
Logical Methods in Computer Science
Vol. 4 (4:11) 2008, pp. 1–44
www.lmcs-online.org

Submitted Jan. 17, 2008
Published Mar. 3, 2011

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS

RAJEEV ALUR a, MARCELO ARENAS b, PABLO BARCELÓ c, KOUSHA ETESSAMI d,
NEIL IMMERMAN e, AND LEONID LIBKIN f

a Department of Computer and Information Science, University of Pennsylvania
e-mail address: alur@cis.upenn.edu

b Department of Computer Science, Pontificia Universidad Católica de Chile
e-mail address: marenas@ing.puc.cl

c Department of Computer Science, Universidad de Chile
e-mail address: pbarcelo@dcc.uchile.cl

d School of Informatics, University of Edinburgh, Edinburgh
e-mail address: kousha@inf.ed.ac.uk

e Department of Computer Science,University of Massachusetts
e-mail address: immerman@cs.umass.edu

f School of Informatics, University of Edinburgh, Edinburgh
e-mail address: libkin@inf.ed.ac.uk

Revision Note. This is a revised and corrected version of the article originally published
on November 25, 2008.

Abstract. Nested words are a structured model of execution paths in procedural pro-
grams, reflecting their call and return nesting structure. Finite nested words also capture
the structure of parse trees and other tree-structured data, such as XML.

We provide new temporal logics for finite and infinite nested words, which are natural
extensions of LTL, and prove that these logics are first-order expressively-complete. One
of them is based on adding a “within” modality, evaluating a formula on a subword, to
a logic CaRet previously studied in the context of verifying properties of recursive state
machines (RSMs). The other logic, NWTL, is based on the notion of a summary path
that uses both the linear and nesting structures. For NWTL we show that satisfiability
is EXPTIME-complete, and that model-checking can be done in time polynomial in the
size of the RSM model and exponential in the size of the NWTL formula (and is also
EXPTIME-complete).

Finally, we prove that first-order logic over nested words has the three-variable property,
and we present a temporal logic for nested words which is complete for the two-variable
fragment of first-order.

1998 ACM Subject Classification: F.1.1, F.3.1, F.4.1.
Key words and phrases: Nested Word, Temporal Logic, First-Order Expressive Completeness, Three-

Variable Property, Nested Word Automata, Model Checking.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (4:11) 2008

c© R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

1. Introduction

An execution of a procedural program can reveal not just a linear sequence of program
states encountered during the execution, but also the correspondence between each point
during the execution at which a procedure is called and the point when we return from
that procedure call. This leads naturally to the notion of a finite or infinite nested word
(see [4, 3, 2]). A nested word is simply a finite or ω-word supplied with an additional
binary matching relation which relates corresponding call and return points (and of course
satisfies “well-bracketing” properties). Finite nested words offer an alternative way to view
any data which has both a sequential string structure as well as a tree-like hierarchical
structure. Examples of such data are XML documents and parse trees.

Pushdown systems (PDSs), Boolean Programs, and Recursive State Machines (RSMs),
are equivalent abstract models of procedural programs, with finite data abstraction but
unbounded call stack. Software model checking technology is by now thoroughly developed
for checking ω-regular properties of runs for these models, when the runs are viewed as
ordinary words (see [5, 8, 1]). Unfortunately, temporal logic and ω-regular properties over
ordinary words are inadequate for expressing a variety of properties of program executions
that are useful in interprocedural program analysis and software verification. These include
Hoare-like pre/post conditions on procedures, stack inspection properties, and other useful
program analysis properties that go well beyond ω-regular (see [2] for some examples). On
the other hand, many such program analysis properties can easily be expressed when runs
are viewed as nested words. Runs of Boolean Programs and RSMs can naturally be viewed
as nested words once we add “summary edges” between matching calls and returns, and we
can thus hope to extend model checking technology for procedural programs using richer
temporal logics over nested words which remain tractable for analysis.

These considerations motivated the definition of Visibly Pushdown Languages (VPLs)
[3] and the call-return temporal logic CaRet [2]. CaRet is a temporal logic over nested
words1 which extends LTL with new temporal operators that allow for navigation through
a nested word both via its ordinary sequential structure, as well as its matching call-return
summary structure. The standard LTL model checking algorithms for RSMs and PDSs
can be extended to allow model checking of CaRet, with essentially the same complexity
[2]. VPLs [3] are a richer class of languages that capture MSO-definable properties of
nested words. Recently, results about VPLs have been recast in light of nested words, and
in particular in terms of Nested Word Automata [4] which offer a machine acceptor for
(ω-)regular nested words, with all the expected closure properties.

Over ordinary words, LTL has long been considered the temporal logic of choice for
program verification, not only because its temporal operators offer the right abstraction for
reasoning about events over time, but because it provides a good balance between expres-
siveness (first-order complete), conciseness (can be exponentially more succinct compared
to automata), and the complexity of model-checking (linear time in the size of the finite
transition system, and PSPACE in the size of the temporal formula).

This raises the question: What is the right temporal logic for nested words?
The question obviously need not have a unique answer, particularly since nested words

can arise in various application domains: for example, program verification, as we already
discussed, or navigation and querying XML documents under “sequential” representation
(see, e.g., [28]). However, it is reasonable to hope that any good temporal logic for nested

1Although the “nested word” terminology was not yet used in that paper.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 3

words should possess the same basic qualities that make LTL a good logic for ordinary
words, namely:

(1) first-order expressive completeness: LTL has the same expressive power as first-order
logic over words, and we would want the same over nested words (of course, even
more expressiveness, such as full MSO, would be nice but natural temporal logics are
subsumed by first order logic and any further expressiveness typically comes at a cost,
even over words, of some other desirable properties);

(2) reasonable complexity for model checking and satisfiability; and
(3) nice closure properties: LTL is closed under boolean combinations including negation

without any blow-up, and we would want the same for a logic over nested words.
Finally (and perhaps least easy to quantify), we want

(4) natural temporal operators with simple and intuitive semantics.

Unfortunately, the logic CaRet appears to be deficient with respect to some of these
criteria: although it is easily first-order expressible, it is believed to be incomplete but prov-
ing incompleteness appears to be difficult. CaRet can express program path properties (for
example, every lock operation is eventually followed by an unlock operation) and local path
properties (for example, if a procedure executes a lock operation then the same procedure
later executes an unlock operation before returning), but it seems incapable of expressing
scope-bounded path properties (for example, every lock operation in a procedure is even-
tually followed by an unlock operation before the procedure returns). Such scope-bounded
path properties are natural program requirements, and are expressible in the first-order
logic of nested words. There is much related work in the XML community on logics for
trees (see, e.g., surveys [15, 16, 29]), but they tend to have different kinds of deficiencies for
our purposes: they concentrate on the hierarchical structure of the data and largely ignore
its linear structure; also, they are designed for finite trees.

We introduce and study new temporal logics over nested words. The main logic we
consider, Nested Word Temporal Logic (NWTL) extends LTL with both a future and past
variant of the standard Until operator, which is interpreted over summary paths rather
than the ordinary linear sequence of positions. A summary path is the unique shortest
directed path one can take between a position in a run and some future position, if one is
allowed to use both successor edges and matching call-return summary edges. We show that
NWTL possesses all the desirable properties we want from a temporal logic on nested words.
In particular, it is both first-order expressively complete and has good model checking
complexity. Indeed we provide a tableaux construction which translates an NWTL formula
into a Nested Word Automaton, enabling the standard automata theoretic approach to
model checking of Boolean Programs and RSMs with complexity that is polynomial in the
size the model and EXPTIME in the size of the formula (and indeed EXPTIME-complete).

We then explore some alternative temporal logics, which extend variants of CaRet with
variants of unary “Within” operators proposed in [2], and we show that these extensions are
also FO-complete. However, we observe that the model checking and satisfiability problems
for these logics are 2EXPTIME-complete. These logics are – provably – more concise than
NWTL, but we pay for conciseness with added complexity.

It follows from our proof of FO-completeness for NWTL that over nested words, every
first-order formula with one free variable can be expressed using only 3 variables. More
generally, we show, using EF games, that 3 variables suffice for expressing any first order
formula with two or fewer free variables, similarly to the case of words [13] or finite trees

4 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

[20]. Finally, we show that a natural unary temporal logic over nested words is expressively
complete for first-order logic with 2 variables, echoing a similar result known for unary
temporal logic over ordinary words [9].

Related Work. VPLs and nested words were introduced in [3, 4]. The logic CaRet was
defined in [2] with the goal of expressing and checking some natural non-regular program
specifications. The theory of VPLs and CaRet has been recast in light of nested words in
[4]. Other aspects of nested words (automata characterizations, games, model-checking)
were further studied in [1, 4, 2, 17]. It was also observed that nested words are closely
related to a sequential, or “event-based” API for XML known as SAX [25] (as opposed to a
tree-based DOM API [7]). SAX representation is very important in streaming applications,
and questions related to recognizing classes of nested words by the usual word automata
have been addressed in [28, 6].

While finite nested words can indeed be seen as XML documents under the SAX rep-
resentation, and while much effort has been spent over the past decade on languages for
tree-structured data (see, e.g., [15, 16, 29] for surveys), adapting the logics developed for
tree-structured data is not as straightforward as it might seem, even though from the com-
plexity point of view, translations between the DOM and the SAX representations are easy
[27]. The main problem is that most such logics rely on the tree-based representation and
ignore the linear structure, making the natural navigation through nested words rather un-
natural under the tree representation. Translations between DOM and SAX are easy for
first-order properties, but verifying navigational properties expressed in first-order is neces-
sarily non-elementary even for words if one wants to keep the data complexity linear [10].
On the other hand, logics for XML tend to have good model-checking properties (at least
in the finite case), typically matching the complexity of LTL [11, 22]. We do employ such
logics (e.g., those in [19, 20, 26]) in the proof of the expressive completeness of NWTL, first
by using syntactic translations that reconcile both types of navigation, and then by com-
bining them with a composition game argument that extends the result to the infinite case,
which is not considered in the XML setting. This, however, involves a nontrivial amount of
work. Furthermore, “within” operators do not have any natural analog on trees, and the
proof for them is done by a direct composition argument on nested words.

Organization. Basic notations are given in Section 2. Section 3 defines temporal logics
on nested words, and Section 4 presents expressive completeness results. We study model-
checking in Section 5, and in Section 6 we prove the 3-variable property and present a logic
for the 2-variable fragment.

2. Notations

2.1. Nested Words. A matching on N or an interval [1, n] of N consists of a binary relation
µ and two unary relations call and ret, satisfying the following: (1) if µ(i, j) holds then
call(i) and ret(j) and i < j; (2) if µ(i, j) and µ(i, j′) hold then j = j′ and if µ(i, j) and
µ(i′, j) hold then i = i′; (3) if i ≤ j and call(i) and ret(j) then there exists i ≤ k ≤ j such
that either µ(i, k) or µ(k, j).

Let Σ be a finite alphabet. A finite nested word of length n over Σ is a tuple w̄ =
(w,µ, call, ret), where w = a1 . . . an ∈ Σ∗, and (µ, call, ret) is a matching on [1, n]. A

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 5

61 3 4 5 7 8 92 6 1 3 4 5 7 8 92

Figure 1: Sample nested words

nested ω-word is a tuple w̄ = (w,µ, call, ret), where w = a1 . . . ∈ Σω, and (µ, call, ret)
is a matching on N.

We say that a position i in a nested word w̄ is a call position if call(i) holds; a return
position if ret(i) holds; and an internal position if it is neither a call nor a return. If
µ(i, j) holds, we say that i is the matching call of j, and j is the matching return of i, and
write c(j) = i and r(i) = j. Calls without matching returns are pending calls, and returns
without matching calls are pending returns (sometimes we will alternatively refer to such
calls and returns as unmatched). A nested word is said to be well-matched if no calls or
returns are pending. Note that for well-matched nested words, the unary predicates call
and ret are uniquely specified by the relation µ.

A nested word w̄ = (w,µ, call, ret) is represented as a first-order structure

〈U , (Pa)a∈Σ , < , µ , call , ret 〉,

where U is {1, . . . , n} if w is a finite word of length n and N if w̄ is a nested ω-word; < is
the usual ordering, Pa is the set of positions labeled a, and (µ, call, ret) is the matching
relation. When we talk about first-order logic (FO) over nested words, we assume FO over
such structures (i.e. the vocabulary is that of words plus the matching relation).

For a nested word w̄, and two elements i, j of w̄, we denote by w̄[i, j] the substructure
of w̄ (i.e. a finite nested word) induced by elements ℓ such that i ≤ ℓ ≤ j. If j < i we
assume that w̄[i, j] is the empty nested word. For nested ω-words w̄, we let w̄[i,∞] denote
the substructure induced by elements l ≥ i.

When this is clear from the context, we do not distinguish references to positions in
subwords w̄[i, j] and w̄ itself, e.g., we shall often write (w̄[i, j], i) |= ϕ to mean that ϕ is true
at the first position of w̄[i, j].

Figure 1 shows two finite nested words (without the labeling with alphabet sym-
bols). Nesting edges are drawn using dashed lines. For the first word, the relation µ is
{(2, 8), (4, 7)}, the set call is {2, 4}, and the set ret is {7, 8}. For the second word, the
relation µ is {(2, 3)}, the set call is {2, 5, 7}, and the set ret is {1, 3, 4}.

Note that our definition allows a nesting edge from a position i to its linear successor,
and in that case there will be two edges from i to i+1; this is the case for positions 2 and 3 of
the second sequence. The second sequence has two pending calls and two pending returns.
Pending calls are depicted by dashed outgoing edges and pending returns are depicted by
dashed incoming edges. Note that all pending return positions in a nested word appear
before any of the pending call positions (this is enforced by condition (3) of the definition
of matchings).

2.2. Games and types. The quantifier rank (or quantifier depth) of an FO formula ϕ is
the depth of quantifier nesting in ϕ. The rank-k type of a structure M over a relational
vocabulary is the set {ϕ | M |= ϕ and the quantifier rank of ϕ is k}, where ϕ ranges over
FO sentences over the vocabulary. It is well-known that there are finitely many rank-k

6 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

types for all k, and for each rank-k type τ there is an FO sentence ϕτ such that M |= ϕτ iff
the rank-k type of M is τ . Sometimes we associate types with formulas that define them.

Many proofs in this paper make use of Ehrenfeucht-Fräıssé (EF) games, see for example
[12]. This game is played on two structures, M and M′, over the same vocabulary, by two
players, Player I and Player II. In round i Player I selects a structure, say M, and an
element ci in the domain of M; Player II responds by selecting an element ei in the domain
of M′. Player II wins in k rounds, for k ≥ 0, if {(ci, ei) | i ≤ k} defines a partial isomorphism
between M and M′. Also, if ā is an m-tuple in the domain of M and b̄ is an m-tuple in
the domain of M′, where m ≥ 0, we write (M, ā) ≡k (M′, b̄) whenever Player II wins in k
rounds no matter how Player I plays, but starting from position (ā, b̄).

We write M ≡k M′ iff M and M′ have the same rank-k type, that is for every FO
sentence ϕ of quantifier rank-k, M |= ϕ ⇔ M′ |= ϕ. It is well-known that M ≡k M′ iff
Player II has a winning strategy in the k-round Ehrenfeucht-Fräıssè game on M and M′.

In the proof of Theorem 6.1, we shall also use k-pebble games. In such a game, Player
I and Player II have access to k matching pebbles each, and each round consists of Player I
either removing, or placing, or replacing a pebble in one structure, and Player II replicating
the move in the other structure. The correspondence given by the matching pebbles should
be a partial isomorphism. If Player II can play while maintaining partial isomorphism for m
rounds, then the structures agree on all FOk sentences of quantifier rank up to m; if Player
II can play while maintaining partial isomorphism forever, then the structures agree on all
FOk sentences. (FOk is first-order logic where at most k distinct variables may occur.)

3. Temporal Logics over Nested Words

We now describe our approach to temporal logics for nested words. It is similar to the
approach taken by the logic CaRet [2]. Namely, we shall consider LTL-like logics that define
the next/previous and until/since operators for various types of paths in nested words.

All the logics will be able to refer to propositional letters, including the base unary
relations call and ret, and will be closed under all Boolean combinations. We shall write
⊤ for true and ⊥ for false. For all the logics, we shall define the notion of satisfaction with
respect to a position in a nested word: we write (w̄, i) |= ϕ to denote that the formula ϕ is
true in position i of the word w̄.

Since nested words are naturally represented as transition systems with two binary
relations – the successor and the matching relation – in all our logics we introduce next
operators © and ©µ. The semantics of those is standard: (w̄, i) |= ©ϕ iff (w̄, i + 1) |= ϕ,
(w̄, i) |= ©µϕ iff i is a call with a matching return j (i.e., µ(i, j) holds) and (w̄, j) |= ϕ.
Likewise, we shall have past operators ⊖ and ⊖µ: that is, ⊖ϕ is true in position i > 1
iff ϕ is true in position i − 1, and ⊖µϕ is true in position j if j is a return position with
matching call i and ϕ is true at i.

3.1. Paths in Nested Words. The until/since operators depend on what a path is. In
general, there are various notions of paths through a nested word. We shall consider un-
til/since operators for paths that are unambiguous: that is, for every pair of positions i and
j with i < j, there could be at most one path between them. Then, with respect to any
such given notion of a path, we have the until and since operators with the usual semantics:

• (w̄, i) |= ϕUψ iff there is a position j ≥ i and a path i = i0 < i1 < . . . < ik = j between
them such that (w̄, j) |= ψ and (w̄, ip) |= ϕ for every 0 ≤ p < k.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 7

• (w̄, i) |= ϕSψ iff there is a position j ≤ i and a path j = i0 < i1 < . . . < ik = i between
them such that (w̄, j) |= ψ and (w̄, ip) |= ϕ for every 0 < p ≤ k.

The approach of CaRet was to introduce three types of paths, based on the linear suc-
cessor (called linear paths), the call-return relation (called abstract paths), and the innermost
call relation (called call paths).

To define those, we need the notions C(i) and R(i) for each position i – these are the
innermost call within which the current action i is executed, and its corresponding return.
Formally, C(i) is the greatest matched call position j < i whose matching return is after i
(if such a call position exists), and R(i) is the least matched return position ℓ > i whose
matching call is before i.

Definition 3.1 (Linear, call and abstract paths). Given two positions i < j, a sequence
i = i0 < i1 < . . . < ik = j is

• a linear path if ip+1 = ip + 1 for all p < k;
• a call path if ip = C(ip+1) for all p < k;
• an abstract path if

ip+1 =

{

r(ip) if ip is a matched call

ip + 1 if ip is not a call and ip + 1 is not a matched return.

We shall denote until/since operators corresponding to these paths by U/S for linear paths,
Uc/Sc for call paths, and Ua/Sa for abstract paths.

Our logics will have some of the next/previous and until/since operators. Some exam-
ples are:

• When we restrict ourselves to the purely linear fragment, our operators are © and ⊖,
and U and S, i.e., precisely LTL (with past operators).

• The logic CaRet [2] has the following operators: the next operators © and ©µ; the linear
and abstract untils (i.e., U and Ua), the call since (i.e., Sc) and a previous operator ⊖c,
defined by: (w̄, i) |=⊖cϕ iff C(i) is defined and (w̄, C(i)) |= ϕ.

Another notion of a path combines both the linear and the nesting structure. It is the
shortest directed path between two positions i and j. Unlike an abstract path, it decides
when to skip a call based on position j. Basically, a summary path from i to j moves along
successor edges until it finds a call position k. If k has a matching return ℓ such that j
appears after ℓ, then the summary path skips the entire call from k to ℓ and continues from
ℓ; otherwise the path continues as a successor path. Note that every abstract path is a
summary path, but there are summary paths that are not abstract paths.

Definition 3.2. A summary path between i < j in a nested word w̄ is a sequence i = i0 <
i1 < . . . < ik = j such that for all p < k,

ip+1 =

{

r(ip) if ip is a matched call and j ≥ r(ip)

ip + 1 otherwise

The corresponding until/since operators are denoted by Uσ and Sσ.

We will also consider two special kinds of summary paths: summary-down paths are
allowed to use only call edges (from a call position, i to i+ 1 where i + 1 is not a return),
nesting edges (from a call to its matching return), and internal edges (from some i to i+ 1
where i is not a call and i + 1 is not a return), and summary-up paths are allowed to use

8 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

only return edges (from a position preceding a return to the return), nesting edges and
internal edges. (In other words, summary-down paths are summary paths with no return
edges and summary-up paths are summary paths with no call edges.)

We will use Uσ↓ and Uσ↑ to denote the corresponding until operators. A general
summary path is a concatenation of a summary-up path and summary-down path: ϕUσψ
is equivalent to ϕUσ↑(ϕUσ↓ψ).

We will also study the expressiveness of various until modalities when the logic is
extended with the within operator, which allows restriction to a subword. If ϕ is a formula,
then Wϕ is a formula, and (w̄, i) |= Wϕ iff i is a call, and (w̄[i, j], i) |= ϕ, where j = r(i) if
i is a matched call, j = |w̄| if i is an unmatched call and w̄ is finite, and j = ∞ otherwise.
In other words, Wϕ evaluates ϕ on a subword restricted to a single procedure.

To understand the various notions of paths in a nested word, let us consider the left
word shown in Figure 1 again. An abstract path uses internal and nesting edges; for
example, 〈1, 2, 8, 9〉 and 〈3, 4, 7〉 are abstract paths. Summary-down paths, in addition, can
use call edges; for example, 〈1, 2, 3, 4, 7〉 is a summary-down (but not an abstract) path.
Summary-up paths can use internal and nesting edges, and can also go along return edges;
for example, 〈3, 4, 7, 8, 9〉 is a summary-up path. A summary path is a summary-up path
followed by a summary-down path; for example, 〈3, 4, 5, 6, 7〉 in the right word of Figure 1
is a summary path (which also happens to be a linear path). Every two positions have a
unique summary path connecting them, and this is the “shortest” path in the underlying
graph between these positions.

3.2. Specifying Requirements. We now discuss how the various operators can be used
for specifying requirements for sequential structured programs. In the classical linear-time
semantics of programs, an execution of a program is modeled as a word over program states.
In the nested-word semantics, this linear structure is augmented with nesting edges from
entries to exits of program blocks. The main benefit is that using nesting edges one can skip
procedure calls entirely, and continue to trace a local path through the calling procedure. A
program is now viewed as a generator of nested words, and requirements are written using
temporal logics over nested words.

Suppose we want to express the requirement that, along a global program execution,
every write to a variable is followed by a read before the variable is written again. If wr
and rd denote the atomic propositions that capture write and read operations, respectively,
then the requirement is expressed by the until formula over linear paths,

✷ [wr → (¬ wr) U rd]

Here, ✷ is defined in the usual manner from the linear until: ✷ϕ stands for ¬(⊤U¬ϕ).
This property is clearly already expressible in LTL and does not use nesting edges at all.

Now let us review some of the properties expressible in the nested call-return logic
CaRet of [2], but not expressible in LTL. In the classical verification formalisms such as
Hoare logic, correctness of procedures is expressed using pre and post conditions. Partial
correctness of a procedure A specifies that if the pre-condition p holds when the procedure
A is invoked, then if the procedure terminates, the post-condition q is satisfied upon return.
Total correctness, in addition, requires the procedure to terminate. Assume that all calls
to the procedure A are characterized by the proposition pA. Then, the requirement

✷ [(call ∧ p ∧ pA) → ©µ q]

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 9

expresses the total correctness, while

✷ [(©µ⊤ ∧ p ∧ pA) → ©µ q]

expresses the partial correctness. Both these specifications crucially rely upon the abstract-
next operator.

The abstract path starting at a position inside a procedure A is obtained by successive
applications of internal and nesting edges, and skips over invocations of other procedures
called from A. Using the abstract versions of temporal operators, we can specify properties
of such abstract paths. For example, suppose we want to specify that if a procedure writes
to a variable, then it (that is, the same invocation of the same procedure) will later read
it and do so before writing to it again. The requirement is expressed by the until formula
over abstract paths

✷ [wr → ©(¬ wr) Ua rd]

The call since-path starting at a position inside a procedureA is obtained by successively
jumping to the innermost call positions, and encodes the active stack at that position. Stack
inspection can specify a variety of security properties. For instance, the requirement that a
procedureA should be invoked only within the context of a procedureB, with no intervening
call to an overriding module C, is expressed by the formula

✷ [call ∧ pA → (¬pC) S
c pB].

Finally, we turn to scope-bounded linear-path properties. For a procedure, the cor-
responding scope-bounded linear path is the linear path (that is, the path obtained by
following linear edges) from its call to it return. That is, a scope-bounded path correspond-
ing to a procedure P includes the executions of the procedures (transitively) called by P ,
but terminates when the current invocation of P returns. Properties about scope-bounded
paths are useful in asserting contracts for modules.

Suppose we want to assert that a procedure A, and the procedures it calls, do not
write to a variable before it returns. This is an invariant of the scope-bounded path, and is
captured by the formula:

✷ [(call ∧ pA) → W (✷ ¬ wr)]

Recall that the within operator W restricts the evaluation of a formula to a single procedure
call. The same requirement can also be captured using summary paths. It is even easier to
state it using summary-down paths:

✷ [(call ∧ pA) → ¬ (⊤ Uσ↓ wr)]

Suppose we want to specify the requirement that if a procedure writes to a variable
then it is read along the scope-bounded path before being written again. We can use the
within modality to express this property:

✷ [call → W ✷ (wr → ©(¬ wr) U rd)]

This requirement can also be alternatively specified using summary-down paths as follows:

✷ [wr → ©(¬ wr ∧ (ret → ⊖µ¬⊤Uσ↓ wr)) Uσ↓ rd]

The formula says that from every write operation, there is a read operation along some
summary-down path (and thus, within the same scope) such that along the path, there is
no write, and if the path uses a summary edge, then the enclosed subword also does not
contain a write.

10 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

It is easy to see that the above requirements concerning scope-bounded paths are speci-
fiable in the first-order logic of nested words. It is conjectured that they are not specifiable
in CaRet.

4. Expressive Completeness

In this section, we study logics that are expressively complete for FO, i.e. temporal logics
that have exactly the same power as FO formulas with one free variable over finite and
infinite nested words. In other words, for every formula ϕ of an expressively complete
temporal logic there is an FO formula ϕ′(x) such that (w̄, i) |= ϕ iff w̄ |= ϕ′(i) for every
nested word w̄ and position i in it, and conversely, for every FO formula ψ(x) there is a
temporal formula ψ′ such that w̄ |= ψ(i) iff (w̄, i) |= ψ′.

Our starting point is a logic NWTL (nested-word temporal logic) based on summary
paths introduced in the previous section. We show that this logic is expressively complete
for FO, and of course remains expressively complete with the addition of other first-order
expressible operators which may be useful for verification of properties of procedural pro-
grams. When we provide upper bounds on the complexity of model checking for NWTL,
we shall in fact show that the upper bounds hold with respect to an extension, NWTL+,
which includes a number of additional operators.

We then look at logics close to those in the verification literature, i.e., with operators
such as call and abstract until and since, and ask what needs to be added to them to get
expressive completeness. We confirm a conjecture of [2] that a within operator is sufficient.
Such an operator evaluates a formula on a nested subword. We then discuss the role of this
within operator. We show that, if added to NWTL, it does not increase expressiveness, but
makes the logic exponentially more succinct.

4.1. Expressive completeness and NWTL. The logic NWTL (nested words temporal
logic) has next and previous operators, as well as until and since with respect to summary
paths. That is, its formulas are given by:

ϕ,ϕ′ := ⊤ | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |
©ϕ | ©µϕ | ⊖ϕ | ⊖µϕ |
ϕUσϕ′ | ϕSσϕ′

where a ranges over Σ. We use abbreviations int for ¬call ∧ ¬ret (true in an internal
position). Note that in the absence of pending calls and returns, call and ret are definable
as ©µ⊤ and ⊖µ⊤, respectively.

Theorem 4.1. NWTL = FO over both finite and infinite nested words.

Proof. We start with the easy direction NWTL ⊆ FO.

Lemma 4.2. For every NWTL formula ϕ, there exists an FO formula αϕ(x) that uses at
most three variables x, y, z such that for every nested word w̄ (finite or infinite), and every
position, i in w̄, we have (w̄, i) |= ϕ iff w̄ |= αϕ(i).

Proof of Lemma 4.2. The proof is by induction on the formulas and very simple for all the
cases except Uσ and Sσ: for example,

α©µϕ
(x) = ∃y

(

µ(x, y) ∧ ∃x (x = y ∧ αϕ(x))
)

.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 11

For translating Uσ , we need a few auxiliary formulas. Our first goal is to define a
formula γr(x, z) saying that x is R(z), i.e. the return of the innermost call within which z
is executed. For that, we start with δ(y, z) = z < y ∧ ret(y)∧ ∃x (µ(x, y) ∧ x < z) saying
that y is a return that is preceded by z and whose matching call precedes z, that is, y is a
candidate for R(z). Then the formula γr(x, z) is given by

∃y (y = x ∧ δ(y, z)) ∧ ∀y (δ(y, z) → y ≥ x).

Likewise, we define γc(y, z) stating that that y equals C(z), that is, the innermost call within
which z is executed. Now define

χ1(y, z) = ∃x
(

γr(x, z) ∧ x ≤ y
)

, χ2(x, z) = ∃y
(

γc(y, z) ∧ y ≥ x
)

and χ(x, y, z) as χ1(y, z) ∧ χ2(x, z). Then this formula says that the summary path from x
to y does not pass through z, assuming x < z < y. With this, αϕUσψ(x) is given by

αψ(x) ∨ ∃y

(

y > x ∧ αϕ(x) ∧ ∃x (x = y ∧ αψ(x)) ∧

∀z
(

(x < z < y ∧ ¬χ(x, y, z)) → ∃x (x = z ∧ αϕ(x))
)

)

The proof for ϕSσψ is similar. This concludes the proof of the lemma.

In the proof of the other direction, FO ⊆ NWTL, we shall use a tree representation of
nested words. The translation is essentially the same as in [4]. For each nested word w̄ we
have a binary tree Tw̄ (i.e., its nodes are elements of {0, 1}∗) and a function ιw-t : w̄ → Tw̄
that maps each position of w̄ to a node of Tw̄ as follows:

• the first position of w̄ is mapped into the root of Tw̄;
• if s = ιw-t(i) then:
(1) if i is an internal, or an unmatched call, or a matched call whose return is the last

position of w̄, or an unmatched return, and i is not the last position of w̄, then s has
only child s · 0 and ιw-t(i+ 1) = s · 0;

(2) if i is a matched call whose return is not the last position in w̄, then s has both
children s · 0 and s · 1 and ιw-t(r(i) + 1) = s · 0, and ιw-t(i+ 1) = s · 1.

(3) if i is a matched return, then s has no children.

The Σ-labels of i and ιw-t(i) are the same. If i was a pending call, we label ιw-t(i) with
pcall, and if i was a pending return, we label ιw-t(i) with pret.

Note that ιw-t is a bijection, and that labels pcall and pret may only occur on the
leftmost branch of Tw̄. An example of a nested word and its translation are given in Fig. 2.

To relate paths in nested words and paths in their tree translations, we introduce the
notions of semi-strict and strict paths. Intuitively, a semi-strict path in a nested word
corresponds to a path on its tree translation that, in addition to following tree edges, can
jump from a node with no children to its successor in the depth-first traversal of the tree
(where depth-first starts with the right subtree and then moves to the left subtree). A strict
path is just a path that follows tree edges. These are both slight modifications of summary
paths.

More precisely, a semi-strict path between positions i and j, with i < j, in a nested
word w̄, is a sequence i = i0 < i1 < · · · < ik = j such that

ip+1 =

{

r(ip) + 1 if ip is a matched call and j > r(ip)

ip + 1 otherwise.

12 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

5
1 2 3 4 5 6

1

6 2

34

Figure 2: A nested word and its tree translation

That is, when skipping a call, instead of jumping to the matching return position, a semi-
strict path will jump to its successor.

A strict path is a semi-strict path i = i0 < i1 < i2 < · · · < ik = j in which no ip
with p < k is a matched return position. In other words, a strict path stops if it reaches a
matched return position. In particular there may be positions i < j in a nested word such
that no strict path exists between them.

For example, in Fig. 2, 〈2, 4, 5, 6〉 is a semi-strict path. Although 〈2, 4, 5, 6〉 is not a
path in the tree (we jump from 5 to 6), this is allowed under the definition of semi-strict
paths. Strict paths are exactly the paths on the tree; for example, 〈1, 2, 4, 5〉 is such a path.

The until/since operators for semi-strict paths and strict paths will be denoted by
Uσ
ss/S

σ
ss and Uσ

s /S
σ
s , respectively. Versions of NWTL in which Uσ/Sσ are replaced by

Uσ
ss/S

σ
ss (U

σ
s /S

σ
s) will be denoted by NWTLss (NWTLs).

We will use mret for ret ∧ ⊖µ⊤, and mcall for call ∧ ©µ⊤, to capture matching
return and call positions, respectively.

The proof is based on two lemmas.

Lemma 4.3. NWTLs ⊆ NWTLss ⊆ NWTL.

Lemma 4.4. FO ⊆ NWTLs.

This of course implies the theorem: NWTL ⊆ FO ⊆ NWTLs ⊆ NWTLss ⊆ NWTL.
Note that as a corollary we also obtain NWTLs = NWTLss = FO.

Proof of Lemma 4.3. For translating an NWTLs formula ϕ into an equivalent formula αϕ
of NWTLss we need to express ψUσ

s θ with Uσ
ss, which is simply (αψ ∧ ¬mret)Uσ

ssαθ, and
likewise for the since operators. For translating each NWTLss formula ϕ into an equivalent
NWTL formula βϕ, again we need to consider only the case of until/since operators. The

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 13

formula ψUσ
ssθ is translated into

βθ ∨

(

βψ ∧

((

(βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → (©µ©βψ ∨©µ©βθ))

)

Uσ

(

(βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ ∨©(¬ret ∧ γ)))

)))

, (4.1)

where γ is a formula defined as follows:
(

(βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → (©βψ ∨©µ©βψ)) ∧ (©ret → call)

)

Uσ

(

(βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ))

)

The idea is that we split a semi-strict path into a semi-strict up path (where call edges
are excluded) followed by a semi-strict down path (where return edges are excluded). The
first Until in (4.1) captures the semi-strict up path and the second Until in γ captures the
semi-strict down path. The translation for Sσss is similar.

The proof that the translation is correct is a rather detailed case analysis which we
have relegated to the appendix.

Proof of Lemma 4.4. We start with the finite case, and then show how the inclusion extends
to nested ω-words.

As a tool we shall need a slight modification of a result from [26, 19] providing an
expressively complete temporal logic for trees with at most binary branching. We consider
binary trees whose domain D is a prefix-closed subset of {0, 1}∗, and we impose a condition
that if s · 1 ∈ D then s · 0 ∈ D. When we refer to FO on trees, we assume they have two
successor relations S0, S1 and the descendant relation � (which is just the prefix relation
on strings) plus the labeling predicates, which include two new labels pcall and pret (for
pending calls and returns). Each node can be labeled by either a letter from Σ, or by a
letter from Σ and pcall, or by a letter from Σ and pret (i.e. labels pcall and pret need
not be disjoint from other labels).

We also consider the following logic TLtree:

ϕ := a | ϕ ∨ ϕ | ¬ϕ |
©↓ϕ | ©↑ϕ | ©→ϕ | ©←ϕ |
ϕU↓ϕ | ϕS↓ϕ

where a ranges over Σ ∪ {pcall, pret}, with the following semantics:

• (T, s) |= ©↓ϕ iff (T, s · i) |= ϕ for some i ∈ {0, 1};
• (T, s · i) |= ©↑ϕ iff (T, s) |= ϕ (where i is either 0 or 1);
• (T, s · 0) |= ©→ϕ iff (T, s · 1) |= ϕ;
• (T, s · 1) |= ©←ϕ iff (T, s · 0) |= ϕ;
• (T, s) |= ϕU↓ψ iff there exists s′ such that s � s′, (T, s′) |= ψ, and (T, s′′) |= ϕ for all s′′

such that s � s′′ ≺ s′;
• (T, s) |= ϕS↓ψ iff there exists s′ such that s′ � s, (T, s′) |= ψ, and (T, s′′) |= ϕ for all s′′

such that s′ ≺ s′′ � s.

Lemma 4.5. (see [19]) For unary queries over finite binary trees, TLtree = FO.

This lemma is an immediate corollary of expressive completeness of logic Xuntil from [19]
on ordered unranked trees, as for a fixed number of siblings, the until and since operators

14 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

can be expressed in terms of the next and previous operators. The result of [19] applies to
arbitrary alphabets, and thus in particular to our labeling that may use pcall and pret.

The following is immediate by using the tree representation of nested words and a
straightforward translation of formulae.

Claim 4.6. For every FO formula ϕ(x) over nested words there is an FO formula ϕ′(x)
over trees such that for every nested word w̄ and a position i in it, we have w̄ |= ϕ(i) iff
Tw̄ |= ϕ′(ιw-t(i)).

In fact the converse, that FO over trees Tw̄ can be translated into FO over nested words,
is true too, but we do not need it in this proof.

Since FO = TLtree by Lemma 4.5, all that remains to prove is the following claim.

Claim 4.7. For every TLtree formula ϕ, there exists an NWTLs formula ϕ◦ such that for
every nested word w̄ and every position i in it, we have

(w̄, i) |= ϕ◦ ⇔ (Tw̄, ιw-t(i)) |= ϕ.

This is now done by induction, omitting the obvious cases of propositional letters and
Boolean connectives. We note that a path down the tree from ιw-t(i) to ιw-t(j) corresponds
precisely to the strict path from i to j (that is, if such a strict path is i = i0, i1, . . . , ik = j,
then ιw-t(i0), ιw-t(i1), . . . , ιw-t(ik) is the path from ιw-t(i) to ιw-t(j) in Tw̄). Hence, the
translations of until and since operators are:

(ϕU↓ψ)
◦ = ϕ◦Uσ

sψ
◦, (ϕS↓ψ)

◦ = ϕ◦Sσsψ
◦.

For translating next and previous operators, and pending calls/returns, define:

mcall ≡ ©µ⊤ (true in a matched call position);

mret ≡ ⊖µ⊤ (true in a matched return position).

Then the rest of the translation is as follows:

pcall◦ ≡ call ∧ ¬mcall

pret◦ ≡ ret ∧ ¬mret

(©↓ϕ)
◦ ≡ ¬mret ∧

(

©ϕ◦ ∨ (call ∧©µ©ϕ◦)
)

(©↑ϕ)
◦ ≡

(

⊖ret ∧⊖⊖µϕ
◦
)

∨
(

⊖¬mret ∧⊖ϕ◦
)

(©→ϕ)
◦ ≡ ⊖ret ∧⊖⊖µ©ϕ◦

(©←ϕ)
◦ ≡ ⊖call ∧⊖©µ©ϕ◦

Now with the proof completed for finite nested words, we extend it to the case of nested ω-
words. Note that Claim 4.6 continues to hold, and Claim 4.7 provides a syntactic translation
that applies to both finite and infinite nested words, and thus it suffices to prove an analog
of Lemma 4.5 for trees of the form Tw̄, where w̄ ranges over nested ω-words.

If w̄ is a nested ω-word, then Tw̄ has exactly one infinite branch, which consists precisely
of all nodes of the form ιw-t(i) where i is an outer position, i.e., not inside any (matched)
call. We say that i is inside a call if there exists a call j with a matching return k such that
j < i ≤ k. If i is an outer position, then we shall call ιw-t(i) an outer node in the tree Tw̄
as well.

If i is an outer position which is not a matched call, then i+1 is also an outer position
and ιw-t(i+ 1) is the left successor of ιw-t(i). If i is an outer position and a call with j > i

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 15

being its matching return, then the left successor of ιw-t(i) on the infinite path is ιw-t(j+1).
Furthermore, the subtree tw̄(i), which has ιw-t(i) as the root, plus its right child, and all
the descendants of the right child, is finite and isomorphic to Tw̄[i,j] (note that w̄[i, j] has

no pending calls/returns). If i is an outer position other than a matched call, we let tw̄(i)
be a single node tree labeled with i’s label in w̄.

Let w̄ now be a nested ω-word. For each outer position i we let τ w̄m(i) be the rank-m
type of tw̄(i). If i is not a matched call, such a type is completely described by i’s label
(which consists of a label in Σ and potentially pcall or pret).

If j is not an outer position, and i is an outer position such that i < j ≤ k, where k is
the matching return of i, then τ w̄m(j) is the rank-m type of (Tw̄[i, k], ιw-t(j)) (i.e., the type
of Tw̄[i, k] with a distinguished node corresponding to j).

Next, for a nested ω-word w̄, let s be a node in Tw̄ such that s = ιw-t(i). Let i1, i2, . . .
enumerate all the outer positions of w̄, and assume that ip is such that ip ≤ i < ip+1 – that
is, ιw-t(i) is a node in the subtree tw̄(ip). We now define a finite word s←m (w̄, s) of length p−1
such that its positions 1, . . . , p−1 are labeled τ w̄m(i1), . . . , τ

w̄
m(ip−1), and an ω-word s→m (w̄, s)

such that its positions 1, 2, . . . are labeled by τ w̄m(ip+1), τ
w̄
m(ip+2), Next we show:

Claim 4.8. Let w̄, w̄′ be two nested ω-words, and s = ιw-t(i), s
′ = ιw-t(i

′) two nodes in Tw̄
and Tw̄′ such that:

(a) s←m (w̄, s) ≡m s←m (w̄′, s′);
(b) s→m (w̄, s) ≡m s→m (w̄′, s′);

(c) τ w̄m(i) = τ w̄
′

m (i′).

Then (Tw̄, s) ≡m (Tw̄′ , s′).

Proof. A standard composition argument shows that Player II wins. If i1, i2, . . . enumerate
outer positions in w̄ and ip ≤ i < ip+1, then a move by Player I, say, in Tw̄, occurs either
in tw̄(j) with j < i, or in tw̄(i), or in tw̄(j) with j > i. Player II then selects j′ so that the

response is in tw̄
′
(j′) according to his winning strategy in games either (a) or (b) (if j is in

tw̄(i), then j′ is in τ w̄
′

m (i′)), and then, since the rank-m types of tw̄(j) and the chosen tw̄
′
(j′)

are the same, selects the actual response according to the winning strategy tw̄(j) ≡m tw̄
′
(j′).

Next we show how Claim 4.8 proves that FO is expressible in TLtree over infinite trees
Tw̄. First note that being an outer node is expressible: since ©←⊤ is true in right children
of matched calls, then

αouter = ¬
(

⊤S↓(©←⊤)
)

is true if no node on the path to the root is inside a call, that is, precisely in outer nodes.
Next note that for each rank-m type τ of a tree there is a TLtree formula βτ such that

if s = ιw-t(i) is an outer node of Tw̄, then (Tw̄, s) |= βτ iff the rank-m type of tw̄(i) is τ . If
i is not a matched call, then such a type is uniquely determined by i’s label and perhaps
pcall or pret, and thus is definable in TLtree.

If i is a matched call, the existence of such a formula βτ follows from the fact that the
rank-m type of tw̄(i) is completely determined by the label of i and the rank-m type τ ′ of
the subtree tw̄0 (i) of t

w̄(i) rooted at the right child of s (recall that the root only has a right
child, by the definition of tw̄(i)). Type τ ′ is expressible in FO and, since tw̄(i) is finite, by
Lemma 4.5 it is expressible by a TLtree formula β′′τ ′ . If we now inductively take conjunction
of every subformula in β′′τ ′ with ¬αouter, we obtain a formula β′τ ′ such that (Tw̄, s · 1) |= β′τ ′

16 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

iff tw̄0 (i) |= β′′τ ′ iff the rank-m type of tw̄0 (i) is τ ′. Hence, βτ is expressible in TLtree as a
Boolean combination of propositional letters from Σ and formulas ©↓β

′
τ ′ . Note that in this

case, βτ does not use pcall and pret.
By Claim 4.8, we need to express, for each node s = ιw-t(i), the rank-m types of s←m (w̄, s)

and s→m (w̄, s) in TLtree over Tw̄, as well as the rank-m type of τ w̄(i), in order to express
a quantifier-rank m formula, as it will be a Boolean combination of such formulas. Given
s, we need to define ιw-t(ip) – the outer position in whose scope s occurs – and then from
that point evaluate two FO formulas, defining rank-m types of words over the alphabet of
rank-m types of finite trees. By Kamp’s theorem [14], each such FO formula is equivalent
to an LTL formula whose propositional letters are rank-m types of trees.

Assume we have an LTL formula γ expressing the rank-m type τ0 of s→m (w̄, s). By
Kamp’s theorem and the separation property for LTL, it is written using only propositional
letters, Boolean connectives, © and U (that is, no ⊖ and S). We now inductively take
conjunction of each subformula of γ with ¬(©←⊤) (i.e., a TLtree formula which is true
in left successors), replace LTL connectives © and U by ©↓ and U↓, and replace each
propositional letter τ by βτ , to obtain a TLtree formula γ′. Then (Tw̄, ιw-t(ip)) |= γ′ iff
s→m (w̄, s) has type τ0. Thus, for a formula

γ′′ =
(

αouter ∧ γ
′
)

∨ ¬αouterS↓(αouter ∧ γ
′)

is true in (Tw̄, ιw-t(i)) iff the rank-m type of s→m (w̄, s) is τ0.
The proof for s←m (w̄, s) is similar. Since this word is finite, by Kamp’s theorem and

the separation property, there is an LTL formula γ that uses ⊖, S, propositional letters
and Boolean connectives such that γ evaluated in the last position of the word expresses
its rank-m type. Since there is exactly one path from each node to the root, to translate γ
into a TLtree formula γ′ we just need to replace propositional letters by the corresponding
formulas βτ , and ⊖ by ©↑. Then, as for the case of s→m (w̄, s), we have that γ′ evaluated
in ιw-t(ip) expresses the type of s←m (w̄, s). Then finally the same formula as in the case of
s→m (w̄, s) evaluated in s expresses that type.

Finally we need a TLtree formula that expresses τ w̄m(i), the rank-m type of tw̄(i), when
evaluated in (Tw̄, ιw-t(i)). We can split this into two cases. If αouter is true in ιw-t(i), then,
as explained earlier, the rank-m type of tw̄(i) is a Boolean combination of propositional
letters, and thus definable.

So we now consider the case when αouter is not true in ιw-t(i). Then τ
w̄
m(i) is given by a

Boolean combination of formulas that specify (1) the label of ip, and (2) the rank-m type
of the subtree of tw̄(ip) rooted at the right child of ιw-t(ip) with s as a distinguished node.
This type can be expressed by a formula γ in TLtree over tw̄0 (ip) by [19]. Hence if in γ we
recursively take the conjunction of each subformula with ¬αouter, we obtain a formula γ′

of TLtree that expresses the type of (tw̄0 (ip), s) when evaluated in (Tw̄, s). Thus, τ w̄(i) is
expressible by a Boolean combination of formulas γ′ and ¬αouterS↓(αouter ∧ a) where a is a
propositional letter.

This completes the proof of translation of FO into TLtree over nested ω-words, and thus
the proof of Lemma 4.4 and Theorem 4.1.

Recall that FOk stands for a fragment of FO that consists of formulas which use at
most k variables in total. First, from our translation from NWTL to FO we get:

Corollary 4.9. Over nested words, every FO formula with at most one free variable is
equivalent to an FO3 formula.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 17

It is well known that LTL over ω-words has the separation property, and in particular,
every LTL formula is equivalent to an LTL formula without the past connectives when
evaluated in the first position of an ω-word. In the case of nested words, however, the
situation is quite different from LTL. The following proposition shows that past connectives
are necessary even when one evaluates formulae in the first position of a nested word. We
let NWTLfuture be the future fragment of NWTL (i.e. the fragment that does not use Sσ

and the operators ⊖ and ⊖µ).

Proposition 4.10. There are FO sentences over nested words that cannot be expressed in
NWTLfuture.

Proof. We shall look at finite nested words; the proof for the infinite case applies
verbatim. To evaluate a formula ϕ of NWTLfuture in position i of a nested word w̄ of length
n one only needs to look at w̄[i, n]. That is, if w̄ and w̄′ of length n and n′ respectively
are such that w̄[i, n] ∼= w̄[i′, n′], then (w̄, i) |= ϕ iff (w̄′, i′) |= ϕ for every formula ϕ of
NWTLfuture.

Furthermore, for every collection of NWTLfuture formulas Ψ = {ψ1, . . . , ψl}, one can
find a number k = k(Ψ) such that

w̄[i, n] ≡k w̄[i
′, n′] implies (w̄, i) |= ψp ⇔ (w̄′, i′) |= ψp, for all p ≤ l.

In particular, if br stands for the word of length r in which all positions are labeled b and
the matching relation is empty, there are numbers k1 > k2 depending only on Ψ, such that

bk1 |= ψp ⇔ bk2 |= ψp, for all p ≤ l.

Now consider the following NWTL formula:

α = ©µ⊤ ∧ ©µ⊖a,

saying that the first position is a call, and the predecessor of its matching return is labeled
a. We claim that this is not expressible in NWTLfuture.

Assume to the contrary that there is a formula β of NWTLfuture equivalent to α. Let Ψ
be the collection of all subformulas of β, including β itself, and let k1 and k2 be constructed
as above. We now consider two nested words w̄1 and w̄2 of length k1 + 2 whose underlying
words are babk1 of length n = k1+2, such that the matching relation µ1 of w̄1 has one edge
µ1(1, 3), and the matching relation µ2 of w̄2 has one edge µ2(1, n+1− k2). In other words,
the only return position of w̄1 is r1 = 3, and the only return position of w̄2 is r2 = n+1−k2,
and thus w̄1[r1, n] = bk1 and w̄2[r2, n] = bk2 . Further notice that for every i > 1 we have
w̄1[i, n] ∼= w̄2[i, n].

Observe that (w̄1, 1) |= α and (w̄2, 1) |= ¬α.
We now prove by induction on formulas in Ψ that for each such formula γ we have

(w̄1, 1) |= γ iff (w̄2, 1) |= γ, thus proving that β and α cannot be equivalent.

• The base case of propositional letters is immediate.
• The Boolean combinations are straightforward too.
• Let γ = ©ψ. Then

(w̄1, 1) |= γ
⇔ (w̄1, 2) |= ψ
⇔ (w̄2, 2) |= ψ
⇔ (w̄2, 1) |= γ,

since w̄1[2, n] ∼= w̄2[2, n].

18 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

• Let γ = ©µψ. Then
(w̄1, 1) |= γ

⇔ (w̄1, 3) |= ψ
⇔ bk1 |= ψ
⇔ bk2 |= ψ
⇔ (w̄2, n+ 1− k2) |= ψ
⇔ (w̄2, 1) |= γ,

since ψ ∈ Ψ.
• Let γ = ϕUσψ. Assume (w̄1, 1) |= γ. Consider three cases.

Case 1: (w̄1, 1) |= ψ. By the hypothesis (w̄2, 1) |= ψ and we are done.
Case 2: The witness for ϕUσψ occurs beyond the only return. Then (w̄1, 1) |= ϕ
and (w̄1, r1) |= ϕUσψ. Since ϕUσψ ∈ Ψ we have (w̄2, r2) |= ϕUσψ, and by the
hypothesis, (w̄2, 1) |= ϕ, so (w̄2, 1) |= ϕUσψ.
Case 3: The witness for ϕUσψ occurs inside the call. Since for every position i > 1 we
have (w̄1, i) |= ϕ iff (w̄2, i) |= ϕ and likewise for ψ, the same summary path witnesses
ϕUσψ in w̄2.

Thus, (w̄2, 1) |= γ.
Now assume (w̄2, 1) |= γ. In the proof of (w̄1, 1) |= γ is the same as above in Cases 1

and 2. For Case 3, assume that in the path which is a witness for ϕUσψ the position in
which ψ is true is the 2nd or the 3rd position in the word. Then the same path witnesses
(w̄1, 1) |= γ, as in the proof of Case 3 above. Next assume it is a position with index j
higher than 3 (which is still labeled b) where ψ first occurs. Then ϕ must be true in all
positions i with 3 ≤ i ≤ j in w̄2. Hence ϕ is true in all such positions in w̄1 as well, and
thus the summary path in w̄1 that skips the first call (i.e. jumps from 1 to 3) witnesses
ϕUσψ. Hence, in all the cases (w̄2, 1) |= γ implies (w̄1, 1) |= γ, which completes the
inductive proof, and thus shows the inexpressibility of α in NWTLfuture.

Note also that adding all other until/since pairs to NWTL does not change its expressive-
ness. That is, if we let NWTL+ be NWTL + {U,S,Uc,Sc,Ua,Sa}, then:

Corollary 4.11. NWTL+ = FO.

Later, when we provide our upper bounds for model-checking, we shall pride the upper
bounds with respect to NWTL+ rather than just NWTL.

Remark In the conference version, we had a corollary stating that the since operator
can be eliminated for formulae evaluated in the first position of a nested word. It relied
on the proof of Theorem 4.1 and the separation property for TLtree claimed in [19]. The
latter, as was discovered recently, is incorrect. The proof of Theorem 4.1 relies only on the
expressive completeness of TLtree which is correct [26, 20] and thus is not affected.

4.2. The within operator. We now go back to the three until/since operators originally
proposed for temporal logics on nested words, based on the the linear, call, and abstract
paths. In other words, our basic logic, denoted by LTLµ, is

ϕ,ϕ′ := ⊤ | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |
©ϕ | ©µϕ | ⊖ϕ | ⊖µϕ |
ϕUϕ′ | ϕSϕ′ | ϕUcϕ′ | ϕScϕ′ | ϕUaϕ′ | ϕSaϕ′

We now extend this logic with the within W operator proposed in [2]. Recall that
(w̄, i) |= Wϕ iff i is a call, and (w̄[i, j], i) |= ϕ, where j = r(i) if i is a matched call, j = |w̄|

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 19

if i is an unmatched call and w̄ is finite, and j = ∞ otherwise. We denote this extended
logic by LTLµ +W.

Theorem 4.12. LTLµ +W = FO over both finite and infinite nested words.

Proof. The translation from LTLµ + W into FO is similar to the translation used in the
proof of Theorem 4.13. To prove the other direction, we show how to translate NWTLs

into LTLµ +W. Recall that by Lemma 4.4, we know that NWTLs = FO over both finite
and infinite nested words. More precisely, for every formula ϕ in NWTLs, we show how to
construct a formula αϕ in LTLµ +W such that for every nested word w̄ (finite or infinite)
and position i in it, we have that (w̄, i) |= ϕ if and only if (w̄, i) |= αϕ.

Since LTLµ includes the same past modalities as NWTLs, αϕ is trivial to define for the
atomic formulas, Boolean combinations and next and previous modalities:

α⊤ := ⊤,

αcall := call,

αret := ret,

αa := a,

α¬ϕ := ¬αϕ,

αϕ∨ψ := αϕ ∨ αψ,

α©ϕ := ©αϕ,

α©µϕ
:= ©µαϕ,

α⊖ϕ := ⊖αϕ,

α⊖µϕ := ⊖µαϕ.

Thus, we only need to show how to define αϕUσ
sψ

and αϕSσ
sψ

. Formula αϕUσ
sψ

is defined as:

αϕUσ
sψ

:=

[

mret ∧ αψ

]

∨

[

¬mret ∧

((

βϕU
a(¬mret ∧ αψ)

)

∨

(

βϕU
a(βϕ ∧©(mret ∧ αψ))

)

∨

(

βϕU
aW✸(αψ ∧⊖(γSc(αϕ ∧ ¬⊖⊤)))

))]

where mret is defined as ret ∧⊖µ⊤, to capture matching return positions, ✸θ is defined
as ⊤Uθ and formulas βϕ, γ are defined as:

βϕ := αϕ ∨ mret,

γ := βϕS
a(αϕ ∧ ¬ret ∧⊖((αϕ ∧ ¬ret)Scall)).

Moreover, formula αϕSσ
sψ

is defined as:

αϕSσ
sψ

:= αψ ∨ (αϕ ∧⊖(γSc(βϕS
a(αψ ∧ ¬mret)))).

This concludes the proof of the theorem.

20 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

4.3. CaRet and other within operators. The logic CaRet, as defined in [2], did not
have all the operators of LTLµ. In fact it did not have the previous operators ⊖ and ⊖µ,
and it only had linear and abstract until operators, and the call since operator. That is,
CaRet was defined as

ϕ,ϕ′ := ⊤ | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |
©ϕ | ©µϕ | ⊖cϕ |
ϕUϕ′ | ϕUaϕ′ | ϕScϕ′ ,

and we assume that a ranges over Σ∪{pret}, where pret is true in pending returns. Notice
that pret is not expressible with the remaining operators. Recall that the operator ⊖c is
the previous operator corresponding to call paths; formally, (w̄, i) |=⊖cϕ iff C(i) is defined
and (w̄, C(i)) |= ϕ.

A natural question is whether there is an expressively-complete extension of this logic.
It turns out that the past modality ⊖, together with two within operators based on C and
R (the innermost call and its return) functions provide such an extension. We define two
new formulas Cϕ and Rϕ with the semantics as follows:

• (w̄, i) |= Cϕ iff (w̄[j, i], j) |= ϕ, where j = C(i) if C(i) is defined, and j = 1 otherwise.
• (w̄, i) |= Rϕ if (w̄[i, j], i) |= ϕ, where j = R(i) if R(i) is defined, and j = |w̄| (if w̄ is
finite) or ∞ (if w̄ is infinite) otherwise.

The logic obtained by adding C and R to CaRet is denoted by CaRet + {C,R}.

Theorem 4.13. CaRet + {C,R} = FO over both finite and infinite nested words.

As a corollary (to the proof) we obtain the following:

Corollary 4.14. For every FO formula ϕ(x) over finite or infinite nested words, there is
a formula ψ of CaRet + {C,R} that does not use the Ua operator, such that w̄ |= ϕ(i) iff
(w̄, i) |= ψ.

The proof of this result is somewhat involved, and relies on different techniques. The
operators used in CaRet do not correspond naturally to tree translations of nested words,
and the lack of all until/since pairs makes a translation from NWTL hard. We thus use
a composition argument directly on nested words. The theorem is proved for finite nested
words, but the same techniques can be used to prove the infinite case.

We extend the vocabulary with two constants min and max, and assume that min is
always interpreted as the first element of the nested word and max as the last element.

Let w̄ be a finite nested word of length n and and i an element in w̄. Let c1, . . . , cm,
where m ≥ 0, be all elements in w̄ such that, for each j ∈ [1,m], cj < i and there is
an element rj such that µ(cj , rj) and i ≤ rj . Assume without loss of generality that
c1 < c2 < · · · < cm.

Fix k ≥ 0. Let Γ be the set of all rank-k types of nested words with distinguished
constants min and max (including the rank-k type of the empty nested word). We define
the word Ωk(w̄, i) = a0a1 · · · am over alphabet Γ× Γ as follows:

• The element a0 is labeled with the tuple whose first component is the rank-k type
of (w̄[1, c1 − 1],min,max) and whose second component is the rank-k type of (w̄[r1 +
1, n],min,max) if m 6= 0 (notice that if c1 = 1 then w̄[1, c1 − 1] is the empty nested word,
and the same is true of w̄[ri+1, n] if rm = n); otherwise, it is labeled with the tuple whose
first component is the rank-k type of (w̄[1, i−1],min,max) and whose second component
is the rank-k type of (w̄[i, n],min,max) (notice that if i = 1 then w̄[1, i− 1] is the empty
nested word);

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 21

• for each 0 < j < m, the element aj is labeled with the tuple whose first component is
the rank-k type of (w̄[cj , cj+1 − 1],min,max) and whose second component is the rank-k
type of (w̄[rj+1 + 1, rj],min,max); and

• if m 6= 0 then the element am is labeled with the the tuple whose first component is the
rank-k type of (w̄[cm, i − 1],min,max) and whose second component is the rank-k type
of (w̄[i, rm],min,max).

The following is our composition argument:

Lemma 4.15 (Composition Method). Let w̄1 and w̄2 be two nested words, and let i and
i′ be two elements in w̄1 and w̄2, respectively. Then Ωk(w̄1, i) ≡k+2 Ωk(w̄2, i

′) implies
(w̄1, i,min,max) ≡k (w̄2, i

′,min,max).

Proof. First we need to introduce some terminology. Let w̄ be a finite nested word of length
n and i be a position in w̄. Assume elements c1, . . . , cm, r1, . . . , rm are defined as above.
With each element s of w̄ we associate an element [s] of Ωk(w̄, i) as follows:

• If m 6= 0 and s belongs to w̄[1, c1 − 1] or w̄[r1 + 1, n], then [s] is the first element of
Ωk(w̄, i). In such case we say that w̄[0, c1 − 1] and w̄[r1 + 1, n] are the left and right
intervals represented by [s], respectively.

If m = 0 and s is an arbitrary element of w̄, then [s] is also the first (and unique)
element of Ωk(w̄, i). In such case we say that w̄[0, i− 1] and w̄[i, n] are the left and right
intervals represented by [s], respectively.

• Ifm 6= 0 and s belongs to w̄[cm, i−1] or w̄[i, rm], then [s] is the last element of Ωk(w̄, i). In
such case we say that w̄[cm, i− 1] and w̄[i, rm] are the left and right intervals represented
by [s], respectively.

• If m 6= 0 and s belongs to w̄[cℓ, cℓ+1 − 1] or w̄[rℓ+1 + 1, rℓ], for some 1 ≤ ℓ < m, then
[s] is the (ℓ + 1)-th element of Ωk(w̄, i). In such case we say that w̄[cℓ, cℓ+1 − 1] and
w̄[rℓ+1 + 1, rℓ] are the left and right intervals represented by [s], respectively.

We denote by [s]L and [s]R the left and right intervals represented by [s], respectively.
We now prove the lemma. For each round j (0 ≤ j ≤ k) of the k-round game on

(w̄1, i,min,max) and (w̄2, i
′,min,max), Player II’s response bj in w̄2 to an element aj

in w̄1, played by Player I is defined as follows (the strategy for the case when Player I
picks a point in w̄2 is completely symmetric). Assume that Player I plays element [aj] in
Ωk(w̄1, i) in round j of the (k + 2)-round game on Ωk(w̄1, i) and Ωk(w̄2, i

′). Then given
that Ωk(w̄1, i) ≡k+2 Ωk(w̄2, i

′), Player II uses her winning strategy to choose a response [qj]
in Ωk(w̄2, i

′) to [aj]. Thus, by definition of Ωk, we have that the right and left intervals
represented by [aj] have the same rank-k type as the right and left intervals represented
by [qj], respectively. Hence, if aj belongs to the left interval represented by [aj], then the
Player II can find response bj to aj according to the winning strategy for the k-round game
on [aj]

L and [qj]
L, and if aj belongs to the right interval represented by [aj], then the Player

II can find response bj to aj according to the winning strategy for the k-round game on

[aj]
R and [qj]

R.
Assume that for round 0 ≤ j < k the elements played by following this strategy are (1)

([p1], . . . , [pj]) in Ωk(w̄1, i), (2) ([q1], . . . , [qj]) in Ωk(w̄2, i
′), (3) (a1, . . . , aj) in w̄1, and (4)

(b1, . . . , bj) in w̄2. We note that by definition of the strategy, for every i ∈ [1, j], we have
that ai = pi or bi = qi. Since we assume that the [pj]’s and [qj]’s are played according to a
winning strategy for Player II in the (k + 2)-round game on Ωk(w̄1, i) and Ωk(w̄2, i

′), it is

22 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

the case that:

(Ωk(w̄1, i), [p1], . . . , [pj]) ≡k−j+2

(Ωk(w̄2, i
′), [q1], . . . , [qj]).

By the way the strategy is defined, for each ℓ ∈ [1, j], if āLℓ and āRℓ are the subtuples

of (a1, . . . , aj) containing the elements from (a1, . . . , aj) that belong to [aℓ]
L and [aℓ]

R,
respectively, then the corresponding subtuples b̄Lℓ and b̄Rℓ of (b1, . . . , bj) contain the ele-

ments from (b1, . . . , bj) that belong to [bℓ]
L and [bℓ]

R, respectively. Further, by defini-
tion of the strategy, we also have that ([aℓ]

L, āLℓ ,min,max) ≡k−j ([bℓ]
L, b̄Lℓ ,min,max) and

([aℓ]
R, āRℓ ,min,max) ≡k−j ([bℓ]

R, b̄Rℓ ,min,max).
We now show how to define Player II’s response in the round j + 1. Let us as-

sume without loss of generality that for round j + 1 of the game on (w̄1, i,min,max) and
(w̄2, i

′,min,max), Player I picks an element aj+1 in w̄1 that belongs to the left interval rep-
resented by [aj+1] (all the other cases can be treated in a similar way). Player II response
bj+1 in w̄2 is defined as follows. First, there must be an element [s] in Ωk(w̄2, i

′) such that

(Ωk(w̄1, i), [p1], . . . , [pj], [pj+1]) ≡k−j+1

(Ωk(w̄2, i
′), [q1], . . . , [qj], [s]),

where pj+1 = aj+1. The latter, together with the way that the strategy is defined,
implies that there is an element b in [s]L such that ([aj+1]

L, ā′, aj+1,min,max) ≡k−j−1

([s]L, b̄′, b,min,max), where ā′ is the subtuple of (a1, . . . , aj) containing all the elements in

(a1, . . . , aj) that belong to [aj+1]
L and b̄′ is the corresponding subtuple of (b1, . . . , bj). We

then set bj+1 = b.
We show by induction that, for each j ≤ k, if (a1, . . . , aj) and (b1, . . . , bj) are the

first j moves played by Player I and Player II on (w̄1, i,min,max) and (w̄2, i
′,min,max),

respectively, according to the strategy defined above, then ((a1, . . . , aj), (b1, . . . , bj)) defines
a partial isomorphism between (w̄1, i,min,max) and (w̄2, i

′,min,max). This is sufficient to
show that (w̄1, i,min,max) ≡k (w̄2, i

′,min,max).
Assume j = 0. Since Ωk(w̄1, i) ≡k+2 Ωk(w̄2, i

′), it must be th case that the labels of
the last elements of Ωk(w̄1, i) and Ωk(w̄2, i

′) coincide. Thus, ([i]R, i) ≡0 ([i′]R, i′), and we
conclude that i and i′ have the same label, and i is a call (resp. return) iff i′ is a call (resp.
return). Further, if i = min then Ωk(w̄1, i) has only one element and that element is labeled
(τε, τ), for some τ 6= τε. Since Ωk(w̄1, i) ≡k+2 Ωk(w̄2, i

′), Ωk(w̄2, i) also has a single element
and that element is labeled (τε, τ). It follows that i′ = min. The converse can be proved
analogously. In the same way it is possible to show that i = max iff i′ = max.

Assume that the property holds for j. Also, assume without loss of generality that for
the round j + 1 of the game on (w̄1, i,min,max) and (w̄2, i

′,min,max), Player I picks an
element aj+1 in w̄1 that belongs to the right interval represented by [aj+1] (all the other
cases can be treated in a similar way). We prove that bj+1 as defined above preserves the
partial isomorphism. First we show that aj+1 = i iff bj+1 = i′. In this case [aj+1] is the last
element of Ωk(w̄1, i), and Ωk(w̄1, i) ≡k+2 Ωk(w̄2, i

′) implies that [bj+1] is the last element of
Ωk(w̄2, i

′). Since aj+1 = i is the first element of [aj+1]
R, bj+1 has to be the first element of

[bj+1]
R, which is i′.

In the same way it is possible to prove that aj+1 = min iff bj+1 = min, and that
aj+1 = max iff bj+1 = max.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 23

Further, it is also clear that the label of aj+1 in w̄1 is a iff the label of bj+1 in w̄2 is a,
for each a ∈ Σ. Next we consider the remaining cases.

• aj+1 ∈ call. Then ([aj+1]
R, ā′, aj+1,min,max) ≡k−j−1 ([bj+1]

R, b̄′, bj+1,min,max), where
ā′ is the subtuple of (a1, . . . , aj) containing all the elements in (a1, . . . , aj) that belong
to [aj+1]

L and b̄′ is the corresponding subtuple of (b1, . . . , bj). This immediately implies
that bj+1 ∈ call. The converse is proved analogously.

• aj+1 ∈ ret. This is similar to the previous case.

• Suppose first that aj+1 < aℓ holds for some ℓ ∈ [1, j]. Since aj+1 belongs to [aj+1]
R, we

have that aℓ belongs to [aℓ]
R and, thus, we only need to consider the cases [aℓ] = [aj+1]

and [aj+1] < [aℓ]. If [aℓ] = [aj+1], then ([aℓ]
R, aℓ, aj+1) ≡0 ([bℓ]

R, bℓ, bj+1) and, therefore,
bj+1 < bl also holds. If [aj+1] < [aℓ], then [bj+1] < [bℓ] and, thus, bj+1 < bℓ holds since bℓ
and bj+1 belong to [bℓ]

R and [bj+1]
R, respectively.

Suppose, on the other hand, that aℓ < aj+1 holds for some ℓ ∈ [1, j]. We need to
consider three cases: [aℓ] = [aj+1], [aℓ] < [aj+1] and [aj+1] < [aℓ]. If [aℓ] = [aj+1], then
([aℓ]

R, aℓ, aj+1) ≡0 ([bℓ]
R, bℓ, bj+1) and, therefore, bℓ < bj+1 also holds. If [aj+1] > [aℓ],

then aℓ belongs to [aℓ]
L and [bj+1] < [bℓ] and, thus, bℓ < bj+1 holds since bℓ belongs to

[bℓ]
L while bj+1 belongs to [bj+1]

R. Finally, if [aℓ] > [aj+1], then [bℓ] > [bj+1] and, thus,
bℓ < bj+1 holds since bj+1 belongs to [bj+1]

R and every element in [bj+1]
R is bigger than

every element in either [bℓ]
R or [bℓ]

L.
The converse is proved analogously.

• Suppose first that µ(aj+1, aℓ) holds for some ℓ ∈ [1, j]. Since aj+1 belongs to the right
interval represented by [aj+1], it is the case that [aℓ] also belongs to [aj+1]

R. Thus, given
that ([aℓ]

R, aℓ, aj+1) ≡0 ([bℓ]
R, bℓ, bj+1), we conclude that µ(bj+1, bℓ) holds.

Second, µ(aℓ, aj+1) holds for some ℓ ∈ [1, j]. It is not hard to see that [aℓ] =

[aj+1]. We need to consider two cases: If aℓ belongs to [aj+1]
R, then ([aℓ]

R, aℓ, aj+1) ≡0

([bℓ]
R, bℓ, bj+1), and thus, µ(bℓ, bj+1) holds. If aℓ belongs to [aj+1]

L, then aℓ is the first el-
ement of [aj+1]

L and aj+1 is the last element of [aj+1]
R. Thus, since ([aj+1]

L, aℓ,min) ≡0

([bj+1]
L, bℓ,min), we conclude that bℓ is the first element of [bj+1]

L. Further, since

([aj+1]
R, aj+1,max) ≡0 ([bj+1]

L, bj+1,max), we conclude that bj+1 is the last element
of [bj+1]

R. Therefore, µ(bℓ, bj+1) holds.
The converse is proved analogously.

This concludes the proof of the lemma.

We now present the proof of Theorem 4.13.

Proof of Theorem 4.13. We first show that every CaRet + {R, C} formula ϕ is equivalent
to an FO formula αϕ(x) over nested words, that is, for every nested word w̄ it is the case
that (w̄, i) |= ϕ iff w̄ |= αϕ(i). The translation is standard, and can be done by recursively

defining αϕ(x) from ϕ as shown below. We use the notation θ(x)[y,z] for the relativization

of θ(x) to elements in the interval [y, z], that is, θ(x)[y,z] is obtained from θ(x) by replacing
each subformula of the form ∃uβ with ∃u(y ≤ u ∧ u ≤ z ∧ β) and each subformula of the
form ∀uβ with ∀u(y ≤ u ∧ u ≤ z → β). Here is the translation:

24 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

αa(x) := Pa(x),

αcall(x) := call(x),

αret(x) := ret(x),

αint(x) := ¬call(x) ∧ ¬ret(x),

αpret(x) := ret(x) ∧ ¬∃yµ(y, x),

α¬ϕ(x) := ¬αϕ(x),

αϕ∨ψ(x) := αϕ(x) ∨ αψ(x),

α©ϕ(x) := ∃y (x < y ∧ ¬∃z(x < z ∧ z < y) ∧ αϕ(y)),

α
⊖ϕ

(x) := ∃y (y < x ∧ ¬∃z(y < z ∧ z < x) ∧ αϕ(y)),

α©µϕ
(x) := ∃y (µ(x, y) ∧ αϕ(y)),

α⊖cϕ
(x) := ∃y∃z (y < x ∧ x < z ∧ µ(y, z) ∧ αϕ(y) ∧

∀u∀v(u < x ∧ x < v ∧ µ(u, v) → u = y ∨ u < y)),

αϕUψ(x) := ∃y ((x < y ∨ x = y) ∧ αψ(y) ∧

∀z(z < y ∧ (z = x ∨ x < z) → αϕ(z))),

αϕUaψ(x) := ∃y ((x < y ∨ x = y) ∧ αψ(y) ∧ ∀u∀v (u < y ∧ y < v ∧ µ(u, v) → u < x) ∧

∀z(z < y ∧ (z = x ∨ x < z) ∧ ∀u∀v (u < z ∧ z < v ∧ µ(u, v) → u < x) → αϕ(z))),

αϕScψ(x) := αψ(x) ∨ ∃y (y < x ∧ αcall(y) ∧ ∀z (µ(y, z) → x < z) ∧ αψ(y) ∧

∀z (((z = x) ∨ (αcall(z) ∧ z < x ∧ y < z ∧ ∀u (µ(z, u) → x < u))) → αϕ(z))),

αCϕ(x) := (¬∃y∃z (µ(y, z) ∧ y < x ∧ x < z) ∧ ∀z (¬∃u(u < z) → αϕ(z)
[z,x]

)

∨

(∃y∃z (µ(y, z) ∧ y < x ∧ x < z ∧

∀u∀v(u < x ∧ x < v ∧ µ(u, v) → u = y ∨ u < y) ∧ αϕ(y)
[y,x])),

αRϕ(x) := (¬∃y∃z (µ(y, z) ∧ y < x ∧ x < z) ∧ ∀z (¬∃u(z < u) → αϕ(x)
[x,z]

)

∨

(∃y∃z (µ(y, z) ∧ y < x ∧ x < z ∧

∀u∀v(u < x ∧ x < v ∧ µ(u, v) → u = y ∨ u < y) ∧ αϕ(x)
[x,z])).

We now show the other direction, that is, FO ⊆ CaRet + {R, C}. We start by proving
the result for FO sentences (that is, we prove that for every FO sentence ϕ there is an
CaRet + {R, C} formula ψ, such that w̄ |= ϕ iff (w̄, 1) |= ψ), and then extend it to the case
of FO formulas with one free variable. Let ϕ be an FO sentence. We use induction on the
quantifier rank to prove that ϕ is equivalent to an CaRet + {R, C} formula.

For k = 0 the property trivially holds, as ϕ is a Boolean combination of formulas of the
form Pa(min), Pa(max), min < max, µ(min,max), etc. All of them can be easily expressed
in CaRet + {R, C}.

We now prove for k+1 assuming that the property holds for k. Since every FO sentence
of quantifier rank k+1 is a Boolean combination of FO sentences of the form ∃xϕ(x), where
ϕ(x) is a formula of quantifier rank k, we just have to show how to express in CaRet+{R, C}
a sentence of this form.

Let Γ be the set of all rank-k types of nested words over alphabet Σ∪ {min,max}. We
distinguish by τε the rank-k type of the empty nested word. By induction hypothesis, for

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 25

each τ ∈ Γ there is an CaRet + {R, C} formula ξτ such that (w̄, 1) |= ξτ iff the rank-k type
of (w̄,min,max) is τ .

Let Λ be the set of all rank-(k + 2) types of words over alphabet Γ × Γ. We first
construct, for each λ ∈ Λ, an CaRet + {R, C} formula αλ over alphabet Σ such that,

(w̄, i) |= αλ ⇐⇒ the rank-(k + 2) type of Ωk(w̄, i) is λ,

for each nested word w̄ and position i of w̄.
Fix λ ∈ Λ. From Kamp’s theorem [14], there is an LTL formula βλ over alphabet Γ×Γ

such that a word u satisfies βλ evaluated on its last element iff the rank-(k+2) type of u is
λ. By the separation property of LTL, we can assume that βλ only mentions past modalities
⊖ and S. Moreover, given that ϕSψ ≡ ψ∨ (ϕ∧⊖(ϕSψ)), we can also assume that βλ is
a Boolean combination of formulas of the form either θ or ⊖θ′, where θ does not mention
any temporal modality and θ′ is an arbitrary past LTL formula. Thus, since CaRet+{R, C}
is closed under Boolean combinations, to show how to define αλ from βλ, we only need to
consider two cases: (1) βλ is an LTL formula over Γ× Γ without temporal modalities, and
(2) βλ is of the form ⊖θ, where θ is an arbitrary past LTL formula over Γ × Γ. Next we
consider these two cases.

• Assume that βλ is an LTL formula without temporal modalities. Then αλ is defined to
be β◦λ, where ()

◦ is defined recursively as follows. Given (τ, τ ′) ∈ Γ×Γ, (τ, τ ′)◦ is defined
as follows, where we assume that τa is the rank-k type of any nested word with a single
element labeled a (a ∈ Σ):
(1) If τ, τ ′ 6= τε, then (τ, τ ′)◦ is defined as the disjunction of the following formulas:

(a) (¬ret ∧⊖c⊤ ∧⊖(¬call ∧ Cξτ) ∧Rξτ ′);
(b)

∨

{a|τ=τa}
(¬ret ∧⊖c⊤ ∧⊖(call ∧ a) ∧Rξτ ′);

(c) (¬ret ∧ ¬⊖c⊤ ∧⊖Cξτ ∧Rξτ ′);
(d) (pret ∧⊖Cξτ ∧Rξτ ′);
(e)

∨

{a|τ ′=τa}
(ret ∧ ¬pret ∧ a ∧⊖(¬call ∧ Cξτ));

(f)
∨

{(a,b)|τ=τa,τ ′=τb}
(ret ∧ ¬pret ∧ b ∧⊖(call ∧ a)).

(2) if τ ′ = τε then (τ, τ ′)◦ is simply ¬⊤; and
(3) if τ = τε and τ

′ 6= τε, then (τ, τ ′)◦ is defined as ¬⊖⊤ ∧Rξτ ′ .
Furthermore, if ψ and ϕ are LTL formulas without temporal modalities, then

(¬ϕ)◦ := ¬ϕ◦,

(ϕ ∨ ψ)◦ := ϕ◦ ∨ ψ◦.

• Assume that βλ is a formula of the form ⊖θ, where θ is an arbitrary past LTL formula.
Then αλ is defined to be β⋆λ, where ()⋆ is defined recursively as follows. Given (τ, τ ′) ∈
Γ× Γ, (τ, τ ′)⋆ is defined as follows:
(1) If τ, τ ′ 6= τε, then (τ, τ ′)⋆ is defined as the disjunction of the following formulas:

(a) ⊖((¬call ∨ (call ∧ ¬©µ⊤)) ∧ Cξτ) ∧©µ©((¬ret ∨ pret) ∧Rξτ ′);
(b)

∨

{a|τ=τa}
⊖(call ∧©µ⊤ ∧ a) ∧©µ©(¬ret ∧Rξτ ′);

(c)
∨

{(a,b)|τ=τa,τ ′=τb}
⊖(call ∧©µ⊤ ∧ a) ∧©µ©(ret ∧ b);

(d)
∨

{a|τ ′=τa}
⊖(¬call ∧ Cξτ) ∧©µ©(ret ∧ ¬pret ∧ a).

(2) if τ = τe and τ
′ 6= τe, then (τ, τ ′)⋆ is defined as ¬⊖⊤ ∧©µ©Rξτ ′ ;

(3) if τ 6= τε and τ
′ = τe, then (τ, τ ′)⋆ is defined as ⊖Cξτ ∧ ¬©µ©⊤; and

(4) if τ, τ ′ = τε then (τ, τ ′)⋆ is defined as ¬⊖⊤ ∧ ¬©µ©⊤.

26 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

Furthermore, if ψ and ϕ are past LTL formulas, then

(¬ϕ)⋆ := ¬ϕ⋆,

(ϕ ∨ ψ)⋆ := ϕ⋆ ∨ ψ⋆,

(⊖ϕ)⋆ := ⊖c ϕ
⋆,

(ϕSψ)⋆ := ϕ⋆ Sc ψ⋆.

Now, let ∃xϕ(x) be an FO sentence such that the quantifier rank of ϕ(x) is k. Then,
from our composition method ϕ(x) can be expressed in CaRet + {R, C} as the formula
∨

λ∈Λ′ αλ, where Λ′ ⊆ Λ is the set of all rank-(k + 2) types of words over alphabet Γ × Γ
that belong to {Ωk(w̄, i) | w̄ |= ϕ(i)}. Thus, ∃xϕ(x) can be expressed as the following
CaRet + {R, C} formula: ⊤U (

∨

λ∈Λ′ αλ). This concludes the proof of the theorem.
Finally, from the composition method and the previous proof we see that the equivalence

FO = CaRet + {R, C} also holds for unary queries over nested words.

5. Model-Checking and Satisfiability

In this section we show that both satisfiability and model-checking are decidable in single-
exponential-time for NWTL, and in polynomial time in the size of the model. Here we
assume the model of the procedural program is given as a Recursive State Machine (RSM)
[1]. (Runs of an RSM can naturally be viewed as nested words when matching func-
tion calls (or “box entries”) and returns (or “box exits”) along the run are paired to-
gether.) In fact we prove this bound for NWTL+, an FO-complete extension of NWTL
with all of U,S,Uc,Sc,Ua,Sa. We use automata-theoretic techniques: translating for-
mulae into equivalent automata on nested words. We then show that the logic based on
adding the within operator to NWTL+, (and even just adding within to CaRet) requires
doubly-exponential time for model-checking, but is exponentially more succinct.

5.1. Nested word automata. A nondeterministic Büchi nested word automaton (BNWA)
A over an alphabet Σ is a structure (Q,Q0, Qf , P, P0, Pf , δc, δi, δr) consisting of a finite set
of states Q, a set of initial states Q0 ⊆ Q, a set of Büchi accepting states Qf ⊆ Q, a
set of hierarchical symbols P , a set of initial hierarchical symbols P0 ⊆ P , a set of final
hierarchical symbols Pf ⊆ P , a call-transition relation δc ⊆ Q × Σ × Q × P , an internal-
transition relation δi ⊆ Q × Σ × Q, and a return-transition relation δr ⊆ Q × P × Σ × Q.
The automaton A starts in an initial state and reads the nested word from left to right.
The state is propagated along the linear edges as in the case of a standard word automaton.
However, at a call, the nested word automaton propagates state along the linear edge as
well as a hierarchical symbol along the nesting edge (if there is no matching return, then
the latter is required to be in Pf for acceptance). At a matched return, the new state
is determined based on the state propagated along the linear edge as well as the symbol
along the incoming nesting edge (edges incident upon unmatched returns are assumed to
be labeled with initial hierarchical symbols).

Formally, a run r of the automaton A over a nested word w̄ = (a1a2 . . . , µ, call, ret)
is a sequence q0, q1, . . . of states along the linear edges, and a sequence pi, for every call
position i, of hierarchical symbols along nesting edges, such that q0 ∈ Q0 and for each
position i, if i is a call then (qi−1, ai, qi, pi) ∈ δc; if i is internal, then (qi−1, ai, qi) ∈ δi; if i
is a return such that µ(j, i), then (qi−1, pj , ai, qi) ∈ δr; and if i is an unmatched return then

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 27

(qi−1, p, ai, qi) ∈ δr for some p ∈ P0. The run r is accepting if (1) for all pending calls i,
pi ∈ Pf , and (2) the final state qℓ ∈ Qf if w̄ is a finite word of length ℓ, and for infinitely
many positions i, qi ∈ Qf , if w̄ is a nested ω-word. The automaton A accepts the nested
word w̄ if it has an accepting run over w̄.

Nested word automata have the same expressiveness as the monadic second order
logic over nested words, and the language emptiness problem for them can be decided
in polynomial-time [4].

5.2. Tableau construction. We now show how to build a BNWA accepting the satisfying
models of a formula of NWTL+. This leads to decision procedures for satisfiability and
model checking.

Given a formula ϕ, we wish to construct a Büchi nested word automaton Aϕ whose
states correspond to sets of subformulas of ϕ. Intuitively, given a nested word w̄, a run
r, which is a linear sequence q0q1 . . . of states and symbols pi labeling nesting edges from
call positions, should be such that each state qi is precisely the set of formulas that hold
at position i + 1. The label pi is used to remember abstract-next formulas that hold at
position i and the abstract-previous formulas that hold at matching return. For clarity
of presentation, we first focus on formulas with next operators © and ©µ, and until over
summary-down paths.

Given a formula ϕ, the closure of ϕ, denoted by cl(ϕ), is the smallest set that satisfies
the following properties:

• cl(ϕ) contains ϕ, call, ret, int, and ©ret;
• if either ¬ψ, or ©ψ or ©µψ is in cl(ϕ) then ψ ∈ cl(ϕ);
• if ψ ∨ ψ′ ∈ cl(ϕ), then ψ,ψ′ ∈ cl(ϕ);
• if ψUσ↓ψ′ ∈ cl(ϕ), then ψ, ψ′, ©(ψUσ↓ψ′), and ©µ(ψUσ↓ψ′) are in cl(ϕ); and
• if ψ ∈ cl(ϕ) and ψ is not of the form ¬θ (for any θ), then ¬ψ ∈ cl(ϕ).

It is straightforward to see that the size of cl(ϕ) is only linear in the size of ϕ. Henceforth,
we identify ¬¬ψ with the formula ψ.

An atom of ϕ is a set Φ ⊆ cl(ϕ) that satisfies the following properties:

• For every ψ ∈ cl(ϕ), ψ ∈ Φ iff ¬ψ 6∈ Φ .
• For every formula ψ ∨ ψ′ ∈ cl(ϕ), ψ ∨ ψ′ ∈ Φ iff (ψ ∈ Φ or ψ′ ∈ Φ).
• For every formula ψUσ↓ψ′ ∈ cl(ϕ), ψUσ↓ψ′ ∈ Φ iff either ψ′ ∈ Φ or (ψ ∈ Φ and
©ret 6∈ Φ and ©(ψUσ↓ψ′) ∈ Φ) or (ψ ∈ Φ and ©µ(ψUσ↓ψ′) ∈ Φ).

• Φ contains exactly one of the elements in the set {call, ret, int}.
• If ©µψ ∈ Φ for some ψ, then call ∈ Φ.

These clauses capture local consistency requirements. In particular, a summary-down until
formula ψUσ↓ψ′ holds at a position if either the second argument ψ′ holds now, or ψ holds
now and satisfaction of ψUσ↓ψ′ is propagated along a call, internal, or nesting edge.

A hierarchical-atom of ϕ is a set Φ ⊆ cl(ϕ) such that if ψ ∈ Φ then ©µψ ∈ cl(ϕ).
A hierarchical-atom contains possible abstract-next obligations to be propagated across
nesting edges.

Given a formula ϕ, we build a nested word automaton Aϕ as follows. The alphabet Σ

is 2AP , where AP is the set of atomic propositions.

(1) Atoms of ϕ are states of Aϕ;
(2) An atom Φ is an initial state iff ϕ ∈ Φ;
(3) Hierarchical-atoms of ϕ are hierarchical symbols of Aϕ;

28 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

(4) All hierarchical symbols are initial;
(5) For atoms Φ,Ψ and a symbol a ⊆ AP , (Φ, a,Ψ) is an internal transition of Aϕ iff (a)

int ∈ Φ; and (b) for p ∈ AP , p ∈ a iff p ∈ Φ; and (c) for each ©ψ ∈ cl(ϕ), ψ ∈ Ψ iff
©ψ ∈ Φ.

(6) For atoms Φ,Ψl, a hierarchical-atom Ψh, and a symbol a ⊆ AP , (Φ, a,Ψl,Ψh) is a call
transition of Aϕ iff (a) call ∈ Φ; and (b) for p ∈ AP , p ∈ a iff p ∈ Φ; and (c) for each
©ψ ∈ cl(ϕ), ψ ∈ Ψl iff ©ψ ∈ Φ; and (d) for each ©µψ ∈ cl(ϕ), ψ ∈ Ψh iff ©µψ ∈ Φ.

(7) For atoms Φl,Ψ, hierarchical-atom Ψh, and a symbol a ⊆ AP , (Φl,Φh, a,Ψ) is a return
transition of Aϕ iff (a) ret ∈ Φl; and (b) for p ∈ AP , p ∈ a iff p ∈ Φl; and (c) for each
©ψ ∈ cl(ϕ), ψ ∈ Ψ iff ©ψ ∈ Φl; and (d) for each ©µψ ∈ cl(ϕ), ψ ∈ Φh iff ψ ∈ Φl.

The transition relation ensures that the current symbol is consistent with the atomic propo-
sitions in the current state, and next operators requirements are correctly propagated.

The sole final hierarchical symbol is the empty hierarchical-atom. This ensures that,
in an accepting run, at a pending call, no requirements are propagated along the nesting
edge. For each until-formula ψ in the closure, let Fψ be the set of atoms that either do not
contain ψ or contain the second argument of ψ. Then a nested word w̄ over the alphabet
2AP satisfies ϕ iff there is a run r of Aϕ over w̄ such that all pending call edges are labeled
with the sole final hierarchical symbol, and for each until-formula ψ ∈ cl(ϕ), for infinitely
many positions i, qi ∈ Fψ. This multi-Büchi accepting condition can be translated to Büchi
acceptance as usual by adding a counter.

Now we proceed to show how to handle various forms of until operators. In each
case, we specify the changes needed to the definition of the closure and local consistency
requirements for atoms.

Global paths: If ψUψ′ ∈ cl(ϕ), then ψ, ψ′, ©(ψUψ′) are in cl(ϕ). Local consistency of
Φ requires that for every formula ψUψ′ ∈ cl(ϕ), ψUψ′ ∈ Φ iff either ψ′ ∈ Φ or (ψ ∈ Φ
and ©(ψUψ′) ∈ Φ).

Summary-up paths: If ψUσ↑ψ′ ∈ cl(ϕ), then ψ, ψ′, ©(ψUσ↑ψ′), and ©µ(ψUσ↑ψ′)

are in cl(ϕ). Local consistency of Φ requires that for every formula ψUσ↑ψ′ ∈ cl(ϕ),
ψUσ↑ψ′ ∈ Φ iff either ψ′ ∈ Φ, or (ψ ∈ Φ and call ∈ Φ and ©µ(ψUσ↑ψ′) ∈ Φ), or

(ψ ∈ Φ and call 6∈ Φ and ©(ψUσ↑ψ′) ∈ Φ).
Abstract paths: If ψUaψ′ ∈ cl(ϕ), then ψ, ψ′, ©(ψUaψ′), ©⊖µ⊤, and ©µ(ψU

aψ′)
are in cl(ϕ). Local consistency of Φ requires that for every formula ψUaψ′ ∈ cl(ϕ),
ψUaψ′ ∈ Φ iff either ψ′ ∈ Φ, or (ψ ∈ Φ and call ∈ Φ and ©µ(ψU

aψ′) ∈ Φ), or
(ψ ∈ Φ and call 6∈ Φ and ©ret 6∈ Φ and ©(ψUaψ′) ∈ Φ), or (ψ ∈ Φ and ©ret ∈ Φ
and ©⊖µ⊤ 6∈ Φ and ©(ψUaψ′) ∈ Φ). The last case accounts for propagation of the
eventuality across unmatched returns.

Call paths: Recall that positions along a call path are related by the innermost call
operator: a call path jumps from a call position i to a position j such that i = C(j). Thus,
a call path can be simulated by a summary-down path consisting of call edges, summary
edges and internal edges, where the formula is asserted only before following the call
edge. This effect is captured by using an auxiliary operator as follows. If ψUcψ′ ∈ cl(ϕ),

then ψ, ψ′, ψUc′ψ′, ©(ψUc′ψ′), and ©µ(ψU
c′ψ′) are in cl(ϕ). Local consistency of

Φ requires that for every formula ψUcψ′ ∈ cl(ϕ), ψUcψ′ ∈ Φ iff either ψ′ ∈ Φ or

(ψ ∈ Φ and call ∈ Φ and ©(ψUc′ψ′) ∈ Φ); and ψUc′ψ′ ∈ Φ iff either ψUcψ′ ∈ Φ, or
©µ(ψU

c′ψ′) ∈ Φ, or (©ret 6∈ Φ and ©(ψUc′ψ′) ∈ Φ).

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 29

Summary paths: The summary-until is handled using the fact that ψUσψ′ is equivalent
to ψUσ↑(ψUσ↓ψ′).

Note that the definition of Aϕ stays unchanged, as the correct propagation of requirements
is handled by next and abstract-next formulas ensured by local consistency. The eventual
satisfaction of until formulas is handled the same way as before: for each until-formula ψ in
the closure, let Fψ be the set of atoms that either do not contain ψ or contain the second
argument of ψ, and it is required that each such Fψ is visited infinitely often.

The past-time formulas (previous, abstract-previous, and various forms of since opera-
tors) are handled in a symmetric manner. Thus, we have shown:

Theorem 5.1. For a formula ϕ of NWTL+, one can effectively construct a nondetermin-
istic Büchi nested word automaton Aϕ of size 2O(|ϕ|) accepting the models of ϕ.

Since the automaton Aϕ is exponential in the size of ϕ, we can check satisfiability
of ϕ in exponential-time by testing emptiness of Aϕ. Exptime-hardness follows from the
corresponding hardness result for CaRet.

Corollary 5.2. The satisfiability problem for NWTL+ is Exptime-complete.

When programs are modeled by nested word automata A (or equivalently, pushdown au-
tomata, or recursive state machines), and specifications are given by formulas ϕ of NWTL+,
we can use the classical automata-theoretic approach: negate the specification, build the
NWA A¬ϕ accepting models that violate ϕ, take the product with the program A, and
test for emptiness of L(A) ∩ L(A¬ϕ). Note that the program typically will be given more
compactly, say, as a Boolean program [5], and thus, the NWA A may itself be exponential
in the size of the input.

Corollary 5.3. Model checking NWTL+ specifications with respect to Boolean programs
is Exptime-complete. If the program model is given as a recursive state machine or
nested word automaton, the running time is polynomial in the model and exponential in
the NWTL+ formula, and remains Exptime-complete.

5.3. Checking the within operator. We now show that adding within operators makes
model-checking doubly exponential. Given a formula ϕ of NWTL or NWTL+, let pϕ be
a special proposition that does not appear in ϕ. Let Wϕ be the language of nested words
w̄ such that for each position i, (w̄, i) |= pϕ iff (w̄, i) |= Wϕ. We construct a doubly-
exponential automaton B that captures Wϕ. First, using the tableau construction for
NWTL+, we construct an exponential-size automaton A that captures nested words that
satisfy ϕ. Intuitively, every time a proposition pϕ is encountered, we want to start a new
copy of A, and a state of B keeps track of states of multiple copies of A. At a call, B
guesses whether the call has a matching return or not. In the latter case, as in case of
determinization construction for nested word automata [4], we need to maintain pairs of
states of A so that the join at return positions can be done correctly. A state of B, then, is
either a set of states of A or a set of pairs of states of A. We explain the latter case. The
intended meaning is that a pair (q, q′) belongs to the state of B, while reading position i of a
nested word w̄, if the subword from i to the first unmatched return can take the automaton
A from state q to state q′. When reading an internal symbol a, a summary (q, q′) in the
current state can be updated to (u, q′), provided A has an internal transition from q to u on
symbol a. Let B read a call symbol a. Consider a summary (q, q′) in the current state, and

30 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

a call-transition (q, a, ql, qh) of A. Then B guesses the return transition (ul, qh, b, u) that
will be used by A at the matching return, and sends the summary (ql, ul) along the call
edge and the triple (b, u, q′) along the nesting edge. While processing a return symbol b,
the current state of B must contain summaries only of the form (q, q) where the two states
match, and for each summary (b, u, q′) retrieved from the state along the nesting edge, the
new state contains (u, q′). Finally, B must enforce that Wϕ holds when pϕ is read. Only a
call symbol a can contain the proposition pϕ, and when reading such a symbol, B guesses
a call transition (q0, a, ql, qh), where q0 is the initial state of A, and a return transition
(ul, qh, b, qf), where qf is an accepting state of A, and sends the summary (ql, ul) along the
call edge and the symbol b along the nesting edge.

Lemma 5.4. For every formula ϕ of NWTL+, there is a nested word automaton that
accepts the language Wϕ and has size doubly-exponential in |ϕ|.

Consider a formula ϕ of NWTL+ + W. For every within-subformula W̺ of ϕ, let ̺′

be obtained from ̺ by substituting each top-level subformula Wψ in ̺ by the proposition
pψ. Each of these primed formulas is a formula of NWTL+. Then, if we take the product
of the nested word automata accepting W̺′ corresponding to all the within-subformulas ̺,
together with the nested word automaton Aϕ′ , the resulting language captures the set of
models of ϕ. Intuitively, the automaton forW̺′ is ensuring that the truth of the proposition
p̺ reflects the truth of the subformula W̺. If ̺ itself has a within-subformula Wψ, then
the automaton for ̺ treats it as an atomic proposition pψ, and the automaton checking pψ,
running in parallel, makes sure that the truth of pψ correctly reflects the truth of Wψ.

For the lower bound, the decision problem for LTL games can be reduced to the satisfia-
bility problem for formulas with linear untils and within operators [18], and this shows that
for CaRet extended with the within operator, the satisfiability problem is 2Exptime-hard.
We thus obtain:

Theorem 5.5. For the logic NWTL+ extended with the within operator W the satisfia-
bility problem and the model checking problem with respect to Boolean programs, are both
2Exptime-complete.

Remark: checking w̄ |= ϕ for finite nested words. For finite nested words, one evaluates the
complexity of checking whether the given word satisfies a formula, in terms of the length
|w̄| of the word and the size of the formula. A straightforward recursion on subformulas
shows that for NWTL formulas the complexity of this check is O(|w̄| · |ϕ|), and for both
logics with within operators, CaRet + {C,R} and LTLµ +W, it is O(|w̄|2 · |ϕ|).

5.4. On within and succinctness. We saw that adding within operators to NWTL+

increases the complexity of model-checking by one exponent. Thus there is no polynomial-
time translation from NWTL++W to NWTL+. We now prove a stronger result that gives
a space bound as well: while NWTL+ +W has the same power as NWTL+, its formulae
can be exponentially more succinct than formulas of NWTL+. That is, there is a sequence
ϕn, n ∈ N, of NWTL++W formulas such that ϕn is of size O(n), and the smallest formula
of NWTL+ equivalent to ϕn is of size 2Ω(n). For this result, we require nested ω-words to
be over the alphabet 2AP .

Theorem 5.6. NWTL+ +W is exponentially more succinct than NWTL+.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 31

Proof. The proof is based upon succinctness results in [9, 23], by adapting their examples
to nested words.

From the FO completeness of NWTL+, we have that NWTL++W can be translated into
NWTL+. We show that at least an exponential blow-up is necessary for such translation.
More precisely, we construct a sequence {ϕn}n≥1 of NWTL+ + W formulas of size O(n),

such that the shortest NWTL+ formula that is equivalent to ϕn is of size 2Ω(n). Our proof
is a modification of similar proofs given in [9, 23]. Assume Σ = {a0, . . . , an}, and let ϕn be
the following NWTL+ +W formula (here, ✷σθ and σθ are abbreviations for ¬(⊤Uσ¬θ)
and ⊤Sσθ, respectively):

✷
σ

(

call → W✷
σ

(

(

n
∧

i=1

(ai ↔ σ(ai ∧ ¬⊖⊤))) → (a0 ↔ σ(a0 ∧ ¬⊖⊤))

))

.

It is not hard to see that w̄ |= ϕn iff for all positions i, j in w̄ such that µ(i, j) holds, if
position ℓ in w̄[i, j] coincides with i on a1, . . . , an, then ℓ also coincides with i on a0.

It is shown in Theorem 5.1 that for each NWTL+ formula α, the language

Lα = { w̄ | w̄ is a nested ω-word such that w̄ |= α }

is recognized by a nondeterministic nested word automaton of size 2O(|α|). Thus, to prove

the theorem, it is enough to show that every such automaton for Lϕn is of size 22
Ω(n)

. Let
A be a nondeterministic nested word automaton for Lϕn . Assume that b0, . . . , b2n−1 is an

enumeration of the symbols in 2Σ\{a0}. For every K ⊆ {0, . . . , 2n − 1} let w̄K be the word
c0 · · · c2n−1 over alphabet 2Σ, where for each i ≤ 2n − 1:

ci =

{

bi i ∈ K

bi ∪ {a0} otherwise

It is not hard to see that for each K ⊆ {0, . . . , 2n − 1}, the nested ω-word (w̄ωK , µ), where
µ = {(j, 3 · 2n − j + 1) | 1 ≤ j ≤ 2n}, is such that (w̄ωK , µ) |= ϕn. Let (q1K , p

1
K , q

2
K) and

(q1K ′ , p1K ′ , q2K ′) be pairs of states such that (1) there exists an accepting run of A on (w̄ωK , µ)
such that A is in state q1K and has hierarchical symbol p1K in call position 2n, and A is
in state q2K in internal position 2 · 2n; (2) there exists an accepting run of A on (w̄ωK ′ , µ)
such that A is in state q1K ′ and has hierarchical symbol p1K ′ in call position 2n, and A is
in state q2K ′ in internal position 2 · 2n. Next we show that (q1K , p

1
K , q

2
K) 6= (q1K ′ , p1K ′ , q2K ′)

if K 6= K ′. On the contrary, assume that (q1K , p
1
K , q

2
K) = (q1K ′ , p1K ′ , q2K ′). Then A accepts

(w̄Kw̄K ′w̄ωK , µ), which leads to a contradiction since (w̄Kw̄K ′w̄ωK , µ) 6|= ϕn. Given that the
number of different K’s is 22

n
, the latter implies that the number of different triples of states

and hierarchical symbols of A is at least 22
n
. Thus, if m is equal to the number of states

of A plus the number of hierarchical symbols of A, then m3 ≥ 22
n
and, hence, m ≥ 22

n−2
.

Therefore, the size of A is 22
Ω(n)

. This concludes the proof of the theorem.

6. Finite-Variable Fragments

We have already seen that FO formulas in one free variable over nested words can be
written using just three distinct variables, as in the case of the usual, unnested, words. For
finite nested words this is a consequence of a tree representation of nested words and the
three-variable property for FO over finite trees [20], and for infinite nested words this is a
consequence Theorem 4.1.

32 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

In this section we prove two results. First, we give a model-theoretic proof that FO
formulas with zero, one, or two free variables over nested words (finite or infinite) are equiv-
alent to FO3 formulas. Given the FO = FO3 collapse, we ask whether there is a temporal
logic expressively complete for FO2, the two-variable fragment. We adapt techniques from
[9] to find a temporal logic that has the same expressiveness as FO2 over nested words (in
a vocabulary that has successor relations corresponding to the “next” temporal operators).

6.1. The three-variable property. We give a model-theoretic, rather than a syntactic,
argument, that uses Ehrenfeucht-Fräıssé games and shows that over nested words, formulas
with at most two free variables are equivalent to FO3 formulas. Note that for finite nested
words, the translation into trees, already used in the proof of Theorem 4.1, can be done
using at most three variables. This means that the result of [20] establishing the 3-variable
property for finite ordered unranked trees gives us the 3-variable property for finite nested
words. We prove that FO = FO3 over arbitrary nested words.

Theorem 6.1. Over finite or infinite nested words, every FO formula with at most 2 free
variables is equivalent to an FO3 formula.

Proof. As we mentioned already, in the finite case this is a direct consequence of [20]
so we concentrate on the infinite case. It is more convenient for us to prove the result for
ordered unranked forests in which a subtree rooted at every node is finite. The way to
translate a nested ω-word into such a forest is as follows: when a matched call i with µ(i, j)
is encountered, it defines a subtree with i as its root, and j+1 as the next sibling (note that
this is different from the translation into binary trees we used before). If i is an internal
position, or a pending call or a pending return position, then it has no descendants and
its next sibling is i + 1. Matched returns do not have next sibling, nor do they have any
descendants. The nodes in the forest are labeled with call, ret, and the propositions in
Σ, as in the original nested word.

It is routine to define, in FO, relations �desc and �sib for descendant and younger sibling
in such a forest. Furthermore, from these relations, we can define the usual ≤ and µ in
nested words using at most 3 variables as follows. For x ≤ y, the definition is given by

(y �desc x) ∨ ∃z
(

x �desc z ∧ ∃x
(

z ≺sib z ∧ y �desc x
)

)

and for µ(x, y), by

(y �desc x) ∧ ∀z
(

(z �desc x) → ∃x(x = z ∧ x ≤ y)
)

.

Thus, it suffices to prove the three-variable property for such ordered forests, which will
be referred to as A, B, etc. We shall use pebble games. Let Gv

m(A, a1, b1,B, b1, b2) be the
m-move, v-pebble game on structures A and B where initially pebbles xi are placed on ai in
A and bi in B. Player II has a winning strategy for Gv

m(A, a1, b1,B, b1, b2) iff A, a1, a2 and
B, b1, b2 agree on all formulas with at most v variables and quantifier-depth m. We know
from [13] that to prove Theorem 6.1, it suffices to show the following,

Claim 6.2. For all k, if Player II has a winning strategy for the game G3
3k+2(A, a1, a2;

B, b1, b2), then she also has a winning strategy for the game Gk
k(A, a1, a2;B, b1, b2).

We will show how Player II can win the k-pebble game by maintaining a set of 3-pebble
sub-games on which she will copy Player I’s moves and decide on good responses using
her winning strategy for these smaller 3-pebble games. The choice of these sub-games will

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 33

partition the universe |A| ∪ |B| so that each play by Player I in the k-pebble game will be
answered in one 3-pebble game. This is similar to the proof that linear orderings have the
3-variable property [13].

The subgames, G3
m(A, a1, a2;B, b1, b2), that Player II maintains will all be vertical in

which a2 �desc a1 and b2 �desc b1 hold, or horizontal in which a1 ≺sib a2 and b1 ≺sib b2
hold.

The following lemma gives the beginning strategy of Player II in which she replaces
an arbitrary game configuration with a set of configurations each of which is vertical or
horizontal.

Lemma 6.3. If Player II wins G3
m+4(A, a1, a2;B, b1, b2). Then there are points a′1, a

′
2 from

A and b′1, b
′
2 from B such that Player II wins the horizontal game G3

m+2(A, a
′
1, a
′
2;B, b

′
1, b
′
2)

and the vertical games G3
m+2(A, a

′
i, ai;B, b

′
i, b
′
i) for i = 1, 2.

Proof. For this proof since A and B are fixed, we will describe a game only by listing the
chosen points, e.g., (a1, a2; b1, b2). We simulate two moves of the game, G3

m+4(a1, a2; b1, b2),
in which we choose Player I’s moves and then Player II answers according to her winning
strategy. Let u + v denote the least common ancestor of u and v. First, we have Player
I place pebble x3 on a′1, the unique child of a1 + a2 that is an ancestor of a1. (Note that
if a′1 = a1 then this move can be skipped and similarly for the second move if a′2 = a2.)
Player II answers by placing x3 on some point b′1. Second, Player I should move pebble x1
from a1 to a′2, the unique child of a1 + a2 that is an ancestor of a2. Player II moves x1 to
some point b′2.

Since Player II has moved according to her winning strategy, we have that she still has
a winning strategy for the three games in the statement of the lemma. Furthermore, since
a′1 and a′2 are siblings and we have two remaining moves, b′1 and b′2 must be siblings as
well.

Using Lemma 6.3 we initially partition the universe according to four subgames:

• (ar, ap; br, bp) with domain everything not below ap or bp. Here ap = a1 + a2, i.e., the
parent of a′1, bp = b1 + b2, i.e., the parent of b′1 and ar and br are the roots of A and
B, (the roots are not necessary but then the subgames are all on horizontal or vertical
pairs), or

• (a′1, a1; b
′
1, b1) with domain everything below a′1 or b′1,

• (a′2, a2; b
′
2, b2), with domain everything below a′2 or b′2,

• (a′1, a
′
2; b
′
1, b
′
2), with the remaining domain.

We now have to explain, inductively, how all moves of Player I in the k-pebble game
are answered by Player II and how, in the process, the universe is further partitioned. We
inductively assume that Player II has a winning strategy for each of the 3-pebble, m-move
sub-games. There are two cases:

Vertical: Player I places a new pebble on a point a that is in the domain of a vertical
game: (a1, a2; b1, b2). We thus know that a1 is a proper ancestor of a. The interesting
case is where neither of a and a2 is above the other so, without loss of generality, assume
that a < a2. We place x3 on a′2, the child of a + a2 that is above a2. Let Player II move
according to her winning strategy, placing x3 on some point b′2. We split the original game
into (a1, a

′
2; b1, b

′
2) and (a′2, a2; b

′
2, b2) so Player II has a winning strategy for these 3-pebble,

m − 1 move sub-games. Next, in the (a1, a
′
2; b1, b

′
2) game we place x3 on ap, the parent of

34 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

a′2 and we let Player II answer according to her winning strategy, placing x3 on some point,
bp. We then split off the game (a1, ap; b1, bp).

Returning to the game (a1, a
′
2; b1, b

′
2), we have Player I place x3 on a′, the sibling of a′2

above a, and let Player II answer according to her winning strategy, placing x3 on some
point, b′.

Finally, we let Player I move x1 to a, and let Player II reply with x1 on some point b.
The sub-games are thus: (a1, ap; b1, bp), (a

′, a′2; b
′, b′2), (a

′, a; b′, b), and (a′2, a2; b
′
2, b2) and

Player II has winning strategies for the G3
m−3 game on all of them.

Horizontal: In this case, we have the configuration, (a1, a2; b1, b2), consisting of a pair
of siblings. The only interesting case occurs when Player I puts a new pebble on some
vertex, a, s.t. a1 < a < a2. In this case, we have Player I place pebble x3 on a′, the sibling
of a1 above a. Player II will place pebble x3 on some vertex, b′, which must be a sibling of
b1 and b2.

Next, in the game below a′ and b′, we let Player I place pebble x2 on a and we let
Player II answer according to her winning strategy in this game, placing x2 on some vertex,
b. The domain of the original configuration is thus split into domains for three sub-games:
(a1, a

′; b1, b
′), (a′, a2; b

′, b2), and (a′, a; b′, b). On each of these, Player II has a winning
strategy for the 3-pebble, m− 2 move game.

We now complete the proof that Player II wins Gk
k(a1, a2; b1, b2). Whenever Player I

places a new pebble on some point, say a, in the original game, Player II will answer as
described above, i.e., in one of the little games we will have Player II wins G3

3r(a, a
′; b, b′)

where there are r moves remaining in the big game.
Player II then answers in the big game by placing the corresponding pebble on b. To

see that the resulting moves are a win for Player II, we must just consider any two pebbled
points, ai, aj ∈ A, and bi, bj ∈ B. If they came from the same sub-game, then they agree on
relations �desc,≺sib because Player II wins the sub-game. Otherwise, ai, bi came from one
sub-game, Gi, and aj , bj came from another sub-game, Gj . By our choice of the domains
and transitivity of �desc,≺sib, it thus follows that ai, aj stand in the same relation with
respect to �desc,≺sib as bi, bj do.

6.2. The two-variable fragment. In this section, we construct a temporal logic that
captures the two-variable fragment of FO over nested words. Note that for finite unranked
trees, a navigational logic capturing FO2 is known [21, 20]: it corresponds to a fragment of
XPath. However, translating the basic predicates over trees into the vocabulary of nested
words requires 3 variables, and thus we cannot apply existing results even in the finite case.

Our temporal logic will be based on several next and eventually operators. Since FO2

over a linear ordering cannot define the successor relation but temporal logics have next
operators, we explicitly introduce successors into the vocabulary of FO. These successor re-
lations in effect partition the linear edges into three disjoint types; interior edges, call edges,
and return edges, and the nesting edges (except those from a position to its linear successor)
into two disjoint types; call-return summaries, and call-interior-return summaries.

• Si(i, j) holds iff j = i+ 1 and either µ(i, j) or i is not a call and j is not a return.
• Sc(i, j) holds iff i is a call and j = i+ 1 is not a return;
• Sr(i, j) holds iff i is not a call and j = i+ 1 is a return.
• Scr(i, j) holds iff µ(i, j) and there is a path from i to j using only call and return edges.
• Scir(i, j) holds iff µ(i, j) and neither j = i+ 1 nor Scr(i, j).

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 35

Let T denote the set {c, i, r, cr, cir} of all edge types. In addition to the built-in predi-
cates St for t ∈ T , we add the transitive closure of all unions of subsets of these relations.
That is, for each non-empty set Γ ⊆ T of edge types, let SΓ stand for the union ∪t∈ΓS

t,
and let ≤Γ be the reflexive-transitive closure of SΓ. Now when we refer to FO2 over nested
words, we mean FO2 in the vocabulary of the unary predicates plus all the ≤Γ’s, the five
successor relations, and the built-in unary call and ret predicates.

We define a temporal logic unary-NWTL that has future and past versions of next
operators parameterized by edge types, and eventually operators parameterized by a set of
edge types. For example, ✸{c} means eventually along a path containing only call edges.
Its formulas are given by:

ϕ := ⊤ | a | call | ret | ¬ϕ | ϕ ∨ ϕ′ |

©tϕ | ⊖tϕ | ✸Γϕ | Γϕ

where a ranges over Σ, t ranges over T , and Γ ranges over non-empty subsets of T . The
semantics is defined in the obvious way. For example, (w̄, i) |= ✸Γϕ iff for some position

j, i ≤Γ j and (w̄, j) |= ϕ; (w̄, i) |= ©tϕ iff for some position j, St(i, j) and (w̄, j) |= ϕ; and
(w̄, i) |= call iff call(i) holds in w̄.

For an FO2 formula ϕ(x) with one free variable x, let qdp(ϕ) be its quantifier depth,
and for a unary-NWTL formula ϕ′, let odp(ϕ′) be its operator depth.

Theorem 6.4.

(1) unary-NWTL is expressively complete for FO2 over nested words.
(2) If formulas are viewed as DAGs (i.e identical subformulas are shared), then every

FO2 formula ϕ(x) can be converted to an equivalent unary-NWTL formula ϕ′ of size

2O(|ϕ|(qdp(ϕ)+1)) and odp(ϕ′) ≤ 10 qdp(ϕ). The translation is computable in time poly-
nomial in the size of ϕ′.

(3) Model checking of unary-NWTL can be carried out with the same worst case complexity
as for NWTL.

Proof. The translation from unary-NWTL into FO2 is standard and can be done with
negligible blow-up in the size of the formula, so we concentrate on the other direction. The
proof generalizes the proof of an analogous result for unary temporal logic over words from
[9].

Given an FO2 formula ϕ(x) the translation procedure works a follows. When ϕ(x) is
atomic, i. e., of the form a(x), it outputs a. When ϕ(x) is of the form ψ1 ∨ ψ2 or ¬ψ—we
say that ϕ(x) is composite—it recursively computes ψ′1 and ψ′2, or ψ

′ and outputs ψ′1 ∨ ψ
′
2

or ¬ψ′. The two cases that remain are when ϕ(x) is of the form ∃xϕ∗(x) or ∃y ϕ∗(x, y). In
both cases, we say that ϕ(x) is existential. In the first case, ϕ(x) is equivalent to ∃y ϕ∗(y)
and, viewing x as a dummy free variable in ϕ∗(y), this reduces to the second case.

In the second case, we can rewrite ϕ∗(x, y) in the form

ϕ∗(x, y) = β(χ0(x, y), .., χr−1(x, y), ξ0(x), .., ξs−1(x), ζ0(y), .., ζt−1(y))

where β is a propositional formula, each formula χi is an atomic order formula, each formula
ξi is an atomic or existential FO2 formula with qdp(ξi) < qdp(ϕ), and each formula ζi is an
atomic or existential FO2 formula with qdp(ζi) < qdp(ϕ).

In order to be able to recurse on subformulas of ϕ we have to separate the ξi’s from the
ζi’s. We first introduce a case distinction on which of the subformulas ξi hold or not. We

36 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

obtain the following equivalent formulation for ϕ:
∨

γ∈{⊤,⊥}s

(
∧

i<s

(ξi ↔ γi) ∧ ∃y β(χ0, . . . , χr−1, γ0, . . . , γs−1, ζ0, . . . , ζt−1)) .

We proceed by a case distinction on which order relation holds between x and y, where
x ≤ y. We consider mutually exclusive cases, determined by the following formulas, which
we call order types.

• Ψ0 is x = y.
• For each t ∈ T , Ψt is S

t(x, y).
• For each t ∈ T , Φt is ∃z (St(x, z) ∧ z <t y).
• Let o = t1, t2, . . . tk be a sequence over T such that 2 ≤ k ≤ 5, all ti’s are distinct, and a
call never appears before return (that is, if ti = c then tj 6= r for j > i). Then Ψo stands
for

∃z1, z
′
1, z2, z

′
2, . . . zk (St1(x, z1) ∧ z1 ≤T1 z′1 ∧ S

t2(z′1, z2) ∧ z2 ≤T2 z′2 ∧ · · · ∧ zk ≤Tk y)

where for 1 ≤ i ≤ k, the set Ti equals the set {t1, t2 . . . ti}, but with r removed if both c
and r belong to this set.

We claim that these order types are mutually exclusive and complete, and are expressible
in unary-NWTL (and hence, in FO2). First, let us show that the order types form a
disjoint partition, meaning for all pairs (x, y) such that x ≤ y, we have exactly one of these
relationships holding true. To see this, suppose x < y. Then either St(x, y) holds for some
type t (and the successor relations St are disjoint, for distinct t’s), or there is a path from
x to y that uses at least two edges. The key observation is that a path from x to y is a
summary path iff the path does not contain a call edge followed later by a return edge. Also,
there is a unique summary path from x to y. We can now classify the paths by the edge
types that this unique summary path contains, and the order in which they first appear in
the path. For example, Φc(x, y) holds when there is a path from x to y using 2 or more
call edges; Φc,cir(x, y) holds when there is a path from x to y which begins with a call edge,
uses at least one call-interior-return summary edge, and uses only these two types of edges;
Φr,i,c(x, y) holds when there is a path from x to y that can be split into three consecutive
parts: a part containing only return edges, a part containing at least one internal and only
internal and return edges, and a part containing at least one call and only call and internal
edges. Note that some of these order types are empty: for example, two summary edges
can never follow one another, and hence Φcr(x, y) can never hold. Emptiness of some of the
order types is not relevant to the proof.

When we assume that one of these order types is true, each atomic order formula
evaluates to either ⊤ or ⊥, in particular, each of the χi’s evaluates to either ⊤ or ⊥; we will
denote this truth value by χτi . For example, when Ψcr(x, y) holds then (1) St(x, y) is true
for t = cr and false for t 6= cr, and (2) ≤Γ is true if Γ contains cr or if Γ contains both c
and r, and false otherwise.

We can finally rewrite ϕ as follows, where Υ stands for the set of all order types:
∨

γ∈{⊤,⊥}s

(
∧

i<s

(ξi ↔ γi) ∧
∨

τ∈Υ

∃y(τ ∧ β(χτ0 , . . . , χ
τ
r−1, γ, ζ))) .

If τ is an order type, ψ(x) an FO2 formula, and ψ′ an equivalent unary-NWTL formula,
there is a way to obtain a unary-NWTL formula τ〈ψ〉 equivalent to ∃y(τ ∧ψ(y)), as follows.
Assume that x ≤ y.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 37

• For the order type Ψ0, τ〈ψ
′〉 is ψ′ itself.

• For each t ∈ T , for the order type Ψt, τ〈ψ
′〉 is ©

t
ψ′.

• For each t ∈ T , for the order type Φt, τ〈ψ
′〉 is ©

t©t
✸{t}ψ′.

• For order type Ψo, where o = t1, t2, . . . tk is a sequence over T , τ〈ψ′〉 is ©t1✸T1©t2 · · ·
✸Tkψ′, where for 1 ≤ i ≤ k ≤ 5, the set Ti equals the set {t1, t2 . . . ti}, but with r removed
if both c and r belong to this set.

The case corresponding to past operators is analogous. Our procedure will therefore recur-
sively compute ξ′i for i < s and ζ ′i(x) for i < t and output

∨

γ∈{⊤,⊥}s

(
∧

i<s

(ξ′i ↔ γi) ∧
∨

τ∈Υ

τ
〈

β(χτ0 , .., χ
τ
r−1, γ, ζ

′
0(x), . . . , ζ

′
t−1(x))

〉

) . (6.1)

Now we verify that |ϕ′| and odp(ϕ′) are bounded as stated in the theorem. Note that
the size |ϕ′| is measured by viewing the unary-NWTL formula as a DAG, i.e., sharing
identical subformulas. That odp(ϕ′) ≤ 10 qdp(ϕ) is easily seen from the operator depth

in the translation table above. The proof that |ϕ′| ≤ 2c|ϕ|(qdp(ϕ)+1) for some constant c is
inductive on the quantifier depth of ϕ. The base case is trivial, and the only interesting
case in the inductive step is when ϕ is of the form ∃yϕ∗(x, y) as above. In this case, we

have to estimate the length of (6.1). There are 2s ≤ 2|ϕ| possibilities for γ in (6.1), and
each disjunct in (6.1) has length at most d |ϕ| maxi<s,j<t(|ξ

′
i|, |ζ

′
j |) for some constant d.

By induction hypothesis, the latter is bounded by d |ϕ| 2c|ϕ|qdp(ϕ), which implies the claim,
provided c is chosen large enough.

It is straightforward to verify that our translation to ϕ′ can be computed in time
polynomial in |ϕ′|.

Model checking of unary-NWTL can be achieved with the same complexity as for
NWTL using a variant of the tableaux construction in Section 5.

7. Conclusion

We have provided several new temporal logics over nested words and shown that they are
first-order expressively complete. We have furthermore shown that first-order logic over
nested words has the three-variable property, and we have also provided a temporal logic
over nested words that is complete for two-variable first-order logic. We have shown, via an
automata-theoretic approach based on nested word automata, that satisfiability for the logic
NWTL+ is EXPTIME-complete, and that model checking runs in time polynomial in the
size of the RSM model and exponential in the size of the formula. When the within modality
is added to NWTL, the complexity of model checking becomes doubly exponential. We note
that it remains open whether the original temporal logic CaRet, proposed for nested words
in [2], is first-order complete, but we conjecture that it is not.

Acknowledgments

The authors were supported by: Alur – NSF CPA award 0541149; Arenas – FONDECYT
grants 1050701, 7060172 and 1070732; Arenas and Barceló – grant P04-067-F from the
Millennium Nucleus Centre for Web Research; Immerman – NSF grants CCF-0541018 and
CCF-0830174; Libkin – EC grant MEXC-CT-2005-024502 and EPSRC grant E005039.

38 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

References

[1] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, M. Yannakakis. Analysis of recursive state
machines. ACM TOPLAS 27(4): 786–818 (2005).

[2] R. Alur, K. Etessami and P. Madhusudan. A temporal logic of nested calls and returns. In TACAS’04,
pages 467–481.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC’04, pages 202–211.
[4] R. Alur and P. Madhusudan. Adding nesting structure to words. In DLT’06, pages 1–13.
[5] T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs. In SPIN’00, pages

113–130.
[6] V. Bárány, C. Lóding, O. Serre. Regularity problems for visibly pushdown languages. STACS 2006,

pages 420–431.
[7] Document Object Model DOM. http://www.w3.org/DOM.
[8] J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs. In CAV’01, pages

324–336.
[9] K. Etessami, M. Vardi, and T. Wilke. First-order logic with two variables and unary temporal logic.

Information and Computation 179(2): 279–295, 2002.
[10] M. Frick, M. Grohe. The complexity of first-order and monadic second-order logic revisited. LICS 2002,

215–224.
[11] G. Gottlob, C. Koch. Monadic datalog and the expressive power of languages for web information

extraction. Journal of the ACM 51 (2004), 74–113.
[12] N. Immerman. Descriptive Complexity. Springer, 1999.
[13] N. Immerman and D. Kozen. Definability with bounded number of bound variables. Information and

Computation, 83 (1989), 121-139.
[14] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, 1968.
[15] N. Klarlund, T. Schwentick and D. Suciu. XML: model, schemas, types, logics, and queries. In Logics

for Emerging Applications of Databases, Springer, 2003, pages 1–41.
[16] L. Libkin. Logics for unranked trees: an overview. In ICALP 2005, pages 35-50.
[17] C. Löding, P. Madhusudan, O. Serre. Visibly pushdown games. In FSTTCS 2004, pages 408–420.
[18] P. Madhusudan, personal communication.
[19] M. Marx. Conditional XPath, the first order complete XPath dialect. In PODS’04, pages 13–22.
[20] M. Marx. Conditional XPath. TODS 30(4): 929–959, 2005.
[21] M. Marx and M. de Rijke. Semantic characterizations of navigational XPath. In TDM’04, pages 67–73.
[22] F. Neven, T. Schwentick. Expressive and efficient pattern languages for tree-structured data. PODS’00,

pages 145-156.
[23] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past. In LICS’02, pages

383–392.
[24] F. Neven and T. Schwentick. Query automata over finite trees. Theor. Comput. Sci. 275(1-2): 633–674,

2002.
[25] SAX: A Simple API for XML. http://www.saxproject.org.
[26] B.-H. Schlingloff. Expressive completeness of temporal logic of trees. J. Appl. Non-Classical Log. 2:

157-180, 1992.
[27] L. Segoufin. Typing and querying XML documents: some complexity bounds. In PODS’03, pages 167–

178.
[28] L. Segoufin, V. Vianu. Validating streaming XML documents. In PODS’02, pages 53–64.
[29] V. Vianu. A web Odyssey: from Codd to XML. In ACM PODS’01, pages 1–15.

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 39

Appendix A. Proof of Lemma 4.3

For translating each NWTLss formula ϕ into an equivalent NWTL formula βϕ, we need to
consider only the case of until/since operators. The formula ψUσ

ssθ is translated into

βθ ∨

(

βψ ∧

((

(βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → (©µ©βψ ∨©µ©βθ))

)

Uσ

(

(βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧

©(¬ret ∧ γ)))

)))

, (A.1)

where γ is a formula defined as follows:
(

(βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → (©βψ ∨©µ©βψ)) ∧ (©ret → call)

)

Uσ

(

(βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ))

)

The proof that the translation is correct is by induction on the structure of NWTLss for-
mulas. Again we need to consider only the case of until/since operators. Assume that ψ,
θ are equivalent to βψ and βθ, respectively. We need to prove that ψUσ

ssθ is equivalent to
(A.1).

(⇐) We first show that if (w̄, i) satisfies (A.1), then (w̄, i) |= ψUσ
ssθ. Given that (w̄, i)

satisfies (A.1), either (w̄, i) |= βθ or (w̄, i) satisfies the second disjunct of (A.1). Since βθ
and θ are assumed to be equivalent, in the former case (w̄, i) |= ψUσ

ssθ. Thus, assume that
the latter case holds. Then (w̄, i) |= ψ, since ψ and βψ are equivalent, and there exists a
summary path i = i0 < i1 < · · · < ip such that:

(w̄, ik) |= (βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → (©µ©βψ ∨©µ©βθ)), 0 ≤ k < p, (A.2)

(w̄, ip) |= (βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ ∨©(¬ret ∧ γ))). (A.3)

We consider three cases.

(I) Assume that there exists a position ik (k ∈ [0, p − 1]) such that ik is a matched call
position and (w̄, ik) |= ©µ©βθ, and let iq (q ∈ [0, p − 1]) be the first such position.
Then only one semi-strict path with endpoints i = i0 and r(iq)+1 can be obtained from
the sequence i0 < i1 < · · · < iq < r(iq) + 1 by removing all positions ik (with k ∈ [1, q])
such that ik−1 is a matched call position and r(ik−1) = ik; let i0 = j0 < j1 < · · · < jℓ =
r(iq) + 1 be that semi-strict path. Next we show that:

(w̄, jk) |= ψ 0 ≤ k < ℓ,

(w̄, jℓ) |= θ,

from which we conclude that (w̄, i) |= ψUσ
ssθ.

Given that jℓ = r(iq) + 1, (w̄, iq) |= ©µ©βθ and we assume that θ and βθ are
equivalent, we have that (w̄, jℓ) |= θ. Next we show that (w̄, jk) |= ψ for every k ∈
[0, ℓ − 1]. If k = 0, then the property holds since (w̄, i) |= ψ and we assume that ψ
and βψ are equivalent. Assume that k ∈ [1, ℓ − 1]. If jk is not a return position, then
(w̄, jk) |= ψ since (w̄, jk) |= βψ ∨ ret (recall that jk is a position in the summary path
i0 < i1 < · · · < iq since k < ℓ). If jk is a return position, then we have to consider
two cases. If jk−1 = jk − 1, then we have that jk − 1 is not a call position since jk is

40 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

a return position, j0 < j1 < · · · < jℓ is a semi-strict path and k − 1 ∈ [0, ℓ − 2]. Given
that jk−1 is a position in the summary path i0 < i1 < · · · < iq−1, we conclude that
(w̄, jk − 1) |= ¬mcall → ©βψ. Thus, from the fact that jk−1 is not a call position,
we conclude that (w̄, jk) |= βψ. Hence, (w̄, jk) |= ψ. Otherwise, jk−1 6= jk − 1, and we
conclude that jk−1 is a matched call position and jk = r(jk−1)+1. Thus, since iq is the
smallest one satisfying ©µ©βθ and jk−1 < iq, and we know from (A.2) that (w̄, jk−1) |=
mcall → (©µ©βψ ∨ ©µ©βθ), we see that (w̄, jk−1) |= mcall → ©µ©βψ and, since
jk−1 is a matched call, we conclude that (w̄, jk) |= βψ and, therefore, (w̄, jk) |= ψ.

(II) Assume that condition (I) does not hold, and also assume that either ip is not a matched
call position or ip is a matched call position and (w̄, ip) |= ©βθ ∨©µ©βθ. Then given
that (w̄, ip) |= ¬mcall → ©βθ, we have that there exists a position ip+1 > ip such that
(w̄, ip+1) |= βθ and ip+1 is either ip + 1 or r(ip) + 1. Only one semi-strict path with
endpoints i = i0 and ip+1 can be obtained from the sequence i0 < i1 < · · · < ip < ip+1

by removing all positions ik (with k ∈ [1, p]) such that ik−1 is a matched call position
and r(ik−1) = ik; let i0 = j0 < j1 < · · · < jℓ = ip+1 be that semi-strict path. Next we
show that:

(w̄, jk) |= ψ 0 ≤ k < ℓ,

(w̄, jℓ) |= θ,

from which we conclude that (w̄, i) |= ψUσ
ssθ.

Given that (w̄, ip+1) |= βθ and the hypothesis that θ and βθ are equivalent, we have
that (w̄, jℓ) |= θ. Next we show that (w̄, jk) |= ψ for every k ∈ [0, ℓ−1]. If k = 0, then the
property holds since (w̄, i) |= ψ. Assume that k ∈ [1, ℓ−1]. If jk is not a return position,
then (w̄, jk) |= ψ since (w̄, jk) |= βψ ∨ ret (recall that jk is a position in the summary
path i0 < i1 < · · · < ip). If jk is a return position, then we have to consider two cases.
If jk−1 = jk − 1, then we have that jk − 1 is not a call position since j0 < j1 < · · · < jℓ
is a semi-strict path and k − 1 ∈ [0, ℓ − 2]. Thus, given that jk−1 is a position in the
summary path i0 < i1 < · · · < ip−1, we have that (w̄, jk − 1) |= ¬mcall → ©βψ, from
which we conclude that (w̄, jk) |= βψ. Hence, (w̄, jk) |= ψ. Otherwise, jk−1 6= jk − 1,
and we conclude that jk−1 is a matched call position and jk = r(jk−1) + 1. Thus, given
that condition (I) does not hold, we have that (w̄, jk−1) |= mcall → ©µ©βψ (since
jk−1 is a position in the summary path i0 < i1 < · · · < ip−1 and (w̄, jk−1) 6|= ©µ©βθ).
Thus, given that jk−1 is a matched call, we conclude from (A.2) that (w̄, jk) |= βψ and,
therefore, (w̄, jk) |= ψ.

(III) We now look at the remaining cases, that is, condition (I) does not hold, ip is a matched
call, and (w̄, ip) |= ¬(©βθ ∨ ©µ©βθ). By (A.3), this implies (w̄, ip) |= ©(¬ret ∧ γ).
From (w̄, ip) |= ©γ, we see that there exists a summary path ip+1 = ip+1 < ip+2 . . . < iq
such that:

(w̄, ik) |= (βψ ∨ ret)∧(¬mcall → ©βψ)∧

(mcall → (©βψ ∨©µ©βψ)) ∧ (©ret → call) p+ 1 ≤ k < q,

(w̄, iq) |= (βψ ∨ ret)∧(¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ)).

We first show that iq < r(ip). Assume to the contrary that iq ≥ r(ip). Since the first
position on the path is inside the call ip, there exists k ∈ [p+ 1, q] such that ik = r(ip).
Given that ip+1 is not a return position (since (w̄, ip) |= ¬©ret), we have that q > p+1
and, therefore, ik − 1 is also a position in the summary path ip+1 < ip+2 . . . < iq. But
given that ik = r(ip) is the matching return of ip and ip + 1 ≤ ik − 1, we have that

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 41

ik − 1 is not a call position. Thus, (w̄, ik − 1) 6|= ©ret → call, which contradicts the
fact that ip+1 < ip+2 . . . < iq witnesses formula γ. Therefore indeed iq < r(ip).

Given that (w̄, iq) |= (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ)), we conclude
that there exists a position iq+1 > iq such that (w̄, iq+1) |= βθ and iq+1 is either iq+1 or
r(iq)+1. Only one semi-strict path with endpoints i = i0 and iq+1 can be obtained from
the sequence i0 < i1 < · · · < iq < iq+1 by removing all positions ik (with k ∈ [1, q]) such
that ik−1 is a matched call position and r(ik−1) = ik; let i0 = j0 < j1 < · · · < jℓ = iq+1

be that semi-strict path. Next we show that:

(w̄, jk) |= ψ 0 ≤ k < ℓ,

(w̄, jℓ) |= θ,

from which we conclude that (w̄, i) |= ψUσ
ssθ.

Given that (w̄, iq+1) |= βθ, we conclude that that (w̄, jℓ) |= θ. Next we show that
(w̄, jk) |= ψ for every k ∈ [0, ℓ − 1]. If k = 0, then the property holds since (w̄, i) |= ψ
and we assume that ψ and βψ are equivalent. Assume that k ∈ [1, ℓ − 1]. If jk is
not a return position, then (w̄, jk) |= ψ since (w̄, jk) |= βψ ∨ ret (recall that jk is a
position in the sequence i0 < i1 < · · · < iq). If jk is a return position, then we need
to consider two cases. If jk−1 = jk − 1, then we have that jk − 1 is not a call position
since j0 < j1 < · · · < jℓ is a semi-strict path and k − 1 ∈ [0, ℓ − 2]. Thus, given that
jk−1 is a position in the sequence i0 < i1 < · · · < iq−1 and jk−1 6= ip (since ip is a
call position), we have that (w̄, jk − 1) |= ¬mcall → ©βψ, from which we conclude
that (w̄, jk) |= βψ. Hence, (w̄, jk) |= ψ. If jk−1 6= jk − 1, then we have that jk−1 is a
matched call position and jk = r(jk−1) + 1. Moreover, in this case we also have that
jk < ip. Indeed, to see this, assume to the contrary that ip ≤ jk. Then given that
iq < r(ip), we know that iq+1 ≤ r(ip). Thus, given that ip is a call position, k < ℓ
and jℓ = iq+1, we conclude that ip+1 ≤ jk ≤ iq. Therefore, given that jk is a return
position and ip+1 < · · · < iq is a summary path, there exists s ∈ [p + 1, q] such that is
is a call position with matching return jk. But since jk−1 and jk are both positions in
the summary path ip+1 < · · · < iq and jk = r(jk−1) + 1, we conclude that this path
contains three positions a, b and c such that a < b < c and c is the matching return
of call position a, which contradicts the definition of summary path. So we proved
jk < ip. Now we have that (w̄, jk−1) |= mcall → (©µ©βψ ∨ ©µ©βθ), from which
we conclude that (w̄, jk) |= βψ since condition (I) does not hold and jk = r(jk−1) + 1.
Hence, (w̄, jk) |= ψ.

(⇒) We now show that if (w̄, i) |= ψUσ
ssθ, then (w̄, i) satisfies (A.1). Given that (w̄, i) |=

ψUσ
ssθ, there exists a semi-strict path i = i0 < i1 < · · · < iq such that:

(w̄, ik) |= ψ 0 ≤ k < q, (A.4)

(w̄, iq) |= θ. (A.5)

Notice that if q = 0, then (w̄, i) |= θ and, therefore, (w̄, i) satisfies the first disjunct of (A.1)
since θ and βθ are assumed to be equivalent. Thus, we suppose that q > 0, and we consider
two cases.

(I) Assume that there exists k ∈ [0, q−1] such that ik is a matched call position, ik+1 = ik+1
and ik+1 is not a return position, and let ip be the first such position. Then only one
summary path with endpoints i = i0 and ip can be obtained from the semi-strict path
i0 < i1 < · · · < ip by adding positions r(ik) for every k ∈ [0, p − 1] such that ik is a

42 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

matched call position and ik+1 = r(ik) + 1; let i0 = j0 < j1 < · · · < jℓ = ip be that
summary path. Next we show that:

(w̄, jk) |= (βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → ©µ©βψ) 0 ≤ k < ℓ,
(w̄, jℓ) |= (βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ ∨©(¬ret ∧ γ))),

from which we conclude that (w̄, i) satisfies (A.1).
We start by showing that the first condition above holds. Let k ∈ [0, ℓ − 1]. If jk is

a return position, then we have that (w̄, jk) |= (βψ ∨ ret). Otherwise, by definition of
j0 < . . . < jℓ, we have that jk is a position in the semi-strict path i0 < i1 < · · · < ip−1.
Thus, from (A.4) we conclude that (w̄, jk) |= ψ and, hence, (w̄, jk) |= (βψ ∨ ret)
since ψ and βψ are assumed to be equivalent. It only remains to show that (w̄, jk) |=
(¬mcall → ©βψ) ∧ (mcall → ©µ©βψ). If jk is a matched call position, then by
definition of ip we have that jk and r(jk) + 1 are both positions in the semi-strict path
i0 < i1 < · · · < ip−1. Thus, from (A.4) we conclude that (w̄, r(jk) + 1) |= ψ and,
therefore, (w̄, jk) |= (mcall → ©µ©βψ). If jk is not a matched call position, then we
have that jk + 1 is a position in the semi-strict path i0 < i1 < · · · < ip. Thus, from
(A.4) we conclude that (w̄, jk + 1) |= ψ and, therefore, (w̄, jk) |= (¬mcall → ©βψ).

We now show that the second condition above also holds. Given that jℓ = ip is a
matched call position, we have to prove that (w̄, jℓ) |= βψ ∧ (©βθ ∨©µ©βθ∨©(¬ret∧
γ)). Given that (w̄, ip) |= ψ and we assume that ψ and βψ are equivalent, we have
that (w̄, jℓ) |= βψ. If q = p + 1, then given that (w̄, iq) |= θ and we assume that θ
and βθ are equivalent, we conclude that (w̄, jℓ) |= ©βθ. Thus, assume that q > p + 1.
Next we show that (w̄, jℓ) |= ©(¬ret ∧ γ) in this case. Given that ip+1 = ip + 1 and
ip+1 is not a return position, we have (w̄, ip + 1) |= ¬ret, and it only remains to prove
that (w̄, ip + 1) |= γ. Given that q > p + 1, only one summary path with endpoints
ip + 1 and iq−1 can be obtained from the sequence ip + 1 = ip+1 < ip+2 < · · · < iq−1
by adding positions r(ik) for every k ∈ [p+ 1, q − 2] such that ik is a call position and
ik+1 = r(ik) + 1; let ip + 1 = s0 < s1 < · · · < sm = iq−1 be that summary path. Next
we show that:

(w̄, sk) |= (βψ ∨ ret)∧(¬mcall → ©βψ)∧

(mcall → (©βψ ∨©µ©βψ)) ∧ (©ret → call) 0 ≤ k < m,

(w̄, sm) |= (βψ ∨ ret)∧(¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ)).

from which we conclude that (w̄, ip + 1) |= γ.
We start by showing that the first condition above holds. Let k ∈ [0,m− 1]. If sk is

a return position, then we have that (w̄, sk) |= (βψ ∨ ret). Otherwise, by definition of
s0 < . . . < sm, we have that sk is a position in the semi-strict path ip+1 < ip+2 < · · · <
iq−1. Thus, from (A.4) we conclude that (w̄, sk) |= ψ and, hence, (w̄, sk) |= (βψ ∨ ret)
since ψ and βψ are assumed to be equivalent. It only remains to show that:

(w̄, sk) |= (¬mcall → ©βψ) ∧ (mcall → (©βψ ∨©µ©βψ)) ∧ (©ret → call).

If sk is a matched call position, then sk is a position in semi-strict path ip+1 < ip+2 <
· · · < iq−1 and either (a) sk+1 = sk + 1 and sk + 1 is a position in the semi-strict path
ip+1 < ip+2 < · · · < iq−1, or (b) sk+1 = r(sk) and r(sk) + 1 is a position in the semi-
strict path ip+1 < ip+2 < · · · < iq−1. In the former case, from (A.4) we conclude that
(w̄, sk + 1) |= ψ and, therefore, (w̄, sk) |= mcall → ©βψ. In the latter case, from (A.4)
we conclude that (w̄, r(sk)+1) |= ψ and, therefore, (w̄, sk) |= mcall→ ©µ©βψ. Thus,
if sk is a matched call position, then (w̄, sk) |= mcall → (©βψ ∨ ©µ©βψ). Assume
now that sk is not a matched call position. Given that i0 < · · · < ip < ip+1 < · · · < iq

FIRST-ORDER AND TEMPORAL LOGICS FOR NESTED WORDS 43

is a semi-strict path, ip is a matched call position, ip+1 = ip + 1 and ip + 1 is not
a return position, we have that iq ≤ r(ip). Thus, given that sk < iq, we have that
ip < sk < r(ip), which implies that sk is either an internal position or a return position.
Therefore, sk+1 is a position in the semi-strict path ip+1 < ip+2 < · · · < iq−1 and, thus,
from (A.4) we conclude that (w̄, sk + 1) |= ψ. Hence, (w̄, sk) |= ¬mcall → ©βψ, and
it only remains to prove that (w̄, sk) |= ©ret → call. On the contrary, assume that
(w̄, sk) |= ©ret and (w̄, sk) 6|= call. Given that sk is not a call position and sk < iq−1,
we have that sk + 1 is a position in the semi-strict path ip+1 < · · · < iq−1. Thus, given
that (w̄, sk) |= ©ret, we conclude that there exists a return position in the sequence
ip+1 < · · · < iq−1. But this leads to a contradiction since from the fact that iq ≤ r(ip),
we can conclude that none of the elements ip+1, . . ., iq−1 is a return position.

To conclude this part of the proof, we need to show that the second condition above
holds, that is, (w̄, sm) |= (βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ)).
Given that sm = iq−1, we have that (w̄, sm) |= ψ and, therefore, (w̄, sm) |= βψ ∨ ret. It
remains to show that (w̄, sm) |= (¬mcall → ©βθ)∧(mcall → (©βθ∨©µ©βθ)). Given
that iq ≤ r(ip), we know that sm = iq−1 is not a return position. If sm is an internal
position, then iq = iq−1 + 1 and, thus, (w̄, sm) |= ¬mcall → ©βθ since (w̄, iq) |= θ. If
sm is a call position, then sm has a matching return and either iq = iq−1 + 1 or iq =
r(iq−1)+1. In the former case, we have that (w̄, sm) |= mcall → ©βθ since (w̄, iq) |= θ.
In the latter case, we have that (w̄, sm) |= mcall → ©µ©βθ since (w̄, iq) |= θ. Hence,
we conclude that (w̄, sm) |= mcall → (©βθ ∨©µ©βθ).

(II) Assume that condition (I) does not hold, that is, assume that there is no k ∈ [0, q −
1] such that ik is a matched call position, ik+1 = ik + 1 and ik+1 is not a return
position. Then only one summary path with endpoints i = i0 and iq can be ob-
tained from the semi-strict path i0 < i1 < · · · < iq by adding positions r(ik) for
every k ∈ [0, q − 1] such that ik is a matched call position and ik+1 = r(ik) + 1;
let i0 = j0 < j1 < · · · < jℓ = iq be that summary path. Next we show that:
(w̄, jk) |= (βψ ∨ ret) ∧ (¬mcall → ©βψ) ∧ (mcall → (©µ©βψ ∨©µ©βθ)) 0 ≤ k < ℓ− 1,
(w̄, jℓ−1) |= (βψ ∨ ret) ∧ (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ ∨©(¬ret ∧ γ))),

from which we conclude that (w̄, i) satisfies (A.1).
We start by showing that the first condition above holds. Let k ∈ [0, ℓ − 2]. If jk is

a return position, then we have that (w̄, jk) |= (βψ ∨ ret). Otherwise, by definition of
j0 < . . . < jℓ, we have that jk is a position in the semi-strict path i0 < i1 < · · · < iq−1.
Thus, from (A.4) we conclude that (w̄, jk) |= ψ and, hence, (w̄, jk) |= (βψ ∨ ret)
since ψ and βψ are assumed to be equivalent. It only remains to show that (w̄, jk) |=
(¬mcall → ©βψ) ∧ (mcall → (©µ©βψ ∨ ©µ©βθ)). If jk is a matched call position
and k < ℓ − 2, then given that i0 < i1 < · · · < iq is a semi-strict path and condition
(I) does not hold, we have that jk and r(jk) + 1 are both positions in the semi-strict
path i0 < i1 < · · · < iq−1. Thus, from (A.4) we conclude that (w̄, r(jk) + 1) |= ψ and,
therefore, (w̄, jk) |= mcall → ©µ©βψ. If jk is a matched call position and k = ℓ − 2,
then given that i0 < i1 < · · · < iq is a semi-strict path and condition (I) does not hold,
we have that jℓ−1 = r(jk) and iq = jℓ = r(jk) + 1. Thus, given that (w̄, iq) |= θ, we
conclude that (w̄, jk) |= mcall → ©µ©βθ. Finally, if jk is not a matched call position,
then we have that jk + 1 is a position in the semi-strict path i0 < i1 < · · · < iq−1
(since k < ℓ − 1). Thus, from (A.4) we conclude that (w̄, jk + 1) |= ψ and, therefore,
(w̄, jk) |= ¬mcall→ ©βψ.

44 R. ALUR, M. ARENAS, P. BARCELÓ, K. ETESSAMI, N. IMMERMAN, AND L. LIBKIN

To conclude the proof of the lemma, we show that the second condition above also
holds, that is, (w̄, jℓ−1) |= (βψ ∨ ret)∧ (¬mcall → ©βθ)∧ (mcall → (©βθ ∨©µ©βθ ∨
©(¬ret ∧ γ))). If jℓ−1 is a return position, we immediately conclude that (w̄, jℓ−1) |=
(βψ ∨ ret). Thus, assume that jℓ−1 is not a return position. But in this case we
conclude that jℓ−1 is a position in the semi-strict path i0 < i1 < · · · < iq−1 and, thus,
(w̄, jℓ−1) |= (βψ ∨ret) since (w̄, jℓ−1) |= ψ and we assume that ψ and βψ are equivalent.
It only remains to show that:

(w̄, jℓ−1) |= (¬mcall → ©βθ) ∧ (mcall → (©βθ ∨©µ©βθ ∨©(¬ret ∧ γ))).

If jℓ−1 is a matched call position, then given that condition (I) does not hold, we have
that iq = jℓ = r(jℓ−1) = jℓ−1 + 1. Thus, given that (w̄, iq) |= θ and we assume that
θ and βθ are equivalent, we conclude that (w̄, jℓ−1) |= ©βθ and, therefore, (w̄, jℓ−1) |=
mcall → ©βθ. If jℓ−1 is not a matched call position, then we have that iq = jℓ =
jℓ−1 + 1. Thus, given that (w̄, iq) |= θ, we have that (w̄, jℓ−1) |= ©βθ and, therefore,
(w̄, jℓ−1) |= ¬mcall → ©βθ. This concludes the proof of Lemma 4.3.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	Related Work
	Organization

	2. Notations
	2.1. Nested Words
	2.2. Games and types

	3. Temporal Logics over Nested Words
	3.1. Paths in Nested Words
	3.2. Specifying Requirements

	4. Expressive Completeness
	4.1. Expressive completeness and NWTL
	4.2. The within operator
	4.3. CaRet and other within operators

	5. Model-Checking and Satisfiability
	5.1. Nested word automata
	5.2. Tableau construction
	5.3. Checking the within operator
	5.4. On within and succinctness

	6. Finite-Variable Fragments
	6.1. The three-variable property
	6.2. The two-variable fragment

	7. Conclusion
	Acknowledgments
	References
	Appendix A. Proof of Lemma ??

