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ABSTRACT. We introduce MTT, a dependent type theory which supports multiple modali-
ties. MTT is parametrized by a mode theory which specifies a collection of modes, modalities,
and transformations between them. We show that different choices of mode theory allow
us to use the same type theory to compute and reason in many modal situations, including
guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce exam-
ples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating
that MTT constitutes a simple and usable syntax whose instantiations intuitively corre-
spond to previous handcrafted modal type theories. In some cases, instantiating MTT to a
particular situation unearths a previously unknown type theory that improves upon prior
systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT
and establish canonicity through an extension of recent type-theoretic gluing techniques.
These results hold irrespective of the choice of mode theory, and thus apply to a wide
variety of modal situations.

1. INTRODUCTION

In order to increase the expressivity of Martin-Lof Type Theory (MLTT) we often wish
to extend it with unary type operators that we call modalities or modal operators. Some
modal operators arise as shorthands for internally definable structure [RSS20], while others
are used as a device for internalising non-definable structure from particular models. In
the latter case, we are sometimes even able to prove that a modality cannot be internally
expressed—at least not without extensive changes to the judgmental structure of type theory:
see e.g. the ‘no-go’ theorems by [Shul8, §4.1] and [LOPS18]. This paper is concerned with
the development of a systematic approach to the judgmental formulation of type theories
with multiple interacting modalities.

Key words and phrases: dependent type theory, modalities, modal type theory, categorical semantics,
gluing.
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The addition of a modality to a dependent type theory is a non-trivial exercise. Modal
operators often interact with the context of a type or term in a complicated way, and
naive approaches lead to undesirable interplay with other type formers and substitu-
tion. However, the consequent gain in expressivity is substantial, and so it is well worth
the effort. For example, modalities have been used to express guarded recursive defini-
tions [BMSS12, BGC*16, BGM17, Gual8|, parametric quantification [NVD17, ND18], proof
irrelevance [Pfe01, AS12, ND18], and to define global operations which cannot be localized to
an arbitrary context [LOPS18]. There has also been concerted effort towards the development
of a dependent type theory corresponding to Lawvere’s axiomatic cohesion [Law07], which
has many interesting applications [Sch13, SS12, Shul8, GLN*17, Kav19].

Despite this recent flurry of developments, a unifying account of modal dependent type
theory has yet to emerge. Faced with a new modal situation, a type theorist must handcraft
a brand new system, and then prove the usual battery of metatheorems. This introduces
formidable difficulties on two levels. First, an increasing number of these applications are
multimodal: they involve multiple interacting modalities, which significantly complicates the
design of the appropriate judgmental structure. Second, the technical development of each
such system is entirely separate, so that one cannot share the burden of proof even between
closely related systems. To take a recent example, there is no easy way to transfer the work
done in the 80-page-long normalization proof for MLTTg [GSB19a] to a normalization proof
for the modal dependent type theory of [BCM™20], even though these systems are only
marginally different. Put simply, if one wished to prove that type-checking is decidable for
the latter, then one would have to start afresh.

We intend to avoid such duplication in the future. Rather than designing a new
dependent type theory for some preordained set of modalities, we will introduce a system
that is parametrized by a mode theory, i.e. an algebraic specification of a modal situation.
This system, which we call MTT, solves both problems at once. First, by instantiating it
with different mode theories we will show that it can capture a wide class of situations.
Some of these, e.g. the one for guarded recursion, lead to a previously unknown system that
improves upon earlier work. Second, the predictable behavior of our rules allows us to prove
metatheoretic results about large classes of instantiations of our system. For example, our
canonicity theorem applies irrespective of the chosen mode theory. As a result, we only need
to prove such theorems once. Returning to the previous examples, careful choices of mode
theory yield two systems that closely resemble the calculi of [BCM*20] and MLTTg [GSB19a]
respectively, so that our proof of canonicity applies to both.

In fact, we take things one step further: MTT is not just multimodal, but also multimode.
That is, each judgment of MTT can be construed as existing in a particular mode. All modes
have some things in common—e.g. there will be dependent sums in each—but some might
possess distinguishing features. From a semantic point of view, different modes correspond
to different context categories. In this light, modalities intuitively correspond to functors
between those categories: in fact, they will be structures slightly weaker than dependent
right adjoints (DRAs) [BCM™20].

Mode theories. At a high level, MTT can be thought of as a machine that converts a
concrete description of modes and modalities into a type theory. This description, which is
often called a mode theory, is given in the form of a small strict 2-category [Ree09, LS16,
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LSR17]. A mode theory gives rise to the following correspondence:
object ~ mode
morphism ~ modality

2-cell ~ natural map between modalities

The equations between morphisms and between 2-cells in a mode theory can be used to
precisely specify the interactions we want between different modalities. We will illustrate
this point with an example.

Instantiating MTT. Suppose we have a mode theory M with a single object m, a single
generating morphism g : m — m, and no non-trivial 2-cells. Equipping MTT with M
produces a type theory with a single modal type constructor, (u | —). This is the simplest
non-trivial setting, and we can prove very little about it without additional 2-cells.

If we add a 2-cell € : p = 1 to M, we can define a function

extracty : (u| A) - A
inside the type theory. If we also add a 2-cell § : 4 = p o u then we can also define

duplicate, : (| A) — (| (1] A))
Furthermore, we can control the precise interaction between duplicate 4 and extract4 by adding
more equations that relate € and §. For example, we may ask that M be the walking comonad
[SS86] which leads to a type theory with a dependent S4-like modality [Pfe01, dR15, Shuls].
We can be even more specific, e.g. by asking that (u, €, d) be idempotent.

Thus, a morphism g : n — m introduces a modality (1 | —), and a 2-cell @ : p = v of
M allows for the definition of a function of type (i | A) — (v | A) at mode m.

Relation to other modal type theories. Most work on modal type theories still defies
classification. However, we can informatively position MTT with respect to two qualitative
criteria, viz. usability and generality.

Much of the prior work on modal type theory has focused on bolting a specific modality
onto a type theory. The benefit of this approach is that the syntax can be designed to be
as convenient as possible for the application at hand. For example, spatial/cohesive type
theory [Shul8] features two modalities, b and f, and is presented in a dual-context style.
This judgmental structure, however, is applicable only because of the particular properties
of b and f. Nevertheless, the numerous pen-and-paper proofs in op. cit. demonstrate that
the resulting system is easy to use.

At the other end of the spectrum, the framework of Licata-Shulman-Riley (LSR) [LSR17]
comprises an extremely general toolkit for simply-typed, substructural modal type theory.
Its dependent generalization, which is currently under development, is able to handle a very
large class of modalities. However, this generality comes at a price: its syntax is complex
and unwieldy, even in the simply-typed case.

MTT attempts to strike a delicate balance between those two extremes. By avoiding
substructural settings and some kinds of modalities we obtain a noticeably simpler apparatus.
Unlike LSR, we need not annotate our term formers with delayed substitutions, and our
approach extends to dependent types in a straightforward manner. Most of the pleasant
type-theoretic behaviour of MTT is achieved by ensuring that none of its rules ‘trim’ the
context, which would necessitate either delayed substitutions [BGC*16, LSR17] or delicate
proofs of the admissibility of substitution [BGM17, BCM 20, GSB19a]. We also show that
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MTT can be employed to reason about many models of interest, and that it is simple enough
to be used in pen-and-paper calculations.

Contributions. In summary, we make the following contributions:

e We introduce MTT, a general type theory for multiple modes and multiple interacting
modalities.

e We present a semantics, which constitute a category of models deriving from the generalized
algebraic theory that underlies MTT.

e Using the semantics, we prove that—subject to a technical restriction—MTT satisfies
canonicity, an important metatheoretic property. This is achieved through a modern
gluing argument [Shulb, AK16, Coql9, KHS19].

e Finally, we instantiate MTT with various mode theories, and show its use in reasoning
about two specific modal situations, viz. guarded recursion [BGC*16], and internal
adjunctions [Shul8, LOPS18].

2. THE SYNTAX OF MTT

As mentioned in the introduction, the syntax of MTT is parameterized by a small 2-category
called a mode theory. We will later show how to instatiate MTT with a mode theory in
order to reason about particular scenarios, but for now we will work over an arbitrary mode
theory. We thus fix a mode theory M, and use m,n, o to stand for modes (the objects of
M), p,v, 7 for modalities (the morphisms), and «, 3,y for 2-cells.

In broad terms, MTT consists of a collection of type theories, one for each mode m € M.
These type theories will eventually appear in one another, but only as spectres under a
modality. We thus begin by describing the individual type theories at each mode, and then
discuss how modalities are used to relate them.

2.1. The Type Theory at Each Mode. Each mode of MTT is inhabited by a standard
Martin-Lof Type Theory (MLTT), and accordingly includes the usual judgments. For
example, we have the judgment I' ctx @ which states that I' is a well-formed context in
that particular mode m. There are likewise judgments for types, terms, and substitutions at
each mode.

' A type, @m ‘

I' ctx@m I'ctxam I' ctx@m '+ A type, @m <t
't U type; @m I' =B type, @m I' = fA typey @m

I'ctx@m '+ A type, @m I'EM,N:fAQm
I'Flda(M,N) type, @m

I' ctx @m I' = A type, @m Ix:fAF B type, Qm
I'-(x:A)— Btype, am ' (x:A)x B type, @m

Figure 1: Selected mode-local rules.
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In lieu of an exhaustive list of rules, which we will present in Section 4, we illustrate
this point by only showing the important ones in Figure 1. In brief, each mode comprises
an ordinary intensional type theory with dependent sums, dependent products, intensional
identity types, booleans, and one universe. Both sums and products satisfy an n-rule.

Universes a la Coquand. There are several ways to introduce universes in type theory
[Hof97, §2.1.6] [Pal98, Luol2]. We use the approach of [Coql3], which is close to Tarski-style
universes. However, instead of inductively defining codes that represent particular types,
Coquand-style universes come with an explicit isomorphism between types and terms of the
universe U. However, we must remember to exercise caution: if this isomorphism were to
cover all types then Girard’s paradoz [Coq86] would apply, so we must restrict it to small
types. This, in turn, forces us to stratify our types into small and large.

The judgment I' = A type, @ mn states that A is a small type, and I' = A type; @ that
it is large. The universe itself must be a large type, but otherwise both levels are closed
under all other connectives. Finally, we introduce an operator that lifts a small type to a
large one:

e<r ' A type, @m
' 1A typey @m

The lifting operation commutes definitionally with all the connectives, e.g. (A — B) =
TA — B. We will use large types for the most part: only they will be allowed in contexts,
and the judgment I' = M : A @ m will presuppose that A is large. As we will not have terms
at small types, we will not need the term lifting operations used by [Coql3] and [Stel9].
Following this stratification, we may introduce operations that exhibit the isomorphism:

I'M:Uam I' = A typeg @m
' EI(M) typey @ m '+ Code(A) : Uam

along with the equations Code(EI(M)) = M and El(Code(A)) = A.

The advantages of universes & la Coquand are now evident: rather than having to
introduce Tarski-style codes, we now find that they are definable. For example, assuming
M :Uand x:E(M)F N :U, welet

(z: M) = N £ Code((z : EI(M)) — EI(N)) : U
We can then calculate that
El((x : M) = N) = El(Code((z : EI(M)) — EI(N))) = (x : EI(M)) — EI(N)

We will often suppress f}— as well as the explicit isomorphism.

2.2. Introducing a Modality. Having sketched the basic type theory inhabiting each
mode, we now turn to the interaction between them. This is the domain of the modalities.

Suppose M contains a modality p : n — m. We would like to think of u as a ‘map’ from
mode n to mode m. Then, for each F A type @ n we would like a type F (u | A) type @ m.
On the level of terms we would similarly like for each H M : A@n an induced term
F mod, (M) : (| A) @m.

These constructs would be entirely satisfactory, were it not for the presence of open
terms. To illustrate the problem, suppose we have a type I' - A type @ n. We would hope
that the corresponding modal type lives in the same context, i.e. that I' - (u | A) type @ m.
However, this is not possible, as I' is only a context at mode n, and cannot be carried over
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verbatim to mode m. Hence, the only pragmatic option is to introduce an operation that
allows a context to be mapped to another mode.

Forming a modal type. There are several different proposed solutions to this problem in
the literature [PD01, Clo18]. We will use a Fitch-style discipline [BGM17, BCM 20, GSB19a]:
we will require that a modality p induce an operation on contexts in the opposite direction.
We will denote this operation by a lock:
CX/LOCK
I ctx@m
I, &, ctxan

Intuitively, @, will behave somewhat like a left adjoint to (u | —). However, (u | —) acts
on types while —, @, acts on contexts, so this cannot be an ordinary adjunction. Instead,
(u | —) will be what [BCM™20] call a dependent right adjoint (DRA). A DRA essentially
consists of a type former R and a context operation L such that

{N|LO)FN:A}2{M|T+FM:R(A)} (1)

See [BCM™20] for a formal definition.
Just as with DRAs, the MTT formation and introduction rules for modal types effectively
transpose types and terms across this adjunction:

TP/MODAL TM/MODAL-INTRO
wim—n &, - Atype,an Lim —mn r.&,t-M:Aan
I'F (| A) type, @m I'Fmod, (M) : (1| A) @m

It remains to show how to eliminate modal types. Previous work on Fitch-style calculi
[BCM 20, GSB19a] has employed elimination rules which essentially invert the introduction
rule TM/MODAL-INTRO. Such rules remove one or more locks from the context during type-
checking, and sometimes even trim a part of it. For example, a rule of this sort would
be

& ¢r TEM:{u|A)am
r,&,I"Fopen(M): Aan
This kind of rule tends to be unruly, and delicate work is required to prove even basic results
about it. For example, see the technical report [GSB19b] for a particularly laborious proof
of the admissibility of substitution. The results in op. cit. could not possibly reuse any of
the work of [BCM™20], as a small change in the syntax leads to many subtle differences in
the metatheory. Consequently, it seems unlikely that one could adapt this approach to a
modality-agnostic setting like ours.

We will use a different technique, which is reminiscent of dual-context calculi [Kav20].
First, we will let the variable rule control the use of modal variables. Then, we will take a
‘modal cut’ rule, which will allow the substitution of modal terms for modal variables, to be
our modal elimination rule.

Accessing a modal variable. The behavior of modal types can often be clarified by asking
a simple question: when can we use a variable x : (11 | A) of modal type to construct a term
of type A? In previous Fitch-style calculi we would use the modal elimination rule to reduce
the goal to (u | A), and then—had the modal elimination rule not eliminated x from the
context—we would simply use the variable. We may thus write down a term of type A using
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a variable x : (1 | A) only when our context is structured in a way that does not obstruct
the use of z, and the final arbiter of that is the modal elimination rule.

MTT turns this idea on its head: rather than handing control over to the modal
elimination rule, we delegate this decision to the variable rule itself. In order to ascertain
whether we can use a variable in our calculus, the variable rule examines the locks to the
right of the variable. The rule of thumb is this: we should always be able to access (u | A)
behind @,,. Carrying the illustrative analogy of an adjunction —, &, - (1 | —) further, we see
that the simplest judgment that fits this, namely ',z : (u | A), @, - 2 : A@Qn, corresponds
to the counit of the adjunction.

To correctly formulate the variable rule, we will require one more idea: following modal
type theories based on left division [Pfe01, Abe06, Abe08, NVD17, ND18], every variable in
the context will be annotated with a modality, z : (u | A). Intuitively a variable  : (u | A) is
the same as a variable x : (i | A), but the annotations are part of the structure of a context
while (i | A) is a type. This small circumlocution will ensure that the variable rule respects
substitution.

The most general form of the variable rule will be able to handle the interaction of
modalities, so we present it in stages. A first counit-like approximation is then

TM/VAR/COUNIT
&gz, Lo, @, F A type; an
Lo,z:(p|A),&,T1Fxz:Aan
The first premise requires that no further locks occur in I'y, so that the conclusion remains
in the same mode n. The second premise is just enough to derive I'g F (i | A) type; @ m.

Context extension. The switch to modality-annotated declarations x : (| A) also requires
us to revise the context extension rule. The revised version, Cx/EXTEND, appears in Figure 2
and closely follows the formation rule for (u | —): if I',@, = A type, @ n is a type in the
locked context I', then we may extend the context I' to include a declaration z : (u | A), so
that z stands for a term of type A under the modality p.

The elimination rule. The difference between a modal type (u | A) and an annotated
declaration x : (1 | A) in the context is navigated by the modal elimination rule. In brief,
its role is to enable the substitution of a term of the former type for a variable with the
latter declaration. The full rule is complex, so we first discuss the case of a single modality
:n — m. The correspoding rule is

TM/MODAL-ELIM /SINGLE-MODALITY
D' My: (| A am
Tyz: (1| (| A))F B type, @m Iy:(u|A)F M : Bmod,(y)/x] @m
I' - let mod,,(y) <= Mo in My : B[My/x] @ m

Forgetting dependence for a moment, we see that this rule is close to the dual-context style
[PDO01, Kav20]: if we think of annotations as separating the context into multiple zones,
then y : (u | A) clearly belongs to the ‘modal’ part.

In the dependent case we also need a motive I';x : (1| (i | A)) F B type; @ m, which
depends on a variable of modal type, but under the identity modality 1. This premise is then
fulfilled by My in the conclusion. In a sense, this rule permits a form of modal induction:
every variable x : (1| (1| A)) can be assumed to be of the form mod,,(y) for some y : (1 | A).
This kind of rule has appeared before in the spatial and cohesive type theories of [Shul§].
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CX/LOCK CX/EXTEND
pin —m I'ctxam win—m I ctx @ m r,&, - Atype, an
I, &, ctxan Tyz:(p] A) ctxam
CX/1D CX/COMPOSE
' ctx@m v:o—n pin—m I' ctx @m
=T, ctxam ra,a =ra, cxoo

‘FI—AtypeZ(Lm Fl—M:Am}m‘

TP /MODAL TM/VAR
win—m r,&, + Atype,an vim-—n a: v = locks(I'1)
I'F (u| A) type, @m Fo,xz:(v]|A), 1 Faz®: A%am

TM/MODAL-INTRO
Lin—m r.a&,rFM:Aan
I'Emod, (M) : (] A) @m

TM/MODAL-ELIM
win—m vim-—o Dyz:(v|{u|A))F B type, @o
L&, My:{(u| A am Dyz:(vou|A)F M : Blmod,(x)/z] o
I' - let, mod,(x) <= My in My : B[My/x] @o

TM/MODAL-BETA
v:m-—o Lin—m Fyz:(v|{(u|A))F Btype, @o
&, FM:Aan Iyz:(vou|A)F M : Bimod,(x)/z] o
I' = let, mod,(z) < mod,(Mp) in My = M;[My/x] : Blmod,(My)/x] @ o

locks(I")
locks(+) =1 locks(T,z : (| A)) = locks(T") locks(T", @,,) = locks(I") o p1

Figure 2: Selected modal rules.

In the type theory of [BCM™20] modalities are taken to be dependent right adjoints,
with terms witnessing Equation {. This isomorphism can encode T™/MODAL-ELIM /SINGLE-
MODALITY, but that rule alone cannot encode Equation {. As a result, modalities in MTT
are weaker than DRAs.

2.3. Multiple Modalities. So far we have only considered a single modality. In this
section we discuss the few additional tweaks that are needed to support multiple interacting
modalities. The final version of the modal rules is given in Figure 2.
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Multimodal locks. Up to this point the operation —, &, on contexts has referred to a
single modality g : n — m. The rule cx/Lock generalizes it to work with any modality. The
only question then is how the resulting operations should interact. This is where the mode
theory comes in: locks should be functorial, so that v:0 —n, p:n — m, and ' ctx @m
imply T, @,, &, =T',8,,, ctx @o. We additionally ask that the identity modality 1 : m — m
at each mode has a trivial, invisible action on contexts, i.e.that I, @ =T.

These two actions, which are encoded by cx/compPose and cx/1p, ensure that @ is a
contravariant functor on M, mapping each mode m to the category of contexts I' ctx @ m.
The contravariance originates from the fact that M is a specification of the behavior of the
modalities (| —), so that their left-adjoint-like counterparts —, &, act with the opposite
variance.

The full variable rule. We have seen that @ induces a functor from M to categories
of contexts, but we have not yet used the 2-cells of M. In short, a 2-cell a : p = v
contravariantly induces a substitution from I', @, to I',@,. We will discuss this further in
Section 4, but for now we only mention that this arrangement gives rise to an admissible
operation on types: for each 2-cell we obtain an operation (—)® such that ', @, = A type @ m
implies T', @, = A type @ .

In order to prove the admissibility of this operation we need a more expressive variable
rule that builds in the action of 2-cells. The first iteration (T™M/VAR/COUNIT) required that
the lock and the variable annotation were an exact match. We relax this requirement by
allowing for a mediating 2-cell:

TM/VAR/COMBINED
w,vV:n—m a: L=V

Tyz:(p|A),& Fz%: A%an

The superscript in % is now part of the syntax: each variable must be annotated with
the 2-cell that ‘unlocks’ it and enables its occurrence, though we will still write z to mean
x'». The final form of the variable rule, which appears as T™/vAR in Figure 2, is only a
slight generalization of this last rule: it allows the variable to occur at positions other than
the very front of the context. In fact, TM/vAR can be reduced to T™M/VAR/COMBINED by using
weakening to remove variables to the right of x, and then invoking functoriality to fuse all
the locks to the right of x into a single one with modality locks(I'y).

The full elimination rule. Recall that the elimination rule for a single modality allowed
us to plug in a term of type (u | A) for an assumption z : (1 | A). Some additional generality
is needed to cover the case where the motive z : (v | (u | A)) F B type @m depends on
x under a modality v # 1. This is where the composition of modalities in M comes in
handy: our new rule will use it to absorb v by replacing the assumption x : (v | (u | A))
with z: (vopu| A).

The new rule, TM/MODAL-ELIM, is given in Figure 2. The simpler rule may be recovered
by setting v £ 1. In this simpler case, we will suppress the subscript 1 on let, just as in
TM/MODAL-ELIM /SINGLE-MODALITY. However, many natural examples require eliminations
where v # 1. For instance, in Section 3 we show that (vopu | A) ~ (v | (i | A)). The function
from the right-hand side to the left crucially depends on the ability to pattern-match on a
variable z : (v | (u | A)), which requires the stronger T™/MODAL-ELIM.
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Definitional equality in MTT. A perennial problem in type theory is that of deciding
where the boundary between those equalities that are provable in the system (e.g. using
various forms of induction), and those that are definitional, i.e. hold by fiat. While we have
simply followed standard practices in the MLTT connectives at each mode, the situation is
somewhat more complicated regarding modal types. On the one hand, we have the expected
[B-rule T™M/MODAL-BETA: see Figure 2. On the other hand, we do not include any definitional
n-rules: as the eliminator is a positive pattern-matching construct, the proper n-rule would
need commuting conversions, which would enormously complicate the metatheory.

Notational conventions. In the rest of the paper we shall make use of the following
notational conventions.

Notation 2.1. When opening a modal term under the modality 1 we will suppress the 1 in
the let; part of the term, and write let mod,( ) <= M in N instead.

Notation 2.2. As remarked before, Coquand-style universes do not require the introduction
of codes that represent various types in the universe, for they are definable. Nevertheless, in
examples we will often suppress both El(—) and Code(—), and in some straightfoward cases
even elide the coercion {—. This not only makes our terms more perspicuous, but can also
be formally justified by an elaboration procedure which inserts the missing isomorphisms
and coercions when needed.

3. PROGRAMMING WITH MODALITIES

In this section we show how MTT can be used to program and reason with modalities.
We we identify a handful of basic modal combinators which demonstrate the behaviour of
our modal types. Then, in Section 3.2 we use them to present a type theory featuring an
idempotent comonad with almost no additional effort.

3.1. Modal Combinators. We first show how each 2-cell  : p = v with y,v : n —> m
induces a natural transformation (u | —) — (v | —). We call the components of this natural
transformation coercions. Given I',&@, F A type; @ m, define

coela = vl(=) 1 (] A) = (] A%)
coela : u = v|(z) £ let mod,(z) « z in mod, (z%)

The heart of this combinator is a use of the rule TM/var. This operation completes the
correspondence sketched in Section 1: objects of M correspond to modes, morphisms to
modalities, and 2-cells to coercions.

Additionally, the assignment p — (i | —) is functorial. Unlike the action of locks, this
functoriality is not definitional, but only a type-theoretic equivalence [Unil3, §4|. Fixing
vio—mn, p:n—m,and T, @, - A type, @m, we let

comp, ,: (u|(v]|A)) = (uov|A)

compw,(m) £ let mod,(xg) < x in
let,, mod, (z1) < o in
mod o (1)
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and

compy,, : {uov | A) = (u| (v ] A))

comph{y(:c) £ let mod,0, (20) < 2 in mod,,(mod, (z))
We elide the 2-cell annotations on variables, as they are all identities (i.e. we only need
T™/VAR/COUNIT). Even in this small example the context equations for locks are essential:
for (1| (v | A)) to be a valid type we need that I',@,,&, = I',&,,, which is ensured
by cx/compose. Furthermore, observe that comp,, , crucially relies on the multimodal
elimination rule TM/MODAL-ELIM: we must pattern-match on xg, which is under p in the
context.

Similarly, fixing I' - A type; @ we have

triv(—): (1] A) — A trivi(=): A — (1] A)
triv(z) £ let mod;(xg) < z in g triv! (z) £ mod (z)

In both cases, these combinators are only propositionally inverse. For example, the proof for
one direction of the composition combinator is

— 1 (@ (| (v ] A))) = 1dpay (2, comp;), (comp,, , (2)))
_2 Xz. let mod,,(z¢) < z in let, mod,(z1) < x in refl(mod,(mod,(z)))

This is in many ways a typical example: we use the modal elimination rule to induct on a
modally-typed term, which reduces it to a term of the form mod(—). This is just enough to
make various terms compute, and the result then follows by reflexivity.

As a final example, we will show that each modal type satisfies the K aziom,' a central
axiom of Kripke-style modal logics. This combinator will be immediately recognizable
to functional programmers: it is the term that witnesses that (u | —) is an applicative
functor [MPOS].

—®u = (u[ A= B) = (p|A) = (u]B)
f®,a =let mod,(fo) « f in let mod,(ag) < a in mod,(fo(ao))

We can also define a stronger combinator which corresponds to a dependent form of the
Kripke axiom [BCM*20] along the same lines. As it generalizes ®,, to dependent products,
this operation has precisely the same implementation but a more complex type:

(] (x:A) = B) = (xo: (| A)) = (let mod, () < xo in (1| B))

In order to ensure that (u | B) is well-typed, the context must contain = : (u | A), but
instead we have bound zg : (1 | (u | A)). We correct this mismatch by eliminating z¢ and
binding the result to x.

3.2. Idempotent Comonads in MTT. A great deal of prior work in modal type theory
has focused on comonads [PDO01, dR15, Shul8, GSB19a], and in particular idempotent
comonads. [Shul8, Theorem 4.1] has shown that such modalities necessitate changes to the
judgmental structure, as the only idempotent comonads that are internally definable in type
theory are of the form — x U for some proposition U. In this section we present a mode
theory for idempotent comonads, and prove that the resulting type theory internally satisfies
the expected equations. In fact, we only use the combinators of the previous section.

We define the mode theory Mic to consist of a single mode m, and a single non-trivial
morphism u : m — m. We will enforce idempotence by setting p o 4 = p. Finally, in order

INot to be confused with Streicher’s aziom K.



11:12 D. GRATZER, G.A. Kavvos, A. NuyTs, AND L. BIRKEDAL Vol. 17:3

to induce a morphism (x| A) — A we include a unique non-trivial 2-cell € : ;4 = 1. In order
to ensure that this 2-cell to be unique, we add equations such as ex1, =1,x€e: popu = p,
where * denotes the horizontal composition of 2-cells. The resulting mode theory is a
2-category, albeit a very simple one: it is in fact only a poset-enriched category.

We can show that (i | A) is a comonad by defining the expected operations using the
combinators of Section 3.1:

dupg:(u|A) = (ul(u|A))  extracty:(u|A) — A
dup, = comp;}’u extract4 £ triv'(—) o coele : p = 1]

We must also show that dup4 and extract4 satisfy the comonad laws, but that automatically
follows from general facts pertaining to coe and comp.? This is indicative of the benefits
of using MTT: every general result about it also applies to this instance, including the
canonicity theorem of Section 5.

4. ALGEBRAIC SYNTAX

Until this point we have presented a curated, high-level view of MTT, and we have avoided
any discussion of its metatheory. Yet, syntactic matters can be quite complex, and have
historically proven to be sticking points for modal type theory. While such details are
not necessary for the casual reader, it is essential to validate that MTT is syntactically
well-behaved, enjoying e.g. a substitution principle. The aim of this section is to provide
a setting for this study: we introduce the formal counterpart of MTT, which is given as a
generalized algebraic theory (GAT) [Car78, KKA19].

Historically, GATs were used in the semantics of type theory, but modern techniques
show that they are also useful in the analysis of syntax. For example, recasting MTT as a
GAT naturally leads us to include ezplicit substitutions [Cur90, ML92, Grall] in the syntax.
Thus, substitution in MTT is not a metatheoretic operation on raw terms, but a syntactic
operation within the theory. This presentation helps us carefully state the equations that
govern substitutions and their interaction with type formers. We consequently obtain an
elegant substitution calculus, which can often be quite complex for modal type theories.

This approach proffers a number of technical advantages. Amongst other things, the
theorems proven in the aforementioned works on GATs imply the following points:

(1) We absolve ourselves from having to prove tedious syntactic metatheorems, e.g. admissi-
bility of substitution.

(2) We automatically obtain a notion of model of our theory, which is given in entirely
algebraic terms.

(3) We obtain a notion of homomorphism of models. (NB that this notion is rather strict
and not fit for every purpose.)

(4) In an equally automatic fashion, we obtain an initial model for the algebraic theory,
which we consider as our main formal object of study.

(5) The unique morphism of models from this initial model to any other is the semantic
interpretation map. We then have no need to explicitly describe these semantic maps
and prove that they are well-defined on derivations, as done e.g. by [Hof97].

2In particular, our modal combinators satisfy a variant of the interchange law of a 2-category.
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While this approach is straightforward and uncluttered, some readers might object
to the lack of a more traditional formulation, e.g. a named syntar with variables and a
metatheoretic substitution operation, like the one we informally presented in Section 2. We
believe that it is indeed possible to define such a syntax and systematically show how to
elaborate its terms to the algebraic syntax.

However, such a named syntax would not be directly suitable for implementation: for
that purpose we ought to develop an entirely different algorithmic syntax. We believe that
such a syntax can be constructed as an extension of existing bidirectional presentations of
type theory [Coq96, PT00] as has been done for existing modal calculi [GSB19a]. Such
a bidirectional presentation would occupy a midpoint between the maximally annotated
algebraic syntax we present here, and the more typical named syntax of Section 2: it would
contain only a select few annotations to ensure the decidability of typechecking, yet maintain
readability. The development of such a syntax is a substantial undertaking that requires a
proof of normalization, and is orthogonal to the foundational metatheoretic results that we
seek to develop here. We thus refrain from developing it, and instead work directly with the
GAT.

4.1. Sorts. We begin by defining the different sorts (contexts, types, terms, etc.) that con-
stitute our type theory. In order to support multiple modes, our sorts will be parameterized
in modes. Thus, rather than having a single sort of types, we will have a sort of types at
mode m € M, and likewise for contexts at mode m, terms at mode m, etc.

Moreover, we take care to index our types by levels. The reason for doing so was
discussed in Section 2.1: we seek to introduce a hierarchy of sizes, which we can then use to
introduce universes a la [Coql3]. We stratify our types in two levels, drawn from the set
L ={0,1}. There are no technical obstacles on the way to a richer hierarchy, but two levels
suffice for our purposes: we aim to divide our types into small types (i.e. those that can be
reified in a universe) and large types (which also include the universe itself). In order to
enforce cumulativity we will also include an explicit coercion operator, which includes small
types into large types.

The levelled approach raises an obvious question: on which level should we admit terms?
We could follow the approach of [Stel9] in allowing terms at both, but this requires the
introduction of term-level coercions, which then require equations relating term formers at
different levels. Thus, for the sake of simplicity we will only allow the formation of terms at
large types. Similarly, we will only allow the extension of a context by a large type.

MTT has four families of sorts, which are introduced by the following rules:

m: M 0: L m: M I:ctx, m: M Ity A : typel ()
Ctx, sort type’,(I') sort tm,, (I, A) sort

m: M T A : ctxop
sb,, (T, A) sort

In the interest of clarity we will use the following shorthands:
I ctx@m =T : ctxm I'FAtype,am = A: typefn(I‘)
F-M:Aam= M :tm,(T,A) CFé:Aam=3§:sby(T,A)
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[ ctx @m w: Homag(n, m)
- ctx@m ra, ctxan
T ctx @m w : Homag(n, m) ra, - Atype an
T.(u]A) ctxam
T ctx@m v : Hompq(o,n) p : Hompg (n, m) T ctx@m
ra,a8 =ra,, cxao &, =T ctxam

Figure 3: MTT Contexts

Even though we will use this more familiar notation, we will take no prisoners in terms of
rigour: we will carefully avoid overloading and ambiguity, and we will enforce presupposition.

4.2. Judgments. We shall now introduce the type theory itself by writing down the
constructors and equalities of its GAT. In the interest of brevity, we elide a number of
standard rules, including

e the congruence rules pushing substitutions inside terms and types;

e the congruence rules pushing explicit lifts inside of type formers;

e the associativity, unit, and weakening laws for the explicit substitutions;
e the [ laws for II, X, B and Id;

e the n laws for II and X;

The specification of the GAT is given in Figures 3-9. As the judgments are defined in
a mutually recursive manner, the division of the rules between different figures is merely
presentational. Given A -~ :T @ and I'.@, F A type, @ m we write

A | Ay &) FAt 2 (yot)vo: T(p | A) am

for the ‘weakened’ substitution.

4.3. Discussion. We record some points on the generalized algebraic theory.

Modal dependent products. The algebraic presentation of MTT includes a primitive
modal dependent product type (u | A) — B. This is a combination of the modality (u | —)
and the ordinary dependent product. Using a named syntax, it may be understood as

(:(p]A)— B=E(zg: (] A)) — (let mod,(z) + x¢ in B)

However, the modal types of MTT do not readily support a definitional n-equality, so this
definition is not equivalent to the modal dependent product of the GAT. We use the latter
because it is convenient for programming, and also has a natural semantics, which we will
present in Section 5.2.1.
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I'ctx@m
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' A type, @m

11:15

I'ctxam I' ctx @ m I'EM:Uam

'+ B type, @m 't U type; @m '+ EI(M) typey @ m

r

<y I' ctx @m ' A type, @m
'+ 1A type, @m

ctx @ m ' A type, @m I'FM,N:ffAam

r

T'Flda(M, N) type, @m

ctx @m w : Homag (n, m) ra, - Atype, an

u: Homag (n, m)

Tk (u|A) type, @m

I ctx@m ra, - Atype,an I.(n| f1A) F B type, @m

'k (u|A) — B type, @m

I ctx @m '+ A type, @m [.(1|fA) - B type, @m

I'F>"(A, B) type, am

I'A ctx@m A+ A type, @m 'koéo:Aam

I'ctx@m I

I' + A[d] type, @m

Figure 4: MTT Types

T'Ed: Aam

ctx@n w : Hompg(n, m) ra, - Atype, an

I' ctx @m

TF-:-

Q@Qm

A ctx@m

F(u|A)FT:Tam

T A= ctxam F'E~y:Aam AFSd:ZEQm

I'kFdoy:Zam

A ctx@m p : Hom g (n, m) 'Fé:Aam
ra -éia, Al an

T ctx @m w, v : Homag(n, m) av=p
ra -ag:ra, an

w : Homag(n, m)

I'Fid:T"am

FE§:Aam A&, F Atype, an ra, -M:Aoa,]an

THEOM:A(u| A)am

Figure 5: MTT Substitutions
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'EM:Aam

w : Homag (n, m) I ctx @ m ra, - Atype an I ctx @ m
Lu|A)&, Fvo: At.&,]an L't ff:Bam
' ctx@m

I.(1|B)F A type; @m TF M, : Alid.ttj@m Tk My : Afid.ff] @ m TFN:Bam
'k if(A;MﬁMf;N) : A[id.N] @m

I ctx@m ' A type, @m I ctxam I' A type; @m I'EM:Aam
' Code(A) : Uam Dt refl(M) : 1da(M,M)am

T ctx @m 'k A type, @m C.(1]A).(L]A[T]).(1 | Idap2y(ve, Vo)) F B type; G
T.(1]A)F M : B[t.vo.vo.refl(vg)] @m ' Nog,Ni: Aam PkH P:ldsa(No, Ni)@m

'+ J(B,M,P): Bfid.Ng.Ny.P] a1

I ctx @m w : Homag (n, m) ra, - Atype an ra,-mM:Aan
I'Fmod, (M) : (| A)yam

v : Homp (o, n)
p : Hom g (n, m) I ctx @m ra,a - Atype o ra, -M:w|Aan
D.n| (v | A))F B type; @m T.(uov | A)F My : B[f.mod,(vo)] @m
I'+let, mod,(_ ) < My in M, : Blid.My] @m

w : Hompg(n, m)
I ctx @m ra, - Atype, an T.(n| A) - B type; @m (| A)FM:Bam
TEAXM): (u|A) — Bam

u: Homp(n, m) T ctx@m ra, - Atype an
I.(u| A) & B type, @m I'EMy: (]| A) — Bam ra,-M:Aan
'+ My(My) : Blid.My]@m

I ctx @m
' A type; @m I.(1] A)F B type, @m I'EMy: Aam '+ M : Blid.Mp] @ m
T'F (Mo, M) :> (A, B)am

I ctx@m 'k A type; @m I.(1|A)F B type; @m 'EM:> (A B)am
TEpro(M): Aam 'k pry(M) : Blid.pro(M)] @m

')A ctx@m At A type, @m T'Fé:Aam AFM:Aam
' M[d] : Ald]@m

Figure 6: MTT Terms
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‘FI—A:BtypeZ @ /n‘

w: Hom g (n, m) I,A ctx@m F'Eé:Aam A&, F Atype, an
T (u| A)6] = (u| A[6.&,]) type, @ m

w : Homag(n, m)
A ctx@m F'Fé:Aam ra, - Atype,an T.(u]| tA) - B type, @m

T ((u]|A) = B)o] = (u | Alo@,]) — B[6"] type, @ m

' A type, @m by <ty < ¥ty ' A type,, @m
I'-1A=Atype,am = fMA =4 type, @m

o<y u € Hom g (n, m) I’ ctx @ m ra, - Atype, an L.(u|fA) - B type, @ m
TEN((p| A) = B)=(u| tA4) — B typey @m

I ctx@m '+ A typey @m A ctx@m 'Ed:Aam
I' F El(Code(A)) = A type, @m I' - U[0] = U type; @m

Figure 7: Equality of Types

[TFM=N:Aan]

w: Homag(n, m) THé:Aam A, FAtype, an ra,-mM:Aoa,]Jan
ra, t-vo(oM)a,)=M:Al@,]an

I' ctx@m I'EM:Uam
't Code(EI(M)) =M :Uam

v : Homp (o, n)
& Homag(n, m) I' ctx @m ra,a - Atype o ra,a -»M,:Aao
D] (v]A)F B type; @m I.(pov|A)F My : B[t.mod,(vo)] @m

I+ let, mod,( )« mod, (Mo) in M; = M;[id.Mo] : Blid.mod, (Mo)] @

w : Hompg(n, m)
AT ctx@m F-d:Aam Al F Atype, Gn A&, FM:Aan
I' - mod, (M)[6] = mod, (M[o.&,]) : (u | Alo.&,]) @ m

v : Homa (0, n) w : Hompg (n, m)
A ctx@m rEd:Aam A&, & - Atype Go A&, FMy:(v|A)an
A(p] (v |A))F B type, @m A.(pov|A)F M : B[t.mod,(vo)] @m
'+ (let, mod,(_) < Mo in M7)[6] = let, mod,(__) « My[6.@,] in M;[67] : B[0.Mo[5.@,]] @ m

Figure 8: Equality of Terms
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‘FI—WZ(S:AQ/N‘

Iy, T'; ctx@n A ctx @n A&, F Atype, @m
u : Homag(m, n) Tob~:Ti@n IyFo:Aan &, +-M:A/d&,)am

Lok (6.M)oy=(60v).M[.&,]:A(u|A)an

I'A ctx@o w : Homag(m,n) v : Homa(n,0) 'Eé:Aam
ra. . -oiad,, =/a 8,6 : A&, an

I'A ctxam TFd:Aam I'ctx@n w : Homag(m, n)
F-6@8;, =6:Aam ra -ida,=id:Ira,an
DA ZE ctx@an & Homag (m,n) PEéd:Aan A& Ean

ra,rEocdad, =¢ca,00@, =8, amn

I ctx@n w : Homag(m,n)
T, Fid=a :T.&,an

A ctx@n w, v : Hompg(m, n) F'kEé:Aan a:v=
ra, -a&fo (0@, =(08)0&% : A, am

I ctx @m 1os fi15 p2 - Hompg(n, m) Qo : o = M1 oy iy = f2
F.ﬁuz - %%loao = quio o legl : F'ﬂuo an

I ctx @m Vo, 1 : Homp (0, n) o, 11 : Hompg(n, m) B:vg =11 Qg =
F~au00uo [ OQ?*B = Qef'i,ﬁyl o 9‘?““0 : F.ﬂmoul Qo

Figure 9: Equality of Substitutions

Modal substitutions. In addition to the usual rules, MTT features substitutions corre-
sponding to the 1-cells and 2-cells of the mode theory. First, recall that for each modality
@ : n — m we have the operation @, on contexts. Its action extends to substitutions:

SB/LOCK
hin—m T'Fd: Aam

ra,Foéa, A&, an

Second, each 2-cell « : p = v induces a natural transformation between @, and @, whose
component at I' is the ‘key’ substitution

SB/KEY
aip=v
ra -a&p:ra,an

Recalling that M°P is the 2-category with morphisms and 2-cells opposite from M, we
see that these substitutions come with equations postulating that —.4@, is a functor, &
is a natural transformation, and that together they form a 2-functor M°P — Cat. As a
consequence, our type theory is forced to contain a calculus of (strict) 2-categories. Indeed,




Vol. 17:3 MULTIMODAL DEPENDENT TYPE THEORY 11:19

the given equations for keys above suffice to derive the two ways of internally stating the
interchange laws, viz.
I' ctx@m Vo, V1, v2 : Hompg(o,n) o, 11, po : Homag(n, m)
Qg © o = 1 Qi = 2 Bo v =11 B1:v1 = 1o
I'@,00, - o‘*%o*ﬁo © c"‘lo“él*ﬂ1 = &p' 0.y, 0 o‘*lﬁ“lsf;) : T 00 @0

I ctx@m Vo, 1, Vo : Hompg (0, n) o, 141, po : Homag(n, m)
Qo : po = H1 Qg t = o Bo:vo =11 B1:v1 = 1o
I o0, - &E P 0&pH M = &g o a1® @, : T.yay, 00

In fact, the second version of the interchange law follows from the first one and the equation
that expresses the naturality of & —. Conversely, except the two laws for the identity 2-cell
and naturality, the given equations follow from either one of the two interchange laws.
While it is no longer necessary to prove that substitution is admissible in the setting of
the GAT, we would still like to show that explicit substitutions can be eliminated on closed
terms. The proof of canonicity implicitly contains such an algorithm, but that is overkill:
a simple, direct argument proves that explicit substitutions can be propagated down to
variables. Moreover, we may define the admissible operation mentioned in Section 2 by

A* & AR M® £ M[&t]

We may then use the aforementioned algorithm to eliminate the keys.

Pushing substitutions under modalities. In order for the aforementioned algorithm to
work, we must specify how substitutions commute with the modal connectives of MTT.
Unlike previous work [GSB19b], the necessary equations are straightforward:

(1| A5 = (| Al5A,]) mod,, (M)[3] = mod,,(M[5.,))

This simplicity is not coincidental. Previous modal type theories included rules that,
in one way or another, trimmed the context during type checking: some removed vari-
ables [Pra65, PD01, Shul8|, while others erased context formers, e.g. locks [BCM™20,
GSB19a]. In either case, it was necessary to show that the trimming operation, which we
may write as ||T'[|, is functorial: I' - § : A should imply ||| = ||0]| : [|A]|. Unfortunately, the
proof of this fact is almost always very complicated. Some type theories avoid it by ‘forcing’
substitution to be admissible using delayed substitutions [Bd00, LSR17], but this causes
serious complications in the equational theory.

MTT circumvents this by avoiding any context trimming. As a result, we need neither
delayed substitutions nor a complex proof of admissibility.

5. MODELS

In the preceding section we presented the formal definition of MTT in the form of a GAT.
As a consequence we automatically obtained a category of models of MTT, as well as (strict)
homomorphisms between them [Car78, KKA19]. Moreover, this category of models had
an initial object, i.e. the syntax of MTT itself. This category of models is inhabited by
algebras for this GAT. Hence, showing that a mathematical structure is a model of MTT
becomes a laborious task: one must show that each and every construct can be interpreted
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in a manner that makes the postulated equations hold. In this section we shall take on the
task of decomposing these algebraic models into more tractable pieces.

A moment’s thought reveals that many of the equations of the GAT given in Section 4
are rather close to the familiar notion of categories with families (CwFs) [Dyb96], which can
be adapted to the present setting.® However, we will take things a bit further by opting for
a category-theoretic reformulation of CwFs known as natural models [Awol18].

Natural models build on the view of CwF's as consisting of a presheaf of types (over the
category of contexts), coupled with a presheaf of terms (over the elements of those types).
We find this relatively recent technology helpful for two reasons. First, it concisely encodes
the many naturality conditions normally required of a CwF. Second, it aids in uncovering
the implicit universal properties of type-theoretic connectives, which are not quite so evident
in the usual GAT-like formulation of CwF's.

In Section 5.1 we demonstrate how the basic notions of context, type, term, and context
extension in MTT can be presented in terms of natural models. Then, in Section 5.2 we
show how to interpret the various connectives—including the modality—in the language of
natural models; this discussion concludes with a concise definition of a model of MTT in
Section 5.2.5. Following that, in Section 5.3 we briefly discuss a strict notion of morphism of
models.

5.1. Contexts, Types, and Terms.

5.1.1. Contexts. First, we observe that a model of our type theory must contain a set of
contexts at each mode m € M. Equipped with the substitutions at the same mode, which
can be composed associatively and have the identity substitution as a unit, these sets are
readily seen to form a category—the context category at m € M—for which we write C[m)].

Moreover, recall that for I' ctx @ and g : n — m we have a context I', @, ctx @, and
that this construction extends to substitutions in a functorial fashion. Hence, we will require
for each modality p : n — m a functor

[®.] : C[m] — C[n]

Similarly, each « : 4 = v induces a natural transformation. Accordingly, a model should
come with a natural transformation

[&°] : [@,] = [@,]

The equalities of the GAT require that the assignments y — @, and o — &* be strictly
2-functorial. Thus, this part of the model can be succinctly summarized as follows.

Definition 5.1. A modal context structure for a mode theory M is a (strict) 2-functor
[—] : M — Cat;
where M°P is the 2-category M with the direction of both 1-cells and 2-cells reversed, and

Cat; is the full subcategory of (large) categories with a terminal object.

This double contravariance may seem peculiar at first sight. Recall that the 2-category
M specifies the behaviour of the modal types (1 | —), which are supposed to have a right-
adjoint-like behaviour, with the corresponding left-adjoint-like operators being the lock
functors —.@,,. Being left-adjoint-like, the interpretation [@_] of each lock will behave with

3The conference version of this paper used such a presentation in the interest of brevity.
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variance opposite to the specification of M. Of course, this is merely an analogy, as these
constructions are not truly adjoint.

5.1.2. Types and Context FExtension. The following definition plays a central role.

Definition 5.2 (Representable natural transformation). Let C be a small category, and let
P,Q : PSh(C) be presheaves on C. A natural transformation a : P = @ is representable
just if for every I' : C and z : y(I') = P there exists a y : y(A) = @ and a morphism
~v: A — T in C such that there is a pullback square

y(a) —2 . q
P

This enables a very succinct definition of a model of type theory [Awol8|.

y(7)

4
y) ——F—

Definition 5.3. Let C be a small category with a terminal object 1, and let T.T: PSh(C).
A natural model of type theory is a representable natural transformation 7: 7= 7.

It is shown in op. cit. that this corresponds to the usual notion of CwF: the repre-
sentability of 7 : T = T is a clever way to encode context extension and comprehension
in a manner that automatically ensures naturality with respect to substitution: see also
[Fiol12]. Moreover, one can use this economy to write down very concise interpretations of
type formers. Our objective here is to adapt this to modes and modalities.

To begin, given a mode m € M we define two presheaves on the context category C|m]:

Tin(L) £ typey, (T) Tn(T) £ {(A, M) | A € typey, (T), M € tm,, (T, A)}

The first one maps a context at mode m € M to the set of large types over it. The second
one maps a context to the set of pointed types, i.e. to the set of pairs consisting of a type
and a term of that type. The presheaf action is given by substitution. We immediately
obtain a natural transformation 7,, : 7, = T,,: at each context I', 7, r projects a pair
(A, M) to the underlying type A. As a result, the fibres of 7,,, are the terms of a given type.

Context extension postulates that for any object I' : C[m|, modality p € Hom(n,m), and
large type A € typel ([@,]T') there exists an object I'.(1 | A) : C[m] along with a morphism
and a term

p : Homep) (T (1 | 4),T) q € tmy, ([@,](T.( | A)), A[[@.](p)])
The object I'.(11 | A) is universal with respect to p and q: for any v € Homgj,,, (A, T') and
term M € tm,, ([@,]A, A[y.@,]) there is a unique v.M : A — T'.(n | A) such that

po(yM)=v :A—=T (5.1)
q[(y.M).&,] = M : tm, ([@,](T), A[&,]) (5.2)

As usual, (5.2) is only well-typed because of (5.1). The only difference to the usual context
extension of CwFs is that A and I are in different modes.

This can be encoded in the style of natural models as follows. We write |—| for the Yoneda
isomorphism. Given p : Homa(n,m), context T' : C[m], and a type A : typel ([@,](T)),
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there is a chosen context I (cf. T.(u | A)), a chosen morphism p : IY — T', and a chosen

morphism |q : y([@,]JI’) — 7, that make the following square commute:

Gl

y([@.1) ——— 7,

y(18,1p) | |

y([@]7) ———— Ta

4]

We have surreptitiously ‘decoded’ the top arrow into a term q € tm,, ([@,[(I’), A[[@,]p]).
The universality of these objects is expressed by asking that for a given A : C[m)],

7 : Homepy, (A, T), and [M] - y([@,]A) = Ty, there must be a unique morphism ' : A — I
(which stands for v.M) such that the following square commutes:

ywnﬂgw>”"“\\\wﬂ

y(\[[ﬂuﬂ\’Y/)
(. (@)

|
\\\Zwﬂwp>
|

Y(Hau]]r)

ol

Tn

—

S

4]

This diagram is not a pullback, but we can make it into one. Recall that for any functor
f :C — D we can define the precomposition functor f*: PSh(D) — PSh(C) by

(P & cov I por Py get

Then, for any ¢: C and @ : PSh(D) we can use the Yoneda lemma to establish a series of
natural isomorphisms

Hompgp(p) (y(f(c)), Q) = Q(f(c)) = f*Q(c) = Hompgp e (y(c), fQ)

We can then transpose the diagram in order to obtain

v
7 oy —4 e 65
y(p) @17,
y(T) [&.]"7x
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where v : A — I" is the unique arrow that makes the diagram commute. The requirement
that this diagram be a pullback leads us to the following definition.

Definition 5.4. A modal natural model on a context structure [—] : M“°P — Cat; consists
of a family of natural transformations of presheaves

(Tm T = Tm> e

where T, Trn : PSh(C[m]) such that for every u : Homa(m, n) the natural transformation
[[ﬂu]]*Tn : [[ﬂu]]*ﬁ = [[nu]]*%
is a natural model.

We will write I".(1 | A) for the object I that makes (5.3) a pullback, as we do in the
type theory.

5.2. Connectives. We shall only discuss the key cases of II types, modal types, Boolean
types, and universes. The interpretation of the other connectives largely follows the style of
[Awo18]. More details can be found in the tech report [GKNB20).

5.2.1. II Structure. Even though MTT II types are close to traditional II types they are
not quite the same, as they involve a modality in the domain. Thus, we need to construct
an appropriate variation of the interpretation given by [Awol8]. To begin, we need some
way to represent the binding of an additional assumption. This is achieved through the
use of polynomial endofunctors. Given a ‘display map’ £ : E — B we define a polynomial
endofunctor Py.x_,5 : PSh(C[m]) — PSh(C[m]) by*

Prp.p(A) 2y A70
b

When specialized to the ‘modalized’ natural model £ 2 [@,]*(7,) : [@,]*T, = [@,.]*7y, this
functor has a useful property: morphisms y(I") = Pra, 7. (Tm) are in bijection with tuples

(A€ To([@.](T)), B € Tin(T.(1 | A))) (5-4)

This enables the representation of a pair of types I'.@, - A type; @n and I'.(u | A) +
B type; @ m—i.e. the premises of II formation—as a single morphism y(I") = Pla s, (Tn)-

A similar observation applies to the presheaf of terms 7,,. See [Awol8, Lemma 5| for a
detailed proof of this property.
A model is equipped with a [[-structure if for x : Hompg(n, m) we have a pullback

Pra,om, (T) —————— To,
A
| |7
Pa,jor,(Tm) ———— T,

AThis is given in the internal language, but may also be written purely categorically, as is done in op. cit.
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The lower morphism [ models the formation rule: the premises of the rule constitute a
pair of the form (5.4). We may thus combine them into an arrow y(I') = Pg j+r, (75), and
then postcompose [] to obtain a morphism y(I') = T,,, i.e. a type at mode m in context
I' ctx @m. In a similar fashion, the top morphism lam models the introduction rule. The 3
and 7 laws then follow from the pullback property of the square: see [Awol18].

5.2.2. Modal Structure. The interpretation of the modal types is a bit more involved.
Intuitively, the reason is that (i | A) behaves like a positive type former, i.e. one with a
‘let-style’ pattern-matching eliminator, and no #-rule. These features render its behaviour
closer to that of intensional identity types.

First, for each p : Homag(n,m) the formation and introduction rules for (u | —) are
given by a commuting square

" mod,, .
[[ﬂ#]]*TnJ le . (5.5)
[[ﬂu]]*% Mod,, T

By Yoneda, every type I'.@, F A type; @ n can be seen as a morphism y(I") = [@,]*7,.
Postcomposition with Mod,, gives a morphism y(I') = 7,,, which constitutes the interpre-
tation of the type I' = (1 | A) type; @ 1. mod, interprets the introduction rule in a similar
fashion. Nevertheless, asking that this square be a pullback is stronger than the elimination
rule. In Section 7 we shall see that states that Mod,, is a dependent right adjoint.

Instead, we will model our elimination rule by a lifting structure. We phrase this
definition in the internal language of the presheaf topos PSh(C[m]), i.e. extensional type
theory.” This has a serious technical advantage: as the definition is given in an empty
context, the given lifts are automatically natural.

Definition 5.5 (Left lifting structure). Given - A, I, B type, a family b : B + E[b] type and
a section a : A & ifa] : I, we define the type b i[—] th E[—] type of left lifting structures for i
with respect to E to be

i~ Bl=] 2 Merop Taqr,, siceay : T BCW) | Vas A jla)) = c(a)}

Informally, left lifting structures provide diagonal fillers for the diagram

C(i[-]),c
DD 5,y

A

B
C

Intuitively, C' : I — B is the motive of an elimination: we would like to prove E[C(p)] for
all p:I. At the same time, c¢: [[,. 4, E[C(i[a])] is a given section that specifies the desired
computational behaviour of this elimination at the ‘special case’ A. The left lifting structure

5This is derived from unpublished work by Jon Sterling, Daniel Gratzer, Carlo Angiuli, and Lars Birkedal.
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then provides a section j of E[—] defined on all of I. This section is above C, and extends c.
Note that these fillers are not necessarily unique. Moreover, they are automatically natural:
as all the types involved in this definition are closed, we are at liberty to weaken the context.

This style of lifting structure is an essential ingredient in recent work on models of
intensional identity types. First, they play an important role in natural models: [Awol8,
Lemma 19] shows that they precisely correspond to enriched left lifting properties in the
sense of categorical homotopy theory [Riel4, §13]. In fact, the above definition given above
is a word-for-word restatement in the internal language. Second, such lifting structures are
also central devices in internal presentations of models of cubical type theory, in particular
the recent work of [OP18].

We can now approach this in a manner similar to intensional identity types in op. cit.
Recall that the elimination rule for (v | A) is

v : Hompy(o,n)
w : Hompq(n, m) I ctx @m ra,a - Atype ao ra,FM:(v|Aan
L. | (v]A))FE B type; @m T.(pov| A)F M : B[tT.mod,(vo)] @m
I' - let, mod,(_ ) < My in M; : Blid.My] @ m

First, we must remove the ‘implicit cut’ with My. We construct the substitution
T(u| (v|A)(uov| At Buo)]) F o &2 12vy : T(uov | A)am
It then suffices to construct the elimination rule

v : Homp(o,n) p = Hompg(n, m) [ ctx @m ra, .a - Atype o
C.(u|(v]A))F B type; @m T (uov | A)F M : B[f.mod,(vo)] @m
I'.(p| (v ]A))tFlet, mod,( )<« voin Mi[o]: Bam

because we can calculate that
I' - (let, mod,(_) < vo in Mi[o])[id.Mo] = let, mod,(__ ) <= Mo in M; : Bid.My] @ m
We can rephrase this as the existence of a diagonal filler in the diagram

[M[o]]

Yo | 4) —

y(1.mod, (vo)) let,, mod, (__) < vq in M;[o]]

/

y(@-(u | (v [ A)))

S\‘lk

Tm

3

1B

We can use a left lifting structure on a carefully chosen slice category to obtain such
diagonal fillers. The internal language approach still applies because of the well-known
lemma stating that the slice of a presheaf topos is also a presheaf topos, but over the
corresponding category of elements. In symbols, for any P : PSh(C) we have an equivalence
PSh(C)/P ~ PSh(, P): see [MLM92, III Ex. §]
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First, given v : Homp(0,n) we construct the following pullback:

mod,

ol

Tn

—

(@17

S

Mod,

The outer commuting square is that given by the formation and introduction for (v | —),
as in (5.5). Intuitively, M is a ‘generic v-modal terms object’ that consists of terms
I'-M:(v|A)an, where '@, F A type, @ 0. We know that [@,]* has a left adjoint, so it
preserves pullbacks. Applying it to this diagram yields

[@.]*mod,

(8,17 (5.6)

ﬂﬂuﬂ*h‘ (@] 7

Bl To o BT,
We have also used the fact that (—)* is functorial to contract the two locks into one. Moreover,
we get that the unique mediating morphism is indeed [@,]*m.

From this point onwards we will also work in the slice PSh(C[m])/Z, where Z £
[@,.]*75. In order to model the elimination rule we will ask for a left lifting structure in
the slice category, of type

- open’, : [@,]"m h Z* (1) (5.7)
where both of these are considered as morphisms in the slice PSh(C[m])/Z, respectively of
type

@0 m: (@] 7 — [@.]h
Z*(t) : Z°(T) = Z*(Ton)

Following [Awo18] we may calculate that this models the rule. We suppose its premises,
and construct the diagram of Figure 10. The right (both top and bottom) part of the
diagram is just (5.6). The bottom composite is easily seen to correspond to the application
of the introduction rule of (v | —) to the type I'.@, .@, - A type, @0, and hence to the type
ra, - (v| A) type; @n. The outer bottom square is the natural model pullback square
that defines the object I'.(11 | (v | A)), and we thus get a mediating morphism to [@,]*M,
and that the bottom-left square is also a pullback. The left (both top and bottom) part of
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Imod,, (q))

Figure 10: Modelling the elimination rule

the diagram is the natural model pullback square that defines the object I'.(pov | A). We
hence get a mediating morphism p.mod,(q) : I'.(uov | A) = T'.(x | (v | A)). Finally, for
the same reasons as the bottom composite, the top composite is easily seen to correspond to
the term mod,(q).

We write ), : PSh(C[m])/Z — PSh(C[m]) for the usual domain projection functor,
so that >, +4 Z*. Now, using the usual approach to slice categories—where the cartesian
product Xz is the pullback—we see from the diagram that

> (Al %z [@ue]*To) 2 y(Tu(uov | A))
Z

SO(A <z @) = y(T(u | (v | A))) (5.8)

Z

> (ida) xz [@.]"m) = y(p.mod, (q))
Z
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Recall that we are trying to find a diagonal filler to the PSh(C[m]) diagram
[M]

y([(pov]A)) — T
y(p-mod,(q)) Tom (5.9)
y(L.(1 | Mod, (4))) 7.

1B

We use the adjunction ), + Z* to transpose this diagram, and we compose with the
isomorphisms (5.8) to obtain the following diagram in PSh(C[m])/Z:

~ 78] N
1A| %z [@uo]*To ) > 2% (Tm)
id x 7 [@,]"m ) openf! Z*(7m)

[A] <z [@,]"h Z*(Tm)

We may then use the lifting structure to prove a diagonal filler, and transpose backwards
along the adjunction to obtain a filler for (5.9). The naturality of all these steps (composing
isomorphisms, transposition, and lifting structure) ensure that the choice is natural.

5.2.3. Boolean Structure. A boolean structure is defined similarly to the structure for modal
types. First, we require two constants, as well as naturally given diagonal fillers for the
appropriate squares:

tt
. TR
| 7.
ff le [ttaﬁ] Tm
Tm —1 “
Bool T (Bool) ——— T,

7,.1(Bool) is the fibre of 7,,, over Bool, and the map [tt, ff] is obtained as the cotuple of
the maps obtained by factoring tt and ff through the fibre. Requiring a left lifting structure

if : [tt, fF] i 7, [—]
in the internal language provides enough naturality to yield diagonal fillers for all squares

y(1) 4y (1) —————

T

y(I‘.Booi) T
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5.2.4. Universe. The universe itself is given by a presheaf S,,, at each mode m. The Coquand-
style isomorphism is implemented by a natural transformation Uni : 1 = 7,,, which stands
for the universe type at mode m, as well as a natural isomorphism

7.1 (Uni) & S,

As the pullback of 7,,, along Uni is y(1.Uni), this exactly postulates an isomorphism between
terms of the universe and small types. The coercion from small to large type is interpreted
by a natural transformation lift : S,,, = 7, that maps each small type to its associated large
type. Moreover, we ask that the formation rules factor through small types: we require a

mediating morphism in each of the following diagrams:%
Pa,j-r, (Sm) > Sm [@.]"Sn > S 1 > Sm
lift lift h lift
Pajor,(Tn) ———— T T T 17,
od, Bool

These factorisations ensure that type formation is closed under small types, and commutation
ensures that the coercions commute with the type formers defintitionally.

5.2.5. The full definition. We have shown how to interpret each rule of MTT through natural
models. In fact, every step of our working is reversible: each contraption we have introduced
precisely corresponds to the portion of the generalized algebraic theory it was used to
interpret. In summary, we can make the following definition.

Definition 5.6. A model of MTT over M consists of

e a modal context structure for M (as in Definition 5.1), and a
e a modal natural model on that context structure (as in Definition 5.4)

such that the modal natural model supports

dependent product types

dependent sum types (at each mode)
intensional identity types (at each mode)
modal types

a boolean type (at each mode), and

a universe of small types.

5.3. Morphisms of Models. The generalized algebraic theory (GAT) of MTT also induces
a notion of morphism between models. Traditionally neglected, morphisms are of paramount
importance when one produces semantic proofs of metatheoretic properties, such as canonicity,
a proof of which we will present in Section 6.

The last decade has seen much use of relatively weak morphisms of CwFs, i.e. morphisms
which preserve structures only up to isomorphism: see e.g. [CD14, BCM™20]. However,
our proof of canonicity will require the strictest notion of CwF morphism, i.e. a GAT
homomorphism. Such morphisms preserve all structure on-the-nose, including context

6There are also similar diagrams for 3 and intensional identity types.
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extension, and were introduced alongside CwFs by [Dyb96]. As we are using natural models,
we will use an adaptation due to [Newl8, §2.3]. We believe that one may construct a
biequivalence or biadjunction between a category based on strict morphisms and one based
on weaker ones, as done by e.g. [Uem19], but we will leave that to future work.

Definition 5.7 (Strict morphism of natural models). A morphism of natural models
(C, Te = Te) = (D, Tg =L Tq) comprises a functor F': C — D and a commuting diagram

T. F*Ty
Tcl Fory (5.10)
T. F*Tg

¥
such that F(1) = 1 and the canonical morphism F(I".A) — F(I").¢(A) is an identity.

The type ¢(A) in the last line is defined as follows. Given |A] : y(I') = 7. we let

N N

By Yoneda this induces a natural isomorphism
Hompsp c) (y (1), £ 7a) = F*Ta(I') = Ta(F(I')) = Hompgy (p) (y (FT), Ta) (5.11)
We define |¢p(A)] : y(FT') = T4 to be k transported under this isomorphism. Also, let
M]:y@) =T —  |@(M)]:y(F(T)) = Ta

which maps a term I' = M : A to a term FT' - @(M) : ¢(A) in a similar manner.
Returning to the last condition in the definition, we may now form the diagram

\Y(P) Td

FT T4
YD =) !

where the outer square is the diagram composed by pasting together the context extension
diagram for I'.A and (5.10), followed by transposing along the natural isomorphism (5.11).
We then ask that the unique induced arrow be the identity.

We can lift these natural transformations to the formation data of the connectives
(making special use of the final equality for the polynomial functors). For instance, we can
define a morphism

PF*Td ((P)

Pr(T0) {22 P s (F*T3) £ Pr(Te) = Ppory(Te) ——— Ppor, (F'T0)

The first component comes from a natural transformation P, (—) = P p«7,(—), which exists
because (5.10) not only commutes, but is a pullback square. That is a nontrivial fact proven
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laboriously by [New18, §2.3.14]. A more conceptual proof is given by [Uem19, Cor. 3.14] in
the language of discrete fibrations.

We then require that all connectives (][, D, refl) strictly commute with these morphisms.
Finally, we can extend this to a model of MTT by requiring not just a functor, but a natural
transformation C = D, where C,D : M°P — Cat satisfy the obvious generalizations of the
conditions written above. Specifying this formally:

Definition 5.8. A morphism between two models of MTT, C, D, is given by a 2-natural
transformation « : C = D. Moreover, we require a choice of commuting squares:

~ Om ~
Uem) — apUpim)

7
TC[m]l la*@[m]

Z/{C [m)] 90—> (X*UD [m]

Moreover, we require that (¢, ) strictly commutes with all operations.

am(L.(p | A)) = am(I').(u | ©(A4))

[Te () =¢e]l lam o (p, @) = 3o lam
> olp,p)=po} pair o (¢, ) = ¢ o pair
Mod,, o [@.]"¢ = ¢ o Mod,, mod,, o [@,]"¢ =  omod,
openy o (¢, [@,]"%) = ¢ o open;,
Bool = ¢ o Bool tt=pott ff=poff
if o (3,5,7) = poif
Ido(p,0,¢) =¢old reflo 3 = Gorefl

Jo(p,9)=pod
Remark 5.9 (The Initiality of Syntax). Under this definition of homomorphism, we imme-

diately have an initial model [Car78, KKA19]. We will define this model to be our syntax
and designate it (S[m))mem-

6. CANONICITY

Equipped with the generalized algebraic theory of Section 4 and its reformulation through
natural models in Section 5, we are ready to show that the syntax of MTT is well-behaved.
In this section we will sketch the main parts of a proof of canonicity for MTT. This is a
basic well-behavedness property which guarantees that terms of ground type, e.g. B, can be
normalized. As expected, the proof is independent of the mode theory.

Proposition 6.1. If- M : B@Qm, then either = M =tt:BQm or M =ff: Bam.

This kind of result would traditionally be established by producing a rewriting system
along with a lengthy PER model construction. We will instead opt for a proof given by
constructing a glued model [Coql9, KHS19]. The contexts, types, and terms of this model
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will contain a syntactic component (resp. a context, type, or term), along with a proof-
relevant predicate that is appropriately fibred over it. The base types of this model are
carefully chosen so that a normal form can be extracted from proofs of the predicate. By
interpreting a term of ground type in the glued model we automatically obtain a proof of
the predicate, from which we extract a normal form.

Such proofs involve two steps: defining the glued construction, and proving that it is a
model. While the first step is often straightforward, the second usually involves checking
innumerable equations. In order to shorten the proof sketched here we will make a simplifying
assumption (effectively adding an equation to the algebraic syntax): we will assume that
locks preserve the empty context, i.e. that

&, = ctxam
for p: Homag(m,n). Using the universal property of the terminal context, this implies
. .ﬂ# FQY=.=id:-@, am (6.1)

Requiring this equation unfortunately limits our class of models to those where the left
adjoint strictly preserves the terminal product. Despite this simplification the proof remains
rather long, so we will only sketch the construction of the modal natural models. The
missing details may be found in an accompanying technical report.

Remark 6.2. In what follows we will assume the existence of two Grothendieck universes
V' C V: Set. We could make do with just one but at the price of some contortions, which
are both unnecessary and tiresome. We will assume that the sets of contexts, substitutions,
types, and terms of the syntactic model are V’'-small.

6.1. The Glued Model. We begin by defining the context structure.

Definition 6.3 (Glued Contexts). A glued context I' at mode m consists of a context
I'? € ctx,n, a predicate I'™ € V, and a function

¢r : T — sby, (-, T'7)

A glued context I' = (I',T™) can be thought of as a proof-relevant predicate over
substitutions into the syntactic context I'Y. An element x € I'™™ can be thought of as a proof
that the predicate holds of the substitution ¢r(x) : - — I'Y. We will henceforth use the
metavariable I" to range over glued contexts, and denote contexts of the syntax by I'“.

Definition 6.4 (Glued Substitutions). A glued substitution from A to I' at mode m is a
pair of a substitution v € sb,,(A<,T'Y) and a function 4> : A* — I'™ such that

Ve e A%. ¢r(v" (z)) =7 o pa(z) : - = T7
Glued contexts and glued substitutions form a category, viz. the comma category
Clm] = (1y L sy (-, —))

which we take as the category of contexts at mode m. Next, we define a 2-functor from
M sending each m to C[m]. For each p : Homg(m, n) a functor [@,] : C[n] — C[m] as by
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taking the C[n] morphism

Y
A* r~
| |
02N or
l l
sb,, (-, AY) sb,, (-, ')
Vo —
to the C[m] morphism:
>
A> i r~
| |
Pna, ora,
1 1
sb,, (-, A<.&@ sb,, (-, <.
A (.7,

where the function ¢, g, is defined by

Pra, () £ oa(z)@, - — A°Q,

Notice that the equation -.@, = - is necessary to ensure that this definition is well-typed.
The diagram commutes because locks act functorially on substitutions. It is also functorial

in u, because I'.@, @, =T.@,,, and @ =T.

We define a 2-cell [@,] = [@,] for each o : v = p. The component at (I'™,T', ¢r) is

™ r~
| |
Ira, ora,
! !
sby (-, T<.,) sby (-, <)

«
r<°—

This diagram commutes because of (6.1), so it is a morphism in comma category. Naturality
follows from the numerous equations pertaining to keys and their composition.

This completes the definition of a strict 2-functor M°? — Cat; as per Section 5.1.
Next, we must define the modal natural model structure for each category of contexts.

Remark 6.5. For the rest of this section we will freely use type-theoretic notation, viewing
the predicate I'™ — sby,(-,I'") as a family fibred over sby,(-,I'7), i.e. a map sb,,(-,I'Y) — V.

We will follow the convention that symbols annotated with (—)* correspond to proof-
relevant constructions—i.e. members of the predicate, or maps between predicates—whereas
symbols annotated with (—)< correspond to pieces of syntax (e.g. terms, contexts, substitu-
tions). In particular, v* will not necessarily refer to a fibred map between proof-relevant
predicates, but also to a generalized element of I'™.

In other words, when 4> € IT'™ and ¢p(7y*) =~ : - — I'Y, we will abusively write
4> : T™ (7). That is, we will view +* as living in the fibre of ¢ over v<. This amounts to
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considering v* as a proof that the predicate I'™ holds at the substitution v<. Observe that if
v> : T.@% (") then v< must be of the form 6<.@, for some §< : - — ' with 4> : I (7).

Types over C[m| are given by the presheaf

Tm() £{
A7 € typey, (T7);
A% (T by (1Y) = (07 T2 (7)) = tmy ( AYT]) = V

}

Extending this presheaf with some additional data gives a presheaf of terms over C[m)]:

T(T) 2 {
A7 € type,,, (I'7);
A% (7T isbp (5 TT) = (VT (7)) = tmy (- AT[YT]) = Y
M= € tm,,(T'7, AY);
M” 2 (77 by (1, T7) = (07 : T (v™)) = A™(v7, 9", M [y7))
}

Thus, a type over I' = (I'“, ¢r) in the glued model consists of a type I'? - A< type; @ m
of MTT, along with another predicate, a family of V-small sets, indexed over both closing
substitutions v that satisfy the predicate I'™ and terms of type A<[['7].

A term over T' in the glued model adds to the above a term ' = M < : A @ m of that
type, and a section M™ of the aforementioned predicate. This section produces a proof
that the predicate holds at that term after we close it by applying any substitution v< of
which the I'™™ holds. The reindexing action of these presheaves is defined by the action of
substitution on contexts, types, and terms of MTT.

It can be shown that the projection 7,,(T') £ (A<, A, M<, M*>) s (A<, A™) that
maps terms to types by forgetting the additional data defines a representable natural
transformation in the sense of Section 5.1.2; the full proof can be found in the technical
report. With respect to the connectives, we only show how to interpret the base type B, as
per Section 5.2.3. For the formation and introduction rules we define:

Bool® =B Bool” = M7, 4", M=, (M [y"] = tt) + (M~ [y7] = ff)
ttY =tt tt™ = A (%)
< = ff " = A\ (%)

We must now define the left lifting structure if : [tt, ff] h 7,,,. In type-theoretic notation:
if (C, [co, 1], M) =if(CY;¢55 7 M)

(v, ") i MY () =
lf(C’ [60’01]7M)> = )"747’)/»' cg(7<’ry>) 1 >(’y<1”y>) LO(*)
(v, ) i MY (v, ) = (*)
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6.2. Deriving Canonicity. With the gluing model constructed, the rest of the proof is
surprisingly easy and boils down to one fact, which is immediate by inspection:

Theorem 6.6. The 2-natural transformation m : C[—] = S[—]| from the glued model to the
syntactic model which forgets the predicates extends to a morphism of models.

Thus, assuming -.@, = - ctx @ m it follows that
Corollary 6.7. For any closed term & M : A< m, there is a witness for [A]* (M).

Proof. By Theorem 6.6 and initiality we must have n([M]) = M, and so [M]* is a
witness.

Theorem 6.8 (Closed Term Canonicity). If - = M : A m is a closed term, then

e [fA=B then - FM=tt:Bamor--M=1:Bam.

o If A=Ida,(No, N1) then - = Ny = Ny : Ag@m and - = M = refl(Np) : 1da,(No, N1) @ m.
o If A= (v | Ap) then there is an - = N : Ao @n such that - = M = mod,(N) : (v | Ag) @ m.

Proof. Immediate by Corollary 6.7 and the definition of the semantic predicates at B,
Id 4, (No, N1), and (v | Ap) respectively. ]

7. DEPENDENT RIGHT ADJOINTS

Over the past couple of years the structure of a dependent right adjoint (DRA) has arisen
as a natural notion of dependent modality in Martin-Lof type theory. In this section we
will study the relationship between MTT modalities and DRAs in detail. After reviewing
the definition of a DRA, we will prove that a suitably functorial collection of DRAs induces
a model of MTT. As mentioned before, this implies that MTT modalities are weaker than
DRAs. Following that, we will investigate sufficient conditions for extending an ordinary
right adjoint to a DRA.

7.1. Dependent right adjoints in natural models. A dependent right adjoint” is an
adaptation of the notion of adjunction to the dependent setting: instead of acting on objects
of the context category, the ‘right adjoint’ only acts on types and terms.

Given a pair of natural models (D, 7p) and (C,7¢), a DRA from the second to the first
comprises a functor L : D — C between the underlying context categories, as well as a
pullback diagram of the following shape in PSh(D):

~ r ~
L*Te Tp
_l
L*Tc ™
L*Te R Tp

R is the action on types, and r is the action on terms. Note that, while the ‘left adjoint’ L
acts on context categories, the ‘right adjoint’ (R, r) only acts on types and terms. The fact

"DRAs were introduced by [BCM™*20] as endomodalities, but we generalise them to multiple modes.



11:36 D. GRATZER, G.A. Kavvos, A. NuyTs, AND L. BIRKEDAL Vol. 17:3

the square is a pullback amounts to requiring a multimode generalization of the definition
given by [BCM™'20]. Intuitively, for each term I' = M : R(A), the pullback square gives a
unique term L(I') - N : A such that ' F M = r(N) : R(A). If we wish the modality to
preserve the size of types, we must also require a R’ such that

/

L*SC R > SD
lift

L*Te 7 Tp

7.2. DRAs as Models of MTT. We will now show that DRAs can be used to construct
models of MTT. As a consequence, MTT modalities are slightly weaker than DRAs.

Theorem 7.1. Suppose that we have

e for each m € M a natural model (C[m], T < Tr)mem of MLTT;
e for each modality p : Hompg(m,n) a size-preserving DRA ([@,], Mod,,, mod,,) from

(Clm], Tm = Tin) to (C[n], Tn == Tn);
e for each 2-cell o : p = v in M a natural transformation [&*] : [@,] = [@,].

Moreover, suppose that the above choices are 2-functorial. Then this data can be assembled

into a model of MTT, where each each mode m is interpreted by (C[m], T = Trn)-

Proof. Define a 2-functor M®©°P — Cat by m +— C[m], p+— [@,], and o — [&*]. We must
show how to define context extension, and how to interpret the connectives. As before, we
only show the modal cases, the others being straightforward.

Modal Context Extension: For each type y(I") HEIR [@,]*7, we need a pullback

4]

y(I') ————— [&,]* T,
_|
y(p')‘ l[[ﬂuﬂ*m
y([) —————— [@.]"Tn

Write [Mod,,(A)] £ Mod,, o |A]. 7, is a natural model, so form the pullback square
for I" £ I Mod,(A). Pasting this with the DRA pullback for Mod,, forms

—

y(PMod, (1)) Y >[[ﬂ#]]*z~'nL>

d, _
Tm
- (7.1)
y(p) h ‘ [[n,uﬂ *Tn ‘/Tm
Tm
d,u

yO) ——— @7 ————

|A] Mo
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As the outer square commutes, we can fill in the dotted arrow. By the pullback lemma,
the square on the left is a pullback too. Letting I'.(u | A) = I.Mod,(A) proves that
(Tim)mea is a modal natural model.

Modal Types: This is the heart of the proof. First, we need a commuting square

N mod,, _
l JTm (7.2)
n * n m
BT o T

Such a square is given as part of a DRA by definition, and is in fact a pullback!
To model the elimination rule, recall the definition of the object M used in Sec-
tion 5.2.2:

&, ]*mod,

(@0 ]*To ————— [@.]"Tn

[®,.]*Mod,

As [@,]* preserves pullbacks, the outer square is a pullback too. Hence [@,]*m must
be an isomorphism. The elimination rule requires a left-lifting structure:

- openy : ([@.]"m) h ([@0.]"To)" (7m[-])
Using the inverse of [@,]*m we can construct this by
open’ £ \C. Ac. co [@,]*(m™)
[ Structure:
Equipping each T, =™ T,, with a modal [] structure is relatively straightforward
to do in the internal language; intuitively, the reason is the isomorphism

(81" )~ (4) = 7' (Mod,,A)

which is derived from the fact I'.(u | A) £ I.Mod, A (where the first dot is the defined
context extension, and the second dot is given by the natural model). However, we
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can also prove it in a more abstract way: we paste together the two pullback squares

¢7~’m lam

Pra 1r (T
[@,] j )

Pﬂﬁu]]*rn (Tm)‘ PTm (Tm)‘ ‘Tm
Tm

P, 7, (Tm) ———— Py, (Tmn)

(o [I

The square on the right is the pullback that interprets [] in the natural model 7,,.
The square on the left is a naturality square of the natural transformation

¢: Pra,er, (=) = Pr.(—)

which exists because the pullback square (7.2) defines a morphism of polynomials.
Moreover, the naturality squares of ¢ are cartesian: see [New18, §§1.2.16-1.2.18]. []

=

)
L3

\‘{

This theorem is a particularly flexible tool, as many modalities naturally form DRAs,
and it is easier to check the DRA conditions than MTT model conditions as summarized
in Definition 5.6. As a first example of this flexibility we show that it leads to an almost
immediate proof of consistency.

Corollary 7.2. No matter what the mode theory is, there is no term - = M : ldg(tt, ff) @ .
In other words, MTT is consistent.

Proof. Suppose that we have a model of MLTT with one universe in some category C. We
may construct a functor M“°P — Cat by sending every mode to C, and everything else
to the identity. This is stricty 2-functorial, and each identity functor is a DRA. Hence, by
Theorem 7.1 there is a model of MTT in which each mode is interpreted by C. Therefore, if
a term M : Idg(tt, ff) were definable in MTT, we would have a term of that type in every
model of MLTT. But MLTT itself is consistent: see [Coql9] for a short proof. ]

7.3. DRAs from right adjoints. Having established that a series of models of MLTT
related by DRAs can be used to interpret MTT, we now turn to the problem of constructing
those DRAs themselves. We shall prove a lemma that allows us to lift any well-behaved right
adjoint to a DRA. Versions of this result have appeared before, both in the paper on DRAs
[BCM 120, Lemma 17], and in a technical report By the third author [Nuy18, Prop. 2.1.4].

In Section 5.3 we discussed the notion of a strict morphism of natural models. Using
the same notation we define the following weaker notion.

Definition 7.3. A weak morphism of natural models (C,7T.) — (D, T4) consists of a functor
F :C — D, and a commuting square

P -
——

Te
Tc‘ F*ry
Te

P F74
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such that F'(1) = 1 and the canonical morphism F(I'.A) — FT'.p(A) is an isomorphism. We
say that this morphism preserves size whenever there is a commuting square

S, ——— F*S,
lift F*1ift
T T

This kind of morphism can also be found in the thesis of [New18, §§2.3.9]. We are
interested in it because it captures exactly the necessary good behaviour which is required
to extend a right adjoint to act on types and terms.

Lemma 7.4. Suppose that (C,7¢) and (D, Tp) are natural models, and that L 4 R is an
adjunction between C and D. If the right adjoint R : C — D extends to a weak morphism of
natural models then it gives rise to a dependent right adjoint. Moreover, the resulting DRA
is size-preserving whenever R 1is.

Proof. We first fix some notation: we write 7 : Id = RL for the unit of the adjunction L 4 R.
Moreover, we assume a commuting square

~ r ~
Te * R*Tp

TC R*7p (7.3)
TR ET

that witnesses the weak natural model morphism structure of R, and write
vr.a: RT.R(A) = R(T.A)

for the canonical isomorphism corresponding to |A] : y(I') = T¢.

We construct the DRA by first applying the weak morphism R to a dependent type over
a context of the form L(A), and then pulling that back along the unit of the adjunction.
Diagrammatically, we define the square

*

* 77’“
~ r ~ Tz ~
L*Te ——— L*R*Tp ———— Tp
L*re L*R*mp ™D
L*R N7

The left part is the image of (7.3) under the L* functor, and the right part is a naturality
square for the natural transformation n* : L* R* = (RL)* = Id induced by the unit.

To show that this is a DRA we must show that this is a pullback, and it suffices to do
so on the representables. Assume we have |A] : y(A) = L*7¢ and a [M] : y(A) = Tp such
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that the diagram commutes. Switching to type-theoretic notation, this amounts to a type
L(A) F A type—which gives rise to a type R(L(A)) F R(A) type by applying R—and a term
A F M :R(A)[nal. The universal property of the pullback dictates that we must show the
existence of a unique term L(A) F N : A such that

RL(A) Fr(N)[na] = M : R(A)[na] (7.4)

First, observe that we can form the substitution no.M : A — RLA.R(A). We can then
postcompose the isomorphism va 4 to obtain a morphism of type A — R(LA.A). To this
we can apply L and postcompose the counit eza 4 to obtain a substitution

E2eraa oL(I/AA ona.M): LA — LA.A

Using naturality of the counit and the equations satisfied by the canonical isomorphism
VA, A, it is easy to show that pok =id : LA — LA, and hence that we can extract a term

L(A)F N 2qlk]: A

Using naturality of r(—), naturality of the unit, and one of the triangle identities, we can
calculate that this term satisfies equation (7.4). Finally, we can prove this choice is unique
by calculating that any such N necessarily satisfies k& = id.INV, and hence that q[k] = N.

It is routine to show that this is size-preserving, using the fact that R preserves size. []

The converse is not in general true: a dependent right adjoint need not extend to a
functor on the category of contexts. Nevertheless, it does whenever the category of contexts
is democratic [CD14], i.e. if every context is isomorphic to extending the empty context by
some type: see [BCM™20, §4.1] for a proof.

8. PRESHEAF MODELS

It is well-known that the category PSh(C) of presheaves over any small category C is a
model of Martin-Lof type theory. A functor p: C — D induces by precomposition a functor

p* : PSh(D) — PSh(C)
between categories of presheaves. This functor has a right adjoint
wy : PSh(C) — PSh(D)

given by right Kan extension [MLT78, §X.3] [Awol0, §9.6] [Riel6, §6]. We show that an
appropriately functorial version of this structure can be bootstrapped into a model of MTT,
where the modalities are right adjoints to this precomposition functor. More concretely,
starting with a small 2-category Z, and a functor

J:Z — Cat

we will construct a model of MTT where each mode corresponds to the category PSh(J (7)),
and the modalities are the functors J(f), for each f € Homz(ig,1).
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Context structure. We define a strict 2-functor [—] : Z°«°°® — Cat by
i +— Cli] = PSh(J(i))
frimj @] 2 J(): PSh(J(j)) — PSh(J(i))
aif=g —[&°]2 J(@) : J(g) = J(f)"
The variance is correct: recall that precomposition is a strict 2-functor
()" : Cat®°? — Cat

which maps a functor f:C — D to f*: PSh(D) — PSh(C), and a natural transformation
a: f=gtoa®:g"= f* given by o}, 2 P(ae) : P(g(c)) — P(f(c)). 2-functoriality is
immediate, as for example J(f)* o J(g)* = (J(g) o J(f))* = J(go f)*.

Modal natural models. To interpret the ‘mode-local’ structure we must construct a modal
natural model in each C[i]. It is well-known that every presheaf topos PSh(C) gives rise to
a rich model of MLTT: see e.g. [Hof97, §4.1] or [Coql3].

Contexts are interpreted as objects of the presheaf category PSh(C). Types are
presheaves PSh( [ T) over the category of elements [T of a context I' : PSh(C).> We
define the action of a substitution o : A = T on a type A : PSh( [ T) by

Aol 2 (Fay® L7 (o 4, set

This is functorial because [ — : PSh(C) — Cat and —°P : Cat — Cat are.

A term of type A is a global section of A, i.e. a morphism HomPSh(f 11)(1,14). We

define the action of a substitution o : A = I" on a term M : Hom(1, A) by whiskering:
Mol 2 M= ([o)®:10([0)® = Ao ([0)® = Alo]
Aslo [ o°" =1, this has the right type. It is functorial because whiskering is.

Remark 8.1 (Size Issues). One cannot be too careful with size issues when considering
presheaf models. In Section 5.2 we demanded that the category of contexts be small, so that
we can then formulate a large category of models. PSh(C) is certainly not small. We can
mend this by assuming a Grothendieck universe V large enough to contain C in the ambient
set theory, and re-defining PSh(C) to consist of the presheaves P : C°? — V with small
fibers. As V is closed under all set-theoretic operations, this is still a model, and PSh(C) is
small.

To interpret universes we need to know that the fibers of types in PSh([C) are even
smaller. Thus, we further assume a second, inner Grothendieck universe V' C V. To a type
theorist, this is just the standard technique of ‘bumping’ a universe level.

Connectives. Presheaf models support dependent sums and products, and extensional
identity types (and therefore intensional identity types): see [Hof97, §4.2]. On the premise
that the underlying set theory has a set-theoretic universe, they also support a universe,
through a construction of [HS97]. See also [Coql3].

8There is an equivalence PSh([T) ~ PSh(C)/T" which shows that types are families P = I in the slice
category. However, using the latter definition would lead to strictness issues.
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Modalities. It remains to show that each [@;] = J(f)* : PSh(J(j)) — PSh(J(i)) has a
corresponding modality acting on terms and types. We will do so by using previous results.
By Theorem 7.1, it suffices to construct a dependent right adjoint to J(f)*. But recall that
each lock functor J(f)* already has an (ordinary) right adjoint, viz. J(f).. Thus, by Lemma
7.4 it will suffice to show that the action of this right adjoint extends to types and terms.
We then have DRAs, and hence a model of MTT.

The following result has previously been shown in a tech report by the third au-
thor [Nuyl8, Prop. 2.2.9]. We reproduce it here for the sake of completeness.

Lemma 8.2. The right adjoint to precomposition . : PSh(C) — PSh(D) induces a DRA
for any p: C — D. Moreover, . is size-preserving for any Grothendieck universe.

Proof. We use Lemma 7.4 once more. The action of p, on types and terms is given by

peA € PSh(f p.T) = (D € D.a € p.T(D)) = Hompg, o)) (L A[@})

M € Hom(1, pA) = (D € D,a € . I'(D)) — ([ |a])*M
Both of these actions are well-typed. For types, as a € . I'(D) we have |a| : y(D) = p.I', so

by transposition @ : *(y(D)) = I'. For terms, notice that [ |a| : [ p*(y(D)) — [T, recall
that Alo] 2 Ao [ o, and that precomposition preserves the terminal object on-the-nose.

The presheaf action. The action of u,A is subtle: it is given by the functor

(J 1wy (f))* : PSh([ p*y(D)) — PSh(([ u*y(D"))
for each f : Homp(D’, D). In more detail, given f : Homp(D’, D), a € p, (D), A €
PSh([T), and = € i, A(D,a) 2 Hom(1,A[LaJ}), we define z - f € p A(D',a- f) by

z-f A (f wry () (z) : HomPSh(f u*(y(D’)))((f Wy (f)) 1, (f wy(f) (A [@} )

This is of the right type; reindexing preserves the terminal, ([ p*y(f))*1 = 1. Moreover,

la] oy (f) = la] ey (f) = la- /]
by naturality of the adjunction and of Yoneda. Using this calculation, we see that
(S uy (DY (A|lal]) £ Ao [la] o f ury(f) = Ao [a- 1] 2 Al[a- ]
Hence z - f € u  A(D',a- f). This assignment is functorial because [ —, (—)* and y(—) are.
Naturality. We must show that both of these definitions are natural with respect to
substitution, i.e. that (u.A)[u«y] = p«(Alv]), and similarly for terms.
For types, suppose we are given v : A — I" and A € PSh([T). Carefully unfolding
both sides of the desired equation, for any D € D and a € pu,A(D) we must show that
Hompg, [ ey(y) (1A |30 (@) |) = Hompgy ey (1 AR la])
But, by naturality of both the adjunction and Yoneda:
vola] = pyola] = [pyp(a)]

Hence the two sets are the same. The calculation for terms is of a similar ilk.
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Preservation of context extension. We would like to show that the canonical morphism
[y (D.A) Py Ty A

is invertible. Consider an element e : y(D) = pu.(I".A). We can transpose along the
adjunction p* - p, and decompose it to obtain a substitution and a term

eo: py(D)=T e1: HomPSh(f M*y(D))(l’A[eO])

We can thus write e = (eg,e1). Thus, we can use naturality of the adjunction and of
substitution to compute the action of (u.p, p«q) on this e:

(12D, 1120} © € = (11 0 €, (e@)[e]) = (P o (€0, e1), al(eo, e1)]) = (8o, e1)

We can then specify an inverse on generalized elements by (v, M) — (7, M).
Size preservation is immediate: if A is small then so are its reindexings and the collections
of points at each slice. L]

8.1. The other adjunction. We have so far concentrated on the adjunction pu* - u, that
arises through right Kan extension. Nevertheless, precomposition also has a left adjoint
arising from left Kan extension. Might we also be able to interpret the lock functors by this
left adjoint w1, and lift precomposition p* to a modality instead?

It is in fact relatively easy to show that p* extends to a dependent right adjoint. However,
the left Kan extensions uy cannot be assembled into a modal context structure. The reason
is that context structures are strict 2-functors, but left Kan extensions do not compose

strictly: we only have an isomorphism F} o Gy = (G o F');. We have proven a strictification
theorem that straightens these issues, but that is beyond the scope of this paper.

9. GUARDED RECURSION

We now show how MTT can be applied to a well-known modal situation: guarded recur-
sion. By instantiating MTT with a carefully chosen mode theory and axiomitizing certain
operations specific to guarded recursion (i.e. Lob induction), we obtain a calculus for
guarded recursion simpler than prior hand-crafted calculi. We demonstrate the practicality
of this guarded variant of MTT by reproducing some examples from prior work on guarded
recursion [BGCT16].

The key idea of guarded recursion [Nak00] is to use a modality », usually called later,
to mark the types of data that may be used only if some ‘computational progress’ (e.g. a
tick of a clock) has taken place, thereby enforcing productivity at the level of types. The
later modality is usually equipped with three basic operations:

next: A —»A (®):»(A—B)—>»A—>»B I6b: (wA— A) — A

The first two make » into an applicative functor [MPOS8]. The third, which is commonly
known as Lo6b induction, is a guarded fixed point operator [ML13]: it enables us to make
definitions by provably productive recursion.

» also applies to the universe, so one can define data types by guarded recursion. The
classic example is the guarded stream type Strap = A x »Str 4, with constructor

consy : A x »Stry = Stry



11:44 D. GRATZER, G.A. Kavvos, A. NuyTs, AND L. BIRKEDAL Vol. 17:3

doy<1l 1=~096
(el
~_ 1<l y=~v04
4]

Figure 11: The ‘adjoint bowling pin’ M,: a mode theory for guarded recursion.

The presence of the modality enforces the requirement that the head of the stream is available
immediately, but the tail may only be accessed after some productive work has taken place.
This allows us to e.g. construct an infinite stream of ones:

inf_stream _of _ones = 15b(s. cons(1, s))

Unlike the ordinary type of streams, Str4 does not behave like a coinductive type: we may
only define causal operations, which excludes useful functions (e.g. the tail function). In
order to regain coinductive behaviour, [CBGB15] introduced the always modality O, an
idempotent comonad for which

Oo» A~ OA. (*)

Combining O and » in the same system has proven tricky. Previous work has used delayed
substitutions [BGCT16], or replaced O with clock quantification [AM13, Mggl4, BM15,
BGM17]. Neither solution is entirely satisfactory: the former poses serious implementation
and usability issues, and the latter does not enjoy the conceptual simplicity of a single
modality. We will show that MTT enables us to effortlessly combine the two modalities
whilst satisfying ().

To encode guarded recursion inside MTT, we must

(1) construct a mode theory that induces an applicative functor » and an idempotent
comonad O satisfying (),

(2) construct the intended model of MTT with this mode theory, i.e. a model where these
modalities are interpreted in the standard way [BMSS12], and

(3) include Lob induction as an axiom, and use it to reason about guarded streams.

9.1. A guarded mode theory. We define M, to be the mode theory generated by the
graph and equations of Fig. 11. We require that M, be poset-enriched, i.e. that there be at
most one 2-cell between a pair of modalities p, v, which we denote by p < v when it exists.
Consequently, we need not state any coherence equations between 2-cells.

Unlike prior guarded type theories, M, has two modes. We will think of elements of s
as being constant types and terms, while types in ¢t may vary over time. Observe that we
can thence construct a composite modality b £ ¢ o y. Moreover, this modality is idempotent,
forbob=doyodoy=79ovy=>b We will prove in Section 9.3 that

Lemma 9.1. (b | —) is an idempotent comonad and (£ | —) is an applicative functor.
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9.2. Decomposing the standard model. The above mode theory arises from a careful
and informative decomposition of the standard model of guarded recursion, namely the
topos of trees PSh(w), along with the later and always endomodalities.

The topos of trees consists of presheaves over the natural numbers, seen as a poset
with the usual order. An element z, € X(n) of a presheaf X : PSh(w) represents an
element computed after n steps of computation. The restriction maps r, : X(n+1) — X(n)
trim an element computed after n 4+ 1 steps to its form at the preceding moment in time.
The canonical example is given by X (n) £ {streams of length n}, where r,, deletes the last
element of a stream of length n + 1. The later and always endomodalities are given by
delaying the computation by one step, and by taking global sections (total elements):

{x} if n=0

X £ H 1, X

(>X)(n) £ {
To arrive at the mode theory above, one must notice that the comonad O results in a
constant presheaf, namely one which consists of the same set at each time. We can thus
decompose it into the adjunction

/—\,1
> PSh(w) T  Set (9.1)
~_
A

I' maps X : PSh(w) to the set of its global sections Hompgy,(.)(1, X), and A maps a set .S
to the constant presheaf (AS)(n) £ S. It is well-known that A 4T, and ‘always’ is given by
the induced comonad O £ A oI'. This explains the provenance of the two modes in Figure
11: s stands for sets, and t for timed sets, i.e. presheaves over w.

We want to bootstrap (9.1) into a model of MTT. We will do so by leveraging an
impressive sequence of facts:

e Both categories in (9.1) are presheaf categories, and hence models of MLTT: see Section 8.

e Every functor in (9.1) is a right adjoint.

e The corresponding left adjoints are introduced by precomposition, and hence can easily
be arranged into a modal context structure for the mode theory M, as per Section 5.1.

e Hence, by uniqueness of adjoints the functors in (9.1) are induced by right Kan extension.
Consequently, they can be bootstrapped into dependent right adjoints, by Lemma 8.2.

e Therefore, by Theorem 7.1, this data yields a model of MTT with mode theory M,.

Let us elaborate on this chain of reasoning. First, we identify the category Set and the
category PSh(1) of presheaves over the terminal category. Second, we construct the two
left adjoints. As w has an initial object 0, we obtain a left adjoint to the discrete functor A,
given by

IH(X) £ X(0)

It is easy to see that IIg 4 A: by naturality at the unique morphism 0 < n we see that any
a: X = AS is fully determined by the component ag : X(0) — S. Furthermore, recall from
the work of [BMSS12] that the later modality » has a left adjoint <« : PSh(w) — PSh(w)
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(pronounced ‘earlier’), given by
(«X)(n) £ X(n+1)
It remains to show that the three left adjoints—IIy, A, and «€—are given by precomposition.
We define three monotone functions between the posets 1 £ {*} and w:
Ky:1 s w o tw—1 Il tw —w
* = 0 n— * n —n+l
Identifying Set with PSh(1), we see that
IIp = Kj : PSh(w) - Set A =17 :Set - PSh(w) <«=1[":PSh(w)— PSh(w)
Moreover, we trivially have the following pointwise equations and inequalities:
id, <1 Kpo!l, <id, idy =1, 0Ky lo=1,01

Seeing posets as categories, pointwise inequalities are simply natural transformations between
monotone maps. By feeding them into the strict 2-functor (—)* : Cat®°? — Cat, we are
able to define a strict 2-functor [@_] : M,“°°P — Cat which maps

y:it—s +— [@]=A : Set— PSh(w)
§ :s—t +—— [@s] =1 : PSh(w)— Set
¢ :t—t +— [@]=< : PSh(w)— PSh(w)

This fully specifies the modal context structure, which consists of left adjoints. Each of these
left adjoints is given by precomposition. Thus, the unique corresponding right adjoint is
given by right Kan extension (see Section 8). Hence, by Lemma 8.2 and Theorem 7.1,

Theorem 9.2. There is a model of MTT with mode theory Mg, interpreting s as Set and
t as PSh(w). Furthermore, this model interprets § by the dependent right adjoint arising
from g4 A, v by AT, and £ by € - ».

Remark 9.3. This mode theory is a poset-enriched category. As a result, the key substitu-
tions are unique: for any j, v there is at most one substitution I'.&,, - %;g“ :I.@, @m. This
property means that we can elide them without ambiguity. However, this may sometimes
make type-checking on pen-and-paper difficult, so we employ a simplified notation: we will
write AYSH or MYSH for the application of the unique key substitution v < y in context ra,.
For instance, given a type I'.@ = I' - A type, @ ¢ we can form the type I'.@ - A'<¢ type, @11,
and hence the type T'F (¢ | A'S) type, @ 1.

9.3. Guarded recursion, internally. Given the model that we constructed above, we
feel perfectly justified in defining the following shorthands within MTT:

OA2 (b A) AL (0] A) TA2 (y] A AAL (5] A)

where b £ § 0. The aim of this section is to show that MTT equipped with M, and these
shorthands can be used to reason about guarded recursion. In particular, we will show that
this is strict improvement on previous solutions, by establishing that

(1) When restricted to mode s, the type theory is simply standard Martin-Lof Type Theory.

(2) The modalities on mode t give rise to the standard modalities and operations of Guarded
Type Theory [BGCT16] inside the type theory.
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First, we wish to show that if we restrict ourselves to endomodalities 1 € Hom(s, s)
from sets to sets, the type theory is just MLTT. Looking at Fig. 11 as a finite state machine,
we see that all loops on s are of the form v o £" o §, and the equations of M, allow us to
prove that they are all equal to the identity 15. It follows that (i | A) ~ A. Finally, as there
is no non-trivial 2-cell 1, = 1, the variable rule reduces to

p € Hom(s, s) Ictx@s ' A type, @ s (x:(p]|A)el
F'Fz:Aas

which is essentially the usual variable rule of MLTT.
Second, we use the combinators of Section 3.2 to prove that O is an idempotent comonad.

dup 4 . 0A S ooA extracty : OA — Abs1
dup4(z) = comp;)%b(:v) extract 4 (z) £ triv!(coe[b < 1](z))

Recall the K operator — &, — : O(A — B) — OA — OB for the modality b, which
was defined in Section 3.1. Writing box(M) £ mod,(M), the claim that O is an internal
idempotent comonad amounts to defining terms of the following types.

(x: OA) = ldga(z, box(extract) ®;, dup(z)) (9.2)
(x : 0A) — ldga(x, extract(dup(x))) .
(x : 0A) — ldggga(dup(dup(z)), box(dup) ®; dup(z)) (9.4)

These can be constructed by unfolding and modal induction on z : OA.
The K operator — ®p — : »(A — B) — »A — » B for the modality ¢ almost proves
that » is an applicative functor. It remains to show that » is pointed:

next 4 : A—»A
nexta(z) = coe[l < /|(triv(x))

Next, we show the defining equivalence (). We calculate that bo/ = §oyol = Joy 2 b,
and hence that the equivalence is a corollary of a combinator given in Section 3.1:

nows(z) : O» A = OA
s -1
now(z) = compy, ()

As a sanity check, we can compute that the following composite is the identity:

box(next) ® —
oA o» A now OA

The calculation is as follows:

compy, ,(modj(coe[l < {](triv(—))) ® ) by induction, suppose z = mods(y)
= comp,, /(mody(coe[l < /](triv(—))) ® mody(y))

= comp,, ,(mody(coe[l < /](triv(y))))

— compy,(mody(mod(y)))

= mody(y) asbol=1b

=T
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The only thing that remains is to add Léb induction. This is a modality-specific operation
that cannot be expressed in the mode theory, so we must add it as an axiom:

etxat '+ A type; @t
THIsb: (wASt - A) —» Aat

Ictxat '~ A type; @t THM:»AS o Aat
T +16b(M) = M (next(I6b(M))) : (» At — A) — At

Notice that these rules are only added in mode ¢, as they only admit an interpretation in
PSh(w) [BMSS12, §2]. Unfortunately, these ad-hoc additions mean that the canonicity
theorem of Section 6 no longer applies.

9.4. Reasoning about Streams. We now put MTT to work: we will use it to reason
about infinite streams defined by guarded recursion. We will demonstrate that the rules
and axioms given in Section 9.3 suffice to carry out coinductive constructions. In particular,
we will reproduce an example of [BGCT16]: we will show that zipWith(f) on a coinductive
stream is commutative whenever f itself is.

In order to simplify our working, we will swap the intensional equality type Id4(M, N)
with an extensional identity type Eq (M, N). This has the same introduction rule, but its
elimination is replaced by the usual equality reflection rule

'k P:Eqy(My, My)am
I'EMy=M;:Aam

This is straightforwardly interpreted in the model, as both modes are mapped to presheaf
toposes. The switch to extensional equality is not strictly necessary: we could carry out the
following calculations with intensional identity, at the price of significantly more verbose
terms. Moreover, the need for the function extensionality axiom would arise. However,
adding Lob induction has already ensured that type-checking is undecidable, so nothing of
value is lost by making the switch to extensional type theory for these examples.

We begin with a simple reasoning principle. Eliding (—)'<¢ annotations:

Lemma 9.4. (A:U)(z,y: El(A)) — »Eqga)(7,y) = Edypga)(next(z), next(y))

Proof. Suppose z,y : EI(A) and p : »Eqg(4)(z,y); to show next(z) = next(y) : »EI(A4). By
congruence and the elimination rule for the modality, it suffices to prove x =y : EI(A) in
the locked context A : U,z : EI(A),y : EI(A),p: (¢ | Edgca)(z,y)), 8. But by the variable

rule we have p : Eqg4)(,y) in this context, and hence z =y : EI(A). []

This can be used to prove internally that guarded fixed points are unique.
Theorem 9.5. 16b(M) is the unique guarded fized point of M : wEI(A) — EI(A), i.e.
(A:U)(z: EI(A)) = Eqgi(a)(M(next(z)), ) — Eqgy(a)(16b(M), z)

Proof. Suppose A : U; to show (z : EI(A)) — Eqga)(M (next(z)), z) — Eqg(a)(16b(M), z)
by L&b induction. Thus, assume that

fow((z : EI(A)) — Eqg(a) (M (next(z)), z) — Eqg4)(16b(M), x))
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If z: A and p: Eqga)(M(next(x)), x), we calculate that
16b(M) = M (next(16b(M))) unfolding rule for 16b

= M (next(x)) by Lemma 9.4 on f ® next(x) ® next(p) : »Eqg(4)(16b(M), z)
=z by p
Thus, this type is inhabited by the term AA. 16b(Af. Az. Ap. refl(z)). L]

We can also use the Lob operator on the universe to form guarded recursive types. For
example, streams can be defined by®

Str : U—=Uas
Str(A) £ T(16b(AX. AA x let mody(Y) + X in »Y))

Str maps a constant set, i.e. a type A @ s, to the type of streams over A, which is again
a constant set. This is done by first defining a timed set

A:(1|U),8, FStr'(A) £16b(AX. AA x let mod,(Y) <~ X in »Y): U@t

Str'(A) is defined by Léb induction: assuming X : (1 | »U'<?) we must define an element of
the timed universe. This is given as the product of

e the set A @ s, considered as a constant-everywhere timed set AA @ ¢;
e a guarded recursive call, which represents the rest of the stream.

Recalling that U'Sf = U, the second component is given by modal elimination. Nevertheless,
it is not immediate that the first component type-checks: we must show that

A:(1]V),&, @8 FA:Uas

But y0d = 1, so the context is equal to A : (1 | U), & and we can use A. Unfolding the
guarded fixed point, we have that

Str'(A) = AA x »Str'(A) : U @t

We apply T to ‘totalize’ this into the constant set Str(A) @ s of guarded streams.

Even though not immediately obvious, there is a serious advantage in expressing this
definition in a way that spans two modes. In previous work [BGC'16] the stream type
Str(A) was coinductive only if A was provably a ‘constant set,” i.e. if A ~ OA. Theorems
about streams had to carry around a proof of this equivalence. In our case, defining Str(A)
at the mode s of constant sets automatically ensures that. Hence, Str(A) is equivalent to
the familiar definition, but we no longer need to propagate proofs of constancy.

Str(A) supports the following operations:

cons : (A:U) = EI(A) — EI(Str(A)) — EI(Str(A)) @ s
cons(h,t) = let mod. (') <t in mod, ((mods(h), next(t')))

head : (A:U) - EI(Str(A)) — ElI(A) @s

heada(s) = let mod,(s') < s in triv'l(comp%(s(modw(pro(s’))))
tail : (A:U) — EI(Str(A)) — EI(Str(A)) @ s

taila(s) = let mod,(s') « s in comp, ,(mod,(pry(s’)))

9We denote modalities and their counterparts on the universe by the same notation. For example, we may
write AA to mean the type I' - (6 | A) type; @ m whenever T, &8s - A type, @m, but also to mean the term
'+ Code({d | EI(A))) : U@ m whenever I",@ - A : U@m.
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Those familiar with prior work on guarded streams may be surprised by the type of tail.
The expected definition would be

tail4(s) = let mod, (s’) < s in mod. (pry(s"))

This term has type EI(Str(A)) — T'(»EI(Str'(A))). However, in our case the I' modality is
sufficiently strong to “absorb” this extra »: the equality v o £ = v induces an equivalence
I'ow» ~ T, which we use to obtain the version given above. This small difference is crucial:
it will internally make Str(A) into a final coalgebral

Lemma 9.6. These operations satisfy the expected 5 and n laws, i.e.

(1) (h:EI(A))(t: EI(Str(A))) — Eqg(a)(heada(consa(h,t)), h) @ s

(2) (h:EI(A))(t: EI(Str(A))) — Eqg(str(a)) (taila(consa(h,t)),t) @ s

(3) (h:EI(A))(t: EI(Str(A))) = Edgi(str(a)) (s, consa(head 4 (s), taila(s))) @ s

Proof. We prove (2), the other two being similar. If h : EI(A) and ¢ : EI(Str(A)), note that
El(Str(A)) is a type of the form I'(—), and calculate that

tail4(cons(h,t))

= =

= tail 4(cons 4 (h, mod.(t"))) write ¢ = mod, (¢') by modal induction

= tail4(mod, ((mods(h), next(t'))))

= comp, ,(mod, (pr; ((mods(h), next(t')))))

= comp,, ,(mod, (next(t')))

= mod, (t') as yol =r

=t []
Theorem 9.7. Str(A) is the final coalgebra for \X. EI(A) x X : U —» U@ s.
Proof. Given A : U we define a coalgebra uncons : Str(A) — (EI(A) x Str(A4)) @ s by

uncons(s) = (head4(s), tails(s))

To show finality, suppose ¢ : B — EI(A) x B @ s is another coalgebra. We define a function
f:B —Str(A) as by
"+ AB — EI(Str'(A)) @t
' Z16b(\f", z. let mods(z') < z in (h,t))
where h = mods(pry(c(z’)))
and ¢t = f" @ next(mods(pry(c(z))))

f : B—EI(Str(4))as
f(z) £ mod, (f'(mods(x)))
This is a morphism of coalgebras: for any x : B we have

uncons(f(x)) = (heada(f(x)), taila(f(x)))

,comp.,, ,(mo

dy (pri(f'(2)))))
,comp, ,(mod, (next(f") @, next(mods(pr,(c(x)))))))
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Finally, we must show that f is the unique coalgebra morphism. Suppose we are given
g : B — EI(Str(A)) @ s which also satisfies uncons(g(x)) = (pro(c(x)), g(pri(c(z)))). We
‘shift’ this definition to timed sets, by defining

g : AB—EI(Str(A)at
G(z) £ coeld oy < 1](mods(g) ®s x)

It suffices to show that § = f’ @, and we do so by Lob induction and function extensionality.
Assume p : »Eq(g, f'), and z : AB. To prove g(x) = f'(x) : AB x »Str'(A) it suffices to
show componentwise equality. By modal induction write 2z = mods(y) for y : B.

First, we have that pry(f’(mods(y))) = mods(pry(c(y))) by the definition of f’. On the
other hand, we have that

pro(g(mods(y))) = pro(coe[d oy < 1](mods(g(y)))) = pro(gz) : AB @t

where we have used modal induction to write g(y) = mod,(g,). That g is a coalgebra

morphism implies that head(g(y)) = pro(c(y)). If we now use modal induction to write

pro(gz) = mods(b) for b : B and unfold the definition of head, we obtain b = pry(c(y)), so

pro(gz) = mods(b) = mods(pry(c(y))), which shows that the two first components are equal.
For the second component, we compute that

pr1(f'(mods(y)))

= next(f") @ next(mods(pr (¢(y)))))

= next(f'(mods(pry (c(y)))))

= next(g(mods(pry(c(y))))) using p through Lemma 9.4
= next(coe[d oy < 1](mods(g(pri(c())))))

= next(coe[d o v < 1](mods(tail(g(y))))) as g is a coalgebra morphism
= pry(coe[d oy < 1](mods(g(y)))) lemma,

= pri(9(z))
The lemma referred to above is the fact that for any s : Str(A) it is the case that
next(coe[d oy < 1](mod;(tail(s)))) = pr;(coe[d o v < 1](mods(s)))
which can be shown by a series of modal inductions. L]
We conclude this section by showing how to use these mechanisms in order to prove

properties of coinductive programs. Specifically, we will replicate a proof from [BGC™16]
which shows that the zipWith operator on streams preserves commutativity. Let

ZipWith'  : A(EI(A) — EI(B) — EI(C)) — EI(St'(A)) — EI(Str'(B)) — EI(Str'(C))
zipWith'(f) £ 16b(Ar. Az, y. (f ®s pro(z) @5 pro(y), ™ ®¢ pry(z) @ pry(y)))

ZipWith  : (EI(A) — EI(B) — EI(C)) — EI(Str(A)) — EI(Str(B)) — EI(Str(C))
zipWith(f) £ Az, y. mod. (zipWith'(mods(f))) ®, = ®+ y

Remark 9.8. Take note of a useful pattern for programming with guarded recursion, which
is visible both here and in the proof of Theorem 9.7. We first define an auxiliary function
in mode ¢, which uses Lob induction. The main function itself is then just a thin wrapper
which ‘corrects’ that with the appropriate modalities and modal combinators.
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Theorem 9.9. If f is commutative then zipWith(f) is commutative. That is, given A, B : U
and f : EI(A) — EI(A) — EI(B) there is a term of the following type:
((z,y : EI(A)) = Eqgyp)(f (2, 9), f(y, 7)) =
(57 l: El(Str(A))) - EqEI(Str(B))(ZipWith(fa S, t)v ZIpWIth(f? t, 5))
Proof. Suppose e : (z,y : EI(A)) — Eqg ) (f(z,y), f(y,x)) and s,t : EI(Str(A)). We wish to

show that zipWith(f, s, t) = zipWith(f,¢,s). By the definition of zipWith, it is sufficient to
prove that for any u,v : EI(Str'(A)) we have

zipWith'(mods(f), u, v) = zipWith’(mods(f), v, u)
In turn, it suffices to show that
16b(Fp) = 16b(Fy)
where
Fo £ Ar. Az, y. (mods(f) @5 pro(z) ®s pro(y), r ®¢ pry(z) ®¢ pry(y))
Fy 2 M. Az,y. (mods(f) ®s pro(y) ®s pro(z), 7 @ pri(y) @ pry ()
because then
zipWith'(mod;(f), v, u) £ 16b(Fy)(u,v) = 16b(Fy)(u,v) = zipWith’(mods(f), u,v)
By Theorem 9.5 we know guarded fixed points are unique, so it suffices to show that
16b(F1) = Fy(next(16b(F1))) (9.5)
We use Lob induction to construct a term of type Eq(lob(F), Fo(next(16b(F1)))).
Fy(next(16b(F1)))
= Az, y. (mods(f) ®s pro(x) ®s pro(y), next(16b(F1)) ®¢ pri(x) ®¢ pri(y))
by induction let mods(a) £ pry(x) and mods(b) = pro(y)
= Az, y. (mods(f(a,b)), next(16b(F1)) ®¢ pry(x) @¢ pri(y))
= Az, y. (mods(f (b, a)), next(16b(F1)) ®¢ pry(x) @¢ pri(y))
= Az, y. (mods(f (b, a)), next(F1(next(I6b(F1)))) @ pry () @¢ pri(y))
by induction let mod,(s) £ pry(x) and mod,(t) £ pry(y)
= Az, y. (mods(f(b,a)), next(F;(next(16b(F1))(s,t)))
= Az, y. (mods(f(b,a)), next(Fo(next(16b(F1))(t,s)))
— Az,y. (mods(f(b, a)), next(Fo(next(15b(F)))) @¢ pry (y) @ pry ()
using the TH through Lemma 9.4
= Az, y. (mods(f(b,a)), next(16b(F1)) ®¢ pri(y) ®¢ pri(z))
= Az, y. (mods(f) @5 pro(y) @5 pro(x), next(16b(F1)) @ pri(y) ®¢ pry(z))
= 16b(F}) L]
Remark 9.10 (Previous approaches). Using dependent type theories to reason about
guarded recursion and coinductive types has been a problem for some time [Mggl4]. The
technical device of clocks, due to [AM13], was introduced to deal with productivity in a

simply-typed setting. Clocks were then introduced to dependent types [Mggl4], and later
refined into the extensional guarded type theory gDTT of [BGCT16].
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In gDTT the problem of ‘totalising’ a type—which corresponds to reasoning by
coinduction—was not handled through the ‘always’ modality, but through clocks. In
essence, gDTT does not come with a single » modality, but rather with a collection of
them, each one indexed by a clock name. There is a quantifier which allows clock names to
be bound inside a particular type, and a crucial isomorphism:

V. A= VK. »" A (%)

gDTT presents several technical complications. The syntactic problems pertaining to
delayed substitutions were resolved by the introduction of Clocked Type Theory (CloTT)
[BGM17], which uses additional judgmental structure. It is conjectured that type-checking
is decidable for CloTT. The complexity of using clocks also appears in the semantics of
clocked type theory. CloTT is modelled in a collection of presheaf categories, with multiple
functors navigating between them [MM18§].

It was hoped that some of the complexity could be circumvented by replacing clocks
with a modality. This led Clouston et al. to introduce the comonadic ‘always’ modality O,
which replaced the isomorphism (x) with O » A = 0A [CBGB15]. The main advantage of
using O is that it can be interpreted in PSh(w), which is a much simpler model. On the
other hand, the interactions between O and » have proven difficult to capture in the syntax.
In fact, the mere addition of O to a dependent type theory poses a significant technical
challenge: see [BGM17, BCM*20, Shul8, GSB19a]. Despite this concentrated effort, there
are still serious technical obstacles to adding » to a type theory for 0. MTT is the first
syntax to accomodate both 0O, », and validate O » A = OA.

10. INTERNAL ADJOINTS

In many cases of interest, the need for a pair of adjoint modalities arises: we would like a
pair of modalities p : n — m and v : m — n so that, in some sense,

=)A=

But what does it mean to have an adjunction between two modalities within MTT? Does it
correspond to an external adjunction? And do all known results from category theory apply?
The only thing that is certain is that this scenario is fundamental to modal type theory, as
a number of intended models can be elegantly presented through adjunctions [SS12, ND18,
Shul§].

In this section we show that when MTT is equipped with the walking adjunction as a
mode theory, it becomes a useful syntax for reasoning about adjoint modalities. Of course,
the adjoint modalities themselves are not exactly adjoint functors: they are something
slightly weaker than DRAs, whose ‘left adjoints’ constitute an adjunction. Nevertheless,
we prove that the induced modalities largely behave as expected: the unit and counit are
internally definable; some limited forms of internal transposition can be recovered; and left
adjoints preserve colimits, as expressed through crisp induction principles.
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10.1. The walking adjunction. As ever, we begin by freely defining a mode theory M,g;.
Its generators are two 1-cells v : m — n and p: n — m, and two 2-cells

n:ly = pov e:vou=1,

subject to the triangle equations

nx1, ug
:}MOUO/,L VOMOZ/

AN

M,gj is sometimes called the walking adjunction [LS16, §5.1]. It is the classifying 2-category
for an adjunction: 2-functors M,q; — C correspond precisely to (2-categorical) adjunctions
in C. The mode theory M,q; has a very curious property: it is self-dual, i.e. there is an
equivalence M,q;“°°" ~ M,q;. This equivalence sends the modes to each other, the adjoints
to themselves and the 2-cells 17 and € again to each other.

R

10.2. Models of adjoint modalities. Recall that a modal context structure of a model of
MTT with mode theory M,q;j is a strict 2-functor [—] : M,q;j°°® — Cat. The self-duality
of M,q; implies that such a context structure consists of two categories and an adjunction
between them. We immediately obtain the following result.

Corollary 10.1. If C and D carry models of MLTT, and there is a pair of dependent right
adjoints between them whose ‘left adjoints’ are themselves adjoint, then we can construct a
model of MTT with mode theory M,q;.

Proof. Write [@,] : C — D and [@,] : D — C for the functors given as part of the DRAs.
The notation is then suggestive: [@,] - [@,], and Theorem 7.1 applies. O

Conversely,

Theorem 10.2. Any model of Magj must interpret [@,] and [@,] as adjoint functors.
Moreover, if Mod,, and Mod, are induced by lifting the adjunctions [@,] 4 R, and
[@.] 4 R, to a dependent right adjoints (by Lemma 7.4), then R, < R,,.

Proof. Adjoint functors are precisely adjoint morphisms in the 2-category Cat. As M,gq; is
the walking adjunction, and 2-functors preserve adjunctions, we have that [@,] - [@,].

If [@,] 4 Ry, then by the uniqueness of adjoint pairs we must have that R, = [@,]. If
moreover [@,] - R, then the previous isomorphism yields R, - R,,. ]

The last situation in this lemma is sometimes known as an ‘adjunction of adjunctions’
[LS16, §5.1]. In particular, the action of the right adjoint modality 4 on contexts, viz. [@,],
is in some sense internalized on types and terms by the action of the left adjoint modality v
on types and terms, viz. (v | —).
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10.3. Recovering the adjunction internally. The foregoing construction of a model
interpreted the lock functors required by M,q; by an adjunction. Consequently, substitutions
A — T'.@, are in natural bijection with substitutions A.@, — I". We would like to strengthen
this setting by bootstrapping this adjunction into an internal adjunction.

It is not immediately clear what an internal adjunction should be. However, we can
construct an appropriate definition by internalizing the unit and counit as functions. But
that is not immediate either: if I' - A type; @ m, the construction (| (v | A)) that we
would naively try as the codomain of the unit is ill-typed. This can be mended through key
substitutions. Recall that n : 1,, = p o v. The corresponding key substitution at I" @ m is
&L : T, @0, — I'@m. We can use this to formally define the notation of Section 2.3 by

AT £ Alay]
As substitutions can be eliminated (e.g. through a subset of the canonicity algorithm), this
defines an admissible operation from type I' - A type; @1 to type ', @0, F A" type; @ m.
We can thus define the unit component at I' - A type; @ m by
unit A= (u| | AM))am
unit(z) £ mod,(mod, (z))
Dually, for any type I',@,., - A type; @ n we can define the counit component by
counit (v |{u|A) — A“an
counit(z) £ let mod, (yo) + z in let, mod,(y1) < yo in ¥§
We thus obtain the unit and counit internally, but the types of the components have to be

adjusted in the presence of dependence. Moreover, we can prove internal versions of the
triangle equations; they are given by modal induction:

~: (x: (v | A)) = Idya (7, counit(mod, (unit) ®, z))

_2 \z. let mod,(y) < x in refl(mod, (y))
~ (o (u | A)) = 1dy ) (z, mod, (counit) ®,, unit(z))
_2 Xz. let mod,(y) < z in refl(mod,,(y))

The most difficult part is proving that these terms are well-typed. For example, in the first
instance we must show that mod, (y) = counit(mod, (unit) ®, mod,(y)) definitionally:

counit(mod, (unit) ®, mod,(y)) = counit(mod, (unit(y)))
= counit(mod, (mod,(mod,(y"))))
= mod, (y")¢
= mod, ((y")* ™)
= mod,, (ye* w)ely*n))
— mod, (y)

Because we are using slightly informal syntax here, it is difficult to see that the steps
that introduce whiskering are correct. They become much more perspucious if we expand
mod, (y")¢ into algebraic syntax, and use the last equation of Fig. 9 twice to absorb locks:

modl,(y[Q,gﬂu])[Qe%] = modu(y[‘%g,gy o &p.@,]) = mOdu(y[Q‘ll“y*n o &p" 11,]) = mOdu(y[q*ll“M])
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10.4. Internal transposition. The previous section offers a perfectly good internal repre-
sentation of an external adjunction. However, it is usually much more economical to present
an adjunction by a natural isomorphism

Hom (L(A), B) = Hom(A, R(B))

Unfortunately, this is not achievable in MTT for a multitude of reasons. First, notice that
(v|A) - Ban and A — (u | B) @m are types in different modes, so the putative type
((v| A) - B) ~ (A — (u| B)) that would represent the isomorphism is ill-typed.

Second, even if the two modes coincide—so that v, u are endomodalities—the aforemen-
tioned type is a bit too strong for our purpose: it is inhabited by internal equivalences, which
are stronger than bijections of hom-sets. Such equivalences correspond to isomorphisms
BLA) = R(B)A of exponential objects. In turn, these are equivalent to hom-set bijections
only if the involved functors are internal, which is to say that we have functions

(A= B) = ({v[A4) = v|B) (A= B) = ((n|4) = {u]B))

that compute the action of the modality (x| —) on morphisms within MTT.10
Third, even if we could internalize our modalities, we would be flying too close to the
sun. As we have (1 - A) >~ A for any A and (£ | 1) ~ 1 for any &, we may calculate that

A~1-A~ | |l)—=A~1=ulA ~ (u] A

Hence, (| —) must be the identity functor up to equivalence. This short argument, which
is due to [LOPS18, Theorem 5.1], is a no-go theorem that obstructs the internalization of an
adjunction whose left adjoint preserves terminal objects.

[LOPS18] overcame this barrier by introducing the global sections modality b. Terms of
bA represent global elements of A: terms of b(A — B) are in bijection with morphisms in
Hom (A, B). Thus, the previously problematic equivalence holds under b.

We can rephrase this argument in our syntax. The key thing to notice is that the functor
b : PSh(C) — PSh(C) which maps a presheaf to the constant presheaf -+ Hompgy c)(1, P)
of global sections is initial amongst functors that preserve the terminal object. Thus, we
postulate an initial modality: suppose that n = m, and that Hom(m, m) is equipped with an
initial object, i.e. a 1-cell b : m — m and a unique 2-cell ! : b = £ for all £&. As a consequence,
we are able to use variables z : (b | A) in any context. Assuming function extensionality, we
have that

Theorem 10.3. There is an equivalence (b | (v | A" — B) ~ (b | A — (u | B")).

Proof. The equivalence is given by the functions

F :(b]<V]A!)—>B)—><b\A—><u\B!)'>

F(f) £ let mod,(g) <+ f in mod,(Az. mod,(g') ®, unit(z))
G OGlA=(u]|BY) > (w|A) =] {v]|A) = B)

G(g) £ let mod,(f) < g in mod,(A\z. counit(mod, (f') ®, z))
These are well-typed because, by initiality of b, A7 = (A")7 = A', (B") = B'. By function
extensionality and 7 for modalities, they are mutually inverse. []

10gych functors are usually called enriched (recall that cartesian closure is a self-enrichment).
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The closest we can get to defining internal transposition (without using an initial
modality) amounts to the following two functions.

transp,,, @ (u|(v|A") — B) = A— (u|B)
transp,’,, 2 \f. Az, f ®,, unit(z)

transp;, : (v|A— (u|B)) = (v|A4) = B
transp;# 2 \f. \x. counit(f ®, x)

The first is an equivalence (again up to function extensionality), but neither have the
expected type. The first transposition transp;’, L is not without precedent: it is the internal
formulation of transposition for adjunctions between monoidal closed categories when the
left adjoint preserves monoidal products.

10.5. Crisp induction. Having internalized the definition of an adjunction, it is natural
to ask whether standard facts about adjoint functors carry over. In this section we prove
an internal version of the fact that left adjoints preserve colimits. Within type theory this
result takes the form of crisp induction principles for various types that arise from colimits.

As a first approximation to the notion of crisp induction, recall the rule for modal
induction, i.e. the elimination rule for modal types from Section 2:

pin—m vim—o Coz:(v|(u|A))F Btype, o
&, = My:{(u| A am Lyz:(vop|A)F M : Blmod,(x)/z] o
I' - let, mod,(x) - My in My : B[My/x] o

Notice that there is an “extra” modality parameterizing this rule, v, which modifies M as
well as the data supplied to M;. This extra generality is not frivolous: we can only define the
equivalence comp,, ,, of Section 3 because we can eliminate one modality ‘under’ another.

One might hope for a similar level of flexibility in all positive eliminators. However, the
elimination rule for booleans—stated here in its algebraic form of Section 4—does not allow
it:

I ctx @m [.(1|B)F A type; @m
I'F M, : Alid.tt] @ m ' My Alid.ff]l @ m ra FN:Bam
I'Fif(A; My; My N) - Aflid.N]@m
Were we to replace 1 with an arbitrary modality, then this rule would state something
considerably stronger: not only would we have the expected elimination principle for B, but
all of our modalities would preserve B. Semantically, this is nonsense: modalities intuitively
correspond to right adjoints, and therefore do not necessarily preserve colimits. For example,
the later » modality of Section 9 does not preserve booleans.

Yet, in some circumstances—e.g. when a modality is a left adjoint—the stronger rule is
valid. This is the idea behind Shulman’s crisp induction principles [Shul8, §5]: cohesive type
theory enables the proof of elimination principles for the coproducts and the identity type
under the left adjoint in the adjunction b 4 4. We will demonstrate that similar principles
are derivable within MTT with mode theory M,g;.

Fix a motive T, @,,,b : (v | B) - C type; @n. Crisp induction is given by a term

I'Fcrispiifo: (b: (v |B)) = (vou | C(tt)) = (vou | C(ff)) = C(b) an
This is a well-formed type, as T',b: (v | B) =T, @4,b: (v | B) - C° type, @ m.
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To obtain the crisp induction principle we first use the ordinary one at mode n, and
apply a number of modal combinators to bring it to mode m.

r,a, th (b:B) = (]| Ctt)) — (| C(fF)) = (| C(b7)) @ m
BOLT) 2D (] COMYE D)

Therispife : (b:(v|B)) = (vou| C(tt)) = (vopu | C(ff)) — C¢(b) @m
crisp_if (b, t, f) = counit(mod, (h(b)) ®, comp;,%u(t) @y comp;{u(f))

The reasons why this term is well-typed is subtle. We have that I',@,,b : (1 | B),&8,., F
b7 :Bam,so ', &@,,b:(1|B) &, +F C(b") type, @n by the application rule. Thus, h is
well-typed. It remains to show that C(b7)¢ = C¢(b), which intuitively follows from the
triangle identities. We may show it by precisely specifying what these operations mean in
the algebraic syntax. First, we construct the substitutions

oo = T.BM.VO[%g.ﬂV‘(HB)] :T.&,.(1|B).&, —» T8, (v|B)an

o1 = 1.8,.vo.8, :T.(v|B)&@o, —~Ta&.1|B)& an

02 2 (&§01).vg :T.(v|B) = T@o,.(v|B)an
We can then interpret C(b"7) as the type I'.@,.(1 | B).@, F Clog] type; @n. Similarly,
C(bM€ is the type I'.(v | B) b C[oy] [aﬂ[&e;_(ylm] type; @n. Finally, C¢(b) is the type
I.(v | B) F C[o2] type; @n, so it suffices to show that o o o; o & vy = 02- This is a
monstrous equation which is primarily structural. Moreover, 1 occurs in og, and € in the key
that follows it, so one of the triangle equations must somehow be implicated. Indeed, we can

use one of the two equations along with the rules of Section 4 to prove the desired result.
We can now prove that

Theorem 10.4. (v |B) ~ B

Proof. We define the two functions

b (v | By > Bam
b(z) £ let mod, (y) < z in crisp_ifg(y, mod,q,(tt), mod,o,(ff))

bl B — (v|B)am
bl £ Az. if(_. (v |B); mod,(tt); mod, (ff);z)

We now use full crisp induction to construct for every z : (v | B) a proof of I, (z, b™ (b(z))).
First, use modal induction to write x = mod, (y) for some y : (v | B). We then have to prove
that Id,z (mod, (y), b (b(mod,(y)))), so we perform crisp induction on y. If y 2 tt, we
have that b™!(b(mod, (tt))) = mod,(tt), so mod,.,(refl(mod, (tt))) has the right type. The
case for y £ ff is similar. The other direction is simpler, and follows by induction on B. []

Similar results hold for other types with ‘positive,” ‘pattern-matching,” or ‘closed-scope’
elimination rules. For example, we can also formulate a crisp induction principle for identity
types, which can be used to prove that

Theorem 10.5. (v | Ida(Mo, M1)) > Id(,| 4y(mod, (Mo), mod, (M1))
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11. RELATED WORK

Modal type theory has been an active area of research for two decades and, as with any
active field, a precise taxonomy of modal type theories would be a paper in and of itself.
Accordingly, we have not attempted such a task here, and have instead focussed on separating
modal type theories into distinct strands based on their judgmental structure. Some of our
characterizations are slightly artificial, in that these lines of work are not nearly so separate
as we seem to suggest. We feel, however, that this is the simplest way to position MTT in
relation to current work.

11.1. Dual-context modal calculi. One of the first papers on (non—lineaur)11 modal type
theory was by [PD01], who constructed a proof theory for S4, i.e. a comonadic modality.
The central idea of this approach was to reflect the distinction between modal and non-modal
assumptions (referred to as ‘truth vs. validity’ in op. cit.) in the judgmental structure of
the system itself. The judgments for this calculus then contained not just a context of
true propositions, but rather two contexts: one for intuitionistic propositions, and one for
modal ones. Following this methodology, Davies and Pfenning internalized previously known
patterns of sequent calculus in a natural deduction style [Kav20].

This kind of judgment straightforwardly allows the incorporation of a product-preserving
comonad. The type OA merely internalizes a restriction to modal contexts only:

A;-F A true Ae AUT A;T'FOA true A, A; T+ B true
A;T'F OA true A;T F A true A;T'F B true

The second author showed that this pattern adapts well to the necessity fragment of a
number of normal modal logics [Kav20]. The dual-context style has been succesfully adapted
to dependent types: see e.g. the work of [dR15], and the spatial and cohesive type theories of
[Shu18]. Similarly, contextual modal type theory [NPP08, BP11, BBS15, PAFT19] has used
a dual-context-like structure in order to give a systematic account of higher-order abstract
syntax.

[Zwal9] continues this program by formulating a precise categorical semantics based on
Awodey’s natural models for a dependent type theory with either an adjunction (AdjTT)
or comonad (CoTT) [Zwal9]. The categorical semantics of MTT and AdjTT are closely
related, though with minor differences in the precise definition of the modality. For instance,
in MTT only the & operator is required to act upon the context, while in AdjTT the
modalities themselves must extend to contexts.!? These differences arise because Zwanziger
characterizes only a certain, semantically well-behaved subclass of models, while in Section 5
we describe more general models, which also support the syntactic model and the gluing
model of Section 6. Syntactically, AdjTT is a multimode type theory that includes a mode
for both ends of the adjunction.

Despite these stories of success, the dual-context style is difficult to generalize: as the
complexity of the modal situation increases, so must the complexity of the context structure.
For instance, the structure of a dependent dual-context type theory enforces that a ‘modal’
type (one belonging to A) may not depend on an ‘intuistionistic’ type (one belonging to I').
This is a reasonable restriction in the case of O, but it is already somewhat limiting. For

UThe idea of dual contexts arose in linear logic: see [And92, Gir93, Plo93].
12This is similar to the relation between a CwF+A and a CwDRA from [BCM*20], and we expect a
similar relation to exist between the semantics of MTT with a single modality and AdjTT.
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instance, it should be allowed for a valid type to depend on a merely true OA. Making such
an adjustment would not only present a typographical problem (with a type occurring to
the left of one of its dependencies), it would render the introduction rule for OA nonsensical.

This restriction proves even more difficult to manage once there is not merely one
modality, but two distinct modalities ones, say p and v. Questions such as “should the
p-modified types be allowed to depend on r-modified types?” defy general answers. These
questions can be addressed for each specific modal situation. For example, both [Shul§|
and [Zwal9] hand-craft a system for two modalities. However, these constructions strongly
depend on the structure of the underlying model, encouraging the proliferation of tiresome
metatheoretic work as we discussed in Section 1.

What is lacking with the dual-context style is the ability to work systematically with a
large class of modal situations without reconsidering the properties of the system in each
case. Some of the rules of MTT can be directly traced to rules in dual-context calculi
(in particular, the elimination rule for modal types), but the structure of our contexts is
radically different, in a way which is far more accommodating.

11.2. Modal type theories based on left division. A separate strand of modal type
theories builds its syntax around a structure that is termed left division by [ND18]. Rather
than having a fixed number of distinct modal and intuitionistic contexts, there is a single
context consisting of variables with modal annotations. The earliest appearance of this
pattern is in the work of [Pfe01], where the annotations described a variable as having
various degrees of proof (ir)relevance.

In a non-dependent type system, the distinction between annotations and different
contexts is artificial: we could simply sort variables by their annotation, and separate them
into different context zones. However, once generalized to a dependent type theory have
a distinct advantage: they do not impose a fixed dependence schedule between different
contexts. Instead, a type may depend on anything preceding it in the context, but the
nature of that dependence is moderated by the modal annotations.

The term ‘left division’ is chosen to describe this structure because of the behavior of the
introduction rules for modal types. For instance, in [Pfe01], there is a rule for introducing a
term in an irrelevant context:

I'*~M:A
'-M ;. A

Here —% is a metatheoretic operation, which traverses the context and removes irrelevance
annotations. The effect of this is that all the variables in I'Y can be used freely when
type-checking M. This is acceptable, because M itself is irrelevant. Viewed properly this
is a division operation which ‘divides’ all the annotations in I" by irr. The metatheory of
a full dependent type theory based on this idea was considered by [AS12], who prove that
modelling irrelevance in this way is sound and decidable.

More recent work by the third author [NVD17, ND18] has carried this idea to its natural
conclusion by incorporating an entire hierarchy of modalities. In a related but distinct line
of work, the Granule Project [GKO116, OLEI19] has exploited a similar structure to give
a systematic account of substructurality. There is ongoing work to extend this to a full
dependent type theory.

The modal annotations of MTT are very similar to the modal annotations of variables
in calculi with left division. Contrasting MTT with [Pfe01] in particular, we find that there
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are three classes of variables in op. cit.: normal variables (written x : A), irrelevant variables
(x + A), and valid variables (z :: A). Such a situation would be modeled in MTT by a single
mode that has three endomodalities: irrelevance, extensionality (the identity modality), and
validity. A composition table for these modalities can be built from the relations in [Pfe01]’s
calculus.

The rules for interacting with the modalities in op. cit. traverse the context and modify
the binding used for each variable. This bulk operation is very different to MTT-style locks,
but amounts to similar constraints on variable use. By tagging the context with a lock,
every time we use a variable we must ensure that the annotated modality sufficiently strong
to overcome the lock. When we bulk-update the context, the same restrictions occur but
they are performed ‘eagerly.’

The use of ‘lazy’ locks has several advantages over ‘eager’ bulk updates. For instance,
we do not have to explain what it means to divide one modality by another, and non-trivial
2-cells are possible. Furthermore, when interpreting the calculus in a model, it is unnecessary
to describe variable by variable how modality update affects the interpretation of the entire
context (which can be challenging: see e.g. [Nuy18]).

11.3. Fitch-style modal type theories. A recent series of papers has used a judgmental
structure that is similar to MTT in order to manage a variety of modalities [BGM17, BCM 120,
GSB19a]. This kind of structure, informally often referred to as the Fitch-style [Clo18],
divides the context into regions of variables separated by locks, but does not use annotations
on individual variables. Locks are dynamically included or removed by the typing rules.

The central advantage of the Fitch-style is the impressively simple introduction rule
for modalities: whenever we wish to introduce a modality we simply append a lock to the
context—which tags the modal shift—and continue typechecking. In particular, we never
need to remove variables from the context during the introduction of a modal term. Of
course, like in MTT this style is only sound for a modality which comes equipped with some
sort of left-adjoint-like operation.

Another desirable property of the Fitch-style calculi is their support for strong elimination
rules for modalities. Instead of the pattern matching-style rules of other systems, Fitch-style
calculi have had an open scope elimination rule for their modalities, which often permits a
definitional n-rule for OA. It is generally of the following shape:

§T)F M:0A
't open(M): A

§ is a meta-theoretic operation on contexts which removes some number of locks and variables
from T'. For instance, in [BCM™*20] the operation §(T') was defined by

(T, uT") =T where o ¢ I

This rule is convenient, and strictly more powerful than that of MTT (see Section 7).
However, it is metatheoretically less than ideal. The source of the trouble in this case is
that we must show that substitutions can be pushed under the open construct. For instance,
suppose we have some substitution v : A — I',sf",I”. It is necessary to ensure that this
substitution uniquely gives rise to a substitution §(7) : F(A) — I, which will then be applied
to the body M of the term. This property can only be shown by lengthy induction on
syntax. Such a property is proven laboriously in [GSB19a] for the MLTTg type theory, and
several complex and seemingly artificial typing rules are necessary to show it. The situation
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is in some ways similar to dual-context calculi, where meticulous expert attention is needed
to show the admissibility of substitution in each modal setting.

The final and most serious issue with the Fitch-style is the difficulty of accounting for
multiple distinct modalities. Each modality should give rise to a different lock, but the
structural rules governing their interactions are complex. It is well-understood how to model
the » modality in a Fitch-style type theory, and [GSB19a] developed an extensive account
of the O modality. However, it is an open problem whether the two may be combined.
There is work to this effect in a simple type theory [BGM19], but even in this case there are
restrictions on O and » which prevent the recovery of the MLTTg type theory of [GSB19a]
as a subsystem.

These issues seem to converge to one cause: rules that ‘remove’ elements from the
context during type-checking appear difficult to manage when combining modalities. As
they operate on a syntactic level, they also seem to prohibit the formulation of internal
languages. Drawing on this intuition, MTT has adopted the simple introduction rules of
Fitch-style calculi, but not the elimination rules. The result is a less powerful type theory,
with a weaker definitional equality, and no definitional n-principle. In return, MTT scales to
any mode theory, including any number of interacting modalities.

11.4. Other work. The question of a multimodal framework for type theory has also been
tackled by other recent work [L.S16, LSR17]. This line of research is commonly referred to
as the LSR framework, after the initials of the authors. LSR is designed to handle a wide
variety of modal situations in combination with a variety of different substructural settings.
There has been ongoing work on extending this system to a full dependent type theory, but
as of late 2020 this work remains unpublished.

The impetus for the LSR framework is mainly derived from a long-standing wish to
address the interaction between dependent types and substructural logics. This is an axis of
generalization which is entirely outside the scope of MTT. However, we may compare LSR
to MTT along the modal axis.

The idea of parametrizing a type theory by a mode theory, as we have done with MTT,
originates in a paper preceding the LSR framework [LS16]. In fact, the modal situations that
can be handled by MTT are a strict subset of those which can be handled by pre-LSR/LSR,
which also includes a modality representing the left adjoint as an operation on types (and
not just contexts). By contrast, MTT has a simpler syntax which is amenable to current
proof and implementation techniques. This is reflected in our proof of canonicity, and our
experimental implementation efforts [Nuy19]. We therefore believe that MTT is a natural
halfway point between current modal type theories (which are custom-fitted for each modal
situation) and the full generality of LSR: it is a simpler theory which accounts for many
situations of interest.

12. CONCLUSIONS

We introduced and studied MTT, a dependent type theory parametrized by a mode theory
that describes interacting modalities. We have demonstrated that MTT may be used to
reason about several important modal settings, and proven basic metatheorems about its
syntax, including canonicity.

Several distinct directions of future work present themselves.
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Towards an Implementation of MTT. A major point of future work is the development
of an implementation of MTT. Substantial preliminary implementation efforts are already
underway with Menkar [Nuy19]. In addition to the engineering effort, a systematic account
for an algorithmic syntax of MTT as well as proof of normalization is needed. We believe
that the general ideas of [GSB19a] are applicable to this situation and there is ongoing work
to apply them to MTT through more modern gluing techniques [Coql9]. Eventually, this
work should prove that I' = M = N : Ac@m and I' = A = B type, @ are decidable relative
to a decision procedure for equality in the underlying mode theory.

Left Adjoints. As discussed in Section 11.4, MTT trades a measure of generality for a
degree of simplicity, as compared to LSR. One might hope, however, that it would be possible
to include a connective for left adjoints, as well as the current connective which models right
adjoints without losing all of this simplicity. It is not obvious that this can be done without
significantly changing MTT: the introduction rule for modalities is exceptionally specific
to a right adjoint. This additionally flexibility would allow us to model several modalities
which are currently out of reach. For instance, when modeling a string of adjoints, we always
fail to model the final left adjoint. Concretely speaking, the inclusion of left adjoints would
allow MTT to model computational effects [Mog91, Lev12], as we will be able to internally
recover the corresponding monad as the composite of the two parts of an adjoint pair.
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