
Logical Methods in Computer Science
Vol. 8 (3:09) 2012, pp. 1–8
www.lmcs-online.org

Submitted Feb. 22, 2012
Published Aug. 13, 2012

PSEUDO-FINITE HARD INSTANCES FOR A STUDENT-TEACHER

GAME WITH A NISAN-WIGDERSON GENERATOR

JAN KRAJÍČEK

Faculty of Mathematics and Physics, Charles University in Prague
Sokolovská 83, Prague 8, CZ - 186 75, The Czech Republic
e-mail address: krajicek@karlin.mff.cuni.cz

Abstract. For an NP ∩ coNP function g of the Nisan-Wigderson type and a string b
outside its range we consider a two player game on a common input a to the function.
One player, a computationally limited Student, tries to find a bit of g(a) that differs from
the corresponding bit of b. He can query a computationally unlimited Teacher for the
witnesses of the values of constantly many bits of g(a). The Student computes the queries
from a and from Teacher’s answers to his previous queries.

It was proved in [Kra11b] that if g is based on a hard bit of a one-way permutation then
no Student computed by a polynomial size circuit can succeed on all a. In this paper we
give a lower bound on the number of inputs a any such Student must fail on. Using that
we show that there is a pseudo-finite set of hard instances on which all uniform students
must fail. The hard-core set is defined in a non-standard model of true arithmetic and has
applications in a forcing construction from [Kra11a].

Introduction

Consider a function g : {0, 1}n → {0, 1}m defined as a Nisan-Wigderson generator based
on some Boolean function f , cf.[NW94]. That is, there is a set system {Ji ⊆ [n]}i∈[m] such
that

• |Ji| = ℓ, for all i
• |Ji ∩ Jj | ≤ d, for all i 6= j

and the i-th bit of g(x) equals to f(x(Ji)) where f : {0, 1}ℓ → {0, 1} and x(Ji) is the ℓ-bit
string xj1 . . . xjℓ if

Ji = {j1 < · · · < jℓ} .

We are interested in the case when f is a hard bit B(v) of a polynomial-time computable
one-way permutation h : {0, 1}ℓ → {0, 1}ℓ:

f(u) := B(h(−1)(u)) .

1998 ACM Subject Classification: F.2.2, F.4.1.
Key words and phrases: Nisan-Wigderson generator, interactive computation, hard core, model theory.
Supported in part by grant IAA100190902. Also partially affiliated with the Institute of Mathematics of

the Academy of Sciences.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (3:09) 2012

c© J. Krajíček
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. KRAJÍČEK

If m > n there are strings b ∈ {0, 1}m \Rng(g) and with any such string b we associate the
following game mathcalGb. The game is played by two players, a Student and a Teacher,
both knowing b. They receive a common input: any a ∈ {0, 1}n. The Student tries to
find i ∈ [m] such that g(a)i 6= bi, certifying thus that b is outside of the range of g. The
Student will be computationally limited and, in particular, while he will be able to compute
permutation h he will not be able to compute function f and to find a suitable bit i himself.
Instead he will compute some candidate solution i1 and hand it to the Teacher. She has an
unlimited computational power and will reply to the Student with the unique v1 ∈ {0, 1}ℓ

such that h(v1) = a(Ji1).
If B(v1) 6= bi1 the game stops with the Student solving the task. Otherwise he computes

his next candidate solution i2 ∈ [m] and hands it to the Teacher, gets back v2 such that
h(v2) = a(Ji2), etc.

In general the Student will be allowed to present up to c candidate solutions, c some
parameter. If he does not find a solution, we say he failed. The Student can be modelled
by c functions

S1(x), S2(x, y
1), . . . , Sc(x, y

1, . . . , yc−1)

computing his candidate solutions:

ik := Sk(a, v
1, . . . , vk−1), k ≤ c

where vj ’s are the Teacher’s replies.
We are interested in the case when the Student is a small circuit, i.e. the functions Sk

are computed by circuits of a small total size. The Teacher’s moves are uniquely determined.
This Student-Teacher way of computing a function grew out of a use of Herbrand’s theorem
in bounded arithmetic; the Student-Teacher formalism was introduced in [KPS90] (see there
also for an overview in a complexity-theoretic language).

Assuming that h is indeed a one-way permutation it was proved in [Kra11b, Kra11a]
that for any fixed c ≥ 1 no P/poly Student can solve the task on all inputs a ∈ {0, 1}n, for
n >> 0. In this paper we are interested in the question whether there exists a set of hard
instances H ⊆ {0, 1}n such that every P/poly Student fails on most a ∈ H.

This question is motivated by a research in proof complexity; in particular by a conjec-
ture1 that functions like g are hard proof complexity generators and by a model-theoretic
approach to it based on forcing. This proof complexity motivation is discussed in detail in
[Kra11a, Part VIII] and in [Kra11b] and we shall not review it here.

In this paper we show that we can combine the lower bound argument from [Kra11a,
Chpt.31] and [Kra11b] with the model-theoretic set-up of forcing with random variables to
give a partial affirmative answer to the question about the existence of sets H. The qualifi-
cation ”partial” means that we construct such a set of hard examples as a pseudo-finite set of
strings of a non-standard length n in a model of true arithmetic and that the instances from
it are hard for uniform students, i.e. the functions S1(x), S2(x, y

1), . . . , Sc(x, y
1, . . . , yc−1)

defining their moves are computed by uniform algorithms. In fact, we can allow the uniform

1Statement (S) in [Kra11a, Sec.31.4] or in [Kra11b], modifying Razborov’s Conjecture 2 from [Raz??] and
related also to Rudich’s demi-bit conjecture from [Rud97].

PSEUDO-FINITE HARD INSTANCES 3

students to use common advice strings of all lengths. This partial solution is perfectly ad-
equate for the purpose of the construction in [Kra11a, Chpt.31]2 but it would be desirable
to have such hard-core sets for non-uniform students as well. This is because the forc-
ing models constructed in that case have some nice properties (in particular, witnessing of
quantifiers [Kra11a, Chpt.3] or saturation properties [Kra??]) that may be useful for further
research.

The paper is self-contained in the sense that the reader will be able to fully understand
the problem and its solution. However, to appreciate its relevance to the forcing construction
and subsequently for the proof complexity conjecture alluded to above one needs to consult
[Kra11a, Part VIII] or [Kra11b] (better both).

The paper is organized as follows. In Section 1 we give details of the problem and use
the argument from [Kra11b, Kra11a] to derive a lower bound on the number of inputs every
P/poly student must fail on. In Section 2 some model theory and forcing with random
variables is briefly reviewed and the pseudo-finite hard-core set is constructed in Section 3.

Relevant background can be found in [Kra95, Kra11a, Kra11b]. In particular, readers
not familiar with non-standard models can find a self-contained introduction to the topic
in the appendix in [Kra11a].

1. Hardness of the game

We shall fix the following parameters in the definition of function g:

m := n+ 1, ℓ := n1/3, d := log(m) .

In applications of Nisan-Wigderson generators m is usually exponentially large but for the
purpose of proof complexity the best choice is to have m as small as possible. By [NW94]
there is a set system {Ji}i with the required properties, and we fix any one of them.

Let h be a polynomial time permutation (we are interested in its restriction to {0, 1}ℓ)
that is one-way and let B(v) be its hard bit. In particular, by this hardness assumption we
mean that

• For any fixed k ≥ 1 no P/poly algorithm can compute from u ∈ {0, 1}ℓ the value

B(h(−1)(u)) with the advantage better than ℓ−k over 1/2.

Let us fix a string b ∈ {0, 1}m \ Rng(g). In [Kra11b] (a similar argument is used
in [Kra11a, Sec.31.2] for a different purpose) it was proved that no P/poly Student can
succeed in the game mathcalGb on all inputs, assuming that h is indeed one-way. We are
now going to sketch the argument in order to extend it a bit and to deduce a lower bound
on the number of inputs on which a Student must fail. Any details of the original argument
missing here can be found in the proof of [Kra11b, Thm.3.2].

Consider a Student that attempts to succeed in the game mathcalGb on as many inputs
a as possible and assume he can ask at most c queries to the Teacher. The lower bound
will depend on c.

Denote by W ⊆ {0, 1}n the set of all a ∈ {0, 1}n on which the Student succeeds. For
a ∈ {0, 1}n let us denote by vi(a) the preimage of a(Ji) in h, for i ∈ [m].

2The original construction was based on an unsuitable sample space as pointed out by S. Buss. This is
explained in the last section.

4 J. KRAJÍČEK

If the Student succeeded on a and i was its last query to the Teacher it means that

f(a(Ji)) 6= bi .

Intuitively this gives us some information about the function f as we can deduce its value
on the string a(Ji) while receiving during the computation from the Teacher only strings

that have little to do with the string h(−1)(a(Ji)) we would need in order to compute f
ourselves. The formal argument makes this intuition precise.

Assume that the Student asked k queries: the candidate solutions the Student produced
were i1, . . . , ik and the last one ik was correct. Call the k-tuple (i1, . . . , ik) the trace of the
computation on a. In particular, k ≤ c. As the witnesses are unique the trace determines
also the Teacher’s replies. A simple counting argument yields (cf. the proof of [Kra11b,
Thm.3.2])

Claim 1: There is a k-tuple (i1, . . . , ik) ∈ [m]k for some k ≤ c that is the trace of compu-

tations on at least a fraction of 2
(3m)k

of all inputs from W .

Fixing a trace i = (i1, . . . , ik) satisfying the claim, define for any u ∈ {0, 1}ℓ and
v ∈ {0, 1}n−ℓ the string a(u, v) ∈ {0, 1}n as follows: put bits of u into the positions Jik and
then fill the remaining n − ℓ positions by bits of v. The following claim follows from the
proof of Claim 1 by averaging.

Claim 2: There is e ∈ {0, 1}n−ℓ s.t. at least a fraction of 1
(3m)k

more u ∈ {0, 1}ℓ yield

sample a(u, e) ∈ W whose trace is exactly i than those u which yield a(u, e) ∈ W whose

trace properly contains i.

Fix one such an (n− ℓ)-tuple e. Call any u ∈ {0, 1}ℓ good if a(u, e) ∈ W .

The property that two distinct sets from the set system {Ji}i intersect in at most log(m)
positions implies that there are, for any row i 6= ik, at most m assignments w to bits in Ji
not set by e. Any such w determines, together with e, an assignment to variables in Ji and
hence a string in {0, 1}ℓ; denote it zw. Let Yi be the set of all preimages of all zw in the
permutation h. The total bit size of all Yi together is m

O(1).

This situation allows us to define an algorithm C that uses as advice the set system
{Ji}i, the string b, the trace i, the partial assignment e, and all m − 1 sets Yi. The total

size of the advice is again bounded above by mO(1).
The algorithm C attempts to compute the function f on inputs u ∈ {0, 1}ℓ. Let U be

those inputs u ∈ {0, 1}ℓ for which the trace of a(u, e)) either equals to i or starts with i,
and let b0 be the majority value of f on the complement of U .

On input u ∈ {0, 1}ℓ C simulates the Student’s computation on the string a := a(u, e) ∈
{0, 1}n. If any of the candidate solutions produced in the j-th query, j = 1, . . . , k, to the
Teacher differs from the j-th entry in the trace i C halts and outputs b0.

Otherwise, if the trace of the computation follows i, C uses sets Yi to simulate Teacher’s
replies (these are unique and can be tested as correct). If the computation evolved according
to the trace i and reached the k-th step C outputs 1− bik .

The algorithm C outputs the bit b0 in all cases except when the computation follows
the trace i and reaches the k-th step. If the computation of the Student were to actually
stop at that point then the value 1− bik is indeed equal to f(u).

PSEUDO-FINITE HARD INSTANCES 5

Otherwise, if the computation were to continue, we do not have a way to deduce the
true value of f(u). The influence of this case can be, however, bounded. By the choice of e
in Claim 2 the former case happens for at least a fraction of 1

(3m)k
more of all good inputs

u ∈ {0, 1}ℓ than the latter one. If W = {0, 1}n (as in [Kra11b]) we would be done: All u are
good and as b0 is the correct value of f for at least half of u /∈ U , the algorithm C would
compute f with an advantage over 1/2 at least 1

(3m)k
.

If W is a proper subset of {0, 1}n this argument fails as we have no control over the
number of bad u (i.e. for which a(u, e) /∈ W) but the trace of a(u, e) contains i, i.e. of the
size of the set U \W . However, if we knew that the size of the complement of W in {0, 1}n

is at most, say:

sc :=
1

2
· 2n

1/3
·

1

(3m)c

then the above argument works: sc bounds, in particular, the number of bad u and the
algorithm C gets the advantage at least

1

(3m)k
−

1

2
·

1

(3m)c
≥

1

2
·

1

(3m)k
≥

1

2
·

1

(3m)c
.

The algorithm C needs the same time as the Student except when it simulates a reply of
the Teacher and looks for an appropriate witness in one of the sets Yi. This is done at most
(c− 1)-times and takes mO(1) time per one witness-search. Hence if the Student is P/poly

the total time C uses is c ·mO(1).

We conclude that assuming that a P/poly Student fails on less than sc inputs contra-
dicts the hypothesis that h is a one-way permutation. Hence the following statement was
established.

Lemma 1.1. Assume that the parameters n,m, ℓ, the set system {Ji}i and the string b
satisfy the conditions imposed on them earlier. Assume also that h is a polynomial-time

one-way permutation, that B(v) is its hard bit and that f(u) = B(h(−1)(u)).
Let c ≥ 1 be arbitrary. Then for any fixed k ≥ 1, for any n large enough any Student

asking at most c queries to the Teacher and computed by circuits of the total size mk must

fail on at least

sc :=
1

2
· 2n

1/3
·

1

(3m)c

inputs a ∈ {0, 1}n.

Let us remark that if the hardness of the permutation h were exponential, in the sense
that for some ǫ > 0 a circuit needs to have the size at least 2ℓ

ǫ
in order to compute the hard

bit with an advantage at least 2−ℓǫ , then we could allow also exponentially large Students
posing up to nδ queries for some small δ > 0 (depending on ǫ) and still get a meaningful
lower bound. Also, the whole situation can be specialized to various circuit subclasses of
P/poly such as AC0 or NC1, as discussed in [Kra11b].

6 J. KRAJÍČEK

2. Some model theory

In this section we briefly recall the set-up of forcing with random variables, enough to
formulate and prove our result in the next section. However, we shall not go into the details
specific for the construction in [Kra11a, Chpt.31] motivating this paper.

Forcing of random variables is a method how to construct models of arithmetic. A
special emphasis is given to bounded arithmetic because of its relation to proof complexity
but the method is not limited to this theory. The models are formed from random variables
on a pseudo-finite sample space and are Boolean-valued.

Let mathcalM be a non-standard ℵ1-saturated model of true arithmetic in some lan-
guage L containing the language of Peano arithmetic and having a canonical interpretation
in the standard model. Let Ω ∈ mathcalM be an infinite set; as it is an element of the
model it is finite from the point of view of mathcalM . Let F ⊆ mathcalM be any - not
necessarily definable - family of functions α : Ω → mathcalM .

The family F will be the universe of a Boolean-valued L-structure K(F). The symbols
of L are interpreted by composition with functions from F . For example, for a k-ary function
symbol f and any α1, . . . , αk ∈ F define the function f(α1, . . . , αk) by

f(α1, . . . , αk)(ω) := f(α1(ω), . . . , αk(ω)), for ω ∈ Ω .

We need to assume that this function is also in F , i.e. that F is L-closed in the terminology
of [Kra11a].

Every atomic L(F)-sentence A is naturally assigned a subset 〈〈A〉〉 ⊆ Ω consisting of
those samples ω ∈ Ω for which A is true in mathcalM .

Combining the idea of Loeb’s measure with some measure theory it was shown in
[Kra11a, Sec.1.2] that if we factor the Boolean algebra of mathcalM -definable subsets of Ω
by the ideal of sets of an infinitesimal counting measure we get a complete Boolean algebra
mathcalB.

The image of 〈〈A〉〉 in mathcalB in this quotient is denoted [[A]]. Following Boole
[Boo47] and Rasiowa-Sikorski [RS53] this determines the truth value [[A]] ∈ mathcalB for
any L(F)-sentence A: [[. . .]] commutes with Boolean connectives and

[[∃xA(x)]] :=
∨

α∈F

[[A(α)]]

and analogously for the universal quantifier.
There are various generalizations of this basic set-up and, in particular, the random

variables from the family F can be only partially defined on the sample space Ω, as long as
their regions of undefinability have infinitesimal counting measures.

In the particular construction in [Kra11a, Chpt.31] the sample space is simply the
set {0, 1}n for some non-standard n ∈ mathcalM , and the family F consisted of partial
random variables computed by students operating similarly as in the game mathcalGb.
More precisely, any partial function α ∈ F is computed by a P/poly Student who

• gets an input ω ∈ {0, 1}n,
• there is a standard parameter c such that the Student can ask the Teacher for the values
of h(−1) on ω(Ji) for up to c values of i ∈ [m] (c is common to all inputs ω but may differ
for different α),

• if the Teacher’s answer v to any query about h(−1)(ω(Ji)) does not satisfy B(v) = bi the
computation is aborted and α is undefined,

PSEUDO-FINITE HARD INSTANCES 7

• if the computation is not aborted after any Teacher’s answer the Student outputs at the
end an element of mathcalM (necessarily of size polynomial in n).

Unfortunately such a function α is typically undefined on a (standard) positive fraction3 on
{0, 1}n and hence the pair {0, 1}n, F does not conform to the set-up of the construction.

What is needed is an infinite subset H ⊆ Ω, definable in mathcalM , such that every
student-computed α is defined on all but an infinitesimal fraction of H.

In the next section we shall construct such H for uniform students that may all use some
common advice string. This is perfectly sufficient for the intended applications of the model.
But it would still be desirable to have such a hard-core set for non-uniform students of some
superpolynomial size. The reason is that a family F based on such students can be modified
into a compact one (in the sense of [Kra11a, Sec.3.4]) and the compactness of F implies
that the resulting model K(F) has some nice model-theoretic properties mentioned in the
introduction. For example, non-uniform students of sub-exponential size (i.e. the functions
S1(x), S2(x, y

1), . . . , Sc(x, y
1, . . . , yc−1) defining their moves are computed by circuits of total

size 2n
o(1)

) define family F that is already compact.

3. A construction of a hard-core set

We assume that a non-standard n ∈ mathcalM , a set system {Ji}i with the required
properties, a permutation h and its hard bit B(v), and some string b ∈ {0, 1}m \ Rng(g)
are fixed.

Let w ∈ mathcalM be any string of size polynomial in n and let F unif
w ⊆ mathcalM be

the family of partial random variables on {0, 1}n defined as F in Section 2 but allowing all
Students computing the random variables to use as an advice only the triple ({Ji}i, b, w).
This is perfectly sufficient for any application4 of the eventual model in Sections 31.3. and
31.4 of [Kra11a] (w can contain e.g. a proof of a propositional formula or a witness of the

membership of b in an NP set, etc.) and has the great advantage that the family F unif
w is

now countable.

Theorem 3.1. There exists an infinite set H ⊆ {0, 1}n, H ∈ mathcalM , such that each

α ∈ F unif
w is defined on all samples from H.

Proof. Enumerate as α1, α2, . . . the set F unif
w in such a way that the Student defining αk

runs in time ≤ mk and asks at most k queries, for all k ≥ 1.
By the ℵ1-saturation there exists a sequence in mathcalM of a non-standard length

t whose k-th element is αk, for all standard k (see [Kra11a, p.9]). We shall denote it
suggestively (αi)i<t.

If we take α1, . . . , αk we can compose the Students defining them by first computing α1,
if it is not aborted then instead of outputting a value computing α2, etc. , and outputting
(arbitrary) values only at the end, if the computation is not aborted earlier. The resulting
function is computed in time O(kmk) using at most k(k + 1)/2 ≤ k2 queries. Hence by
Lemma 1.1 it is defined on at least sk2 samples from {0, 1}n. This yields the following

3Contrary to what was claimed in [Kra11a, L.31.2.1] - I am indebted to S. Buss for pointing it out. See
http://www.karlin.mff.cuni.cz/˜krajicek/k2-upravy.html for an explanation and a correction.

4Note that [Kra11b] already provided an alternative construction with the same consequences as those
described in [Kra11a].

8 J. KRAJÍČEK

Claim: For each standard k ≥ 1 there exists definable subset Hk ⊆ {0, 1}n of size at least
sk2 such that all α1, . . . , αk are defined on all samples from Hk.

By the Overspill the statement of the Claim holds also for the sequence (αi)i≤r for some
non-standard r ≤ t, and we can take r small enough (but still non-standard) such that sr2
is non-standard and hence the set H := Hr satisfies the statement of the theorem.

Let us remark in conclusion that proofs of the Boolean case hard-core set theorem of
Impagliazzo [Imp95] do not seem to work here. This is because n small Students cannot be
combined into a one somewhat larger as this would blow-up the number of queries posed
to the Teacher.

Acknowledgment

I am indebted to the two anonymous referees for comments and suggestions.

References

[Boo47] G. Boole. The mathematical analysis of logic. Barclay and Macmillan, Cambridge, 1847.
[Imp95] R. Impagliazzo. Hard-Core Distributions for Somewhat Hard Problems. 36th Annual Symp. on

Foundations of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, IEEE Computer
Society, 538–545, 1995.

[Kra95] J. Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory. Encyclopedia of Math-
ematics and Its Applications, Cambridge University Press, Vol.60, 1995.

[Kra11a] J. Kraj́ıček. Forcing with random variables and proof complexity. London Mathematical Society
Lecture Notes Series, Cambridge University Press, Vol.382, 2011.

[Kra11b] J. Kraj́ıček. On the proof complexity of the Nisan-Wigderson generator based on a hard NP ∩ coNP
function. J. Mathematical Logic, 11(1): 11–27, 2011.

[Kra??] J. Kraj́ıček. A saturation property of structures obtained by forcing with a compact family of
random variables. submitted preprint, 2012.

[KPS90] J. Kraj́ıček, P. Pudlák, and J. Sgall. Interactive Computations of Optimal Solutions. in: B. Rovan
(ed.): Mathematical Foundations of Computer Science (B. Bystrica, August ’90), Lecture Notes in
Computer Science, Springer-Verlag, 452:48–60, 1990.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. System Sci., 49:149–167, 1994.
[RS53] H. Rasiowa and R. Sikorski. Algebraic treatment of the notion of satisfiability. Fundamenta Math-

ematicae, 40:62–65, 1953..
[Raz??] A. A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial calculus

resolution. unpublished preprint, 2003.
[Rud97] S. Rudich. Super-bits, demi-bits, and ÑP/qpoly-natural proofs. in: Proc. of the 1st Int.Symp. on

Randomization and Approximation Techniques in Computer Science, LN in Comp.Sci., Springer-
Verlag, 1269:85–93, 1997.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	Introduction
	1. Hardness of the game
	2. Some model theory
	3. A construction of a hard-core set
	Acknowledgment
	References

