π(i) is
the result of moves A1-A3 of Figure 3 applied to π(i−1) then (1) and (2) follow because they
are true at π(i−1) and θ ∈ π(i) is an update of θ′ ∈ π(i−1) with respect to the (potentially)
free variables y1, . . . , yj such that ti−1 ∈ π(i − 1) is labelled λy1 . . . yj. Parts (3) and (4)
trivially hold for A1 and A2. In the case of A3, if ti ∈ π(i) is labelled y ∈ {y1, . . . , yj} when
ti−1 ∈ π(i − 1) is labelled λy1 . . . yj then (3) and (4) follow from the induction hypothesis
that they hold at π(i− 1); otherwise they follow from the induction hypothesis for the first
two additional properties at π(i− 1). If π(i) is the result of move B1 of Figure 3 to π(i− 1)
then as θ, ξ are unchanged (1)− (4) remain true. Finally, we examine the case when π(i) is
the result of moves C1-C4 to π(i− 1). Cases (3) and (4) hold because ξ ∈ π(i) is a simple
updating of ξ′ ∈ π(i−1) where they hold. Cases (1) and (2) hold for C1-C3 because θ ∈ π(i)
and θ′ ∈ π(i− 1) are the same. In the case of move C4, (1) and (2) either follow from the
induction hypothesis that they hold at π(i−1) or from the induction hypothesis for the final
two additional properties at π(i− 1). Using that (1)− (4) are true at π(i), the argument is
similar for showing that the four additional properties hold at π(i+ 1) = t′q′θ′ξ′.

Now we examine some simple relationships between look-up tables. We allow µ, ν to
range over both kinds of look-up tables.

Definition 5.8. Two look-up tables µ, µ′ are equal, µ = µ′, if, and only if, dom(µ) =
dom(µ′) and for all x ∈ dom(µ), µ(x) = µ′(x); that is, if µ(x) = sνi and µ′(x) = s′ν ′i′ then
s = s′, ν = ν ′ and i = i′.
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This is well defined because the definitions of look-up tables θ ∈ Θk and ξ ∈ Ξk in Defini-
tion 4.2 are well-founded with respect to the embedding of look-up tables.

Definition 5.9. A look-up table µ extends µ′ if for all x ∈ dom(µ′), µ(x) = µ′(x).

Example 5.10. Assume π is the play in Figure 7 that operates on the term tree in Figure 6.
The look-up table θ ∈ π(18) consists of three entries {vξ11/z, v1ξ33/z1, v2ξ1717/x2}; it there-
fore extends θ′ ∈ π(11) which is just the single entry {vξ11/z}. On the other hand, although
θ′′ ∈ π(36) extends θ′ it does not extend θ; it consists of the entries {vξ11/z, v2ξ3535/z2}. In
similar fashion, ξ ∈ π(35) which is {(3)θ22/y1, (17)θ22/y2, (11)θ634/y3} extends ξ6 ∈ π(6)
which only contains the first two of these entries.

Let π(i) = tqθξ and let π(j) = t′q′θ′ξ′ be a later position. If t′ is a subtree of t and
θ′ extends θ then the free variable occurrences that are common to both t and t′ have the
same interpretation; their meaning is preserved at position j. Similarly, if η′ extends η then
the free variable occurrences that are common to the left terms of q and q′ have the same
interpretation.

Both look-up tables of positions that are the result of moves A1, A2, B1, C1-C3 of
Figure 3 extend (or are equal to) those of the previous position. In the case of A3 the θ
look-up table extends the one from the previous position but this is not true, in general, for
the ξ table. Dually, in the case of C4 the ξ table extends the one of the previous position
but this may not hold for the θ look-up table. We want to restore when both look-up tables
are extensions of an earlier position. For this we introduce a similar notion to that in game
semantics that later positions are justified by earlier positions [11]. We define when a later
position is a child of an earlier position. It is at this point that we appeal to the third
component of an entry in a look-up table.

Definition 5.11. Position π(j) = tqθξ is a child of position π(i) if i < j < |π| and the
following by cases of which move π(j) is the result of

(1) A2, B1, C2 or C3: then i = j − 1,
(2) A3: then t is labelled y and θ(y) = lξ′i,
(3) C4: then q[l, r] ∈ π(j − 1), the head variable in l is x and ξ(x) = tθi.

Assume π(j) = tqθξ is the child of π(i) = t′q′θ′ξ′; if π(j) is the result of A3 then t′ is
the binder of t and if it is the result of C4 then t is a successor of t′.

Fact 5.12. Assume π(j) is a child of π(i).

(1) If π(j) = t′q[l′, r′] θ′ξ′ is the result of A3 and π(i) = t q[(l1, . . . , lm), r]θ ξ, then t binds
t′, ξ′ = ξ and for some k : 1 ≤ k ≤ m, l′ = lk.

(2) If π(j) = t′q[(l1, . . . , ln), r
′]θ′ξ′ is the result of C4, q[l′, r′] ∈ π(j−1) and π(i) = tq[l, r]θξ

then θ′ = θ, l = λz1 . . . zm.w and for some k : 1 ≤ k ≤ m, t ↓k t′ and the head variable
of l′ is zk.

Fact 5.13. If 1 < j < |π| then there is a unique i < j such that π(j) is a child of π(i).

For this reason, we also say that π(i) is the parent of π(j) instead of π(j) is a child of π(i).

Example 5.14. Let π be the play in Figure 7 which is on the tree in Figure 6. Every
position that occurs at nodes (2) and (4) labelled with z is a child of π(1); examples include
π(2), π(12) and π(40). Not every position that occurs at the nodes (6) and (10) labelled z1
is a child of π(3); positions π(6), π(22) and π(34) are whereas π(14), π(30) and π(35) are
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not. Nodes (5) and (6) are the successors of (4); children of position π(4) at (4) are π(5),
π(17) and π(21) while π(13), π(29) and π(41) are not. Position π(24) is a child of π(23)
through A2 and π(9) is a child of π(8) through B1.

Fact 5.15. If π(j) is a child of π(i), t ∈ π(i) and t′ ∈ π(j) then t = t′ or there is a path of
successors from t to t′.

The following is a critical consequence of the definition of a child position that both its
look-up tables extend those of its parent.

Proposition 5.16. Assume π(j) is a child of π(i).

(1) θ′ ∈ π(j) extends θ ∈ π(i),
(2) ξ′ ∈ π(j) extends ξ ∈ π.

Proof. Assume that π(j) is a child of π(i) and θ′, ξ′ ∈ π(j) and θ, ξ ∈ π(i). If π(j) is
a child of π(i) as a result of B1 or C2 of Figure 3 then the result is true because the
look-up tables of π(i) and π(j) are the same. In the case of C3, θ′ = θ and ξ′ = ξ or
ξ′ = ξ{t′1θi/z1, . . . , t

′

kθi/zk} for some t′i, zi, 1 ≤ i ≤ k. Therefore, ξ′ extends ξ as the zi’s
are not defined in ξ by Proposition 5.7. A similar argument applies when π(j) is the result
of A2; now ξ′ = ξ and θ′ = θ or θ′ = θ{l′1ξi/y1, . . . , l

′

kξi/yk} for some l′i and yi, 1 ≤ i ≤ k,
and θ′ extends θ as the yi’s are not defined in θ using Proposition 5.7. Next we examine
the cases for A3 and C4. By definition of A3, the look-up table ξ′ = ξ and by definition
of C4, θ′ = θ. Therefore, we just need to prove the result for the other look-up tables. In
both cases the proof proceeds by case analysis of j − i. The initial case is when j = i + 1.
Therefore, for A3 this means that t′ ∈ π(j) is labelled with a variable y which is bound by
λy which labels t ∈ π(j−1); so θ′ = θ{l1ξi/y1, . . . , lmξi/ym} for some m and lk, 1 ≤ k ≤ m.
Consequently, θ′ extends θ using Proposition 5.7 (since θ does not have an entry for y).
Similarly, in the case of C4 when j = i+1, q[λz.zpl1 . . . lk, r] ∈ π(i) for some k ≥ 0 and ξ′ =
ξ{t′1θi/z1, . . . , t

′

mθi/zm} and ξ does not have entries for the zi’s using Proposition 5.7. For
the general case for A3, we examine the branch between t ∈ π(i) and t′ ∈ π(j) where t is
labelled λy and t′ is labelled y; which is the sequence of nodes with labels u1, λy1, . . . , un, λyn
where each ui is a constant or variable and n ≥ 0. Consider position λyn ∈ π(j−1). Clearly,
θ′ extends θj−1 ∈ π(j − 1) by a similar argument to the base case. Position π(j − 1) is a
child of π(jn) for some jn with tn ∈ π(jn) which is labelled un by C4, B1 or C2: in all cases
θj−1 extends θjn ∈ π(jn) by definition of these moves. The argument continues for position
π(jn−1). So, we reach a position π(i1) with t1 ∈ π(i1) labelled u1. By assumption, θ′ ∈ π(j)
extends θi1 ∈ π(i1): this means they have the same entry for the yi’s in θ(j) when they are
bound by λy which is the label of t ∈ π(i). Consider the relationship between π(i1) and
π(i). Clearly, it cannot be the case that i > i1 because this would contradict the entries in
θi1 for the variables in y. Moreover, by definition of the moves in A, θi+1 ∈ π(i+1) has the
same entries for the y’s in y as π(i1) and t1 ∈ π(i+ 1). A small argument shows that π(i1)
must, therefore, be π(i+1): otherwise, π(j1) would not be a child of π(i1). Consequently, θ

′

extends θ. We now examine the general case for C4. One possibility is that π(j) is the result
of a sequence of C3 moves followed by C4: clearly, in this case ξ′ extends ξ. Otherwise,
q[λz.w, r] ∈ π(i) and ξi+1 ∈ π(i+1) is ξ{t′1θi/z1, . . . , t

′

mθi/zm} for some m; so ξi+1 extends
ξ. Therefore, tj−1 ∈ π(j − 1) is labelled with some y′ and q ∈ π(j − 1) has the form q[l, r′]
where l is zkl

′

1 . . . l
′

m′ or λx.zkl
′

1 . . . l
′

m′ for some k: we know that ξ′ extends ξj−1 ∈ π(j − 1).
There may be a sequence of positions π(jn, j − 1) where each π(j′), jn < j′ ≤ j − 1 is the
result of C3 (and, therefore, ξ′ extends ξjn ∈ π(jn)). Otherwise jn = j − 1. Position π(jn)
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is a child of a unique position tjn−1
∈ π(jn−1) labelled λy′ by A3 and so ξjn ∈ π(jn) extends

ξjn−1
∈ π(jn−1). This argument is now repeated: consider position t′′ ∈ π(jn−1−1) labelled

with y′′. Again, there may be a sequence π(jn−2, jn−1 − 1) where the moves are the result
of C3 and either jn−2 = i or π(jn−2) is a child of π(jn−3). Eventually, for some k, jn−k = i
as each ξjn ∈ π(jn) has the entries t′lθi for the zl’s.

Definition 5.17. The binary relation is a descendent of on positions is the reflexive and
transitive closure of “is a child of”.

6. Tiles and their plays

In this section, we connect the static structure, regions of a potential solution term of
a (dual) interpolation problem, with the dynamics of game playing. To this end, partial
subtrees of a term tree are introduced.

Definition 6.1. Assume B = (B1, . . . , Bk,0).

(1) Node t′ labelled λ is an atomic leaf of type 0.
(2) Node t′ labelled λx1 . . . xk is an atomic leaf of type B when each xj : Bj

(3) If t′ is labelled u : 0 then t′ is a simple tile.
(4) If node t′ is labelled u : B and each node tj is an atomic leaf of type Bj and t′ ↓j tj ,

1 ≤ j ≤ k, then t′(t1, . . . , tk) is a simple tile.

A potential solution tree without its initial lambda is a tree of simple tiles. For instance, the
region (2)((3), (11)) of Figure 1 is a simple tile labelled z(λx, λ) with atomic leaves (3) and
(11) labelled λx and λ; the region (12)((13), (19)) is labelled z(λy, λ); the region (4)((5))
is a simple tile labelled f(λ). Single nodes such as (16) and (20) are also simple tiles but
without atomic leaves. The definition precludes node (2) by itself or (2)((3)) as simple tiles.

In the following, as it makes the presentation cleaner, we describe tiles directly through
their labelling. For example, z(λx, λ) identifies (2)((3), (11)) of Figure 1. When there is
ambiguity, such as with z1(λ) of Figure 6, we disambiguate by describing the root node;
z1(λ) at (6) versus z1(λ) at (10).

Tiles can be composed to form composite tiles. A (possibly composite) tile is a partial
tree which can be extended at any of its atomic leaves. If τ(λx) is a tile with leaf λx
and τ ′ is a simple tile, then τ(λx.τ ′) is the composite tile that is the result of placing τ ′

directly beneath λx in τ . For instance, we can compose the tile z(λy, λ) of Figure 1 with the
tile z(λs, λ) beneath λy and produce the composite tile z(λy.z(λs, λ), λ) which has three
atomic leaves: in Figure 1 this tile is the region (12)((13)(14)((15), (17)), (19)). We write
τ(λx1, . . . , λxk) if τ is a (composite) tile with atomic leaves λx1, . . . , λxk.

A tile τ(λx1, . . . , λxk) is a multi-holed context. It is also a subregion of a term and
we assume that the usual definitions of free and bound variable occurrences apply: for
instance, the free variables in z(λy.z(λs.s, λ), λ) are the two occurrences of z. Later we
shall manipulate tiles and, therefore, we have given them an independent existence.

Definition 6.2. A (composite) tile τ is said to be basic if τ contains

(1) exactly one occurrence of a free variable and no occurrences of constants, or
(2) exactly one occurrence of a constant and no occurrences of free variables.
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By definition, simple tiles are basic. The single occurrence of the free variable or constant
in a basic tile is its “head” element. Particular contiguous regions of a term tree are basic
tiles. In Figure 1 the region z(λs.s, λ) is a basic tile rooted at (14) with the single atomic
leaf λ. However, if we also included node (18) then it would be a composite tile z(λs.s, λ.y)
without atomic leaves, but not a basic tile.

Definition 6.3. Assume τ and γ are basic tiles in a tree.

(1) γ is j-below τ(λx1, . . . , λxk) if there is a path of successors from λxj to γ.
(2) γ is below τ (or τ is above γ) if γ is j-below τ for some j.

In Figure 6, the tile x1(λ), rooted at (8), is 1-below z(λz1, λz2) and z2 at (20) is 2-below
the same tile.

Definition 6.4. Assume τ and γ are basic tiles in a tree.

(1) γ is an immediate j-dependent of tile τ if γ is j-below τ and γ contains a free variable
that is bound in τ .

(2) γ is a j-dependent of τ if it is an immediate j-dependent of τ or there is a τ ′ that is an
immediate j-dependent of τ and γ is a k-dependent of τ ′ for some k.

(3) γ is a (immediate) dependent of τ if γ is a (immediate) j-dependent of τ for some j.

The tile z1(λ) rooted at (6) of Figure 6 is an immediate 1-dependent of z(λz1, λz2) rooted
at (2) and z2 rooted at (20) is a 2-dependent. Given a tile τ , its set of dependents are
all the tiles below it whose free variables are either bound within τ or are bound within a
dependent of τ . For instance, the dependents of z(λx1, λx2) of Figure 6 are x1(λ) rooted
at (8) and x2 at (16).

Definition 6.5. Tiles τ and γ belong to the same family in a tree if one is a dependent of
the other, or there is a τ ′ such that both are dependents of τ ′. The family of tiles associated
with τ in a tree consists of τ and each tile γ that belongs to the same family as τ .

In Figure 6 the family associated with x2 at (16) is the set of tiles containing z(λx1, λx2)
at (4), x1(λ) at (8) and x2.

Remark 6.6. Assume basic tiles τ and γ. If position π(j) is the result of move A3 of
Figure 3 and is a child of π(i) and t′ ∈ π(j) is in γ and t ∈ π(i) is in τ then γ is a dependent
of τ . If π(j) is the result of move C4 and t′ ∈ π(j) is in γ and t ∈ π(j − 1) is in τ , then
these two tiles belong to the same family: this important property is proved in Section 8.
In the play of Figure 7, play at x1 at position 16 jumps to λx2 of z(λx1, λx2) and play at
x2 at position 20 jumps to λx1.

Definition 6.7. Assume τ and γ are basic tiles that each contain an occurrence of a free
variable.

(1) τ and γ are equivalent, written τ ≡ γ, if they are α-equivalent; that is, they are the
same basic tiles with the same number and type of atomic leaves and with the same
single free variable occurrence y.

(2) If τ ≡ γ and t1 is a node of τ and t′1 is the corresponding equivalent node of γ then we
write t1 ≡

τ
γ t′1.

(3) If τ ≡ γ and γ is below τ then γ is said to be an embedded tile.

The reader can verify that “tile equivalence” is indeed an equivalence relation. In Figure 1,
each pair of tiles z(λx, λ), z(λu, λ), z(λy, λ) and z(λs, λ) is equivalent: nodes such as those
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with labels λu and λs correspond. Each of these tiles except the first is also an embedded
tile. The tile z1(λ) rooted at (6) is equivalent to z1(λ) rooted at (10) of Figure 6: however,
neither is equivalent to x1(λ) rooted at (8).

Definition 6.8. Assume τ = τ(λx1, . . . , λxk) is a basic tile.

(1) τ is a top tile if it contains a free variable occurrence that is is bound by the initial
lambda of the term tree.

(2) τ is j-end if τ has no immediate j-dependents. It is an end tile if it is j-end for all
j : 1 ≤ j ≤ k.

(3) τ is a constant tile if it contains an occurrence of a constant or it is a dependent of a
constant tile.

The tile z(λx, λ) rooted at (2) in Figure 1 is a top tile as z is bound by the initial lambda
at node (1). It is also 2-end because no tile beneath node (11) contains a free variable
occurrence that is bound within it: however, it is not 1-end because of the tile occurrence x
at node (8). Tile z(λu, λ) rooted at (6) is a top tile and also an end tile. Tiles f(λxz1z2, λ)
rooted at (6), x(λ) at (8) and z2 at (12) in Figure 4 are all constant tiles.

The previous definitions provide a classification of basic tiles within a tree that only
appeals to the static structure of the tree. Tiles can also be categorised in terms of dynamic
properties of game playing.

Definition 6.9. The interval π(i, j) is a play on the simple tile u(λx1, . . . , λxk) if u ∈ π(i),
λxm ∈ π(j) for somem : 1 ≤ m ≤ k and π(j) is a child of π(i). It is an m-play if λxm ∈ π(j).

A simple tile has the form y(λx1, . . . , λxk) or f(λx1, . . . , λxk). A play π(i, j) on such
a tile starts at the head of the tile and ends at one of its atomic leaves; importantly, π(j)
must be a child of π(i). A play on a simple constant tile u(λx1, . . . , λxk) is a consecutive
pair of positions π(i, i + 1) with u ∈ π(i) and λxm ∈ π(i + 1) for some m (by moves B1 or
C2 of Figure 3).

Fact 6.10. If π(i, j) is a play on a simple constant tile then j = i+ 1.

For instance, if π be the play in Example 4.5 whose term tree is depicted in Figure 4 then
π(6, 7) is a play on the simple constant tile f(λxz1z2, λ) and π(8, 9) is a play on the simple
constant tile x(λ).

A play π(i, j) on a simple non-constant tile y(λx1, . . . , λxk) can have arbitrary length.
It starts at the node labelled with y and finishes at a node labelling an atomic leaf λxm.
In between, control can be almost anywhere in the tree (including the node labelling y).
However, because π(j) is a child of π(i) the look-up tables of π(j) extend those of π(i) as
shown in Proposition 5.16.

Example 6.11. Let π be the play in Figure 7 on the tree in Figure 6. The simple tile
τ = z(λz1, λz2) is rooted at (2). There are various plays on τ : 1-plays include π(2, 3) and
π(2, 39); π(2, 23) and π(2, 35) are 2-plays. If γ = z(λx1, λx2) rooted at (4) then π(4, 5) and
π(12, 13) are 1-plays on γ: however, the interval π(4, 13) is not a play on γ because π(13) is
a child of π(12). If τ is the end tile x1(λ) rooted at (8) then there is just one play π(16, 33)
on it; the interval π(32, 33) is not a play on τ .

The definition of play on a simple tile can be extended to arbitrary composite tiles by
composing consecutive plays on the simple tiles from its root to one of its atomic leaves.
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Definition 6.12. The interval π(i, j) is a play on the composite tile τ = τ(λx1, . . . , λxk)
if there is a path of successor nodes with labels u1, λy1, . . . un, λyn from the root of τ to an
atomic leaf λxm = λyn such that π(i, j) = π(i1, j1), . . . , π(in, jn) and π(il, jl) is a play on
the simple tile ul(. . . λyl . . .) with λyl ∈ π(jl) for 1 ≤ l ≤ n. It is an m-play if λxm ∈ π(j).

If t ∈ π(j), j > 1, and t is labelled with a lambda then there is a unique partition
of π(2, j) into plays on the simple tiles that occur on the branch from the node directly
beneath the initial λ of the tree to t. The partition also preserves children.

Proposition 6.13. Assume t ∈ π(j) and t is labelled with λyn and λy0, u1, λy1, . . . un, λyn
is the labels of the sequence of nodes from the root of the tree to t. Then there is a unique
partition of π(1, j) = π(j0), π(i1, j1), . . . , π(in, jn) such that for 1 ≤ m ≤ n

(1) j0 = 1 and π(im, jm) is a play on the simple tile um(. . . λym . . .) with λym ∈ π(jm),
(2) if um is a variable bound by λyk then π(im) is a child of π(jk).

Proof. Assume t ∈ π(j) and t is labelled with λyn and λy0, u1, λy1, . . . , un, λyn are the
labels of the sequence of nodes from the root of the term tree to λyn. Assume jn = j.
Let π(in, jn) be the play on the simple tile tn = un(. . . λyn . . .) such that π(jn) is a child
of π(in): move π(jn) is the result of B1, C2 or C4 of Figure 3 (and, therefore, π(in) is
uniquely defined from Definition 5.11). Let jn−1 = in−1, the argument is now repeated for
π(in−1, jn−1) as a play on un−1(. . . λyn−1 . . .) and so on for subsequent tiles in the branch
from the node labelled λyn to the root. Clearly, this will define a partition of π(2, j) into
π(i1, j1), . . . , π(in, jn) with i1 = 2: hence, we can add π(j0) with j0 = 1 at the beginning.
Next assume that um is a variable bound by λyk. It is straightforward to show that the
look-up tables in π(im) extend those in π(jk + 1), which, therefore, implies that π(im) is a
child of π(jk); this follows from repeated application of Proposition 5.16.

Definition 6.14. If t ∈ π(j) and t is labelled with λyn and λy0, u1, λy1, . . . un, λyn is the
labels of the sequence of nodes from the root of the tree to t then the unique partition
π(1, j) = π(j0), π(i1, j1), . . . , π(in, jn) such that for 1 ≤ m ≤ n where each π(im, jm) is the
play on um(. . . λym . . .) of Proposition 6.13 is called the b-partition for position π(j).

Example 6.15. Let π be the play in Figure 7 on the tree in Figure 6. Consider the
two positions λ ∈ π(15) and λ ∈ π(31) where λ is at node (7). Below we illustrate the
b-partitions for π(15) and π(31). The branch from the root to λ is presented horizontally.

λz z λz1 z λx1 z1 λ
π(1) π(2, 3) π(4, 5) π(6, 15)
π(1) π(2, 3) π(4, 21) π(22, 31)

The b-partitions capture children along their branches: π(2) and π(4) are children of π(1);
π(3) is a child of π(2); π(5) and π(21) are children of π(4); π(6) and π(22) are children of
π(3). Plays within these b-partitions may jump around the term tree: for instance, the play
π(22, 31) on z1(λ) rooted at (10) includes a sequence of moves that descends the branch
below (17).

We now exhibit some useful uniformities of plays on tiles. Given a play π and tile τ
we examine three aspects. First, there can be multiple plays π(i, n1), . . ., π(i, nm) on τ
from the same initial position. Second, there can be multiple plays from different starting
positions π(i1, n1), . . ., π(im, nm) on τ . A third consideration is the relationship between
plays on τ ′ and τ when these tiles are equivalent.

We start with a pertinent property of a simple non-constant tile.
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Proposition 6.16. If π(i,m) and π(i, n) are plays on the simple tile y(λx1, . . . , λxk) and
i < m < n then there is a position π(m′), m′ < n, that is a child of π(m).

Proof. Assume π(i) = t q[λz1 . . . zk.w, r] θ ξ, t is labelled y and π(i,m), π(i, n), n > m, are
plays on the simple tile y(λx1, . . . , λxk); so, λxj ∈ π(m) for some j. The look-up table
ξi+1 ∈ π(i + 1) is ξ{λx1θi/z1, . . . , λxkθi/zk} and the ξ look-up tables in π(m − 1) and
π(n − 1) both extend ξi+1 because π(m), π(n) are children of π(i). Clearly, no look-up
table ξl ∈ π(l), l < i+ 1, has entries ξ(zi′) = λxi′θi because for any z, if ξl(z) = t′θ′j then
j < i. Consider the first position π(m1) after π(m) that is at a node labelled with a variable
y1. Clearly, this node is below the node labelled λxj in the tree. If y1 is bound by λxj
then π(m1) is a child of π(m) and the result is proved. Otherwise π(m1) is a child of an
earlier position π(l). Either l < i or i < l. Assume the former; so, via move A3 the look-up
table ξl ∈ π(l) cannot have an entry for any z of the form t′θ′′i because l < i. Play may
then jump anywhere in the term tree using move C4. If there is not a play π(m1, n1) on
the simple tile whose head node is labelled y1 then for all later positions π(m2), m2 > m1,
ξm2
∈ π(m2) cannot include an entry for any z of the form t′θ′′i; this is a contradiction

because of the position π(n). Therefore, play must reach a position π(n1) that is a child
of π(m1); so t′′ ∈ π(n1) is a successor of the node labelled with y1 and is therefore below
(the node labelled) λxj . Next assume that i < l so y1 is bound by a λy that is below (the
node labelled) λxj . But then y1 is bound to a leaf of a constant tile that occurs between
the node labelled λxj and the node labelled y1 and so move C2 must apply and so play
descends to a successor with position π(n1) that is a child of π(m1) where n1 = m1 + 1.
This argument is now repeated for the next position after π(n1) that is at a node labelled
with a variable y2 ∈ π(m2): this node must be below the node labelled λxj . The argument
proceeds as above, except there is the new case that π(m2) is a child of π(n1). However,
by move A3, ξm2

∈ π(m2) cannot include an entry for some z of the form t′θ′i. Therefore,
play must eventually reach a child of π(m).

By iteration, this property extends to basic tiles.

Corollary 6.17. If π(i,m) and π(i, n) are plays on the basic tile τ(λx1, . . . , λxk), i < m <
n, and π(i,m) = π(i1, j1), . . . , π(in, jn) where u1, λy1, . . . , un, λyn is the path of (labels of)
nodes from the root of τ to its atomic leaf λxj = λyn ∈ π(m) and π(il, jl) is a play on the
simple tile ul(. . . λyl . . .) with λyl ∈ π(jl) for 1 ≤ l ≤ n then there is a position m′ such that
m < m′ < n and π(m′) is a child of π(jl′) for some l′.

One consequence of Corollary 6.17 is that there cannot be more than one play on a
basic end tile that starts from the same position. More precisely, we have the following.

Proposition 6.18. If π(i,m) is a j-play on the basic tile τ which is j-end, π(i, n) is a play
on τ and n ≥ m then n = m.

Proof. Assume τ = τ(λx1, . . . , xk) is j-end. So τ has no dependents below the node labelled
λxj ; therefore, the binder of every free variable that occurs in the subtree below this node
occurs above the tile τ in the tree. Assume π(i,m) is a j-play on τ and π(i, n), n > m,
is also a play on τ . The play π(i,m) can be partitioned into plays on the simple tiles of
τ from its root to its atomic leaf λxj ∈ π(m). Therefore, by Corollary 6.17 there is a
position π(m′), m < m′ < n, that is a child of one of the final positions of a simple tile in
the partition of π(i,m). But then, by the definition of child, see Fact 5.12, there must be
a free variable below the node labelled λxj that is bound within τ which contradicts the
assumption that τ is j-end.
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Special restricted plays of basic tiles are defined.

Definition 6.19. Assume π(i, j) is a play on basic tile τ .

(1) It is a shortest play on τ if no proper prefix π(i, k), k < j, is also a play on τ .
(2) It is a shortest m-play on τ if π(i, j) is a m-play on τ and no proper prefix π(i, k), k < j,

is also an m-play on τ .
(3) It is also an internal play (m-play) on τ provided that for any n : i ≤ n ≤ j, if t ∈ π(n)

then t is a node of τ .
(4) It is also an ri play (m-play) on τ if π(i, j) is ri (see, Definition 5.4).

Let π be the play in Figure 5. The interval π(2, 3) is a shortest play on tile z(λx, λ) rooted
at (2) of Figure 1: this play is also ri, internal and a shortest 1-play. Although π(2, 9) is a
shortest 2-play, it is neither a shortest play nor an internal play.

Next, we define a uniformity condition concerning multiple plays on a basic tile.

Definition 6.20. Assume τ is a basic tile whose root node is t′. Tile τ is j-directed with
respect to the interval π(i, |π|) if

(1) t′ 6∈ π(m) for all m : i ≤ m ≤ |π|, or
(2) π(m) is the first position m ≥ i with t′ ∈ π(m) and there is a shortest j-play π(m,n)

on τ , π(m,n) is ri and τ is j-directed with respect to π(n+ 1, |π|).

Definition 6.21. The basic tile τ is j-directed with respect to the game G(t, P ) if τ is
j-directed with respect to π(1, |π|) for every play π ∈ G(t, P ).

If τ is j-directed with respect to a game then every play π contains a (unique) sequence
of ri intervals π(ik,mk), for some k ≥ 0, which are shortest j-plays on τ as follows (assuming
t′ is the root of τ and λxj is its jth atomic leaf).

t′ λxj t′ λxj
π(1) . . . π(i1) . . . π(m1) . . . π(in) . . . π(mn) . . . π(|π|)

By definition, t′ cannot occur in a position that is outside of these intervals π(ik,mk). A
tile τ can be j-directed with respect to a game for multiple j. If π is the play of Figure 7
on the tree in Figure 6 then tile z(λx1, λx2) is 1-directed with respect to π(1, |π|) because
of the following sequence:

z λx1 z λx1 z λx1 z λx1
π(1) . . . π(4)π(5) . . . π(12)π(13) . . . π(28)π(29) . . . π(40)π(41) . . . π(44)

however, it is not 2-directed with respect to π(1, |π|) because π(4, 17) is nri.
Recall that a basic top tile, see Definition 6.8, has a single variable occurrence that is

bound by the initial lambda of the term tree. Equivalent basic top tiles are subject to the
following local uniformity properties.

Proposition 6.22. Assume τ , γ are basic top tiles, τ ≡ γ and π(i, i+m) is a shortest play
on τ .

(1) π(i, i+m) is an internal play on τ .
(2) If π(i, i+m) is ri and π(i′,m′) is a shortest play on γ then π(i′,m′) is ri, m′ = i′ +m

and for all j : 1 ≤ j ≤ m, t1 ∈ π(i+ j) implies t′1 ∈ π(i′ + j) where t1 ≡
τ
γ t′1.

(3) If π(i, i+m) is ri and a j-play on τ then τ and γ are j-directed with respect to π(1, |π|).
(4) If π(i, i+m) is nri and t ∈ π(i′) where t is the root node of γ then there is an interval

π(i′, i′ +m′) which is internal to γ that is either a shortest play on γ and nri or |π| =
i′ +m′.
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Proof. Let t be the root node of top tile τ and assume t ∈ π(i). The state q ∈ π(i) has
the form q[v, r] where v is a closed left term, a vlj from a (dis)equation of P . Therefore, a

shortest play π(i, i + m) on τ is internal (as a jump outside τ requires there to be a free
variable in v via move C4 of Figure 3) which shows (1). If τ ≡ γ, t′ is the root of γ and
t′ ∈ π(i′) then the state q′ ∈ π(i′) has the same left term q[v, r′] as q[v, r] ∈ π(i). If the
play π(i, i + m) is ri then there is a corresponding ri play π(i′, i′ + m) on γ consisting of
the same sequence of corresponding positions in τ and states (except for their right terms r
and r′) which shows (2). Furthermore, tile τ is j-directed with respect to π when π(i+m)
is a j-play on τ because each time play is at t there is the same repeated shortest play on
it (and similarly for γ). For (4), if the shortest play π(i, i + m) on τ is nri and t′ ∈ π(i′)
then either there is a shortest play on γ that is nri (but may involve different ∀-choices) or
play remains within γ and the final state is reached.

Tiles are equivalent to themselves, τ ≡ τ ; so Proposition 6.22 also applies to repeated
shortest plays on a single top tile τ . Consider the tree in Figure 6 and the play in Figure 7.
The equivalent tiles z(λx1, λx2) ≡ z(λz1, λz2) are top tiles. Shortest π plays on the first
of these tiles π(4, 5), π(12, 13), π(28, 29) and π(40, 41) are 1-plays that are ri and each
corresponds to the single shortest play π(2, 3) on z(λz1, λz2).

Top basic tiles are distinguished because their only free variable is bound by the initial
lambda. We now show that there are also play uniformities on other equivalent tiles, in the
case of embedded tiles (as in Definition 6.7). If τ ≡ γ and γ is below τ then shortest plays
on the embedded tile γ are constrained by earlier plays on τ .

Proposition 6.23. Assume τ , γ are basic tiles, τ ≡ γ and γ is below τ .

(1) If π(j, j+m) is a shortest play on γ that is ri and a k-play then there is a shortest play
π(i, i+m) on τ , i < j, that is ri and a k-play.

(2) If π(j, j +m) is a shortest play on γ that is nri then there is a shortest play π(i, i+ n)
on τ , i < j, that is nri.

Proof. Assume τ and γ are basic equivalent tiles, τ ≡ γ, γ is below τ and π(j, j + m) is
a shortest play on γ that is ri and a k-play. Consider the unique b-partition of position
π(j+m) from the root of the term tree to the atomic leaf of γ, see Definition 6.14. Because γ
is below τ , this b-partition contains a play π(i, i+m′) on τ . Because τ and γ are equivalent
and π(j, j+m) is ri, these tiles contain the same single free variable y at their root; therefore,
positions π(i) and π(j) share a common parent. Therefore, ξ ∈ π(i) is the same look-up
table as ξ ∈ π(j), θ′ ∈ π(j) extends θ ∈ π(i) and if q[l, r′] ∈ π(j) then q[l, r] ∈ π(i) for some
r. Now, it is an easy argument that π(i, i+m) is ri and a k-play on τ . If instead π(j, j+m)
is nri then some prefix of π(i, i +m′) is a shortest nri play on τ that may involve different
∀ choices than in π(j, j +m).

In the case of the tree in Figure 6 and the play in Figure 7, tile z1(λ) rooted at (10) is an
embedded (end) tile: its single play π(34, 43) which is nri corresponds to the earlier play
π(22, 31) on z1(λ) rooted at (6).

There is an even stronger property of embedded end tiles: an embedded end tile is
either j-directed with respect to a game for some j, has at least one nri play or play finishes
within it.

Proposition 6.24. Assume τ , γ are basic end tiles in a term tree t, γ is j-below τ , τ ≡ γ
and π ∈ G(t, P ). Then either

(1) γ is j-directed with respect to π(1, |π|), or
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(2) there exist m,n,m′, n′ such that m < n < m′ ≤ n′, π(m,n) is a nri j-play on τ ,
t′ ∈ π(m′) is the root node of γ and π(m′, n′) is a nri play on γ or n′ = |π| and no
prefix of π(m′, n′) is a play on γ.

Proof. Assume τ , γ are basic end tiles in term tree t, τ ≡ γ and and γ is j-below τ . We
follow the argument in the proof of Proposition 6.23. Both τ and γ have the same head
variable y that is bound to the same λy above τ in t. Let π ∈ G(t, P ). Consider the first
position t′ ∈ π(m) where t′ is the root of γ and the b-partition for π(m− 1). This partition
must contain a j-play on τ , π(i, i + k) (because γ is j-below τ); positions π(i) and π(m)
share a common parent. If π(m,m′) is play on γ then the b-partition for π(m′) is a simple
extension of that for π(m−1); the play on τ is still π(i, i+k). By Proposition 6.18, π(i, i+k)
is a j-play and so it is a corresponding play to π(m,m′) by Proposition 6.23; so, π(m,m′)
is ri and is a j-play on γ. This argument is repeated for the next position, m′′ > m′, such
that t′ ∈ π(m′′) or until the j-play on τ in the b-partition is nri; in which case, there is
either an nri play on γ or a final state is reached.

7. Two transformations

Given an interpolation problem P , the aim is to prove decidability of higher-order
matching by establishing a small model property: if t |= P then there is a small term
t′ |= P (whose size is determined from P ). As we saw in Section 5, the number of plays
in the game G(t, P ) is bounded by the number of branches in the right terms u of the
(dis)equations of P . However, there is no upper bound on the length of a play that is
independent of the size and order of t. Nevertheless, a long play must contain significant ri
intervals that do not directly contribute to solving P : the number of times the right term in
a state changes within all plays is bounded by δ, the right size of P , Definition 3.8. Game-
theoretically, what will underpin the conversion of an arbitrary solution term t to a small
solution term t′ is manipulation of tiles and their ri plays (using omission, repetition and
permutation). The proof for the general case is quite intricate. So, we proceed in stages.
In this section we provide two proofs of decidability of 3rd-order matching, one using a tree
model property of game playing and the other using properties of embedded end tiles. Both
proofs appeal to omission of tiles and their ri intervals.

As a first step, we introduce two transformations on term trees (for terms of any order).
A transformation T converts a term tree t into a term tree t′, written tT t′.

Definition 7.1. Assume t′ is a subtree of t whose root is labelled with a variable y or a
constant f : B 6= 0. The game G(t, P ) avoids t′ if for every play π ∈ G(t, P ), t′ 6∈ π(i) for
all i : 1 ≤ i ≤ |π|.

Definition 7.2. Assume t′ and t′′ are trees whose roots are labelled with a constant or a
variable. Let t[t′′/t′] be the result of replacing the subtree t′ of t with the tree t′′.

The first transformation is straightforward: if no play enters a subtree of t then it can
be replaced with the single node labelled with constant d : 0 (introduced in Remark 5.1).

T1 If G(t, P ) avoids t′ then transform t to t[d/t′]

The second transformation removes inner tiles from t: if a basic tile is both j-end, Def-
inition 6.8, and j-directed with respect to the game G(t, P ), Definition 6.21, then it is
redundant.



30 C. STIRLING

T2 If τ(λx1, . . . , λxk) is a j-end basic tile and j-directed with respect to G(t, P ), t′ is the
subtree of t rooted at τ and tj is the subtree directly beneath λxj of τ then transform
t to t[tj/t

′].

An application of T2 not only removes the tile τ(λx1, . . . , λxk) from t but also all subtrees
that occur directly beneath any atomic leaf λxi, i 6= j, of τ . Because τ has no j-dependents,
all free variables that occur in the subtree tj directly below λxj are bound above τ in t;
therefore, the result of applying T2 is still a closed term (in normal form with the right
type). If τ is j-directed with respect to a game then each play involves a (unique) sequence
of ri intervals which are shortest j-plays on τ , as described in the previous section. Game-
theoretically underpinning the correctness of T2 is omission of these inessential intervals
from each play.

Proposition 7.3. If i ∈ {1,2}, tTi t′ and t |= P then t′ |= P .

Proof. This is clear in the case of T1. Assume t |= P , τ(λx1, . . . , λxk) is j-end and j-
directed with respect to the game G(t, P ), t′′ is the subtree at the root of τ and tj is the
subtree directly beneath λxj. Let t′ = t[tj/t

′′]. We show that t′ |= P . We convert each
π ∈ G(t, P ) into a play π′ ∈ G(t′, P ) that ends with the same final state. Because τ is
j-directed with respect to each play, π can be split uniquely into the following regions

t′′ λxj t′′ λxj
π(1) . . . π(i1) . . . π(m1) . . . π(in) . . . π(mn) . . . π(|π|)

where each π(il,ml) is a (shortest) j-play on τ and is ri; by definition of j-directed, node
t′′ cannot occur outside of these intervals. Therefore, π(mk) is a child of π(ik) for each k
Consequently, the play π′ ∈ G(t′, P ) is just the outer intervals π(1, i1 − 1), π(m1 + 1, i2 −
1), . . . , π(mn + 1, |π|) (modulo the changes to the entries in the look-up tables) because for
each l, π(ml) is a child of π(il). We show, that if s is a node in τ or is m-below an atomic
leaf λxm, m 6= j, of τ then s cannot occur in any outer interval of π. If s were to appear in
such a position then move C4 must have applied: there is then a variable y and a position
in an outer region y ∈ π(n) and θ ∈ π(n) and θ(y) = lξi and there is a free variable z in
l such that ξ(z) = sθ′i′. However, this is impossible. Consider θ1 ∈ π(i1): clearly, there is
no free variable in the subtree rooted at t′′ with this property. When play reaches π(m1)
because τ is a j-end tile and because the look-up tables in π(m1) extend those in π(i1) there
cannot be a free variable in the subtree tj with this property either. This argument is now
repeated for subsequent positions π(ik) and π(mk).

The two transformations are also reversible: we can add gratuitous subtrees and intersperse
redundant j-end tiles with arbitrary subtrees beneath their other atomic leaves in any
solution term.

Example 7.4. Consider the 4th-order problem xv = fa, xw = f(fa) where v = λy1y2.y1y2
and w = λy3y4.y3(y3y4) from Example 3.1. A solution term is in Figure 1. There are two
plays, π in Figure 5 for the first equation and π′ in Figure 8 for the second. We examine
applications of T2 to the term. The simple tile z(λu, λ) rooted at (6) is 1-end and 1-directed
with respect to the game: there are three 1-plays on it which are all ri, π(6, 7), π′(6, 7) and
π′(12, 13). Transformation T2 allows us to remove this tile, so the leaf node (8) is directly
beneath node (5). The basic tile z(λs.s, λ) rooted at (14) is 1-end and 1-directed with respect
to the game: the only plays π(12, 15), π′(18, 23) and π′(26, 31) are ri. A second application of
T2 removes it; therefore, node (18) is directly beneath node (13). Consequently, the basic
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(1) q[(w), f(fa)] θ1 ξ1
(2) q[w, f(fa)] θ2ξ2 θ2 = θ1{wξ11/z} ξ2 = ξ1 A3
(3) q[(y3y4), f(fa)] θ3ξ3 θ3 = θ2 ξ3 = ξ1{(3)θ22/y3, (11)θ22/y4} C4
(4) q[−, f(fa)] θ4ξ4 θ4 = θ2{(y3y4)ξ33/x} ξ4 = ξ3 A2
(5) q[( ), fa] θ5 ξ5 θ5 = θ4 ξ5 = ξ3 B1
(6) q[w, fa] θ6 ξ6 θ6 = θ4 ξ6 = ξ1 A3
(7) q[(y3y4), fa] θ7 ξ7 θ7 = θ4 ξ7 = ξ1{(7)θ46/y3, (9)θ46/y4} C4
(8) q[y3y4, fa] θ8 ξ8 θ8 = θ4{y2ξ77/u} ξ8 = ξ3 A3
(3) q[(y4), fa] θ9ξ9 θ9 = θ2 ξ9 = ξ3 C4
(4) q[−, fa] θ10ξ10 θ10 = θ2{y4ξ39/x} ξ10 = ξ3 A2
(5) q[( ), a] θ11 ξ11 θ11 = θ10 ξ11 = ξ3 B1
(6) q[w, a] θ12 ξ12 θ12 = θ10 ξ12 = ξ1 A3
(7) q[(y3y4), a] θ13 ξ13 θ13 = θ10 ξ13 = ξ1{(7)θ1012/y3, (9)θ1012/y4} C4
(8) q[y4, a] θ14 ξ14 θ14 = θ10{y4ξ1313/u} ξ14 = ξ3 A3
(11) q[( ), a] θ15 ξ15 θ15 = θ2 ξ15 = ξ3 C4
(12) q[w, a] θ16ξ16 θ16 = θ2 ξ16 = ξ1 A3
(13) q[(y3y4), a] θ17ξ17 θ17 = θ2 ξ17 = ξ1{(13)θ216/y3, (19)θ216/y4} C4
(14) q[w, a] θ18ξ18 θ18 = θ2{(y3y4)ξ1717/y} ξ18 = ξ1 A3
(15) q[(y3y4), a] θ19 ξ19 θ19 = θ18 ξ19 = ξ1{(15)θ1818/y3, (17)θ1818/y4} C4
(16) q[y3y4, a] θ20 ξ20 θ20 = θ18{(y3y4)ξ1919/s} ξ20 = ξ19 A3
(15) q[(y3y4), a] θ21 ξ21 θ21 = θ20 ξ21 = ξ19{(15)θ2020/y3, (17)θ2020/y4} C4
(16) q[y4, a] θ22 ξ22 θ22 = θ20{y4ξ2121/s} ξ22 = ξ21 A3
(17) q[( ), a] θ23 ξ23 θ23 = θ22 ξ23 = ξ21 C4
(18) q[y3y4, a] θ24 ξ24 θ24 = θ22 ξ24 = ξ17 A3
(13) q[(y4), a] θ25ξ25 θ25 = θ2 ξ25 = ξ17 C4
(14) q[w, a] θ26ξ26 θ26 = θ2{(y3y4)ξ1725/y} ξ26 = ξ1 A3
(15) q[(y3y4), a] θ27 ξ27 θ27 = θ26 ξ27 = ξ1{(15)θ2626/y3, (17)θ2626/y4} C4
(16) q[y3y4, a] θ28 ξ28 θ28 = θ26{(y3y4)ξ2727/s} ξ28 = ξ27 A3
(15) q[(y4), a] θ29 ξ29 θ29 = θ28 ξ29 = ξ27{(15)θ2828/y3, (17)θ2828/y4} C4
(16) q[y4, a] θ30 ξ30 θ30 = θ28{y4ξ2929/s} ξ30 = ξ29 A3
(17) q[( ), a] θ31 ξ31 θ31 = θ30 ξ31 = ξ29 C4
(18) q[y4, a] θ32 ξ32 θ32 = θ30 ξ32 = ξ17 A3
(19) q[( ), a] θ33 ξ33 θ33 = θ2 ξ33 = ξ17 C4
(20) q[ ∃ ] θ34 ξ34 θ34 = θ2 ξ34 = ξ17 A1

Figure 8: Another play on the tree in Figure 1 from Example 7.4

tile z(λy.y, λ) rooted at (12) is also 1-end and 1-directed with respect to the “reduced”
game; the plays π(12, 19) and π′(16, 33) become the sequences π(12)π(13)π(16)π(19) and
π′(16)π′(17)π′(24)π′(25)π′(32)π′(33) (modulo changes to the look-up tables). The starting
term in Figure 1 is, therefore, reduced to the smaller solution term λz.z(λx.fx)a.

Assume t is a 3rd-order term. If we inspect it top-down, starting beneath the initial
lambda then it consists of simple tiles, each of which is either a constant tile or a top tile
y(λ1, . . . , λk), k ≥ 0, where each atomic leaf is labelled with a dummy λ because y has order
at most 2; therefore, it is also an end tile.
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Fact 7.5. If t has order 3 and τ is a simple tile in t then either τ is a constant tile or an
end tile which is also a top tile.

For instance, the tree in Figure 4 consists of four simple top tiles y(λ) that are also end tiles
rooted at (2), (4), (10) and (14) and the simple constant tiles f(λxz1z2, λ), x(λ), z2 and a.
Therefore, by repeated application of Fact 6.10 and Proposition 6.18 each play π ∈ G(t, P )
when t is 3rd-order merely descends a branch of t until it reaches a final state. We now
examine this tree model property of plays in more detail and show how it leads to a very
straightforward proof of decidability of 3rd-order matching.

Assume P is 3rd-order. We define a (unique) partition of any play π ∈ G(t, P ) in stages;
at each stage we identify a simple tile, a subpart of t, and the interval at that stage. We call
this iteratively defined notion of partition a p-partition (a “play partition”) to distinguish
it from Definition 6.14 of the b-partition for a position. (At 3rd-order, these partitions are
intimately related as we shall note; in the next section we extend p-partitions to all orders
and its definition uses b-partitions.)

Definition 7.6. Assume P is 3rd-order and π ∈ G(t, P ). The p-partition of π is defined in
stages 1 ≤ k ≤ n for some n as π(j0), π(i1, j1), . . . , π(in, jn) where j0 = 1. At each stage k
there is

(1) the p-partition up to stage k − 1, π(1, jk−1) = π(j0), . . . , π(ik−1, jk−1);
(2) the simple tile τk which occurs in t directly beneath node t′ ∈ π(jk−1);
(3) the composite tile γk of t consisting of all the nodes in the tiles τ1, . . . , τk;
(4) the position π(ik) with tk ∈ π(ik) which is the root node of τk;
(5) the interval π(ik, jk) determined as follows: jk is the least j > ik such that
• t′′ ∈ π(j) is an atomic leaf of τk, or
• j = |π|.

The idea of a p-partition of π ∈ G(t, P ) is to structurally relate parts of π to parts of
t. At stage 1, τ1 is the simple tile directly beneath the initial lambda of t which is either a
constant or a top tile. The subpart of t at this stage, γ1 is just τ1. Assume t1 is the root of
τ1; therefore, t1 ∈ π(i1) (because i1 = 2). Consider the interval π(i1, j1): π(j1) is the first
position such that either it is at an atomic leaf of τ1 or it is the final position of the play. In
the first case, π(i1, j1) is a shortest play on τ1; the tile τ2 is the simple tile directly beneath
the atomic leaf t′ ∈ π(j1) of τ1 and γ2 is τ1 and τ2. The p-partition thereby continues: at
stage k, the interval π(ik, jk) is either a shortest play on τk or jk = |π| and then there are
no further stages. The following is an easy consequence of Fact 6.10, Proposition 6.22 and
the definition of b-partition.

Fact 7.7. Assume the p-partition of π ∈ G(t, P ) is π(j0), π(i1, j1), . . . , π(in, jn) and τk is
the simple tile at stage k.

(1) For k : 1 ≤ k < n, π(ik, jk) is a shortest play on τk.
(2) For k : 1 ≤ k ≤ n, π(ik, jk) is internal to τk.
(3) For k : 1 ≤ k < n the b-partition of π(jk) = π(j0), π(i1, j1), . . . , π(ik, jk).

Example 7.8. If π is the play of Example 4.5 on the tree of Figure 4 then its p-partition
is depicted below linearly.

y λ y λ f λxz1z2 x λ y λ z2
π(2, 3) π(4, 5) π(6, 7) π(8, 9) π(10, 11) π(12, 12)
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The simple tiles at each stage are; τ1 = y(λ), τ2 = y(λ) rooted at (4), τ3 = f(λxz1z2, λ),
τ4 = x(λ), τ5 = y(λ) rooted at (10) and τ6 = z2. For the other play π′ in this example,
there is the following p-partition.

y λ y λ f λ y λ a
π′(2, 3) π′(4, 5) π′(6, 7) π′(8, 9) π′(10, 10)

The two plays share the first three simple tiles, but play is at different atomic leaves of τ3
after stage 3.

Consider the p-partitions of all plays in G(t, P ). We slightly abuse notation: we let
π(ik, jk), π

′(ik, jk) be their intervals at stage k even when they have different ranges. Instead
of a branch of simple tiles there is a tree of simple tiles: as each play shares the same simple
tile τ1 at stage 1 of its p-partition. The simple tile τ in t is special if it obeys one of the
following three conditions

• τ = τk for π at stage k and π(ik, jk) is nri (see Definition 5.4),
• τ = τk for π at stage k and jk = |π|,
• τ = τk for π, π′ at stage k and t′ 6= t′′ when t′ ∈ π(jk), t

′′ ∈ π′(jk).

The first kind of special tile explicitly contributes to solving P . The second kind identifies
where a play finishes. The third kind separates plays; each p-partition after stage 1 that
ends at the same atomic leaf of τ1 shares τ2 at stage 2 and so on. Therefore, branching in
the tree of simple tiles will occur at τk if there are plays π, π′ that end at different atomic
leaves of τk at stage k (and agree on atomic leaves at all earlier stages). In Example 7.8,
f(λxz1z2, λ) separates the plays π and π′. The other special tiles in these plays are x(λ)
because of the nri interval π(8, 9) and z2 and a as plays finish within them.

Any simple tile in t with at least one atomic leaf which is not special is superfluous.
Either every play avoids it (so, T1 applies) or every play on it is ri and ends at the same
atomic leaf λxj for some j (so, is both j-end and j-directed with respect to the game and
T2 applies): four instance, all four simple tiles y(λ) in Example 7.8 are both 1-end and
1-directed with respect to the game. There is an upper bound (relative to the problem P )
on the number of special tiles that can occur in a term t as follows

• at most δ (= the right size for P , Definition 3.8) tiles that involve nri intervals;
• at most p (= the number of plays2) tiles where a play ends;
• at most p− 1 tiles that are play separators.

Decidability of 3rd-order matching, via the small model property, is, therefore, a simple con-
sequence of the p-partitions and the identification of special simple tiles. For Example 7.8,
the term of Figure 4 can be reduced to the smaller solution term λy.f(λxz1z2.xz2)a.

Definition 7.9. |t| is the number of simple tiles with atomic leaves in a longest branch of
t and ||t|| is the total number of simple tiles with atomic leaves in t.

Fact 7.10. If t is a smallest solution to 3rd-order P and p is the number of plays in G(t, P ),
then ||t|| ≤ δ + (2p − 1).

An alternative, and equally simple, proof of decidability of 3rd-order matching that does
not appeal directly to the tree model property uses Proposition 6.24 and transformations T1

and T2. In a large solution term, there must be embedded end tiles that are redundant.
Dowek observes that solutions with embeddings λy.(. . . (y . . . (y . . . (y . . .) . . .) . . .) . . .) can

2 p is bounded by the number of branches in the right terms of P .
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be reduced to smaller solutions λy.(. . . (y . . .) . . .) in his proof of decidability of 3rd-order
matching [4]. Assume t is a smallest solution term (with respect to || · ||) for P . It contains
at most δ + p constant tiles with atomic leaves (otherwise, T1 would apply and produce a
smaller solution). Let c be the number of constant tiles with atomic leaves in t0. Therefore,
by Proposition 6.24, t contains at most ⌈(δ+p−c)/2⌉ embedded simple top tiles (otherwise,
T2 would apply and produce a smaller solution). If α is the arity of P , Definition 3.6, then
there are at most α inequivalent top simple tiles: as soon as a branch of t contains α + 1
simple top tiles, there must be at least one embedded end tile. Consequently, no branch
of t can contain more than α + (⌈(δ + p − c)/2⌉) simple top tiles. Because c ≤ δ + p,
|t| ≤ α+ δ + p+ 1 and 3rd-order matching is decidable.

The question is how to extend these straightforward proofs to all higher-orders. With a
4th or 5th-order tree there are two levels of simple non-constant tiles: top tiles y(λx1, . . . , λxk)
and end tiles z(λz1, . . . , λzl) where z is bound by a λxj. The number of levels increases with
order: at 8th or 9th-order there are four levels. As soon as there is more than one level,
game playing may jump around the tree as the examples in Figures 5 and 7 illustrate. For
any order, if the tree-model property holds, so each play can be p-partitioned into internal
plays on the simple tiles from the root to a tile where the play ends, then decidability is
assured by iteration: redundant simple end tiles are first removed which causes further tiles
to be end and so on.

Remark 7.11. Schubert defines an unsophisticated lambda term in [14]: λx1 . . . xm.t is
unsophisticated if each occurrence of xit

′

1 . . . t
′

k within t has the property that no t′j contains

a free variable xl, 1 ≤ l ≤ m. A 5th-order (dual) interpolation problem is unsophisticated if
in each (dis)equation xv1 . . . vm ≈ u the left terms vi are unsophisticated. Schubert proves
decidability of 5th-order unsophisticated dual interpolation. This restriction implies the
tree model property. When play is at an end tile with head variable y, the state has the
form q[λz.u, r] where λz.u is closed: consequently, play cannot jump back to the tile which
binds y. (Decidability can be extended to all orders by defining hereditary unsophisticated
terms where each occurrence of λy.t′ within it is unsophisticated.)

For arbitrary order, if t is a smallest solution term for P and it contains c simple
constant tiles with atomic leaves then c ≤ δ+p. If t is large then it must contain embedded
tiles. With 4th-order there must be embedded top tiles and with 5th-order there can also
be embedded end tiles. However, Proposition 6.24 implies, for any order, that there cannot
be more than ⌈(δ+p− c)/2⌉ embedded end tiles. Consequently, if P is a 5th-order problem
and t contains a bounded number k of top simple tiles then the small model property holds.

Fact 7.12. If t is a smallest solution to 5th-order P that contains at most k top simple
tiles, then |t| ≤ (k × (α+ 1)) + δ + p+ 1

Fact 7.12 generalises to all orders: if t is a smallest solution to P that contains at most k
simple tiles that are neither end nor constant tiles then it has a bounded size. This result
slightly extends some cases examined in [3, 15] where there are restrictions on the number
of free variables that a λy can bind within a solution term.

A family of tiles in a tree consists of a top tile together with all its dependents (see
Definition 6.5). The problem case for 4th or 5th-order is a solution term with arbitrary
many top tiles (and, therefore, arbitrary many families). If a tree is large, then it must
contain families of tiles all of whose plays are ri and, therefore, do not contribute to solving
P . For even higher-orders, for the same reason, whole subfamilies of tiles are redundant.
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Figure 9: Tile Lowering

The difficulty is how to extract and remove redundant families and subfamilies of tiles.
They may be entangled, occurring anywhere in a tree. What we would like to do is disen-
tangle them thereby restoring, as far as possible, the tree model property. A key ingredient
is tile lowering where we generalise to basic tiles. Consider the left tree in Figure 9 and
assume τk is a basic tile and τn is a simple tile whose head variable is bound within τk (and
no variable on the branch between λxk and τn is bound within τk). What we would like to
do is to transform the left tree into the right tree where τk (and all the subtrees beneath its
atomic leaves other than λxk) is copied immediately above τn (thereby producing a larger
basic tile) with the understanding that it is the lower occurrence of τk that binds τn and
any free variables beneath τn that are bound within τk in the left tree. In [20], we intro-
duced an explicit local transformation that has this effect for 4th-order matching and for
the atoms case at all orders. The virtue of the transformation is that families of tiles are
disentangled as the lower occurrence of τk is brought next to its dependent tile τn (and the
upper occurrence of τk in the right tree is “closer” to being an end tile, as (some) binding
is lost below). Game-theoretically, tile lowering will be justified in terms of permutations,
omissions and repetitions of ri plays on tiles.

8. Partitioning of plays

The analysis now shifts from how single tiles to how families of tiles in a term contribute
to solving a problem. We extend the definition of the p-partition of a play from the previous
section to all orders. We start by examining simple properties of game playing that involve
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families of tiles: the discussion uses the notion of when a position is a descendent of another
position, Definition 5.17, when one tile is a dependent of another, Definition 6.4, and when
two tiles belong to the same family, Definition 6.5.

Proposition 8.1. Assume τ with root node t and γ(λx1, . . . , λxk) with root node t′ are
simple tiles.

(1) If t ∈ π(i), t′ ∈ π(j), π(j) is the result of move A3 of Figure 3 and π(j) is a descendent
of π(i) then γ is a dependent of τ .

(2) If t ∈ π(i) and λxj ∈ π(i+1) and π(i+1) is the result of move C4 then τ and γ belong
to the same family of tiles.

Proof. (1) Assume that t ∈ π(i), t′ ∈ π(j) and π(j) is a descendent of π(i). Therefore,
because the descendent relation is the reflexive and transitive closure of the child relation,
there is a subsequence of positions π(i1), π(i2), . . . , π(i2k+1) with i = i1, i2k+1 = j, for all
n, π(in+1) is a child of π(in). Assume tm ∈ π(im) for each m : 1 ≤ m ≤ 2k + 1; so, t = t1
and t′ = t2k+1. Because π(j) is the result of A3, t′ is labelled with a variable, that is bound
by t2k: therefore, γ is a dependent of the simple tile rooted at t2k−1. This argument is now
repeated because π(i2k−1) must in turn be the result of A3 and so the simple tile rooted
at t2k−1 is a dependent of the simple tile rooted at t2k−3, and so on; consequently, as the
dependency relation is transitive closed, γ is a dependent of τ . (2) Consider the following
subsequences of positions π(j1), π(j2), π(j3), . . . , π(j3k−2), π(j3k−1), π(j3k) where i = j3k−1

and i + 1 = j3k; each position π(j3m) is the result of C4 on π(j3m−1) which is the result
of 0 or more applications of C3 on π(j3m−2), m ≥ 1; furthermore, for m > 1, π(j3m−2) is
the result of A3 and is a child of π(j3m−3) and π(j1) is the result of A3 and a child of π(1).
Now by a routine induction on k, it follows that for every m : 1 ≤ m ≤ k, tm ∈ π(j3m) is
an atomic leaf of some simple tile rooted at tn ∈ π(j3n − 2) for some n ≤ m and that all
such tiles belong to the same family.

In the previous section we alluded to the notion of tile level.

Definition 8.2. The level of a non-constant tile is defined inductively.

(1) If τ is a top tile then τ has level 1.
(2) If τ is an immediate dependent of γ and γ has level m then τ has level m+ 1.

The number of possible levels increases with order. In a 4th or 5th-order term there are at
most two levels of tile: top tiles and end tiles as illustrated in Figures 1 and 6. With a 8th
or 9th-order term, there are at most four levels of tile and so on. The presence of dummy
lambda in a term tree does not affect the notion of level (because a dummy lambda cannot
be a binder).

If there is more than one level of tile in a term, game playing may pass repeatedly
through the same sequences of nodes of a tree. The following definition captures when two
such intervals are said to correspond.

Definition 8.3. The intervals π(i, j), π(i′, j′) correspond, written π(i, j) ∼ π(i′, j′), pro-
vided that j, j′ < |π|, j − i = j′ − i′ and for all k : 0 ≤ k ≤ j − i,

(1) if t ∈ π(i+ k) then t ∈ π(i′ + k).
(2) if q[l, r] ∈ π(i+ k) then for some r′, q[l, r′] ∈ π(i′ + k)
(3) if q[(l1, . . . , lm), r] ∈ π(i+ k) then for some r′, q[(l1, . . . , lm), r′] ∈ π(i′ + k).
(4) if q[−, r] ∈ π(i+ k) then for some r′, q[−, r′] ∈ π(i′ + k).
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Fact 8.4. The relation ∼ on intervals is an equivalence relation.

Although this definition abstracts from the look-up tables, it requires agreement on the
sequences of nodes of the tree and on the left terms of states. For instance, intervals that
are shortest ri plays on a top tile correspond, as shown in the proof of Proposition 6.22.
When π′ is the play in Figure 8 on the tree in Figure 1, the nri intervals π′(4, 7) and
π′(10, 13) correspond.

In Section 6 we described some uniformity properties of game playing for top and em-
bedded tiles (especially for embedded end tiles). Now our aim is to understand uniformities
of play for tiles of arbitrary level. Given a position π(j) at a lambda node t′, there is an
associated (unique) b-partition of π(1, j) into intervals that are plays on the simple tiles
between the root of the term tree and node t′ by Definition 6.14. If more than one position
is at a lambda node t′ then their associated b-partitions must differ in their plays at an
earliest tile with the same starting positions but different end positions.

Proposition 8.5. Assume t′ ∈ π(j), t′ ∈ π(j′), j 6= j′ and t′ is labelled λx for some x.
If π(j0), π(i1, j1), . . . , π(in, jn) is the b-partition for π(j) and π(j′0), π(i

′

1, j
′

1), . . . , π(i
′

n, j
′

n) is
the b-partition for π(j′) then there is a k : 1 ≤ k ≤ n such that ik = i′k and jk 6= j′k and for
all m < k, im = i′m and jm = j′m.

Proof. Assume that λx0, u1, λx1, . . . , un, λxn is the branch from the root of the term tree
to t′ labelled λxn, t

′ ∈ π(j) and t′ ∈ π(j′) for j′ 6= j. Let π(j0), π(i1, j1), . . . , π(in, jn) be the
b-partition for π(j) and π(j′0), π(i

′

1, j
′

1), . . . , π(i
′

n, j
′

n) be the b-partition for π(j′). Because
j0 = j′0 = 1, i1 = i′1 = 2 and j 6= j′, there must be a least k such that ik = i′k and jk 6= j′k.

The b-partitions of Example 6.15 illustrate this proposition; node (7) of Figure 6 labelled
λ belongs to both π(15) and π(31) of the play in Figure 7. These b-partitions agree on the
play π(2, 3) on the initial tile z(λz1, λz2) that ends at λz1 and then they have different
1-plays π(4, 5) and π(4, 21) on the next tile z(λx1, λx2).

Definition 8.6. Assume t′ ∈ π(j), t′ ∈ π(j′), j 6= j′, t′ is labelled λx for some x
and λx0, u1, λx1, . . . , un, λxn is the branch from the root of the term tree to t′. Let
π(j0), π(i1, j1), . . . , π(in, jn) be the b-partition for π(j) and let π(j′0), π(i

′

1, j
′

1), . . . , π(i
′

n, j
′

n)
be the b-partition for π(j′) and let τ = uk(. . . λxk . . .) be the first simple tile for k ≥ 1 such
that ik = i′k and jk 6= j′k. The positions π(j), π(j

′) are then said to vary at π(jk), π(j
′

k) with
(simple tile) τ .

Two positions vary at π(jk), π(j
′

k) with τ if they are at the same lambda node and τ is
the first simple tile in their b-partitions where there is a difference in play; there are two
distinct m-plays on τ for some m, π(ik, jk) and π(ik, j

′

k). In the case of Example 6.15
discussed previously, the positions π(15), π(31) vary at π(5), π(21) with z(λx1, λx2).

Given two positions π(j) and π(j′) at the same node labelled λx we are interested in
defining when intervals π(j +1, j +m) and π(j′ +1, j′ +m) correspond in the sense of Def-
inition 8.3. The simplest case is when π(j), π(j′) vary at π(j), π(j′) with τ = un(. . . λx . . .);
their b-partitions agree except on the last simple tile in the branch from the root to λx.
The two intervals π(in, j) and π(in, j

′) are, therefore, both k-plays on τ for some k; both
positions π(j) and π(j′) are children of π(in) and, therefore, must be the results of move C4
of Figure 3. This means that the look-up tables θj+1 ∈ π(j + 1) and θj′+1 ∈ π(j′ + 1) only
differ in their entries for the variables in x: therefore, for each m ≥ 1 their continuations
π(j + 1, j + m), π(j′ + 1, j′ + m) correspond as long as play does not reach children of
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π(j) and π(j′); or positions where different ∀ choices are exercised; or a position with a
final state. Consider next the general situation when π(j), π(j′) vary at π(jk), π(j

′

k) with
τ = uk(. . . λxk . . .); their b-partitions differ at a simple tile that is earlier in the branch
from the root to λx. What we want to capture is the following uniformity: if the plays
π(im, jm) and π(i′m, j′m) on tiles τm : k < m ≤ n that do not involve positions that are
children of π(jk) and π(j′k) correspond, then the continuations from π(j + 1) and π(j′ + 1)
will also correspond as long as the positions are not descendents of π(jk) or π(j′k) or the
result of a different ∀-choice, or one has a final state. The issue is how to formally capture
this correspondence in terms of the relationship between the look-up tables θ ∈ π(j + 1)
and θ′ ∈ π(j′ + 1). This is the motivation for the following bisimulation like definition.

Definition 8.7. Assume τ is a simple non-constant tile.

(1) Two look-up tables µ, µ′ are n-similar except for τ , µ ∼n
τ µ′, which is defined iteratively,

for n ≥ 0.
• µ ∼0

τ µ′ iff µ = µ′;
• θ ∼n+1

τ θ′ iff (1) for all y. θ(y) is defined iff θ′(y) is defined and (2) if γ = y(. . .) is
not a dependent of τ and θ(y) = lξi then θ′(y) = lξ′i′ and ξ ∼n

τ ξ′;
• ξ ∼n+1

τ ξ′ iff (1) for all z. ξ(z) is defined iff ξ′(z) is defined and (2) if ξ(z) = tθi then
ξ′(z) = tθ′i′ and θ ∼n

τ θ′.
(2) Two look-up tables µ, µ′ are similar except for τ , µ ∼τ µ′, if there is an n ≥ 0 such

that µ ∼n
τ µ′.

Fact 8.8. In the following assume µ, µ′ are look-up tables (of the same kind).

(1) µ ∼n
τ µ.

(2) If µ ∼n
τ µ′ then µ′ ∼n

τ µ.
(3) If µ ∼n

τ µ′ and µ′ ∼n
τ µ′′ then µ ∼n

τ µ′′.
(4) If µ ∼m

τ µ′ and n > m then µ ∼n
τ µ′.

The key point with the definition of θ ∼τ θ′ is that the entries of θ and θ′ should be very
similar except in the case that they are labels of nodes of simple tiles that are dependents
of τ .

Fact 8.9. If π(i, j) and π(i, j′) are k-plays on the simple tile τ , θ ∈ π(j+1) and θ′ ∈ π(j′+1)
then θ ∼τ θ′.

We now come to a critical uniformity property.

Proposition 8.10. Assume π(j),π(j′) vary at π(jk), π(j
′

k) with τ , θ ∈ π(j+1), θ′ ∈ π(j′+1)
and θ ∼τ θ′. If π(j+1, j+m) is ri, t′ ∈ π(j+m) is labelled λx for some x and no π(j+ l),
1 ≤ l ≤ m, is a descendent of π(jk) then π(j′ + 1, j′ +m) ∼ π(j + 1, j +m).

Proof. Assume that λx0, u1, λx1, . . . , un, λxn is the branch from the root of term tree t to
λxn, λxn ∈ π(j) and λxn ∈ π(j′) for j′ 6= j. Let π(j0), π(i1, j1), . . . , π(in, jn) be the b-
partition for π(j) and π(j′0), π(i

′

1, j
′

1), . . . , π(i
′

n, j
′

n) be the b-partition for π(j′). Assume that
π(j), π(j′) vary at π(jk), π(j

′

k) with τ = uk(. . . λxk . . .) and that θ ∼τ θ′ when θ ∈ π(j +1)
and θ′ ∈ π(j′ + 1). Assume that π(j + 1, j + m) is ri, t′ ∈ π(j + m) is labelled λx, no
t′′ ∈ π(i + k) within this interval is at a dependent of τ . By a routine induction on m,
π(j′ + 1, j′ + m) ∼ π(j + 1, j + m). The interval π(j + 1, j + m) only involves moves A3
and C4 of Figure 3 because it is ri and ends at t′ ∈ π(j+m) by Fact 5.5. Initially, for some
simple non-constant tile τ ′ = y(λz1, . . . , λzl), y ∈ π(j + 1) and y ∈ π(j′ + 1). Therefore,
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because π(j +1) is not a descendent of π(jk), τ
′ is not a dependent of τ ; by A3 of Figure 3

position π(j+1) = yq[l, r]θξj+1 and position π(j′+1) = yq[l, r′]θ′ξj′+1 where ξj+1 ∼τ ξj′+1.
The next position is a result of C4: if ξj+1(x) = t′θ′′i then ξj′+1(x) = t′θ′′′i′ and θ′′ ∼τ θ′′′.
Consequently, the result follows.

Remark 8.11. Proposition 8.10 can be strengthened to include corresponding nri plays
that involve the same ∀-choices. For instance, in Example 6.15 when π is in Figure 7
the positions π(5), π(21) vary at π(5), π(21) with z(λx1, λx2). Position π(16) is the first
position after π(5) that is a child of π(5); therefore, the continuations π(6, 15) and π(22, 31)
correspond even though they pass through the constant tile h(λ).

We shall now extend the definition of the p-partition of a play π ∈ G(t, P ), Definition 7.6,
from 3rd-order P to all higher orders. Again, it is defined in stages using simple tiles from t;
so π = π(j0), π(i1, j1), . . . , π(in, jn) for some n and there is an associated sequence of simple
tiles τ1, . . . , τn from t such that for each m : 1 ≤ m ≤ n, t′ ∈ π(im) where t′ is the root
of τm and τm occurs directly below t′′ ∈ π(jm−1) in t. However, the same simple tile may
occur more than once in this sequence of tiles; so we adopt the following notation.

Definition 8.12. Assume that τ1, . . . , τn is a sequence of simple tiles associated with a
play π ∈ G(t, P ). We write τπk to identify the kth tile τk in this sequence and we use the
notation t′@τπk for node t′ of τπk .

After stage k, the p-partition for π consists of the sequence of tiles τπ1 , . . . , τ
π
k ; the

composite tile γk consists of these tiles. However, we also provide a more graphical rep-
resentation of the composite tile γk by including a labelled edge for each m : 1 < m ≤ k

of the form τπm
π
←− t′@τπl where l < m and t′ is an atomic leaf of τπl . The relation

π
←− between a tile at stage m and an atomic leaf of a tile at an earlier stage l captures
control structure in the p-partition that t′@τπl ∈ π(jm−1). This linearisation of the p-
partition for each π will be useful in the decidability proof; we can, of course, reconstitute

the subtree γk from its linear presentation after stage k just by viewing
π
←− as the sub-

tree relation. We assume this extra intensionality is also reflected in the ξ look-up tables
for π; in the case of the C moves of Figure 3 if l = λz1 . . . zj .w and tm@τπk ↓i t

′

i@τπk then
ξm+1 = ξm{(t

′

1@τπk )θmm/z1. . . . , (t
′

j@τπk )θmm/zj}. Consequently, at an application of move

C4, if x is the head variable of the left term of the state and ξ(x) = (t′@τπk )θ
′i then the

next position is at t′@τπk .

Definition 8.13. Assume π ∈ G(t, P ). The p-partition of π is defined in stages 1 ≤ k ≤ n
for some n as π(j0), π(i1, j1), . . . , π(in, jn) where j0 = 1. At each stage k there is

(1) the p-partition up to stage k − 1, π(1, jk−1) = π(j0), . . . , π(ik−1, jk−1);

(2) the composite tile γk−1 consisting of the tiles τπ1 , . . . , τ
π
k−1 with edges

π
←−;

(3) the simple tile τπk which occurs in t directly beneath node t′@τπl ∈ π(jk−1) and τπk
π
←−

t′@τπl in γk = γk−1 ∪ {τ
π
k };

(4) the position π(ik) with t′′@τπk ∈ π(ik) where t′′ is the root node of τk;
(5) the interval π(ik, jk) determined as follows:
• set j = ik
• (∗∗) while j 6= |π| and t′@τπl ∈ π(j) is not labelled with a lambda do j = j+1;
− if j = |π| or t′@τπk ∈ π(j) then jk = j;
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τ1 = z(λx, λ) π′(2, 3)

τ2 = f(λ) π′(4, 5) τ2
π′

←− λx@τ1

τ3 = z(λu, λ) π′(6, 7) τ3
π′

←− λ@τ2

τ4 = x π′(8, 15) τ4
π′

←− λu@τ3

τ5 = z(λy, λ) π′(16, 17) τ5
π′

←− λ@τ1

τ6 = z(λs, λ) π′(18, 19) τ6
π′

←− λy@τ5

τ7 = s π′(20, 23) τ7
π′

←− λs@τ6

τ8 = y π′(24, 33) τ8
π′

←− λ@τ6

τ9 = a π′(34, 34) τ9
π′

←− λ@τ5

Figure 10: Partition of π′ from Figure 8 in Example 8.14

− find a largest h ≥ 0, if there is one, such that there is a j′ < j, π(j), π(j′) vary
at π(l), π(l′) with τπm in the same family as τπk and θ ∼τπm

θ′ where θ ∈ π(j + 1),
θ′ ∈ π(j′ + 1), and
∗ no position in π(j′, j′ + h) is a descendent of π(l′);
∗ if h > 0 then π(j + 1, j + h) ∼ π(j′ + 1, j′ + h);

− if there is such a h ≥ 0 set j = j + (h+ 1) and goto (∗∗) else jk = j.

As with Definition 7.6, if τπk is a top or a constant tile then π(ik, jk) is internal to it
and either ends at one of its atomic leaves, or a final state is reached: via clause (∗∗), jk
will be the least j > ik such that t′ ∈ π(j) is an atomic leaf of τπk or j = |π|. The new case
is when τπk = y(λx1, . . . , λxm) is neither a constant tile nor a top tile. Position π(ik) is at
the root of τπk ; the first position π(j), if there is one, after π(ik) that is at a lambda node
t′ need not be internal to τπk ; however t′ must be an atomic leaf of some tile τπk′, k

′ ≤ k,
which belongs to the same family as τπk by Proposition 8.1. If k′ = k then jk = j and
π(ik, jk) finishes at t′. Otherwise k′ 6= k and t′@τπk′ ∈ π(j): one checks whether there are
previous positions π(j′) such that π(j), π(j′) vary at π(l), π(l′) with τπm in the same family
as τπk (and, therefore, also, τπk′) and whether θ ∼τπm θ′ when θ ∈ π(j + 1) and θ′ ∈ π(j′ +1).
If there are no such positions, for instance if t′ is an atomic leaf of the composite tile γk,
then jk = j and π(ik, jk) finishes at t

′. Otherwise there are such positions; we then look for
a longest continuation from π(j + 1) that corresponds to a previous interval from such a
π(j′+1). If there is no such continuation, so h = 0, then π(j+1) is at a descendent of π(l);
so control is at the root of a tile in γk in the same family as τπk ; and the loop starts again.
If there is such a continuation then h > 0 and the loop starts again from π(j + (h+ 1)); if
π(ik, jk) is ri then π(j + (h + 1)) will also be at the root of a tile in γk in the same family
as τπk as this position must be a descendent of π(l). Consequently, as we shall prove, if
π(ik, jk) is ri then it is guaranteed to finish at an atomic leaf of a tile in the same family as
τπk .

Example 8.14. We describe the p-partition of π′ in Figure 8 for the term tree in Figure 1
(omitting the initial move). We present tile τπ

′

k , without its superscript π′, the play π′(ik, jk)

and the edge relation
π′

←− in Figure 10. The intervals for the first three stages are plays on
top and constant tiles. Tile τ4 = x: play jumps at position π′(8) to λx of τ1; the positions
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τn′

τm′

τk

τm−1 τm

τn−1

Figure 11: Illustrating repeating tiles in a p-partition

π′(9),π′(3) vary at π′(9), π′(3) with τ1 and θ ∼τ1 θ′ when θ ∈ π′(10) and θ′ ∈ π′(4); there are
the maximal corresponding intervals π′(4, 7) and π′(10, 13). Play returns to x and jumps
to λ@τ1 which completes stage 4 as π′(15) is the first position at this atomic leaf. The
p-partition continues with plays on the top tiles τ5 and τ6. After stage 6, the subtree γ6 of
Figure 1 associated with the partition consists of tiles τ1−τ6 plus the edges already described
(which has atomic leaves (9)λ, (19)λ, (15)λs and (17)λ). Tile τ7 = s and π′(21), π′(19) vary
at π′(21), π′(19) with τ6 and θ ∼τ6 θ′ when θ ∈ π′(22), θ′ ∈ π′(20); however, there are no
corresponding continuations because π′(22) and π′(20) are children of π′(21) and π′(19).
The interval at stage 7 is, therefore, π′(20, 23) that finishes at λ@τ6. Tile τ8 = y and the
play at this stage jumps to λy of τ5; positions π′(25), π′(17) vary at π′(25), π′(17) with
τ5 and θ ∼τ5 θ′ where θ ∈ π′(26) and θ′ ∈ π′(18); π′(26, 31) corresponds to π′(18, 23) and
then play returns to τ8 and jumps to λ@τ5; so, π

′(24, 33) is the interval at stage 8. Finally,
τ9 = a and stage 9 is π′(34, 34).

A reason that the same tile may be repeated in a p-partition starts with different ∀-

choices. For instance, consider a situation where τm
π
←− t′@τk and τn

π
←− t′@τk as follows

where τk is a constant tile with arity 2, f(λ, λ). Consider Figure 11: the p-partition for π has
a play on τn′ , then τm′ and then τk choosing the left branch of f . Tile τm−1 is a dependent of
τm′ and play jumps to its atomic leaf above τk and so this position with the earlier one will
vary at themselves at τm′ ; play thus proceeds to τk; but now there is a different ∀-choice;
so at stage m − 1, play finishes at the other leaf of τk. Play now proceeds through τm to
τn−1 which is a dependent of τn′ ; it jumps to the atomic leaf of τn′ above τm′ and again
it varies with the earlier position at themselves at τn′ : instead of the corresponding play
which passes through τk twice, play descends to τk and now the ∀-choice is the right branch;
therefore, play after stage n− 1 also finishes at λ@τk of the second branch. These different
∀-choices involve stages of a p-partition that have nri intervals; if an interval is ri then it is
well-behaved as Proposition 8.16 shows.

Definition 8.15. Assume π(j0), π(i1, j1), . . . , π(in, jn) is the p-partition of π ∈ G(t, P ) and
τπ1 , . . . , τ

π
n is the associated sequence of tiles. The π-path for τπk is the sequence of tiles

τπm1
, . . . , τπml

such that m1 = 1, τπml
= τπk and τπmj+1

π
←− tj@τπmj

for 1 ≤ j < l.
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Proposition 8.16. Assume π(j0), π(i1, j1), . . . , π(in, jn) is the p-partition of π ∈ G(t, P )
and τπ1 , . . . , τ

π
n is the associated sequence of tiles.

(1) If m < n and τπm is a top or constant tile then τπm+1
π
←− t′@τπm for some t′.

(2) If π(im, jm) is ri and τπm+1
π
←− t′@τπk then τπk belongs to the same family as τπm.

(3) If π(im, jm) is ri and τπm is an embedded tile in t then τπm+1
π
←− t′@τπm for some t′.

(4) If π(im, jm) is ri and τπm+1
π
←− t′@τπk then t′@τπk is not in the π-path of τm.

Proof. (1) is clear from Definition 8.13. For (2) assume τπm+1
π
←− t′@τπk and π(im, jm) is ri.

Consider the first position π(j) in this interval at a lambda node. By Proposition 8.1, it is an
atomic leaf of a tile in the same family as τπm. Either this position is π(jm) and so the result
follows, or there are earlier positions π(j′) and t′ ∈ π(j′) and π(j), π(j′) vary at π(l), π(l′)
at τ ′ in the same family as τπm and θ ∼τ ′ θ

′ when θ ∈ π(j + 1) and θ′ ∈ π(j′ + 1). One
chooses the j′ that allows longest corresponding intervals π(j+1, j+h) and π(j′+1, j′+h)
for h ≥ 0. Using Proposition 8.10, it follows that π(j + (h+1)) is a descendent of π(l) and
so is at a tile τ ′′ in the same family as τπk ; the same argument is now repeated. For (3),
consider the b-partition for π(jm−1); because τ

π
m is an embedded tile, there is a tile τπk such

that τπk ≡ τπm and τπm is below τπk in t and in the b-partition there is a play on τπk , π(i
′

k, j
′

k);
consider the shortest interval π(i′k, i

′

k + j′) that is a play on τπk . Using Proposition 6.23 and
Definition 8.13 it follows that π(im, jm) = π(im, im + j′) as t′ ∈ π(im + j′) is an atomic leaf

of τπm. In the case of (4) assume π(im, jm) is ri and τm+1
π
←− t′@τπk and t′@τπk is in the

π-path of τπm; so, τπk and τπm belong to the same family by (2) because π(im, jm) is ri. Also,

there must be a tile τπl , k < l ≤ m such that τπl
π
←− t′@τπk and either τπm = τπl or τπl is

on the π-path for τπm. If τπk is a top tile then consider the b-partition for π(jm−1) and its
interval that is a play on τπk that ends at t′@τπk at position π(j′); clearly, if position π(j) in
π(im, jm) is at t′@τπk then π(j), π(j′) vary at π(j), π(j′) at τπk which means that j < jm and

so it is impossible that τπm+1
π
←− t′@τπk . Otherwise, τπk is a dependent tile; the argument is

now similar but more general; if position π(j) in π(im, jm) is at t′′@τπl for τπl that is τπk or a
tile that τπk is a dependent of and t′′@τπl is in the π-path for τπm then there is a tile τπm′ such
that τπm′ is a dependent of τπk or of some tile that τπk is a dependent of and the b-partition
for π(jm′

−1) which involves a play on τπl is such that it finishes at t′′ at position π(j′) and
π(j), π(j′) vary at π(j1), π(j

′

1) at τ
π
l′ in the same family as τπm; therefore, π(j) cannot be a

final position for π(im, jm).

Example 8.17. The p-partition of π in Figure 7 where the term tree is in Figure 6 is
presented in Figure 12 (omitting the initial move); where we provide the tile τπk , omitting
π, the interval π(ik, jk) and the edge relation at each stage k. Play proceeds through the
top tiles τ1 and τ2. Tile τ3 = (6)z1(λ) and play at this stage is π(6, 7) that ends at λz2@τ1.
The next tile is a constant tile. Tile τ5 is z2 and the pair π(11), π(3) vary at π(11), π(3)
with τ1 and θ ∼τ1 θ′ for θ ∈ π(12) and θ′ ∈ π(4); so the interval at stage 5 is π(10, 15) that
ends at λ of τ3 as there is no earlier position where control is at this leaf. The tile τ6 = x1(λ)
and π(16, 17) is the interval at this stage. Play then proceeds through a constant tile at
stage 7. Tile τ8 = x2 and the interval is π(20, 33); positions π(21), π(5) vary at π(21), π(5)
with τ2 and θ ∼τ2 θ′ for θ ∈ π(22) and θ′ ∈ π(6); the intervals π(6, 15) and π(22, 31)
correspond as described in Remark 8.11. Tile τ9 is (10)z1(λ); positions π(35), π(7) vary
at π(35), π(7) with τ1 and θ ∼τ1 θ′ when θ ∈ π(36) and θ′ ∈ π(8); the intervals π(8, 10)
and π(36, 38) correspond. With the next position λz@τ1 ∈ π(39) and π(39), π(11) vary
at π(39), π(11) with τ1 and θ ∼τ1 θ′ for θ ∈ π(40) and θ′ ∈ π(12). The intervals and
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τ1 = z(λz1, λz2) π(2, 3)

τ2 = z(λx1, λx2) π(4, 5) τ2
π
←− λz1@τ1

τ3 = (6)z1(λ) π(6, 7) τ3
π
←− λx1@τ2

τ4 = h(λ) π(8, 9) τ4
π
←− λz2@τ1

τ5 = z2 π(10, 15) τ5
π
←− λ@τ4

τ6 = x1(λ) π(16, 17) τ6
π
←− λ@τ3

τ7 = g(λ) π(18, 19) τ7
π
←− λx2@τ2

τ8 = x2 π(20, 33) τ8
π
←− λ@τ7

τ9 = (10)z1(λ) π(34, 43) τ9
π
←− λ@τ6

τ10 = a π(44, 44) τ10
π
←− λ@τ9

Figure 12: Partition of π in Figure 7 of Example 8.17

π(40, 41), π(12, 13) correspond. Therefore at stage 9, the interval is built from two separate
subintervals. Finally, stage 10 is the constant tile a.

9. Unfolding and the small model property

We now prove decidability of higher-order matching at all orders, by showing the small
model property; if t |= P then there is a small term t′ |= P . The proof starts with the tree
of tiles that captures the p-partitions of all plays in a game G(t, P ) and then extends it to a
tree of basic tiles. We then define unfolding on such trees which underpins the small model
property.

As with the 3rd-order case in Section 7, we examine the p-partitions of all plays in
G(t, P ). We maintain abuse of notation: if π and π′ are two plays we let π(ik, jk), π

′(ik, jk)
be their intervals at stage k irrespective of their ranges. Instead of a sequence of simple
tiles there is a tree of simple tiles that is associated with the p-partitions as each p-partition
shares the initial tile τ1 of t. As a representation for this tree of tiles, we let its root be τΠ1
when Π is the set of all plays in G(t, P ); any other node of this tree has the form τΠ

′

k which
represents that for each π ∈ Π′, τπk is its tile at stage k and for all earlier stages m < k,
every play in Π′ also shares the same tile at stage m. Thus, the tree has the form depicted

in Figure 13. However, we also assume the induced edge relations
π
←− within this tree:

τΠ
′

m
π
←− t′@τΠ

′′

k if τπm
π
←− t′@τπk and π ∈ Π′ ∩Π′′.

Let T be the tree of tiles for the p-partitions of all plays in G(t, P ). We drop the

superscript Π′ from tiles τΠ
′

k whenever the context allows. We assume the definition of

π-path, Definition 8.15, which picks out the sequence of tiles in t from its root to τΠ
′

k when
π ∈ Π′. Also, we shall assume that Definitions 6.3, 6.4 and 6.7 of j-below, below, immediate
j-dependent, dependent and embedded apply to tiles in a tree T by examining π-paths and
bindings: for instance, τm is an immediate j-dependent of τk if τk is in the π-path for τm,
the free variable y at the head of τm is bound in τk and τm is j-below τk relative to this
π-path. However, because of the linear representation of a p-partition there is also the idea
that a tile τm is later than τk in T if there is a play π and τk = τπk and τm = τπm and m > k;
we also say that τk is earlier than τm.

As with the 3rd-order case in Section 7, we identify special tiles in the tree.
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Figure 13: Tree of tiles in all p-partitions

Definition 9.1. The tile τΠk ∈ T is special if it obeys one of the following three conditions;

(1) for some π ∈ Π, π(ik, jk) is nri,
(2) for some π ∈ Π, q ∈ π(jk) is a final state,
(3) for some π, π′ ∈ Π, t′ 6= t′′ when t′ ∈ π(jk) and t′′ ∈ π′(jk).

A tile is x-special if it obeys (1) or (2) of these conditions.

A special tile that is not x-special is a play separator. There is the same upper bounds
on the number of special tiles in T as in the 3rd-order case.

Fact 9.2. Assume T is tree of tiles associated with G(t, P ). Within T there are

(1) at most δ (= the right size for P , Definition 3.8) tiles that involve nri intervals;
(2) at most p (= the number of plays in G(t, P )) tiles where play ends;
(3) therefore, at most δ + p are x-special tiles;
(4) at most p− 1 tiles that are play separators.

The proof of the small model property for the 3rd-order case is straightforward: use
transformation T2 of Section 7 to remove any tile that is not special from T and update
edges. With higher orders we cannot just omit a tile that is not special. It may have
dependents, so its removal would result in a tree that is no longer a closed term. Or an
associated interval may finish at an atomic leaf of some other tile in the tree, so its removal
may not preserve game playing. Instead, we introduce tile unfolding as a transformation
on a tree T. We need to generalise the notion of tree to that of a tree of basic tiles. We will
be interested in a tile τm ∈ T that is an immediate dependent of a top or embedded tile
τk which is not x-special and which also does not have x-special later tiles belonging to the
same family. Therefore, as we shall see, τm can be replaced in the tree by a basic tile that
is constructed from τk and τm; this may require revision of later edges in the tree. Before
developing the full account, we shall now briefly illustrate it.

Example 9.3. Consider the p-partition in Figure 10 of Example 8.14 for the play π′ in

Figure 8 on the term tree in Figure 1. The tree of tiles with the edge relation
π′

←−, with π′
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33τ2
)) τ3
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33τ6 33
)) τ7 τ8 τ9
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)) τ6 33

)) τ7 τ ′8
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Figure 14: Tree of tiles before and after unfolding in Example 8.14

omitted, is pictured in the top diagram in Figure 14. There are edges, for instance, from
different atomic leaves of τ1 to τ2 and τ5. The special (and x-special) tiles are τ2, τ4 and
τ9; intervals on the first two of these are nri and the third is where the play π′ finishes.
Transformation T2 of Section 7 would allow us to remove the tile τ3 with the effect that
the edge from τ2 would then be to τ4: dynamically, in terms of play, this means that the ri
interval π′(i3, j3), a play on τ3, is omitted and the interval π′(i4, j4) reduced (by omitting
its ri play on τ3). Tile τ5 is a top tile with immediate dependent τ8; neither of these tiles
is x-special. However, because of this binding and the fact that it has two outgoing edges
from different atomic leaves, τ5 cannot be omitted (like τ3); nor can we remove τ8 because
π′(i8, j8) ends at an atomic leaf of τ5. Instead we can unfold τ5 at τ8: we introduce the basic
tile τ ′8 = z(λy.τ8, λ) which prefaces τ5 to τ8; the new interval π′(i8, j8), in effect, includes
an extra interval that corresponds to π′(i5, j5) as a prefix and then omits the ri plays on
τ6 and τ7 from the old interval π′(i8, j8). Play in the new interval π′(i8, j8) which is still ri
now finishes at an atomic leaf of τ ′8; so edges may need to be changed; here, τ ′8 now has an
edge to τ9. The effect of this unfold is pictured in the lower diagram of Figure 14. As a
consequence, both τ5 and τ ′8 can now be removed by transformation T2. As the reader can
verify, tile τ6 can also be unfolded at τ7.

We call the process “unfolding” τ at τ ′ (where τ ′ is an immediate dependent of τ)
because it is analogous to unfolding or unravelling a transition system in modal logic; here,
there is the extra dimension of binding. As with unravelling, the purpose of unfolding in
T is also to approximate the tree model property. Technically, from a game-theoretic point
of view, what will justify unfolding is permuting, repeating and omitting corresponding ri
intervals: for instance, with the replacement of τ8 by τ ′8 in Example 9.3 there is a repetition
and a permutation of intervals that correspond to the earlier ri interval on τ5 within τ ′8,
and then omission of the ri intervals that correspond to π′(i6, j6), π

′(i7, j7) within π′(i8, j8).
Although initially unfolding increases the size of a tree, its point is to reduce tile levels.
Tile τ8 is level 2 whereas its replacement τ ′8 is a level 1 (basic end) tile. Unfolding is not
defined as a transformation in the sense of Section 7 because it is not local; edges to later
tiles may be revised in its application.

First, we extend the notion of a tree to that of a tree of basic tiles with associated plays
that are p-partitioned.

Definition 9.4. The tree of basic tiles T has associated plays Π if Π is the set of plays
down the branches of T and for each π ∈ Π, π = π(j0), π(i1, j1), . . . , π(in, jn) for some n
such that

(1) if m ≤ n then π(im, jm) is an interval on the tiles τπ1 , . . . , τ
π
m in T that starts at the

root of τm,

(2) if m < n and t′@τπk ∈ π(jm) then t′ is an atomic leaf of τπk and τπm+1
π
←− t′@τπk ,
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(3) if m < n and τπm is a top or constant tile then τπm+1
π
←− t′@τπm for some t′,

(4) if π(im, jm) is ri and τπm+1
π
←− t′@τπk then τπk belongs to the same family as τπm,

(5) if π(im, jm) is ri and τπm is an embedded tile in t then τπm+1
π
←− t′@τπm for some t′,

(6) if π(im, jm) is ri and τm+1
π
←− t′@τk then t′@τk is not in the π-path of τm.

Initially, when T is the tree of simple tiles constructed from the p-partitions of the plays in
G(t, P ) then T has associated plays G(t, P ); parts (1) and (2) of Definition 9.4 follow from
Definition 8.13 of p-partition, the remainder from Proposition 8.16. We assume that the
definitions of b-partition, dependent, special, x-special, π-path and so on are extended to
basic tiles in a tree of basic tiles.

Definition 9.5. Assume T is a tree of basic tiles with associated plays. Tile τk is unfoldable
at τm if

(1) τk is a top or embedded tile,
(2) τm is the first tile in τk+1, . . . , τm that is a dependent of τk,
(3) τk and no later tile that is in the same family as τk is x-special.

If τk is unfoldable at τm then we define the unfolding of τk at τm in T as the tree T′ with
the same nodes as T except that τm is replaced by a basic tile τ ′m that is a composition of τk
and τm. (Edges in T may also be changed in T′.) In the following we define the associated
plays on T′ from those on T: the definition uses the notion of corresponding positions as
defined (for intervals) in Definition 8.3. However, because T′ is different from T, the notion
of correspondence is slightly weakened in specific circumstances to allow that a sequence of
positions may correspond to a single position.

Definition 9.6. Assume τk = y(. . . λx . . .) is unfoldable at τm = τΠ
′

m in T and for each

π ∈ Π′, τk+1
π
←− λx@τk. The unfolding of τk at τm in T is the tree T′ where T′ has

the same tiles as T except that τm is replaced by τ ′m = y(. . . λx.τm . . .). For each play
π = π(j0), π(i1, j1), . . . , π(in, jn) on T there is a play σ = σ(j0), σ(i1, j1), . . . , σ(in, jn) on
T′, defined as follows in stages and top down:

(1) if π 6∈ Π′ or π ∈ Π′ and l < m then σ(il, jl) = π(il, jl) and τl+1
σ
←− t′@τk′ iff τl+1

π
←−

t′@τk′;
(2) if π ∈ Π′, l ≥ m, t′@τj ∈ π(jm−1) and t′@τj ∈ σ(jm−1) then σ(il, jl) is the continuation

from the head of τl in γl = τ1, . . . , τl with edges
σ
←−. Any position σ(i′) in σ(il, jl)

corresponds to π(i′) in π(il, jl) in the sense of Definition 8.3 except in the following
circumstances where the notion of correspondence is weakened:
• the positions are at τ ′m and τm: if t′@τj ∈ σ(i′ − 1) and t′@τj ∈ π(i′ − 1) then σ′σ(i′)
corresponds to π(i′) where σ′ is a shortest play on τk in τ ′m that ends at λx@τ ′m,
• there is a jump into τ ′m and τk: as a result of move C4 of Figure 3, t′′@τk ∈ π(i′)
and t′′@τ ′m ∈ σ(i′); then σ(i′, i′ + i′′) corresponds to π(i′, i′ + i′′) if these intervals are
internal to τ ′m and τk,
• the positions are at λx@τ ′m and λx@τk: λx@τ ′m ∈ σ(i′), λx@τk ∈ π(i′) and π(i′′) is
the first later position such that t′@τj ∈ π(i′′) and π(l, i′) is the play on τk in the
b-partition for π(i′′); then σ(i′) corresponds to π(i′, i′′).

For the edges: if τl is τm or is below τm and τl+1
π
←− t′′@τk then τl+1

σ
←− t′′@τ ′m;

otherwise, τl+1
σ
←− t′′@τp if τl+1

π
←− t′′@τp.

We say that σ on T′ is the companion of π on T and that T′ is an unfolding of T.
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In Example 9.3, τ5 is unfolded at τ8; T is the upper and T′ the lower tree in Figure 14.
The companion play σ′ on T′ of π′ on T has the same intervals up to and including stage
7. In defining the weakened correspondence, play in σ′ is at τ ′8 in T′ and in π′ at τ8 in T:
so σ′′σ′(i8) where σ′′ is the initial play on τ5 in τ ′8 now corresponds to π′(i8); next there is
a jump into τ ′8 and τ5 by move C4 which is to λy@τ ′8 and λy@τ5 and so this σ′ position
corresponds to the interval that is from λy@τ5 to the lambda node directly above τ8; so then
the next positions will again correspond. In both these cases, where an interval corresponds
to a position, the interval must be ri.

Proposition 9.7. Assume T has associated plays Π. If T′ is an unfolding of T then T′

has associated plays Σ = {σ | for some π ∈ Π, σ is a companion of π}.

Proof. Assume that T has associated plays Π and T′ is the unfolding of τk at τΠ
′

m in T. By
definition, if π 6∈ Π′ and σ is its companion then σ = π is a play on a branch of T′ as required.

Otherwise, assume τk = y(. . . λx . . .), τk+1
π
←− λx@τk for each π ∈ Π′, t′@τj ∈ π(jm−1)

and τ ′m = y(. . . λx.τm . . .). We now show that we can find corresponding positions σ(i′) in
σ(il, jl) and π(i′) in π(il, jl) as described in Definition 9.6 for each l ≥ 1. For l < m, this

holds because σ(il, jl) = π(il, jl) and τl+1
σ
←− t′′@τk′ iff τl+1

π
←− t′′@τk′ . Consider next the

case that corresponding positions are at τ ′m and τm: t′@τj ∈ σ(i′− 1) and t′@τj ∈ π(i′− 1).
We examine the b-partitions for σ(i′ − 1) and π(i′ − 1) and their component plays σ′, π′

on τk; we show that σ′ and π′ correspond, that they are ri and that they are shortest plays
on τk (that end at the leaf λx@τk). We prove this by induction on corresponding positions
σ(i′ − 1), π(i′ − 1), i′ ≥ im. The base case is when i′ = im. At this point the b-partitions
for σ(i′−1) and π(i′−1) are the same. Let σ′ be the component interval in this b-partition
on τk. That σ′ is ri and is a shortest play on τk that ends at λx follows from the fact
that τm is the first tile that is a dependent of τk in the sequence τk+1, . . . , τm, that τk is a
top or embedded tile and that τk and all later tiles in the same family are not x-special;
consequently, any tile between τk and τm in the same family as τk has an associated ri
interval and, therefore, if play in such an interval were at a different atomic leaf of τk than
λx, then τm would not be a dependent of τk. For the inductive step the argument is similar
after noting the following property: if corresponding positions are at τ ′m and τm then it is
not possible that play was in a dependent tile τm′ of τk that is below τm before jumping
back into τk, then to λx@τk and then proceeding to τm because in σ the simulating position
would be at τm in τ ′m (because in T′, τm′ is a dependent of τ ′m and edges are updated in
T′). So this property holds. Therefore, returning to the main argument, the continuation
from σ(i′− 1) consists first of a sequence of moves σ′′ that corresponds to σ′ except it is on
τk within τ ′m; therefore, σ′′σ(i′) weakly corresponds to π(i′). Consider next corresponding
positions such that at the next positions they jump into τ ′m and τk; t′′@τk ∈ π(i′) and
t′′@τ ′m ∈ σ(i′). Then the intervals π(i′, i′ + i′′), σ(i′, i′ + i′′) that are internal to these tiles
correspond except that they take place in τk and τ ′m. The final circumstance to examine is
that corresponding positions are σ(i′), π(i′) such that λx@τ ′m ∈ σ(i′) and λx@τk ∈ π(i′).
We show that there is a first position such that t′@τj ∈ π(i′′) and for some l, π(l, i′) is the
play on τk in the b-partition for π(i′′) and the b-partition for σ(i′) contains the ri interval
σ(i′′, j′′) which corresponds to π(i′, i′′). Positions σ(i′) and π(i′) must be the result of a C4
move. However, the look-up table where this entry is defined must be at a position within
a tile τm′ that is a dependent of τk in T and of τ ′m in T′ that is, below τm. Now the result
follows as τk and all later tiles in the same family are not x-special. Clearly, T′ has no other
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plays than the companions of Π. Moreover, each companion play σ obeys the six conditions
in Definition 9.4 given that they hold for each π on T.

To prove the small model property, assume a smallest term t such that t |= P and let
T be its tree of simple tiles that captures the p-partitions of every π ∈ G(t, P ). First, we
describe the proof for a particular case of T, a general atoms case, that obeys the following
condition: if τk is not a constant tile then it is not x-special. What this means is that
every top and embedded tile is unfoldable at a first dependent3. The decidability proof now
reduces to the 3rd-order case as the tree-model property is regained.

Initially, restricting further, assume P is 5th-order: there are, therefore, only two levels
of non-constant tiles, top and end tiles. Starting top down with T0 = T, at each stage
Ti, a top tile τ that is closest to the root and that has dependents is unfolded at a first
dependent τ ′. The construction finishes at some stage n, when Tn has no unfoldable tiles;
that is, when it has no top tiles with dependents. This means that Tn only consists of
constant tiles and basic top tiles that are also end tiles. Once the tree is in this form, only
the special tiles (those that are constant tiles and play separators) need to be kept: the
remainder are redundant using transformation T2. To obtain a small term, the initial λy of
t is placed at its top and the constant d : 0 is placed below every leaf λz. The bound on the
size of t is larger than in Fact 7.10 because the units are now basic tiles instead of simple
tiles. In the worst case, each whole tile consists of one simple top tile and at most α simple
end tiles in any branch (where α is the arity of P ). Therefore, using this construction, we
obtain the following bound where the measures are all from P : |t| ≤ (α+1)× (δ+(2p−1)).

For higher-orders, the bounds become even larger. Initially, all top and embedded tiles
with dependents are unfoldable. Now unfolding is iterated. At each stage Ti, a top or
embedded tile τ with dependents which has the greatest level is unfolded; if there is more
than one such tile then one that is closest to the root is chosen to be τ and it is unfolded at
a first dependent to give Ti+1. Consider what may happen when P is 7th-order. There are
now three levels of non-constant tiles: top, middle and end. Unfolding reconciles embedded
middle tiles with their immediate end dependents, which may in turn create larger embedded
middle tiles or end tiles. For instance, assume the following branch of tiles in T0

τ τ1 τ2 τ21 τ3 τ31

where τ is a top tile, τ1, τ2, τ3 are dependents of τ , τ2 and τ3 are both embedded middle
tiles because of τ1 and τ21 is a dependent of τ2 and τ31 of τ3. First, τ2 is unfolded at τ21
and then τ3 is unfolded at τ31 to give the following sequence.

τ τ1 τ2 τ2τ21 τ3 τ3τ31

The situation has reduced to the 5th-order case, as there are now only two levels of tiles.
So, the complete unfolding is the following sequence of top tiles that are also end tiles.

τ ττ1 ττ1τ2 ττ1τ2(τ2τ21) ττ1τ2(τ2τ21)τ3 ττ1τ2(τ2τ21)τ3(τ3τ31)

Therefore, using T2 we can remove any non-special tiles from the unfolded tree and any
embedded (basic) end tiles within special tiles. The following is a very crude size bound
on a smallest term that solves the problem P of order 2n + 1 in this restricted case: |t| ≤

g(n)× (δ + (2p − 1)) where g(1) = 1 and g(k + 1) = (α+ 1)g(k).

3This feature, that every top and embedded tile is unfoldable at a first dependent, is true in the atoms
case where δ = 0 even though some of these tiles may be x-special.
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Remark 9.8. In the general atoms case there is a bounded size solution term with a simple
form that is a transferring term [12]. For instance, consider the definition of transferring
in [9]; for every subterm of λx1 . . . xn.t of the form xis1 . . . sk the free variables of any sj
belong to {x1, . . . , xn}.

Let us return to the unrestricted case. We show that there is a bounded size term that
almost has the tree model property. Not all top or embedded tiles with dependents can
be unfolded because of their contribution to solving P ; for instance, in Example 9.3, tile
τ1 cannot be unfolded at τ4. There is also a further issue that does not occur with the
general atoms case. After unfolding, we need to extract a term from the unfolded tree. The

intention is that the edge relation
π
←− should be the subtree relation. However, there can

be multiple edges of the form τπm
π
←− t′@τk and τπ

′

n
π′

←− t′@τk: so, we need to guarantee

that the “subterms” rooted at τπm and τπ
′

n are compatible.

Definition 9.9. The tree T has the subterm property if there is a smallest equivalence
relation ∼= on its tiles such that whenever τm ∼= τn,

(1) they are syntactically the same tile,

(2) if τk
π
←− t′′@τm and τl

π′

←− t′′@τn then τk ∼= τl.

If T has the subterm property then its extraction is defined top-down. For any edge

τm
π
←− t′@τk the tile τm is moved to be directly below t′@τk. The initial λy of t is placed at

the top and the constant d : 0 is placed below every leaf λz. Next we compute the smallest
equivalence relation ∼= starting with the identity, for each tile τm ∼= τm and then closing up
inductively under the conditions in Definition 9.9: tiles τm ∼= τn are identified.

Fact 9.10. If T has has the subterm property then its extraction is a term.

To obtain the small model property, we show that given the initial tree there is a way
of unfolding such that the resulting tree has the subterm property. We then examine the
extraction and apply the transformation T2 to remove any redundant tiles. The upper
bound is very crude.

Theorem 9.11. If t is a smallest solution of P of order at most 2n+ 1, then |t| ≤ g(n)×
((p2 × δ × N(n)) + p − 1) where α is the arity of P , N(n) = p ×

∑
{αi : 1 ≤ i ≤ g(n)},

g(1) = 1 and g(k + 1) = (α+ 1)g(k).

Proof. Assume t is a smallest solution to P of order 2n + 1. Let T0 be the tree of simple
tiles for the p-partitions of each play in G(t, P ). By Fact 9.2 there are at most δ + (2p− 1)
special tiles in the tree. The issue is to define a largest sequence of unfolds such that
afterwards the resulting tree has the subterm property. If every top and embedded tile is
unfoldable then at each stage i+ 1 those top or embedded tiles with the largest level that
have dependents are chosen; one of them that is closest to the root is then unfolded at a
first dependent; so Ti+1 is an unfolding of Ti. Unfolding is continued until Tn for some
n when there are no more unfoldable tiles; an easy argument shows that there is such an
n as the unfolding reduces tile level. By Proposition 9.7, it follows that companion plays
preserve final states. After unfolding, every tile in the resulting tree is a basic top tile or
a constant tile and, consequently, obeys the subterm property. So, its extraction t′ is a
term. Except for the special tiles in t′, the remainder are redundant using transformation
T2. Therefore, this produces a term t′′ where |t′′| ≤ g(n) × (δ + (2p − 1)). Because t is a
smallest term that solves P , t obeys this bound. Otherwise, some top or embedded tiles
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must be excluded from being unfolded. In the worst case there are at most δ + p x-special
tiles in T0 and, therefore, at most (δ + p) ×N(n) distinct tiles in T0 that are x-special or
dependents of x-special tiles and that are also not embedded tiles. Moreover, there are at
most a further p − 1 tiles that are special. We now proceed with a sequence of unfoldings
as follows: find a highest level unfoldable tile that is closest to the root and unfold it at
a first dependent; and keep repeating this until there are no more unfoldable tiles. If the
resulting tree Tn fails to have the subterm property then at some earlier stage j there are
tiles τk and τl in Tj that are syntactically the same and one of them, say τk is later unfolded
whereas τl is not and both have edges to the same atomic leaf: a failure of condition (2) of
Definition 9.9. Both these tiles are dependents of the same tile in Tj. Therefore, we exclude
the tile that τk is a dependent of from being unfolded and then examine a complete sequence
of unfoldings without it. By repeating this argument, after the sequence of unfoldings the
resulting tree has the subterm property; the number of distinct tiles that are excluded from
being unfolded is at most (δ + p)×N(n). By Proposition 9.7 its extraction t′ solves P . To
begin with there are ((δ + p)×N(n)) + p− 1 tiles that are either special or dependents of
x-special tiles. Again, we wish to apply the transformation T2 to remove redundant end
tiles from t′. The question is how many extra unfolded tiles are also special because they
have become separators. This depends on the number of plays p. If p = 1 then no extra
tiles are needed. If p > 1 then for each of the ((δ + p)×N(n)) tiles, there could be at most
p−1 new play separators in the full unfolding. Therefore, the result follows as each tile has
bounded length g(n).

10. Conclusion

Although we have shown that higher-order matching is decidable, the upper size bound
is very coarse and more work needs to be done to make it more accurate. Although our
complexity analysis is in terms of term size, it crudely agrees with the known non-elementary
complexity lower bound based on [17]. As order of a problem increases, so does its level
and, therefore, the size of a smallest solution term according to our analysis increases
(exponentially). Implicit in the analysis are positive sensible algorithms for solving dual
interpolation problems. The game-theoretic characterisation of dual interpolation allows us
to examine incomplete terms. As a first step, given a problem P its component set of simple
tiles can be defined from the subtypes and the constants (including forbidden constants and
the new constant d of Section 4). From these, we can then define varieties of basic tiles that
have no embedded end tiles. We can then proceed to construct a term tree in stages, first
by seeing if there are basic top tiles that separate plays, and, thereby, continue recursively.
Otherwise, we need to check if there must be non-top basic tiles, and so on. In the worse
case, we need to examine all possible terms whose size is bounded by Theorem 9.11. It may
be worth investing effort to implement a tool that builds such terms.

An open question is whether the set of all solutions of an interpolation problem is
independently characterisable. For instance, Comon and Jurski define tree automata that
characterise all solutions to a 4th-order problem [2]. In Section 8 of their paper they describe
two problems with extending their automata beyond order 4. The first is that states of an
automaton are constructed out of the observational equivalence classes of terms. Up to a
4th-order problem, one only needs to consider finitely many terms. With 5th and higher
orders, this is no longer true and one needs to quotient the potentially infinite terms into
their respective observational equivalence classes in order to define only finitely many states:
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however as Padovani shows this procedure is, in fact, equivalent to the matching problem
itself [13]. The second problem is the term trees that the automata recognise. For a
4th-order problem, there is an automaton that recognises its full set of solutions (up to
α-equivalence) even though the syntax may be infinite. Comon and Jurski define a special
kind of automata, ✷-automata, to achieve this [2]. The occurrence of a leaf ✷ in a term
tree represents any (syntactically correct) subtree. A ✷ cannot contribute to the solution
of a matching problem. This is no longer true at 5th-order, as illustrated by their example
xλyz.y(λz′.zz′) = a. Solutions of this problem include the terms

λx1.x1(λy1.x1(. . . x1(λyn.yi1(yi2(. . . (yika) . . .)))un . . .)u2)u1

where for some m ≤ k, every uij , j ≤ m, is the identity and uim+1
is the constant function

a. Because k is arbitrarily large, one cannot use a bounded number of variables to capture
all these terms [2]. In the general case, by iterated unfolding, any solution term can be
transformed into another solution term that only uses (and reuses) boundedly many vari-
ables. Whether this is capturable using some kind of automaton (such as a transducer) is
open.

In subsequent work [21], we are able to overcome the first problem of Comon and Jurski
at higher orders but not the second. We provide a tree-automata characterisation relative
to a finite alphabet: given a problem P , a finite set of variables and constants the (possibly
infinite) set of terms that are built from those components and that solve P is regular.
The states of the automaton are built from abstractions of sequences of moves in a (variant
version of the) game which works for all orders. Although there is active research extending
automata on words and trees to infinite alphabets which preserve “good” properties, such
as decidability of non-emptiness, see [16] for a recent survey, the results do not yet apply
to the case caused by higher-order binding.

As we briefly mentioned in Section 4, Ong has shown that the tree-checking game can
be presented using game-semantics and innocent strategies. Another question is whether
this framework provides an alternative basis for understanding higher-order matching.
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