Logical Methods in Computer Science
Vol. 10(4:20)2014, pp. 1-45 Submitted Aug. 8, 2013
www.Imcs-online.org Published Dec. 30, 2014

GLOBALLY GOVERNED SESSION SEMANTICS

DIMITRIOS KOUZAPAS2 AND NOBUKO YOSHIDAP

ab |mperial College London
e-mail address{Dimitrios.Kouzapas,n.yoshid@imperial.ac.uk

ABSTRACT. This paper proposes a hisimulation theory based on mdijisassion types where a
choreography specification governs the behaviour of sesgped processes and their observer. The
bisimulation is defined with the observer cooperating with bbserved process in order to form
complete global session scenarios and usable for provimgatoess of optimisations for globally
coordinating threads and processes. The induced bisiionilist strictly more fine-grained than the
standard session bisimulation. The difference betweegdkerned and standard bisimulations only
appears when more than two interleaved multiparty sessriss. This distinct feature enables to
reason real scenarios in the large-scale distributed mystkeere multiple choreographic sessions
need to be interleaved. The compositionality of the gowtrbisimilarity is proved through the
soundness and completeness with respect to the governectioedbased congruence. Finally, its
usage is demonstrated by a thread transformation govemast multiple sessions in a real usecase
in the large-scale cyberinfrustracture.

1. INTRODUCTION

Backgrounds. Modern society increasingly depends on distributed safiviafrastructure such
as the backend of popular Web portals, global E-sciencerinylsstructure, e-healthcare and e-
governments. An application in such distributed environtads typically organised into many
components that communicate through message passing.amtapplication is naturally designed
as a collection of interaction scenarioshaultiparty sessionsach following an interaction pattern,
or choreographic protocol The theory for multiparty session typés [24] capturesdhe® natural
abstraction units, representing the situation where twoane multiparty sessions (choreographies)
can interleave for a single point application, with each sage clearly identifiable as belonging to
a specific session.

This article introduces a behavioural theory which canaeasbout distributed processes that
are controlled globally by multiple choreographic sessiofyped behavioural theory has been one
of the central topics of the study of tirecalculus throughout its history, for example, reasoning
about various encodings into the typaetalculi [42,/47]. Our theory treats the mutual effects of

2012 ACM CCsS[Software and its engineerind; Software notations and tools—General programming laggs—
Language types;Theory of computation]: Models of computation—Concurrency—Process calculi.
Key words and phraseghe ri-calculus, session types, bisimulation, barbed redudiased congruence, multiparty
session types, governance, soundness and completeness.
@ University of Glasgow, Dimitrios.Kouzapas@glasgow.&q@n leave).

|E |LOGICAL METHODS © D. Kouzapas and N. Yoshida
IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(4:20)2014 © |Creative Commons

http://creativecommons.org/about/licenses

2 D. KOUZAPAS AND N. YOSHIDA

[Serverl} [Servery } [Clients] [Serverlj [Serverzj [Clients }

{

| ! " swEy | | sU[ENY)
| | | 4l | | 4l
| |12t w) | | se[2)i2) w | |
} | | s | | | s

| | |

Figure 1: Resource Managment Example: (a) before optifaisaih) after optimisation

multiple choreographic sessions which are shared amoiipdied participants as their common
knowledge or agreements, reflecting the origin of chorquyjcaframeworks[[B]. These features
related to multiparty session type discipline make our theatistinct from any type-based bisim-
ulations in the literature and also applicable to a real ebgraphic usecase from a large-scale
distributed system. We say that our bisimulatiogligbally governegsince it uses global multiparty
specifications to regulate the conversational behaviodistfibuted processes.

Multiparty session types. To illustrate the idea for globally governed semantics, s 8xplain
the mechanisms of multiparty session typed [24]. Constierstmplest communication protocol
where the participant implementing 1 sends a message obbgleto the participant implementing
2. A global type[24] is used to describe the protocol as:

Gy = 1— 2:(bool).end

where— denotes the flow of communication aaald denotes protocol termination.

Global typeG; is used as an agreement for the type-check specificationstiofServer and
Servep. We type-check implementations of both servers againsptbjgction of G; into local
session types. The following type

[2]!(bool); end
is the local session type from the point of view of participanthat describes the output obaol-
type value towards participant 2, while local type:

[1]?(bool); end

is the local session type from the point of view of 2 that diéss the input of aool-type value
from 1.

Resource management usecaséle will use a simplified usecase, UC.R2.13 “Acquire Data From
Instrument”, c.f.§[@ of [1]], to explain the main intuition of globally governedrsantics and give
insights on how our theory can reason about choreograptacactions.

Consider the scenario in Figuré 1(a) where a single thre@iedt; (participant 3) uses two
services: from the single threaded Sej\garticipant 1) and from the dual threaded Serpartic-
ipant 2). In Figuré1l, the vertical lines represent the ttisda the participants. Additionally Seryer
sends an internal signal to SerweiThe communication patterns are described with the useeof th
following global protocols:

Ga = 1—3:(sen.2—3:(sen.end
G, = 1— 2:(sig).end

GLOBALLY GOVERNED SESSION SEMANTICS 3

with G, describing the communication between the two servers amCtleng and G, describ-
ing the internal communication between the two serverstidjzants 12 and 3 are assigned to
processe®s, P, andPs, respectively in order to implement a usecase as:

a[1](x).b[1](y) X[3]!(v); y[2]!(w); 0
P, a[2)(x).b[2](y).(Y[1]%(2);0 | X[3]!(v); 0)

P; = a3(x).x[122);x[2]y); 0
Shared nama establishes the session correspondinGipwhere Clierg (P;) uses prefixa3](x)
to initiate a session that involves three processes: Se(Perand Server (P,) participate to the
session with prefixea[1](x) anda[2](x), respectively. In a similar way the session corresponding
to Gy is established between Servand Server.

The above scenario is subject to an optimisation due to thidHat the internal signal between
Servef and Serveris invisible to clients because the communication link txdaafter the session
initiation is local. The optimisation is illustrated in kigg[d(b), where we require a single threaded
service for Serverto avoid the overhead of an extra thread creation. The nedemgntation of
participant 2 is:

R = a[2)(x).b[2](y).y[1]A2); x[3]!{v); 0
It is important to note that botR, andR, are typable under botG, andGy,.
The motivation of this work is set when we compare the twoeeinterfaces that are exposed
towards Cliend, here implemented by proceBs The two different interfaces are given by the two
different implementation®; | P, andP; | R,.

Untyped and linear bisimulations. It is obvious that in the untyped setting [49% | P, and
P1 | Rz arenot bisimilar sinceP, can exhibit the output actiog,[2][3]!(v) before the input action
%[2][1]?(w) (assuming that variable is substituted with sessiog and variabley is substituted
with sessions, after the session initiation actions take place). More petety we can analyse
their transitions as follows wher@{1,2}|(s,) is the label to start the session with Cligmthile
sa[2][3]!(v) is an output of value from Serves to Client:

Py | P, 12 T, sI3

2][3 (v)
PRy AL T,

The same transitions are observed if we restrict the tiansemantics to respect the traditional
linearity principle based on session local types [30]. Thiedefinition of the multiparty session
bisimulation which follows the usual linearity propertyf@muind in§[4. We also give the detailed
interaction patterns in Examgdle 4111 to explain why bottypetl and linear bisimulations cannot
equateP; | P, andP, | Ro.

Globally governed bisimulation. In the global setting, the behaviours if | P, andP; | R, are
constrained by the specification of the global protodBlsandGy. The service provided by Serger
is available to Clientonly after Server sends a signal to SergerProtocolG, dictates that action
sa[2][3]!(v) can only happen after actiap[2][1]?(w) in P,. This is because Cliegitwhich uses the
service interface as a global observer, is also typed byltimbprotocolG,; and can only interact
with actions,[2][3]!(v) from Server after it interacts with actios,[1][3]! (v) from Serves.

Hence in a globally typed setting, procesBesP, andP; | R, are not distinguishable by Client
and thus the thread optimisationRf is behaviourally justified.

4 D. KOUZAPAS AND N. YOSHIDA

Note that processd® andR; (i.e. without the parallel compositioR,) are not observationaly
equivalent under any set of session typed or untyped olismmahsemantics. The governed bisim-
ulation betweerP; | P, andP; | R, is achieved if we introduce an internal message of the sessio
created on shared chantbetween processés andP, andP; andR,, respectively.

Changing a specification. A global protocol directly affects the behaviour of proass We
change global typ&, with global type:

G,=2—3:(sen.1— 3:(ser.end

Processe®; | P, andP; | R, are also typable under protoc8l, but now proces®, can perform
both the output to Clieptand the input from Serveiconcurrently and according to the protoj
that states that Cliegpttan receive a message from Sepvinst. HenceP; | P, andPy | R, are no
longer equivalent under global tyi#,.

The above example gives an insight for our development ofqaiivalence theory that takes
into account a global type as a specification. The interactitenario between processes refines
the behaviour of processes. To achieve such a theory of gg@rpiivalence we require to observe
the labelled transitions together with the informationyided by the global types. Global types
define additional knowledge about how an observer (in thenpl@above the observer is Clight
will collaborate with the observed processes so that diffeglobal types (i.e. global witnesses) can
induce the different behaviours.

Contributions and outline. This article introduces two classes of typed bisimulatibased on
multiparty session types. The first bisimulation definitiesbased on the typing information derived
by local (endpoint) types, hence it resembles the standtaedrity-based bisimulation for session
types ([30]). The second bisimulation definition, which vedl globally governed session bisimilar-
ity, uses the information from global multiparty session tyjgederive the interaction pattern of the
global observer. We prove that both bisimilarities coiecwlith a corresponding standard contex-
tual equivalence [22] (see Theoreims 4.10[and]5.15). Thalijohpoverned semantics give a more
fine-grained bisimilarity equivalence comparing to thealbyctyped linear bisimulation relation. We
identify the condition when the two semantic theories coiedsee Theoref 5.116). Interestingly
our next theorem (Theorelm 5117) shows that both bisimjlaelations differ only when processes
implement two or more interleaved global types. This featmakes the theory for govern multi-
party bisimulation applicable to real situations wheretipld choreographies are used to compose
a single, large application. We demonstrate the use of gedebisimulation through the running
example, which is applicable to a thread optimisation obhueecase from a large scale distributed
system|[1].

This article is a full version of the extended abstract mltdd in [29] and the first author’s
thesis [28]. Here we include the detailed definitions, exiganexplanations, full reasoning of the
usecases and complete proofs. The rest of the paper is segaas follows: Sectidd 2 introduces a
synchronous version of the calculus for the multiparty isess Section 3 defines a typing system
and proves its subject reduction theorem. Sedtion 4 presbattyped behavioural theory based
on the local types for the synchronous multiparty sessiospgoves that the typed bisimulation
and reduction-based barbed congruence coincide. SédfitnoBuces the semantics for globally
governed behavioural theory and proves the three mainaghepof this article. Sectidd 6 presents
a real-world usecase based on UC.R2.13 “Acquire Data Fratnuiment” from the Ocean Obser-
vatories Initiative (OOI)[[1] and shows that the governesirbulation can justify an optimisation
of network services. Finally, Sectidh 7 concludes with thlated work. The appendix includes the
full proofs.

GLOBALLY GOVERNED SESSION SEMANTICS 5

P = Tdp/(x.P Request | if ethenPelseQ Conditional
| ulp](x).P Accept | P|Q Parallel
| clp]i(e);P Sending | O Inaction
| c[p]?(x);P Receiving | (vn)P Hiding
| cp|®l;P Selection | uX.P Recursion
| clp/&{li:R}ic Branching | X Variable

= X | a Identifier ¢ &= gp] | X Session
= s | a Name v == a | tt | ff | Sp] Value
V| x| e=€e]| .. Expression

Figure 2: Syntax for synchronous multiparty session cakul

Acknowledgement.The first author is funded by EPSRC Post Doctal Fellowshipe Work has
been partially sponsored by the Ocean Observatoriestini#j&EPSRC EP/K011715/1, EP/K034413/1,
EP/G015635/1 and EP/LO0058X/1, and EU project FP7-612985ddle. We thank Rumyana
Neykova for her suggestion of the usecase.

2. SYNCHRONOUSMULTIPARTY SESSIONS

This section defines a synchronous version of the multipsegsion types. The syntax and typ-
ing follow the work in [7] without the definition for sessiom@point queues (which are used for
asynchronous communication). We choose to define our thedhe synchronous setting, since it
allows the simplest formulations for demonstrating theeeal concepts of bisimulations. An ex-
tension of the current theory to the asynchronous semasfiest of the work in[[2B], where session
endpoint queues are used to provide asynchronous intamguditterns between session endpoints.

2.1. Syntax. The syntax of the synchronous multiparty session calcsldefined in Figurel2. We
assume two disjoint countable sets of names: one rangessbasrd names,a,... and another
ranges ovesession hames s,.... \Variables range ovex,y,.... Rolesrange over the natural
numbers and are denotedm@s, . .., labels range ovdrl4,... and constants range ovet, ff,....

In general, when the sessions are interleaved, a participay implement more than one roles.
We often callp,q,... participants when there is no confusion. Symbdk used to range over
shared names or variables. Session endpoints are denosid,8lg],.... The symbolc ranges
over session endpoints or variables. Values range oveedhemes, constants (we can extend
constants to include natural number21..) and session endpoingfp]. Expressiong,€,... are
either values, logical operations on expressions or nantehing operations = rv.

The first two prefixes are the primitives for session inigiatit[p](x).P initiates a new session
through identifieru (which represents a shared interaction point) on the othitipie participants,
each of the shape{q](x).Qq where 1< q < p—1. The (bound) variablg will be substituted with
the channel used for session communication. The basicosessdpoint communication (i.e. the
communication that takes place between two endpoints) rienneed with the next two pairs of
prefixes: the prefixes for sending[ff]! (e); P) and receiving ¢[p|?(x); P) a value and the prefixes
for the selecting €p] @ |;P) and branchingqp]&{li : R}ici) processes, where the former prefix
chooses one of the branches offered by the latter prefix.ifBfadly, proces<c[p]! (e); P denotes the

6 D. KOUZAPAS AND N. YOSHIDA

P=P|0 P|Q=Q|P (P|QI|R=P|(Q|R) P=,Q uXP=P{uxX.P/X}
(vn)(vn)P=(vn)(vnP (vn)0=0 (vn)(P)|Q=(vn)(P|Q) n¢fn(Q)

Figure 3: Structural Congruence for Synchronous Multip&assion Calculus

AN ()P [Mg n-nali](})-R - — (vS)(P{sin]/x} | Mi—gz..n-1yR{sl/x}) [Link]

slplla]!(€); P [s[a][p]?(x);Q — P|Q{v/x} (elV) [Comni
slplla] @l P| slalfpl&{li : P}ies — P[RR (kel) [Label
ifethenPelseQ— P (eltt) [If-F] ifethenPelseQ—Q (elff) [If-T]
P—P P— P P=P —Q=Q
[Red [Pa [Str]

(vn)P— (vn)P PIQ—P|Q P—Q

Figure 4: Operational semantics for synchronous mulypsession calculus

intention of sending a value to rote in a similar way, process[p|?(x); P denotes the intention of
receiving a value from role. A similar interaction pattern holds for the selectionfimiaing pair of
communication, with the difference that the intention isémd (respectively receive) a label that
eventually determines the reduction of the branching m®cBroces8 is the inactive process. The
conditional processf e then P else Q offers processeB andQ according to the evaluation of
expressiore. Proces$ | Q is the parallel composition, whiley n)P restricts nama in the scope
of P. We use the primitive recurs@rX.P with X as the recursive variable. We write(P)/on(P)
andfv(P)/bv(P) to denote the set of free/bound names and free/bound vesiatdspectively in
process®. A process is closed if it is a term with no free variables.

2.2. Operational semantics. The operational semantics is defined in Figure 4. It uses shalu
structure congruence relation (denotedshy which is defined as the least congruence relation that
respects the rules in Figure 3. Structural congruence issocative and commutative monoid over
the parallel () operation with the inactive proces) peing the neutral element. It respects alpha-
renaming and recursion unfolding. The order of the nameicden operators has no effect with
respect to structural congruence. Finally, the scope ogemnile extends the scope of the restriction
on a name from a process to a paralleled process, provideththaame does not occur free in the
latter. We often writ€v ninz---ny)(P) for (v ny)((v n2) (- (v nm)(P))).

The reduction semantics of the calculus is defined in Figurue [Link| defines synchronous
session initiation and requires that all session endpaomist be present for a synchronous reduc-
tion, where each role creates a session endposht] on a fresh session nanse The maximum
participant with the maximum rol@[n|(x).P) is responsible for requesting a session initiation. Rule
[Comn] describes the semantics for sending a value to the corrésmpreceiving process. We as-
sume an evaluation contegt| v, where expressior evaluates to valug. Session endpoirg[p]
sends a valug to session endpoirgq], which in its turn waits to receive a value from rgle The
interaction between selection and branching processesfirgeed by rule[Label, where we expect
the selection paw{p] of the interaction to choose the continuation on the bramgcharts]q] of the
interaction.

The rest of the rules follow the usumdcalculus rules. Rul@f] evaluates the boolean expression
e. If the latter is true it proceeds with the first branch preogésfined; otherwise it proceeds with the

GLOBALLY GOVERNED SESSION SEMANTICS 7

Global
G = —q:U).G exchange
| i—&:ihzei}u branchi?]g Local
) i T == [pU)T send
| ut.G recursion Ay _
|t variable | [P]2AU)T receive
| end end | [pl®{li: Ti}ia select
| [pl&{li : Titia branch
Exchange | ptT recursion
U = s|T |t variable
Sort | end end
S = bool | (G

Figure 5: Global and local types

second branch process defined. Rykes3 and [Pat are inductive rules on the parallel and nhame
restriction operators. Finally, rulgsty closes the reduction relation under structural congruence
closure. We write— for (— U =)* [45,[22].

3. TYPING FORSYNCHRONOUSMULTIPARTY SESSIONS

This section defines a typing system for the synchronousipanly session calculus. The system
is a synchronous version of one presented in [7]. We first definltiparty session types and then
summarise the typing system for the synchronous multipeggsion calculus. At the end of the
section, we prove the subject reduction theorem (Thebr&n 3.

3.1. Global and local types. We first give the definition of the global type and then defireeltical
session type as a projection of the global type.

Global types,ranged over byG,G,... describe the whole conversation scenario of a multiparty
session as a type signature. The grammar of the global tggean in Figuréb (left).

The global typep — q: (U).G’ describes the interaction where repleends a message of type
U to roleq and then the interaction described3htakes place. Thexchange type W', ... consists
of sorttypesS S, ... for values (either base types or global types), lcdl sessiontypesT, T/, ...
for channels (local types are defined in the next paragrapipep — q: {l; : Gi}ic| describes the
interaction where role selects one of the labelsagainst roleg. If |; is selected, the interaction
described irG; takes place. We assume thpag q. Type ut.G is the recursive type. Type variables
(t,t’,...) are guarded, i.e., type variables only appear under sogfix pnd do not appear free in the
exchange typed. We take arequi-recursiveview of recursive types, not distinguishing between
pt.G and its unfoldingG{ ut.G/t} [41, §21.8]. We assume th& in the grammar of sorts has no
free type variables (i.e. type variables do not appearyfrigetarried types in exchanged global
types). Typeend represents the termination of the session.

8 D. KOUZAPAS AND N. YOSHIDA

Local types.Figure[® (right) defines the syntax of local types. They @poad to the communi-
cation actions, representing sessions from the view-mdiatsingle role. Theend typdp|! (U); T
expresses the sending paof a value of typeJ, followed by the communications df. Similarly,
the select typdp] @ {l; : Ti}ic represents the transmission of laheo rolep. Labell; is chosen
in the set{l; }ic; and the selection prefix is followed by the communicationscdbed byT,. The
receiveandbranch typesare described as dual types for the send and select typpsctegly. In
the receive typép]?(U); T we expect that the typed process will receive a value of tyfem role
p while in the branch typép]&{l; : Ti }ic/ we expect a selection labgle {l;}ic from rolep. The
rest of the local types are the same as global types. Renyusid uses type variablesto perform
a recursion via substitutioh{ ut.T /t}. The inactive type is written asnd.

We define the roles occurring in a global type and the roleamicg) in a local type.

Definition 3.1 (Roles)
¢ We defineroles(G) as the set of roles in protoc@:

roles(end) =0 roles(t) =0 roles(Ut.G) =roles(G)
roles(p —q: (U).G) ={p,q} Uroles(G)
roles(p — q: {li: Gi}ia) = {p,a} U{roles(Gj) | i€}

e We defineroles
roles(end) =0 roles(t) =0 roles(Ut.T) =roles(T)
roles([p/l(U);T)={p}Uroles(T) roles([p|?2(U);T) ={p}Uroles(T)
roles([p] @ {li: Titiar) = {p}U{roles(Ti) | iel}
roles([p]&{li : Titier) = {p} U{roles(Ti) | i}

—

T) on local types as:

Global and local projections.The relation between global and local types is formalisedhay
usual projection functiori [24, 7], where the projection aflabal typeG over a rolep results in a
local typeT 1

Definition 3.2 (Global projection and projection sefJhe projection of a global typ& onto a role
p results in a local type and it is defined by induction@n

[q(U);G[p p=p
p'—q:(U)G[p = [p]?U);Glp p=gq
Glp otherwise
[al@{li: Gi[p}ia p=p
P —q:{li:Gliclp = pl&{li: Gi[p}iet pP=q
Gilp if Vjel.Gi[p=Gj[p
_ [pt(G[p) G[p#t
(ut.G)lp = { end ’ othI:erwise
tlp=t end[p =end

A projectionof G is defined aproj(G) = {G[p | p € roles(G)}.

Irora simplicity of the presentation, we take the projecfigrction from [24[7], which does not use the mergeability
operator[[15]. The extension does not affect to the wholerthe

GLOBALLY GOVERNED SESSION SEMANTICS 9

Inactive end and recursive variabletypes are projected to their respective local types. Note
that we assume global types have roles starting from 1 upntee spwithout skipping numbers in
between.

We projectp’ — q: (U).G to partyp as a sending local type if = p’ and as a receiving local
type if p = q. In any case the continuation of the projectioiGigp.

Forp — q: {li : Gi}ial, the projection is the select local type fpr= p’ and the branch local
typep = q. Otherwise we use the projection of one of the global tyf@s | i € 1} (all typesG;
should have the same projection with respegi)to

The first side condition of the recursive type.G ensures that it does not project to an invalid
local typeput.t.

We use the local projection function to project a local tf¥pento a rolep to produce binary ses-
sion types. We use the local projection to extract techmesults (well-formed linear environment)
later in this section.

We use the usual binary session types| [21, 50], for the diefindf local projection:

Definition 3.3 (Binary session types)
B:=!1U):)B | 2U);B | &{li:B} | &{li:Bi} | ut.B | t | end

Definition 3.4 (Local projection) The projection of a local typd onto a rolep is defined by
induction onT:

phoiTia = { T EE

po)Tr = { 0TI T L
pPle{li:Thalq = {@{I' Tilahe i(%:vli)el.'ﬁ(q:Tl[q
pl&{li : Titici[q = {%{g Tilahe ic%:vli)el.'ﬁ(q:Tl[q

end otherwise

tlp=t end[p = end

An inactive local type, a recursive variable and a recursjype are projected to their corre-
sponding binary session type syntax. Typg$(U); T and[p]?(U); T are projected with respect to
q to binary send and receive session types, respectivelyr uhdeconditionp = q, and continue
with the projection ofT onq. If p # q, the local projection continues with the projectionTaf A
similar argument is applied fdp] & {li : Ti }ici and[p]&{l; : Ti}iel if p = q. For the case # q, we
project one of the continuations ¥T;}ic; since we expect all the projections {f; }ic| to be the
samel([24, 7].

We inductively define the notion of duality as a relation otrer projected local types:

Definition 3.5 (Duality). We define the duality function over binary session types as:
end=end t=t ptB=putB !(U);B=?(U);B ?2U);B=!(U);B
O{li : Bitia = &{li : Bi}iar &{li: Bi}iar = ®{li : Bi}ial

10 D. KOUZAPAS AND N. YOSHIDA

We assume only session types with tail recursion as in [24nate that the inductive duality
on non-tail recursive session types, i.e. session prefirscarry a recursive variable as an object)
is shown to be unsound![6]).

The result of the following proposition is used on the wellrfhedness criteria of a linear envi-
ronment.

Proposition 3.6. If p,q € roles(G) withp # q then(G[p)[q = (G[q)[p.

Proof. The proof is done by induction on the structure of global §ype]

3.2. Typing system. We define the typing system for the synchronous multiparsgise calculus.
The typing judgements for expressions and processes dne shapes:

N-e:S and TrFPrA

wherel is the shared environment which associates variables toypas (i.e. base types or global
types), shared names to global types and process variabgEssion environments; addis the
session environment (or linear environment) which assegiehannels to session types. Formally
we define:

ras=0|TrTu:sS|r-X:A and A := 0| A-c:T
assuming we can writE -u: Sif u ¢ dom(I"). We extend this to a concatenation for typing envi-
ronments add- A’ = AUA'. We use the following definition to declare the coherenceest®n
environments.

Definition 3.7 (Coherency) Typing A is coherent with respect to sessiorfr®tationco(A(Ss))) if
forall s[p] : T, € Athere exists[q] : T, € A such thafl,[q = Tq[p. A typing A is coherent(notation
co(4A)) if it is coherent with respect to a#f in its domain. We say a typing is fully coherent

(notationfco(A)) if it is coherent and i8[p| : T, € A then for allq € roles(T), S[q] : Tq € A.

Figurel® defines the typing system. The typing rules preddmtee are essentially identical to
the communication typing system for programs(in [7], duehi fact that our calculus is synchro-
nous (i.e. we do not use session endpoint queues).

Rule[Namé types a shared name or a shared variable in environmeRule [Bool] assigns the
typebool to constantst,ff. Logical expressions are also typed with tw1 type via rule[And],
etc. Rule]Match] ensures that the name matching operator has the boolean type

Rules|MReqd and[MAcc] type the request and accept processes, respectively. Bethaheck
that the type of session variabteagrees with the global type of the session initiation nantieat
is projected on the corresponding r@leFurthermore, in ruléMReq we require that the initiating
role p is the maximum among the roles of the global typ®f a while in rule [MAcc] we require
that rolep is less than the maximum role of global ty@e Note that these session initiation rules
allow processes to contain some but not all of the roles issiee. Rule$MReq and[MAcc]| ensure
that a parallel composition of processes that implemerthaltoles in a session can proceed with a
sound session initiation.

Rules[Send and[Recy are used to type the sentlp]!(v); P, and receivec|p]?(x); P, session
prefixes. Both rules prefix the local typeoin the linear environment the send typ! (U); T, and
receive typelp]?(U); T, respectively. The typing is completed with the check of dbgct types
v andx, respectively, in the shared environmént The delegation of a session endpoint is typed
under rulegDeled and[SrecV. Both rules prefix the local type @fin the linear environment with
the send and receive prefixes, respectively, in a similarwittyrules[Send and[Recy. They check

GLOBALLY GOVERNED SESSION SEMANTICS 11

MNu:Sku:S [Namé

g :bool
e and & :bool

N-a:(G) r-pPeA-x:Gfp
maxroles(G)) =p

[And]

[MReq|
I -alp](x).P>A
lNe:S r-psA-c:T
[Send
IEclq]l{e);P>A-c:[q)!(S);T
r-PsA-c:T
gl (C);PsA-c: [T, T-¢: T/ [Deleg
r-pPsA-c:T
Sel

M-clg@®l;PoA-cifg@{l: T}

Ik tt,£f:bool [Bool|

NEng:U ITEnp:U
[Fnp=ny:bool

N-a:(G) r-pPeA-x:Gfp
1<p < maxroles(G))

[Match

[MAcc]
I+ alp](x).P>A
MNx:SEPepA-c: T [Recy
Ik clq]?2(x);P>A-c: [q]AS); T
Fr=PoA-c:T-x:T' / SRecy
IEc[q)?(x);P>A-c: [q]2T); T
FrN=RsA-c:Ti Viel Bral

M= C[q]&{h : P|}i€| >A-C: [q]&{h 3Ti}ie|

MrEPicA; TEPR>A; dom(A1) Ndom(Ap) =0 M-e:bool THPrA THQrA

[Cond [If]
=Py P>Ag-Ar -if ethen P else QA
l_
M=0-0 [Inact _ rroed [Completé
N-=0>A-c:end
fco({s[1]: Ty...qn|: Th})
-a: F M=PoA-s1]:T1...9n]: T,
r-a:(G) PDA[NReE} >A-S[1]:Ty...9n]: Ty 'SRes
M (vaPrA r=(vsPsA
-X:iIAF
F-X:AFX>A [Var] LX-APPra [Red
M- uX.PoA

Figure 6: Typing system for synchronous multiparty sessaoulus

the type for the delegating object in the linear environnergnd a delegation respects the linearity
of the delegating endpoint (in this caseandx, respectively), i.e. when an endpoint is sebifed)

it should not be present in the linear environment of theinoationP. Similarly, when an endpoint
is received [Srecy) the receiving endpoint should not be present before theptam.

Rules[Sel and[Brd type selecting and branching processes, respectivelyleatsmn prefix is
typed on a select local type, while a branching prefix is typed branch local type. A selection
prefix with labell for role c uses label to select the continuation on nara@ the select local type.
A branching process with labdlsbranches the local types ofn the correspondin in the branch
local type. Furthermore, alt processes should have the same linear type on names other tha

Rule [Cond types a parallel composition of processes. The disjoistmesidition on typing
environmentd\; andA; ensures the linearity of the environmeht- A,. Rule[If] types conditional
process, where we require that the expressitinbe ofbool type and that the branching processes
have the same linear environment. R{lteci types the empty process with the empty linear en-
vironment. RulgCompleté does an explicit weakening on the linear typing of an inacpoocess
to achieve a complete linear environment. A complete lirgatironment is defined as the linear
typing where every session endpoint is mapped to the iratinal typeend. Rule [Nreg defines
the typing for shared name restriction. A restricted sharahe should be present in the shared
environment” before restriction and should not appeaF iafter the restriction. RulgSres uses the

12 D. KOUZAPAS AND N. YOSHIDA

full coherency property to restrict a session hame. Fulecehcy requires that all session endpoints
of a session are present in the linear environment befoneatesn and furthermore, it requires that
their local projections are mutually dual. A restrictedsses name does not appear in the domain
of the linear environment.

Rule|Var] returns the linear environmeatthat is assigned to process variallen environment
. Rule[Red checks that the proce$sunder the recursion has the same linear environmeas
the recursion variablX.

Further examples of typing and typable processes can be faal].

Finally, we call the typing judgemefit- P>A coherentf co(A).

3.3. Type soundness.We proceed with the proof of a subject reduction theorem ¢avghe sound-
ness of the typing system.

Before we state the subject reduction theorem we define theetioen semantics for local types
extended to include session environments. The reductioa session environment of a process
shows the change on the session environment after a possilletion on the process. We use the
approach from[24,17] to define session environment redaictio

Definition 3.8 (Session environment reduction)

(1) {s[p] : [a](U); T -S[a] : [p]AU); T’} — {s[p] : T-s[q] : T'}.

(2) {sp]: [al @ {li : Titicr -Sla] [Pl&{l} : T{}jes} — {sp] : T-S[a] : Ty} 1 SIkel.
(3) AUAN — AUA" if NN — A",

Note that the second rule of the session environment reduotakes the reductiofs —* A’
non-deterministic (i.e. not always confluent). The typinygtem satisfies the subject reduction
theorem[[7]:

Theorem 3.9(Subject reduction)If ' - P>A is coherent and P+ P’ thenl” - P'>A’ is coherent
with A —* A,

Proof. See AppendikA. L]

4. SYNCHRONOUSMULTIPARTY SESSIONSEMANTICS

This section presents the session typed behavioural th@osynchronous multiparty sessions. The
typed bisimulation uses a labelled transition system (LdiSenvironment tupled (A) to control
the behaviour of untyped processes. The LTS on environniintgluces a constrain that captures
accurately multiparty session interactions and lies ahtweet of the session typed semantics. The
bisimulation theory presented in this section is extenddtié next section to define a bisimulation
theory that uses a more fine-grained LTS, defined using thiti@u typing information of the
global observer.

4.1. Labelled transition system. We use the following labelg (¢, ...) to define the labelled tran-
sition system:

¢ = a@Al(s | aAl(s | slplla'v) | slpllal(a)
| slplla'(s[P]) | splla®v) | splla@! | spllg&l | T

Note that labeb[p|[q]!(S'[p’]) is subsumed in labedp][q]!(v). SymbolA denotes aole set which
is a set of roles. Labelg[A](s) anda[A](s) define the accept and request of a fresh session

GLOBALLY GOVERNED SESSION SEMANTICS 13

roles in setA, respectively. Actions on session channels are denotédthétlabelss|p][q]! (v) and
S[p|[a]?(v) for output and input of value from p to q on sessiors. Bound output values can be
shared channels or session endpoints (delegatigip)la] © | ands|p][q]&! define the select and
branch, respectively. Labelis the unobserved transition.

Dual label definition is used to define the parallel rule inldieel transition system:

Definition 4.1 (Dual Labels) We define a duality relatios between two labels which is generated
by the following axioms and synmetric ones:

splla)!(v) = sal[p] V) slpl[a]!(v) = slq][p]AV) slp][q] ®1 < s[q][pl&!

Dual labels are input and output (respectively select aaddir) on the same session channel
and on complementary roles. For examples|ff[q]!(v) ands[q][p]?(Vv), role p sends tay and role
q receives fronp.

We define the notion of complete role set, used for definingisesnitiation transition seman-
tics later:

Definition 4.2 (Complete role set)We say the role s&tis complete with respect toihn=maxA)
andA={1,2,...,n}.

A complete role set means that all global protocol participaare present in the set. For
example{1,3,4} is not complete, buf1,2,3, 4} is with respect to 4 and not complete with number
n> 4. We usefn(¢) andbn(¢) to denote a set of free and bound name¢ and setn({) =
bn(¢) Ufn(?).

Labelled transition system for processedrigure[7 defines the untyped labelled transition system.
Rules(Req and(Acc) define that process@sp|(x).P andalp|(x).P produce the accept and request
labels, respectively for a fresh sess®on rolep. Rules(Send and (Rcv) predict that processes
Slp][a]!(v); P and s[p|[q]?(x); P produce the send and receive label, respectively for valfirem
role p to roleq in sessiors. Similarly, rules(se) and(Bra) define that the select and branch labels
are observed on processs|[q] @ |;P andslp|[q]&{li : R} respectively.

The last three rules collect and synchronise the multipaatyicipants together. Rul@ccPayp
accumulates the accept participants and records themalesetA. Rule (RegPaj accumulates the
accept participants and the request participant into mié&.sNote that the request action role set
always includes the maximum role number among the partit§pa

Finally, rule (Taug checks that a role set is complete (i.e. all roles are prgsénis a new
session can be created under thaction (synchronisation). Other rules follow the usualuative
rules for therr-calculus labelled transition system.

Rule (Tau) synchronises two processes that exhibit dual labels, whiigs (Pap and (Res close
the labelled transition system under the parallel comjposdénd name restriction operators. Note
that (Pap allows the output transition to the roteeven the endpoint af is in Q. This will be
disallowed by the environment LTS defined in Figure 8 later.

Rules (Openg and (OpenN are used for name extrusion. Finally, rykepha) closes the LTS
under structural congruence.

We write=> for the reflexive and transitive closure of, :£> for the transitions:>i>:>
and=% for == if £ + T otherwise=>.

14 D. KOUZAPAS AND N. YOSHIDA

(Reg apl0P UV preplxp (aco) alpl).P Y prsip]/x
(seng sipllalt(eP Y P o(elv) (Rey sipllg200:P Y ppvyx
| &I
(se) spllgalp LT p (Bra) Slpl[q&{li : R} “PEE% g
(1) PSP Q-5Q (=r ooy P 5P bn(l)N£n(Q) =0
P|Q— (vbn()nbn(?))(P| Q) PIQ-5P|Q
(res P 5P né¢fn(0)
(vn)P 4 (vn)P
opens P o el S o # ¢ oren o Spllal(a)
pen pen
v)P FEER v ayp P
wony P=aP P00 rocra P Bp g Mp Ann =0
P40 | Py | P, A by
(ReqPa) P — A PP gally P, ANA =0, AUA not complete w.r.t magd’)
q Pl ’ P a[AuA] Pl ‘ P2
(Taug Py Ry P P gally P, ANA =0, AUA complete w.r.t maxA’)
u

Py P2 = (v's)(P]| P%)
We omit the synmetric case ¢an and conditionals.

Figure 7: Labelled transition system for processes

Typed labelled transition relation. We define the typed LTS on the basis of the untyped one. This
is realised by defining an environment labelled transitiymtesn defined in Figurg 8, which uses

the same labels defined for the untyped LTS. We w(ite\) — (I'",A") as the notation where an
environment(l",A) allows an actiorf to take place, resulting in environme(it’, A").

The intuition for this definition is that the observables @sson channels occur when the
corresponding endpoint is not present in the linear typmgrenment, and the type of an action’s
object respects the environmeffit,A). In the case when new names are created or received, the
environment(l,A) is extended according to the new name.

Rule {Req says that a reception of a messageavia possible whem’s type (G) is recorded
into I' and the resulting session environment records projectegbtiromG ({s]i] : G[i}ica). Rule
{Acc} is for the send of a message @and it is dual to the first rule. The next four rules are free
value output{Send, bound name outputopenN;, free value inpuRecvt and name inpufRecvN}.
The rest of rules are free session outpsdndg, bound session outpybpeng, and session input
{Recvg as well as selectionisel} and branching{Bra} rules. The bound session outpiipens
records a set of session typefp;i] at opened sessi®). Rule {Tau} follows the reduction rules for
linear session environment definediiB.3 (A = A’ is the case for the reduction at hidden sessions).
Note that ifA already contains destinatiogq]), the environment cannot perform the visible action,
but only the finalr-action.

GLOBALLY GOVERNED SESSION SEMANTICS 15

<m<>smmm M@)=(G) s¢don(a)
{Req} AN
(r A-{fi] : G[i}iea) (M,8) — (I,A-{di] : G[i}iea)

{Acc}

MEv:U gq] ¢ dom(A)
(F,A-slp] : [U);T) B (r a.gfp]: T)

Slq] ¢ dom(A) a¢ dom(I")
(r,A-sip]: [U T) ™ (raiu,a-sp]: T)

{send

{Openn}

FEv:U gq] ¢ dom(A)
(F.&-sp] [2U);T) 8 (78 -sfp] - T)
a¢dom(l) 9q] ¢ dom(A)
(F.A-sp] [2U):T) P (ra:u,a-sp) i T)
Sla] ¢ don(4)
(8- S[o) T -sip) : [(T):T) ILEEY (8- sip] o)
Slq] ¢ dom(A)
(r,a-slp] : [a)(7');T) 1LEF (1,4 sip] : T+ {8/ : i)
S{al, S [p') ¢ dom(4)
(r,8-sfp] : (2T T) P (A g T) T)

S[q] ¢ dom(A)
(F.A-sp] 1 [i Tihe) 9% (0 A sip] : Ti)

{Recv}

{RecvN}

{sendg

{Openg

{Recvg

{sel}

slq]%donsl[(2]&| (Bra) —— Tor A?A’{Tau}
(F,A-8p] < [q& {1 : T e) P (m AL gp] <) (F,8) — (I,4)

Figure 8: Labelled transition system for environments

The typed LTS requires that a process can perform an untyggaha and that its typing
environment(l",A) can match the actioa

Definition 4.3 (Typed transition) A typed transition relatioris a typed relatior 1 - P> A; LN

Mok PosAyif (1) PL— Poand (2)(T1,A1) — (T2,00) with T - P A

4.2. Synchronous multiparty behavioural theory. We begin with the definition of the typed rela-
tion as the binary relation over closed, coherent and typedgsses.

16 D. KOUZAPAS AND N. YOSHIDA

Definition 4.4 (Typed relation) A relation & astyped relationif it relates two closed, coherent
typed terms, written:
FrEPA ZT ERA

We often writel” - Pi>Ay Z Po Ao,
Next we define thdarb [3] with respect to the judgement:
Definition 4.5 (Barbs) We write:
o EPBA gy if P= (v &) (sp][q)!(v);R]| Q) with s¢ Sands[q] ¢ dom(A).
e -PrA,if P= (v &5 (an](x).R| Q) with a¢ & Then we writem for eithera or slp|[q].
We definel” - P>A |, if there existQ such thaP — Q andll - QA | .

The set of contexts is defined as follows:
C = — | C|P|P|C]| (vnC | ifethenCelseC | uX.C |
s(v);C | sx);C | sal;,C | &{li:Ct}ia | ax).C | a(x).C

C[P] substitutes procegafor each hole {) in contextC. We sayC|[P] is closedif £v(C[P]) = 0.

Definition 4.6 (Linear environment convergenceyVe write A; = A; if there existsA such that
A —* AandA; —* A,

We expect processes with teamebehaviour to have linear environments that converge since
they should follow the same session behaviour.

Note that the convergence condition is not related with #ue that reduction on a linear envi-
ronment is non-deterministic (see Definition]3.8) and twedir environmenta; andA, which are
non-deterministic may converge.

We define the reduction-closed congruence based on thetefiof barb and [22].

Definition 4.7 (Reduction-closed congruence typed relationZ is areduction-reduction congru-

enceif it satisfies the following conditions for eadht- Py>A1 Z Po>As:

1) A=A

2) TEP>A Imiff TEP>AS I

(3) ¢ PL — P| implies that there exist®, such thatP, — P, andl - P{>A] Z P;> A, with

N =N,

e the symmetric case.

(4) For all closed contex@ and for allA] andA, such thal” - C[Pi]>A} andl™ - C[P,]>A) then
A = A, andl - C[Py|>A] Z T = C[Po) > A,

The union of all reduction-closed congruence relationeisoded as=s.

We now define the synchronous multiparty session bisinylas the greatest fixed point on
the weak labelled transition relation for the pairs of credied processes.

Definition 4.8 (Synchronous multiparty session bisimulatio®) typed relationZ over closed pro-
cesses is a (weakynchronous multiparty session bisimulatmmoften asynchronous bisimulation
if, wheneverl - P >A1 Z P>\, it holds:

1) THPyD 5 T F P AL impliesT - Pos Ay == '+ Py A, such thal ! - P&, % Py,
(2) The symmetric case.

The maximum bisimulation exists which we calynchronous bisimilaritydenoted by~S. We
sometimes leave environments implicit, writing ePg=° Q.

Lemma4.9. If I - Pi>A1 =SPos Ay thenA; = As.

Proof. The proof uses the co-induction method and can be found ireAgig[B.].]

GLOBALLY GOVERNED SESSION SEMANTICS 17

Theorem 4.10(Soundness and completenessf = ~5.
Proof. The proof is a simplification of the proof of Theorém 3.15 inpepdix(B.5.]

Example 4.11(Synchronous multiparty bisimulation)Ve use the running example from the in-
troduction,§ 1], for a demonstration of the bisimulation semantics deyeain this section. In the
introduction we considered transition under the untypéiihge]45]. If we follow the typed labelled
transition system developed in this section we obtain asimiilteraction patterns.

Recall the definition of processes P,, P; andR, from §[1I. The linear types for these processes
are empty since they have no free session names.

FEP>0, THPosO, THP30, and TR0
wherell = a: G;-b: Gy with
Ga = 1-3:(U).2—3:(U).end
Gpb = 1—2:(U).end
We follow the untyped LTS from Figufg 7 to obtain the follogiprocesses b{acc) and(Req):

S Py — b[1)(y).sal1][3)1(v): y[2)t (); 0
LS B = B2 (y).(v[122):0 | :[2)[3)!{V);0)
Ay 311?<z> S[3)[2/2y):0
MBS R, —B[2(y).(v12]2(2); %a[2)[3]! (v); 0)

The corresponding environment transitions are defined as:
MU () g1 [3)1U); end)
MBS (1) 521 [31(U); ena)
S () &[3): [2U): [22AU); end)

We can now observe the typed transitions as follows:
r-pPeo S r o1 [31U) end
r-peo Y20 ropg2): [31U):end
P02 rp s3] [12U);[22(U); end

By (AccPaj, we have
PP ALl 1P
By (RegPa), another process combination would invoke

AL AL

If we compose the missing process in either of both procetisesole sef1,2,3} is now complete
with respect to 3, so that by synchronisatigaus we may observe:

PP |Ps— (v sa)(PL| Py | %)

18 D. KOUZAPAS AND N. YOSHIDA

Furthermore, we can also observe the corresponding typaedition, sincgl",A) can always per-
form art action:
FEPL P Pas0—TH(vsy)(P | Py PO
Now we demonstrate the intuition given §fll, i.e. the bisimulation developed in this section
cannot equat®; | P, andP; | R,. We have the following transitions:

[P | Poody —
M (v s0)(sa[1)[3]1{v); s [1][2]'{W); O | (2] [1](2); 0 | sa[2][3]!(V); 0) = Q1L
[P | RypAg —
M (v sp)(saf2][3]1(v); so[1][2]'{W); O | (2] [1] (2); a[2][3]!(v); 0) = Q21> Ao
with Ag = s,[1] @ [3]1{U);end - s4[2] : [3]1(U); end.
From this point, we can check:
M+ Q11>A0 aés M= QQDAO

due to the fact that™, Ao) =B ang

M+ Q11>A0 Sa[ﬂ(@

Sa[2[31(v)
M- Q21>Ao 7L>
The next result distinguishes the semantics of the typed/glgnce semantics developed in
this section from the untyped equivalence semantics [45].

M= Qu| PibAg-saf3] 1 [12V);[2)2(U);end ~° 0>S;[a) @ end - S3[2) : end - 5;3[3] @ end
since

(F,8) /=
for any ¢ # T with A = Ag-s3[3] : [1]?(U); [2]2(U); end (by the condition of Send in Figure(8).
However the untyped labelled transition semantics do noagthe two process€d | P, # 0

sinceQq | P4 B,

5. GLOBALLY GOVERNED BEHAVIOURAL THEORY

We introduce the semantics for globally governed behasiatneory. In the previous section, the
local typing @) is used to constrain the untyped LTS and give rise to a logad LTS. In a
multiparty distributed environment, communication fallothe global protocol, which controls both
an observed process and its observer. The local typing isuiffitient to maintain the consistency
of transitions of a process with respect to a global protoeathis section we refine the environment
LTS with aglobal environment Eo give a more fine-grained control over the LTS of the proegss
We then show a bisimulation-based reasoning techniquetvetjoates the two processgg P, and

P1 | Ry in §[1 by the governed bisimulation, which cannot be equated éptandard synchronous
typed bisimulation~* studied in the previous section.

GLOBALLY GOVERNED SESSION SEMANTICS 19

5.1. Global environments and configurations. We define aglobal environmen{E.E’,...) as a
mapping from session names to global types.

E = Es:G| 0D
We extend the projection definition on global environmeniss follows:
proj(E) = U proj(s: G)
s.GeE
whereproj(s: G) associates the projection of ty@awith session nameas follows:proj(s: G) =
{slp] : G]p | p € roles(G)}. Note thatE is a mapping from a session channel to a global type,
while " is a mapping from a shared channel to a global type.

We define a labelled reduction relation over global envirenta which corresponds fiy —
Ay defined in§[3.3. We use the labels:

A =sp—q:U | sip—q:l
to annotate reductions over global environments. We definéA) andinp(A) as:
out(s:ip—q:U) = out(sip—q:l) = p
inp(s:ip—q:U) = inp(sip—q:l) = q
and writep € £ if p € {out(¢)} U {inp(¥)}.

Definition 5.1 (Global environment reduction)We define the relatiore A, E’ as the smallest
relation generated by the following rules:

(sip—q: (UG (s:G) (nten {s:p—q:{li:Glia) > ¥ (s:G) (SelBrg

(s:G} 25 {s:G'} p,q¢A

, (IPerm)
{sip—q:(U).G} “5{sip—q:(U).G}
VI el {S: Gi} L {S: G|/} P,q ¢ A (SBPerrT) E L E/ (GEnv)
{sip—=q:{li:Glia} 2 {sip—a:{li:G}ia} E-Ep—+E

We often omit the labed by writing — for > and —* for (—*)*. Rule (Inter) is the axiom
for the input and output interaction between two partieke (8elBrg reduces on the select/branch
choice; RulegIPerm) and(SBPern) define the case where we can permute actioo be performed
underp — q if p andq are not related to the participants An Note that in our synchronous
semantics, we can permute two actions with no relevancesipdhticipating roles without changing
the interaction semantics of the entire global protocahaBji rule (GEnv) is a congruence rule over
global environments.
As a simple example of the above LTS, consider the global type

sip—q:{Up).p’—q :{li:end,lz:p — q : (Up).end}
Sincep, q,p’,q’ are pairwise distinct, we can apply the second and thirdna®btain:
sip—q:(Up).p —q :{li:endlz:p = q : (Uz).end} R PN p—q:(U1).end

Next we introduce theovernance judgementhich controls the behaviour of processes by the
global environment.

20 D. KOUZAPAS AND N. YOSHIDA

Definition 5.2 (Governance judgement)et I - P>A be coherent. We writ&, [- P>A if JE/
such thaE —* E’ andA C proj(E’).

The global environmerit records the knowledge of both the environmeXt ¢f the observed
process? and the environment of isbserver The side conditions ensure tHais coherent with\:
there existE’ reduced fronE whose projection should cover the environmenPdafinceE should
include the observer’s information together with the obsdmprocess information recorded o
The reason thé is allowed to have a few reduction steps behind the localenmentA is that the
observer has more informative global knowledge (in the fofra global type) before the moment
the session was actually reducedtavhich coincides with the projection &'.

Next we define the LTS for well-formed environment configimas.

Definition 5.3 (Environment configuration)We write (E,I,A) if 3E’ such thatE —* E’ and
A C proj(E).

The up-to reduction requirement &allows a global environmeri to configure linear envi-
ronmentsA that also differ up-to reduction. Specificaly a global eammentE configures pairs of
linear environments that type equivalent processes.

We refined the reduction relation dnin §[3.3 as a labelled reduction relation Anwhich is
used for defining a labelled transition system over envireminconfigurations:

Definition 5.4 (Linear typing labelled reduction)

(2) {slp] : [a!(U); T sl : [p]AU); T/} “2237 {sfp] : T s : T'}.

(2) {slp] : [a) & {1 : Tohicr - : [pl& 1 T/ e} =3 {slp] : T sl s T} 1 C I kel
3) AULN X5 AUATif & 2 A,

Figurd 9 defines an LTS over environment configurations #fates the LTS over environments
(.e (T,A) -5 (M7,4)) in § 1.

Each rule requires a corresponding environment transiBajure 8 in§[4.1) and a correspond-
ing labelled global environment transition in order to coha transition following the global pro-
tocol. Rule[Acc| defines the acceptance of a session initialisation by agatinew mapping: G
which matche$ in a governed environmeit. Rule[Req defines the request for a new session and
it is dual to[Acc].

The next six rules are the transition relations on sessianmfls and we assume the condition
proj(E1) 2 Az to ensure the base action of the environment matches onelabal gnvironment.
[Ouf is a rule for the output where the type of the value and theoaaif (I',A) meets those in
E. [In] is a rule for the input and dual f®uf. [ResN is a scope opening rule for a name so that
the environment can perform the corresponding ty®gof a. [Res$ is a scope opening rule for a
session channel which creates a set of mappings for the djgession channel corresponding to
the LTS of the environmen{Se| and[Bra] are the rules for select and branch, which are similar to
[Ouf and[In]. Rule[Tau defines the silent action for environment configurationsergtwe require
that reduction on global environments matches reducticthetinear typing. At the same time we
allow a silent action with no effect on the environment comfégion. Rul€]lnv] closes the labelled
transition system with respect to the global environmeribb@ environmeng; reduces tc; to
perform the observer’s actions, hence the observed proeesserform the action w.r.E;.

Hereafter we write—s for ——s.

Example 5.5(LTS for environment configuration)

GLOBALLY GOVERNED SESSION SEMANTICS 21

s¢ don(E) <,) 2 (1 a,) s¢ don(E) (F.A) 2% (r ay)

[Acc] A [Red
E,70) A E.5:6,1,0) (E,1,0) 28 (E.s:G,I,0)
(T) s[P][q]!(v> (T.0) Ei s:;H_q;u E, ou
(Ev,T,A) Y (6, 1)
(r,a0) Y (Fviun,) B STRYE, -
(Ev,T,A0) P98 (B, m v U,)
! 1 (G
(o) (a8 BFHTE o
(Ev.T,00) P (£, a2 (G),89)
1(d[p’ . sqopi Ty
(r,80) PEEED - A, gp] 'Ti}ia VielGpi=T ¢d¢dom(E) E —° E Res$
1
(Ex, T 80) PSPV (B, ¢ 6,7 0 {Spi] s Tihier)
| 1 A
(D) — sillal (D) E Y E, Sel (I',A1) "— sllalf (D) ELPRE, Bra
| &I
(Ev.T.00) P (B,) (Ev,T.00) P (B,)
(A1:A2,E1:Ez)V(A1—>A2,E1L>E2) Tai
(Ex,T,01) — (E,T,07)
E1—"E} (E},l1,01) = (E2,T2,0) iy
(Ex,T1,81) = (E2,[2,07)
Figure 9: Labelled transition system for environment cardigons
Let:

E = sip—>q:U)p—q:U)G
r = v:u
A = sp]:[ql(U)Tp
with G[p =T, G[q = Ty androles(G) = {p,q}.
Tuple (E,I",A) is an environment configuration since there exiStsuch that:

E — E’ impliesproj(E’) D A
Recall that we can write — E’ for E l> E’. Indeed we can see that:
SRR s:p—q:(U).G

proj(sip—q:(U).G) = sp|:[q]'(U);Tp-sa): [p]AV); Ty
proj(s:p—q:(U).G) > A

22 D. KOUZAPAS AND N. YOSHIDA

An environment configuration transition takes a place onrenment configuratiodE, ", A) if we
apply the condition of rul¢Out] to obtain:

sipoqi UG Y siG

) . {plla]! (V))
(F,slp]: [U):Ty) "2 (Msip] i Ty)
thus we can obtain:

(s:ip—q:{U).G,I,A) slellalv) (s:G,T,sp]: Tp)

By last result and the fact that:
E—sip—q:U)G
we use ruldinv], to obtain:

(E.1,8) Y (5.6 1 op] : Ty)

as required.

Governed reduction-closed congruencelo define the reduction-closed congruence, we first refine
the barb, which is controlled by the global withess wheresolables of a configuration are defined
with the global environment of the observer.

Definition 5.6 (Governed barb)
slq ¢ dom(A) 3JE’ such tha€ —* E' **2%" A.glp]: [q]1(U); T C proj(E)
(E,l,A-s[p] : [a]{U); T) Lspiiq

slg] ¢ dom(A) 3E’ such thaE —* E' 2% A.slp]: [ql @ {li : Ti}ias Cproj(E') kel
(E,F,A-slp] : [a] & {li : Titiel) dspiq
ac dom(lN)
(Ev rvA) \La
We write (E,T",A) | if (E,[,A) —* ([L,A' E") and(,A",E) {m.
We define the binary operatarover global environments based on the inclusion of the gynta
tree for global types. The operation is used to define thedtypkation with respect to a global

witness and the governed bisimulation. The operatisrused to relate two different, but compatible
observersg; andE,.

Definition 5.7. Let T; andT, denote local types as definediB. We writeT; C T, if the syntax tree
of Ty includes one of; as a leaf. We extend 8; C G, by definingvsfp] : T1 € proj(s: G1),3s[p| :
T, € proj(s: Gz) andTy C To. We define:EsUE, = {s: Ei(s) | Ej(s) C Ei(9),i,] € {1,2},i #
jlU{s:Ei(s),s :Ex(S) | s¢ dom(Ez),S ¢ dom(E31)}.

As an example for global types inclusion consider that:
[2U");T C [p]HU); [a]2AU"); T
As an example oE; LI Ey, let us define:
BEi = stip—q:U)p —q:{Ux)p—q:(Us)end - S:p—q: (Wo).end
E; = s;ip—q:(Us)end-s:p —q : (Wi).p—q:(W).end

GLOBALLY GOVERNED SESSION SEMANTICS 23

Then
EiUE=s1:p—q:{U)p = q :(Uz)p—q:({Us)end-s:p —q : (Wi).p—q: (Wo).end
The behavioural relation w.r.t. a global witness is definelb.
Definition 5.8 (Configuration relation) The relationZ is a configuration relationbetween two
configurationsE, I' - Py A andE,, T F P> Ay, written
EiUE, T HEP>A Z Pos Ay
if E1UE; is defined.

Proposition 5.9(Decidability).

(1) Given K and B, a problem whether . E; is defined or not is decidable and if it is defined,
the calculation of EU E, terminates.
(2) Given E, asefE’ | E—* E'} is finite.

Proof. (1)sinceT; C T, is a syntactic tree inclusion, it is reducible to a problencieck the
isomorphism between two types. This problem is decidalig [5

(2) the global LTS has one-to-one correspondence with the LT@aifal automata in_[14]
whose reachability set is finite.]

Definition 5.10 (Global configuration transition)We write E;, M, - Pi>Az BN Ex,loF P>y if
Er,[1FPisAy, M1k PisAy — To b PosAp and(Eq, M1, A1) — (Ep,2,A).

Note thatl, - P,> A, immediately holds by Definition 41.3.
The proposition below states that the configuration LT Semess the well-formedness.

Proposition 5.11(Invariants)

(1) (Ea,T,A7) LN (Ez,2,4;) implies that(Ez, IM2,A;) is an environment configuration.
(2) If I +P>Aand P—s P with co(A), then EM HP>A — E.T - P'>A andco(d).

(3) fE1, M1 FP>A N E>, > - Pr>Aythen B, > F P> As is a governance judgement.

Proof. The proof for Part 1 and Part 3 can be found in AppeihdiX B.3t Pis verified by simple
transitions usingTauy in Figure[9.co(4A") is derived by Theorein 3.9. O

The definition of the reduction-closed congruence for goaece follows. Below we define
E.,TFPrAYmif Pymand(E,T,A) Im.

Definition 5.12 (Governed reduction-closed congruencA)configuration relatiorZ is governed

reduction-closed congruendeE, - P, >A1 Z P> A, then

(1) E,;TEPipAg pifand only if E,T - Po-Ag |

(2) o PL— Py if there exists, such thaP, — P, andE, T - P >A] Z Py 1,
e the symmetric case.

(3) For all closed context, such thate, I - C[P;]>A] andE, T F C[P,| > A, thenE, T F C[P] >
N Z C[P] >4,

The union of all governed reduction-closed congruencediogigiis denoted a&g.

24 D. KOUZAPAS AND N. YOSHIDA

5.2. Globally governed bisimulation and its properties. This subsection introduces the globally
governed bisimulation relation definition and studies improperties.

Definition 5.13 (Globally governed bisimulation)A configuration relationZ is a globally gov-
erned weak bisimulatiofor governed bisimulation) if wheneveér ' - Pi>Ay Z P> Ay, it holds:

(1) E.T FPisAy —5 BT+ PLo A, implies E,T F Py Ay == E}, [+ Py A such thatE] L
E).T" =P oA Z Py A,

(2) The symmetric case.

The maximum bisimulation exists which we cgtbverned bisimilarity denoted by~3. We some-

times leave environments implicit, writing e®~3 Q.

Lemma 5.14.

(1) ~5is congruent
(2) =5 C ~3

Proof. The proof of (1) is by a case analysis on the context structlitee interesting case is the
parallel composition, which uses Proposition 5.11. Seeehpdix[B.4.

The proof uses the technique from [19] (the external actaamsbe always tested). The proof
can be found in Appendix B.5.]

Theorem 5.15(Soundness and completeness} = =3

Proof. The fact thate§C=2 comes directly from the first part of Lemrha 5.14. The proofdme
pleted using the second part of Lemma.14.]

The next theorem clarifies the relation between the locallytrolled bisimilarity~* and globally
governed bisimilarity~g.

Theorem 5.16. If for all E such that EI - Pi>Aq zs P,>As thenl - P >A; =5 P>y, Also if
MrM=-Pi>cA1 = ~S P A, then for all E, EF FP>A =~ ~g P21>A2

Proof. The proof is based on the properties that exist between de®manthe environment tuples
(,A) and the semantics of the environment configurati@g ,A). The full proof can be found in
AppendixB.6.]

To clarify the above theorem, consider the following preess

Pr = s[1[3]"(v);s2[1][2]!(W); 0 | s1[2][3]!(v); 5[2][1] AX); S2[2] [3]! (x); O

P = s[1[3]1(v);0]s[1][2]"(w);0 | s1[2][3]!(V); 2[2][1] 2(x); %2[2][3]!(x); 0
We can show tha®; ~°P,. By Theoreni 5.16, we expect that for & we haveE, - Pi>A; and
E.-RPr>AythenEH Py %3 P.. This is in fact true because the possiBl¢hat can typd?, andP,
are:

Ei = 99:1-3:U)2—3:(U)end-$:1—2:(W).2—3:(W).end

E; = 9:2-3:U).1-3:(U)end-$:1—2:(W).2—3:(W).end
and all the up-to weakening instandeé¢see LemmaBI1) dE; andE,.

To clarify the difference between® and~s, we introduce the notion of simple multiparty
processdefined in [24]. A simple process contains only a single sessb that it satisfies the
progress property as proved in_[24]. Formally a procdess simplewhen it is typable with a
type derivation where the session typing in the premise hadconclusion of each prefix rule is
restricted to at most a single session (i.e. Aty P> A which appears in a derivatiod, contains
at most one session channel in its domain, see [24]). Sirze 1B no interleaving of sessions in
simple processes, the difference betweérandzg disappears.

GLOBALLY GOVERNED SESSION SEMANTICS 25

Theorem 5.17 (Coincidence) Assume Pand B are simple. If there exists E such thatlE-
Pi>A ma PNy, thenl P >AL &5 P As.

Proof. The proof follows the fact that iP is simple and” - P>A % P/ A then 3E such that
E,T-P>A %5 P’ A to continue that i, andP, are simple and there exisissuch thate, " -
P14y 5 P>Ap thenVE B, T = Py>Ag &g Po>-A. The result then comes by applying Theofemb.16.
The details of the proof are in the Appendix B.7.]

To clarify the above theorem, consider:
P = s[1][2]2(x);s[1][3]!(x); 0 [s[2][1]!(v); 0
P = ¢g1][3]!(v);0
It holds that for
E=s:2—1:(U).1—3:(U).end
We can easily reason that+ P, za P, henceP; =5 P..

Example 5.18(Governed bisimulation)Recall the example frorfi[dl and Examplé 4.11Q; is the
process corresponding to a sequential thread (this camesptoP; | P, in § [I)), while Q, has a
parallel thread instead of the sequential compositiors @¢hrresponds t8; | R, in §[1).

Qi = (v)(sa[l][3]1(v); [1][2]!(W); 0 | $[2][1]7(x); 0 | 5a[2][3]!(V); 0)
Q2 = (v)(sall][3]1(v); %[1][2]!(W); 0 | $[2][1]7(x); %a[2][3]!(v); 0)
Assume:
I = a:Gaz-b:Gy
Ny = s[1]:[3]Y(S);end-x1[2] : [3]1{S);end
Then we havé - Q;>Ag andl’ - Q2 >Ag. Now assume the two global witnesses as:
Ei = %:1—53:(9.2—3:(S.end
Ex = %:2—-3:(9.1—-3:(S.end
Then the projection dE; andE; is given as:
proj(E1) sa[1] : [31{S);end - sa[2] : [3]1(S);end - s4[3] : [LAS);[2]?(S); end
proj(Ep) sa[1] : [3]1(S);end- sa[2] : [3]1(S);end - s[3] : [2]A(S); [1](S); end
with Ag C proj(Ez) andAg C proj(Ez). The reader should note that the difference betvigesnd
E; is the type of the participant 3 af (the third mapping irE; andEy).
By definition of the global environment configuration, we eerite:
Ei,+ Q11>A0 andEi,F F Q21>A0 fori = 1,2.
Both processes are well-formed global configurations ubd#r witnesses. Now we can observe

M Qo ™ 24Y reqleay

but
sa[2][3](v)
M= QQDAO 7L>
Hencel - Q1>Ag #° Qo> Ag as detailed in Example 4.111.
Similarly, we have:

Ez,[- Qu>A0 %5 Q2> Ao
becausés; allows to output actios,[2][3]! (v) by [Ouf in Figurel9 (sincee; =20FS E)).

26 D. KOUZAPAS AND N. YOSHIDA

Coom) ()
{ {

Sz[i][ad!(fd)a \ Sz[i][ad!(fd); \ \
\ Sia][u]!(pd1>a\ \ \ sifa1][d]! (pd1) >\
| splaq][1]! (ack) | | | splaq][i]!(ack) | \ \
1 sl[inui‘!<pd2> >1 1 SQ[i][a‘E]!<rd> 4 }
| | | L Sloliacy eeltpdy

Usecése 1 ‘ ‘ ‘ ‘
Usecase 2
ey | [gem, |
sz[i][ad!(fd)al l
\ so[i][ab]!(rd))\ \
| ST,
‘ | sl[az][u]!<pdz>a
Solas] [(ack | |
\< Slaz][1]!(ack | |
\ \ \ \
‘ " Usecase 3 ‘

Figure 10: Three usecases from UC.R2.13 “Acquire Data Fremmument” in[[1]

On the other hand, sind& forcesto wait for s3[2][3]!(V),

Sa[2][3]1(v)
El, M- Q11>A0 7L>

because we cannot appl@ut in Figure[9. E; does not allow to output actios[2][3]!{v) (since

E: Y2799). HenceQ; andQ, are bisimilar undeEy, i.e.Eq, I - Q1A ~§ Q21> Ao. This concludes

the optimisation illustrated iRl is correct.

6. USecASE UC.R2.13 “ACQUIRE DATA FROM INSTRUMENT’ FROM THE OCEAN
OBSERVATORIESINITIATIVE (OOI) [1]

The running example for the thread transformation in theviptess sections is the minimum to
demonstrate a difference betweef) and~°. This discipline can be applied to general situations
where multiple agents need to interact following a globacsjication. Our governance bisimu-
lation can be useful in other large applications, for examjtlcan be applied to the optimisation
and verification of distributed systems, and the correstrméservice communication. In this sec-
tion, we present a reasoning example based on the real weelchse, UC.R2.13 “Acquire Data
From Instrument”, from the Ocean Observatories Initia{i@®©l) [1], and show the optimisation
and verification of network services.

In this usecase, we assume a user progidmiiich is connected to the Integrated Observatory
Network (ION). The ION provides the interface between usgiremote sensing instruments. The
user requests, via the ION agent servidgs the acquisition of processed data from an instrument
(1). More specifically the user requests from the ION two défdrformats of the instrument data.

GLOBALLY GOVERNED SESSION SEMANTICS 27

In the above usecase we distinguish two points of commuaitabordination: i) an internal ION
multiparty communication and ii) an external communicati@tween ION instruments and agents
and the user. In other words it is natural to require theatan of two multiparty session types
to coordinate the services and clients involved in the usecda he behaviour of the multiparty
session connection between the Ud@r dnd ION is dependent on the implementation and the
synchronisation of the internal ION session.

Below we present three possible implementation scenaridscampare their behaviour with
respect to the user program. Depending on the ION requiressmescan choose the best implemen-
tation with the correct behaviour.

6.1. Usecase Scenario 1ln the first scenario (depicted in Usecase 1 in Figufe 10)$ke program
(U) wants to acquire the first format of data from the instrun{&htind at the same time acquire the
second format of the data from an agent servige The communication between the agetjtgnd
the instrument happens internally in the ION on a separatatprsession.

(1) A new session connecti@i is established between)((I) and @).
(2) A new session connectiaa is established between)(and ().

(3) (1) sends raw data through to (4).

(4) (A) sends processed data (format 1) throegto (U).

(5) (a) sends the acknowledgement throwgtto (T).

(6) (1) sends processed data (format 2) throegto (U).

The above scenario is implemented as follows:
lo|AJU
where

lo = a[i0](s1).b[10](s2).%[10][as]!(rd); Sp[10][a1]2A(X); S1[10] [u]!(pd); O
A = alai](s1).blai](s2).52[a1][10]2(X); s1[a1][u]! (pd); S2[a1][10]! (ack); 0
U = aluf(s1)-s1fu]fas]AX);s1[u][10]2(y); 0

andio is the instrument roleg, is the agent role and s the user role.

6.2. Usecase scenario 2Use case scenario 1 implementation requires from the mstnti pro-
gram to process raw data in a particular format (format 2ptee$ending them to the user program.
In a more modular and fine-grain implementation, the inseminprogram should only send raw
data to the ION interface for processing and forwarding s uker. A separate session between
the instrument and the ION interface and a separate sessiaedn the ION interface and the user
make a distinction into different logical and processingls.

To capture the above implementation we assume a scenapict@lkin Usecase 2 in Figure]10)
with the user progranijj, the instrumentX) and agentsi;) and @,):

(1) A new session connectimi is established between)((A1) and @»,).
(2) A new session connectima is established betweeny(), (A2) and ().
(3) (1) sends raw data through to (A1).

(4) (A1) sends processed data (format 1) throggto (U).

(5) (A1) sends the acknowledgement throwgtio (I).

(6) (1) sends raw data through to (Ao).

(7) (A2) sends processed data (format 2) throsgto (U).

(8) (A2) sends the acknowledgement throwgtio (I).

28 D. KOUZAPAS AND N. YOSHIDA

The above scenario is implemented as follows:

1AL Az |U
where
i = Db[i](s)-[i][a1]!(rd); sp[1][as]AX); S2[1] [a2]! (rd); s2[1][a1] 2(x); 0
Ar = alai)(s1)-blas)(s)-Solas][1]2(x); 1 [as][u]! (pd); Splas][1]! (ack); 0
Ar = alas)(s1) blaz)(s)-S2las][]2(x); 1 [az] [u]! (pd); Splaz][1]! (ack); O
U = alul(s)-si[ulfa:]2X);s1[ulfaz]2y); 0

andi is the instrument roleg; anda, are the agent roles andis the user role. Furthermore, for
sessiors; we let roleio (from scenario 1) as,, since we maintain the sessisnas it is defined in
the scenario 1.

6.3. Usecase scenario 3A step further is to enhance the performance of usecase racehd
the instrumentX) code in usecase scenario 2 can have a different impleri@ntathere raw data
is sent to both agentsi{, A») before any acknowledgement is received. ION agents carepso
data in parallel resulting in an optimised implementatidhis scenario is depicted in Usecase 3 in
Figure[10.

(1) A new session connecti@a is established between)((A1) and @5,).

(2) A new session connectiaa is established betweeny(), (A2) and).

(3) (1) sends raw data through to (A1).

(4) (1) sends raw data through to (A»).

(5) (A1) sends processed data (format 1) throsgto (U).

(6) (A1) sends acknowledgement througphto (I).

(7) (A2) sends processed data (format 2) throggto (U).

(8) (A2) sends acknowledgement througpto (I).

The process is now refined as
2| AL Az |U
where
2 = Dli](se).Seli][as]! (ra); Spli][as]! (ra); Spli][as] AX); S2[1][a1]2(X); 0

andi implements the instrument role; anda, are the agent roles ands the user role.

6.4. Bisimulations. The main concern of the three scenarios is to implement tiegiated Ocean
Network interface respecting the multiparty communiaagiootocols.
Having the user process as the observer we can see that tyqueEbges:

FI—I0|A>A0 and FI—I1|A1|A2>A1

are bisimilar (using=®) since in both process we observe the following transitelations (recall
thatio = a2) .

[F 1o | Abfg 250 T, silaallited) safiolfel(pa)

and

M| A | Ao A als|(212) s [al][_u]'><pd) Sl[az]ﬂ><pd>

GLOBALLY GOVERNED SESSION SEMANTICS 29

Next we give the bisimulation closure. Let:

als

(a1,a2)

MHlg| AxDg AN\ M P>Agy LN M PysAgy
L TEPAg MY b A,
T s1[10][u]! (pd)
—

r|—P5l>Ao5 — rl—PGDAOG

FI—I1|A1|A2>A1 a[_.) FI—Q1>A11 L} FI—Q2>A12

s THQspAz ST THQnAug
L} rI—QSDA15 —T> r|_Q6[>A16
51[32“_11]!><Pd> M- PsAy LN I+~ Qg>Asg

The bisimulation closure is:
X = {(I’ - |0 ‘ ADAo,r - |1 ‘ A]_ ’ A2[>A1), (F - P1>A01,I' [Q1[>A11)
(F - P2>A02,F [Q21>A12), (F [P3>A03,I' - Q3[>A13)
(F F P4[>Ao4,r F Q4[>A14), (F F P5>A05,I' F Q5[>A15)
(M Ps>Ags, I - Qs> Asg), (I - Ps>Ages, I F Q71>A17)
(F - P61>A06,r [Q81>A18)}

The two implementations (scenario 1 and scenario 2) are lepetyp interchangeable with re-
spect to~S.

If we proceed with the case of the scenario 3 we can see thed fyocess$ F |2 | Ay | Ao Dp
cannot be simulated (using®) by scenarios 1 and 2, since we can observe the execution:

Ml | A Apn Ay Ty En2) sillllipd)

By changing the communication ordering in the ION privatesgens, we change the commu-
nication behaviour on the external session chasnelNevertheless, the communication behaviour
remains the same if we take into account the global muligandtocol ofs; and the way it governs
the behaviour of the three usecase scenarios.

Hence we use=3. The definition of the global environment is as follows:

E = si:a; —u:(PD).ayg —u: (PD).

The global protocol governs processesA; | Az (similarly, 1o | A) andl; | A | A, to always observe

action™ L ®Y agter action™ 1 *Y for hoth processes.

Also note that the global protocol fgp is not present in the global environment, becagss
restricted. The specification and implementation of sessi@re abstracted from the behaviour of
Sessiors;.

7. RELATED AND FUTURE WORK

Session types [46, 21] have been studied over the last déoadewide range of process calculi
and programming languages, as a typed foundation for stedttcommunication programming.
Recently several works developed multiparty session tgpektheir extensions. While typed be-
havioural equivalences are one of the central topics ofrttealculus, surprisingly the typed be-
havioural semantics based on session types have been [#@esedxand focusing only on binary
(two-party) sessions.

30 D. KOUZAPAS AND N. YOSHIDA

In this section we first compare our work in a broader contexteiation with the previous
work on typed behavioural theories in thecalculus. We then discuss and compare our work with
more specific results: behavioural theories in the binasgisa types and bisimulations defined
with environments.

Typed behavioural theories in ther-calculus. An effect of types to behaviours of processes was
first studied with the 10-subtyping in_[42]. Since types camitl contexts (environments) where
processes can interact, typed equivalences usually afisesemantics than untyped semantics.
After [42], many works on typedt-calculi have investigated correctness of encodings ofvikno
concurrent and sequential calculi in order to examine séimaffects of proposed typing systems.

The type discipline closely related to session types is dlyamfi linear typing systems. The
work [26] first proposed a linearly typed barbed congruemmkraasoned a tail-call optimisation of
higher-order functions which are encoded as processeswadtie[47] had used a bisimulation of
graph-based types to prove the full abstraction of encadirighe polyadic synchronouscalculus
into the monadic synchronouscalculus. Later typed equivalences of a family of linead affine
calculi [4,[48,[5] were used to encode PCFEI[43, 33], the sintybed A-calculi with sums and
products, and system E [[18] fully abstractly (a fully abstrencoding of the\ -calculi was an open
problem in [34]). The work([49] proposed a new bisimilarityethod associated with linear type
structure and strong normalisation. It presented apjicatto reason secrecy in programming
languages. A subsequent work [23] adapted these resultpriactical direction. It proposes new
typing systems for secure higher-order and multi-thregaedramming languages. In these works,
typed properties, linearity and liveness, play a fundaalenaie in the analysis. In general, linear
types are suitable to encode “sequentiality” in the seng2%fZ].

Ouir first bisimulation~® is classified as one of linear bisimulations, capturing atomé be-
tween shared behaviours (interactions at shared namedjnaad behaviours (interactions at ses-
sion names). Hence it is coarser than the untyped semastiesExample 4.11). Contrast to these
linear bisimulations, the governance bisimulation offersre fine-grainedequivalences since the
same typable processes are observed in different ways diegemn a witness (global types). See
the last paragraph for a relationship with environmentnigations.

Behavioural theories in the binary session typeOur work in [30/ 31] develops aasynchronous
binary session typed behavioural theory with event operationsab&lled transition system is de-
fined on session type process judgements and ensures gepsuch as linearity in the presence
of asynchronous queues. We then apply the theory to vala#tensformation between threaded
and event servers based on the Lauer-Needham duality [BRfeBsoning this transformation, we
use a confluence technique developed.in [40]. We have estiabliseveral up-to techniques using
confluence and determinacy properties on reductions ordtgpssion names. These useful up-to
techniques are still applicable to our standard and godehigmulations since the up-to bisim-
ulation obtained in[[30, 31] is only concerned on the lotalctions on session hames. It is an
interesting future work to investigate the up-to techngjoeuseful axioms which are specific to the
governed bisimulation.

The work [39] proves that the proof conversions induced binadr Logic interpretation of ses-
sion types coincide with an observational equivalence astrict subset of the binary synchronous
session processes. The approach is extended to the binamghasnous and binary synchronous
polymorphic session processes(in/[16] and [8], respegtivel

The main focus of our paper multiparty session types and governed bisimulation, whose
definitions and properties crucially depend on informatidrglobal types. In the first author’s

GLOBALLY GOVERNED SESSION SEMANTICS 31

PhD thesis[[28], we studied how governed bisimulations carsystematically developed under
various semantics including three kinds of asynchronoasaséics by modularly changing the LTS
for processes, environments and global types. For goversadulations, we can reuse all of the
definitions among four semantics by only changing the camttof the LTS of global types to suit
each semantics.

Another recent work [13] gives a fully abstract encoding bfraary synchronous session typed
calculus into a linearly typedr-calculus [413 We believe the same encoding method is smoothly
applicable to~® since it is defined solely based on the projected types ¢ical kypes). However a
governed bisimulation requires a global witness, henceadlitional global information would be
required for full abstraction.

Behavioural semantics defined with environmentsThe constructions of our work are hinted by
[20] which studies typed behavioural semantics forhealculus with 10-subtyping where an LTS
for pairs of typing environments and processes is used fiimidg typed testing equivalences and
barbed congruence. On the other hand/in [20], the type amvient indexing the observational
equivalence resembles more a dictator where the refinenaanbe obtained by the fact that the
observer has only partial knowledge on the typings, thancadimator like our approach. Several
papers have developed bisimulations for the higher-ordealculus or its variants using the infor-
mation of the environments. In[44] the authors take a géa@Eroach for developing a behavioural
theory for higher order processes, both in Ahrealculus and ther-calculus. The bisimulation rela-
tions are developed in the presence of an environment kageléor higher order communication.
Congruence and compositionality of processes are restrigith respect to the environment. A
recent paper [27] uses a pair of a process and an observetddumvset for the LTS. The knowl-
edge set contains a mapping from first order values to theshigider processes, which allows a
tractable higher-order behavioural theory using the Grder LTS.

We record a choreographic type as the witness in the envigahin obtain fine-grained bisim-
ulations of multiparty processes. The highlight of ourmiglation construction is an effective use
of the semantics of global types for LTSs of processes (of] in Figure[9 and Definitioh 5.10).
Global types can guide the coordination among parallebtsayiving explicit protocols, hence itis
applicable to a semantic-preserving optimisation (cf.repke[5.18 and [6).

Future work. While it is known that it is undecidable to che&k~ Q in the full r-calculus, it

is an interesting future topic to investigate automatedrhitation-checking techniques or finite

axiomatisations for the governed bisimulations for sontesetiof multiparty session processes.
More practical future direction is incorporating with, rastly well-known subtyping of session

types [17) 13] but also advanced refinements for communpitaiptimisation (such as asynchro-

nous subtyping/[37, 36] and asynchronous distributed s{dfé#]) to seek practical applications of

governed bisimulations to, e.g. parallel algorithing [38] distributed computing [1].

REFERENCES

[1] Ocean Observatories Initiative (OOBttp://www.oceanobservatories.org/|

[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Fulladigin for PCFTCS 163:409-470, 2000.

[3] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimtibns for the asynchronous pi-calculli€s 195(2):291—-
324, 1998.

2The work [12] also uses linear types to encode binary sesgpm@s for the first and higher-ordercalculi [35], but
it does not study full abstraction results with respect telavioural equivalence or bisimulation.

http://www.oceanobservatories.org/

32 D. KOUZAPAS AND N. YOSHIDA

[4] M. Berger, K. Honda, and N. Yoshida. Sequentiality angl ihcalculus. InProc. TLCA'01 volume 2044 oLNCS
pages 29-45, 2001.

[5] M. Berger, K. Honda, and N. Yoshida. Genericity and thegiculus.Acta Inf, 42(2-3):83-141, 2005.

[6] G. Bernardi and M. Hennessy. Using higher-order cort¢rée model session typeSoRR abs/1310.6176, 2013.

[7] L. Bettini et al. Global progress in dynamically inteseed multiparty sessions. GONCUR volume 5201 of NCS
pages 418-433. Springer, 2008.

[8] L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. B@ral polymorphism and parametricity in session-based
communication. IEESOR volume 7792 of NCS pages 330-349. Springer, 2013.

[9] W3C Web Services Choreograpittp: //www.w3.org/2002/ws/chor/|

[10] T.-C. Chen and K. Honda. Specifying stateful asynchrenproperties for distributed programs.G@ONCUR vol-
ume 7454 oLLNCS pages 209-224. Springer, 2012.

[11] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Radi. Global progress in dynamically in-
terleaved multiparty sessiondvlathematical Structures in Computer SciencEb appear. Available from
http://mrg.doc.ic.ac.uk/publications.htmll

[12] O. Dardha, E. Giachino, and D. Sangiorgi. Session typeisited. InProceedings of the 14th symposium on Princi-
ples and practice of declarative programmjigPDP '12, pages 139-150, New York, NY, USA, 2012. ACM.

[13] R. Demangeon and K. Honda. Full abstraction in a sulatymecalculus with linear types. ITONCUR volume
6901 ofLNCS pages 280-296. Springer, 2011.

[14] P.-M. Deniélou and N. Yoshida. Multiparty sessiondgpneet communicating automataB8OR volume 7211 of
LNCS pages 194-213. Springer, 2012.

[15] P.-M. Deniélou, N. Yoshida, A. Bejleri, and R. Hu. Pareterised multiparty session typésgical Methods in
Computer Sciencé(4), 2012.

[16] H. DeYoung, L. Caires, F. Pfenning, and B. Toninho. CeadRction in Linear Logic as Asynchronous Session-
Typed Communication. In P. Cégielski and A. Durand, edit@SL, volume 16 ofLIPIcs, pages 228-242. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[17] S. Gay and M. Hole. Subtyping for Session Types in th€&lieulus Acta Informatica 42(2/3):191-225, 2005.

[18] J.-Y. Girard, Y. Lafont, and P. TayloRroofs and Typesvolume 7 ofCambridge Tracts in Theoretical Computer
ScienceCUP, 1989.

[19] M. HennessyA Distributed Pi-CalculusCUP, 2007.

[20] M. Hennessy and J. Rathke. Typed behavioural equieakefor processes in the presence of subtypitethemat-
ical Structures in Computer Scienck!(5):651-684, 2004.

[21] K. Honda, V. T. Vasconcelos, and M. Kubo. Language ptiiras and type disciplines for structured communication-
based programming. IESOP’98 volume 1381 o£ NCS pages 22-138. Springer, 1998.

[22] K. Honda and N. Yoshida. On reduction-based procesastos. TCS 151(2):437—-486, 1995.

[23] K. Honda and N. Yoshida. A uniform type structure forwecinformation flowTOPLAS 29(6), 2007.

[24] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asymmhious Session Types. POPL'08 pages 273-284.
ACM, 2008.

[25] J. M. E. Hyland and C. H. L. Ong. On full abstraction for P.af. & Comp, 163:285-408, 2000.

[26] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearitylahe Pi-CalculusTOPLAS 21(5):914-947, Sept. 1999.

[27] V. Koutavas and M. Hennessy. A testing theory for a higbreler cryptographic language. ESOR volume 6602
of LNCS pages 358-377, 2011.

[28] D. KouzapasA study of bisimulation theory for session typE&D thesis, Department of Computing, Imperial
College London, June 2013.

[29] D. Kouzapas and N. Yoshida. Globally governed sessomasitics. In P. R. D’Argenio and H. C. Melgratti, editors,
CONCUR volume 8052 oL NCS pages 395-409. Springer, 2013.

[30] D. Kouzapas, N. Yoshida, and K. Honda. On asynchronessisn semantics. FEMOODS/FORTEvolume 6722
of Lecture Notes in Computer Scienpages 228-243, 2011.

[31] D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynubuis eventful session semanti#SCS To appear.

[32] H.C. Lauer and R. M. Needham. On the duality of operasiygtem structureSIGOPS Oper. Syst. Re¥3(2):3-19,
1979.

[33] R. Milner. Fully abstract models of typed lambda-célciCS 4(1):1 — 22, 1977.

[34] R. Milner. Functions as processésSCS 2(2):119-141, 1992.

[35] D. Mostrous and N. Yoshida. Two session typing systemnsigher-order mobile processes. ThCA’'07, volume
4583 ofLNCS pages 321-335. Springer, 2007.

http://www.w3.org/2002/ws/chor/
http://mrg.doc.ic.ac.uk/publications.html

GLOBALLY GOVERNED SESSION SEMANTICS 33

[36] D. Mostrous and N. Yoshida. Session-based communpitatptimisation for higher-order mobile processes. In
TLCA'09, volume 5608 of NCS pages 203—-218. Springer, 2009.

[37] D. Mostrous, N. Yoshida, and K. Honda. Global principging in partially commutative asynchronous sessions.
In ESOP’09 number 5502 in LNCS. Springer, 2009.

[38] N. Ng, N. Yoshida, and K. Honda. Multiparty Session CfeSgarallel programming with message optimisation. In
TOOLS volume 7304 oL NCS pages 202—-218. Springer, 2012.

[39] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho.ekinLogical Relations for Session-Based Concurrency. In
ESOR volume 7211 o£ NCS pages 539-558. Springer, 2012.

[40] A. Philippou and D. Walker. On confluence in the pi-célsu In ICALP’97, volume 1256 ofLecture Notes in
Computer Sciencages 314—-324. Springer, 1997.

[41] B. PierceTypes and Programming Languag®alT Press, 2002.

[42] B. Pierce and D. Sangiorgi. Typing and subtyping for if®processeMSCS 6(5):409—-454, 1996.

[43] G. Plotkin. LCF considered as a programming langudgeoretical Computer Scienc®3):223 — 255, 1977.

[44] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmébiaimulations for higher-order languages.UICS pages
293-302. IEEE Computer Society, 2007.

[45] D. Sangiorgi and D. Walkemher-Calculus: a Theory of Mobile Process&sambridge University Press, 2001.

[46] K. Takeuchi, K. Honda, and M. Kubo. An Interaction-bdde&nguage and its Typing System.RARLE’'94 volume
817 of LNCS pages 398-413, 1994.

[47] N. Yoshida. Graph types for monadic mobile processesF$TTCS volume 1180 ofLNCS pages 371-386.
Springer, 1996.

[48] N. Yoshida, M. Berger, and K. Honda. Strong Normaligatin the r-Calculus.Information and Computatign
191(2004):145-202, 2004.

[49] N. Yoshida, K. Honda, and M. Berger. Linearity and bisiation. In FoSSaCs02volume 2303 ofLNCS pages
417-433. Springer, 2002.

[50] N. Yoshida and V. T. Vasconcelos. Language primitivad &pe discipline for structured communication-based
programming revisited: Two systems for higher-order ssssommunicationElectr. Notes Theor. Comput. Sci.
171(4):73-93, 2007.

APPENDIXA. PROOF FORTHEOREM[3.9

We first state a substitution lemma, used in the proof of thgestireduction theorem (Theorém13.9).
The statement is from the substitution lemma_in [7].

Lemma A.1 (Substitution)

e If M-x:SFEPrAandll-v: S then - P{v/x}>A.
o IfT-P>A-y: T thenl - P{s[p]/y}>A-sp]: T

Proof. The proof is a standard induction on the typing derivation.]
We state Subject congruence.
Lemma A.2 (Subject Congruence)letl F PicAand R =P,. Thenll - P> A.

Proof. The proof is standard and straightforward by induction. L]

A.1. Proof for Theorem[3.9.

Proof. For the subject reduction proof we apply induction on thecstire of the reduction relation.
We present the two key cases: the rest is similar with theestibpduction theorem for the commu-
nication typing system in[7].

34 D. KOUZAPAS AND N. YOSHIDA

Case: [Link]
Let:
P=alp](x1).P| ... |an](X).Pn
We apply the typing rulefviAcc], [MReq and[Cond to obtainl” - P>A with co(A). Next assume
that:

P— P =(vs)(P{s[l]/xa} | ... | Po{sIn]/xn})
From rule[Cond and Lemma Alll, we obtain:
FEPs]/x1}] ... | Po{sn]/Xn}>A-5[1] : Ty...8N]: Ty

with fco({s[1] : T1...s[n| : Ty}) (Since eacH; is a projection of (a)). We apply rule[SRes$ to
obtainl - P’ A, as required.

Case: [Comn]
Let:

P = sfp]a)!(v); Py | Sla][p]2(X); P2
and
P— P | P{v/x}
We apply typing rule$Send, [Rev] and[Cond to obtain:I" - P A with:
A=01-5p]: [a]!(U): Ty sla) : [P AV): T,
and using Lemm@aAl1 we obtain thiat- Py | Po{v/x} > A;.

From the induction hypothesis we know that(A). From the coherency & and from Proposi-
tion[3.6 we obtain:

co(fg)
([U)iTe)la = ([p]AV):Tg)[p

The latter result implies thafW); (T,[q) = 2(U); (Tq[p), which in turn implies thafl,[q = T4 [p.
From the last result and the coherency\efwe get:

co(Ar-slp] i T, -s[q] 1 Tg)
Hencel I Py | P{v/x}>A" with A" = A; - slp] : T, - s[q] : Tq, andA’ is coherent.]

APPENDIX B. PROOFS FORBISIMULATION PROPERTIES

B.1. Proof for Lemmal.9.

Proof. We use the coinductive method based on the bisimilarity diefin Assume that fof +
Pi>A; ~° P> Ay, we haved; = A,. Then by the definition of=, there existé\ such that:

A —* AandDy, —* A (B.1)
Now assume thaff - Py >2A; — Pi>A; then, I =P Ap N P;>A, and by the typed transition
definition we obtair(I", A1) —— (I, A,) and (I, A7) == (I',A). We need to show that, = A).
We prove by a case analysis on the transitién on (F,4A7) and(T,A).

Casel =T:

GLOBALLY GOVERNED SESSION SEMANTICS 35

We use the fact that's with = coincides with—s. By Theoreni 3.9, we obtain thatlif- P, >A;
andP, — P] thenl - P{>A) andA; — A7 or Ay = A
For environment\; we obtain that if” - P,>A; andP, — P} thenl - P> A% andA; —* A
From the coinductive hypothesis [n_(B.1), we obtain thatetexistsA such that:
D — N —FA
Dy —* Ny —* A
or
Dy =N —* A
Dy —* Ny —* A
as required.
Casel = alp|(s) or £ =alp|(9):

The environment tuple transition dns:

(&) 5 (MB-SpliTyeo-slg) i Ty)

Tp-...-8[q] i Tg)

(MDy) =——=— (I,0)-slp]
We set
N=A-Sp|:Ty-...-s[q) : Ty
to obtain:
Ar-gpl:Tp-...o8lgq) i Ty —* A
AS-Sp] i Tp-...-8[q): Ty —* A

by the coinductive hypothesis (B.1).

Casel = slp][q]!(V):
We know from the definition of environment transitiasy] ¢ dom(A;) ands|q] ¢ dom(A2) and thus

S[q| ¢ dom(A).
From the typed transition we know that andA, have the form:

Dy = sp]:[q]i(v);T A
Dy = slp]:[q]l{v);T A7
and from the coinductive hypothesis (B.1), there exdsts s|p] : [q]!(v); T - A” such that:
A —*F A
Ny —* A
Note that there is no reduction sfp| because|q] ¢ dom(A).
From the environment transition relation we obtain that:
A, = sp]:T-4]
A, = sp]:T-4)

The last step is to sét' = s[p] : T - A” to obtainA}] —* A" andA, —* A" as required.

Casel = s[p][q]!(s'[p']):
This case follows a similar argumentation with the céseslp|[q]! (V).

36 D. KOUZAPAS AND N. YOSHIDA

We know from the definition of environment transitiosig] ¢ dom(A;) ands|q] ¢ dom(4p), thus

Sla] ¢ dom(A).
From the typed transition we know that andA, have the form:

Dy = sfp]: [g]N(T')T -4
D = slp]: [qH(T')T 0
and from the coinductive hypothesis (B.1), there exdsts sp] : [q]!(T); T - A” such that:
A —F A
A, —* A
From the environment transition relation we obtain that:
Dy = sp]:T-4f
Dy = Spl:T-4;
The last step is to sét = slp] : T - A" to obtainA} —* A" andA, —* A, as required.

The remaining cases on session channel actions are similar.]

B.2. Weakening and strengthening. The following lemmas are essential for invariant propsrtie

Lemma B.1(Weakening) (1) If E,I" - P>Athen

e E-s:G,I+PrA.

e E=FE'-s:Gand3G suchthat{s:G'} —* {s: G} then E-s: G, - P>A.
@) If (E,[,A) -5 (E,[",A') then

e (E-s:G,IA) -5 (E-s:G,I",1)

e fE=E"-s:Gand{s: G} —* {s: G} then(E'-s: G/,I",A) N (E'-s:G,I"4N)
(3) If E,F = P11>A2 %a P2[>A2

e E-s:GTFPA %a PorAs

e fE=FE"-s:Gand{s: G} —* {s:G} thenE-s: G, - Pi>Ly =§ P> 1

Proof. We only show Part 1. Other parts are similar.

e From the governance judgement definition we have Ehat+* E’ andproj(E’) 2 A. LetE-s:
G — E’-s:G. Thenproj(E'-s: G) = proj(E’)Uproj(s: G) 2 proj(E’) 2 A.

e From the governance judgement definition we have that thest E; an G; such thatE’-s:
G —*E;-s: Gy andproj(E;-s:Gy) DA. LetE'-s: G —*E’-s: G—* E;-s: G;. Hence
the result is immediate. []

Lemma B.2(Strengthening) (1) IfE -s: G, - P>A and
o Ifs¢ fn(P)then ET - P>A
e If 3G/,Gys.t. E-s:G—*Ey-s: G —* E;-s: Gy with proj(Ey-s: G1) D A, then E-s:
G.lPsA
@) If (E-s:G,I,A) - (E'-s: G,I",4) then
o (E.F.8) 5 (E",A)
e If3G' s.t. E.s:G—*E»-s: G —* E;-s: Gy withproj(E;-s: Gy) DA, (E-s: G, T,A) LN
(E'-s: G, Q)
(3) IfE-s: G, NP>y %a Pr>As

GLOBALLY GOVERNED SESSION SEMANTICS 37

o Ifs¢ fn(P) then ET - P1>Ap =g Po> A
o If 3G’ s.it. E-s: G—*Ey-s: G —* E;-s: Gy withproj(E1-s:G1) DA E-s: G T+
P1[>A2 %S P2[>A2
Proof. We prove for part 1. Other parts are similar.

e From the governance judgement definition we havelhat: G —* E; - s: G; andproj(E; - s:
G1) =proj(E1)Uproj(s: G1) D A. Sinces¢ £n(P) thens¢ dom(A), thenproj(s: G1) NA=10.
Soproj(E1) D AandE —* Ej.

e The result is immediate from the definition of governanceggrdent.]

B.3. Configuration Transition Properties.

Lemma B.3.

o IfE "3V E then {sfp] : [q)!(U); Tp.sia) : [p2(U); Ty} C proj(E) and {slp] : Tp.sia) : Ty} €
proj(E).

o If E P73 E then {slp] : [a) @ {Ii : Tip}Sla] : [pI&{li : Tig}} < proj(E) and {sip] : TigSlq] :
qu} C proj(E')

Proof. Part 1: We apply inductive hypothesis on the structure ofiffenition ofs:p — q:U. The
base case

{s:p—q:(U).G} s {s: G}
is easy since
{slp]: (p—q:(U).G)[p,sla] : (p > q:(U).G)[q} =
{slp] : [q](U); Tp,s[q] : [p]AVU); Tq} C proj(s:p—q:(U).G)
and
{slp] : G[p,sla] : G[q} = {s[p] : Ty, s[a] : Tq} S proj(s: G)
The main induction rule concludes that:
{s:p = q :(U).G} s {s: G}
if p#£p’ andq # q' and{s: G} spqU {s: G'}. From the induction hypothesis we know that:
{slp] : [a](U); Tp,S[a] : [p]2(U); T} S proj(s:G)
{slp] : Tp,Sla] : Ty} < proj(s:G)
to conclude that:
{slp]: (p' = d': (U).G)[p,la] : (p' = q': (U).G)[q} =
{slp] : G[p,s[q] : G[q} =
{slp] : [q]{U); Tp,s[q] : [p]AU); Tg} C proj(s: G)
and
{slp]: (" —q': (U).G)[p,sld]: (p' = q': (U).G)[q} =
{slp] : G'[p,sld] : G'[q} =
{slp] : Ty, sla] : Tq} C proj(s: G')
as required.

38 D. KOUZAPAS AND N. YOSHIDA

Part 2: Similar.
Part 3: From the global configuration transition relatioref{iDition[5.10), we obtain that

14
(ElyrlaAl) — (E27r27A2)
M FPbA, -5 ToFPA,

Then from the definition of governed environment, we can stiavE,, N> - P> A is a governed
judgement: this is becaugg;, ", A) is an environment configuration, hengg),, E, — E; and
proj(E;) 2 Ao, O

Proof for Proposition 5.11.

Proof. (1) We apply induction on the definition structure of>.
Basic Step:

Case: ¢ =1a[s|(A). From rule[Acc| we obtain
(E1,T1,09) —5 (E1-5: G, 1,01 {S|pi] : S/pi }pica)
From the environment configuration definition we obtain that
JE; such thaE; —* E;, proj(E}) 24

We also obtain thatroj(s: G) 2 {s[pi] : G[pi}ica. Thus we can conclude that

E1-s:G—*E;-s:G

proj(E1-s:G) D Ar-{s[pi] : Glpi}pea
Case: ¢ =a[s|(A). Similar as above.

Case:/ = slp|[q]!(v). From rule[Out] we obtain

(E1,l,A-Sp]: [q!U);T) — (Ex,,A-S[p|:T) (B.2)
proj(E1) 2 A-sp:[qU);T (B.3)
E 7Y g (B.4)

From (B.3), we obtaiproj(E;) D A Q)N U); T -s[q] : [p]2(U); T’} and from [B.4) and
LemmdB.3, we obtain thatroj(E;) D A-{slp]: T -s[q] : T'}.

—
OR
=B

Case:¢ = slp][q]! (S [p').

(Ev,T.A-sip]: [q(TP):T) - (E2's:GT.A-sp|:T-{spi]:G[pi}) (B5)
proj(E1) 2 A-slp]:[q(Ty):T (B.6)
sp—qTy

E1 — Ex (B.7)

proj(s:G) 2 {spi|: G[pi} (B.8)

From [B.6) we obtainproj(Ei) 2 A-{s[p] : [q]"(U);T - s[q] : [p]2AVU); T’} and from [B.Y) and
LemmalB.3 we obtain thatroj(Ex) D A-{slp] : T-s[q] : T’} D A-s[p] : T. From [B.8) we ob-

tain thatproj(Ez-s: G) D A-slp] : T-{9pi] : G[pi}, as required.

The rest of the base cases are similar.

Inductive Step:

GLOBALLY GOVERNED SESSION SEMANTICS 39

The inductive rule for environment configuration[isv]. Let (E1,IM1,41) N (E2,lM2,A2). From
rule [Inv] we obtain:

E. —* E (B.9)

(Ef.T1.0) —= (Eal2.0y) (B.10)
From the inductive hypothesis we know that, frdm (B.10)réhexistsEs such thate, —* E3 and
Ay C proj(Es). Then the result is by (Bl9). O
Lemma B.4.
(1) If (E,T,A1) - (E,T",Ap) then(T, A1) —= (I, 0)
() If (E,T,Ay) -5 (E,T',) and Ay = A then(E, T, Ap) == (E/,,A})
(3) If (I', A1) LN (I'",Az) then there exists E such thd, M, A;) LN (E',T",)
(4) If (E,[,A-slp]: T,) — (E/,T,&-s[p] : T,) then(E, I, A) - (E/,T,A)

(5) If (E,T,A1) —5 (E',T,A,) then(E,T,A1-A) ¢ (E/,T, Ay - A) provided that if(E, T, A) —
(E,[,A) thent ¢/

Proof. Part 1:
The proof for part 1 is easy to be implied by a case analysib®canfiguration transition definition
with respect to environment transition definition.

Part 2:
By the case analysis ah
Casel = 1: The result is trivial.
Casel = a[p](s) or ¢ = alp(s): The result comes from a simple transition.
Casel = slp|[q]!{v): A1 = Ay impliesA; —* A andA; —* A for someA andA = A’ - Slp) :
[Q'(U);T .

Hence(E,l',A2) = (E,T,4) L as required.
Case? = slp|[q]!(S[p']): A1 = Ay impliesA; —* A andA; —* A for someA andA = A - §p] :
[q](T');T .
(E,l",Ay) = (E,T',A) s as required. The remaining cases are similar.

Part 3:
We do a case analysis @n
Cases! = 1,/ =alp|(s),/ = alp|(s): The result holds for an.
Casel = slp][q]!(v) : Ay = A} - A with AT =s[p] : [q)!(U);Tp-...-S[r] : T, ChooseE =E’-s: G
with A7 C proj(s: G) ands[q] : [p]2U); Tq € proj(s: G) andA; C proj(E). By the definition of
configuration transition relation, we obtaig, ", A) N (E,T’,A), as required.

Remaining cases are similar.

Part 4:
(E,l,A-S[p] 1 Tp) N (E',l,A-slp] : T,) implies thats[p] ¢ subj(¢). The result then follows from
the definition of configuration transition.

Part 5:
Casel =1,/ =alp|(s),/ = alp](s): The result holds by definition of the configuration transitio

Case! = slp|[q]!(U): we have that\; = A’ - sp] : [q]!(U); T andE s = glq] € A, then by
definition of weak configuration pair we hate=A"-s[q] : [p]?(U); T and(E,TI",A) SV gyt

40 D. KOUZAPAS AND N. YOSHIDA

this contradicts with the assumptidn# ¢, sos[q] ¢ A. By the definition of configuration pair
transition we obtain thgtE, [, Az - A) Spllal (V) (E,l,A2-A). Remaining cases are similar. [

B.4. Proof for Lemmal.14 (1).

Proof. Since we are dealing with closed processes, the interestisg is parallel composition. We
need to show that i, - P>A; ~3 E, I - QA then for allR such tha, I - P | R>Ag, E, T
Q|R>AgthenE,lN =P | R>Az~5 Q| R>Ay.
We define the following configuration relation.
S= {(E,TFP|RrAz E,;TFQ|R>A,) |
E,l - P>A; ~G5 Q- Ay,
VRsuch thaE,l - P | R>Az,E,T F Q| R>A4}

Before we proceed to a case analysis, we extract generétistdsetl - P>A;, I - Qe Ay, I F
R>As, =P | R>A3 - Q| R>A4 then from typing rulg§Cond we obtain

A3 = AUDs (B.11)
Ay = DNpUAs (B.12)
MNAs = 0 (B.13)
MpNAs = 0 (B.14)
We prove thaSis a bisimulation. There are three cases:

Case:1

E,l -P|RsA; — E},T - P |RsA,
with bn(¢) N fn(R) = 0.
From typed transition definition we have that:

PIR - PR (B.15)
(E,l,05) — (E,T,0%) (B.16)

Transition [B.15) and rulépPan (LTS in FigurelY) imply:
p 5 P (B.17)

From [B.11), transition[(B.16) can be written @s,",A; U As) N (E1,T,A] UAs), to conclude
from part 4 of LemmaBl4, that:

(E.N.0) — (B0 (B.18)

subj({) ¢ dom(As) (B.19)

Transitions [(B.1l7) and (B.18) impl§,I - P>A; LN Ei.T F P'>A). From the definition of seb
we obtainE, I - Qb Ay == EL.T + Qo).
From the typed transition definition we have that:

Q == q (B.20)

(E,T,0p) == (EbT,Ap) (B.21)

GLOBALLY GOVERNED SESSION SEMANTICS 41

From [B.19) and part 5 of LemniaB.4 we can writd, [, A, UAs) == (E}, T, A, UAs), which

implies, from [B20)E,l - Q | R>Ay4 N E,.I F Q| R>A). Furthermore, we can see that:
(E,UELTHP |ReA,, EjUELTHQ |RSAL) €S

as required, noting; L E; is defined by the definition &

Case:?2

E.NTFP|R>A3—E' P |RbAg
From the typed transition definition, we have that:

PIR — P|R (B.22)
(E.l,0g) — (E,,Af) (B.23)
From (B.22) and ruléTau), we obtain
P 5 P (B.24)
R & R (B.25)
From [B11), transition{B.23) can be writt¢B, I, A; UAs) — (E/,T, A UAY), to conclude that
(E,T,A1) -5 (E/,T,A)) (B.26)
(E,[,As) -5 (E/,T,AL) (B.27)

From [B.24) and[(B.26), we conclude thatl - P>A; LN E'.,l" - P'>A] and from [B.Z5) and
B27), we haveE, T - ReAs —— E/,T - R> A%,
From the definition of se§, we obtain thakE,l' - QrA; £ E.l - Q' >4, implies
Q & q (B.28)

(E,F,0y) == (E/,[,AY) (B.29)

From [B.25), we obtain thad | R== Q | R and(E,,A,UAs) == (E/,I,A, UAY), implies:
E,FFQ|RyA4==E'+Q |RbA,
with
(E',T-P|R>N,, E\T-Q|R>A,)ES

as required.

Case:3

EM-P|RsA; - E T PR,
This case is similar with the above cases.

42 D. KOUZAPAS AND N. YOSHIDA

B.5. Proof for Lemma5.14 (2). The proof for the completeness follows the technique whidsu
the testers in [19]. We need to adapt the testers to muligadsion types.

Definition B.5 (Definability). Let obj(¢) andsubj(¢) to denote a set of object and subject/pf
respectively. LelN be a finite set of shared names and session endpoints forgieélsé receiving
objects defined dd ::= 0 | N-s[p] | N-a. Anexternal actiorf is definableif for a set of names
N, fresh session suca,is the dual endpoint ofubj(¢) (i.e. the dual endpoint af[p|[q] is gq]),
there is aesting process N, succ /) with the property that for every proceBsandfn(P) C N,

e E;, TP/ BN Ei. I+ P'>A] implies thatE, I - T(N,succ/) | PoA —
E',l F (v bn(¢),b)(P"| sucdl][2]!(obj(£),n);0) >4

e E.l-T(N,succt) | P>A — E'.T - Q>A"andE’,l - Q>A' || succ implies for somé&;, I -
PoA; -5 El,I"FP>A7, we haveQ = (v bn(¢),b) (P’ | sucdl][2]! (obj(¢),n);0).

Hereafter we omit the environments if they are obvious framdontext.

Lemma B.6 (Definability). Every external action is definable.

Proof. The cases of the input actions and the session initialisétiocept and request) are straight-
forward [19]:
(1) T(N,succalAl(s)) =
(v b)(@[n](x).succtt); b[1](x).R [a[pa](x).b[1](X).Ry | --- | a[pm](x).b[1](X).Rm)
with p1,...,pm ¢ Aand{pa,...,pm} UA complete w.r.tn = max{pi,...,pm} UA).
(2) T(N,succsp|[q]?(v)) = slq][p]!(v);sucq1][2)!(s[q]);0
(3) T(N,succslp|[q]&l) = s(q][p] ©1;sucd1][2)!(s[q]);0
(4) T(N,succalA|(s)) = (v b)(a]pa](x).succktt); b[1](X).Ry | ... | @pm|(X).;b[1](X).Rm)
with p1,...,pm ¢ Aand{ps,...,pm} UAcomplete w.r.t. map1,...,pm} UA).
The requirements of Definitidn B.5 is verified straightfordls.
For the output cases, we use the matching operator_a§ pL9].
(5) T{N,succslp[q]!(V)) =
slal[p]2(%);
if X =V then sucdl][2]!(x,s[q]); 0 else (v b)(b[1](x).sucdl][2]!(x,s[q]);0)
(6) T(N,succslp[q]!(V)) =
slal[p]?2(%);
if X ¢ N then sucdl][2]!(x,9[q]); 0 else (v b)(b[1](X).sucd1][2]!(x,s[q]); 0)
(7) T(N,succs[p[q] &) =
slal[pl& {Ik : sucd1][2]!(s[q]); 0, li : (v b)(b[1](x).sucd1][2]!(s[a]);0) }iei\k
The requirements of Definitidn B.5 are straightforward tafyeNote that we need to have process
sucdl1][2]!(s[a]); 0 on both conditions in the if-statement since succ is a sesdiannel (seéf] in
Figurel® in§[3). L]

The next lemma follows [19, Lemma 2.38].

Lemma B.7 (Extrusion) Assume succ is fresh andZb{m} U fn(P) U £n(Q) and {m} C fn(v) C
{n}.
E,l = (vm,b)(P | sucdl1][2]!(f,s[q]);0 | |_| R)>Ap (B.30)

= (vm,b)(Q | sucdl][2]}(A,s[q]);0 | [TR)>A2 (B.31)

GLOBALLY GOVERNED SESSION SEMANTICS 43

with R = b[1](x).R then
E.I"-P>A] = QA (B.32)
Proof. Let relation
< = {(E,I'FPrALE " QrA,) |
E,l = (v b)(P | sucql][2]!(A,s[q]);0| [iR)>Ay =
(vm, b)(Q | sucd1][2]!(A,s[q]); 0| i R) >Nz}

where we assume succ is fresh and {m} U fn(P) U fn(Q). We will show that¥ is governed
reduction-closed.

Typability. We show.# is a typed relation. From the definition of, we havel\] > A,,. By using
typing rules|NRed, [SRes, [Cond, we obtain(l'" - P>A7, T’ - Q>AY) is in the typed relation. Then
we can seE’ = EUEpU {succ : 1— 2 :U.end} whereEy = {s: G} if s= m; otherwiseEy = 0 to
make.# a governed relation.

Reduction-closednesdmmediate by the assumption that succ is fresh gne /—.

Barb preserving. SupposeéE’, "' - P> A] |, with n ¢ m. Then
E,l = (vm,b)(P | sucdl][2]!(A,s[q]); 0| |'| R)>A1 dn
i

by the freshness of succ. This implied - (vm, b)(Q | sucd1][2]!(f,s[q]); 0| i Ri)>A2 In. Since
sucd1][2]!(n,s[q]); 0| ;R does not reduce, we hat#, " - QA% |}y, as required.

SupposeE’, " = P>-A) L, Then we chos@& (N, suc, /) such that
E.I'F (vm,b)(P | sucd1][2)!(A,s[a]);0 | [Ti R | sucd2][1]?(¥,x); T(N,succ,) >A] —
P'| iR [succ[1][2]!(A, s[q]); 0> A7

which implies
E,l = (vm,b)(Q| sucdl][2]!(A,slq]);0 | iR | sucd2][1]?(¥,x); T(N,sucé,£))>A) —
Q| Mi R | succ[1][2]1(, s[q]); ODA’”

which impliesE, " - Q> A5 {4y

Contextual property. The only interesting case isk’, [’ - P>A] .7 E'," - Q> A, thenE”, I
P|R>A . E",I"+Q|R>A) forall R
We compose witlD = sucd2][1]?(V,x); (R | sucé[1][2]!(Z x);0).
(_Vﬁ‘l,I!O)(F’ | sucd1][2)H(v;s[q]);0 [iR |O) =§ (vm,b)(Q|sucdl][2]!(v,s[q]);0[iR |O)
implies
(v, b)(P | R|succ[1][2]!(v,s[q]);0| [TiR) =5 (vm,b)(Q|R]succ[1][2]!(v,s[q]);0| [iR)
implies
PIR7Q|R -

44 D. KOUZAPAS AND N. YOSHIDA

We can now we prove the completness direction
We prove:

it E,7 P> =5E,M - QoA andE, [HPoA,y S EL T FPe 1, then

E,l FQrAy £ E, I+ QvA,such thal’,I" - P oAy =3 E " Q>4
The cas¢ = 1 is trivial by the definition of=3.

For the case of # 1, we use LemmaBl6 and Lemrha B.7. Since the governed witneks an

session environments do not change the proof, we omit envieats. Suppoge=g Q andP L.

We must find a matching weak transition frdpn ChooseN to contain all the free names in bdth

andQ and choose succ amdo be fresh for bott? andQ. We denote the tester @yfor convenience.
Because=j is contextual, we know | P =g T | Q. We also know

T|P—"(vbn(f),b)(P'|sucdl][2]!(obj(£),n);0)
and thereford | Q —* Q" for someQ” such that
(v bu(¢),b) (P | sucd1][2]! (obj (£),n); 0) =25 Q"
andQ” || succ. Thus by LemmaB.6, we can gt = (v bn(¢),b)(Q | sucdl][2]!(obj(¢),n);0)
whereQ N Q. Since= is included in=g, we have:
(v bn(£), b) (P’ | sucdl][2]!(obj (£),n); 0) =5 (v bn(¢),b)(Q' | sucdl][2]!(ob] (¢),n); 0)
By LemmdB.Y, we hav®’ =3 Q/, as required. O

B.6. Proof for Lemmal5.18.
Proof. We prove direction iVE,E,I" F Py >4 zg P>y thenl FPi>AL =ST - P A
If [Py — PLs A thenPy —5 PLand (T, A1) -5 (7, 4)).

From part 3 of LemmBaBl4 we choo&esuch that E,I",A;) BN (E’,l",A]). SinceVE,E,l
PL>Ay ~5 P> A it can now be implied thatE, I - Py>4Ag BN E'.l - P >A] impliesE,T -
P> Ay == E/,T F P, A, which impliesP;, == P, and (E, T, A7) == (E',T",A,).

From part 1 of Lemm@aBl4 we obta{in,A;) =N (I'",A%) impliesl - Po>Ap =5 P,>AY as required.

We prove direction if = P >A; ~5T = P,>Ay thenVE, E, T - Pr>A; %a P> As.
LetE,l - PyoAy —— PbA, then
PR -5 P (B.33)
(EN.0) — (E.F.0)) (B.34)

If [FPy>Ay — Py A) thenPy — P (T, A1) — (I, A%) andr F Pon A — Pyo .
From the last implication we obtain

P == P (B.35)

(M) == (.4 (B.36)
Ay = N (B.37)

GLOBALLY GOVERNED SESSION SEMANTICS 45

We apply part 2 of Lemma Bl.4 t6 (B.34) arid (B.37) to obtéinl™, Az) == (E',T",A,). From the
last result and{B.35), we obtaiyI" - Py Ay == E/,T + P A). O

B.7. Proof for Theorem5.17.

Proof. I - PsA —5 I - P/ A implies (T, A) — (I, &) by definition. This implies there exists
E such thatE,I",A) N (E',I"",A") by part 3 of LemmaBl4. Then by definition, lif- P>A N
I+ P'>A then3E such thae, I - P>A i> E'.,l"+P>A'. Similarly, we have ifr - P>A :£>

I+ P' >4 thendE such thaE, [- P>A N E'.I"-PrA.

SupposeP is simple. Then by definition, we can fet= (v &)(P. | P | --- | P,) whereR
contains either zero or a single session nanvehich is not used in proces$}, i # |.

Supposd - PrA. Then it is derived fronT -I'o - P >A; wherel; contains a zero or sin-
gle session name artl- Ag = Az --- Ay wherel g and Ag correspond to the environments of the

restrictionsd ands, respectively. Ifg;,I-To - R >4; and (I - o, 4) BN (I'-r,4f), then since
A contains at most only a single session, the condiEiors E’ in the premise in [Out, In, Sel,
Bra, Tau] in Figurd® is always true. Hen¢E;, I - [g,4) N (E/,I"-T4A0). From here, we
obtain for allE; such thatg;,l -ToFR>A;, if T-ToFBR>A N r"-ry - P >Al, then we have
Ei.l-TokRod — E/,T"-T) - P/>A. Similarly, for the case of - [- BbAj == - - P> AL,

Now by applying the parallel composition, we can reason foEasuch thatt —* Lj;E;, if
E.,F-PoAandl - PsA -5 TP s A, there exits - To - P4 —— 7T - P'>Al, which
impliesE, - P>A —5 E/, [F P's A, with E —* LiEj - LIE!/ = E.

By this, if P is simple and” - P>A L M P oA, for all E such thate,l' - P>A, E,TT -
P>A -5 E'I' - P> AV, Hence if there exit& such thaE,l - PoA —5 E/, " - P4, then for
all Eo, Eo,T - PoA —5 B T/ - P> . Similarly, forE,T - PeA =5 E/, T - Po 4.

Now suppose iP; andP; are simple andE such tha&, " - Py>A; wa P,>A,. From the above

result and part 2 of Lemnia B.4, # andP, are simple andlE such thate, " - P> A, ~g P> A
thenvE, E,I" - Pi>Ay a5 P2>Ap. By applying Lemma@ 5,16 we are done.]

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Synchronous Multiparty Sessions
	2.1. Syntax
	2.2. Operational semantics

	3. Typing for Synchronous Multiparty Sessions
	3.1. Global and local types
	3.2. Typing system
	3.3. Type soundness

	4. Synchronous Multiparty Session Semantics
	4.1. Labelled transition system
	4.2. Synchronous multiparty behavioural theory

	5. Globally Governed Behavioural Theory
	5.1. Global environments and configurations
	5.2. Globally governed bisimulation and its properties

	6. Usecase: UC.R2.13 ``Acquire Data From Instrument'' from the Ocean Observatories Initiative (OOI) ooi
	6.1. Usecase Scenario 1
	6.2. Usecase scenario 2
	6.3. Usecase scenario 3
	6.4. Bisimulations

	7. Related and Future Work
	References
	Appendix A. Proof for Theorem ??
	A.1. Proof for Theorem ??

	Appendix B. Proofs for Bisimulation Properties
	B.1. Proof for Lemma ??
	B.2. Weakening and strengthening
	B.3. Configuration Transition Properties
	B.4. Proof for Lemma ?? (1)
	B.5. Proof for Lemma ?? (2)
	B.6. Proof for Lemma ??
	B.7. Proof for Theorem ??

