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Abstract. We present a restriction of the solos calculus which is stable under reduction
and expressive enough to contain an encoding of the pi-calculus. As a consequence, it is
shown that equalizing names that are already equal is not required by the encoding of
the pi-calculus. In particular, the induced solo diagrams bear an acyclicity property that
induces a faithful encoding into differential interaction nets. This gives a (new) proof that
differential interaction nets are expressive enough to contain an encoding of the pi-calculus.

All this is worked out in the case of finitary (replication free) systems without sum,
match nor mismatch.

Introduction

The question of extending the Curry-Howard correspondence (between the λ-calculus
and intuitionistic logic) to concurrency theory is a long-standing open problem. We de-
veloped in a previous paper [EL10] a translation between the π-calculus [MPW92] and
differential interaction nets [ER06]. This has shown that differential linear logic — a log-
ical system whose sequent calculus [EL10] has been obtained by the first author from a
precise analysis of some denotational models of linear logic based on vector spaces [Ehr02]
— is a reasonable candidate for a Curry-Howard correspondence with concurrent compu-
tation, since differential interaction nets appear to be expressive enough to represent key
concurrency primitives as provided by the π-calculus.

There are other works trying to relate variants of linear logic proof-nets with process
algebras (such as [Abr93, BS94, BM06, FM05, Maz05, HL10]) or to work on graphical
syntaxes for encoding the π-calculus (see [Mil94, LPV01, JM04] for example). However,
even if some of them try to build bridges with (linear) logic, they require some ad hoc
graphical constructions without logical foundations. Our goal is to build on differential
interaction nets coming with the logical justification of differential linear logic.
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Let us tell a bit more about the genesis of our translation. We discovered the notion of
communication areas as particular differential interaction nets able to represent some com-
munication primitives. However, due to the asynchronous flavour of differential interaction
nets, it was not immediate that additional constructions such as prefixing could be easily
encoded. This led us to have a look at the solos calculus.

The solos calculus [LV03] has allowed to prove how action prefixes (thus sequentiality
constraints) can be encoded in a calculus without prefixes (results of this kind also appear
in [HY94] and are going much further than in the asynchronous π-calculus [HT91, Bou92]).
This is done by encoding the π-calculus into the solos calculus [LV03]. From this point of
view, the solos calculus can be seen as a low level concurrent language: even more basic
than the π-calculus.

The main goal of the present paper is to stress the very close relation which appears
between differential interaction nets [ER06] (the graphical syntax for differential linear
logic) and solo diagrams [LPV01] (the graphical syntax for the solos calculus).

Following the ingredients of [EL10], it is possible to give a simple representation of solo
diagrams as differential interaction nets (based on an implementation of nodes as communi-
cation areas). Such a “static” correspondence is not very interesting if there is no “dynamic”
counterpart in the reduction semantics. And this is where troubles come into the picture...
The reduction semantics almost match... There is a mismatch between the solos calculus
and communication areas with respect to the identification of an occurrence of name with
another occurrence of the same name during reduction (let us call this phenomenon, self-
identification). Note that such an identification never occurs in the π-calculus. Since name
passing is handled by the substitution of a bound name by another name. As in the fusion
calculus [PV98], the solos calculus defines communication by unification of names, so that
two occurrences of a name could be identified by reduction. If x has to be identified with
itself, it is just considered as a dummy operation in a unification setting since we already
have x = x. The situation is different with differential interaction nets since communication
areas keep track of such an identification through an explicit link connecting the commu-
nication area associated with x to itself. Reduction is not able to simplify such a link in
order to give back a communication area. One gets some more complicated structure.

In [EL10] we were directly working with the π-calculus (thus with name passing by
substitution, thus without self-identification). This way a direct interpretation of the whole
(finitary) π-calculus into differential interaction nets was possible. The approach we propose
here is different: we look for a restriction of the solos calculus (avoiding self-identification)
for which the static correspondence with differential interaction nets also works at the
dynamic level. This is the acyclic solos calculus. This requires us to restrict the source
calculus but allows us to deal with a very natural translation.

The acyclic solos calculus is obtained from a precise analysis of the translation of the π-
calculus into the solos calculus. The main idea is to be able to isolate, inside the unification
mechanism which is a symmetric operation (when one unifies a name x with a name y), a
“flow” from one side to the other (from x to y for example) as it happens in a substitution
mechanism (in the reduction of u〈x〉.P | u(y).Q in the π-calculus, one can consider a flow
going from x to y, with the binding occurrence y “controlling” all the other occurrences
of y in Q). The first ingredient in our definition of the acyclic solos calculus is a simple
typing system allowing us to label all the object occurrences of names of a solos term with
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two protocols (S (send) and R (receive)) in a kind of uniform way. The main consequence
of the typing system is to break symmetry in reduction/unification: when two occurrences
of names have to be unified one is an S-occurrence and the other one is an R-occurrence.
However this does not impose important structural or behavioural constraints on protocols.
This is given by the second part of the definition of the calculus: the acyclicity conditions
(AC1–AC5). The justification for these conditions is to mimic the structure of the input
prefix u(y).Q of the π-calculus inside the solos calculus: exactly one binding occurrence y
(this will be the R-occurrence of the name y in the solos term), all the other occurrences
(thus S-occurrences for object occurrences in acyclic solos) are coming “sequentially after”
the binding one, ... Informally, all this together leads to a name passing by unification
which is very close to a substitution mechanism if we understand the unification of an
S-occurrence with an R-occurrence as a substitution flow from the S-occurrence to the R-
occurrence (and then all the other occurrences of this name in S-position). Formally, we
prove that self-identification never occurs in the acyclic solos calculus.

We also show that the translation of the (finitary) π-calculus into the solos calculus
following [LV03] has its range contained in the acyclic solos calculus. This proves that our
restriction of the solos calculus still has a reasonable expressive power. Moreover this gives
us an alternative proof (with respect to the work presented in [EL10]) of the existence of a
translation of the finitary π-calculus into differential interaction nets.

The first part of the paper is devoted to the introduction of the required calculi (π-
calculus and solos calculus in Section 1, solo diagrams in Section 2, and differential in-
teraction nets in Section 3 which is almost copy-pasted from [EL10]). In Section 4 we
elaborate on the material presented in [EL10] to define the simple static translation of solo
diagrams [LPV01] (the graphical syntax for the solos calculus) into differential interaction
nets. We discuss the problems arising at the dynamic level, and we give a sufficient condition
on solo diagrams for the translation into differential interaction nets to be a bisimulation:
an occurrence of a name should never be unified with another occurrence of the same name
(i.e. no self-identification).

The main technical contribution of the paper comes in the last part (Section 5). Since
the property that there is no self-identification in the redexes of a solos term is of course not
preserved under the reduction of solos, we have to find a more clever property. We define
the acyclic solos calculus through a typing system for assigning protocols and the acyclicity
conditions (AC1–AC5). We prove this restriction to be well behaved with respect to the
reduction of the solos calculus. We show that the translation of a π-term is always an acyclic
solos term, showing the expressiveness of the system. Finally we prove that the sufficient
condition introduced in Section 4 is fulfilled by solo diagrams corresponding to acyclic solos
terms, showing that we obtain a bisimulation with respect to differential interaction nets.

1. The π-calculus and the solos calculus

In this section we recall the definition of the π-calculus and of the solos calculus we are
going to use. We also recall the translation from π to solos given in [LV03].

In the π-calculus [MPW92], the two basic components of communication are the output
and input prefixes u〈x〉.P and v(y).Q (with occurrences of y bound in Q). Communication
can occur if u = v and in this case, it is obtained by substituting y by x (in Q). Moreover
these prefix constructions induce a sequential behaviour: the continuation P (resp. Q)
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cannot interact with other agents before the output on u (resp. the input on v) has been
triggered.

The fusion calculus [PV98] provides a generalization with communication modelized
by unification. This makes sending and receiving perfectly symmetric and thus the dis-
tinction between ux.P and ux.P is purely formal. Interaction is just constrained to occur
between two dual entities u and u. The symmetry is broken when one translates π-terms
into fusion terms by: u(x).P 7→ (x)ux.P (and unification restrained to the image of this
translation becomes substitution by properties of the binding restriction (x)P ). Notice that
the sequentiality aspect of prefixing remains.

Based on the unification mechanism provided by the fusion calculus, the solos calcu-
lus [LV03] is free from explicit sequentiality constructions: the fusion prefixes are restricted
to dummy continuations ux.0 and ux.0 (where 0 is an inactive process). It is shown
in [LV03] that dyadic solos uxy and uxy are as expressive as the whole fusion calculus.

Comments on chosen calculi. Since our goal is to focus on prefixing and sequentiality, we
deal with calculi without replications nor recursive definitions, without match/mismatch
and without sums (see Conclusion for additional comments).

We do not want to spend time to deal with arbitrary arities in the calculi we consider.
This is why we only consider monadic π-terms. There are three reasons for that: it makes
the presentation simpler, it does not lead to a loss of expressiveness, and finally the polyadic
case has already been considered in [EL10]. As a consequence (see the translation in Sec-
tion 1.3), we are led to consider a triadic solos calculus (all the names are of arity exactly
3) and triadic solo diagrams (all the multiedges are of arity exactly 3). The more general
case of arbitrary arities could easily be obtained by introducing the appropriate sortings on
the various calculi.

1.1. The π-calculus. The terms of the (monadic, finitary) π-calculus are given by:

P ::= 0 | u(x).P | u〈x〉.P | (P | P ) | νx.P

where both u(x).P and νx.P bind occurrences of x in P .
The structural congruence on π-terms is the least congruence containing α-equivalence

and:

0 | P ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

νx.νy.P ≡ νy.νx.P

νx.0 ≡ 0

(νx.P ) | Q ≡ νx.(P | Q) if x /∈ fn(Q)

The reduction semantics of the π-calculus is given by:

u〈x〉.P | u(y).Q → P | Q [x/y]

P → Q

P | R → Q | R

P → Q

νx.P → νx.Q
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
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1.2. The solos calculus. Introduced in [LV03], the goal of the solos calculus is to prove
the expressiveness of a calculus without prefix construction.

The terms of the (triadic) solos calculus are given by:

P ::= 0 | ux1x2x3 | ux1x2x3 | (P | P ) | (x)P

where (x)P binds occurrences of x in P .
The structural congruence is the least congruence containing α-equivalence and:

0 | P ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

(x) (y)P ≡ (y) (x)P

(x) 0 ≡ 0

((x)P ) | Q ≡ (x) (P | Q) if x /∈ fn(Q)

This equivalence allows us to present terms in the solos calculus in canonical forms: either
the 0 process or a bunch of scope constructions (x1) (x2) . . . followed by solos in parallel.

The reduction semantics of the solos calculus is given by (z̃ stands for z1 . . . zn):

(z̃) (u x1x2x3 | u y1y2y3 | P ) → Pσ

where σ is a most general unifier of x1x2x3 and y1y2y3, such
that exactly the names w in z̃ are modified, i.e. satisfy
σ(w) 6= w (in particular, in each equivalence class of names
induced by unification, at most one name is free).

P → Q

P | R → Q | R

P → Q

(x)P → (x)Q

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

An alternative (but equivalent) definition of this reduction semantics is given in [LV03]
together with additional explanations.

For example, in (x) (y) (z) (w) (u uxy | u zww | v zuy), the only possible reduction is
between uuxy and u zww. It induces the identifications u = z, x = w and y = w, thus
two equivalence classes {u, z} and {x, y, w}. In the first one, u is free and thus the only
possibility is to map z to u. In the second one, all the elements are bound, we choose one
of them: y for example (the other choices would lead to structurally congruent results). We
consider the unifier containing z 7→ u, x 7→ y, w 7→ y and which is the identity on the other
names. We obtain the reduct (y) v uuy.

1.3. From π-terms to solos. In [LV03], the authors give different translations of the
fusion calculus [PV98] into solos. We are going to focus on one of them (the one which does
not introduce matching). By pre-composing this translation with the canonical embedding
of the π-calculus into the fusion calculus: u(x).P 7→ (x)ux.P , we obtain the translation of
the π-calculus into solos that we present here.
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A π-term P is translated as [P ]:

Cv := (z) v zzv

[0]v := 0

[u(x).P ]v := (w) (y) (v uwy | Cy | (x) (v′) (w xvv′ | [P ]v′))

[u〈x〉.P ]v := (w) (y) (v uwy | Cy | (v′) (w xv′v | [P ]v′))

[P | Q]v := [P ]v | [Q]v

[νx.P ]v := (x) [P ]v

[P ] := (v) ([P ]v | Cv)

As shown in [LV03], this encoding is adequate with respect to weak barbed congruence ≈:
[P ] ≈ [Q] implies P ≈ Q.

The π-term νx.(u〈x〉.0 | x(y).0) | u(z).z〈t〉.0 is translated as a solos term which is
structurally congruent to (v) ((x) (P | Q) | R | Cv) with:

P = (w) (y) (v uwy | Cy | (v′)w xv′v)

Q = (w) (y′) (v xwy′ | Cy′ | (y) (v
′)w yvv′)

R = (w) (y) (v uwy | Cy | (z) (v′) (w zvv′ | (w) (y) (v′ zwy | Cy | (v′′)w tv′′v′)))

By applying reduction, we obtain in particular the following reducts (up to structural con-
gruence):

(v) ((x) ((Cv | (v′)u xv′v) | Q) | R)

(v) ((x) (((v′)uxv′v) | Q) | Cv | (z) (v′) (u zvv′ | (w) (y) (v′ zwy | Cy | (v′′)w tv′′v′)))

(v) (x) (Q | Cv | ((w) (y) (v xwy | Cy | (v′′)w tv′′v)))

(v) (x) (Cv | (y) (v′)x yvv′ | ((w) (y) (v xwy | Cy | (v′′)w tv′′v)))

(v) (x) ((y) (v′)x yvv′ | Cv | (v′′)x tv′′v)

(v)Cv

2. Solo diagrams

To make the relation with differential interaction nets simpler, we go through the graph-
ical syntax associated with the solos calculus: solo diagrams [LPV01].

A (triadic) solo diagram is given by a finite set of nodes and a finite multiset of (ternary)
multiedges (directed edges with a list of three nodes as source and one node as target). A
node is tagged as either free or bound. A multiedge is tagged as either input or output. Any
node must be a source or a target of a multiedge.

2.1. Reduction. The reduction of solo diagrams is given:

• by choosing two multiedges e1 and e2 of opposite polarities (one input and one output)
with the same target (we call them dual multiedges) and with respective sources [n1,n2,n3]
and [m1,m2,m3],
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reduces to

Figure 1: A reduction in solo diagrams.

• and by identifying the two nodes n1 and m1, the two nodes n2 and m2, and the two nodes
n3 and m3. The reduction is allowed to occur only if it does not identify two free nodes.
Moreover when a free node is identified with a bound node, the obtained node is free and
when two bound nodes are identified, the obtained node is bound.

The chosen multiedges are erased and nodes which are not anymore source or target of a
multiedge are also removed. This can be applied to both free and bound nodes.

During a reduction step, the number of multiedges decreases by two and the number
of nodes decreases or remains the same.

In the graphical representation, we draw free nodes as white dots, bound nodes as
black dots, output edges with an outgoing arrow and input edges with an ingoing arrow.
An example is given in Figure 1.

2.2. Relation with solos. A term of the solos calculus can easily be translated into a solo
diagram. Free names are translated as free nodes, bound names as bound nodes and solos
as multiedges:

• The 0 term is translated as the empty graph with no edge.
• The solo ux1x2x3 is translated as the graph with free nodes corresponding to elements of
{u, x1, x2, x3}, and with one input multiedge with source [x1, x2, x3] and target u (where
xi is the node corresponding to the name xi and u is the node corresponding to the name
u).

• The solo ux1x2x3 is translated in the same way with an output multiedge.
• The parallel composition P | Q is obtained by “graph union”: union of the sets of nodes
(i.e. nodes corresponding to the same name are identified) and sum of the multisets of
multiedges.

• The restriction (x)P corresponds to turning the free node x corresponding to the name
x (if any) into a bound node.

As shown in [LPV01], two solos terms are structurally congruent if and only if the cor-
responding solo diagrams are isomorphic. Moreover reduction in solo diagrams reflects
faithfully the reduction of the solos calculus.

The two solo diagrams of Figure 1 correspond to (x) (y) (z) (w) (u uxy | u zww | v zuy),
respectively, (y) v uuy (the examples used in Section 1.2).

2.3. Labeled transition system. We follow the same methodology as in [EL10] by using
labels to distinguish the actions of a process. In a term syntax as in [EL10], labels are put
on prefixes (or solos). In the graphical syntax of solo diagrams, we put labels on multiedges
(since multiedges correspond to solos).
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We fix a countable set L of labels to be used for all our labeled transition systems.
A solo diagram is labeled if its multiedges are equipped with different labels belonging

to L.

Definition 2.1 (The transition system SL). The objects of the labeled transition system
SL are labeled solo diagrams and transitions are labeled by pairs of distinct elements of L.

Let G and H be two labeled solo diagrams, G
lm
−→ H if H is obtained from G by applying a

reduction step to the input multiedge labeled l and to the output multiedge labeled m (the
labels of the remaining multiedges of H must be the same as for the corresponding ones in
G).

This is quite different from what is usually done for defining transition systems for a pro-
cess algebra [MPW92]. The standard approach aims at analyzing the possible interactions
of a process with its environment. Then bisimulation is used to show that two processes
have the same “external” behaviour. Our goal is to use bisimulation to compare the inter-
nal behaviours of solo diagrams and of differential interaction nets. We want to illustrate
that differential interaction nets are sufficiently expressive for simulating concurrency and
mobility. This requires the transition systems we use for bisimulation to carry precise in-
formations about reductions of processes, in particular about the sub-entities taking part
into the interactions.

2.4. Solo diagrams with identifications. In order to compare solo diagrams with dif-
ferential interaction nets, it will be useful to decompose the reduction of solo diagrams by
introducing the notion of solo diagrams with identifications.

Definition 2.2 (Solo diagram with identifications). Solo diagrams with identifications are
solo diagrams equipped with a finite set of undirected edges (usual binary edges, not mul-
tiedges, which connects nodes of the solo diagram). These edges are called identification
edges.

We can decompose the reduction of solo diagrams we have presented above by using
identification edges. A reduction step for a solo diagram G is defined as follows:

(R1) choose two dual multiedges e1 and e2 (i.e. of opposite polarities and with the same
target) with respective sources [n1,n2,n3] and [m1,m2,m3];

(R2) build the solo diagram with identifications G[e1, e2] obtained from G by erasing e1
and e2 and by introducing three identification edges: between n1 and m1, between n2

and m2, and between n3 and m3;
(R3) contract the graph G[e1, e2] by (repeatedly) choosing an identification edge and by

identifying the two (or one) nodes it connects if at least one of them is bound.

The reduction succeeds (i.e. is a valid reduction of solo diagrams) if we reach a solo diagram
with no remaining identification edge. It means in particular that step (2) does not introduce
identification edges between two free names.

In the graphical representation, we draw identification edges as dashed edges.
If we refine the reduction of the example of Figure 1 by means of solo diagrams with

identifications, the results of step (2) and then of one application of step (3) are in Figure 2.
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l l

Figure 2: An (3) reduction step in solo diagrams with identifications.

3. Differential Interaction Nets

3.1. The general formalism of interaction nets. We recall the general (graphical)
syntax of interaction nets, as introduced in [Laf95]. See also [Maz06, ER06] for more
details.

Statics of interaction nets. We first define a general typed syntax of interaction nets.
Assume we are given a set of symbols and that an arity (a non-negative integer) and

a typing rule is associated with each symbol. This typing rule is a list (A0, A1, . . . , An) of
types, where n is the arity associated with the symbol. Types are formulae of some system
of linear logic (in particular if A is a type, A⊥ is also a type and A⊥⊥ = A). An interaction
net is made of cells. With each cell γ is associated exactly one symbol and therefore an
arity n and a typing rule (A0, A1, . . . , An). Such a cell γ has one principal port p0 and n
auxiliary ports p1, . . . , pn. An interaction net has also a finite set of free ports. All these
ports (the free ports and the ports associated with cells) have to be pairwise distinct and
a set of wires is given. This wiring is a set of pairwise disjoint sets of ports of cardinality
2 (ordinary wires) or 0 (loops1), and the union of these wires must be equal to the set of
all ports of the interaction net. In other words, each port of the interaction net (free or
associated with a cell) is connected to exactly one other port (free or associated with a cell)
through a wire, and each such wire connects exactly two ports: ports cannot be shared.
The free ports of the interaction net are those which are not associated with a cell.

An oriented wire of the interaction net is an ordered pair (p1, p2) where {p1, p2} is a
wire. In an interaction net, a type is associated with each oriented wire, in such a way
that if A is associated with (p1, p2), then A⊥ is associated with (p2, p1). Last, the typing
rules of the cells must be respected in the sense that for each cell γ of arity n, whose
ports are p0, p1, . . . , pn and typing rule is (A0, A1, . . . , An), denoting by p′0, p

′
1, . . . , p

′
n the

ports of the interaction net uniquely defined by the fact that the sets {pi, p
′
i} are wires

(for i = 0, 1, . . . , n), then the oriented wires (p0, p
′
0), (p′1, p1),. . . ,(p

′
n, pn) have types A0,

A1,. . . ,An respectively. The free ports of the interaction net constitute its interface. With
each free port p can be associated the type of the unique oriented wire whose endpoint is
p: this is the type of p in the interface of the interaction net.

Here is a typical example of a typed interaction net:

•
•

•
α β

γ

A

B

C

E

F p

q
D

1To be more precise, one has to specify the number of loops in the net, but this will not play any role in
the sequel.
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with cells of symbols α, β and γ, of respective types (B,A⊥, C⊥), (B⊥, A,E⊥,D⊥) and
(F,D,C). The interface is (p : E, q : F ). Cells are represented as triangles, with principal
port located at one of the angles and other ports on the opposite edge. We often draw a
black dot to locate the auxiliary port number 1.

Dynamics of interaction nets. In Lafont’s traditional interaction nets, a reduction rule as-
sociates, to each pair of cells connected through their principal ports, an interaction net
with the same interface as this two-cells net. Moreover at most one rule is given for each
pair of cells. The application of a reduction rule substitutes (inside an interaction net) a
pair of cells connected through their principal ports by the associated reduct.

These ideas are strongly related with key steps of cut elimination in logics, where two
rules interact through their principal formulas.

Extensions of interaction nets. Since interaction nets have strong confluence properties,
extensions are required to take concurrency and non-determinism into account [Ale99].

A possible way of extending interaction nets for more concurrent behaviours is to modify
statics by introducing cells with many principal ports [Ale99, Kha03, Maz05] (this breaks
simple logical interpretations by contradicting the usual property that a logical rule of the
sequent calculus introduces one principal formula). In differential interaction nets, we stick
to the traditional statics syntax (but act on the dynamics side).

A possible extension of the dynamics towards non-deterministic behaviours is to allow
a choice between different possible reduction rules for a given pair of cells [Ale99].

We make a choice in-between this proposal and Lafont’s one (i.e. between many possible
rules, and at most one rule). We consider only one reduction rule for each pair of cells but
we extend interaction nets to formal sums of interaction nets [ER06]. This allows us to
represent, as one reduction, a finite set of non-deterministic choices: when the reduct of the
interaction of two cells is a (proper) sum of interaction nets.

3.2. Presentation of the cells. We define differential interaction nets from the interac-
tion nets defined above. We first present our specific cells.

The untyped lambda-calculus can be seen as a typed lambda-calculus equipped with
a recursive equation D = D ⇒ D. Following this idea, V. Danos and L. Regnier [Reg92]
defined a notion of untyped proof-nets based on a single type symbol o (the type of outputs),
subject to the following recursive equation o = ?o⊥`o. Our nets will be typed using this
typing system. We set ι = o⊥, so that ι = !o ⊗ ι and o = ?ι`o. The tensor connective is
used only with premises !o and ι and dually for the par, and therefore, the only types we
actually need are o, ι, !o and ?ι for typing our nets.

In the present setting, there are ten symbols: par (arity 2), bottom (arity 0), tensor
(arity 2), one (arity 0), dereliction (arity 1), weakening (arity 0), contraction (arity 2),
codereliction (arity 1), coweakening (arity 0) and cocontraction (arity 2). We present now
the various cell symbols, with their typing rules, in a pictorial way.

Multiplicative cells. The par and tensor cells, as well as their “nullary” versions bottom and
one are as follows:

•

o

o
?ι

`
•

!o

⊗

ι

ι
⊥

o
1

ι
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Exponential cells. They are typed according to a strictly polarized discipline. Here are first
the why not cells, which are called dereliction, weakening and contraction:

?
ι ?ι

?
?ι

?
?ι

?ι

?ι

and then the bang cells, called codereliction, coweakening and cocontraction:

!
o !o

!
!o

!
!o

!o

!o

Differential interaction nets. We define differential interaction nets from the cells above.

• A simple differential interaction net is a typed interaction net, which uses the multiplica-
tive and exponential cells introduced above.

• A differential interaction net is a finite formal sum S = s1 + · · · + sn (n ≥ 0) of simple
differential interaction nets having all the same interface, and this interface is then con-
sidered as the interface of S. A particular case is the differential interaction net S = 0
(the empty sum), and this differential interaction net has to be given together with its
interface: there is a 0 net for each interface.

Labeled differential interaction nets. We now introduce labeled differential interaction nets,
which are differential interaction nets where particular cells are equipped with labels. The
labeled transition system of differential interaction nets will be defined using these labels in
Section 3.3.3.

Let Lτ be the countable set of labels obtained by adding a distinguished element τ (to
be understood as the absence of label) to L (introduced in Section 2.3). A labeled simple
differential interaction net is a simple differential interaction net where all dereliction and
codereliction cells are equipped with labels belonging to Lτ . Moreover, if l and l′ are two
labels appearing in a labeled simple differential interaction net, either l 6= l′ or l = l′ = τ .

In our pictures, the labels of dereliction and codereliction cells will be indicated, when
this label is different from τ . When its label is τ , a (co)dereliction cell will be drawn without
any label.

All the differential interaction nets we consider in this paper are labeled. In the sequel,
since no confusion with other kinds of interaction nets will be possible, we shall use “net”
for “labeled differential interaction net” and “simple net” for “labeled simple differential
interaction net”.

3.3. Reduction rules. We denote by ∆ the collection of all simple nets, ranged over by
the letters s, t, u, with or without subscripts or superscripts, and by N〈∆〉 the collection
of all nets (finite sums of simple nets with the same interface, including the empty sum),
ranged over by the letters S, T , U , with or without subscripts or superscripts. We consider
∆ as a subset of N〈∆〉 (s ∈ ∆ is identified with the sum made of exactly one copy of s).

A reduction rule is a subset R of ∆ × N〈∆〉 consisting of pairs (s, S) where s is a
simple net made of two cells connected by their principal ports and S is a net that has the
same interface as s. There are actually reduction rules which transform simple nets into
non-simple ones.

This set R can be finite or infinite. Such a set is easily extended to a relation between
arbitrary simple nets and nets and then to arbitrary nets and nets:
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• We note s R T if there is (s0, u1 + · · · + un) ∈ R where s0 is a subnet of s, each ui is a
simple net and T = t1+ · · ·+ tn where ti is the simple net resulting from the replacement
of s0 by ui in s (n ≥ 0).

• The relationRΣ is defined by s1+· · ·+sn RΣ T (where each si is simple) if T = T1+· · ·+Tn

where, for each i, si R Ti or si = Ti (n ≥ 0).

Last, the relation R∗ between nets and nets is the transitive closure of RΣ (which is reflex-
ive).

3.3.1. Defining the reduction. We give now the reduction rules of differential interaction
nets.

Multiplicative reduction. The first two rules concern the interaction of two multiplicative
cells of the same arity.

• •
` ⊗

?ι ?ι

o

o
 m

o o

?ι

⊥
o

 m ǫ1

where ǫ stands for the empty simple net (i.e. the simple net containing no cell, no port
and thus no wire, not to be confused with the net 0 ∈ N〈∆〉, the empty sum, which is not
a simple net). The next two rules concern the interaction between a binary and a nullary
multiplicative cell.

` 1
o

 m

?ι

o

?ι

o 1

!

 m

!o

ι

⊗ ⊥

!o

ι

?

⊥

ι

Communication reduction. Let R ⊆ Lτ . We have the following reductions if l,m ∈ R.

? !
ι ι?ι

 c,R
ι

l m

The labels l and m disappear in this reduction step.

Non-deterministic reduction. Let R ⊆ Lτ . We have the following reductions if l ∈ R.

?

?

?

?

?ι

?ι?ι

!? +

l

l

 nd,R

?ι

l

ι
ι

?ι

?ι

ι ?ι

?ι

!

!

!

!

! ?
!o

+

l

l

 nd,R
l

o
o

!o

!o

!o

!o

o !o

!o

? !
ι ?ι

l
 nd,R 0 ! ?

o !o

l
 nd,R 0

According to the definition of reduction for arbitrary simple nets given above, the applica-
tion of one of the last two steps to a simple net erases the whole simple net and gives the
0 net (as everywhere else in the paper, this means the 0 net with appropriate interface).
These two steps make some labels disappear.
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Structural reduction.

?ι
?

!

!

!  s

?ι

?ι

?ι

?ι

!
!o

?

?

?  s

!o

!o !o

!o

?ι
? !  s ǫ ? !

?ι

?ι

?ι
 s

! ?

! ??ι

?ι
?ι

?ι
?ι

?ι

?ι
?ι

?ι

?ι

We use ∼s for the symmetric and transitive closure of  s.

Remark 3.1. One can check that we have provided reduction rules for all redexes com-
patible with our typing system: for any simple net s made of two cells connected through
their principal ports, there is a reduction rule whose left member is s. This rule is unique,
up to the choice of a set of labels, but this choice has no influence on the right member of
the rule.

3.3.2. Confluence.

Theorem 3.2. Let R,R′ ⊆ Lτ . Let R ⊆ ∆× N〈∆〉 be the union of some of the reduction
relations  c,R,  nd,R′ ,  m and  s. The relation R∗ is confluent on N〈∆〉.

The proof is essentially trivial since the rewriting relation has no critical pair (see [ER06]).
Given R ⊆ Lτ , we consider in particular the following R-reduction:  R =  m ∪ c,{τ} ∪
 s ∪ nd,R. We set  d =  ∅ (“d” for “deterministic”) and denote by ∼d the symmetric
and transitive closure of this relation. Observe that, if s and S are nets with s simple and
if s d S, then S is also simple.

Some of the reduction rules we have defined depend on a set of labels. This dependence
is clearly monotone in the sense that the relation becomes larger when the set of labels
increases.

The reduction of nets is not normalizing mainly because of the last structural reduction
rule. Additional comments can be found in [ER06].

3.3.3. A transition system of simple nets. Let l and m be distinct elements of L. We call
(l,m)-communication redex a communication redex whose codereliction cell is labeled by l
and whose dereliction cell is labeled by m.

Definition 3.3 (The transition system DL). We define a labeled transition system DL

whose objects are simple nets, and transitions are labeled by pairs of distinct elements of

L. Let s and t be simple nets, we have s
lm
−→ t if the following holds: s ∗

{l,m} s0+S where

s0 is a simple net which contains an (l,m)-communication redex and becomes t when one
reduces this redex.

Remark 3.4. The non-deterministic steps allowed in the reduction from s to s0+S can only
involve the codereliction and dereliction labeled by l andm respectively. The communication
steps only involve τ -labeled derelictions and coderelictions. In the solos calculus, solos
communicate in one step through a parallel composition. This single step becomes here a
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sequence of many elementary steps and our restriction allows us to avoid considering the
steps which have nothing to do with the communication we are interested in.

The net S contains other possible communications, so it corresponds to other branches
of non-deterministic choices.

In this paper, to compare transition systems, we only consider strong bisimulations [Par81]
as given by the following definition.

Definition 3.5 (Bisimulation). Given two labeled transition systems LTS1 = (S1, T1) (with
T1 ⊆ S1×L×S1) and LTS2 = (S2, T2) (with T2 ⊆ S2×L×S2) on the same set L of labels,
a relation R between S1 and S2 is a bisimulation between LTS1 and LTS2 if:

• for any (s1, s2) ∈ R and (s1, l, s
′
1) ∈ T1, there exists s′2 ∈ S2 such that (s2, l, s

′
2) ∈ T2;

• and for any (s1, s2) ∈ R and (s2, l, s
′
2) ∈ T2, there exists s′1 ∈ S1 such that (s1, l, s

′
1) ∈ T1.

A useful particular case is LTS1 = LTS2.

Lemma 3.6. The relation ∼d ⊆ ∆×∆ is a bisimulation on DL.

3.4. A toolbox for process calculi interpretation. We introduce now a few families of
simple nets, which are built using the previously introduced basic cells. They will be used
as basic modules for interpreting processes. All of these nets, but the communication areas,
can be considered as compound cells: in reduction, they behave in the same way as cells of
interaction nets.

One could have directly defined these compound cells as primitive constructions for the
representation of processes. However we prefer to stress the possibility of implementing
these compound objects with more basic ones coming from the logically founded theory of
differential linear logic, in order to emphasize the possible application of linear logic tools
to the image of our encoding.

Communication areas cannot be considered as cells in our setting since they would
require more than one principal port. Interaction nets with many principal ports have been
studied (in particular for representing concurrent behaviours [Maz05]) but their theory is
quite different from the “one principal port” case.

3.4.1. Compound cells.
Generalized contraction and cocontraction. A generalized contraction cell is a simple net t.
One of its free ports (which is not connected to an auxiliary port of its cells) is called the
principal port of t. The other free ports (which are finitely many and are not connected
to principal ports of cells of the generalized cell) are called the auxiliary ports of t. These
generalized contraction cells are inductively defined:

• a wire with type ?ι is a generalized contraction cell (we select the port with type ?ι as
the principal port of the generalized cell);

• a weakening cell gives a generalized contraction cell by connecting a wire to its principal
port (the only free port of the obtained net is the principal port of the generalized cell);

• given two generalized contraction cells, by connecting the two auxiliary ports of an ad-
ditional contraction cell to the principal ports of the generalized cells and by connecting
the principal port of this new contraction cell to a free port, one obtains a generalized
contraction cell (the free port connected to the principal port of the added contraction
cell is the principal port of the generalized cell).
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?⊗

!o

!o

?ι

⊗
⊗

⊗
1

?

!o

!o

!o

ι ?ι

•

•
•

•

=... l

l

Figure 3: Dereliction-tensor compound cell.

!`

?⊗

?⊗

!

••
...

...... =
ll

?

!`

!`

?⊗

••
...

...... =
ll

Figure 4: Input and output compound cells.

3

Figure 5: Area of order 3.

Generalized cocontraction cells are defined dually.
We use the same graphical notations for generalized (co)contraction cells as for ordinary

(co)contraction cells, with a “∗” in superscript to the “!” or “?” symbols to avoid confusions.
Observe that there are infinitely many generalized (co)contraction cells of any given arity.
Even if one could define a choice of one canonical (co)contraction cell for each arity, pluging
two canonical (co)contraction cells together would not always give us a canonical one. This
is why we do not define such a choice here.

The dereliction-tensor and the codereliction-par cells. Let n be a non-negative integer. We
define an n-ary ?⊗ compound cell as in Figure 3. It will be decorated by the label of its
dereliction cell (as mentioned in Section 3.2, we put no decoration if the label is τ). The
number of tensor cells in this compound cell is equal to n (in particular the 0-ary dereliction-
tensor cell contains exactly two cells: a one cell and a dereliction cell). We define dually
the !` compound cell.

The prefix cells. Now we can define the compound cells which will play the main role in
the interpretation of solos. Thanks to the above defined cells, all the oriented wires of the
nets we shall define will have type ?ι or !o. Therefore, we adopt the following graphical
convention: the wires will have an orientation corresponding to the ?ι type.

Let n be a non-negative integer. The n-ary input cell and the n-ary output cell are
defined in Figure 4, they have n pairs of auxiliary ports (δ+1 , δ

−
1 , . . . , δ

+
n , δ

−
n ).

The label of a prefix cells is the one carried by its outermost ?⊗ or !` compound cell,
the other ?⊗ or !` compound cells are required to be unlabeled (that is, labeled by τ).
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?∗

!∗

!∗ ?∗

!∗?∗

!∗ ?∗

?∗ !∗

?∗!∗

Figure 6: Communication areas of order −1, 0 and 1.

... n1 n2
...

... n1 + n2
... 

∗
s

Figure 7: Aggregation, with n1, n2 ≥ −1.

3.4.2. Communication areas. Let n ≥ −2. We define a family of nets with 2(n + 2) free
ports, called communication areas of order n, that we shall draw using rectangles with
beveled angles. Figure 5 shows how we picture a communication area of order 3.

A communication area of order n is made of n + 2 pairs of (n + 1)-ary generalized
cocontraction and contraction cells (γ+1 , γ

−
1 ), . . . , (γ

+
n+2, γ

−
n+2), with, for each i and j such

that 1 ≤ i < j ≤ n + 2, a wire from an auxiliary port of γ+i to an auxiliary port of γ−j
and a wire from an auxiliary port of γ−i to an auxiliary port of γ+j . We note p+i and p−i
the principal ports of γ+i and γ−i , and we call (p+i , p

−
i ) a pair of associated ports of the

communication area.
So the communication area of order −2 is the empty net ǫ, and communication areas

of order −1, 0 and 1 are the structures shown in Figure 6.

3.4.3. Useful reductions. One of the nice properties of communication areas is that, when
one connects two such areas through a pair of wires, one gets another communication area.

Lemma 3.7 (Aggregation of communication areas). Let C1 be a communication area of
order n1 ≥ −1 and C2 be a communication area of order n2 ≥ −1, let (p+1 , p

−
1 ) be a pair of

associated ports of C1 and (p+2 , p
−
2 ) be a pair of associated ports of C2, let s be the simple net

obtained by connecting p+1 to p−2 and p−1 to p+2 , we have s ∗
s C where C is a communication

area of order n1 + n2 (see Figure 7).

Proof. We only prove the particular case where n1 = n2 = 1 and the communication areas
C1 and C2 are built with contraction cells (not generalized ones).

By connecting C1 and C2, and by applying two structural reduction steps, we obtain a
communication area of order 2 (see Figure 8).

Let t be a simple net and p be a port of t. We say that p is forwarded in t if there is a
free port q of t such that t is of one of the two shapes given in Figure 9.

This allows us to describe the interaction of derelictions and coderelictions with com-
munication areas: derelictions and coderelictions can meet each other, when connected to
a common communication area.

Lemma 3.8 (Communication and forwarding of derelictions and coderelictions in commu-
nication areas). Let p ≥ −2 be an integer, let l,m ∈ Lτ , and let us consider the simple net
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Figure 8: Aggregation of communication areas of order 1.
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p

· · ·
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Figure 9: Port forwarding.

?

!

!

?

?! ! ?
ti

r r′
 

∗
{l,m}

· · ·

p +

N∑

i=1

· · · · · ·

l l lmm

mp+ 2

Figure 10: Dereliction and codereliction communicating through a communication area.

s obtained by connecting (the principal ports of) a codereliction labeled l and a weakening
to a pair of associated ports of a communication area of order p+2, and by connecting (the
principal ports of) a dereliction labeled m and a coweakening to another pair of associated
ports of the same communication area. The {l,m}-reduction applied to s leads to a sum of
simple nets: one contains the codereliction l and the dereliction m connected through their
principal ports, together with a communication area of order p; in all the other summands,
the principal ports r and r′ of the codereliction l and of the dereliction m are forwarded (see
Figure 10).

Proof. We consider the particular case where p = −1 and the communication area is built
with contraction cells (not generalized ones). The reduction is pictured in Figure 11.

We first apply all the possible structural reduction steps, then we focus on the codere-
liction labeled l: the reduction of the associated redex gives a sum of two simple nets (in
one of them the principal port of the codereliction l is forwarded). We now apply in each
simple net the reduction step involving the dereliction labeled m and we finally obtain a
sum of two simple nets. In the first one the principal ports of the dereliction and of the
codereliction are forwarded, in the second one they are connected to each other and the
remaining part of the net is a communication area of order −1.

The generalization to other communication areas of order 1 is easy. We can obtain the
case p 6= −1 by decomposing the communication area into two communication areas (one
of order 1 and one of order p+ 1). Lemma 3.7 and Theorem 3.2 help to conclude.

We now consider the interaction of two prefix cells.



18 T. EHRHARD AND O. LAURENT
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Figure 11: Forwarding of dereliction and codereliction.

• •

...!?
...

...

m

l

 c,{l,m} u ∗
∅

Figure 12: Prefix reduction.

Lemma 3.9 (Reduction of prefixes). Let l,m ∈ Lτ . If we connect an n-ary output prefix
labeled by m to a p-ary input prefix labeled by l through their principal ports, we obtain a
simple net which reduces by  c,{l,m} to a net u which reduces by  ∗

{τ} to 0 if n 6= p and to

simple wires by  ∗
∅, as in Figure 12, if n = p.

Proof. The key point is to check that the simple net, obtained by connecting an n-ary
dereliction-tensor compound cell to a p-ary codereliction-par cell through their principal
ports, reduces to min(n, p) wires with n− p weakening cells if n > p or p − n coweakening
cells if p > n.

4. From solo diagrams to differential interaction nets

4.1. The translation. Relying on the toolbox described above, we define a translation of
labeled solo diagrams with identifications into labeled simple differential interaction nets:

• A node which appears n times as a source of a multiedge, which is k times target of
a multiedge and which is p times member of an identification edge is translated as a
communication area of order n+ k + p− 2.

For example, for a node which is target of one input multiedge and of one output
multiedge (thus k = 2), which is source of one multiedge (thus n = 1), and which is
member of one identification edge (thus p = 1), we have n+ k + p− 2 = 2:

! 2

• An input multiedge with sources [x1, x2, x3] and target u is translated as a 3-ary input
cell with principal port u0 and auxiliary ports [x01, x

1
1, x

0
2, x

1
2, x

0
3, x

1
3]. Each pair x0i , x

1
i is

connected to a pair of associated ports of the communication area corresponding to xi.
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0

0

−1

0

−1

l
?!

Figure 13: The translation of the second solo diagram of Figure 2.

u0 is connected to the port p− and a weakening cell is connected to p+, where (p+, p−)
is a pair of associated ports of the communication area corresponding to u. The label of
the prefix cell is the label of the multiedge.

l

! !

l

?

• An output multiedge with sources [x1, x2, x3] and target u is translated as a 3-ary output
cell with principal port u0 and auxiliary ports [x01, x

1
1, x

0
2, x

1
2, x

0
3, x

1
3]. Each pair x0i , x

1
i is

connected to a pair of associated ports of the communication area corresponding to xi.
u0 is connected to the port p+ and a coweakening cell is connected to p−, where (p+, p−)
is a pair of associated ports of the communication area corresponding to u. The label of
the prefix cell is the label of the multiedge.

l

! ?

l

!

• An identification edge connecting x1 and x2 is translated as a pair of wires connecting a
pair (p+1 , p

−
1 ) of associated ports of the communication area corresponding to x1 with a

pair (p−2 , p
+
2 ) of associated ports of the communication area corresponding to x2.

!

Since communication areas of order n are not uniquely defined (because generalized con-
traction and cocontraction cells of a given arity are not unique either), this translation from
solo diagrams to differential interaction nets is in fact a relation, which we denote G! s
(with G a solo diagram and s a simple differential interaction net).

Remark 4.1. Let G be a solo diagram (without identification edges) and s be a differential
interaction net, if G! s then s has no d redex, except some  s redexes involving weak-
ening or coweakening cells. Indeed, all the redexes in s are given by a labeled codereliction
cell (i.e. whose label is not τ) or a coweakening cell facing a weakening cell, a contraction
cell or a labeled dereliction cell (or dually by a dereliction cell or a weakening cell facing a
coweakening or ...).

A differential interaction net associated with the second solo diagram with identifica-
tions of Figure 2 is given in Figure 13.
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n

n2n1

↓

C1

C

C2

↓

!

!

Figure 14: Proof of Lemma 4.2.

4.2. A bisimulation. Our goal is to establish a bisimulation between the labeled transition
systems SL (Section 2.3) and DL (Section 3.3.3). Unfortunately the translation ! does
not provide such a bisimulation. We are going to show what the problems are and how to
restrict SL to get a bisimulation.

4.2.1. Mismatch. The crucial point comes from step (3) of the reduction of solo diagrams:
the contraction of identification edges in solo diagrams corresponds through ! to the
aggregation of communication areas as given by the following lemma.

Lemma 4.2. If G1 and G2 are solo diagrams with identifications, if G2 is obtained from
G1 by contracting an identification edge (step (3)) connecting the nodes n1 and n2 with
n1 6= n2 and if G1 ! s1 then G2 ! s2 where s2 is obtained from s1 by aggregating the
communication areas corresponding to n1 and n2.

Proof. See Figure 14: G2 is obtained from G1 by replacing the two distinct nodes n1 and
n2 by a unique node n. In s1, we have a communication area C1 corresponding to n1 and
a communication area C2 corresponding to n2. Since n1 and n2 are connected with an
identification edge, C1 and C2 are connected with a pair of wires. By aggregating C1 and
C2 (see Lemma 3.7), we obtain a communication area C in s2 which exactly corresponds to
n through!.

The hypothesis n1 6= n2 is crucial since two communication areas C1 and C2 connected
together with a pair of wires reduce to one communication area (Lemma 3.7), except if
C1 = C2! We are thus able to encode the reduction of the solos calculus only if we can
ensure that we never have to contract an identification edge connecting a node with itself.

A typical example of this problem is given by:

(u) (x) (y) (z) (y′) (z′) (a) (b) (c) (a′) (b′) (c′) (uxyz | uxy′z′ | x abc | x a′b′c′)

As shown in Figure 15, while in solo diagrams the loop created after the first step eventually
disappears, it remains in differential interaction nets. The consequence being that we have
transitions in SL while the last differential interaction net has no transition to a differential
interaction net which is the translation of a solo diagram.

4.2.2. Restriction. Since our goal is to make the bisimulation result true, we are going to
constrain the syntax of solo diagrams in such a way that the hypotheses of Lemma 4.2
are always valid. We want to restrict the reduction step (3) to the case where the edge
is not connecting a node with itself. This is equivalent to asking the sub-graph Gid[e1, e2]
of G[e1, e2], containing the identification edges only, to be acyclic. By definition, we call
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Figure 15: Reductions in solo diagrams and in differential interaction nets, corresponding
to the term:
(u) (x) (y) (z) (y′) (z′) (a) (b) (c) (a′) (b′) (c′) (uxyz | uxy′z′ | x abc | x a′b′c′).
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acyclic reduction step a reduction step associated with two dual multiedges e1 and e2 such
that Gid[e1, e2] is acyclic.

Another problem comes from the constraint on the freeness of names in the contraction
of identification edges in solo diagrams. Our translation into differential interaction nets
is forgetting the fact that some nodes are free and others are bound. As a consequence a
reduction might happen in the differential interaction net’s side without being possible in
the solo diagram’s side. An example is given by the term u xyz | ux′y′z′. To avoid this
situation we introduce the notion of acyclic redex.

Definition 4.3 (Acyclic redex). In a solo diagram, a pair of dual multiedges is an acyclic
redex if it is a redex (meaning that the induced freeness conditions are satisfied) and the
induced reduction step is an acyclic reduction step.

Definition 4.4 (SacL labeled transition system). SacL is the biggest labeled transition system
such that:

• each object of SacL is an object of SL and each transition of SacL is a transition of SL (but
some objects and transitions are lost),

• for any object in S
ac
L , all the transitions starting from it in SL belong to S

ac
L ,

• all pairs of dual multiedges in objects of SacL are acyclic redexes.

This means that an object G in SL belongs to S
ac
L as soon as none of the paths starting

from G in SL allows us to reach an object with a non-acyclic redex. This is a decidable
property since there are finitely many such paths.

Definition 4.5 (Acyclic solo diagram). A solo diagram which is an object of SacL is called
an acyclic solo diagram.

Proposition 4.6. If G
lm
−→ H in S

ac
L and G! s, then there are simple nets t and t0 such

that s
lm
−→ t0 in DL, H! t and t0  d t.

Proof. By hypothesis, there is a communication area C in s with two dual prefixes labeled
with l and m connected to it. We apply the forwarding of derelictions and coderelictions
in the communication area C to them (Lemma 3.8). This gives us a sum of simple nets
containing a simple net s1 with an (l,m)-communication redex and other summands where
l and m have been forwarded.

Following Figure 16, let t0 be the simple net obtained by reducing the (l,m)-communication
redex of s1, and t1 be the simple net obtained by applying to s1 the prefix reduction starting
with the reduction from s1 to t0 (see Lemma 3.9). It is easy to see that G[e1, e2] ! t1
where e1 and e2 are the multiedges of G with labels l and m. By Lemma 4.2, each step
of acyclic contraction of an identification edge corresponds to the aggregation of the two
associated communication areas, thus H! t with t1  

∗
d t and we have t0  

∗
d t.

Lemma 4.7 (Diving). Let G be a solo diagram (without identification), if G ! s and
s  ∗

{l,m} t + T with t containing an (l,m)-communication redex, then the codereliction

labeled l and the dereliction labeled m are connected to the same communication area C in s
and the (l,m)-communication redex is generated by the dereliction/codereliction forwarding
through C (Lemma 3.8).

Proof. According to Remark 4.1, the only {l,m} redexes of s are involving the codereliction
l, the dereliction m, a weakening or a coweakening.
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Figure 16: Simulation of a solos reduction step.

By confluence (Theorem 3.2), we can assume the reductions involving the codereliction
l are coming before those involving m (and those involving the weakeaning and coweak-
ening cells arrive after them). We look at the port connected to the principal port of the
codereliction l:

(l1) If it is the auxiliary port of a prefix cell, there is no reduction for l, and no {l,m}-
reduction will change the situation (or this prefix cell is labeled m and changing the
situation means erasing m).

(l2) If it is the auxiliary port of a generalized cocontraction cell (which is not a wire), there
is no reduction for l.

(l3) If it is the principal port of a prefix cell labeled k (k 6= m), there is no {l,m}-reduction
for l, and no {l,m}-reduction will change the situation.

(l4) If it is the principal port of the prefix cell labeled m, we immediately have the result,
and C is a communication area of order 0 (with the part connecting l and m which is
just a simple wire).

(l5) If it is the principal port of a generalized contraction cell of arity 0, reductions involving
l will eventually erase it and we will never reach an (l,m)-communication redex, this
contradicts the hypotheses.

(l6) If it is the principal port of a generalized contraction cell of arity n > 0, in order to
reach an (l,m)-communication redex, the reductions involving l must start destroying
the generalized contraction. In order to eventually reach an (l,m)-communication
redex, we must have a simple net corresponding to case 6 again, or to case 2 or 4.

We now consider these last two configurations: 6 cases followed by 2 (see Figure 18) or 4
(see Figure 17). Note that we cannot have infinitely many consecutive 6 cases since the
induced reduction makes the size of the net decrease. If after 6 cases we reach case 4, l and
m where connected to the same communication area C and we have the result (6 cases give
a forwarding of l through C). If after 6 cases we reach case 2, we turn our attention to the
reduction steps involving m. We look at the port connected to the principal port of the
dereliction m:
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Figure 17: Proof of Lemma 4.7: sequence 6∗-4.
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Figure 18: Proof of Lemma 4.7: sequence 6∗-2-5+.

(m1) If it is the auxiliary port of a prefix cell, there is no reduction for m, and no {l,m}-
reduction will change the situation (or this prefix cell is labeled l and changing the
situation means erasing l).

(m2) If it is the auxiliary port of a generalized contraction cell (which is not a wire), there
is no reduction for m (there could be reductions involving a coweakening but which
would eventually erase m), and we do not reach an (l,m)-communication redex, this
contradicts the hypotheses.

(m3) If it is the principal port of a prefix cell labeled k (k 6= l), there is no {l,m}-reduction
for m, and we do not reach an (l,m)-communication redex, this contradicts the hy-
potheses.

(m4) If it is the principal port of a generalized cocontraction cell of arity 0, reductions
involving m will eventually erase it and we will never reach an (l,m)-communication
redex, this contradicts the hypotheses.

(m5) If it is the principal port of a generalized cocontraction cell of arity n > 0, in order to
reach an (l,m)-communication redex, the reductions involving m must start destroy-
ing the generalized cocontraction. In order to reach an (l,m)-communication redex
we must escape the four cases above. This means that we go to case 5 again until
we reach the simplest 5 case: m facing l (note that we cannot have infinitely many
consecutive 5 cases since the size of the net decreases).

We conclude that, in order to reach an (l,m)-communication redex, we must go through a
sequence of configurations 6∗-4 (see Figure 17) or 6∗-2-5+ (see Figure 18). For l and m to
face each other after such a sequence, they must be connected to the same communication
area C in s and the reduction sequence corresponds to the forwarding of l and m through
C.

Proposition 4.8. If s
lm
−→ t0 in DL and G! s with G ∈ S

ac
L , then there are a solo diagram

H and a simple net t such that G
lm
−→ H in S

ac
L , H! t and t0  d t.

Proof. Notations coincide with Figure 16. By definition of s
lm
−→ t0, there exist a simple

net s1 containing an (l,m)-communication redex and a net S such that s  ∗
{l,m} s1 + S

and t0 is obtained from s1 by reducing this (l,m)-communication redex. By Lemma 4.7, G
contains two dual multiedges e1 and e2 connected to the same node and labeled l and m.
Let t1 be the simple net obtained by applying to s1 the prefix reduction starting with the
reduction from s1 to t0 (see Lemma 3.9), we first show that G[e1, e2]! t1. By Lemma 4.7
again, the only way the (l,m)-communication redex can have been generated in s1 is by the
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forwarding of the codereliction l and the dereliction m through the communication area (of
order p+2) they are both connected to. This gives a prefix redex and a communication area
of order p (Lemma 3.8). By firing this prefix redex, we generate pairs of wires connecting
communication areas which exactly correspond to the identification edges of G[e1, e2].

LetH be the solo diagram (without identifications) obtained by firing the redex between
e1 and e2 in G (this is possible since it is an acyclic redex). We iteratively apply Lemma 4.2
starting from G[e1, e2] and t1 until we reach H. This is possible since G ∈ S

ac
L . Let t be the

simple net obtained this way and corresponding to H, we have t0  d t.

To get our bisimulation result, we define!d as the composition of! and∼d: G!d s
if there exists a simple net s0 such that G! s0 and s0 ∼d s.

Theorem 4.9 (Bisimulation). !d is a bisimulation between S
ac
L and DL.

Proof. If G
lm
−→ H in S

ac
L , G! s0 and s0 ∼d s, by Proposition 4.6 there are simple nets t

and t0 such that s0
lm
−→ t0 in DL, H! t and t0  d t. By Lemma 3.6, there exists a simple

net t1 such that s
lm
−→ t1 and t0 ∼d t1. As a consequence t ∼d t1 thus H!d t1.

Conversely, if s
lm
−→ t1 in DL, G! s0 and s0 ∼d s, by Lemma 3.6 there exists a simple

net t0 such that s0
lm
−→ t0 and t1 ∼d t0. By Proposition 4.8, there are a solo diagram H and

a simple net t such that G
lm
−→ H in S

ac
L , H ! t and t0  d t. As a consequence t ∼d t1

thus H!d t1.

G ! s0 ∼d s

t0 ∼d t1
≀ d

H ! t

lm

lm lm

The rest of the paper will be devoted to the definition of a sub-calculus of the solos
calculus whose translation into solo diagrams lives inside S

ac
L .

5. The acyclic solos calculus

By following the approach of the previous section and by analyzing the translation of
the π-calculus into the solos calculus, we define a sub-system of the solos calculus called the
acyclic solos calculus. The key (informal) properties of this calculus are:

• expressiveness: it contains the image of the π-calculus through the translation into solos
(Sections 5.1.2 and 5.2.2).

• stability : it is well-defined with respect to the reduction of solos since it is stable under
reduction (Propositions 5.4 and 5.10).

• acyclicity : the solo diagram associated with a term of the acyclic solos calculus is an
acyclic solo diagram (and thus the bisimulation with differential interaction nets holds!)
(Section 5.3).

The definition of the acyclic solos calculus is given in two steps: first by means of a
typing system assigning Send/Receive polarities to occurrences of names, second by struc-
tural constraints on typed terms. Intuitively, we restrict terms to a forest-like structure
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with reduction occurring only between roots of the trees of the forest (in fact we will deal
with more general structures than forests). This is an abstraction of the forest structure
induced by the sequentiality of a π-term on its translation into solos. The Send/Receive
polarities on their side represent the input/output asymmetry of the π-calculus in the solos
setting.

5.1. Types. We consider a system with only two types V and W . We use U for denoting
either V or W .

A typed term is a term with scopes decorated with types: (xU )P .
A typing judgment is of the shape Γ ⊢ P where Γ contains typing declarations associ-

ating types with names and P is a typed term. The typing rules are:

Γ ⊢ 0
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Γ, x : U ⊢ P

Γ ⊢ (xU )P

Γ, x : V, y : V, z : W, z′ : W ⊢ x̂ zz′y

Γ, x : W, z : W,y : V, y′ : V ⊢ x̂ zyy′

where x̂ is either x or x .
An intuitive way of understanding the types V and W is given by these two mutually

recursive definitions:

V ::= WWV

W ::= WV V

(more generally, starting from other mutually recursive definitions of a finite set of types,
one could derive other typing systems of the same kind which would also satisfy the subject
reduction property for example).

The main purpose of this typing system is to be able to associate a communication
protocol with each object occurrence. Communication protocols are S (send) and R (receive).
If we add communication protocols as a decoration on the definitions of V and W :

V ::= W RW SV S

W ::= W RV SV R

then any object occurrence of a typed term in context can be decorated with a communica-
tion protocol: in an input solo whose subject has type U , the decoration is given according
to those of the components of the type, in an output solo it is given in a dual way: S 7→ R

and R 7→ S. More formally, we can directly enrich typing derivations in such a way that
they assign communication protocols to object occurrences of names in a typed term:

Γ ⊢ 0
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q

Γ, x : U ⊢ P

Γ ⊢ (xU )P

Γ, x : V, y : V, z : W, z′ : W ⊢ x zRz′SyS Γ, x : V, y : V, z : W, z′ : W ⊢ x zSz′RyR

Γ, x : W, z : W,y : V, y′ : V ⊢ x zRySy′R Γ, x : W, z : W,y : V, y′ : V ⊢ x zSyRy′S

Examples are given by the image of the translation of the π-calculus in Section 5.1.2.
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The intuition behind S and R comes from the difference between the name-passing
mechanism in the π-calculus and in the solos calculus. Name-passing by substitution (as
in π) entails that a flow of information is given by interaction from an output prefix to
an input prefix (receiving names are substituted with sending names). Name-passing by
unification (as in fusion or solos) establishes a perfect symmetry between the agents trying to
communicate. Communication protocols S and R are used to trace the flow of information
coming from π after translation into solos. Even if communication is symmetric (inside
the solos calculus), it is reasonable for a term decorated with communication protocols
to understand the unification of xS with yR as y being substituted with x (this will be a
consequence of the constraints given in Definition 5.6).

5.1.1. Preservation by reduction. We first check elementary properties of the typing system
with respect to reduction.

Lemma 5.1 (Free names). If Γ ⊢ P then all the free names of P appear in Γ.

Lemma 5.2 (Weakening). If x /∈ Γ and x /∈ fn(P ), Γ ⊢ P if and only if Γ, x : U ⊢ P .

Lemma 5.3 (Substitution). If Γ, x : U, y : U ⊢ P then Γ, x : U ⊢ P [x/y].

Proof. These three lemmas are proved by simple inductions on the typing derivations.

Proposition 5.4 (Subject reduction).

(1) If P ≡ Q then Γ ⊢ P ⇔ Γ ⊢ Q.
(2) If P reduces to Q and Γ ⊢ P then Γ ⊢ Q.

Proof.

(1) We simply have to consider each case of the definition of ≡ (given in Section 1.2).
The only interesting one is ((x)P ) | Q ≡ (x) (P | Q) with x /∈ fn(Q). We assume
Γ ⊢ ((xU )P ) | Q, this entails Γ ⊢ (xU )P and Γ ⊢ Q and thus Γ, x : U ⊢ P . By
Lemma 5.2, we have Γ, x : U ⊢ Q thus Γ, x : U ⊢ P | Q and finally Γ ⊢ (xU ) (P | Q).
Conversely, if Γ ⊢ (xU ) (P | Q) then Γ, x : U ⊢ P | Q, Γ, x : U ⊢ P , Γ, x : U ⊢ Q thus,
by Lemma 5.2 with x /∈ fn(Q), Γ ⊢ Q and:

Γ, x : U ⊢ P

Γ ⊢ (xU )P Γ ⊢ Q

Γ ⊢ ((xU )P ) | Q

(2) The only interesting case is (z̃) (u x1x2x3 | u y1y2y3 | P ) → Pσ where z̃ contains exactly

the names such that σ(w) 6= w. From the hypothesis, we deduce Γ, z̃ : Ũ ⊢ ux1x2x3
and Γ, z̃ : Ũ ⊢ u y1y2y3 and Γ, z̃ : Ũ ⊢ P . By Lemma 5.3, we have Γ ⊢ Pσ.

5.1.2. Typability of the translation. We prove the typability of the translation of any π-term
(see Section 1.3 for the definition of the translation).

If P is a π-term with free names in the finite set X = {x1, . . . , xk}, we define ΓX to be
the environment x1 : W, . . . , xk : W and ΓX ,v to be the environment ΓX , v : V .

Proposition 5.5 (Typability). If P is a π-term with free names in the finite set X , ΓX ⊢
[P ].
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Proof. We first show that ΓX ,v ⊢ [P ]v.
The process Cv is typable:

ΓX ,v, z : W ⊢ v zRzSvS

ΓX ,v ⊢ (zW ) v zRzSvS

The translations of prefixes are typable (see Figure 19).
The cases of P | Q and νx.P are immediate.
Finally we get the typability of [P ]:

ΓX ,v ⊢ [P ]v ΓX ,v ⊢ Cv

ΓX ,v ⊢ [P ]v | Cv

ΓX ⊢ (vV ) ([P ]v | Cv)

We can sum up the induced communication protocols:

Cv = (zW ) v zRzSvS

[u(x).P ]v = (wW ) (yV ) (v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′))

[u〈x〉.P ]v = (wW ) (yV ) (v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′))

[P | Q]v = [P ]v | [Q]v

[νx.P ]v = (xW ) [P ]v

[P ] = (vV ) ([P ]v | Cv)

5.2. Acyclicity. Relying on the decoration with communication protocols induced by the
typing system, we are now able to define our restriction of the solos calculus.

Given a typed term P , we first define some properties and relations between names and
solos occurring in P . If s is a solo, we write subj(s) for its subject.

x ∈ s := x has an object occurrence in s
xX ∈ s := x has an object occurrence in s with communication protocol X
s ⊳ x := xR ∈ s
s ⊳ t := s ⊳ subj(t)
s ⊥ t := subj(s) = subj(t), one is output and the other is input

s is a root := there is no t such that t ⊳ s

We denote by ⊳+ the transitive closure of ⊳ and by ⊳⋆ the reflexive transitive closure of ⊳.

Definition 5.6 (Acyclic solos calculus). Acyclic solos terms are typed terms which satisfy
the following five properties:

(AC1) each name has at most one R-occurrence
(AC2) s ⊥ t implies that s and t are roots
(AC3) s ⊳ x and x ∈ t implies s ⊳⋆ t
(AC4) xS ∈ s and s ⊳ x implies s is an input
(AC5) there is no free name with an R-

occurrence
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ΓX ,v, y : V,w : W ⊢ v uSwRyR ΓX ,v, y : V,w : W ⊢ Cy

ΓX ,v, y : V,w : W ⊢ v uSwRyR | Cy

ΓX ,v, y : V,w : W, v′ : V, x : W ⊢ w xRvSv′R ΓX ,v, y : V,w : W, v′ : V, x : W ⊢ [P ]v′

ΓX ,v, y : V,w : W, v′ : V, x : W ⊢ wxRvSv′R | [P ]v′

ΓX ,v, y : V,w : W,x : W ⊢ (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, y : V,w : W ⊢ (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, y : V,w : W ⊢ v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, w : W ⊢ (yV ) v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v ⊢ (wW ) (yV ) v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′)

ΓX ,v, y : V,w : W ⊢ v uSwRyR ΓX ,v, y : V,w : W ⊢ Cy

ΓX ,v, y : V,w : W ⊢ v uSwRyR | Cy

ΓX ,v, y : V,w : W, v′ : V ⊢ w xSv′RvS ΓX ,v, y : V,w : W, v′ : V ⊢ [P ]v′

ΓX ,v, y : V,w : W, v′ : V ⊢ wxSv′RvS | [P ]v′

ΓX ,v, y : V,w : W ⊢ (v′V ) (w xSv′RvS | [P ]v′)

ΓX ,v, y : V,w : W ⊢ v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′)

ΓX ,v, w : W ⊢ (yV ) v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′)

ΓX ,v ⊢ (wW ) (yV ) v uSwRyR | Cy | (v′V ) (wxSv′RvS | [P ]v′)

Figure 19: Typing derivations for the translations of prefixes.
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The acyclic solos calculus is given by restricting terms to acyclic solos terms. The structural
congruence and the reduction relation are those induced by the solos calculus.

We make a few remarks and state immediate consequences of this definition:

(1) Let us consider the following definition of communication protocols for occurrences of
names in a π-term: if the occurrence is an object occurrence in an input prefix, the
communication protocol is R, otherwise it is S. Assuming that the names appearing in
a π-term are made as different as possible by α-conversion, we can remark that each
name has at most one R-occurrence, and no free name has an R-occurrence.

(2) (AC2) entails that reduction only occurs between roots.
(3) In the case where ⊳ induces a forest ordering, (AC3) means that all the S-occurrences

of x are bigger (with respect to this forest ordering) than its R-occurrence (if any).
(4) (AC4) says that a name can have both an S-occurrence and an R-occurrence in a solo s

only if s is an input. This is a place where we are breaking the symmetry of the solos
calculus between output solos and input solos. This allows us to rule out processes
like x ySyRuR | x zRzSvS that would lead to twice the identification of y with z which is
almost the same as identifying y with y (and would break acyclicity of the associated
solo diagram).

(5) (AC5) ensures (with (AC1)) that identification edges are always contractible (no freeness
problem).

5.2.1. Preservation by reduction. We want to prove that reducts of an acyclic solos term
under the reduction of the solos calculus are all acyclic solos terms (Proposition 5.10). We
consider a reduction from P to Q by an interaction between the solos s0 and t0 of P . By
definition of reduction (see Section 1.2), we have a substitution σ such that each solo t of
Q is of the shape sσ for some solo s of P . We say that t is a residue of s. The solos s0 and
t0 of P have no residue in Q while all the other solos of P have a unique residue in Q. In
this section, in order to simplify the notations, when P reduces to Q we will use the same
name s for a solo in P and for its unique residue in Q if it exists.

To make the difference between the relations ⊳ in different processes, we use the notation
⊳P for the ⊳ relation of the process P .

The following three lemmas hold assuming only conditions (AC1), (AC2) and (AC3)
on P .

Lemma 5.7. If P is a typed term of the solos calculus satisfying (AC1), (AC2) and (AC3)
and which reduces to Q, then no R-occurrence of Q has been substituted during reduction.

Proof. Let s0 and t0 be the solos destroyed during the reduction from P to Q, if a name x
involved in the reduction (i.e. taking part in the unification, i.e. occurring in s0 or t0) has
its R-occurrence in a solo t of P different from s0 and t0 then t ⊳P x and, by (AC3), either
t ⊳+P s0 or t ⊳+P t0 thus one of them is not a root of P contradicting (AC2).

Lemma 5.8. If P is a typed term of the solos calculus satisfying (AC1), (AC2) and (AC3)
and which reduces to Q, if s is a solo in P whose subject has been modified during this
reduction ( i.e. the subject of s in P is not the same as the subject of its residue in Q), we
have both:

• (the residue of) s is a root in Q
• s is a root in P or s0 ⊳P s or t0 ⊳P s
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Proof. Let x be the subject of s in P and y be its subject in Q, each of x and y appears in
either s0 or t0. If s is not a root in Q then there is some t such that t ⊳Q s thus t ⊳P y (by
Lemma 5.7). If y ∈ s0 (and symmetrically if y ∈ t0) then t ⊳⋆P s0 (by (AC3)) with t 6= s0
since t belongs to Q thus s0 is not a root in P contradicting (AC2). So that s is a root in
Q.

If s is not a root in P then there is some t such that t ⊳P s. Since the subject of s is
modified, it means that an R-occurrence in t is also substituted thus t /∈ Q by Lemma 5.7
and t = s0 or t = t0.

Lemma 5.9. If P is a typed term of the solos calculus satisfying (AC1), (AC2) and (AC3)
and which reduces to Q, if the reduction introduces an object occurrence of the name x in
Q then x has no R-occurrence in Q.

Proof. For the reduction to put some x in some t, x must occur in s0 or t0. Assume that
x occurs in s0 and that x has an R-occurrence in s in Q (so that s ⊳Q x). By Lemma 5.7,
s ⊳P x and by (AC3), we have s ⊳⋆P s0 but, since s 6= s0 (because s0 /∈ Q), this would entail
that s0 is not a root in P contradicting (AC2).

We now turn to the preservation result.

Proposition 5.10 (Acyclicity preservation). If P is an acyclic solos term and P reduces
to Q then Q is an acyclic solos term.

Proof. We first prove the preservation of conditions (AC1), (AC2) and (AC3), independently
of conditions (AC4) and (AC5).

Preservation of condition (AC1) is given by Lemma 5.7.
We move to condition (AC2). If s ⊥Q s′, note that if one of them is not a root then

none of them is since t ⊳ s ⇒ t ⊳ subj(s) ⇒ t ⊳ subj(s′) ⇒ t ⊳ s′. Assume that t ⊳Q s and
t ⊳Q s′, if the subject of neither s nor s′ has been modified during reduction, then t ⊳P s
and t ⊳P s′ (since the R-occurrence in t of the subject of s and s′ has not been modified, by
Lemma 5.7) and P contradicts condition (AC2). If one of the subjects of s or s′ has been
modified then it is a root in Q by Lemma 5.8.

Concerning condition (AC3), we assume s ⊳Q x and x ∈Q t. By Lemma 5.7, s ⊳P x and
by Lemma 5.9, x ∈P t. So that, by (AC3), s ⊳⋆P t. If s 6⊳⋆Qt, then the path from s to t for the

relation ⊳P has been broken during reduction, this entails that a solo t′ 6= s in this path has
got his subject modified. By Lemma 5.8, s0 ⊳P t′ or t0 ⊳P t′ but this is impossible because,
since s0 and t0 are roots in P and are not in Q, s 6= s0 and s 6= t0.

We now assume that (AC1), (AC2) and (AC3) hold. Condition (AC4) is preserved:
if, in Q, an output solo s contains both an R-occurrence and an S-occurrence of a name x
then, by Lemmas 5.7 and 5.9, it is also the case in P . Condition (AC5) is preserved by
Lemma 5.7.

All this shows that our acyclic solos calculus is well behaved with respect to the reduc-
tion of the solos calculus.

5.2.2. Acyclicity of the translation. In order to prove the expressiveness of the acyclic solos
calculus, we check that it contains the image of the translation of the π-calculus.
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The ⊳ relation is the following for translated π-terms:

Cv = (zW ) v zRzSvS

[0]v = 0

[u(x).P ]v = (wW ) (yV ) (v uSwRyR | Cy | (xW ) (v′V ) (w xRvSv′R | [P ]v′))

[u〈x〉.P ]v = (wW ) (yV ) (v uSwRyR | Cy | (v′V ) (w xSv′RvS | [P ]v′))

[P | Q]v = [P ]v | [Q]v

[νx.P ]v = (xW ) [P ]v

[P ] = (vV ) ([P ]v | Cv)

where an arrow s t represents the relation s ⊳ t.

Theorem 5.11 (Acyclicity for the π-calculus). If P is a π-term, [P ] is an acyclic solos
term.

Proof. By Proposition 5.5, [P ] is typable.
Let us mention a few additional facts (which can be easily checked by induction on the

definition of [P ]v):

(i) The free names of [P ]v are v and the free names of P .
(ii) The free names of P have no R-occurrence in [P ]v.
(iii) The only subject with no R-occurrence (thus the only subject of a root) in [P ]v is v.
(iv) ⊳ is a forest on [P ]v (which is one of the reasons for the name “acyclic solos”).

From these points, conditions (AC1), (AC2), (AC3), (AC4) and (AC5) are easily verified:

• We first check the five conditions for [P ]v :
(1C1) By induction on [P ]v by using facts i, ii and iii which entail that no free name in

[P ]v has an R-occurrence in [P ]v .
(2C2) An easy induction with fact i shows that s ⊥ t entails subj(s) = subj(t) = v and

we conclude with fact iii.
(3C3) By induction, using facts iii and iv.
(4C4) Immediate induction.
(5C5) A consequence of facts ii, i and iii.

• It is then easy to check the case of [P ].

5.3. Back to acyclic solo diagrams. The last property we want to show is that the solo
diagram associated with a term of the acyclic solos calculus (Definition 5.6) is an acyclic
solo diagram (Definition 4.5).

Let G be such a solo diagram associated with the term P of the acyclic solos calculus,
we have to show that any pair of dual edges in G is an acyclic redex (Lemma 5.12). This
will be enough to show that G belongs to S

ac
L (Theorem 5.14).

Lemma 5.12. Let G be the solo diagram associated with an acyclic solos term P and
let e1 and e2 be two dual multiedges of G, this pair of multiedges defines an acyclic redex
(Definition 4.3).

We want to show that the graph Gid[e1, e2] (sub-graph of G[e1, e2] with identification
edges only, as introduced in Section 4.2.2) is acyclic and does not generate any freeness
problem in the contraction of identification edges.
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By construction, edges in Gid[e1, e2] are connecting two nodes which correspond to
occurrences of names in the term P which are going to be unified. By definition of the
acyclic solos calculus, one of these occurrences is an S-occurrence and the other one is an R-
occurrence. We consider the directed graph G′ obtained by orienting the edges of Gid[e1, e2]
towards R-occurrences.

We first prove the following lemma about directed and non-directed graphs.

Lemma 5.13. Let g be a finite directed graph and gs be the underlying non-directed graph.
If gs is connected, if g has a root (that is a node without incoming edge) and if each node
of g has at most one incoming edge then gs is acyclic.

Proof. The function which maps each edge of g to its target is an injective function (by
hypotheses) and its image is the set of nodes of g which are not roots. As a consequence,
the number of edges of g (and thus of gs) is less than or equal to the number of vertices of
g (and thus of gs) minus one. Since gs is connected, we conclude that it is acyclic.

We can now prove Lemma 5.12:

Proof. We prove that the connected components of Gid[e1, e2] equipped with the orientation
of G′ satisfy the hypotheses of Lemma 5.13 and thus that Gid[e1, e2] is acyclic. Let us assume
e1 is the input multiedge in the redex between e1 and e2 in G (since solos in a solos term
are in one-to-one correspondence with multiedges in the corresponding solo diagram, we
use the notations introduced in the beginning of Section 5.2 with multiedges as well as with
solos), we have the following properties:

(i) if xR ∈ e1 then all the other occurrences of x in e1 and e2 are S-occurrences in e1:
by (AC1), x cannot have another R-occurrence, moreover, if xS ∈ e2 then, by (AC3),
e1 ⊳

+ e2 thus e2 is not a root of P , contradicting (AC2).
(ii) if xR ∈ e2 then x has no other occurrence neither in e1 nor in e2: as for i, x cannot

have any other R-occurrence nor any S-occurrence in e1 and finally, by (AC4), it cannot
have an S-occurrence in e2.

(iii) if xS ∈ e2 then x has no R-occurrence neither in e1 nor in e2: otherwise we apply i
or ii.

We consider a connected component G0 of Gid[e1, e2]. It is the underlying non-directed
graph of the appropriate sub-graph G′

0 of G′. G′
0 is finite, G0 is connected and, according

to condition (AC1), each node has at most one incoming edge in G′
0. We just have to show

that G′
0 has a root, i.e. that there is a name in P which has only S-occurrences in e1 and e2

for each connected component G0. We first show that any R-occurrence in e2 is connected
to an S-occurrence of a name without R-occurrence: we start from this R-occurrence in e2,
the corresponding occurrence in e1 is an S-occurrence of a name x, if x has no R-occurrence
we are done, and if x has an R-occurrence then it is also in e1 (by ii) and the corresponding
occurrence in e2 is an S-occurrence (thus without R-occurrence by iii). Since any connected
component contains either an R-occurrence in e2 or an S-occurrence in e2, we are done
(with iii again).

Finally by (AC5), G′ has the property that only roots can be free nodes (according
to the free/bound labeling of nodes in G). This property is preserved by contraction of
identification edges thanks to (AC1). Moreover this property entails that at most one
extremity of an identification edge can be free, and thus no freeness problem arises during
contraction of identification edges.
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Theorem 5.14 (Acyclic diagrams from acyclic terms). The solo diagram associated with
an acyclic solos term (Definition 5.6) is an acyclic solo diagram (Definition 4.5).

Proof. We prove that the range of the translation of the acyclic solos calculus into solo dia-
grams satisfies the conditions of Definition 4.4. By Lemma 5.12, we know such a translation
contains only acyclic redexes. Now if G is the translation of the acyclic solos term P and
reduces to H, there exists a term Q which translates into H, and such that P reduces to Q
thus Q is an acyclic solos term (Proposition 5.10).

Conclusion

In the spirit of a Curry-Howard correspondence between a logical device and a concur-
rent one, we have shown how to stress a strong connection between differential interaction
nets and the solos calculus. Such links allow one to share methods from the two worlds,
with the possibility of giving concurrent interpretations to the cut-elimination procedure,
logical foundations to process calculi, of applying tools from concurrency theory such as
behavioural equivalences to formal proofs, or conversely denotational semantics from linear
logic to concurrent languages, ...

Let us discuss a few constraints or restrictions we have to face here.

Finitary calculi. We have only considered finitary calculi: without replications nor recursive
definitions. Nevertheless, exponential boxes are a natural device from linear logic proof-nets
(compatible with differential interaction nets) for representing replicable processes. We
have shown in [EL10] how to represent with these boxes a restricted (but expressive) form
of replication of the π-calculus. This restriction is related with difficulties for controling
reduction on the auxiliary ports of exponential boxes. By exploiting this kind of restriction
in the language of solos, it should be possible to represent a restricted form of replication
through our translation.

Logical correctness. Proof-nets of linear logic provide us with a graphical syntax for repre-
senting proofs of the sequent calculus [Gir96]. However this requires to impose a correctness
criterion to proof-nets in order to characterize exactly those which could be sequentialized
into a sequent calculus proof. There is such a correctness criterion for differential interaction
nets [ER06] (relating them with the sequent calculus of differential linear logic). However
the differential interaction nets obtained with our translation do not satisfy the correctness
criterion in general (this comes in particular from the unconstrained use of communication
areas). Some logical tools do not care about logical correctness and can be directly applied
in our setting (for example, the relational model is a denotational model of differential in-
teraction nets even if they do not satisfy correctness). On the contrary, many important
results in logic only hold in the logically correct case. This is why it would be important
to understand how our translation interacts with correctness, or how expressive would be
a concurrent calculus whose translation into differential interaction nets satisfies the cor-
rectness criterion. In particular, what kind of communications could be represented with
communication areas in a logically correct setting?
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Acyclicity. In trying to build a strong bridge between differential interaction nets and solo
diagrams, we have been able to define a suitable restriction of the solos calculus that can be
used as an intermediary step between the π-calculus and differential interaction nets. This
led to a new proof of the bisimulation result presented in [EL10].

The technical choices in the design of our acyclic solos calculus were completely deter-
mined by the just mentioned goal. Nevertheless, it would be interesting to study acyclic
solos for themselves. Their computational behaviour are in many ways similar to what hap-
pens in the π-calculus (“substitution-like” name passing in an “unification style” setting for
example). It would be interesting to see if they contain specific communication primitives
or if somehow the behaviour of an acyclic solos term always mimics the behaviour of a
π-term.

Another approach would be to extend our translation relation to take cycles (as in
Figure 15) into account. This requires us to understand the precise impact of these cycles
on the behaviour of differential interaction nets. In this way, it seems possible to extend
the bisimulation result to the whole solos calculus.

Following the link provided by the present work, the above mentioned points should
now be addressed to strengthen the idea of an underlying Curry-Howard correspondence.
However some possibilities are already open such as relational semantics for the π-calculus,
geometry of interaction for processes, ...
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[Mil94] Robin Milner. Pi-nets: A graphical form of pi-calculus. In ESOP ’94: Proceedings of the 5th

European Symposium on Programming, pages 26–42, London, UK, 1994. Springer-Verlag.
[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I/II. Informa-

tion and Computation, 100(1):1–77, 1992.
[Par81] David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor, 5th GI-

conference on Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science,
pages 167–183. Springer-Verlag, March 1981.

[PV98] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry in mobile
processes. In Proceedings of the thirteenth annual symposium on Logic In Computer Science, pages
176–185, Indianapolis, June 1998. IEEE, IEEE Computer Society Press.
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