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Abstract. We study the model-checking problem for a quantitative extension of the
modal µ-calculus on a class of hybrid systems. Qualitative model checking has been proved
decidable and implemented for several classes of systems, but this is not the case for quan-
titative questions that arise naturally in this context. Recently, quantitative formalisms
that subsume classical temporal logics and allow the measurement of interesting quan-
titative phenomena were introduced. We show how a powerful quantitative logic, the
quantitative µ-calculus, can be model checked with arbitrary precision on initialised linear
hybrid systems. To this end, we develop new techniques for the discretisation of continuous
state spaces based on a special class of strategies in model-checking games and present a
reduction to a class of counter parity games.

1. Introduction

Modelling discrete-continuous systems by a hybrid of a discrete transition system and con-
tinuous variables which evolve according to a set of differential equations is widely accepted
in engineering. While model-checking techniques have been applied to verify safety, live-
ness and other temporal properties of such systems [1, 14, 15], it is also interesting to infer
quantitative values for certain queries. For example, one may not only want to check that a
variable of a system does not exceed a given threshold, but also to compute the maximum
value of the variable over all runs, checking whether any such threshold exists.

Thus far, quantitative testing of hybrid systems has only been done by simulation, and
hence lacks the strong guarantees which can be given by model checking. In recent years,
there has been a strong interest in extending classical model-checking techniques and logics
to the quantitative setting. Several quantitative temporal logics have been introduced, see
e.g. [5, 6, 7, 8, 10, 11, 17], together with model-checking algorithms for simple classes
of systems, such as finite transition systems with discounts. Still, none of those systems
allowed for dynamically changing continuous variables. We present the first model-checking
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algorithm for a non-stochastic quantitative temporal logic on a class of hybrid systems. The
logic we consider, the quantitative µ-calculus [8], is based on a formalism first introduced
in [6]. It properly subsumes the standard µ-calculus, cf. [4], and thus also CTL and
LTL. Therefore the present result, namely that it is possible to model check quantitative
µ-calculus on initialised linear hybrid systems, properly generalises a previous result on
model checking LTL on such systems [14, 15], which is one of the strongest model-checking
results for hybrid systems.

The restriction to initialised linear systems is made because verification of temporal
properties over general hybrid systems is undecidable. This holds even for linear systems,
thus one must pick an appropriate abstraction of the system. An established and very
well-studied way to do this is to first approximate the continuous behaviour of the variables
by linear behaviour in a finite number of intervals. This method, applied to a number of
functions f1(x), . . . , fm(x) that evolve according to a set of arbitrary differential equations
D(f1, . . . , fm), generates a set of disjoint intervals I1, . . . , Ik with I1∪ . . .∪ Ik = R and a set

of linear coefficients aji , b
j
i such that in Ij it is approximately true that fi(x) = a

j
i ·x+b

j
i , i.e.

the derivative dfi
dt

= a
j
i . There are several ways to generate such linear approximations of

solutions of differential equations and, depending on the method in question, one can obtain
various kinds of error bounds for the respective classes of functions. We do not investigate
these issues (or other approximation methods) here, but focus instead on the linear system
obtained.

As stated above, even simple qualitative verification problems are undecidable for gen-
eral hybrid systems. This remains true even after the natural approximation by a linear
system. Hence, one more assumption is made, namely that if the speed of evolution of a
variable changes between discrete locations then also the variable is reset on that transition.
Systems with this property, called initialised linear systems, are – besides o-minimal systems
[16, 3] and their recent extensions [18] – one of the largest classes of hybrid systems with de-
cidable temporal logic [15]. Observe that when an arbitrary hybrid system is approximated
by a linear one, one can try to directly obtain an initialised system by computing boundary
values [13]. This can be done by either assuring that discrete transitions are taken only at
the borders of the intervals Ij , or by taking a finer subdivision of the intervals to increase
the precision of coordination between the discrete and the continuous part of the system.
Note that, even though this procedure has been implemented in model-checking programs,
it is only a heuristic – it necessarily fails for general systems for which the model-checking
problem is undecidable.

The logic we study is quantitative – it allows to express properties involving suprema
and infima of values of the considered variables during runs that satisfy various temporal
properties, e.g. to answer “what is the maximal temperature on a run during which a
safety condition holds?”. To model check formulae of the quantitative µ-calculus, we follow
the classical parity game-based approach and adapt some of the methods developed in the
qualitative case and for timed systems. To our surprise, these methods turned out not
to be sufficient and did not easily generalise to the quantitative case. As we will show
below, the quantitative systems we study behave in a substantially different way than their
qualitative counterparts. We overcome this problem by working directly with a quantitative
equivalence relation, roughly similar to the region graph for timed automata, and finally by
exploiting a recent result on counter parity games.

Organisation. The organisation of this paper follows the reductions needed to model
check a formula ϕ over a hybrid system K. In Section 2, we introduce the necessary notation,
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the systems and the logic. Then, we present an appropriate game model in Section 3 and
show how to construct a model-checking game G for the system and the formula. In Section
4, we transform the interval games constructed for arbitrary initialised linear hybrid systems
to flat games, where the linear coefficients are always 1. In Section 5, we show how the
strategies can be discretised and still lead to a good approximation of the original game.
Finally, in Section 6, we reduce the problem to counter parity games and exploit a recent
result to solve them. To sum up, the steps taken are depicted below.

K, ϕ model-checking game G  flat G  counter-reset G  value.

2. Hybrid Systems and Quantitative Logics

We denote the real and rational numbers and integers extended with both ∞ and −∞ by
R∞, Q∞ and Z∞ respectively. We write I(Z∞),I(Q∞) and I(R∞) for all open or closed
intervals over R∞ with endpoints in Z∞,Q∞ and R∞.

Definition 2.1. A linear hybrid system over M variables, K = (V,E, {Pi}i∈J , λ, δ), is based
on a directed graph (V,E), consisting of a set of locations V and transitions E ⊆ V ×V . The
labelling function λ : E → Pfin(LM ) assigns to each transition a finite set of labels. The set
LM of transition labels consists of triples l = (I, C,R), where the vector C = (C1, . . . , CM )
(with Ci ∈ I(R∞) for i ∈ {1, . . . ,M}) represents the constraints each of the variables needs
to satisfy for the transition to be allowed, the interval I ∈ I(R≥0∞ ) represents the possible
period of time that elapses before the transition is taken, and the reset set R contains the
indices of the variables that are reset during the transition, i.e. i ∈ R means that yi is set to
zero. For each i of the finite index set J , the function Pi : V → R∞ assigns to each location
the value of the static quantitative predicate Pi. The function δ : V → RM assigns to
each location and variable yi the coefficient ai such that the variable evolves in this location

according to the equation dyi
dt

= ai.

Please note that although we do not explicitly have any invariants (or constraints) in
locations, we can simulate them by choosing either the time intervals or variable constraints
on the outgoing transitions accordingly. If the values of predicates and labels range over
Q∞ or Z∞ instead of R∞, we talk about linear hybrid systems over Q and Z, respectively.

The state of a linear hybrid system K is a location combined with a valuation of all M
variables, S = V × RM

∞ . For a state s = (v, y1, . . . , yM ) we say that a transition (v, v′) ∈ E
is allowed by a label (I, C,R) ∈ λ((v, v′)) if y ∈ C (i.e. if yi ∈ Ci for all i = 1, . . . ,M). We
say that a state s′ = (v′, y′1, . . . , y

′
M ) is a successor of s, denoted s′ ∈ succ(s), when there is

a transition (v, v′) ∈ E, allowed by label (I, C,R), such that y′i = 0 for all i ∈ R and there
is a t ∈ I such that y′i = yi + (ai · t) where ai = δi(v) for all i 6∈ R ∈ λ((v, v′)). A run of
a linear hybrid system starting from location v0 is a sequence of states s0, s1, . . . such that
s0 = (v0, 0, . . . , 0) and si+1 ∈ succ(si) for all i. Given two states s and s′ ∈ succ(s) and a
reset set R 6= {1, . . . ,M} we denote by s′ −R s the increase of the non-reset variables that

occurred during the transition, i.e.
y′
i
−yi
ai

for some i 6∈ R where s = (v, y) and s′ = (v′, y′).

Definition 2.2. A linear hybrid system K is initialised if for each (v,w) ∈ E and each
variable yi it holds that if δi(v) 6= δi(w) then i ∈ R for R ∈ λ((v,w)).

Intuitively, an initialised system cannot store the value of a variable whose evolution
rate changes from one location to another.
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Figure 1: Leaking gas burner LHS L = (V,E, P, λ, δ) (not initialised)
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R = {y0},y0 ∈ [30, 40]

Figure 2: Leaking gas burner LHS L = (V,E, P, λ, δ) (initialised)

Example 2.3. To clarify the notions we use, we consider a variant of a standard example
for a linear hybrid system, the leaking gas burner.

Our version is depicted in Figure 1. This system represents a gas valve that can leak
gas to a burner, so it has two states: v0, where the valve is open (and leaking gas) and v1
where it is closed. This is also indicated by a qualitative predicate P that has the value
∞ if the gas is leaking (in location v0) and −∞ otherwise. The system has two variables.
The first variable, y0, is a clock measuring the time spent in each location, and is reset on
each transition, i.e. after each discrete system change. The variable y1 is a stop watch and
measures the total time spent in the leaking location. Thus, this system is not initialised.
The time intervals on the transitions control the behaviour of the system. On the transi-
tion (v0, v1) there are no restrictions on the variables, but we are only allowed to choose a
time unit from [0, 1], i.e. we can stay a maximum of one time unit in location v0. On the
transition (v1, v0) there is a restriction on the value of y0, it has to have a value between 30
and 40 for this transition to be allowed, while there is no restriction on the choice for the
time unit (of course, this could also be modelled the other way around). Intuitively, the
time intervals indicate that the gas valve will leak gas for a time interval between 0 and 1
seconds and then be stopped and that it can only leak again after at least 30 time units.

In Figure 2, we show an initialised version of the leaking gas burner. The only difference
is that y1 is not a stop watch anymore but a normal clock. Since now both variables are just
clocks (which means that their evolution rates are one everywhere), the system is trivially
initialised.

2.1. Quantitative µ-Calculus. In this section, we present a version of the quantitative
µ-calculus first introduced in [8]. The version we use here is additive and includes variables.
It is evaluated on linear hybrid systems.

Definition 2.4. Given sets of fixpoint variables X , system variables {y1, . . . , yM} and
predicates {Pi}i∈J , the formulae of the quantitative µ-calculus (Qµ) with variables are given
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by the EBNF grammar:

ϕ ::= Pi | Xj | yk | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | µXj .ϕ | νXj.ϕ ,

where Xj ∈ X , yk ∈ {y1, . . . , yM}, and in the cases µXj .ϕ and νXj.ϕ, the variable Xj must
appear positively in ϕ, i.e. under an even number of negations.

Let F = {f : S → R∞}. Given an interpretation I : X → F , a variable X ∈ X , and
a function f ∈ F , we denote by I[X ← f ] the interpretation I

′, such that I
′(X) = f and

I
′(X ′) = I(X ′) for all X ′ 6= X.

Definition 2.5. Given a linear hybrid system K = (V,E, λ, {Pi}i∈J , δ) and an interpreta-
tion I, a Qµ-formula yields a valuation function JϕKK

I
: S → R∞ defined in the following

standard way for a state s = (vs, ys1, . . . , y
s
M ).

• JPiK
K
I
(s) = Pi(v

s), JXKK
I
(s) = I(X)(s), and JyiK

K
I
(s) = ysi , J¬ϕKK

I
= −JϕKK

I

• Jϕ1 ∧ ϕ2K
K
I
= min{Jϕ1K

K
I
, Jϕ2K

K
I
} and Jϕ1 ∨ ϕ2K

K
I
= max{Jϕ1K

K
I
, Jϕ2K

K},
• J♦ϕKK

I
(s) = sups′∈succ(s)JϕKK

I
(s′) and J�ϕKK

I
(s) = infs′∈succ(s)JϕKK

I
(s′),

• JµX.ϕKK
I
= inf{f ∈ F : f = JϕKK

I[X←f ]},

JνX.ϕKK
I
= sup{f ∈ F : f = JϕKK

I[X←f ]}.

For formulae without free variables we write JϕKK rather than JϕKK
I
.

Please note that the inclusion of variables does not fundamentally change the semantics
of quantitative µ-calculus. The quantitative µ-calculus in [8] is evaluated on quantitative
transition systems. Here, a formula is evaluated on the state graph of a linear hybrid system,
rather than the system itself. Intuitively, a linear hybrid system is a compact representation
of an infinite quantitative transition system (its state graph). Thus, many properties of the
quantitative µ-calculus from [8] remain true. For example, to embed the classical µ-calculus
in quantitative µ-calculus one must interpret true as +∞ and false as −∞.

Example 2.6. The formula µX.(♦X ∨ y1) evaluates to the supremum of the values of y1
on all runs from some initial state: e.g. to ∞ if evaluated on the simple initialised leaking
gas burner model. To determine the longest period of time during which the gas is leaking
we use the formula µX.(♦X ∨ (y0 ∧ P )), which evaluates to 1 on the initial state (v0, 0) in
our example.

The remainder of this paper is dedicated to the proof of our following main result which
shows that JϕKK can be approximated with arbitrary precision on initialised linear hybrid
systems.

Theorem 2.7. Given an initialised linear hybrid system K, a quantitative µ-calculus for-
mula ϕ and an integer n > 0, it is decidable whether JϕKK = ∞, JϕKK = −∞, or else a
number r ∈ Q can be computed such that |JϕKK − r| < 1

n
.

In other words, for every ε we can approximate JϕKK within ε. We formulated the
theorem above using n because it makes the representation of ε precise, so we can provide
a complexity bound: Given on input the system K, the formula ϕ and n, we will show how
to compute the number r (or output ±∞) in 8EXPTIME.
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3. Interval Games

In this section, we define a variant of quantitative parity games suited for model checking
Qµ on linear hybrid systems. As mentioned above, a linear hybrid system can be seen as
a compact representation of an infinite quantitative transition system. Similarly, a parity
game that is played on a linear hybrid system can be viewed as a compact, finite description
of an infinite quantitative parity game, as defined in [8].

Definition 3.1. An interval parity game (IPG) G = (V0, V1, E, λ, δ, ι,Ω), is played on a
LHS (V,E, λ, δ) (without predicates) and V = V0 ∪̇ V1 is divided into positions of either
Player 0 or 1. The transition relation E ⊆ V × V describes possible moves in the game
which are labelled by the function λ : E → Pfin(LM ). The function ι : V →M ×R∞ ×R∞
assigns to each position the index of a variable and a multiplicative and additive factor,
which are used to calculate the payoff if a play ends in this position. The priority function
Ω : V → {0, . . . , d} assigns a priority to every position.

Please note that interval parity games are played on linear hybrid systems without any
quantitative predicates, i.e. the set of of predicates is empty and therefore omitted.

A state s = (v, y) ∈ V × RM
∞ of an interval game is a position in the game graph

together with a variable assignment for all M variables. A state s′ is a successor of s if it
is a successor in the underlying LHS, i.e. if s′ ∈ succ(s). We use the functions loc(s) = v

and var(s) = y, vari(s) = yi to access the components of a state. For a real number r, we
denote by r · s = (v, r · var0(s), . . . r · varM (s)) and r + s = (v, r + var0(s), . . . r + varM (s)).
We call Si the state set {s = (v, y) : v ∈ Vi} where player i has to move and S = S0 ∪̇ S1.

How to play. Every play starts at some position v ∈ V with all variables set to 0,
i.e. the starting state is s0 = (v, 0, . . . , 0). For every state s = (v, y) ∈ Si, player i chooses
an allowed successor state s′ ∈ succ(s) and the play proceeds from s′. If the play reaches a
state s such that succ(s) = ∅ it ends, otherwise the play is infinite.

Intuitively, the players choose the time period they want to spend in a location before
taking a specified transition. Note that in this game every position could possibly be a
terminal position. This is the case if it is not possible to choose a time period from the
given intervals in such a way that the respective constraints on all variables are fulfilled.

Payoffs. The outcome p(s0...sk) of a finite play ending in sk = (v, y1,..., yM ) where
ι(v) = (i, a, b) is p(sk) = a ·yi+ b. To improve readability, from now on we will simply write
ι(v) = a · yi + b in this case. The outcome of an infinite play depends only on the lowest
priority seen infinitely often in positions of the play. We will assign the value −∞ to every
infinite play, where the lowest priority seen infinitely often is odd, and ∞ to those where it
is even.

Goals. The two players have opposing objectives regarding the outcome of the play.
Player 0 wants to maximise the outcome, while Player 1 wants to minimise it.

Strategies. A strategy for player i ∈ 0, 1 is a function σ : S∗Si → S with σ(s) ∈
succ(s). A play π = s0s1 . . . is consistent with a strategy σ for player i, if sn+1 = σ(s0 . . . sn)
for every n such that sn ∈ Si. For strategies σ, ρ for the two players, we denote by π(σ, ρ, s)
the unique play starting in state s which is consistent with both σ and ρ.

Determinacy. A game is determined if, for each state s, the highest outcome Player 0
can assure from this state and the lowest outcome Player 1 can assure coincide,

sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(π(σ, ρ, s)) =: valG(s),
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where Γ0,Γ1 are the sets of all possible strategies for Player 0, Player 1 and the achieved
outcome is called the value of G at s.

We say that the interval game is over Q or Z if both the underlying LHS and all
constants in ι(v) are of the respective kind. Please note that this does not mean that the
players have to choose their values from Q or Z, just that the endpoints of the intervals and
constants in the payoffs are in those sets.

Intuitively, in a play of an interval parity game, the players choose successors of the
current state as long as possible.

Example 3.2. In Figure 3, we show a simple example of an interval parity game. Positions
of Player 0 are depicted as circles and positions of Player 1 as boxes. To keep things
simple, there is just one clock variable, y0, all constraints are trivially true and the reset
sets are empty, so we label the transitions only with the time intervals that the players
can choose from. The priorities are depicted next to the nodes for non-terminal positions
and the evaluation function above the terminal position (in general, also positions with
outgoing edges could be terminal, however in this example this is not possible as there are
no constraints on the variable).

A play of this system starting at node v0 could end after two moves in position v2,
if Player 1 decided to move there (he also has the choice to move down). The payoff of
this play would then depend only on the choice that Player 0 made in the first move, for
example 1

3 ∈ [0, 12 ]. Then the payoff would be 3 · (13 +2)− 1 = 6 (as in this play, the second
time interval only permits the choice 2).

If Player 1 would move down instead of ending the play and the play would loop
infinitely often in the cycle v3, v4, v5 at the bottom, the least priority that occurs infinitely
often would determine the outcome of the play; in this case it would be 0 at v3 and therefore
the payoff would be ∞.

v0 Ω(v0) = 1

v1 Ω(v1) = 1v2

ι(v2) = 3 · y0 − 1

v3Ω(v3) = 0

v4Ω(v4) = 2 v5 Ω(v5) = 1

[0, 1

2
]

[2, 2]

[1, 1]

[1, 1] [1, 1]

[1, 1]

[1, 1]

Figure 3: Simple interval parity game

We already mentioned that an interval parity game can be seen as a representation of
a quantitative parity game, now we want to describe this formally. We use the notion from
[8] and define, for an IPG with M variables G = (V0, V1, E, λ, δ, ι,Ω), the corresponding
infinite quantitative parity game without discounts G∗ = (V0 × RM

∞, V1 × RM
∞ , E

∗, λ∗,Ω∗)
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with (s, s′) ∈ E∗ iff s′ is a successor of s as above, Ω∗(v, z) = Ω(v) and λ∗(v, z) = α · zi + β

iff ι(v) = α · yi + β. The notions of plays, strategies, values and determinacy for the IPG G
are defined exactly as the ones for the quantitative parity game G∗ in [8]. In particular, it
follows from the determinacy of quantitative parity games that also interval parity games
are determined.

3.1. Model-Checking Games for Qµ. A game (G, v) is a model-checking game for a
formula ϕ and a system K, v′, if the value of the game starting from v is exactly the value
of the formula evaluated on K at v′. In the qualitative case, that means, that ϕ holds in
K, v′ if Player 0 wins in G from v. For a linear hybrid system K and a Qµ-formula ϕ, we
construct an IPG MC[K, ϕ] which is the model-checking game for ϕ on K.

The full definition of MC[K, ϕ] closely follows the construction presented in [8] and is
presented below.

Intuitively, the positions are pairs consisting of a subformula of ϕ and a location of K.
Which player moves at which position depends on the outermost operator of the subformula.
At disjunctions Player 0 moves to a position corresponding to one of the disjuncts and from
(♦ϕ, v) to (ϕ,w) where (v,w) ∈ EK, and Player 1 makes analogous moves for conjunctions
and �. From fixed-point variables the play moves back to the defining formula and the
priorities of positions depends on the alternation level of fixed points, assigning odd priorities
to least fixed points and even priorities to greatest fixed points.

Definition 3.3. For a linear hybrid system K = (V,E, {Pi}i∈J , λ, δ) and a Qµ-formula ϕ
in negation normal form, the interval game

MC[K, ϕ] = (V0, V1, E, λ, δ, ι,Ω),

which we call the model-checking game for K and ϕ, is constructed in the following way,
similar to the standard construction of model-checking games for the µ-calculus (c.f. [8]).

Positions. The positions of the game are pairs (ψ, v), where ψ is a subformula of ϕ,
and v ∈ V is a location in the LHS K. Positions (ψ, v) where the top operator of ψ is �,∧,
or ν belong to Player 1 and all other positions belong to Player 0. A state in the game is
denoted by s = (p, y), where p = (ψ, v) is the position and y is the variable assignment of
the location v in the underlying linear hybrid system K.

Moves. Positions of the form (Pi, v) and (yi, v) are terminal positions. From positions
of the form (ψ ∧ θ, v), resp. (ψ ∨ θ, v), one can move to (ψ, v) or to (θ, v). Positions of
the form (♦ψ, v) have either a single successor (−∞) in case v is a terminal location in
K, or one successor (ψ, v′) for every v′ ∈ vE. Analogously, positions of the form (�ψ, v)
have a single successor (∞) if vE = ∅, or one successor (ψ, v′) for every v′ ∈ vE otherwise.
The moves corresponding to system moves (v, v′) are labelled accordingly with λ((v, v′)),
all other moves are labelled with the empty label ([0, 0], (−∞,∞)M , ∅) which indicates that
no time passes, there are no constraints on the variables and no variable is reset. Fixed-
point positions (µX.ψ, v), resp. (νX.ψ, v) have a single successor (ψ, v). Whenever one
encounters a position where the fixed-point variable stands alone, i.e. (X, v′), the play goes
back to the corresponding definition, to (ψ, v′).

Payoffs. The function ι assigns JPiK(v) to all positions (Pi, v), ±∞ to all positions
(±∞) and yi to positions (yi, v). To discourage the players from ending the game at any
other position than a terminal one, ι assigns all other positions outcome −∞ for Player 0’s

8



µX.(♦X∨(y0∧P )),v0

♦X∨((y0∧P ),v0y0∧P,v0

y0

−∞ ♦X,v0

X,v1

R={y0},[0,1]

µX.(♦X∨(y0∧P )),v1

♦X∨((y0∧P ),v1

♦X,v1

X,v0

y0∧P,v1

y0

∞

R={y0},y0∈[30,40],[0,∞)

Figure 4: Model-checking game for µX.(♦X ∨ (y0 ∧ P )) on initialised leaking gas burner.

positions or ∞ for Player 1’s positions. The payoff p(π) of a play π is calculated using ι
and the priorities as stated before.

Priorities. The priority function Ω is defined as in the classical case using the alter-
nation level of the fixed-point variables, see e.g. [12]. Positions (X, v) get a lower priority
than positions (X ′, v′) if X has a lower alternation level than X ′. The priorities are then
adjusted to have the right parity, such that an even value is assigned to all positions (X, v)
where X is a ν-variable and an odd value to those where X is a µ-variable. The maximum
priority, equal to the alternation depth of the formula, is assigned to all other positions.

Example 3.4. We continue our example of the leaking gas burner and present in Figure 4
the model-checking game for the previously introduced system and formula. In this interval
parity game, ellipses depict positions of Player 0 and rectangles those of Player 1. In this
game, all priorities are odd (and therefore omitted), i.e. infinite plays are bad for Player 0.
There is only one position with a constraints on variable y0 and in only two positions a
choice about the time that passes can be made. Both of these positions belong to Player 0
in this example and are labelled with the corresponding intervals below (and in both y0 is
also reset). In terminal nodes, either the variable y0 or the predicate P is evaluated for the
payoff (this choice can be made by Player 1 in this example). The value of the game is 1, as
is the value of the formula on the system starting from either node, and an optimal strategy
for Player 0 is picking 1 from [0, 1] and then leaving the cycle where Player 1 is forced to
choose between the evaluation of y0 or P at v1. Since he is minimising, he will choose to
evaluate y0.

It has been shown in [8] that quantitative parity games of any size are determined and
that they are model-checking games for Qµ. These results translate to interval parity games
and we can conclude the following.

Theorem 3.5. Every interval parity game is determined and for every formula ϕ in Qµ,
linear hybrid system K, and a location v of K, it holds that

valMC[K, ϕ]((ϕ, v), 0) = JϕKK(v, 0).

Proof. Determinacy of an interval parity game G follows directly from the determinacy of
the infinite QPG G∗ used to define G.

Let ϕ be a Qµ-formula and K a linear hybrid system. Let S(K) = (S,ES) be the state
graph of K, where S is the set of all states, and (s, s′) ∈ ES iff s′ ∈ succ(s) in K. Let
K∗ = (S,ES , Py0 . . . PyM ) be the quantitative transition system with predicates Pyi where
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Pyi(v, a) = ai. Let us also rewrite the formula ϕ into a formula without variables, ϕ∗, by
replacing each occurrence of yi by the corresponding Pyi .

Applying the model-checking Theorem 12 from [8] we conclude that for all v ∈ K∗ it

holds valMC[K, ϕ]∗(ϕ, v) = JϕK∗K
∗

(v), i.e. that MC[K, ϕ]∗ is the model-checking game for
K∗ and ϕ∗. Finally, by definition of IPGs on the one hand and the semantics of Qµ on the
other, it follows that for all x

valMC[K, ϕ]((ϕ, v), x) = JϕKK(v, x).

4. Basic Properties of Interval Games

In this section, we first give a brief example that illustrates the difference between interval
games and timed games. Then, we show how to transform an initialised interval game over
Q∞ into an easier game over Z∞ in which the all evolution rates are one.

At first sight, interval games seem to be very similar to timed games. Simple timed
games are solved by playing on the region graph and can thus be discretised. To stress that
quantitative payoffs indeed make a difference, we present in Figure 5 an initialised interval
parity game with the interesting property that it is not optimal to play integer values, even
though the underlying system is over Z∞. This simple game contains only one variable (a
clock) and has no constraints on this variable in any of the transitions, so only the time
intervals are shown. Also, as infinite plays are not possible, the priorities are omitted, as
well as the indices of non-terminal positions (they are chosen to be unfavourable for the
current player such that she has to continue playing). The payoff rule specifies the outcome
of a play π ending in v2 as p(π) = y0 − 1 and in v3 as p(π) = −y0. This game illustrates
that it may not be optimal to play integer values since choosing time 1

2 in the first move is

optimal for Player 0. This move guarantees an outcome of −1
2 which is equal to the value

of the game.

v0

v1v2

ι(v2) = y0 − 1

v3

ι(v3) = −y0

[0, 1]
[0, 0] [0, 0]

Figure 5: Game with integer coefficients and non-integer value.

4.1. Flattening Initialised Interval Games. So far, we have considered games where
the values of variables can change at different rates during the time spent in locations. In
this section, we show that for initialised games it is sufficient to look at easier games where
all rates are one, similar to timed games but with more complex payoff rules. We call these
games flat and show that for every initialised IPG we can construct a flat IPG with the
same value. To do so, we have to consider the regions where the coefficients do not change
and rescale the constraints and payoffs accordingly.

For an interval I = [i1, i2], we denote by q · I and q + I the intervals [q · i1, q · i2] and
[q + i1, q + i2] respectively, and do analogously for open intervals.
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Definition 4.1. An interval parity game G = (V0, V1, E, λ, δ, ι,Ω) is flat if and only if
δi(v) = 1 for all v ∈ V and i = 1 . . .M .

Lemma 4.2. For each initialised interval parity game G there exists a flat game G′ with
the same value.

Proof. Let G = (V0, V1, E, λ, δ, ι,Ω) be an initialised interval parity game. We construct
a corresponding flat game G′ = (V0, V1, E, λ

′, δ′, ι′,Ω) in the following way: For a position
v ∈ V = V0 ∪̇ V1 and each variable yi, such that δi(v) = ai, ι(v) = a · yi + b and an outgoing
edge (v,w) with Ci = [c0, c1] we have in the corresponding flat game:

• δ′i(v) = 1
• C ′i ∈ λ

′(v,w) = [ c0
ai
, c1
ai
] = 1

ai
Ci

• ι′(v) = ai · a · yi + b

Note that we only change the functions δ, λ and ι. We will show that for every play π from
a starting state s consistent with σ and ρ, we can construct strategies σ′, ρ′, such that
π′(σ′, ρ′, s′) visits the same locations as π and p(π) = p(π′). Before we proceed with the
proof, notice that it is essential that G is an initialised game. Intuitively, the value of yi in
G′ is the value of yi in G divided by the coefficient ai of the current position. When the
position changes, it is thus crucial that ai does not change, except if yi is reset – exactly
what is required from an initialised game.

The proof proceeds by induction on the length of the plays. First, if s0 = (v0, 0) is a
state belonging to Player 0 and σ(s0) = s1 = (v1, x) and s

′
0 = (v0, 0), then in G′ we define

σ′(s′0) = s′1, where s
′
1 = (v1, y

′), such that y′i =
yi
ai

for any yi 6∈ R ∈ λ(v0, v1). Since (s0, s1) is

allowed in G, this means that for all yi 6∈ R ∈ λ(v0, v1), we have yi ∈ Ci = [c0, c1] ∈ λ(v0, v1).
It follows that c0

ai
≤ y′i =

yi
ai
≤ c1

ai
for all yi 6∈ R and therefore (s′0, s

′
1) is allowed in G′. Also

p(s1) = ι(v1) = a · yi + b and therefore the payoff is equal to p(s′1) = ι′(v′1) = ai · a ·
yi
ai

+ b.

Let s0 . . . sk and s′0 . . . s
′
k be finite histories in G and G′, such that they visit the same

locations and p(π) = p(π′). Then, if sk = (vk, y) is a state belonging to Player 0 and σ(sk) =
sk+1 = (vk+1, y) and s

′
k = (vk, z), then in G′ we define σ′(s′k) = s′k+1, where s

′
k+1 = (vk, w),

such that wi = t where ti =
yi
ai

for any yi 6∈ R ∈ λ(vk, vk+1). Since (sk, sk+1) is allowed in

G, this means that for all yi 6∈ R, yi ∈ Ci = [c0, c1] ∈ λ(vk, vk+1). As c0
ai
≤ wi =

yi
ai
≤ c1

ai

for all yi 6∈ R, we get that (s′k, s
′
k+1) is allowed in G′. Also p(sk) = ι(vk) = a · yi + b and

therefore the payoff is equal to p(s′k+1) = ι′(v′k+1) = ai · a · wi + b = ai · a ·
yi
ai

+ b.
The cases for Player 1 are analogous. Note that, for infinite plays, we also have the

same payoff, since for the payoff of infinite games only the locations (and their priorities)
matter. Since we can construct, for each pair of strategies in G, the corresponding strategies
in G′, and those yield a play with the same payoff, the values of the two games are equal.

Consequently, from now on we only consider flat interval parity games and therefore
omit the coefficients, as they are all equal to one.

4.2. Multiplying Interval Games.

Definition 4.3. For a flat IPG G = (V0, V1, E, λ, ι,Ω) and a value q ∈ Q, we denote by
q · G = (V,E, λ′, ι′,Ω) the IPG where ι′(v) = a · yi + q · b iff ι(v) = a · yi + b for all v ∈ V ,
and (I ′, C ′, R) ∈ λ′((v,w)) iff (I, C,R) ∈ λ((v,w)) with I ′ = q · I and C ′i = q · Ci for all
(v,w) ∈ E.
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Intuitively, this means that all endpoints in the time intervals (open and closed), and
the constraints, and all additive values in the payoff function ι are multiplied by q. The
values of q · G are also equal to the values of G multiplied by q.

Lemma 4.4. For every IPG G over Q∞ and q ∈ Q, q 6= 0 it holds in all states s that
q · valG(s) = val q · G(q · s).

Proof. We denote by q · σ the strategy with q · σ(q · h) = q · s′ iff σ(h) = s′. The mapping of
G with strategies for both players σ and ρ to q · G with q · σ and q · ρ is a bijection (in the
reverse direction take 1

q
). We also have q · pG(π(σ, ρ, s) = s0s1 . . . sk) = q · (a · yi + b) where

ι(loc(sk)) = (a, i, b) which is equal to pq·G(π(q ·σ, q ·ρ, q ·s) = q ·s0 . . . q ·sk) = a · (q ·yi)+q ·b
for all finite plays π. Therefore, we know that infρ q ·p(π(σ, ρ, s) = infq·ρ p(π(q ·σ, q · ρ, q · s)
and the same holds for the supremum and thus we get the desired result.

Note that all multiplicative factors in ι are the same in G and in q · G. Moreover, if we
multiply all constants in ι in a game G (both the multiplicative and the additive ones) by
a positive value r, then the value of G will be multiplied by r, by an analogous argument
as above. Thus, if we first take r as the least common multiple of all denominators of
multiplicative factors in ι and multiply all ι constants as above, and then take q as the least
common multiple of all denominators of endpoints in the intervals and additive factors in
the resulting game G and build q · G, we can conclude the following.

Corollary 4.5. For every finite IPG G over Q∞, there exists an IPG G′ over Z∞ and

q, r ∈ Z such that valG(s) = valG′(q·s)
q·r

.

From now on we assume that every IPG we investigate is a flat game over Z∞ when
not explicitly stated otherwise.

5. Discrete Strategies

Our goal in this section is to show that it suffices to use a simple kind of (almost) discrete
strategies to approximate the value of flat interval parity games over Z∞. To this end,
we define an equivalence relation between states whose variables belong to the same Z

intervals. This equivalence, resembling the standard methods used to build the region
graph from timed automata, is a technical tool needed to compare the values of the game
in similar states.

We use the standard meaning of ⌊r⌋ and ⌈r⌉, and denote by {r} the number r − ⌊r⌋
and by [r] the pair (⌊r⌋, ⌈r⌉). Hence, when writing [r] = [s], we mean that r and s lie in
between the same integers. Note that if r ∈ Z then [r] = [s] implies that r = s.

Definition 5.1. We say that two states s and t in an IPG are equivalent, s ∼ t, if they are
in the same location, loc(s) = loc(t), and for all i, j ∈ {1, . . . ,K}:

• [vari(s)] = [vari(t)], and
• if {vari(s)} ≤ {varj(s)} then {vari(t)} ≤ {varj(t)}.

Intuitively, all variables lie in the same integer intervals and the order of fractional parts
is preserved. In particular, it follows that all integer variables are equal. The following
technical lemma allows for the shifting of moves between ∼-states.
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Lemma 5.2. Let s and s′ be two states in a flat IPG over Z such that s ∼ s′. If a move
from s to t is allowed by a label l = (I, C,R), then there exists a state t′, the move to which
from s′ is allowed by the same label l and t′ ∼ t.

Proof. If R = {1, . . . ,K} then let t′ = t. As s ∼ s′, the same constraints are satisfied by s
and s′ and thus the move from s′ to t′ = t is allowed by the same label.

If R 6= {1, . . . ,K} then let w = t−R s ∈ I be the increment chosen during the move. If
w ∈ Z we let t′ = s′ + w, the conditions follow from the assumption that s ∼ s′ again.

If w 6∈ Z, let i be the index of a non-reset variable with the smallest fractional part in t,
i.e. {vari(t)} ≤ {varj(t)} for all j 6∈ R. To construct t′, we must choose w′ with [w′] = [w]
which makes vari(s

′ + w′) the one with smallest fractional part.
Case 1 : {vari(t)} ≥ {w}.

In this case, for all non-reset variables j, holds {varj(t)} ≥ {w}, intuitively meaning that
no variable “jumped” above an integer due to {w}. Let l be the variable with maximum
fractional part in s′ (and thus, by definition of ∼, also in s and in this case in t). Set

w′ = ⌊w⌋+ 0.9 ·
(

⌈varl(s
′)⌉ − varl(s

′)
)

.

Clearly [w′] = [w] and indeed, we preserved the order of fractional parts and integer inter-
vals, thus ∼ is preserved.

0 {vari(s)} {vari(t)}

{w}

{varl(s
′)}

⌈varl(s′)⌉ − varl(s
′)

1

Figure 6: Lemma 5.2 Case 1

Case 2 : {vari(t)} < {w} and for all j 6∈ R {varj(s
′)} ≥ {vari(s

′)}.
In this case, for all non-reset variables j, holds {varj(t)} ≤ {w}, intuitively meaning that
all variables “jumped” above an integer due to {w}. Let l be the variable with maximum
fractional part in s′ (and thus also in s). Let

δ = 0.9 ·min
(

{vari(s
′)},

(

⌈varl(s
′)⌉ − varl(s

′)
))

be a number smaller than both {vari(s
′)} and ⌈varl(s

′)⌉ − varl(s
′). We set

w′ = ⌊w⌋+ ⌈vari(s
′)⌉ − vari(s

′) + δ.

By the first assumption on δ we have [w′] = [w] and both the order of fractional parts and
integer bounds in t′ are the same as in t, since

⌈varl(t
′)⌉ = ⌈varl(s

′ + w′)⌉ ≤ ⌈varl(s
′) + ⌊w⌋ + 1 + δ⌉ = ⌈varl(t)⌉

by the second assumption on δ. The inequality in the other direction holds as well, and we
get that t′ ∼ t as required.

Case 3 : {vari(t)} < {w} and there exists j 6∈ R with {varj(s
′)} < {vari(s

′)}.
In this case let l be the variable with maximum fractional part in t, i.e. the last one which
did not “jump” above an integer due to {w}. The variable with next bigger fractional part
in s (and by ∼ also in s′) is vari(s), as depicted in Figure 8.

To transfer the move to s′, consider these two variables in s′ as depicted in Figure 9
and let δ = {vari(s

′)} − {varl(s
′)}.
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1{vari(s
′)} {vari(s)} {varl(s

′)}

δ

⌈vari(s′)⌉ − vari(s
′)

{vari(t)}+ 1

Figure 7: Lemma 5.2 Case 2

1{varl(s)} {vari(s)}{varl(t)}

{w}

{vari(t)}+ 1

Figure 8: Lemma 5.2 Case 3 for s

1{varl(s
′)} {vari(s

′)}

δ ⌈vari(s′)⌉ − vari(s
′)

Figure 9: Lemma 5.2 Case 3 for s′

We set w′ = ⌊w⌋ + ⌈vari(s
′)⌉ − vari(s

′) + 0.9 · δ. Again [w′] = [w] and clearly i is the
variable with smallest fractional part in t′ by construction. As s ∼ s′, the order of fractional
parts in t and in t′ is the same, and the integer bounds as well, thus t ∼ t′.

5.1. Choosing Discrete Moves. Knowing that we can shift a single move and preserve
∼-equivalence, we proceed to show that for IPGs over Z∞, fully general strategies are not
necessary. In fact, we can restrict ourselves to discrete strategies and, using this, reduce
the games to discrete systems. Intuitively, a discrete strategy keeps the maximal distance
of all variable valuations to the closest integer small.

However, for the purposes of constructing an inductive proof of existence of a good
discrete strategy, it is not convenient to work, for a state s, simply with the maximal
distance

maxi{min{vari(s)− ⌊vari(s)⌋, ⌈vari(s)⌉ − vari(s)}}.

The reason is that for some moves it is impossible to keep this distance small for each variable
and to go to an equivalent state as illustrated in Figure 10. In the depicted situation, if we
move y1 within ε-neighbourhood of Z (below z and z− 1 depict integers), then y0 leaves it.
To give a more suitable notion of distance for a state, let us, for r ∈ R, define

d(r) =

{

r − ⌈r⌉ if |r − ⌈r⌉| ≤ |r − ⌊r⌋|;
r − ⌊r⌋ otherwise.

This function gives the distance to the closest integer, except that it is negative if the closest
integer is greater than r, i.e. if the fractional part of r is > 1

2 . as depicted in Figure 11.
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z − 1 y0 z − 1 + ε zz − ε y1 z + ε

Figure 10: Move where standard distance is necessarily increased.

⌊r⌋ r ⌈r⌉ = ⌊s⌋ ⌈s⌉s

d(s) < 0d(r) > 0

Figure 11: Notation for distances between real numbers and integers.

Please observe that for two real numbers a, b ∈ R+, it follows that

|d(a+ b)| ≤ |d(a)|+ |d(b)|.

Also, we observe that

• if |d(a) + d(b)| < 1
2 , then d(a+ b) = d(a) + d(b);

• otherwise, if d(a),d(b) = 1
2 or d(a),d(b) = 0, then d(a+ b) = 0;

• otherwise, if d(a),d(b) > 0, then d(a+ b) = d(a) + d(b)− 1 < 0;
• if d(a),d(b) < 0, then d(a+ b) = d(a) + d(b) + 1 > 0.

For a state s, we use the abbreviation di(s) = d(vari(s)). We denote by dl(s) =
mini=1...k{di(s)} and dr(s) = maxi=1...k{di(s)} the smallest and biggest of all values di(s),
and additionally we define the total distance as follows

d∗(s) =







|dl(s)| if di(s) ≤ 0 for all i ∈ {1, . . . , k},
dr(s) if di(s) ≥ 0 for all i ∈ {1, . . . , k},
|dl(s)|+ dr(s) otherwise.

This is illustrated in Figure 12, where k stands for an integer and y0 to y2 stand for
the fractional parts of the values of the respective variables. In this example, y0 has the
smallest fractional part, i.e. the biggest one bigger than 1

2 and y2 has the biggest fractional

part (less than 1
2 ).

First, we will prove that we can always correct a strategy that makes one step which is
not ε-discrete. By doing so, we will guarantee that we reach a state with the same location
that is allowed by the labelling and that the values of the variables only change within the
same intervals.

k − 1
2

y0 y1y3 y2

k k + 1
2dr−dl

d∗

Figure 12: Maximal, minimal and total distances for a state.
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Lemma 5.3. Let s be a state with d∗(s) ≤ 1
4 and t be a successor of s, where (s, t) is

allowed by l = (I, C,R). Then, for every 0 ≤ ε < d∗(s), there exists a successor t′+ of s
such that

• t ∼ t′+,
• (s, t′+) is allowed by l, and
• d∗(t′+) ≤ d∗(s) + ε.

Proof. We assume that d∗(t) > d∗(s) + ε, otherwise we can take t′+ = t. Let w ∈ I be the
increase in the (non-reset) values from s to t, i.e. w = t−R s. We make a case distinction
regarding the computation of d∗(t).

Case 1: d∗(t) = |dl(t)|.
We correct w in the following way: w′ = w+c−ε, where c = min{|dr(t)|, |d(w)|} if d(w) < 0
and c = |dr(t)| otherwise.

First, we have to show that [w′] ∈ [w] and therefore w′ ∈ I. Since dl(t) = di(t) = vari(t)
for one i, we can conclude from |d(vari(s) +w)| ≤ |d(vari(s))|+ |d(w)| that |d(w)| > ε and
therefore w′ ≥ w, hence w′ ≥ ⌊w⌋. Furthermore, w′ ≤ ⌈w⌉. Otherwise, if d(w) < 0 then
w′ = w + c− ε > ⌈w⌉ = w + |d(w)|. This is a contradiction, since by definition c ≤ |d(w)|.

If d(w) > 0, we also conclude w′ ≤ ⌈w⌉, since c− ε < 1
2 .

Next, we have to show, that all variables that are not reset stay in the same interval.
We consider the case, where all values of the variables are increased, therefore we know that
vari(t

′
+) ≥ ⌊vari(t)⌋ for all i 6∈ R. We now have to show that also vari(t

′
+) ≤ ⌈vari(t)⌉. Let

j be the index of the variable which is the closest to the integers (in this case), i.e. j, such
that d(varj(t)) = dr(t).

varj(t
′
+) = varj(s) + w′

= varj(s) + w + c− ε

= varj(t) + c− ε

< ⌈vari(t)⌉ = varj(t) + |dr(t)|

Also, we have to show: d∗(t′+) ≤ d∗(s) + ε. We know that |dl(t)| − |dr(t)| ≤ d∗(s) and
d∗(t′+) = |dl(t

′
+)| = |d(varj(t

′
+))| for one j and varj(t

′
+) = varj(s) + w + c − ε. Hence,

d(varj(t
′
+)) = dl(t) + c − ε, since |dl(t) + c − ε| ≤ 1

2 . We can conclude that dl(t
′
+) =

d(varj(t
′
+)) ≤ d∗(s) + ε.

Case 2: d∗(t) = |dr(t)|.
Subcase 1: d(w) > 0:

We correct w in the following way: w′ = w + (1− c)− ε, where c = max{|dl(t)|, |d(w)|}.
First, we have to show that [w′] ∈ [w] and therefore w′ ∈ I. Since dr(t) = di(t) = vari(t)

for one i, we can conclude from |d(vari(s) +w)| ≤ |d(vari(s))|+ |d(w)| that |d(w)| > ε and
therefore w′ ≥ w, hence w′ ≥ ⌊w⌋. Furthermore, w′ ≤ ⌈w⌉. Otherwise, since d(w) > 0 and
we assume that w′ = w + (1 − c) − ε > ⌈w⌉ = w + (1 − |d(w)|). This is a contradiction,
since by definition c ≥ |d(w)|.

Next, we have to show, that all variables that are not reset stay in the same interval.
We consider the case, where all values of the variables are increased, therefore we know that
vari(t

′
+) ≥ ⌊vari(t)⌋ for all i 6∈ R. We now have to show that also vari(t

′
+) ≤ ⌈vari(t)⌉. Let

j be the index of the variable which is the closest to the integers (in this case), i.e. j, such
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t =
y1y2

|dr|

|dl| > d∗(s) + ε

1− |dl|

≤ d∗(s)

t′+ =
y1y2

|dl| ≤ d∗(s) + ε

Figure 13: Case 1 illustration

that d(varj(t)) = dl(t).

varj(t
′
+) = varj(s) + w′

= varj(s) + w + (1− c)− ε

= varj(t) + (1− c)− ε

< ⌈vari(t)⌉ = varj(t) + (1− |dl(t)|

Also, we have to show: d∗(t′+) ≤ d∗(s) + ε. We know that dr(t) − dl(t) ≤ d∗(s)
and d∗(t′+) = |dr(t

′
+)| = |d(varj(t

′
+))| for one j. varj(t

′
+) = varj(s) + w + (1 − c) − ε.

Hence, d(varj(t
′
+)) = dr(t) + (1 − c) + ε − 1 = dr(t) − c + ε. We can conclude that

dr(t
′
+) = d(varj(t

′
+)) ≤ d∗(s) + ε. by definition of c.

Subcase 2: d(w) < 0 :
In this case, from d∗(s) < 1

4 and d∗(t) = dr(t) it follows that d(vari(s)) < 0 for all i. Thus,
we set w′ = w + ⌈w⌉ − ε and the lemma holds.

t =
y1y2

|dl|

|dr| > d∗(s) + ε

1− |dr—

≤ d∗(s)

t′+ =
y1y2

|dl| ≤ d∗(s) + ε

Figure 14: Case 2 illustration

Case 3: d∗(t) = dr(t) + |dl(t)|.
We correct w in the following way: w′ = w + c− ε

2 , where c = min{|dl(t)|, |d(w)|}.
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First, we have to show that [w′] ∈ [w] and therefore w′ ∈ I. Since dr(t) = di(t) = vari(t)
for one i and dl(t) = dj(t) = varj(t) for one j, we can conclude from |d(vari(s) + w)| ≤
|d(vari(s))| + |d(w)| and |d(varj(s) + w)| ≤ |d(varj(s))| + |d(w)| and |d(varj(s) + w)| +
|d(vari(s)+w)| ≤ |d(vari(s))|+|d(w)|+|d(varj(s))|+|d(w)| ≤ d∗(s)+2|d(w)| and |d(varj(s)+
w)| + |d(vari(s) + w)| > d∗(s) + ε therefore |d(w)| > ε

2 . Hence, w′ ≥ ⌊w⌋. Furthermore,
w′ ≤ ⌈w⌉, otherwise if d(w) < 0 then assume w′ = w + c − ε

2 > ⌈w⌉ = w + |d(w)|. Then
c − ε

2 > |d(w)|. Contradiction. Otherwise, if d(w) > 0, then w′ ≤ ⌈w⌉, since by definition

c ≤ 1
2 .
Next, we have to show, that all variables that are not reset stay in the same interval.

We consider the case, where all values of the variables are increased, therefore we know that
vari(t

′
+) ≥ ⌊vari(t)⌋ for all i 6∈ R. We now have to show that also vari(t

′
+) ≤ ⌈vari(t)⌉. Let

j be the index of the variable with d(varj(t)) = dl(t).

varj(t
′
+) = varj(t) + w′

= varj(t) + w + c−
ε

2

= varj(t) + c−
ε

2
< ⌈vari(t)⌉ = varj(t) + |dl(t)|

Thus we have to show: d∗(t′+) ≤ d∗(s) + ε. We know that |dr(t)− (1 + dl(t))| ≤ d∗(s)
and d∗(t′+) = |dl(t

′
+)| = |d(vari(t

′
+))| for j such that d(varj(t)) = dr(t). Also, varj(t

′
+) =

varj(s) + w + c− ε
2 . We can conclude that d∗(t′+) ≤ d∗(s) + ε

2 .

t =
y1y2

|dl|dr ≤ d∗(s)

t′+ =
y1y2

|dl| ≤ d∗(s) + ε

Figure 15: Case 3 illustration

Knowing that, in one step, the move can always preserve small total distance, we can
finally define discrete strategies.

Definition 5.4. We call a strategy σ ε-discrete if for every sn+1 = σ(s0 . . . sn) it holds that
if d∗(sn) ≤ ε then d∗(sn+1) ≤ d∗(sn) +

ε
2n+1 , and if for each i s′i ∼ si, then σ(s0 . . . sn) ∼

σ(s′0 . . . s
′
n).

Observe that it follows directly from the definition that if d∗(s0) ≤
ε
2 and both players

play discrete strategies, then d∗(sn) ≤ ε(1 −
1

2n+1 ).
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Example 5.5. To see that decreasing ε in each step is sometimes crucial, consider the game
with one variable depicted in Figure 16. In each move Player 0 has to choose a positive
value in (0, 1). Player 1 can then decide to continue the play or leave the cycle and end the
play with the negative accumulated value, i.e. −y0, as payoff. He cannot infinitely often
decide to stay in the cycle as then the payoff would be∞ as the priority is 0. An ε-optimal
strategy for Player 0 as the maximising player is thus to start with ε

2 and decrease in each
step. Please note that the value of the game is 0.

Ω(v0) = 0

v0

Ω(v1) = 0

v1 v2

ι(v2) = −y0
(0, 1)

[0, 0]

[0, 0]

Figure 16: Game in which the values played must decrease.

We now extend the previous lemma to one that allows for the shifting of a whole move.

Lemma 5.6. Let s be a state and t a successor of s, where (s, t) is allowed by l. Let s′ be
a state with d∗(s′) ≤ 1

4 , such that s ∼ s′. Then, for every ε > 0, there exists a successor t′

of s′ allowed by l such that

• s′ ∼ t′ and
• d∗(t′) ≤ d∗(s′) + ε.

Proof. Since s ∼ s′ and t ∈ succ(s) is allowed by l, we know, by Lemma 5.2, that there
exists a state t′ ∈ succ(s′) allowed by the same label l, such that t′ ∼ t. We also know from
Lemma 5.3 that, for every choice of ε, there exists t+ ∈ succ(s′) such that d∗(t+) ≤ d∗(s′)+ε
and t′ ∼ t+. Since t′ ∼ t, this also means that t+ ∼ t, hence t+ fulfils the requirements
above.

We can conclude that discrete strategies allow for the approximation of game values.

Lemma 5.7. Fix an ε-discrete strategy ρd of Player 1− i in G, ε < 1
4 . For every strategy σ

of Player i there exists an ε-discrete strategy σd, such that, for every starting state s0 with
d∗(s0) <

ε
2 , if π(σ, ρd, s0) = s0s1 . . . and π(σd, ρd, s0) = s′0s

′
1 . . ., then si ∼ s

′
i for all i.

Proof. We only prove this lemma for Player 0, the case of Player 1 is analogous. We define
σd inductively. Let s0 be the starting state. If σ(s0) = s1, then by Lemma 5.6 there is a
s′1 ∼ s1 with d∗(s′1) ≤ d∗(s0) +

ε
4 , and we set σd(s0) = s′1.

Let h = s0 . . . sk and h′ = s′0 . . . s
′
k be finite play histories such that h is a prefix of

π(σ, ρd, s0) and h
′ is consistent with ρd and σd as defined thus far. Note that s0 = s′0 and

by inductive assumption si ∼ s′i for 0 < i ≤ k, and d∗(sk) ≤ ε(1 − 1
2k+1 ). If σ(s0 . . . sk) =

sk+1 ∈ succ(sk), then, by Lemma 5.6, there also exists a state s′k+1 ∈ succ(s′k) such that
s′k+1 ∼ sk+1 and d∗(s′k+1) ≤ d∗(sk) +

ε
2 . Thus, we set σd(s

′
0 . . . s

′
k) to s′k+1. For all other

histories h′′ = s′′0 . . . s
′′
k with s′′i ∼ si, we set σ(h′′) = s′′k+1 for any s′′k+1 equivalent with sk,

which exists by Lemma 5.2, and we can pick a discrete one if d∗(s′′k) < ε by Lemma 5.6.
By construction, the strategy σd is discrete and if π(σ, ρd, s0) = s0s1 . . . and π(σd, ρd, s0)

= s′0s
′
1 . . . then si ∼ s

′
i.
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Proposition 5.8. Let G be a flat interval parity game. Let Γi be the set of all strategies
for player i and ∆i the set of all discrete strategies for player i and m be the highest value
that occurs as a multiplicative factor in ι. Then it holds, for every starting state s, that

∣

∣

∣

∣

∣

sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s))− sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s))

∣

∣

∣

∣

∣

≤ m.

Proof. Case 1: assume that

sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s)) − sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) > m.

Then there exists a strategy σd ∈ ∆0 such that

inf
ρ∈∆1

p(π(σd, ρ, s)) − inf
ρ∈Γ1

p(π(σd, ρ, s) > m.

Fix a strategy ρinf ∈ Γ1, for which

p(π(σd, ρinf , s)) ≤ inf
ρ∈Γ1

p(π(σd, ρ, s)) + ε.

From Lemma 5.7, we know, that there is a discrete strategy ρinfd ∈ ∆1 which is a discrete ver-
sion of ρinf against σd. From the above, it follows that p(π(σd, ρinfd , s))− p(π(σd, ρinf , s)) >
m. This is a contradiction, since we know from Lemma 5.7 that all states in both plays
are equivalent, so for finite plays also the final states are equivalent, which means that the
payoffs cannot differ by more than m as it is the highest occurring multiplicative factor in
ι. If both plays are infinite, then, by definition of ∼, the payoffs are equal.

Case 2: assume that

sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) − sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s)) > m.

By Theorem 3.5 every interval parity game is determined, thus

sup
σ∈Γ0

inf
ρ∈Γ1

p(π(σ, ρ, s)) = inf
ρ∈Γ1

sup
σ∈Γ0

p(π(σ, ρ, s)).

In the next section, we show that restricting to discrete strategies corresponds to playing a
counter-reset game, and since these are again determined games, we get that

sup
σ∈∆0

inf
ρ∈∆1

p(π(σ, ρ, s)) = inf
ρ∈∆1

sup
σ∈∆0

p(π(σ, ρ, s)).

Therefore we can rewrite the assumption of this case as

inf
ρ∈Γ1

sup
σ∈Γ0

p(π(σ, ρ, s)) − inf
ρ∈∆1

sup
σ∈∆0

p(π(σ, ρ, s)) > m.

Then there exists a strategy ρd ∈ ∆1 such that

sup
σ∈Γ0

p(π(σ, ρd, s))− sup
σ∈∆0

p(π(σ, ρd, s)) > m.

Fix a strategy σsup ∈ Γ0, for which

p(π(σsup, ρd, s)) ≥ sup
σ∈Γ0

p(π(σ, ρd, s))− ε.

From Lemma 5.7, we know, that there again is a discrete strategy σsupd ∈ ∆0 which is
a discrete version of σsup against ρd. From the above, it follows that p(π(σsup, ρd, s)) −
p(π(σsupd , ρd, s)) > m, which again contradicts that all states in these two plays are equiv-
alent.
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6. Counter-Reset Games

In this section, we introduce counter-reset games and show, using the discretisation results
from the previous section, that approximating the value of an IPG over Z∞ can be reduced
to solving a counter-parity game. We then solve these games using an algorithm from [2].

By Proposition 5.8 above, we can restrict both players in a flat IPG to use ε-discrete
strategies to approximate the value of a flat interval game up to the maximal multiplicative
factor m. Multiplying the game by any number q does not change the multiplicative factors
in ι but multiplies the value of the game by q. Thus, to approximate the value of G up to 1

n
it

suffices to play ε-discrete strategies in n·m·G. When players use only discrete strategies, the
chosen values remain close to integers (possibly being up to ε bigger or smaller). Whether
the value is bigger, equal or smaller than an integer can be stored in the state, as well as
whether the value of a variable is smaller or bigger than any of the (non-infinite) bounds in
constraint intervals. This way, we can eliminate both ε’s and constraints and are left with
the following games.

Definition 6.1. A counter-reset game is a flat interval parity game in which in each label
l = (I, C,R) the constraints C are trivially true and the interval I is either [0, 0] or [1, 1],
i.e. either all variables are incremented by 1 or all are left intact.

Example 6.2. In Figure 6, we depict a simple counter-reset game. As usual, circles repre-
sent positions of Player 0 and boxes those of Player 1. Priorities, payoff functions, intervals
and reset sets are also depicted as usual next to the corresponding nodes or above tran-
sitions. In this game, we have two variables, y0, y1 and as mentioned above, there are no
constraints on these variables in counter-reset games, but they can be reset. The only
choice in this game that Player 0 has is to increase all variables (“choose” 1 from [1, 1])
and Player 1 can do the same or end the game and get a payoff of −y0. Since he wants
to minimise, his best strategy is to loop as long as possible but not infinitely long, as the
lowest priority on the according cycle is 0. Since he can achieve arbitrary small values this
way, the value of this game (starting at v0 or v1) is −∞.

Ω(v0) = 0

v0

Ω(v1) = 1

v1 v2

ι(v2) = −y0
[1, 1]

R = {y1}

[1, 1]

R = ∅

[0, 0]

R = ∅

Figure 17: Simple counter-reset game

Lemma 6.3. Let G be an IPG over Z∞ with maximal absolute value of the multiplicative
factor in ι equal to m. For each n ∈ N there exists a counter-reset game G′n such that for
all states s in which all variables are integers:

∣

∣

∣

∣

valG(s)−
valG′n(n ·m · s)

n ·m

∣

∣

∣

∣

≤
1

n
.

Proof. Consider first the game G′′ = n ·m · G. By construction, the multiplicative factors in
ι do not change and thus their maximal value in G′′ is still m. By Lemma 4.4, in all states
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s holds

valG(s) =
valG′′(s)

n ·m
.

Moreover, by Proposition 5.8 applied to G′′
∣

∣

∣

∣

∣

valG′′(s)− sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s))

∣

∣

∣

∣

∣

≤ m,

and therefore
∣

∣

∣

∣

∣

∣

valG(s)−

sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s))

n ·m

∣

∣

∣

∣

∣

∣

≤
1

n
.

We will now show how to construct the counter-reset game G′ with value equal to
sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s)), i.e. to the value of G′′ when both players play ε-discrete strategies.

To this end, we first construct the game G′0 which still has constraints, but in which all
intervals are [k, k] for some k ∈ N. The game G′0 is constructed from G′′ by replacing each
position v by 3M positions vi1...iM . The sequence i1 . . . iM ∈ {−1, 0, 1}

M keeps track, for
each variable, whether it is currently smaller, greater, or equal to an integer. The interval
labels are now converted in the following way. If a move with interval [n, n+ k) and resets
R is taken from a position vi1...iM in G′0 and would lead to w in G′′, then a sequence of moves
with labels [l, l] for each n ≤ l ≤ n+ k is added, with the l-labelled move leading to wj1...jM

such that:

• if one jk > ik then all jk > ik for k ∈ {0, . . . ,M}, and the same if jk < ik or jk = ik,
• if l = n then each jk ≥ ik (interval was downwards-closed), and
• if l = k then each jk < ik (interval was upwards-open).

The situation for open, closed, and open-closed intervals is analogous. The plays which use
discrete strategies in G′′ can now be directly transferred to plays in G′0 in which indeed in
vi1...iM the sign of the fractional part of yj is equal to ij . The same can be done in the other
direction, as the constraints listed above allow to choose a value in the interval which leads
to the appropriate change in the sign sequence. Therefore

valG′0 = sup
σ∈∆0

inf
ρ∈∆1

p(πG′′(σ, ρ, s)).

To eliminate the constraints from move labels in G′0 we determine the highest non-
infinite bound b which appears in these constraints (both on the left and on the right side
of an interval). Then, we construct G′ as the synchronous product of G′0 with a memory of
size (b + 2)M which remembers, for each variable yi, whether yi is greater than b or equal
to b, b− 1, . . . , 0. With this memory, we resolve all constraints and remove them from move
labels in G′.

Counter reset games are another representation of a class of counter parity games, which
were recently studied in [2], where an algorithm to solve such games was given, improving
our previous decidability result [9].

Theorem 6.4 ([2]). For any finite counter parity game G and initial vertex v, the value
valG(v) can be computed in 6EXPTIME. When the number of counters is fixed, the value
can be computed in 4EXPTIME.
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Corollary 6.5. For any finite counter reset game G with a starting state s where all counters
are integers, the value valG(s) can be computed in 6EXPTIME. With fixed number of
counters, the value can be computed in 4EXPTIME.

7. Conclusions and Future Work

We conclude by completing the proof of our main Theorem 2.7. We first observe that, by
Theorem 3.5, evaluating a Qµ-formula on a system is equivalent to calculating the value
of the corresponding model-checking game. We can then turn this game into a flat one by
Lemma 4.2 and then into one over Z∞ by Corollary 4.5. By Lemma 6.3 the value of such a
game can be approximated with arbitrary precision by counter-reset games, which we can
solve by Corollary 6.5.

All together, we proved that it is possible to approximate the values of quantitative
µ-calculus formulae on initialised linear hybrid systems with arbitrary precision. With the
recent result on counter parity games, we are even able to provide an elementary algorithm
– as the game G′n in Lemma 6.3 is doubly-exponential in G and n, the combined complexity
of the above procedure is 8EXPTIME (note the doubly-exponential increase compared to
Corollary 6.5).

This complexity is very high and the complexity bound is not tight, thus we can formu-
late two immediate open problems: (1) can the exact value of JϕKK be computed? (2) what
is the exact complexity of such a computation or its approximation? Another open question
is whether we can use our methods for more general classes of games, e.g. for games with
more complex payoff functions such as mean-payoff interval games. Furthermore, we are not
only interested in theoretical complexity bounds but also in the practical applicability of
quantitative model checking. This will require a more thorough algorithmic analysis of the
problem. Also, since we reduce the problem to counter parity games, the implementation
of a solver for this class of games is a necessary first step before we can exploit the methods
presented in this paper in practice. However, even with further research needed to answer
these challenges, our result lays the foundation for using quantitative temporal logics in the
verification of hybrid systems.
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