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ABSTRACT. The coalgebraic approach to modal logic provides a uniform framework that
captures the semantics of a large class of structurally different modal logics, including
e.g. graded and probabilistic modal logics and coalition logic. In this paper, we intro-
duce the coalgebraic p-calculus, an extension of the general (coalgebraic) framework with
fixpoint operators. Our main results are completeness of the associated tableau calculus
and EXPTIME decidability for guarded formulas. Technically, this is achieved by reducing
satisfiability to the existence of non-wellfounded tableaux, which is in turn equivalent to
the existence of winning strategies in parity games. Our results are parametric in the
underlying class of models and yield, as concrete applications, previously unknown com-
plexity bounds for the probabilistic u-calculus and for an extension of coalition logic with
fixpoints.

1. INTRODUCTION

The extension of a modal logic with operators for least and greatest fixpoints leads to a
dramatic increase in expressive power [1]. The paradigmatic example is of course the modal
p-calculus [14]. In the same way that the p-calculus extends the modal logic K, one can
freely add fixpoint operators to any propositional modal logic, as long as modal operators
are monotone. Semantically, this poses no problems, and the interpretation of fixpoint
formulas can be defined in a standard way in terms of the semantics of the underlying
modal logic.

This apparent simplicity is lost once we move from semantics to syntax: completeness
and complexity even of the modal p-calculus are all but trivial [27] [7], and p-calculi arising
from other monotone modal logics are largely unstudied, with the notable exception of the
graded p-calculus [21I]. Here, we improve on this situation, not by providing a new com-
plexity result for a specific fixpoint logic, but by providing a generic and uniform treatment
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of modal fixpoint logics on the basis of coalgebraic semantics. This allows for a generic
and uniform treatment of a large class of modal logics and replaces the investigation of
a concretely given logic with the study of coherence conditions that mediate between the
axiomatisation and the (coalgebraic) semantics. The use of coalgebras conveniently ab-
stracts the details of a concretely given class of models, which is replaced by the class of
coalgebras for an (unspecified) endofunctor on sets. Specific choices for this endofunctor
then yield specific model classes, such as the class of all Kripke frames or probabilistic
transition systems. A property such as completeness or complexity of a specific logic is
then automatic once the coherence conditions are satisfied. As it turns out, even the same
coherence conditions that guarantee completeness and decidability of the underlying modal
logic entail the same properties of the ensuing p-calculus. This immediately provides us
with a number of concrete examples: as instances of the generic framework, we obtain not
only the known EXPTIME bounds, both for the modal and the graded p-calculus [7), 21], but
also previously unknown EXPTIME bounds for the probabilistic and monotone p-calculus,
and for an extension of coalition logic [I§] with fixpoint operators.

Our main technical results are a syntactical characterisation of satisfiability in terms
of (non-) existence of closed tableaux and a game-theoretic characterisation of satisfiability
that yields an EXPTIME upper bound for the satisfiability problem for guarded formulas.
Along the way, we establish a small model theorem. Here, as usual, a formula is called
guarded if every fixpoint variable occurs only within the scope of a modal operator. If we
assume that every formula can be transformed into an equivalent guarded formula in poly-
nomial time, our EXPTIME decidability result extends to the full coalgebraic p-calculus.
This assumption is generally made in the literature on the modal p-calculus [15], but a
recent paper [I1] argues that in fact no algorithm is known that can perform the transfor-
mation in polynomial time. Therefore we formulate our EXPTIME-decidability result more
restrictive than in [4]. We nevertheless conjecture that our tableau calculus can be used for
proving EXPTIME-decidability for the full coalgebraic p-calculus.

We start by describing a parity game that characterizes model checking for the coal-
gebraic p-calculus. As in the model-checking game for the modal u-calculus (see e.g. [25]),
we allow greatest and least fixpoints to be unfolded ad libitum. Truth of a formula in a
particular state of a model then follows, if only greatest fixpoints are unfolded infinitely
often on the top level along infinite paths, which is captured by a parity condition. The
same technique is employed in the construction of tableaux, which we conceptualise as fi-
nite directed graphs: closed tableaux witness unsatisfiability of the root formula, provided
that along any infinite tableau path one can construct an infinite sequence of formulas (a
trace that tracks the evolution of formulas in a tableau) that violates the parity condition.
In particular, closed tableaux are finitely represented proofs of the unsatisfiability of the
root formula. Soundness of the tableau calculus is established by showing that a winning
strategy in the model checking game precludes existence of a closed tableau. Decidability is
then established with the help of tableau games, where the adversary chooses a tableau rule,
and the player claiming satisfiability chooses one conclusion which effectively constructs a
path in a tableau. In order to turn this tableau game into a parity game we combine the
game board with the transition function of a deterministic parity word automaton. This
automaton checks that on any given play, i.e., on any tableau path, there exists no trace
that violates the parity condition. We prove adequacy of the tableau game by constructing
a satisfying model from a winning strategy in the tableau game, which makes crucial use of
the coherence conditions between the axiomatisation and the coalgebraic semantics. This
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allows us to determine satisfiability of a fixpoint formula by deciding the associated (parity)
tableau game, and the announced EXPTIME upper bound for guarded formulas follows once
we can ensure that legality of moves in the tableau game can be decided in exponential
time.

Related Work. Our treatment is inspired by [17) 26], 24], but we note some important
differences. In contrast to [I7], we use parity games that directly correspond to tableaux,
together with parity automata to detect bad traces. Moreover, owing to the generality of
the coalgebraic framework, the model construction here needs to super-impose a coalgebra
structure on the relation induced by a winning strategy. This construction is necessarily
different from [24], since we cannot argue by induction on modal rank in the presence of
fixpoints. Coalgebraic fixpoint logics are also treated in [26], where an automata theoretic
characterisation of satisfiability is presented. We add to this picture by providing complexity
results and a complete tableau calculus. Moreover, we use standard syntax for modal
operators, which allows us to subsume for instance the graded p-calculus that cannot be
expressed in terms of the V-operator used in op.cit.

2. THE COALGEBRAIC pu-CALCULUS

To keep our treatment fully parametric in the underlying (modal) logic, we define the
syntax of the coalgebraic u-calculus relative to a (fixed) modal similarity type, that is, a
set A of modal operators with associated arities. Throughout, we fix a denumerable set V
of propositional variables. We will only deal with formulas in negation normal form and
abbreviate A = {O | © € A} and V = {p | p € V}. The arity of O € A is the same as that
of ©. The set F(A) of A-formulas is given by the grammar

AB:=p|AVB|AANB|Q(Ay,...,A,) | up.A | vp.A

where p € VUV, © € AUA is n-ary and p does not occur in A in the last two clauses. The
sets of free and bound variables of a formula are defined as usual, in particular p is bound in
up.A and vp.A. Negation = : F(A) — F(A) is given inductively by p =p, ANB = AV B,
Q(A1,...,A,) =9(Ay,...,A,) and up.A = vp.Ap := p| and the dual clauses for V and v.
If S is a set of formulas, then the collection of formulas that arises by prefixing elements
of S by one layer of modalities is denoted by (A U A)(S) = {Q(A1,...,4,) | © € AU
A n-ary, Ay,..., A, € S}. A substitution is a mapping o : V — F(A) and Ao is the result
of replacing all free occurrences of p € V' in A by o(p).

On the semantical side, parametricity is achieved by adopting coalgebraic semantics:
formulas are interpreted over T-coalgebras, where T is an (unspecified) endofunctor on sets,
and we recover the semantics of a large number of logics in the form of specific choices for
T. To interpret the modal operators O € A, we require that T" extends to a A-structure and
comes with a predicate lifting, that is, a natural transformation of type [©] : 2" — 2 0 T°P
for every m-ary modality O € A, where 2 : Set — Set°® is the contravariant powerset
functor. In elementary terms, this amounts to assigning a set-indexed family of functions
([C]x : P(X)" = P(TX))xese: to every n-ary modal operator © € A such that (T'f)~!o
[Olx (A1, ..., An) = [Oly(f~1(A1),..., f1(Ay)) for all functions f : YV — X. If O €
A is n-ary, we put [Q]x(A1,...,4,) = (TX)\ [V]x(X \ A1,..., X \ A,). We usually
denote a structure by the endofunctor 7" and leave the definition of the predicate liftings
implicit. A A-structure is monotone if, for all sets X we have that [O]x(A1,...,A4n) C
[Clx(Bi,...,By,) whenever A; C B; for alli =1,...,n.
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In the coalgebraic approach, the role of frames is played by T'-coalgebras, i.e. pairs
(X,~) where X is a set (of states) and v : X — TX is a (transition) function. A T-model
is a triple (X,~,h) where (X,7) is a T-coalgebra and h : V — P(X) is a valuation of the
propositional variables that we implicitly extend to V UV by putting h(p) = X \ h(p). For
a monotone A-structure T" and a T-model M = (X, ~, h), the truth set [A]yr of a formula
A€ F(A) wrt. M is given inductively by

[Plas = h(p)  [up-Ala = LFP(AY)  [vp.Ala = GFP(A))

[[QQ(Al, e ,An)]]M = ’y_l o [[QQ]]X([[Al]]Ma ey [[An]]M)

where LFP(A;,V[ ) and GFP(AIJ;J ) are the least and greatest fixpoint of the monotone mapping
AN P(X) — P(X) defined by AM(U) = [A]ar where M’ = (X,~,1/) and I'(q) = h(q)
for ¢ # p and W' (p) = U. We write M,z = A if x € [A]x to denote that A is satisfied at
x. A formula A € F(A) is satisfiable w.r.t. a given A-structure T if there exists a T-model
M such that [A]ar # 0. The mappings Ai‘,/[ are indeed monotone in case of a monotone
A-structure, which guarantees the existence of fixpoints.

Example 2.1. 1. T-coalgebras (X,v: X — P(X)) for TX = P(X) are Kripke frames.
If A = {0} for O unary and O = ¢, F(A) are the formulas of the modal u-calculus [14],
and the structure [O]x (U) = {V € P(X) | V C U} gives its semantics.

2. The syntax of the graded p-calculus [21] is given (modulo an index shift) by the
similarity type A = {(n) | n > 0} where (n) = [n], and (n)A reads as “A holds in more than
n successors”. In contrast to op. cit. we interpret the graded p-calculus over multigraphs,

i.e. coalgebras for the functor B
B(X)={f:X — N|supp(f) finite}
where supp(f) = {x € X | f(x) # 0} is the support of f, that extends to a structure

[(m)]x(U) ={f €BX)| > f(x)>n} forUCX.
zelU

Note that this semantics differs from the Kripke semantics for both graded modal logic [10]
and the graded p-calculus. The change of the semantics is needed in order to fit graded
modal logic into the coalgebraic framework, because in the standard semantics of graded
modal logic we cannot interpret the modalities by natural transformations. Both types of
semantics, however, induce the same satisfiability problem: image-finite Kripke frames are
multigraphs where each edge has multiplicity one, and the unravelling of a multigraph can
be turned into a Kripke frame by inserting the appropriate number of copies of each state.
The transformations preserve satisfiability. The fact that the two types of semantics induce
the same satisfiability problem makes use of the fact that the graded p-calculus has the
tree-model property ([21]): a formula of the graded p-calculus is satisfiable on some Kripke
frame iff it is satisfiable on a tree of finitely bounded branching degree. Alternatively, the
fact that the two satisfiability problems are equivalent can be also obtained from the results
in this paper by showing that the tableau calculus for the graded p-calculus is sound over
the class of all Kripke frames.

3. The probabilistic u-calculus arises from the similarity type A = {(p) | p € [0,1] N Q}

where (p) = [p] and (p)¢ reads as “¢ holds with probability at least p in the next state”.
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The semantics of the probabilistic p-calculus is given by the structure

D(X) = {u: X =7 [0,1] | Y @) = 1} [p)]x () = {u € DX) | 3 (a) > p}
zeX xzelU
where U C X and — indicates maps with finite support. Coalgebras for D are precisely
image-finite Markov chains, and the finite model property of the coalgebraic p-calculus that
we establish later ensures that satisfiability is independent of image-finite semantics.
4. Formulas of coalition logic over a finite set N of agents [18] arise via A = {[C] | C C
N}, and are interpreted over game frames, i.e. coalgebras for the functor

G(X) = {(f, (Si)ien) | H Si#0, f: H Si — X}
i€EN i€EN
which is a class-valued functor, which however fits with the subsequent development. We
think of S; as the set of strategies for agent ¢ and f is an outcome function. The formula
[C]A reads as “coalition C' can achieve A”, which is captured by the lifting

[[Cllx (U) = {(f, (Si)ien) € G(X) | 3(si)iecV(si)ienmc f((si)ien) € U}

for U C X. The induced coalgebraic semantics is precisely the standard semantics of
coalition logic, ie., the formula [C]A holds at a state x if all agents ¢ in the coalition C' can
choose a strategy s; at « such that, for all possible strategy choices of agents in N \ C at
position z, the play proceeds to a state 2’ that satisfies property A.

5. Finally, the similarity type A = {{J} of monotone modal logic [2] has a single unary [J
(we write 0 = () and interpret the ensuing language over monotone neighbourhood frames,
that is, coalgebras for the functor / structure

M(X)={Y CP(P(X)) | Y upwards closed} [dJx(U)={Y e M(X)|UeY}

for U C X which recovers the standard semantics in a coalgebraic setting [12].
It is readily verified that all structures above are indeed monotone.

3. THE MODEL-CHECKING GAME

We start by characterising the satisfaction relation between states of a model and formu-
las of the coalgebraic p-calculus in terms of a two-player parity game that we call the
model checking game. This characterisation will be the main technical tool for establishing
soundness and completeness of an associated tableau calculus.

The game that we are about to describe generalises [25, Theorem 1, Chapter 6] to
the coalgebraic setting, and is a variant of the game used in [6]. We begin by fixing our
terminology concerning parity games.

A parity game played by 3 (Eloise) and V (Abélard) is a tuple G = (B3, By, F,Q)
where B = B3 U By is the disjoint union of positions owned by 3 and V, respectively,
E C B x B indicates the allowed moves, and Q : B — w is a (parity) map with fi-
nite range. An infinite sequence (bg, b1, bs,...) of positions is called bad if max{k | k =
Q(b;) for infinitely many i € w} is odd.

A play in G is a finite or infinite sequence of positions (bg,b1,...) with the property
that (b;,b;+1) € E for all 4, i.e. all moves are legal, and by is the initial position of the play.
A full play is either infinite, or a finite play ending in a position b,, where E[b,] = {b € B |
(bn,b) € E} = 0, i.e. no more moves are possible. A finite play is lost by the player who
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cannot move, and an infinite play (bg,b1,...) is lost by 3 (and won by V) iff (bg, by,...) is
bad.

A strategy in G for a player P € {3,V} is a partial function that maps all plays that
end in a position b € Bp of P with E[b] # () to a position b’ € B such that (b,0') € E.
Intuitively, a strategy determines a player’s next move, depending on the history of the
game in all positions where the player can move. Given a strategy s for player P in G
we say that a play (bg,...,b;,...) of G is played according to s if for all proper prefixes
by ...b; of m with b; € Bp we have s(bg...b;) = bj1+1. A strategy for a player P € {3,V} is
called history-free or positional if it only depends on the last position of a play. Formally,
a history-free strategy for player P € {3,V} is a partial function s : Bp — B such that s(b)
is defined iff E[b] # (), in which case (b, s(b)) € E. A play (bo, b1, ...) is played according to
s if biy1 = s(b;) for all i with b; € Bp, and s is a winning strategy from position b € B if P
wins all plays with initial position b that are played according to s.

It is known that parity games are history-free determined [8, [16] and that winning
regions can be decided in UP N co-UP [13].

Theorem 3.1. [I3] At every position b € B3 U By in a parity game G = (Bz, By, E, )
one of the players has a history-free winning strategy. Furthermore, for every b € B3 U By,
)Ld/2J

n

it can be determined in time O | d-m - (W which player has a winning strategy

from position b, where n, m and d are the size of B, E and the range of 2, respectively.

We will now introduce the model checking game as a parity game. The model checking
game is played on pairs (A, z) where A is a formula and z is a state, and (informally) V tries
to demonstrate that z [~ A whereas 3 claims the opposite. The formulation of the game
relies on formulas being clean (no variable occurs both free and bound, or is bound more
than once) and guarded (bound variables only occur within the scope of modal operators).
In the model checking game, we will only encounter a finite set of formulas, those that lie
in the closure of the initial formula. The size of the closure will play a crucial role in our
main complexity result because it yields an upper bound for the size of our tableau game
that characterizes satisfiability of a formula. The formal definitions are as follows:

Definition 3.2. A set I' C F(A) of formulas is closed if B € I whenever B is a subformula
of some A € T and Alp :=np.A] € T if np.A € T', where n € {p,v}. The closure of T is the
smallest closed set CI(I") for which I" C CI(T").

A formula A € F(A) is guarded if, for all subformulas np.B of A, p only appears in the
scope of a modal operator within B, and A is clean if the sets of free and bound variables
of a formula are disjoint and if no two distinct occurrences of fixpoint operators in A bind
the same variable. A finite set of formulas I' is guarded if every element of I' is guarded
and I' is clean if the formula A 4. A is clean.

In the model checking game, the unfolding of fixpoint formulas gives rise to infinite plays,
and we have to ensure that all infinite plays that cycle on an outermost u-variable are
lost by 3 (who claims that the formula(s) under consideration are satisfied), as this would
correspond to the infinite unfolding of a least fixpoint. This is where the parity map comes
in: formulas of the form up.A are assigned odd priorities and, dually, v A.p an even priority.
To make sure that 3 only looses those plays that cycle on the unfolding of an outermost
u-variable, we require that the assignment of priorities is compatible with the subformula
ordering.
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Definition 3.3. A parity map for a finite, clean set of formulas I is a function 2 : CI(T") — w
with finite range for which Q(A) = 0 unless A is of the form np.B, n € {u, v}, Q(A) is odd
(even) iff A is of the form up.B (vp.B), and Q(n1p1.B1) < Q(n2p2.Bs) whenever 11p1.B; is
a subformula of nopo. By, where 11,12 € {u,v}.

It is easy to see that every clean set of formulas admits a parity function.

Lemma 3.4. IfT' C F(A) is finite and clean, then T' admits a parity function whose range
is bounded by the cardinality of CI(T").

Proof. By induction on the well-founded ordering generated by
DA<T,Aiff A¢ A Csubf(A)

where subf(A) denotes the subformulas of A. If T' contains a top-level conjunction, disjunc-
tion or propositional variable, then the claim follows by induction hypothesis. Now suppose
that T' = up.A,T”. By induction hypothesis, we obtain a parity function Q' : C1(A,TV) — w
that we may extend to a parity function Q : CI(I') — w by putting

m B=up.A
Q(B)=4(B) BeClAT)
0 otherwise
where m is odd and m > Q'(B) for all B € CI(A,I"”). The case I' = vp.A,I" can be treated
in a similar fashion. L]

Given a parity function, we can define the following parity game, the winning regions
of which characterise satisfiability. We parametrise the model checking game in a set of
formulas which will enable us to use it to prove soundness and completeness of the tableau
calculus (which operates on sets of formulas) that we introduce later.

Definition 3.5. Suppose that M = (X,~,h) is a T-model, I' C F(A) is finite, clean and
guarded, and 2 is a parity map for I". The model checking game MGrp(M) is the parity
game whose positions and admissible moves are given in the following table,

Position: b Player | Admissible moves: E[b]
(p,x),z € h(p) vol0
(p,z),x & h(p) 3 10
(np A(p), z) for n € {p, v} 3| {(Al]p = np.A(p)], )}
(A Vv Ay, ) 3 {(A1,2), (A2, 2)}
(AL N Ay, ) Vo [ {(A1,2), (A2, )}
( (Ab ATL)7$) 3 {(QQ(AD .. 7An)7 (Ula .. 7Un)) |
Ul,..., Uy € X,y(z) € [O]x(U1,...,Upn)}
(Q(Ay, ..., A), (Uy,...,Up)) N {(A4j,2) |1 <i<n,x e U}

where p e VUV, Q € AUA, A, Ay,..., A, € CI(T') are A-formulas, € X are states and
U; C X are state sets. The parity function of MGr(M) is given by Q/(A,z) = Q(A) for
A e ClT) and x € X, and Q'(_) = 0 otherwise.

It is easy to see that any two parity functions for a given set of formulas induce the same
winning region for both players. We therefore speak of the model checking game given
by a set of formulas. Evidently, the model checking game is an extension of the boolean
satisfiability game with fixpoints and modal operators. When the game reaches a fixpoint
formula, that is, a position of type (np.A, ), this fixpoint is simply unfolded, and its nature
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(least or greatest fixpoint) and nesting depth of the formula fixpoint formula is recorded
by the parity function. To show that a state z satisfies a modal formula Q(A;,..., A,), 3
needs to select sets Uy, ..., U, (that we think of as a subset of the truth sets of the 4;’s) so
that the state x is being mapped by ~ into the lifting of Uy, ...,U,. Subsequently, ¥V may
challenge this choice and select an index 1 < 4 < n and require that 3 demonstrates that
the formula A; is satisfied at an aribitrary element of U; (and thus corroborate that we may
think of U; as the truth set of A;). To prove that the model checking game characterises
satisfiability, we make crucial use of monotonicity, as the U; under-approximate the truth
sets of the A;. The announced generalisation of [25] Theorem 1, Chapter 6] now takes the
following form:

Theorem 3.6. For T finite, clean and guarded, a T-model M = (X,~,h), A € CI(T") and
x € X, 3 has a winning strategy in MGr(M) from position (A,z) iff M,z = A.

Proof. The proof is by induction on A, and similar to the proof of adequacy of the game
semantics for the coalgebraic p-calculus [26] Theorem 1]. It should be noted that the
model-checking game in loc. cit. has slightly diferent moves in positions that correspond
to fixpoint formulas: in a position of the form (np.A(p),z), the only available choice is to
move to (A(p), ), and if a position of the form (p,y) is reached later, then the only option
is to move to (A(p),y). However, one can show that both ways of treating fixpoint formulas
in the model-checking game are equivalent. We only treat the case A = Q(Ay,...,A,); all
others are as in loc. cit..

First suppose that M,z = Q(A44,...,A4,). By induction hypothesis, 3 has a winning
strategy from position (A, z’) if and only if M, 2’ = A for all subformulas A of {Aq, ..., A, }.
These winning strategies can be extended to provide a winning strategy from Q(Ay,..., A;,)
by stipulating that 3 move to (V(A1,...,A4,), ([A1]a,--.,[An]ar). Now assume that 3
has a winning strategy from position (O(A4y,...,4,),x) in MGp(M) under which 3 moves
to position (V(Aq,...,A), (U1,...,Uy,)) from position (O(Aq,...,A,),x). By induction
hypothesis, we have that x; = A; for all z; € U; so that U; C [A;]a and hence y(z) €
[C1([A1]as - - -, [An]ar) by monotonicity of [O] whence x = Q(A44,...,A,). ]

4. TABLEAUX FOR THE COALGEBRAIC y-CALCULUS

In this section, we characterise satisfiability in terms of non-existence of closed tableauz.
Given that our approach is parametric both in the model class over which we interpret
formulas (embodied by the endofunctor) and the modal operators (given by the similarity
type) that we use, our tableau system will be parametric in a set of modal tableau rules. Our
tableaux will be constructed by applying the standard rules for deconstructing propositional
connectives, the modal rules that are supplied as a parameter, and unfolding of fixpoints.
To ensure soundness and completeness of the ensuing calculus, we need to ensure two
properties:

(1) the supplied set of modal rules has to describe the model class in a sound and complete

way

(2) topmost least fixpoints are only unfolded finitely often.

For the first property, we introduce coherence conditions between the proof rules and the
semantics that will guarantee completeness. For the second property, we need to consider
traces of formulas along the paths of the tableau and again use a parity function to determine
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whether outermost us are unfolded only finitely often. As the unfolding of fixpoints may
create infinite branches, we conceptualise a tableau as a graph. A closed tableau is then
constructed according to the given rules so that outermost least fixpoints are unfolded
infinitely many times along any path through the tableau.

We begin by describing the coherence conditions that will guarantee soundness and
completeness of the modal rules. These rules describe the relationship between states and
(coalgebraic) successors, are of a particularly simple form, and are formulated in terms of
sequents.

Definition 4.1. A A-tableau sequent, or just sequent, is a finite set of A-formulas. We write
S(A) for the set of A-sequents. If I' € S(A) we write S(I') = {A € S(A) | A C C|(I")} for
the set of sequents over the closure of I'.

We identify a formula A € F(A) with the singleton set {A}, and write I'; A = TUA for
the union of I', A € S(A) as before. Substitution extends to sequents viaI'c = {Ao | A € T'}.
A monotone one-step tableau rule for a similarity type A is of the form

Iy
. ... T,

where 'y € (AUA)(V) and I'y,...,T,, C V for some set V' C V of propositional variables,
every propositional variable occurs at most once in I'y and all variables occurring in one of
the I';’s (¢ > 0) also occur in I'y.

Monotone tableau rules do not contain negated propositional variables, which are not needed
to axiomatise (the class of models induced by) monotone A structures. The restriction
on occurrences of propositional variables is unproblematic, as variables that occur in a
conclusion but not in the premise and multiple occurrences of variables in the premise
can always be eliminated. The set of one-step tableau rules is the only parameter in the
construction of tableaux for coalgebraic fixpoint logics. The coherence conditions relate rule
sets with the interpretation of modal operators purely on the level of properties of states
(subsets of a set X) and properties of successors (subsets of TX).

Definition 4.2. Let V' C V be a set of propositional variables. The interpretation of a
propositional sequent I' C V UV with respect to a set X and a valuation 7: V — P(X) is
given by [I']x - = ({7(p) | p € I'}, and the interpretation [I'|7x, € TX of a modalised
sequent T' C (AU A)(V) is

Ml = [ WI€lx (7 (@1), -, 7(Pn)) | Qp1,- -, pa) € T}

If T is a A-structure, then a set R of monotone tableau rules for A is one-step tableau complete
(resp. sound) with respect to T if [['|rx- # 0 if (only if) for all I'y/Ty,...,I';, € R and
all 0 : V. — V with I'yo C T, there exists 1 < ¢ < n such that [I;o]x, # 0, whenever
FC(AUA)(V)and 7:V — P(X).

Informally speaking, a set R of one-step tableau rules is one-step tableau complete if a
modalised sequent I is satisfiable whenever a rule that matches I' has a satisfiable conclusion.
Some care has to be taken to ensure monotonicity of one-step rules in concrete examples,
in particular for the graded and the probabilistic p-calculus. In order to obtain monotone
rules for these logics, we need to insist that rule conclusions only contain prime implicants
to avoid non-monotone occurrences of propositional variables. This ensures that we avoid
a (non-monotone) conclusion consisting of e.g. I';p and T'; p.
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Definition 4.3. Suppose I is a finite (index) set. A prime implicant of a boolean function
f:{0,1} — {0,1} is a partial valuation p : I — {0, 1} with minimal domain of definition so
that f evaluates to 1 under all total extensions of p. Given a family (p;);er of propositional
variables, every partial valuation p: I — {0,1} (and hence every prime implicant) induces
a sequent
Ly ={pi [ p(i) = 1} U{p; | p(i) = 0}.

Now consider k € Z, a family (r;);er of integers and a family (p;);er of propositional

variables over the same index set. For I = Iy U I, we let

Z rip; + Z ripi < k = {T'p | p prime implicant of f}
i€l ieh

for the set of sequents induced by the prime implicants of the boolean function f : {0,1}/ —
{0,1} defined by f(v) =1 <= > i p 1iv(i) + D iep, 1i(1 —0(i)) < k.

In other words, the set of prime implicants of a boolean function corresponds to the
reduced disjunctive normal form of the associated propositional formula. The notation
>, mipi < k introduced above allows us to read a linear inequality involving propositional
variables as a set of sequents (that we will later use as the conclusion of a one-step rule).
If we think of the propositional variables p; as denoting subsets U; of some set X, then
the set of all points z € X that satisfy the inequality >, 1y, (x) < k is precisely the set of
points that satisfies the induced collection of sequents. (We write 1y : X — {0,1} for the
characteristic function of a subset U C X ). For one-step rules formulated in terms of linear
inequalities, we need this property to establish completeness.

Lemma 4.4. Suppose X is a set and 7 : V — P(X) is a valuation of propositional variables.
Then x satisfies one of the elements of Y . Tipi + Y scq, 1iDi < k iff D ier, rile(p,) () +
Zieh ri]lX\T( )(l‘) < k. That is,

ZTZ']ITPZ ZTZ]IX\T(]) ) <k — er{[[P X,7) \FEZW% Zrzpz<k}

i€lp i€l i€lp i€lp
for all x € X, whenever ri,...,rn, k € Z.

Proof. First suppose that € U{[['](x,~ | T € > ey, miPi+2 icp, TiPi < k}. Then there ex-
ists a prime implicant p : I — {0, 1} of the function f given by f(v) =1 <= >, mv(i)+
> ier, Ti(1 —v(i)) < k such that = € [[,](x 7). Then the function c: Io U Iy — {0, 1} given
by

lifz € 7(p;) and i € Iy

c(iy:=< lifx & 1(p;)andi € [;

0 otherwise.

extends p and therefore f (¢) =1 whence

Z rile(p, )+ Z T ]lX\T(pl Z ric(i) + Z ric(i) < k

i€lp i€l i€lp i€l

Now suppose that > 2(T) + 2 icr, il x\r(p,) (z) < k and consider the valuation

ZEI() (
lifx e T(pi),l' S
v(ii)=q lifx &7(ps),i €

0 otherwise.
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We have that f(v) =1 and therefore obtain a prime implicant p : I — {0,1} of f such that
v extends p and x € [['p](x 7)- O

This finishes our discussion of prime implicants and we are ready to have a look at several
examples. We use the following one-step rules to axiomatise the model classes introduced
in Example 211

Example 4.5. (1) The (standard) modal logic of Kripke frames is axiomatised by all the
instances of

(K)Opo; Opy; ... s Opn
PO P15 -+ Pn
where n > 0.
(2) the set of one-step rules associated with graded modal logic (and the graded pu-calculus,
interpreted over finitely branching multigraphs) can be axiomatised by the rule schema

() ELPL - (k)P [1)g15 - (L]
Doy 85T — i ripi < 0

where m,n > 0 and 7;,s; € N\ {0} and >0, 7i(k; +1) > 1+ 3700, s5l;.
(3) The set of rules associated to the probabilistic p-calculus comprises all instances of
(a1)p1; - -3 (an)pn; [br] 15 - - 5 [bm]gm

Y80y — i ripi < k

where m,n > 0, r;,s; € N\ {0} and >2i_ ra; — 3770 s;0; < k if n > 0 and

—> iy sibj <kifn=0.
(4) For coalition logic, we have all instances of

) [Cl]pli 33 Colpn gy [CalPLS - '[CN]?M .[D.]q;'[N]ﬁQ -5 [N]rm
Dis---iDn Dii e PRI ;- T,

where again m,n > 0. Both rules are subject to the side condition that the C; are

disjoint. For (C) we moreover require C; C D.
(5) Finally, the rule set associated to monotone modal logic contains the single rule

Up; Og

»aq
In the rule schemas (G) and (P), we note that ) . r;a; < k is a set of (propositional)
sequents, and therefore qualifies as the conclusion of a tableau rule. To ensure monotonicity,

we have to ensure that no literal appears negatively. This is a direct consequence of the
following:

(P)

(M)

Lemma 4.6. Suppose that p is a prime implicant of the boolean function f : {0,1} — {0,1}
given by f(v) = 1 iff > .crvi < k, where (1;)icr is a sequence of nonzero integers. Then
p(i) = 1 or undefined whenever r; < 0 and analogously, p(i) = 0 or undefined whenever
r; > 0. In particular, all instances of (G) and (P) are monotone.

Proof. We only demonstrate the first item, the second is analogous. Suppose, for a con-
tradiction, that p(i) = 0 and r; < 0. Then, removing i from the domain of definition of p
yields a function ¢ : I — {0,1} such that all total extensions e of ¢ still satisfy f(e) = 1,
contradicting the minimality of p. ]
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It is easy to see that every A-structure admits a one-step sound and complete set of
one-step tableau rules. While this demonstrates that our approach is applicable to all
conceivable A-structures, the challenge of finding a tractable representation of the rule set
remains, which is crucial for a complexity analysis. An adaptation of [22] Theorem 17] to
the setting of monotone tableau rules shows that one-step complete rule sets always exist.

Proposition 4.7. Every monotone A-structure admits a one-step tableau sound and one-
step tableau complete set of monotone tableau rules.

Proof. Suppose that T is a monotone A-structure. We show that there exists a set R of
monotone tableau rules so that R is one-step tableau sound and one-step tableau complete
for T, essentially by showing that the set of all monotone one-step sound rules is indeed
one-step complete. We let R consist of all monotone tableau rules I'y/T'q, ..., T, that satisfy

Cilxr=-=[alxr =0 = [Tolrx-=0

for all sets X and valuations 7 : V' — P(X). We claim that R is one-step tableau sound
and one-step tableau complete.

First, for one-step tableau soundness, suppose that 7 : V — P(X) is given and
[Clrx+ # 0 for some I' C (AU A)(V). For I'o/Ty,...,I;, € R and a renaming o : V — V
such that T'po C T', we have to show that [I';jo]x . # 0 for some 1 < i < n. Assume,
for a contradiction, that [[;o]x, = 0 for all 1 < ¢ < n. Then, for 7(p) = 7(o(p)) we
have [I;]x = 0 for all 1 < i < n so that [[oo]rx, = [Lolrx~ = 0, contradicting
[Coolrx,r 2 [Clrx,- # 0.

For one-step tableau completeness, we directly show the contrapositive. Assume that
[Clrx,- = 0 for some set X and some valuation 7: V' — P(X). We show that, in this case,
there exists I'g/I'; ..., Iy € Rand 0 : V — V such that oo C T and [Iio]x, = 0.

So suppose that [I']rx, = 0 and consider the set

S={ACW|[[A]x, =0}

where V1 denotes the set of propositional variables occurring in I". If we let S = {T"y,..., ', },
it suffices to show that I'/T'y,..., T, € R. So suppose p : V.— P(Y) is a valuation such
that [I'1]y,, = -+ = [[n]v,, = 0. We show that [['|7y,, = 0. To this effect, we claim that

there exists a function f : Y — X such that y € p(p) = f(y) € 7(p) for all p € Vp. For
if not, there exists y € Y for which a suitable f(y) cannot be found, i.e. for all x € X we
may find p, € Vp such that x ¢ 7(p,) but y € p(p;). For the sequent A = {p, | x € X}
we then obtain [A]x, = () whence A € S but y € [A]y,,, contradicting [I';]y,, = 0 for all
1=1,...,n.

By construction, the function f satisfies p(p) C f~'(7(p)) for all p € Vi, which gives,
by monotonicity of the A-structure T, that

[Cl7yv,p € Loy p-1or = (TH 7 ([Trx,r) = 0
as required, where the second equality is by naturality of predicate liftings. L]

In the examples, we can find concrete (and tractable) representations of one-step complete
rule sets.

Proposition 4.8. The rule sets introduced in Example[{.5 are both one-step tableau sound
and one-step tableau complete with respect to the corresponding structures defined in Exam-

ple 21
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Proof. 1t is straightforward to see that a set of monotone rules is one-step tableau complete
iff the set of proof rules arising by negating and swapping premise and conclusion is one-step
sound and strictly one-step complete in the sense of [24], where soundness and completeness
is established for the dual rule sets. The case of graded and probabilistic modal logic
additionally requires to invoke Lemma [£.4] together with Lemma 3.18 of op. cit. L]

We now introduce the set of tableau rules that we are using to axiomatise the coalgebraic
u-calculus. As to be expected, these rules are parametric in a set of one-step rules, and
we will instantiate our results to the logics introduced in Example 2. with help of the
previous proposition. Along with the tableau rules, we also introduce rule blueprints and
rule representations that will aid us in the definition of paths through a tableau later on.

Definition 4.9. The set TR of tableau rules induced by a set R of one-step rules contains
the propositional and fixpoint rules, the modal rules (m) and the axiom (rule) below:

AR T L s Al

D A; ; : ; = np. A I'o...T,o

Here I'y/I'y...T', € Rand 0 : V — F(A) is a substitution satisfying #(I'g) = #(I'po) where
f denotes cardinality. The formulas AA B, AV B and np.A are called principal in the rules
(A), (V) and (f). A rule blueprint is of the form AA B, AV B, np.A, (A, A) or (r,0), where
r € Rand o : Vj — F(A) is a substitution satisfying #(I'g) = #(T'oo) and Vy C V is the
set of variables occurring in r. We write B(R) for the set of rule blueprints over the set
R of one-step rules. A rule representation is a tuple (I',b) where I' € S(A) and b is a rule
blueprint that satisfies
e b el ifbis of the form AANB, AV B or np.A
e A/ AcTifh=(A,A)
e Tyo CTifb=(r,0) and r =T¢/T'...T.
Each rule representation (I',b) induces a tableau rule p(I',b) € TR given by

r r
P ANB) = PAVB) = T
I T
p(T,np.A) = Ap = p AT P (r,0)) = To...T,0
_ T
p(I', (A, A) = ——

where IV =T\ {b} in the first three clauses, and r = T'y/T; ... T, in the fourth clause.

The restriction §(I'go) = #(Iy) on instances of one-step rules ensures that the substitu-
tion does not identify literals in the premise of a one-step rule, which implies that only
finitely many modal rules are applicable to any sequent. Similarly, because of the restric-
tion #(T'go) = #(T'g) on substitutions and on the size of the domain of such substitutions
in rule representations, it is also easy to see that for any I' € S(A) the set of rule repre-
sentations (I',b) is finite. This will enable us to deduce decidability, and indeed complexity
bounds later. We will, however, need to require that the set of modal rules is contraction
closed in order to ensure completeness of the restricted calculus.

Remark 4.10. Alternatively, we could also prove soundness and completeness for the
tableau calculus without the restriction §(T'go) = #(I'g) and without requiring contraction
closure for the set of modal rules. In this case, in order to obtain decidability, we would have
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to require contraction-closedness of the modal rules. This is essential for proving that we can
restrict the calculus to (finitely many) instances (r, o) of modal rules with non-identifying
substitutions o.

Our definition of rule blueprints and rule representations may seem a bit bureaucratic
at first sight, so some comments are in order. If we understand a tableau as a two-player
game where V plays a tableau rule and 3 selects a conclusion, the winning condition for 3
stipulates that least fixpoints are not unfolded infinitely often. This condition is formalised
in terms of the evolution of formulas along a path in a tableau, which in turn necessitates
that we can re-construct the rules applied to tableau nodes. This is achieved by annotating
each tableau node with a rule blueprint. Together with the node label, the blueprint forms
a rule representation which in turn induces a rule. We use this mechanism for two reasons:

e for propositional rules and the fixpoint rule, the rule blueprint records the principal
formula, that we need to track to define traces later. Moreover, we can distinguish
between the different conclusions of the induced rule, and

e for modal rules, the rule blueprint is an unsubstituted one-step rule, which allows us to
track (unsubstituted) propositional variables, which is again needed for the definition of
traces.

The usefulness of the blueprints and rule representations will become clearer in Defini-
tion where we define the set of traces through a tableau path. We are now ready to
introduce the notion of tableau that we will use throughout the paper. As fixpoint rules
generate infinite paths, we formalise tableaux as finite, rooted graphs. As a consequence,
closed tableaux are finitely represented proofs of the unsatisfiability of the root formula.

Definition 4.11. A tableau for a clean, guarded sequent I' € S(A) is a finite, directed,
rooted and labelled graph (N, K, R,¢,«) where N is the set of nodes, K C N x N is the
set of edges, R is the root node and ¢ : N — S(I) is a labelling function such that ¢(R) =T
and o : N — B(R) is a partial function (that we think of as an annotation) satisfying

e a(n) is defined iff there exists a tableau rule with premise ¢(n) iff K(n) # 0.

o if I'y/Ty...T, = p(l(n),a(n)) then {T'1,..., T} = {€(n') | n' € K(n)}
where K(n) ={n’ | (n,n’) € K} and p is as in Definition L9l

In other words, tableaux are sequent-labelled graphs where a rule has to be applied
at a node if the node label matches a rule premise, and no rule may be applied otherwise.
The purpose of the annotation « is to record which rule (if any) has been applied at a
particular node. To keep track of whether least fixpoints are unfolded infinitely often, we
record the unsubstituted one-step rule (together with a substitution) at modal nodes, as we
need to track the evolution of formulas along one-step rules, where propositional variables
may become identified by a substitution. Moreover, it may be the case that two different
one-step rules generate the same rule instance: both rules Op/p and Op, Oq/p generate the
instance QWA/A. As we will be required to traverse infinite loops in a tableaux to ensure
that only greatest fixponits are unfolded infinitely often, we need to ensure that the identity
of a rule does not change when nodes are encountered multiple times.

The reader might wonder why we make a distinction between nodes in a tableau and
their labels. The technical reason for this is that we need to run an automaton in parallel
to the tableau, so that the same sequent may be associated with different automata states
(see the definition of the tableau game in Section []). Informally speaking, we have to allow
for enough paths through a tableau to ensure completeness. We can view a tableau as
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a strategy of V in this tableau game, where V tries to prove that a given sequent is not
satisfiable. Accordingly, a closed tableau will correspond to a winning strategy for him in
the tableau game. An identification of nodes and sequents in a tableau would mean that the
corresponding strategy of V in the tableau game would only depend on the set of formulas
with which a position of V is labeled. We cannot guarantee, however, that ¥V has a winning
strategy of this special kind, even if he has some winning strategy. Therefore, in order to
be able to represent arbitrary strategies of V in the tableau game as tableaux, we have to
have the possibility to distinguish between nodes and their labels. The only restriction we
make is that the tableau graph is finite, i.e. we only consider strategies of ¥V with bounded
memory.

Our goal is to show that a formula A € F(A) is satisfiable iff no tableau for A ever closes.
In a setting without fixpoints, a tableau is closed iff all leaves are labelled with axioms. Here
we also need to consider infinite paths, and ensure that only greatest fixpoints are unfolded
infinitely often at the top level of an infinite path. As in [I7], this necessitates to consider
the set of traces through a given tableau. Informally, a trace records the evolution (by
application of tableau rules) of a single formula through a tableau. Formally, we associate
binary relations with tableau rules, and traces arise by sequencing these relations.

Definition 4.12. Suppose that T = (N, K, R, ¢, «) is a tableau for I'. A path through T is
a finite or infinite sequence
T iNng g ny g ng .

where ng = R, njy1 € K(n;) and ¢; € N satisfying that l(njtq1) is the ¢;-th conclusion of
the rule represented by (£(n;),a(n;)). A path is called complete if it is infinite or if it ends
at a node n € N with K[n| = 0.

A trace through a path 7 is a finite or infinite sequence of formulas (Ag, A1, ...) such
that A; € ¢(n;) and (A;, Aiy1) € Tr(€(n;), a(n;), ¢;) where the relations Tr(I',b,i) C F(A) x

F(A) are given as follows:
o Tr(I', A1 A Ap, 1) = {(A1 A Az, Ar), (A1 A Ag, Ag)} U Diag(I'\ {A A B})
° TF(F A1V Ag,i) = {(Al V As, Al)} @] Dlag(I‘ \ {Al vV Ag}) fori=1,2.
o Tr(I',np.A, 1) = {(np.A, Alp := np.A])} U Diag(I" \ {np.A})
¢ Tr(Fv (7", 0-)7 Z) = {(O(pb s 7pn)o-7pj0-) | QQ(plv s 7pn) € F07pj S FZ}
where r =T/T';...T

Here Diag(X) = {(x,z) | * € X} is the diagonal on a set X. The triples (I',b,7) where
(T',b) is a rule representation, i € N and p(I",b), the rule represented by (I',b), has at least
i conclusions, are called trace tiles. Finally, a tableau T with root node labelled by I' is
closed, if the end node of all finite paths through T of maximal length that starts in the
root node is labelled with a tableau axiom, and every infinite path starting in the root node
carries at least one bad trace with respect to a parity function €2 for I'.

Informally, a path through a tableau is a sequence of nodes, together with the information
which rule has been applied to nodes, and we cannot have a path that ends in a node to
which (Ax) was applied. As for the construction of tableaux, the construction of traces
requires that we pick the same conclusion every time a node is traversed. While in the
instance AV B, A, B/A, B of (V), both conclusions are identified, they are not equivalent
from the point of view of traces, as the ‘left’ conclusion continues the trace from AV B to
A whereas the right conclusion continues the same trace to B. This difficulty does not arise
in [I7] where tableaux are formalised as sibling-ordered trees, and the rule blueprints used
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here serve essentially the same purpose. The traces through a path are calculated using
the so-called trace tiles. A trace tile records which rule has been applied in a node that is
visited by the path and through which of the successors of the node that path is continuing.
It should be noted that for I' € S(A) the set

Yr = {(A,b,7) | (A,b,1) is a trace tile and A € S(T')}

is finite because, as remarked after Definition [4.9] for each A € S(I") there are only finitely
many rule representations (I',b). We stress this fact, because later on we will use ¥ as
alphabet of the parity automaton that is essential for the definition of our tableau game.

Example 4.13. Assume that we have a tableau where (V) has been applied at the node
labelled with AV up.B; C and (f) has been applied at the node labelled with up.OB; C. (We
identify nodes and their labels here for simplicity.) Then the path

AV up.B;C 2, up.OB; C LN OBlp:=up.B];C ...

supports the traces (A V up.OB, up.OB,0B[p := up.B],...) and (C,C,C,...). Note that
there is no trace on this path that starts with A.

We now continue the development of the general theory and first establish soundness of the
tableau calculus: satisfiable sequents cannot have closed tableaux. This relies on Theorem
3.6l as a winning strategy for 3 in the model checking game can be used to construct a path
through any tableau that carries a bad trace.

Theorem 4.14. Let R be a one-step tableau complete set of monotone rules for the modal
similarity type A, and let T' € S(A) be clean and guarded. If T is satisfiable in some model
M = (X,v,h), then no closed tableau for T exists.

Proof. Consider a model M = (X,v,h) and x € X such that M,z = T and let T =
(N,K,R,{,a) be a tableau for I'. As M,z =T, Theorem implies that 3 has a history-
free winning strategy ¢g in MGr = MGp(M) from all positions (B, x) of the game board
with B € I'. We now establish that there exists a complete path and an associated se-
quence of model states satisfying the formulas on this path that can be contracted to a
play in the model checking game. More precisely, we establish the existence of a path
T = ngconicy - ..nycp ... through T and a sequence x = xoxy ... 2 ... of states that satisfy

(i) no = R and 9 = = and M, z; = ¢(n;) whenever n; is defined,

(ii) for each trace T = BgBj...B;... through 7 there exists a play (Ao, yo)(A1,91)---
(where we do not record the positions that have subsets of the model as second com-
ponent) that is played according to g and there is an increasing sequence 0 = sy <
s1 < ... of indices such that B, B, --- = ApA;... and yoy1 -+ = T5,Ts, ... Where
B; = Bs; and x; = x5, whenever s; <7 < sj41.

Once this claim is established, it follows that T cannot be closed: consider the path 7 just
constructed. If 7 is finite, the label A of the last node of m cannot be a tableau axiom,
as A is satisfiable by construction. In case 7 is infinite, every trace 7 through 7 induces a
MGr-play that is played according to 3’s winning strategy ¢ which implies that 7 is not
bad. Taken together, this shows that T cannot be closed, so it remains to establish the
claim.

We construct the required path 7 and the sequence x of states in a step-by-step fashion,
starting at the root of the tableau and at the state z, i.e. we put ng = R and z¢g = x. So
suppose that a path m = ngcg ... cj_1n; and a sequence of model states x ... x; satisfying



EXPTIME TABLEAUX FOR THE COALGEBRAIC p-CALCULUS 17

@) and (i) above have already been constructed, and = is not yet complete. We distinguish
cases on the rule r = p(¢(n;), a(n;)) applied at (the last) node n;.

We begin with the case where r = A; Dy V Dy/A; Dy A; Do is an instance of the
disjunction rule. In this case, we can find tableau nodes m; and mgy with ¢(mi) = A, D,
and £(mg) = A,Dy and K(n;) O {mi1,ma}. Suppose that g(D; V Dy, z;) = (D;,x;)
for i € {1,2}. We put ¢; = ¢, njy1 = m; and ;41 = x;. Then the extended path
7' = mejnjyr and xoxg ... x4 satisfy condition () of our claim. Obviously we have
zj+1 = A. Furthermore, 241 = D; as (D;,xj41) is a winning position of 3 in MGr.
Thus, as {(n;y1) = A; D;, we have ;41 = ¢(nj+1) as required. To see that (i) also holds,
consider a trace 7/ = By... BjBj41 through 7’ and let P = (Ao, y0)(A1,y1) ... (Bj,yx) be
the partial play of MGr that is associated to 7 = By ... B; and that is played according
to g. If Bj # D1V Dy we have B; = Bj;1 and P can be chosen as the corresponding
MGr-play for 7/. Otherwise, if Bj = Dy V Ds, we have Bj;; = D; and we extend P to
(Ao, 90)(A1,y1) ... (D1 V Do, yg)(Di, yk+1) with yrr1 = yg. This MGp-play now satisfies
condition () of our claim.

The cases where 7 is an instance of the conjunction or fixpoint rules are similar (even
easier, as these rules only have one conclusion). So suppose that r is an instance of a modal
rule. That is, » = p(¢(n;),a(n;)) with a(n;) = (r,0) for some rule A/Aq,--- Ay with
Ao C l(n;) and K(nj) 2 {m,...,mg} with £(m;) = Ajo for i € {1,...,s}. We define
a valuation 7 : VA — P(X) on the set VA of variables occurring in A by stipulating that
7(p) = Uy, where the (unique) occurrence of p = py is in the formula O(py,...,p,) € A and
9(D,z;) = (D, (Uy,...,U)) with D = Q(a(p1),...,0(pr)). As g is winning for 3 in MGr
at position (D', z;) for all D’ € Ao, it follows that v(z;) € [A]rx,r, which implies that
[Alrx, # 0.

By one-step tableau completeness, [A;]x, # 0 for some i € {1,...,s}. We now extend
7 to a path 7 = mm; and let x4 be an arbitrary element of [A;]x . Now consider a
trace 7/ through 7’ that ends in some formula A with A = o(p4) for some p4 € A;. Then,
by Definition 112, 7’ is of the form 7A where 7 is a trace through m ending in a formula of
the form B = Q(p1,...,pn)o, O(p1,...,0n) € A, and py = pg for some k € {1,...,n}.

By assumption, there exists a corresponding MGr-play, played according to g, that
ends in position (V(p1,...,pn)o, ;). This play can now be extended by 3 moving to
9g(Qp1,....,pn)o,z;) = (V(p1,...,pn)o, (Ur,...Uy)). We extend this play letting V move
to (A,zj4+1). The latter move is legitimate as o(p;y) = A and because zj41 € [Ai]xr =
MNpea, T(P) € 7(pk) € {U1,...,Upn}. It remains to note that for every formula A" € A; there
exists a trace through 7’ that ends in A’, and therefore also a possibly partial MGr-play
according to 3’s winning strategy g ending at (A’,z;11). This implies that for all A’ € A,,
(A’ zjq1) is a winning position for 3 in MGr, and hence M,z | A’ for all A’ € A;.
This finishes the proof of the claim and hence that of the theorem. ]

Example 4.15. Consider the following formula of the coalitional p-calculus

[ClvX.(p ATNIX) A [DJuY.(V [D]Y)
stating that “coalition C' can achieve that, from the next stage onwards, p holds irrespec-
tive of the strategies used by other agents, and coalition D can ensure (through suitable
strategies used in the long term) that p holds after some finite number of steps”. Here, we
assume that C; D C N are such that C N D = (. Define a parity map € for the above

formula by Q(vX.(p A [N]X)) =2, QuY.(pV [D]Y)) =1 and Q(A) = 0 otherwise. The
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unsatisfiability of this formula is witnessed by the following closed tableau:

where B = vX.(p A [N]X), A = puY.(pV [D]Y) and where we omitted the annotation
« because in this case a can be easily deduced from the structure of the tableau. For
example, the annotation for the root node is equal to [C]B A [D]A and for the child of the

[Clpi[Dlg o) where o : {p,q} — {A, B} is a substitution with

root the annotation is equal to ( b

o(p) = B and o(q) = A.
Any finite path through this tableau ends in an axiom, and the only infinite path
contains the trace

[C|B N [D]A, [D]A, A, A, pV [D]A, pV [D]A, [D]A, A

where the overlined sequence is repeated ad infinitum. This trace is bad with respect to €2,
as Q(A) =1 and A is the only fixpoint formula that occurrs infinitely often.

5. THE TABLEAU GAME

We now introduce the tableau game associated to a clean and guarded sequent I', and use
it to characterise the (non-)existence of closed tableaux in terms of winning strategies in
the tableau game. For the entire section, we fix a modal similarity type A and a set R of
monotone tableau rules that is both one-step sound and complete. The idea underlying the
tableau game is that V intends to construct a closed tableau for a given set of formulas I,
while 3 wants to demonstrate that any tableau constructed by V contains a path w that
violates the closedness condition. As infinite plays of the tableau game correspond to paths
through a tableau, an infinite play should be won by 3 if it does not carry a bad trace,
that is, outermost least fixpoints are only unfolded finitely often. To be able to see this
tableau game as a parity game, we therefore need a mechanism to detect bad traces, and
we employ parity word automata for this task. Board positions in the ensuing tableau
game will therefore be sequent / automata state pairs, with the priority of a board position
being determined by the parity function of the automaton. In particular, this will ensure
that winning strategies of 3 in the tableau game do not generate bad traces. We start
our discussion of the tableau game by recalling some basic notions concerning parity word
automata.

Definition 5.1. Let X be a finite alphabet. A non-deterministic parity ¥X-word automaton
is a quadruple A = (Q, a7, : @ X ¥ — P(Q),2) where Q is the set of states of A, a; € Q
is the initial state, ¢ is the transition function, and Q : @ — w is a (parity) function. Given
an infinite word v = ¢gcicecs ... over X, a run of A on « is a sequence p = apajas ... € Q¥
such that ag = ay and for all i € w we have a;+1 € 0(a;,¢;). A run p is accepting if p is not a
bad sequence with respect to 2. We say that A accepts an infinite 3-word ~ if there exists
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an accepting run p of A on ~. Finally we call A deterministic if §(a,c) is a one-element set
for all (a,c) € Q x X.

In other words, a parity word automaton is deterministic if its transition function has type
Q x ¥ — Q. To develop the tableau game, we use parity word automata over trace tiles
(cf. Definition 12)) to detect the existence of bad traces through infinite plays. We now
establish the existence of such automata, together with a bound on both the state set and
the range of the parity function.

Lemma and Definition 5.2. Let I' € S(A) be a clean, guarded sequent, and let X1 denote
the set of trace tiles (A,b,4) with A € S(I'). There exists a deterministic parity Yp-word
automaton Ar = (Qr, ar, op, ') such that Ap accepts an infinite sequence (tg, t1,...) € X¢°
of trace tiles iff there is no sequence of formulas (Ao, A1, ...) with (A4;, A;4+1) € Tr(¢;) which
is a bad trace with respect to a parity function for I'. Moreover, the index of A and the
cardinality of @ are bounded by p(|CI(T")|) and 2PUCIDD for a polynomial p, respectively.
Such an automaton A is called a I'-parity automaton.

Proof. We start by constructing a non-deterministic parity automaton that accepts w =
totita... € X¢ iff w does contain a sequence ApA; ... € CI(I')* that is bad w.r.t. Q and
satisfies (A;, Ai+1) € Tr(t;) for all i € N. We put Q' = CI(T") U {a;} where we assume that
ar ¢ CI(T') and define &' : Q" x Xp — P(Q') by §(ar,t) = Uyer Tr(t)(4) € CIT) and
8 (B,t) = Tr(t)(B) for B € Cl(A) and t € Xp. If we put Q”(ay) =0 and Q" (B) = Q(B) +1
where ) is a parity function for ', the automaton A’ = (Q’,ar,d’,Q") accepts a word
w if w does contain a bad trace starting in some B € I'. We now transform A’ into an
equivalent deterministic parity automaton A/, by means of the Safra construction to obtain
an automaton of size 20("F1°8(nk)) whoge parity function has a range of order O(nk) where
n = |Q'| + 1 and k is the cardinality of the range of  (cf. [19, 20]). The automaton Ap
is then obtained by complementing Az which can be done by changing the parity function,
and neither increases the size nor the index of the automaton. This implies the claim as
the cardinality k of the range of €2 is bounded by the size n of the state set n of the initial
automaton. []

We thus arrive at the following notion of tableau game, where I'-parity automata are used
to detect bad traces.

Definition 5.3. Let I' € S(A) be clean and guarded, and let A = (Q, ar, §, ) be a I'-parity

automaton. We denote the set of tableau rules I'y/T',...,I',, € TR for which T'y € S(T') by

TRr and write B(T") for the set of rule blueprints b such that

e b e CI(T) if b € F(A) and A € CI(T) if b = (A, A)

e I'yo e S() ifb=(r,o) and r=T¢/T1...T,.

The I'-tableau game is the parity game Gr = (Bg, By, E,Q)') where By = S(T') X Q, B3 =

S(T') x B(T') x @ and the relation E C By x B3 U B3 x By that defines the allowed moves

is given by (b1, b2) € E if either

e by =(A,a) € By, by = (A,b,a) and (A,b) is a rule representation

e by = (A,b,a), by = (A’,d’) and there exists i € N such that A’ is the i-th conclusion of
the rule represented by (A,b) and @’ = d(a, (A,b,1)).

The parity function ' : (B3 U By) — w of Gr is given by Q'(A,a) = Q(a) if (A,a) € By

and Q'(A,b,a) = 0.
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If not explicitly stated otherwise, we will only consider Gr-plays that start at (I',ar)
where ar is the initial state of the automaton A. In particular, we say that a player has a
winning strategy in Gr if (s)he has a winning strategy in Gr at position (I, ar).

The easier part of the correspondence between satisfiability and winning strategies in
Gr is proved by constructing a closed tableau based on a winning strategy for V. To show
that this tableau is indeed closed, we need to show that every infinite path carries at least
one bad trace, which follows from the fact that ¥V wins in the tableau game. To make this
formal, we consider a notion of path and trace also relative to plays in the tableau game.

Definition 5.4. For a Gp-play
™ = (PO, CL())(PO, |7(), CL())(PI, al)(Fl, bl, al) v (Pl, al)(Fl, bl, al) v

a sequence 7’ = I'O¢I'e¢; ... Tl ... of sequents and natural numbers is an underlying path
of  if t; = (I, b;,¢;) is a trace tile and &(a;,t;) = a;11 for all i € N. A sequence of
formulas o = AgA1As... € F(A)*® is a trace through 7 if there exists an underlying path
7/ =T%'eil2 ... of 7 such that (A;, Ajrq) € Tr(T%,b;, ¢;) for all i € N.

An underlying path of a Gr-play is very similar to the notion of a tableau path. This is
due to the correspondence between tableaux and strategies of V in the tableau game. This
correspondence is crucial in the proof of the following theorem.

Theorem 5.5. Let I' € S(A) be clean and guarded. If ¥V has a winning strategy in Gr, then
T" has a closed TR-tableau.

Proof. Suppose that V has a winning strategy f in Gr at position (I',ar). As Gr is a parity
game we can assume that V’s strategy is history-free, i.e. it can be encoded as a partial
function f : S(I') x @ — S(I") x B(I') x Q. In order to prove the claim we are going to
define a closed tableau T = (N, K, R, ¢, «) for I'. We define N to be the set of positions in
S(T") x @ for which f is a winning strategy (in particular, this entails that f is defined at
all positions in V). Obviously we have (I',ar) € N and we put R = (I',ar). The labelling
function on N is the first projection map, i.e. £(A,a) = A for all (A,a) € N CS(T') x Q.

For all (A,a) € N the set of K-successors is defined using V’s strategy by putting
K(Aya) = {(A",d) | (A,d') € E(f(A,a))} where E(f(A,a)) is the set of possible moves
of 3 at f(A,a). Finally we define the annotation a of T by putting a(A, a) = ma(f(A,a))
where 7y : S(T') x B(T') x @ — B(T") denotes the second projection map.

It is an easy consequence of the definition of the tableau game that T is a well-defined
tableau. We now show that T is a closed tableau. To this aim consider first a finite complete
path m = (g, a9)co(T'1,a1)cq -+ ¢p—1(Tn, an) through T with (T'o,ag) = (T, ar). This gives
rise to a Gp-play of the form

(Fo, ao)(ro, bo, ao)(Fl, al)(Pl, |71, al)(PQ, ag) . (Pn, an)

that is played according to V’s winning strategy f. In order to see this, note that for all
0 <i<n wehave (I';y1,a,11) € E(f(I',a;)), i.e. (['i41,a,41) is a legal answer to V’s move
at (I';,a;) if V is playing according to his strategy f. Since m was assumed to be complete,
and since V has a winning strategy at the last position (I',, a,,) of the corresponding Gr-play,
it follows that 3 cannot move in the position obtained by V playing according to his strategy
at (I'y,a,). This can only be the case if ¥ moves to (I'y, (4, A),a,) at (I'y,a,) for some
A € F(A), which in turn is only possible if T';, is a tableau axiom.

Consider now an infinite path 7 = (Tg, ap)co(I'1,a1)c1(T'2,a2) ... through T starting
with (T'g,a0) = (I',ar). As in the previous case, this induces an infinite Gp-play P of the
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form

P = (PO, ao)(ro, |7(), ao)(Fl, al)(Fl, bl, al)(Fg, CLQ) . (Fn, an) .
that is played according to ¥’s winning strategy f. By the definition of the game board of
Or, this means that the infinite sequence p = agajas ... € Q¥ can be seen as a run of Ar on

w = (Lo,bo,c0)(I'1,b1,¢1) (T2, b2, ¢2) ... € XF.

By assumption f was winning for V and therefore P does not satisfy the parity condition
Q' of Gr. This implies that p = arajas ... € Q¥ does not fulfil the parity condition 2 of
the automaton Ar. In other words, as p is the run of Ar on w, there must be a sequence
B = ByB1Bsy... € ClI')* such that (B;, Bi+1) € Tr(I';,b;,¢;) that is bad w.r.t. . In other
words, (8 is also a trace through the path m, which implies that there exists a trace through
7 that is bad w.r.t.  as required. This finishes the proof that T is closed. ]

The converse of the above theorem is established later as Theorem B.I8 The challenge
there is to construct a model for I" based on a winning strategy for 3 in the I'-tableau game.
As we only allow substitution instances of modal (one-step) rules that do not duplicate
literals (we require that substitutions do not decrease the cardinality of premises in one-
step rules in Definition [£L.9]), we need to require that the set of tableau rules to be closed
under contraction.

Definition 5.6. A set R of monotone one-step rules is closed under contraction, if for all
rules I'y/T'1,...,I', € Rand all 0 : V — V, there exists a rule Ag/Aq,...,Ar € R and a
renaming 7 : V' — V such that A7 = B7 for A, B € A implies that A = B, Agm C I'go
and, for each 1 < i < n, there exists 1 < j < k such that I';o C Aj7.

In other words, instances of one-step rules which duplicate literals in the premise may be
replaced by instances for which this is not the case.

Remark 5.7. Every monotone A-structure admits a one-step tableau sound and one-step
tableau complete set of monotone tableau rules that is closed under contraction. This follows
from the fact that the set of one-step rules from the proof of Proposition £7]is closed under

contraction: Consider arule 'g/T'1,...,T',, € R and any renaming o. Then, by the definition
of the set of one-step rules R in Prop. 7] we can easily show that Ag/Aq,...,A, € R
with A; = I'jo for ¢ = 0,...,n. Closure under contraction follows from the fact that

Ag/Aq,..., A, together with 7 = idy satisfy the conditions of Definition
Under the condition of closure under contraction (cf. Remark [L.10]), we prove:

Theorem 5.8. Suppose that T' € S(A) is clean and guarded and R is one-step tableau
complete and contraction closed. If 3 has a winning strategy in Gr, then I' is satisfiable in
a model of size O(2P™) where n is the cardinality of CI(T') and p is a polynomial.

The proof of Theorem [BE.8 constructs a model for T' out of the game board of Gr
using a winning strategy f for 3 in Gr. We use one-step tableau completeness to impose
a T-coalgebra structure on those V-positions in Gr that are reachable through f-conform
gr-plays, with the resulting coalgebra satisfying the truth lemma. We then equip this
T-coalgebra with a valuation that makes I' satisfiable in the resulting model. While our
construction shares some similarities with the shallow model construction of [24], it is by
no means a simple adaptation of op. cit., as we are dealing with fixpoint formulas and thus
cannot employ induction over the modal rank of formulas to construct satisfying models.
Our proof of satisfiability is also substantially different from the corresponding proof for the
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modal p-calculus (cf. [I7]) — we show satisfiability by directly deriving a winning strategy
for 3 in the model-checking game from a winning strategy of 3 in the tableau game.

We now turn to the details of the proof of Theorem (.8 Throughout the proof, we
assume that I' € S(A) is a clean, guarded sequent and f : S(I') x B(I') x @ — S(T") x Q is
a history-free winning strategy for 3 in Gr. The construction of a supporting Kripke frame
for a model of I' is based on V-positions of Gr where only modal rules can be applied. This
is formalised through the notion of atomic sequent.

Definition 5.9. A A-formula is atomic if it is either a propositional variable p € V, a ne-
gated propositional variable p € V, or a formula of the form O(Ay, ..., 4,) or Q(A, ..., A,).
A sequent A € S(A) is atomic if all its elements are atomic. We write At(I") for the set of
atomic sequents in S(T'), and call a Gp-position (A, a) € By atomic if A is atomic.

The state set of the satisfying model that we are about to construct are the atomic Gr-
positions (A, a) that are reachable from (T', ar) through Gr-play that is played according to
f. As the propositional rules are invertible, we may assume that V applies them in any fixed,
given order. This simplifies the model construction as it implies — together with 3’s strategy
— that every sequent is unfolded to an atomic sequent in a unique way. Fixing the order in
which V applies propositional rules can be seen as a strategy, that we call propositional:

Definition 5.10. A propositional strategy for V in the tableau game Gr is a function
g:S(T) \ At(I') — B(T)

such that (A, g(A)) is a rule representation for all A € S(I') \ At(I"). A Gr-play is played
according to g if ¥ moves at any position of the form (A, a) € (S(T") \ At(I")) x @ that occurs
in the play to the position (A, g(A),a).

For the remainder of this section we fix a propositional strategy g for V. As annonced
informally in the beginning, this dictates that plays proceed to atomic positions in a unique
way, and in fact induces a function from arbitrary positions to atomic ones in the tableau
game.

Lemma and Definition 5.11. Let f be a strategy for 3 in Gr. For any position (A, a) €
S(I") x @ there exists precisely one position (A’,a’) € At(T") X @ and one partial Gp-play

(Av a’)? R (Alv a/)

that is played according to f and g and which does not contain an instance of a modal rule.
We let o : S(T') x @ — At(T") x @ be the function given by (A, a) = (A, d’).

For the construction of a satisfying model for I' we are going to define a relation on the
set of atomic positions of Gr where two atomic positions are related if the second position
is selected by I’s strategy in response to V playing a modal rule. In the case of Kripke
frames, this relation would already define the satisfying model, but in the general case, we
need to impose a coalgebra structure on top of this relation in a coherent way. To achieve
this, we single out specific states (the A-successors) that we take as under-approximation of
the semantics of a formula A. Informally speaking, an A-successor of an atomic state arises
by V playing a modal rule, and 3 selecting a conclusion containing A that is then reduced
to another atomic position. Formally, we introduce the notions of A-children (conclusions
selected by 3 that contain A) and A-successors (reductions of A-children to atomic form),
both relative to a strategy for 3.
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Definition 5.12. Suppose that f is a history-free strategy of 3 in Gr, and let (A,a) €
At(T"). A position (A’;ad’) € S(T') x Q is an A-child of (A,a) along f if A € A’ and
(A')d") = f(A,b,a) where ((A,a),(A,b,a)) is a legal move of V in Gr. We put

Chldf(A4,A,a) = {(A",ad) € S(T) x Q | (A",a’) A-child of (A, a) along [}

and write Chldf(A,a) for the collection of all A-children of (A, a) along f. An atomic
position (A”,a") is an A-successor of (A, a) along f if (A”,a") = o(A’,ad’) for some A-
child (A’,;a’) of (A, a) along f. This is denoted by

Sucp(A,Aa) = {(A",d") € At(T') x Q | (A”,a") A-successor of (A,a) along f }

and we write Sucs(A, a) = Uyecyr) Sucs(4, A, a) for the collection of all A-successors of
(A, a).

In other words, an atomic position (A” a”) is a successor of (A, a) if it is reachable
from (A, a) by a play that is played according to J’s strategy f and the (fixed) propositional
strategy ¢ that involves precisely one modal rule. The position (A", a”) is an A-successor
of (A,a) if the conclusion of this modal rule that is picked by f contains the formula A.
This allows us to introduce coherent coalgebra structures, i.e. those structures on atomic
positions that satisfy the truth lemma.

Definition 5.13. Suppose that f is a history-free strategy for 3 in Gr and let
YV ={(A,a) e A(T) x Q| of(I',ar) =" (A, a)}

where for (A, a), (A',d") € AtT) x Q, (A, a) = (A, d) if (A’,a’) € Sucs(A,a). A coalgebra
structure v : Y — TY on Y is called coherent if

7(A,a) € [y (Sucs(Ar, A a),...,Suc(A,, A a))

whenever O(Ay,...,A,) € A. A valuation h : V — P(Y) is coherent if (A,a) € h(p)
whenever p € A.

In other words, the carrier of a coherent coalgebra is the set of atomic positions that are
reachable from the initial position via 3’s strategy f, and the coalgebra structure is so that
we can establish the truth lemma, together with monotonicity of the modal operators: the
A-successors of an atomic position contain an element of the disjunctive normal form of A
and hence serve as an under-approximation of the truth-set of A. We note that a position
cannot be both an A-successor and an A-successor of the same position.

Lemma 5.14. Let f be a history-free winning strategy for 3 in Gr and let (A1,a1) and
(Ag,a2) be atomic Gr-positions such that f is a winning strategy for 3 at (A1,a1). Then
for all formulas A we have

(Ag,az) € Suc(A, Ay, a1)  implies that (Ag,a2) ¢ Suce(A, Ay, a1).

Proof. Suppose for a contradiction that (Ag,as) € Sucs(A, Ay, a1) as well as (Ag,a2) €
Sucy (A, A1, a1) for some formula A. Then, by the definition of Suc #, there must exist (A, a’)
and (A”,a”) in S(T') x Q such that A € A’, A € A" and o¢(A',d’) = 0¢(A”,a") = (Ag,a2).
A straightforward induction argument shows that in this case there must exist a formula B
such that B, B € Ay. Therefore (A, az) is a winning position for V. But this contradicts
the fact that there exists a Gp-play from (A1, a1) to (Ag, az) played according to f, and our
assumption that f is winning at (A1, ay). L]
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We now show that if 9 has a winning strategy f in the tableau game for I', then a coherent
model for I" exists. This is where contraction closure is needed as the application of modal
rules may not identify elements in the premise of a rule.

Proposition 5.15. Every history-free winning strategy f : S(I') x B(T') x @ — S(T') x Q
for 3 in Gr induces a coherent model (Y,v,h).

Proof. We follow Definition I3l and put Y = {(A,a) € At(I") | o4(T', ar) =* (A, a)} where
— is as in the definition, and we define a coherent valuation h: V — Y by h(p) = {(A,a) €
Y | p € A}. It remains to be seen that we can define v : Y — TY coherently. It is a

consequence of Lemma [5.74] and of the fact that f is a winning strategy for 3 in Gr that for
all (A1,a1),(Az,a2) €Y we have

(Ag,a2) € Sucy(A, Ay a1) implies (Ag,a2) ¢ Sucs(A, Ay, ay). (5.1)

Now suppose for a contradiction that there is no v :Y — TY such that (Y,~) is a coherent
coalgebra structure for I'. Then there exists some (A, a) € Y such that we cannot find a
t € TY that satisfies the condition in Definition (I3l Consider the set of formulas

O ={O(pa..--.pa,) | V(A1,.... A,) € A}
U {Dpay,- - pa,) | O(AL,..., Ay) € A}

where for any formulas of the form Q(A;,...,A,) or Q(Ay,...,A,) in A we associate a
unique propositional variable p4. to the formula A;, for i € {1,...,n}. Let Vg be the set
of propositional variables occurring in ©. We define a valuation 7 : Vg — P(Sucs(A, a)) by
putting 7(pa) = Sucs(4, A, a).

Using our assumption on (A, a) it is not difficult to see that [O]rs,c J(Ba)r = (). There-

(5.2)

fore one-step tableau completeness implies that there exists a rule I'g/T'; - - - T',, and a sub-
stitution o : V' — V such that I'po C © and [['0]suc; (a0, = 0 for all i € {1,...,n}.
Because of contraction closure of R we can assume w.l.o.g. that §(T'go) = f(Ty).

On the other hand, for n : Vg — F(A) with n(ps) = A, we clearly have TI'pon C A
with #(Tgon) = #(IT'g), and thus V can move in the tableau game from position (A, a)
to the position (A, (Tg/Ty---T'y,n 0 0),a). Now 3 moves to some (I'jon,a”) with j €
{1,...,n} according to her winning strategy f. Therefore we have (I'jon,a”) € Chld;(A,a).
Furthermore, the play can be continued according to 3’s strategy f until the atomic position
(A',d") = of(T'jon,a”) is reached. By definition we have

(A',ad’) € Sucy(Bn, A, a) for all B € T'jo. (5.3)

It now follows that (A',a’) € [Blsuc;(a,a),r for all B € T'jo. To see this, consider an
arbitrary formula B € I'jo. By the definition of © and the fact that I'yo C © we have that
I'jo consists of atoms only. Therefore B = py4 for some formula A. By (5.3]), we know that
(A%,a’) € Sucy(pan, A,a) = Sucy(A, A, a), and therefore (A',a') € [Blsuc;(a,a)r- As B
was an arbitrary element of I';o we obtain (A",a’) € [Blsuc;(a,a),- for all B € T'jo, which
contradicts the fact that [I'jo]s,c (D) = (). This concludes the proof. ]

We can now take a history-free winning strategy f for 3 in the tableau game and show that
the induced coherent model Y satisfies the initial sequent. This is achieved by converting
the strategy f (in the tableau game) to a strategy f in the model checking game over Y.
Satisfiability then follows as soon as we establish that MGp-plays that are played according
to f correspond to traces through Gr-plays that are played according to f.
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Lemma 5.16. Let f be a history-free winning strategy for 3 in Gr, let Y = (Y,~,h) be
the coherent model induced by f, and consider a position (Ag, (Ao, ap)) in MGp(Y) with
(Ao, a0) = 04(T,ar) and Ag € Ag. Then 3 has a strategy f in MGr(Y) at (Ao, (Ao, ap))
such that for any (possibly infinite) sequence (Ag, (Ao, a0))(A1, (A1,a1)) ... (An, (An,an)) ...
that can be extended to an f-conform MGr(Y)-play by inserting positions of the form
(V(By,...,By), (Ui,...,Uy)) we have

(1) there exists a (possibly infinite) Gr-play ™ and a trace T = By, By, ..., By, ... through

(cf. Def.[54), such that

(a) 7 contains a sub-sequence of V-positions of the form

( 670’6)7( 370’3)77(A;’L7a;@)7
with o (A}, a}) = (A, a;) and A} 5 A; for each i >0
(b) 7 is contractable to Ay, A1, ..., An, ..., that is, there exists an increasing sequence
0 =s0 < s1 < ... of indices such that AgAy... = Bs,Bs, ..., where B; = B,

whenever s; < i < sj41, for j =0,1,....
(2) for all MGr(Y)-positions of the form (A, (A,a)) occurring in m, with A atomic, we
have A € A.

Proof. We define the strategy f for 3 in MGp(Y) starting at position (Ao, (Ag,ag)) by
showing how to extend each partial, f-conform MGr(Y)-play starting in (Ag, (Ag, ag)) and
ending in an 3-position b = (B, (A, a)) with a position ¥’, such that (b, V') is a valid move for
Jin MGr(Y). We will show later that each such partial play determines a partial Gp-play
starting in (Ag,ag) and ending in some (A’,a") € S(T') x @ with o¢(A’,a’) = (A,a) and
A’ 5 B. At this point, we assume the above, and base our definition of 3’s strategy solely
on (B, (A,a)) and (A’,a"). We define F's move in (B, (A, a)) by case analysis on B:

Case B = B; V By: Then 0¢(A’,a’) = (A, a) together with A’ > B ensure the existence of

a gr-play of the form

(Lo, do)(To,bo, do) - - - (T—1,bk—1,d—1)(Tk, di)

with (Io,dp) = (A’,a’), T'; & At(T) for 0 < j < k and (I'y,di) = (A, a), that is played
according to f and g, such that b; = By V By for some 0 < j < k. Let T'gcp...cp—1T
be an underlying path of the above Gr-play. Then, ¢; € {1,2}, and we define 3’s move
at position (B, (A, a)) of MGr(Y) to be to the position (B;, (A, a)). Moreover, we note
for future reference that the tableau node (I'j41,d;j41) satisfies 0¢(I'j11,dj41) = (A, a)
and Fj+1 = Bcj-

Case B =Q(By,..., B,): We define 3’s move at position (B, (A, a)) of MGr(Y) to be to
the position (B, (Uy,...,U,)) with

Uj = SUCf(Bj,A,a)

for j = 1,...,n. To justify this move, we must show that v(A,a) € [Qy(Ui,...,Up).
But this follows from Definition 5.13

This defines a strategy for 3 as there is no choice for 3 at all other positions (B, (A, a)) in
MGr(Y). Now consider a (possibly infinite) MGp(Y)-play of the form

(A(), (Ao,ao)), (Al, (Al, al)), vy (An, (An, an)), .

played according to the previously defined strategy. We shall construct a Gr-play 7 and
an underlying path 7’ of m with an associated trace 7, with the required properties. In
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particular, the construction of 7 will supply a sequence of Gr-positions (Ag, ag), (A}, d}),. ..
to be used in defining 3’s moves.

To begin with, note that by assumption on (A, (Ao, ap)) we have o¢(I', ar) = (Ao, ao)
and Ay € T'. Hence, we let (A}, a) = (I',ar) be the first position of 7, let I' be the first
position of 7/, and let 79 = Ag € .

Now assume that 7, 7’ and 7 have been constructed up to a position (A}, al), with
(Al ah) = (Aj,a;) and A, 5 A;. We extend the partial Gp-play m with a segment
starting in (A}, a;) and ending in some (A}, |, a; ), with op(A},a; ;) = (Ait1,a41) and
Al 412 Aiy1. Here (A;t1,ai41) represents the position obtained as a result of 3 moving in
(A;, a;), based on the additional information provided by (A}, al), according to the strategy
defined earlier. At the same time, we extend the underlying path 7’ of © with a segment
Aj... A}, and the trace 7 with a segment A, ..., A;, A;1. These constructions are carried
out by case analysis on A;.

Case A; = A} V A?: Here, the MGr(Y)-move from (A;, (A;,a;)) to (Air1, (Aii1,ai41)) is
an 3-move played according to the strategy defined earlier. The definition of this move
was based on a Gp-play of the form

(Lo, do)(To, b0, do) - - - (Tk—1,bk—1, dg—1)(L'k;, d)

with (Co,do) = (AL, a}), T; & At(T) for 0 <1 < k and (T'y, di) = (A, a;), played accord-
ing to f and g, with an underlying path I'gcg . .. cx_11k, such that there exists 0 < j < k
with (A;, 4;) € Tr(Ty, by, ¢) for 0 < 1 < j and (Ai,Afj) € Tr(I'j,bj,¢;). Moreover, this
definition guarantees that we have of(I'j11,dj41) = (Aig1, air1) = (Ay, a;). We now put
(A;-i-l’ a;H) = (Fj+1, dj_|_1), and extend the play T to (Fo, bo, d(]) e (Fj, bj, dj)(Fj.H, dj_|_1),
the underlying path 7’ with cp...¢;T'j41, and the trace 7 with A;, ..., A, Afj.

Case A; = A} A A?: This time, the move from (4;, (A, a;)) to (Ait1, (Ait1,ai11)) is a
V-move, with A;11 = Aﬁ for some I € {1,2} and (Ajt1,ai+1) = (A4, a;). Since A; € A
and o¢(Al, a}) = (A, a;), it follows that there exist a Gr-play of the form

(Lo, do)(To, b0, do) - - - (Tk—1,bk—1,dg—1)(L'k, d)

with (o, do) = (Al al), Ty & At(T') for 0 < I < k and (T'y,dx) = (A4, a;), played
according to f and g, such that b; = A} A A? for some 0 < j < k, and an underlying path
Tocp ... cx—1Tk of this Gp-play that satisfies (A;, A;) € Tr(T'h,bp,cp) for 0 < h < j and
(A, Al) € Tr(Tj, A} A A2, c;). From the latter we obtain [ = ¢;. We then let (A}, al,)
be given by (Fj+1,dj+1), and note that op(Aj | a;, ;) = (Air1,ai11) = (A, a;) and
Al =T 3 A7 = Al = A;q. Tt is therefore possible for us to extend the play
7 with the sequence (I'o,b0,dp) ... (L;,b;,d;)(Tj+1,dj4+1), the underlying path 7’ with
co...c;I'j41, and the trace 7 with A;, ... ,A,-,Aé.

Case A; = O(By,...,By): The move from (4;, (A;,a;)) to (Ait1, (Ajy1,a41)) thus incor-
porates an 3-move played according to the strategy defined earlier, followed by a V-move.
Again, from A; € Al and of(A},a}) = (A4, a;) we obtain a Gr-play of the form

ERet)

(Lo, do) (Lo, b0, do) - - - (Pk—1,Pk—1, dg—1) Tk, d)
with (Lo, dp) = (Al,a}), T) & At(T) for 0 < I < k and (T'y,di) = (A4, a;), played ac-
cording to f and g, that has an underlying path Tgcg...cx_1Tx such that (A;, A4;) €
Tr(I'j,b5,¢j) for 0 < j < k. Also, by definition of F's move in (A;,(A;,a;)) we ob-
tain A;41 = Bj and (Ajq1,a541) € Sucy(Bj, Ay, a;) for some j € {1,...,n}. It follows
that there exists a position (A”,a”) such that (A”,a"”) € Chld¢(Aj,a;), Bj € A” and
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op(A”,a") = (Aip1,ai41). We then let (A] ,aj ;) be given by (A" a”). Moreover,
from (Af, 1, a;, ;) € Chldf(A;, a;) it follows that ¥ can move in Gr from (A, a;) to some
(Aj,b,a;) with f(Aq,b,a;) = (A}, a,,). Since I's move at position (A;, b, a;) was legal,
this now yields ¢ € N such that A 41 is the c-th conclusion of the rule represented by
(Ai,b). This together with B; € A, yield (A4;, Bj) € Tr(A;,b,¢). It is now possible to
extend the play 7 with

(Lo,bo,do) - -« (Th—1:bk—1, di—1) (Trr di) (As, b, a) (Af 1, af )

the underlying path 7’ with cg...cx—1TxcAj |, and the trace 7 with A;,..., A;, B;.
Case A; =nX.A, n € {u,v}: The move from (A4;, (A, a;)) to (Ait1, (Ait1,ai+1)) consists
of unfolding the fixpoint variable X, that is, 4,11 = A[X = nX.A] and (A;41,ai+1) =
(As,a;). Again, A} 5 nX.A together with o¢(A],a}) = (A;,a;) yield a Gp-play of the
form
(Lo, do) (Lo, b0, do) - - - (Pk—1,Pk—1, dg—1) Tk, d;)
with (To,dp) = (AL a}), Ty & At(l') for 0 < I < k and (Tk,dr) = (Ai,a;), played
according to f and g, such that b; = nX.A for some 0 < j < k, and an underlying path
Doco ... cp_1Tk of this Gp-play that satisfies (A;, 4;) € Tr(T'x,bp,cp) for 0 < h < j and
(Ai, Aip1) € Tr(Ty,bj,¢5). We now let (A, a;,,) be given by (I'j1,d;41), and note
that of(AL 1, a;,,) = (Air1,0i41) = (A4, a;) and Af | 3 A[X :=nX.A]. It is therefore
possible to extend the play 7 with (o, bg,do) ... (I'j,bj,d;)(I'j+1,dj+1), the underlying
path 7" with ¢g...¢;Ij41, and the trace 7 with A;, ..., A;, A[X = nX.¢].

To show the second property of the MGrp(Y)-play

(A(]a (A07 aO))7 (A17 (Alv al))v sy (An7 (Anv an))7 s
we note that o¢(A}, al) = (Ay, a;) together with A; atomic and A; € A} yield A; € A;, for

2t
1=0,1,.... O
Finally, we prove satisfiability of I' in Y by showing that the strategy resulting from
Lemma [5.16] is a winning strategy for 3 in MGp(Y).

Theorem 5.17. Let f: S(I') x B(T') x @ — S(T') x Q be a history-free winning strategy for
3 in Gr, and let Y = (Y,7,h) be the corresponding model of a coherent coalgebra structure
(Y,w) forT'. Then, Y,(A,a) = A for all states (A,a) € o¢(I',ar) and all formulas A € T.

Proof. Let (Ag,ap) € Y be such that oy(I',ar) = (Ao,a0), and let Ay € T'. Thus,
(Ag, (Ag, ap)) is an initial position of MGp(Y). Let f be the strategy for 3 at (Ag, (Ao, ag))
in MGr(Y) provided by Lemma We show that Y, (Ag, ag) E Ap by showing that 3
wins all MGr(Y)-plays that start at position (Ag, (Ag, ag)) and are played according to f.
Consider such a play, and assume first that it is finite. Let (A, (A, a)) be its last position
of type CI(T") x (S(T") x @). Thus, the last position of the play is either (A, (A, a)) itself, or
a V-position of type (V(By,...,By), (Ui,...,Uy,)), with U; = () for i = 1,...,n. In either
case, A is atomic (otherwise the play would not be complete). We distinguish the following
cases:
(1) A = p for some propositional variable p. By coherence of the valuation, we have p € A,
and therefore by the definition of Y we have (A, a) € h(p), which implies that (p, (A, a))
is a winning position for 3.
(2) A =Dp. Similar to the previous case.
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(3) A=Q(By,...,B,). According to the definition of 3’s strategy f, the last position of
the play must be a V-position of type (V(Bj, ..., By), (Ui,...,Uy,)) with U; = 0 for
i=1,...,n (as 3 can always play in positions of type (V(Bi,...,By),(A,a))). Thus,
(A, (A,a)) is a winning position for 3.

It therefore follows that 3 wins all finite MGp(Y)-plays that start at (Ag, (Ag,ag)) and are

played according to f. Now consider an infinite MGp(Y)-play starting at (Ao, (Ag, ag))

and played according to f, and let 7 be the infinite Gr-play and 7 be the associated trace
through 7 provided by Lemma It follows from the statement of the lemma that 7 is
contractable to the sequence of formulas appearing in the given MGpr(Y)-play. Since the

strategy f was winning for d in Gr, it follows that any trace through 7, and therefore also 7,

satisfies the parity condition of Gr. As a result, the parity condition of MGr(Y) is satisfied

by the given infinite MGr(Y)-play, which is thus won by 3. ]

Theorem (.8 now follows from Theorem [5.I7 and the observation that the sizes of
both @ and S(I') are bounded by an exponential in the size of CI(I') (by Lemma and
respectively the definition of S(I')).

Putting everything together, we obtain a complete characterisation of satisfiability in
the coalgebraic p-calculus.

Theorem 5.18. Suppose that I' € S(A) is a clean, guarded sequent and R is one-step tableau
complete and contraction closed. Then I is satisfiable iff no tableau for I' is closed iff 3 has
a winning strateqy in the tableau game Gr.

As a by-product, we obtain the following small model property.

Corollary 5.19. A satisfiable, clean and guarded formula A is satisfiable in a model of size
O(2P™) where n is the cardinality of CI(A) and p is a polynomial.

Proof. The statement follows immediately from Theorems £.14] and [5.8] together with
the determinacy of two player parity games. L]

6. COMPLEXITY

We now show that — subject to a mild condition on the rule set — the satisfiability problem
for guarded formulas of the coalgebraic p-calculus is decidable in exponential time. By
Theorem [5.I8] the satisfiability problem is reducible to the existence of winning strategies in
parity games. Given any guarded sequent I', we thus construct a parity game of exponential
size (measured in the size of T'), the parity function of which has polynomial range (again
measured relative to the size of I'). This will ensure EXPTIME-decidability if we can decide
legal moves in this game in exponential time. According to Definition (.3l the game board
consists of the disjoint union of

e S(I') x @ (the positions owned by V) where @ is the state set of a I'-parity automaton
and S(T") are the sequents that we can form in the closure of I, and
e S(T') x B(I") x @Q where B(I") are the blueprints of rules with premise in S(T").

We know that the state set @ of the I'-parity automaton is exponential in the size of CI(T")
by Lemma[5.2] and it is easy to see that S(I') is exponentially bounded. The crucial step for
obtaining an overall exponential bound is thus the ability to treat rule blueprints. While
this is simple for many logics (where it is easy to see one only has exponentially many
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applicable rule/substitution pairs that are of polynomial size), more care is needed for the
rules of the probabilistic and the graded p-calculus. The main difficulty lies in the fact that
the conclusions of these rules (Example [4.0]) are sets of sequents that may be exponentially
large. On the other hand, the conclusions can be represented by (small) linear inequalities,
as in fact we did in Example 5l for presentational purposes, and leads to an obvious solution.
Instead of representing rule blueprints associated with modal rules directly, we use a coding
of modal rules that can be decided efficiently, to obtain an exponential representation of
the game board. This approach has been used previously in [24] to give PSPACE-bounds for
coalgebraic logics, and we will refer to op.cit. for some of the technical points.

In order to be able to speak about the complexity of the satisfiability problem in a
meaningful way, we begin by formalising the notion of size of formulas and sequents. To
do this, we assume that the underlying similarity type A is equipped with a size measure
s : A = N and measure the size of a formula A in terms of the number of subformulas
counted with multiplicities, adding s(©) for every occurrence of a modal operator © € A
in A. In the examples, we code numbers in binary, that is, s((k)) = s([k]) = [logq k] for
the graded p-calculus and s({p/q)) = s([p/q]) = [logs p] + [logs q| + 1 for the probabilistic
p-calculus, and s([aq,...,ax]) = 1 for coalition logic. Note that in the latter case, the
overall number of agents is fixed, so there will only be finitely many coalitions which allows
us to assign unit size to every operator. The definition of size is extended to sequents by
size(I') = > ycpsize(A) for T' € S(A) and size({I'y,...,I,}) = DI size(T;) for sets of
sequents.

We continue by discussing the mechanism to encode rule blueprints that we did describe
informally at the beginning of this section. In order to obtain an exponential bound, we
require that blueprints of modal rules can be encoded by strings of polynomial length. In
order to have a uniform treatment, we make the following definition.

Definition 6.1. Suppose that I' € S(A). A set R of one-step rules is ezponentially tractable
if there is an alphabet ¥ and a polynomial p such that every b = (r,0) with r =Ty/T;...T,
can be encoded as a string of length < p(size(T'go)) and the relations

Ry ={(A,(Ty/Ty...Ty,0) | Too C A}
and
Ry = {((A,b),A”) | A" is i-th conclusion of p(A,b)}
are decidable in EXPTIME (modulo this coding) for all i € N.
Exponential tractability gives an upper bound on the size of the board of the tableau game
and the complexity of both the parity function and the relation determining legal moves.

The proof of this result requires the following auxiliary lemmas thate establish bounds on
the closure of the root sequent, and the size of the sequents in the closure, respectively.

Lemma 6.2. Suppose A € F(A). Then |Cl(A)| < size(A).

Proof. By induction on the structure of A where the only non-trivial case is A = np.B for
n € {u,v}. To establish the claim, we show that D = {C[p := np.A] | C € CI(B)} is closed.
This implies that Cl(A) C D and the claim follows from the induction hypothesis. U]

Lemma 6.3. IfI' € S(A) and A € S(I') then size(A) < size(T)3.

Proof. The closure of T' has at most size(I') many elements, each of which may be larger
than size(I") as a result of substituting up.A for p in A if up.A € T'. The result follows as
this can happen at most size(I")-many times. U]
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We can now formulate, and prove, the annonced encoding of the tableau game as follows.

Lemma 6.4. Suppose that R is exponentially tractable. Then every position in the tableau
game Gp = (B3, By, E,Q) of I' € S(A) can be represented by a string of polynomial length
in size(T'). Under this coding, the relation (b,b') € E is decidable in exponential time.

Proof. We know that the state set A of the parity automaton A associated with Gr is
exponential in size(I"), hence every a € A can be represented by a string of polynomial
length in size(T").

As we are now working with the encoding of the game board we think of the automa-
ton as operating on encodings of rule blueprints rather than on the rule blueprints itself.
More precisely, we run the automaton not on trace tiles (A,b,4) but on encoded trace tiles
(code(A), code(h),i) where code(A) is the given encoding of sequents in S(I') and code(b)
is the encoding of b = (r, o) according to Definition [6.I]if b encodes a modal rule or code(b)
is the principal formula of the (non-modal) rule represented by b otherwise.

Every element of the set S(T") can be encoded by a string of polynomial length in size(T")
by Lemma Thus every position (A, a) of By can be encoded by a string of polynomial
length.

By exponential tractability, every rule blueprint b can be encoded as a string of poly-
nomial length, leading premise, leading to a polynomial bound on the size of the positions
(A,b,a) of By.

To see that E is decidable in exponential time, note that it follows from exponential
tractability that the moves of V from (A, a) to (A,b,b) are decidable in EXPTIME by Def-
inition of tractability. To ensure EXPTIME decidablity of a move from (A,b,a) to (A’ a’)
where b is a blueprint of a modal rule, note that the rule represented by (A,b) has at most
exponentially many conclusions (measured in the size of A), and as we can check whether
A’ is the i-th conclusion of p(A,b) in exponential time, we conclude that E is decidable in
EXPTIME overall. L]

We now obtain an EXPTIME upper bound for satisfiability.

Corollary 6.5. Suppose T is a monotone A-structure and R is exponentially tractable, con-
traction closed and one-step tableau complete for T'. Then the problem of deciding whether
3 has a winning strategy in the tableau game for a clean, guarded sequent T' € S(A) is
in EXPTIME. As a consequence, the same holds for satisfiability of any guarded formula

Ae F(A).

Proof. The first assertion follows from Lemmal6.4] as the problem of deciding the winner in a
parity game is exponential only in the size of the parity function of the game (Theorem [3.1])
which is polynomial in the size of I' (Lemma [5.2]). The second statement now follows with
the help of Theorem [5.I8] L]

Example 6.6. It is easy to see that the rule sets for the modal p-calculus, the coalitional
pu-calculus and the monotone p-calculus are exponentially tractable, as the number of con-
clusions of each one-step rule is bounded. To establish exponential tractability for the rule
sets for the graded and probabilistic p-calculus, we argue as in [24] where tractability of the
(dual) proof rules has been established. We encode a rule with premise Y ;" | ria; < k as
(ri,a1,...,7y,an, k) and Lemma 6.16 of op. cit. provides a polynomial bound on the size of
the solutions for the linear inequalities that combine conclusion and side condition of both
the (G) and (P)-rule. Exponential tractability follows, once we agree on a fixed order on
the set of prime implicants. In all cases, contraction closure is immediate.
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7. CONCLUSIONS

In this paper, we have introduced the coalgebraic u-calculus that provides a generic and
uniform framework for modal fixpoint logics. The calculus takes three parameters:

e an endofunctor 7" : Set — Set that defines the class of T-coalgebras over which the calculus
is interpreted

e a collection A of modal operators that defines the syntax of the calculus, and

e the interpretation of the modal operators over T-coalgebras, which is given by predicate
liftings for 7.

In this general setting, our main results are soundness and completeness of of the calculus
and EXPTIME decidability of the satisfiability problem for guarded formulas. Technically,
completeness was achieved by tracking the evolution of fixpoint formulas in a tableau,
and for a closed tableau we require that an outermost least fixpoint is unfolded along
every infinite branch. To detect these infinite unfoldings of least fixpoints, we use a parity
automaton that we run in parallel with the tableau, so that the existence of closed tableaux
can be characterised by winning strategies in a parity game that is played on pairs consisting
of a sequent and an automaton state. Our treatment borrows from by [17] and [26], but
there are some important differences. In contrast to [17], we use parity games that directly
correspond to tableaux, together with parity automata to detect bad traces. Moreover,
our model construction super-imposes a coalgebra structure on the relation induced by a
winning strategy for 3. This model construction is substantially more involved than that
given in [24], since we cannot argue in terms of modal rank in the presence of fixpoints.
Compared with [26] (where no complexity results are presented), we use standard syntax
for modal operators, which allows us to subsume for instance the graded p-calculus that
cannot be expressed in terms of the V-operator used in op. cit.. By instantiating the generic
approach to specific logics, that is, by providing instances of the endofunctor T, the set A
of modal operators and the one-step rules R, we

e reproduce the complexity bound for the modal p-calculus [9], together with the complete-
ness of a slight variant of the tableau calculus presented in [17],

e lead to a new proof of the known EXPTIME bound for the graded p-calculus [21],

e establish previously unknown EXPTIME bounds for the probabilistic p-calculus, for coali-
tion logic with fixpoints and for the monotone p-calculus.

We note that these bounds are tight for all logics except possibly the monotone p-calculus,
as the modal p-calculus can be encoded into all other logics. Given that the coalgebraic
framework is inherently compositional [6l [3, 5, 23], our results also apply to (coalgebraic)
logics that arise by combining various features, such as strategic games and quantitative
uncertainty.

As mentioned before we would like to stress that we established the EXPTIME bound
only for the guarded formulas of the above listed logics. Under the frequently used as-
sumption that one can transform an arbitrary formula into an equivalent guarded one in
polynomial or even linear time, we could extend our results to the full logics. In particular,
note that in [2I] precisely this assumption has been used for the graded p-calculus. For
the modal p-calculus a tableau-based EXPTIME-procedure that works for arbitrary for-
mulas as input has been presented recently in [I1]. After careful inspection of our calculus
we conjecture that our tableau calculus is also sound and complete for arbitrary formulas
and formula sequents. We have to leave the details of the substantially more complicated
completeness proof for this general case as future work.
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