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Abstract. The probabilistic modal µ-calculus is a fixed-point logic designed for expressing
properties of probabilistic labeled transition systems (PLTS’s). Two equivalent semantics
have been studied for this logic, both assigning to each state a value in the interval [0, 1]
representing the probability that the property expressed by the formula holds at the state.
One semantics is denotational and the other is a game semantics, specified in terms of
two-player stochastic parity games.

A shortcoming of the probabilistic modal µ-calculus is the lack of expressiveness required
to encode other important temporal logics for PLTS’s such as Probabilistic Computation
Tree Logic (PCTL). To address this limitation we extend the logic with a new pair of
operators: independent product and coproduct. The resulting logic, called probabilistic
modal µ-calculus with independent product, can encode many properties of interest and
subsumes the qualitative fragment of PCTL.

The main contribution of this paper is the definition of an appropriate game semantics
for this extended probabilistic µ-calculus. This relies on the definition of a new class of
games which generalize standard two-player stochastic (parity) games by allowing a play
to be split into concurrent subplays, each continuing their evolution independently. Our
main technical result is the equivalence of the two semantics. The proof is carried out in
ZFC set theory extended with Martin’s Axiom at an uncountable cardinal.

1. Introduction

The modal µ-calculus (Lµ) [18, 30, 5] is a very expressive logic, for expressing properties
of labeled transition systems (LTS’s), obtained by extending classical propositional modal
logic with least and greatest fixed point operators. In the last decade, a lot of research has
focused on the study of reactive systems that exhibit some kind of probabilistic behavior,
and logics for expressing their properties. Probabilistic labeled transition systems (PLTS’s)
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[29] are a natural generalization of standard LTS’s to the probabilistic scenario, as they
allow both non-deterministic and (countable) probabilistic choices. A state s in a PLTS
can evolve by non-deterministically choosing one of the accessible probability distributions d
(over states) and then continuing its execution from the state s′ with probability d(s′). This
combination of non-deterministic choices immediately followed by probabilistic ones, allows
the modeling of concurrency, non-determinism and probabilistic behaviors in a natural
way. PTLS’s can be visualized using graphs labeled with probabilities in a natural way
[13, 19, 1]. For example the PLTS depicted in Figure 1 models a system with two states
p and q. At the state q no action can be performed. At the state p the system can evolve

non-deterministically either to the state q with probability 1 (when the transition p
a

−→ d2
is chosen) or to the state p with probability 1

3 and to the state q and with probability 2
3

(when the transition p
a

−→ d1 is chosen).
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Figure 1: Example of a PLTS

The probabilistic modal µ-calculus (pLµ), introduced in [27, 14, 10], is a generaliza-
tion of Lµ designed for expressing properties of PLTS’s. This logic was originally named
the quantitative µ-calculus, but since other µ-calculus-like logics, designed for expressing
properties of non-probabilistic systems, have been given the same name (see, e.g., [11]), we
adopt the probabilistic adjective. The syntax of the logic pLµ coincides with that of the
standard µ-calculus. The denotational semantics of pLµ [27, 10] generalizes that of Lµ, by
interpreting every formula F as a map JF K :P→ [0, 1], which assigns to each state p a degree
of truth. In [23], the authors introduce an alternative semantics for the logic pLµ. This
semantics, given in term of two-player stochastic parity games, is a natural generalization
of the two-player (non stochastic) game semantics for the logic Lµ [30]. As in Lµ games, the
two players play a game starting from a configuration 〈p, F 〉, where the objective for Player
1 is to produce a path of configurations along which the outermost fixed point variable X
unfolded infinitely often is bound by a greatest fixed point in F . On a configuration of the
form 〈p,G1 ∨ G2〉, Player 1 chooses one of the disjuncts Gi, i ∈ {1, 2}, by moving to the
next configuration 〈p,Gi〉. On a configuration 〈p,G1 ∧G2〉, Player 2 chooses a conjunct Gi

and moves to 〈p,Gi〉. On a configuration 〈p, µX.G〉 or 〈p, νX.G〉 the game evolves to the
configuration 〈p,G〉, after which, from any subsequent configuration 〈q,X〉 the game again
evolves to 〈q,G〉. On configurations 〈p, 〈a〉G〉 and 〈p, [a]G〉, Player 1 and 2 respectively

choose a transition p
a

−→d in the PLTS and move the game to 〈d,G〉. Here d is a probabil-
ity distribution (this is the key difference between pLµ and Lµ games) and the configuration
〈d,G〉 belongs to Nature, the probabilistic agent of the game, who moves on to the next
configuration 〈q,G〉 with probability d(q). This game semantics allows one to interpret
formulas as expressing, for each state p, the (limit) probability of a property, specified by
the formula, holding at the state p. In [23], the equivalence of the denotational and game
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semantics for pLµ on all finite models, was proven. The result was recently extended to
arbitrary models by the present author [26].

Having a complementary game semantics for the logic pLµ is of great conceptual im-
portance. In the quantitative approach to probabilistic temporal logics, the truth value
associated with a formula at a given state is supposed to represent the probability that the
property expressed by the formula holds at the state. Since the connectives of pLµ can
be given other meaningful denotational interpretations different from those considered in
[27, 10] (see, e.g., [14]), one naturally seeks an alternative description for the properties
associated with formulas going beyond the mere denotational interpretation. The game
semantics for pLµ provides such an operational interpretation in terms of the interactions
between the controller (Player 1) and a hostile environment (Player 2) in the context of the
stochastic choices occurring in the PLTS (Nature).

However, a shortcoming of the probabilistic µ-calculus is the lack of expressiveness
required to encode other important temporal logics for PLTS’s, such as Probabilistic Com-
putation Tree Logic (PCTL) of [2]. To address this limitation, we consider an extension of
the logic pLµ obtained by adding to the syntax of the logic a second conjunction operator (·)
called product and its De Morgan dual operator called coproduct (⊙). We call this extension
the probabilistic modal µ-calculus with independent product, or just pLµ⊙. The denotational
semantics of the product operator is defined as JF ·GK(p)=JF K(p)·JGK(p), where the product
symbol in the right hand side is multiplication on reals. The denotational semantics of the
coproduct is defined, by De Morgan duality, as JF ⊙GK(p)=1−

(

(1−JF K(p)) ·(1−JGK(p))
)

.
These operators were already considered in [14] as a possible generalization of standard
boolean conjunction and disjunction to the lattice [0, 1]. Our logic pLµ⊙ is novel in con-
taining both ordinary conjunctions and disjunctions (∧ and ∨) and independent products
and coproducts (· and ⊙). While giving a denotational semantics to pLµ⊙ is straightfor-
ward, the major task we undertake in this paper is to extend the game semantics of [23]
to the new connectives. The conceptual importance of this kind of result has already been
outlined above (see also [25, §1] for an extensive exposition). The game semantics imple-
ments the intuition that H1 · H2 expresses the probability that H1 and H2 both hold if
verified independently of each other.

To capture formally this intuition we introduce a game semantics for the logic pLµ⊙ in
which independent execution of many instances of the game is allowed. Our games build
on those for pLµ outlined above. Novelty arises in the game interpretation of the game
states 〈p,H1 ·H2〉 and 〈p,H1 ⊙ H2〉. When during the execution of the game one of this
kind of nodes is reached, the game is split into two concurrent and independent subgames
continuing their executions from the states 〈p,H1〉 and 〈p,H2〉 respectively. The difference
between the game-interpretation of product and coproduct operators is that on a product
configuration 〈p,H1 · H2〉, Player 1 has to win in both generated sub-games, while on a
coproduct configuration 〈p,H1 ⊙H2〉, Player 1 needs to win just one of the two generated
sub-games.

To illustrate the main ideas, let us consider the PLTS of figure 2(a) and the pLµ for-
mula F = 〈a〉〈a〉tt which asserts the possibility of performing two consecutive a-steps. The
probability of F being satisfied at p is 1

2 , since after the first a-step, the state 0 is reached

with probability 1
2 and no further a-step is possible. Let us consider the pLµ⊙ formula

H = µX.(F ⊙ X). Figure 2(b) depicts a play in the game starting from the configuration
〈p,H〉 (fixed-point unfolding steps are omitted). The branching points represent places
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〈p, F ⊙X〉

〈p, F 〉

T1

〈p,X〉

〈p, F ⊙X〉

〈p, F 〉

T2

〈p,X〉

(b) Branching play rooted in 〈p,H〉

Figure 2: Illustrative example

where coproduct is the main connective, and each Ti represents play in one of the inde-
pendent subgames for 〈p, F 〉 thereupon generated. We call such a tree, describing play on
all independent subgames, a branching play. Since all branches are coproducts, and the
fixpoint is a least fixpoint, the objective for Player 1 is to win at least one of the games
Ti. Since the probability of winning a particular game Ti is 1

2 , and there are infinitely
many independent such games, the probability of Player 1 winning the whole game H is 1.
Therefore the game semantics assigns H at p the value 1.

The above example illustrates an interesting application of the new operators, namely
the possibility of encoding the qualitative probabilistic modalities P>0F (F holds with
probability greater than zero) and P=1F (F holds with probability 1), which are equivalent
to the pLµ⊙ formulas µX.(F ⊙X) and νX.(F ·X) respectively. Other useful properties can
be expressed by using these probabilistic modalities in the scope of fixed point operators.
Some interesting formulas include µX.

(

〈a〉X∨(P=1H)
)

, νX.
(

P>0〈a〉X
)

and P>0

(

νX.〈a〉X
)

.
The first formula assigns to a state p the probability of eventually reaching, by means of a
sequence of a-steps, a state in which H holds with probability 1. The second, interpreted on
a state p, has value 1 if there exists an infinite sequence of possible (in the sense of having
probabilty greater than 0) a-steps starting from p, and 0 otherwise. The third formula,
expresses a stronger property, namely it assigns to a state p value 1 if the probability
of making (starting from p) an infinite sequence of a-steps is greater than 0, and value 0
otherwise. As a matter of fact the logic pLµ⊙ is expressive enough to encode the qualitative
fragment of PCTL.

Formalizing the pLµ⊙ games outlined above is a surprisingly technical undertaking.
To account for the branching plays that arise, we introduce a general notion of tree game
which is of interest in its own right. Tree games generalize two-player stochastic games, and
are powerful enough to encode certain classes of games of imperfect information such as
Blackwell games [21]. A further level of difficulty arises in expressing when a branching play
in a pLµ⊙ game is considered an objective for Player 1. This is delicate because branching
plays can contain infinitely many interleaved occurrences of product and coproduct oper-
ations (so our simple explanation of such nodes above does not suffice). To account for
this, branching plays are themselves considered as ordinary two-player (parity) games with
coproduct nodes as Player 1 nodes, and product nodes as Player 2 nodes. Player 1’s goal in
the outer pLµ⊙ game is to produce a branching play for which, when itself considered as a
game, the inner game, they have a winning strategy. To formalize the class of tree games
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whose objective is specified by means of inner games, we introduce the notion of two-player
stochastic meta-parity game.

Our main technical result is the equivalence of the denotational semantics and the game
semantics for the logic pLµ⊙. As in [26] the proof of equivalence of the two semantics is
based on the unfolding method of [11]. However there are significant complications, notably,
the transfinite inductive characterization of the set of winning branching plays in a given
pLµ⊙ game (section 6) and the lack of denotational continuity on the free variables taken
care by the game-theoretic notion of robust Markov branching play (Section 7). Moreover,
because of the complexity of the objectives described by means of inner games, the proof is
carried out in ZFC set theory extended with MAℵ1 (Martin’s Axiom at ℵ1) and therefore
our result is at least consistent with ZFC. We leave open the question of whether our result
is provable in ZFC alone; we do not know if this is possible even restricting the equivalence
problem to finite models.

The rest of the paper is organized as follows. In Section 2 we discuss the required
mathematical background. In Section 3 we define the syntax and the denotational semantics
of the logic pLµ⊙. In Section 4 the class of stochastic tree games, and its sub-class given by
two-player stochastic meta-parity games, are introduced in detail. In Section 5 the game
semantics of the logic pLµ⊙ is defined in terms of two-player stochastic meta-parity games.
In Section 6 we provide a transfinite inductive characterization of the winning set of the
game associated with a formula µX.F . In Section 7 we introduce the technical notion of
robust Markov branching play. In Section 8 we prove the equivalence of the two semantics,
our main result. Conclusions and directions for future research are presented in Section 9.

2. Mathematical Background

Definition 2.1. A (discrete) probability distribution d over a set X is a function d :X→
[0, 1] such that

∑

x∈X d(x) = 1. The support of d, denoted by supp(d), is defined as the
(necessarily countable) set {x∈X | d(x)>0}. We denote with D(X) the set of probability
distributions over X. We denote with δx, for x ∈X, the unique probability distribution
such that supp(δx)={x}.

Definition 2.2 (PLTS [29]). Given a countable set L of labels, a Probabilistic Labeled

Transition System is a pair L = 〈P, {
a

−→}a∈L〉, where P is a countable set of states and
a

−→⊆P × D(P ), for every a ∈ L. In this paper we restrict our attention to those PLTS’s

such that for every p ∈ P and every a ∈ L, the set {d | p
a

−→ d} is countable. We refer

to the countable set
⋃

a∈L

⋃

p∈P{d | p
a

−→ d}, denoted by D(L), as the set of probability
distributions of the PLTS. We say that a PLTS L is not-probabilisitc, or just a LTS, if every
probability distribution d∈D(L) is of the form δp, for some p∈P .

Given a set X, we denote with 2X the set of all subsets Y ⊆ X. Given a complete
lattice (L,≤), we denote with

⊔

: 2L →L and
d

: 2L →L the operations of join and meet
respectively. A function f :L→L is monotone if x≤y implies f(x)≤f(y), for every x, y∈L.
The set of fixed points of any monotone function f :L →L, ordered by ≤, is a non-empty
complete lattice [32]. We denote with lfp(f) and gfp(f) the least and the greatest fixed
points of f , respectively.

Theorem 2.3 (Knaster–Tarski [32]). Let (L,≤) be a complete lattice and f : L → L a
monotone function. The following equalities hold:
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(1) lfp(f) =
⊔

α f
α, where fα =

⊔

β<α f(f
β),

(2) gfp(f) =
d

α fα, where fα =
d

β<α f(fβ),

where the greek letters α and β range over ordinals.

The closed real interval [0, 1], with its standard order ≤, is a (distributive) complete
lattice [25] with

⊔

X = supX and
d

X = infX, for every X ⊆ [0, 1]. When X = {x, y} we
simply have x⊔y = max{x, y} and x⊓y = min{x, y}. The involutive map x 7→ 1−x is clearly
order-reversing, thus the structure ([0, 1],≤, λx.1 − x) constitutes a complete De Morgan
algebra. We shall consider the operation of product (·), i.e., standard multiplication on [0, 1],

and its De Morgan dual, called coproduct (⊙), defined as: x⊙ y
def
= 1−

(

(1 − x) · (1 − y)
)

.
Equivalently, x⊙ y=x+ y − xy. Both operations are commutative, associative, monotone
and extend uniquely to infinitary operations of type

∏

,
∐

: [0, 1]N→ [0, 1] as follows:
∏

{xn}n∈N =
l

m∈N

x0 · . . . · xm and
∐

{xn}n∈N =
⊔

m∈N

x0 ⊙ . . .⊙ xm.

We shall make use of the following fast growing function on the natural numbers to approx-
imate infinite (co)products.

Definition 2.4. The function #:N→N is defined as #(n)
def
= 22

n+1.

Proposition 2.5. The following inequalities hold for every ε∈(0, 1] and ~xn∈ [0, 1]N:
∏

n∈N

(

xn +
ε

#(n)

)

≤
(

∏

n∈N

xn
)

+ ε and
∏

n∈N

(

xn −
ε

#(n)

)

≥
(

∏

n∈N

xn
)

− ε

and, similarly, if infinitary products are replaced by infinitary coproducts.

Proof. Both inequalities are easily proved by routine methods. We refer to Lemma 2.2.10
of [25] for a detailed proof.

In the following we assume standard notions of basic topology and basic measure theory.
We refer to [17] and [31] as standard references to these topics. The author’s PhD thesis
[25, Chapter 2] provides a succinct introduction to the necessary material. The topological
spaces we consider will always be 0-dimensional Polish spaces.

Adopting standard notation, we denote with Γ0
α, for Γ∈{Σ,Π,∆} and α a countable

ordinal greater than 0, the corresponding class of subsets (of a Polish space) in the Borel
hierarchy. In particular, ∆0

1, Σ
0
1 and Π0

1 denote the collections of clopen, open and closed
sets respectively.

Definition 2.6. For each n≥1 the projective classes Σ1
n(X), Π1

n(X), ∆1
n(X) of subsets of

a Polish space X are defined as follows:

Σ1
n+1 =

{

A⊆X | A={x | ∃y.(x, y)∈B} for some B∈Π1
n(X × Y )

}

Π1
n+1 = {A⊆X | (X \ A)∈Σ1

n+1(X)}
∆1

n = Σ1
n ∩Π1

n

where Y is a Polish space, and X × Y is equipped with the product topology. It is a well-
known result of Susin (see, e.g., Theorem 14.11 in [17]) that ∆1

1 is the collection of Borel
sets. Thus the class of projective sets is defined, starting from the Borel sets, by iterating
the operations of projection and complementation.

Definition 2.7. Given a Polish space X and a subset A⊆X, we say that A is universally
measurable if it is µ-measurable for every Borel probability measure on X. It follows that
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the collection of universally measurable subsets ofX, denoted by UM(X), forms a σ-algebra.
Given a measurable space (Y,S) and a function f :X → Y , we say that f is universally
measurable if f−1(S)∈UM(X) for all S∈S.

The following facts will be useful.

Theorem 2.8. Let X be a Polish space. The following assertions hold:

(1) Σ1
1(X) ⊆ UM(X), and if X is uncountable the inclusion is strict.

(2) If A∈UM(Y ) and f :X → Y is universally measurable, then f−1(A)∈UM(X).

It is not possible, in ZFC alone, to show that universally measurable sets extend any
further up in the projective hierarchy.

Theorem 2.9. Let X be a Polish space. If ZFC is consistent the following assertions hold:

(1) ZFC 0 ∆1
2(X) ⊆ UM(X),

(2) ZFC 0 ∆1
2(X) ( UM(X).

Proof. The result of the first assertion is due to Kurt Gödel, see, e.g., Corollary 25.28 of
[15]. A proof of the second assertion can be found in, e.g., [22].

Thus, it is not decidable in ZFC if every set in ∆1
2(X) is universally measurable. As

we shall see in later sections, the winning sets of pLµ⊙ games are, in general, ∆1
2(X)

sets. To deal with the associated measure theoretic issues, we will carry our main result
in ZFC + MAℵ1 set theory, where MAℵ1 is the so-called Martin’s Axiom at ℵ1, the first
uncountable cardinal. We often identify ℵ1 with the least uncountable ordinal ω1. We refer
to [22, 25] for a description of the axiom MAℵ1 and some of its set-theoretic consequences.
Here we list those that are relevant to our work.

Theorem 2.10 ([22]). Let X be a Polish space, µ be a Borel probability measure on X
and {Aα}α<ω1 a collection of µ-measurable subsets of X, where ω1 is the least uncountable
ordinal. The following assertions hold in ZFC +MAℵ1 :

(1) ∆1
2(X) ⊆ UM(X),

(2) ω1-completeness:
⋃

α<ω1
Aα is a µ-measurable set,

(3) ω1-continuity: µ
(
⋃

α<ω1
Aα

)

=
⊔

α<ω1
µ(Aα).

Note that, since singleton sets are always closed (hence measurable) in Polish spaces, it
follows immediately from Theorem 2.10 that Martin’s Axiom at ℵ1 implies 2ℵ0 6= ℵ1, i.e., the
negation of Continuum Hypothesis [15]. As a matter of fact, Martin’s Axiom was introduced
by the authors as a possible set-theoretic alternative to the Continuum Hypothesis [22].

3. The logic pLµ⊙

Given a set Var of propositional variables ranged over by the letters X, Y and Z, and a set
of labels L ranged over by the letters a, b and c, the formulas of the logic pLµ⊙ are defined
by the following grammar:

F,G ::= X | F ∧G | F ∨G | F ·G | F ⊙G | [a]F | 〈a〉F | νX.F | µX.F

which extends the syntax of the probabilistic modal µ-calculus (pLµ) with a new kind of
conjunction (·) and disjunction (⊙) operators called product and coproduct respectively. As
usual the operators νX.F and µX.F bind the variable X in F . A formula is closed if it has
no free variables.
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Definition 3.1 (Subformula). We define the set Sub(F ) by case analysis on F as follows:

Sub(X)
def
= {X}, Sub([a]F )={[a]F}∪Sub(F ), Sub(F1∧F2)={F1∧F2}∪Sub(F1)∪Sub(F2),

Sub(F1 ·F2)={F1 ·F2}∪Sub(F1)∪Sub(F2) and Sub(νX.F )={νX.F}∪Sub(F ). The cases
for the connectives 〈a〉, ∨, ⊙ and µX are defined as for their duals. We say that G is a
subformula of F if G ∈ Sub(F ).

Given a PLTS 〈P, {
a

−→}a∈L〉 we denote with [0, 1]P the complete lattice of functions
from P to the real interval [0, 1] with the pointwise order. A function ρ : Var → [0, 1]P

is called a [0, 1]-valued interpretation, or just an interpretation, of the variables. Given a
function f :P → [0, 1] we denote with ρ[f/X] the interpretation that assigns f to the variable
X, and ρ(Y ) to all other variables Y .

The denotational semantics JF Kρ : P → [0, 1] of the pLµ⊙ formula F , under the inter-
pretation ρ, is defined by structural induction on F as follows:

JXKρ(p) = ρ(X)(p)
JG ∨HKρ(p) = JGKρ(p) ⊔ JHKρ(p)
JG ∧HKρ(p) = JGKρ(p) ⊓ JHKρ(p)
JG⊙HKρ(p) = JGKρ(p)⊙ JHKρ(p)
JG ·HKρ(p) = JGKρ(p) · JHKρ(p)
J〈a〉GKρ(p) =

⊔

p
a

−→d

(

∑

q∈supp(d)

d(q) · JGKρ(q)
)

J[a]GKρ(p) =
l

p
a

−→d

(

∑

q∈supp(d)

d(q) · JGKρ(q)
)

JµX.GKρ(p) = lfp
(

λf.(JGKρ[f/X])
)

(p)

JνX.GKρ(p) = gfp
(

λf.(JGKρ[f/X])
)

(p)

where the symbols · and ⊙ on the right hand side denote the operations of product and
coproduct on [0, 1], respectively. It is easy to verify that the interpretation assigned to
every pLµ⊙ operator is monotone, thus the existence of the least and greatest fixed points
is guaranteed by the Knaster–Tarski theorem.

The interpretation of the connectives of the logic pLµ⊙ (and its fragment pLµ) resembles
the corresponding ones for Lµ. Both operations {⊔,⊙}, when restricted to the two element
set {0, 1} act as ordinary boolean disjunction. Similarly, the operations {⊓, ·} restricts to
ordinary boolean conjunction. For what concerns the semantics associated with the modal
operators, since in PLTS’s transitions lead to probability distributions over states, rather
than states, the most natural way to interpret the meaning of a formula G at a probability
distribution d is to consider the expected probability of the formula G holding at a state q
randomly drawn in accordance with d, and this is formalized by the weighted sums in the
definition above.

Remark 3.2. As it is common practice when dealing with fixed point logics such as the
modal µ-calculus, we presented the syntax of pLµ⊙ in positive form, i.e., without including
a negation operator. This simplifies the presentation of the denotational semantics because
all formulas in positive form are interpreted as monotone functions. A negation operator
on (closed) pLµ⊙ formulas can be defined by induction on the structure of the formula, by
exploiting the dualities between the connectives of the logic, in such a way that J¬F Kρ(p) =
1− JF Kρ(p), for all formulas F and states p. We omit the routine details.
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As anticipated in the introduction, the main reason for extending the logic pLµ with
the new pair of connectives of product and coproduct is to get a richer and more expressive
logic capable of encoding the qualitative threshold modalities defined as follows.

Definition 3.3. Given a pLµ⊙ formula F , we define the macro formulas P>0F and P=1F

as follows: P>0F
def
= µX.(F ⊙X) and P=1F

def
= νX.(F ·X), where X is not free in F .

The following lemma captures the denotational semantics of the qualitative threshold
modalities.

Lemma 3.4. Given a PLTS L = 〈P, {
a

−→}a∈L〉, a [0, 1]-interpretation of the variables
ρ∈Var→ [0, 1]P and a pLµ⊙ formula F , the following assertions hold:

JP>0F Kρ(p)=
{

1 if JF Kρ(p) > 0
0 otherwise

and JP=1F Kρ(p)=
{

1 if JF Kρ(p) = 1
0 otherwise

for every state p∈P .

Proof. The map x 7→ λ ⊙ x, for a fixed λ∈ [0, 1], has 1 as unique fixed point when λ> 0,
and 0 as the least fixed point when λ=0. Similarly for the map x 7→ λ · x. The result then
follows trivially.

It is easy to verify that the derived qualitative threshold modalities, if taken as prim-
itives, are De Morgan duals. As an immediate consequence of Lemma 3.4 we have the
following fact.

Proposition 3.5. The denotational interpretation of an open pLµ⊙ formula F is, in gen-
eral, not continuous in the free variables, i.e., the denotation of a formula, seen as a func-
tion of type

(

Var → [0, 1]P
)

→ [0, 1]P , where
(

Var → [0, 1]P
)

is ordered pointwise, does not
preserve countable ⊑-increasing chains.

Proof. Consider the formula P=1X=νY.(X · Y ) having just one free variable X. We have
that JP=1XKρ(p)=0 if ρ(X)(p)<1 and JP=1XKLρ (p)=1 if ρ(X)(p)=1.

This contrasts with the fact that the denotations of pLµ formulas (i.e., formulas without
occurrences of (co)products operators) when interpreted over finite PLTS’s, are continuous
in the free variables (see, e.g., Appendix C of [23] for a proof of this fact, and [25, §3.3.2.3]
for a discussion about this phenomenon). It then follows that the qualitative threshold
modalities are not expressible in pLµ. Thus, pLµ⊙ is a strictly more expressive logic than
pLµ, as previously claimed.

The following theorem summarizes some expressivity results about the logic pLµ⊙.
Since the focus of this paper is primarily the study of a game semantics for pLµ⊙, we just
refer to Theorem 7.2.16 and Proposition 7.2.5 in [25] for detailed proofs.

Theorem 3.6. The following propositions hold. s.

(1) the logic pLµ⊙ can encode the qualitative fragment of the logic PCTL of [2],
(2) there are (closed) pLµ⊙ formulas that can by satisfied only by infinite PLTS’s. Thus

pLµ⊙ does not satisfy the (expected adaptation of) the finite model property,
(3) there are (closed) pLµ⊙ formulas satisfiable by some PLTS’s but not satisfiable by any

non-probabilistic PLTS (see Definition 2.2),

where a PLTS L=〈P, {
a

−→}a∈L〉 satisfies a (closed) formula F , if there is some p ∈ P such
that JF K(p)=1.
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4. Stochastic tree games

In this (unavoidably long) section we introduce a new class of games which we call two-
player stochastic tree games, or just 21

2 -player tree games. Stochastic tree games generalizes
standard two-player turn-based stochastic games (see, e.g., [7], [8]) by allowing a new class
of branching states on which the execution of the game in split in independent concurrent
subgames. Formally, stochastic tree games games are infinite duration games played by
Player 1, Player 2 and a third probabilistic agent named Nature, on a game arena A =
〈(S,E), (S1, S2, SN , B), π〉, where (S,E) is a directed graph with countable set of vertices S
and transition relation E, (S1, S2, SN , B) is a partition of S and π :SN →D(S). The states
in S1, S2, SN and SB are called Player 1 states, Player 2 states, probabilistic states and
branching states respectively. We denote with E(s), for s∈S, the set {s′ | (s, s′) ∈ E}. As
a technical constraint, we require1 that supp(π(s))⊆E(s), for every s∈SN .

Definition 4.1 (Paths in A). We denote with Pω and P<ω the sets of infinite and finite
paths in A. Given a finite path ~s∈P<ω we denote with first(~s) and last(~s) the first and last
state of ~s, respectively. Given a finite path ~s and a (finite or infinite) path ~t we write ~s⊳ ~t
if ~s is a (not necessarily proper) prefix of ~t and, provided that first(~t)∈E

(

last(~s)
)

, we write

~s.~t for the concatenation of the two paths. We denote with Pt the set of finite paths ending
in a terminal state, i.e., the set of paths ~s such that E(last(~s)) = ∅. Similarly, we denote
with P<ω

1 and P<ω
1 the sets of finite paths ending in a state in S1 and S2, respectively. We

denote with P the set Pω ∪ Pt and we refer to this set as the set of completed paths in A.
Given a finite path ~s∈P<ω, we denote with O~s the set of all completed paths having ~s as
prefix. We consider the standard topology on P where the countable basis for the open sets
is given by the clopen sets O~s, for ~s∈P<ω. This is a 0-dimensional Polish space [25].

Definition 4.2 (Tree in A). A tree in the arena A is a collection T ={~si}i∈I of finite paths
~si∈P<ω, such that

(1) T is down-closed: if ~s∈T and ~t⊳ ~s then ~t∈T .
(2) T has a root: there exists exactly one finite path {s} of length one in T . The state s,

denoted by root(T ), is called the root of the tree T .

We consider the nodes ~s of T as labeled by the last function.

Definition 4.3 (Uniquely and fully branching nodes of a tree). A node ~s in a tree T is said
to be uniquely branching in T if either E(last(~s))=∅ or ~s has a unique child in T . Similarly,
~s is fully branching in T if, for every s∈E(last(~s)), it holds that ~s.s∈T .

An outcome of the game in A, which we call a branching play, is a possibly infinite tree
T in A defined as follows:

Definition 4.4 (Branching play in A). A branching play in the arena A is a tree T in A
such that, for every node ~s∈T the following conditions holds:

(1) If last(~s)∈S1 ∪ S2 ∪ SN then ~s branches uniquely in T .
(2) If last(~s)∈B then ~s branches fully in T .

We denote with BP the set of branching plays T in the arena A.

1The constraint supp(π(s))=E(s), which might look more natural, is unnecessarily restrictive since one
just one want to impose that Nature’s choices always belong to the set of successor states. Our relaxed
constraint will be technically convenient, see, e.g., Footnote 3.
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A branching play T represents a possible execution of the game from the state s labeling
the root of T . The nodes of T with more than one child are all labeled with a state s∈B
and are the branching points of the game. Their children represent the many independent
instances of play generated at the branching point.

Definition 4.5 (Topology on BP). Given a finite tree F in A, we denote with OF ⊆ BP
the set of all branching plays T such that F ⊆ T . We fix the topology on BP, where the
basis for the open sets is given by the clopen sets OF , for every branching-play prefix F . It
is routine to show that this is a 0-dimensional Polish space [25].

As usual when working with stochastic games, it is useful to look at the possible out-
comes of a play up-to the behavior of Nature. In the context of standard two-player stochas-
tic games this amounts to considering Markov chains. In our setting the following definition
of Markov branching play is natural:

Definition 4.6 (Markov branching play in A). A Markov branching play in A is a tree M
in A such that for every node ~s∈M , the following conditions hold:

(1) If last(~s)∈S1 ∪ S2 then ~s branches uniquely in T .
(2) If last(~s)∈SN ∪B then ~s branches fully in T .

A Markov branching play is similar to a branching play except that probabilistic choices
of Nature have not been resolved.

Definition 4.7 (Probability measure PM ). Every Markov branching play M determines a
probability assignment PM (OF ) to every basic clopen set OF ⊆BP, for F a finite tree in A
(we can assume that every node ~s∈F such that last(~s)∈SN has a unique child in F , since
otherwise OF =∅), defined as follows:

PM(OF )
def
=

{

∏

{π(s)(s′) | ~s.s.s′∈F ∧ s∈SN} if F ⊆ M

0 otherwise

Such an assignment extends, by Carathéodory’s Extension Theorem [31, 25], to a unique
Borel probability measure on BP , whence to a complete probability measure, also denoted
by PM .

It is the definition above that implements the probabilistic independence of the sub-
branching plays rooted at some branching node.

Definition 4.8 (Two-player stochastic tree game). A two-player stochastic tree game (or
a 21

2 -player tree game) is given by a pair 〈A,Φ〉, where A is a stochastic tree game arena
as described above, and Φ ⊆ BP, which is the objective or winning set for Player 1, is a
universally measurable set of branching plays in A.

Definition 4.9 (Expected value of a Markov branching play). Let 〈A,Φ〉 be a 21
2 -player

tree game, and M a Markov branching play in A. We define the expected value of M as
follows: E(M) = PM (Φ). The value E(M) should be understood as the probability for
Player 1 to win the probabilistic play represented by M .

As usual in game theory, players’ moves are determined by strategies.

Definition 4.10 (Deterministic strategies). An (unbounded memory deterministic) strat-
egy σ1 for Player 1 inA is defined as a function σ1 :P

<ω
1 →S∪{•} such that σ1(~s)∈E(last(s))

if E(last(~s)) 6= ∅ and σ1(~s)= • otherwise. Similarly a strategy σ2 for Player 2 is defined as
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a function σ2 :P
<ω
2 →S ∪ {•}. A pair 〈σ1, σ2〉 of strategies, one for each player, is called a

strategy profile and determines the behaviors of both players.

Note that the above definition of strategy captures the intended behavior of the game:
both players, when acting on a given instance of the game, know all the history of the
actions happened on that subgame, but have no knowledge of the evolution of the other
independent parallel subgames.

Definition 4.11 (M s0
σ1,σ2

). Given an initial state s0 ∈ S and a strategy profile 〈σ1, σ2〉 a
unique Markov branching play M s0

σ1,σ2
is determined:

(1) the root of M is labeled with s0,
(2) for every ~s∈M s0

σ1,σ2
, if last(~s)=s with s∈S1 not a terminal state, then the unique child

of ~s in M s0
σ1,σ2

is ~s.
(

σ1(~s)
)

,
(3) for every ~s∈M s0

σ1,σ2
, if last(~s)=s with s∈S2 not a terminal state, then the unique child

of ~s in M s0
σ1,σ2

is ~s.
(

σ2(~s)
)

.

This specifies uniquely M s0
σ1,σ2

because Markov branching plays branch fully on probabilistic
and branching states.

Definition 4.12 (Upper and lower values of a 21
2 -player tree game). Let G= 〈A,Φ〉 be a

21
2 -player tree game. We define the lower and upper values of G on the state s, denoted by

VAL
s
↓(G) and VAL

s
↑(G) respectively, as follows:

VAL
s
↓(G) =

⊔

σ1

d
σ2
E(M s

σ1,σ2
) VAL

s
↑(G) =

d
σ2

⊔

σ1
E(M s

σ1,σ2
)

VAL
s
↓(G) represents the limit probability of Player 1 winning, when the game begins at

s, by choosing his strategy σ1 first and then letting Player 2 pick an appropriate counter
strategy σ2. Similarly VAL

s
↑(G) represents the limit probability of Player 1 winning, when

the game begins at s, by first letting Player 2 choose a strategy σ2 and then picking
an appropriate counter strategy σ1. Clearly, for every s, the following inequality holds:
VAL

s
↓(G) ≤ VAL

s
↑(G). In the special case (not true in general) that this inequality is an

equality, we say that the game G is determined at s.

Definition 4.13 (ε-optimal strategies). Let G= 〈A,Φ〉 be a 21
2 -player tree game. We say

that a strategy σ1 for Player 1 in G is ε-optimal, for ε≥0, if for every state s, the following
inequality holds: d

σ2
E(M s

σ1,σ2
) ≥ VAL

s
↓(G)− ε.

Similarly we say that a deterministic strategy σ2 for Player 2 in G is ε-optimal, for ε≥0, if
for every state s, the following inequality holds:

⊔

σ1
E(M s

σ1,σ2
) ≤ VAL

s
↑(G) + ε.

Clearly ε-optimal (mixed and deterministic) strategies for Player 1 and Player 2 always
exist for every ε>0, but not necessarily so for ε=0.

Remark 4.14. Observe that a 21
2 -player tree game without branching states is just an

ordinary two-player turn-based stochastic game (see, e.g., [8], [25]): the set of branching
plays is homeomorphic to the set of completed paths, the notion of Markov branching play
collapses to the standard notion of Markov chain, and strategies are maps from finite paths
to successor states. Thus, as previously claimed, two-player stochastic tree games constitute
a generalization of ordinary two-player stochastic games.
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Notwithstanding our primary interest in an appropriate game semantics for pLµ⊙, we
highlighting here that the simple form of partial information implemented in tree games
(players when acting on a given subgame are not aware of what happens in the other
independent subgames) is surprisingly powerful. For instance the class of Blackwell games
[3, 21] can be encoded as two-players tree games (Theorem 4.2.18 in [25]). Moreover,
interesting open problems in the field, such as that of qualitative determinacy of stochastic
games (see, e.g., [6]), can be formulated as appropriate determinacy problems for 2-player
tree games (see, [25, §4.4]). We refer to the author’s PhD thesis [25] for an extensive
introduction and analysis of tree games.

4.1. Two-player stochastic meta-parity games. In this subsection we identify a class
of two-player stochastic tree games, called 21

2 -player meta-parity games, which will be used
to give an appropriate game semantics to the logic pLµ⊙.

A 21
2 -player meta-parity game is a 21

2 -player tree game G=〈A,Φ〉, which we refer to as
the outer game, in which every branching play T is itself interpreted as a (ordinary) two-
player parity game GT , which we refer to as the inner game associated with T , and whose
objective Φ is defined as the set of branching plays T for which Player 1 has a winning
strategy in GT .

We start formalizing this notion with the following definitions.

Definition 4.15. A parity assignment Ω for a two-player stochastic tree game arena A=
〈(S,E), (S1, S2, SN , B), π〉 is a function Ω : S → N whose image is finite. In other words
Ω assigns to each state s∈ S a natural number, also referred to as a priority, taken from
a finite pool of options {n0, ..., nk}=Ω(S). We denote with max(Ω), min(Ω) and |Ω| the
natural numbers max{n0, ..., nk}, min{n0, ..., nk} and |{n0, ..., nk}| respectively.

The function Ω induces a set of completed paths, denoted by WΩ, specified as follows.

Definition 4.16. Let A= 〈(S,E), (S1, S2, SN , B), π〉 be a 21
2 -player tree game arena and

Ω a parity assignment for it. A completed path ~s belong to the parity set induced by Ω,
denoted by WΩ⊆P, if either:

(1) ~s is a finite terminated path, i.e., ~s∈Pt, and the priority assigned to the last state of ~s
is odd, i.e., Ω

(

last(~s)
)

≡1 (mod 2), or
(2) ~s is infinite, i.e., ~s∈Pω with ~s={si}i∈N, and the greatest priority assigned to infinitely

many states si in ~s is even, i.e.,
(

lim sup
i∈N

Ω(si)
)

≡0 (mod 2).

It is well known (see, e.g., [7]) that WΩ is a ∆0
3 set, hence a Borel set.

Definition 4.17. A player assignment Pl for a two-player stochastic tree game arena A=
〈(S,E), (S1, S2, SN , B), π〉 is a function Pl :B →{1, 2}. We often include the information
provided by Pl directly in the signature ofA by considering the partition (S1, S2, SN , B1, B2),
where Bi=Pl

−1({i}), for i∈{1, 2}.

The function Pl assigns a player identifier to each state s∈B. This allows to consider
each branching play T in A as a parity game GT (induced by Ω and Pl) played by Player
1 and Player 2 on the tree T , where Player 1 and Player 2 controls the vertices ~s of T such
that Pl(last(~s))= 1 and Pl(last(~s)) = 2 respectively. All other vertices are either leaves, in
which case the game GT ends, or have a unique child, towards which the game automatically
progresses. The result of the game is a branch in T or, equivalently, a completed path in



14 M. MIO

A. Adopting standard terminology (see, e.g., [20], [30]), we say that Player 1 (respectively
Player 2) wins the parity game GT if they have a winning strategy guaranteeing the outcome
of the game to be in the set WΩ (respectively, in P \WΩ). It is well known (see, e.g., [20]),
that one of the two player has a winning strategy in GT .

We are now ready to formally introduce the notion of 21
2 -player meta-parity game.

Definition 4.18. Given a 21
2 -player tree game arena, a priority assignment Ω and a player

assignment Pl for it, the associated two-player stochastic meta-parity game is defined as the
21
2 -player tree game G=〈A,ΦΩ,Pl〉, where ΦΩ,Pl⊆BP is defined as follows:

ΦΩ,Pl = {T | T ∈ BP and Player 1 has a winning strategy in GT }.

Note that, by previous observations, the set BP \ ΦΩ,Pl can be specified as follows:

BP \ ΦΩ,Pl = {T | T ∈ BP and Player 2 has a winning strategy in GT }.

We often just write Φ if the priority and player assignments are clear from the context.

Remark 4.19. Note that a 21
2 -player meta-parity game G= 〈A,ΦΩ,Pl〉 without branching

states is just an ordinary 21
2 -player game. The game GT associated with a branching play

T (which is just a completed path ~s, see Remark 4.14) is trivial, and belongs to ΦΩ,Pl if

and only if ~s∈WΩ. Thus 2
1
2 -player meta-parity games generalize ordinary 21

2 -player parity
games in an obvious way.

Note that Definition 4.18 is meaningful, in accordance with Definition 4.8, only if the
set ΦΩ,Pl is a universally measurable set of branching plays. As we now discuss, this turns
out to be a delicate point.

Theorem 4.20. Given a 21
2 -player tree game arena A, a priority assignment Ω and a

player assignment Pl for it, the associated set ΦΩ,Pl of branching plays is a ∆1
2 set.

Proof. Let us denote with P<ω
Bi

the set of finite paths ~s∈P<ω in A such that last(~s)∈B

and Pl(last(~s))= i, for i∈{1, 2}. Let us consider the set Σi of functions P
<ω
Bi

→P<ω∪{•}.
This set contains all the strategies available to Player i in every game GT , for T ∈BP, seen
as functions f ∈Σi restricted to T . We endow Σi with the Baire space-like topology, where
for every pair (x, y), with x∈P<ω

Bi
and y ∈P<ω∪{•}, the set Ox,y of all functions f ∈Σi

such that f(x)=y is a basic open set. This is a 0-dimensional Polish space.
Let us now consider the subset of BP ×Σ1 ×Σ2, denoted by T , consisting of all triples

(T, σ1, σ2) such that the strategies σ1 and σ2 are valid strategies in GT , i.e., functions from
finite sequences of vertices in T to vertices in T . It is easy to see that T is a closed subset
of BP × Σ1 × Σ2 (endowed with the product topology). Indeed, the set of triples which
do not belong to T is open, because one can tell if one of the two strategies σ1 and σ2 is
not valid in the inner game GT , i.e., it makes choices which are not in T , just by looking at
finite information about T , σ1 and σ2. Hence T is a Polish space, as it is a closed subset of
the Polish space BP × Σ1 × Σ2.

Let us denote with out : T → P the function which maps a triple (T, σ1, σ2) to the
induced play (i.e., a completed path in A) in GT . The function out is clearly continuous.

Let us now consider the set A⊆T defined as the set of triples (T, σ1, σ2) such that the
game GT is won by Player 2 when the two players follow the (valid for GT ) strategies σ1 and
σ2 respectively, i.e., the set formally defined as A=out−1(P \WΩ). Since out is continuous
and WΩ is a Borel set, it follows that A is a Borel set.

Let us now define the set B⊆BP×Σ1 as B={(T, σ1) | ∃σ2∈Σ2.(T, σ1, σ2) ∈ A}. The
set B is the set of all pairs (T, σ1), such that Player 2 has a strategy σ2 in the game GT
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winning against σ1, i.e., such that the strategy profile (σ1, σ2) induces in GT a completed
path in P \ WΩ. The set B is a Σ1

1 set by construction. Observe that its complement B
is the set of all pairs (T, σ1) such that Player 2 does not have a strategy σ2 for the game
GT winning against the strategy σ1. Equivalently, by determinacy of 2-player parity games
[20], the strategy σ1 is a winning strategy for Player 1 in the game GT . The set B is a Π1

1

set by construction. We can now define the set ΦΩ,Pl⊆BP of all branching plays T where

Player 1 has a winning strategy in GT as ΦΩ,Pl = {T | ∃σ1∈Σ1.(T, σ1)∈B}. It then follows

that, by construction, ΦΩ,Pl is a Σ1
2 set.

The desired result then follows by observing that the complement set ΦΩ,Pl is also a Σ1
2

set. This is because ΦΩ,Pl is the winning set associated with the triplet (A,Ω,Pl), where Ω is

the dual parity assignment defined as Ω(s) = Ω(s)+ 1, and Ω is the dual player assignment
inverting the role of the two players, specified as Pl(b)=0 if and only if Pl(b)=1.

The following theorem asserts that the result of Theorem 4.20 is strict. Thus the
technologies employed in this paper for dealing with the complexity of the winnings sets in
21
2 -player meta-parity games are not trivially avoidable. Since the technicalities required

for proving the result would not be particularly useful for the main theorem of this paper,
we just provide a reference to a detailed proof.

Theorem 4.21. There exists a 21
2 -player meta-parity game G= 〈A,ΦΩ,Pl〉, having a finite

arena A, such that the winning set ΦΩ,Pl is not analytic nor co-analytic, i.e., ΦΩ,Pl 6∈Σ1
1∪Π

1
1.

Proof. One can construct an explicit example of finite 21
2 -player meta-parity game and show

that both a Σ1
1-complete set and a Π1

1-complete set are Wadge-reducible to the winning set
ΦΩ,Pl. We refer to Theorem 6.4.3 in [25] for a detailed proof.

It follows that, absent any further evidence, the winning set of a 21
2 -player meta-parity

game might be not provably universally measurable in ZFC set theory. However, as stated
in Theorem 2.10, it is provably universally measurable in ZFC +MAℵ1 set theory. This is
one of the uses we make of Martin’s axiom at ℵ1 but, as we shall note later in Section 8.1,
not the only one.

The following theorem, which will be useful later, exposes an important property of
21
2 -player meta-parity games and sheds some light on the relationship between this class of

games and the logic pLµ⊙. It constitutes the expected generalization of the corresponding
property of ordinary 21

2 -player parity games (see, e.g., Proposition 4.19 in [26]).

Theorem 4.22. Let G= 〈A,ΦΩ,Pl〉 be a two-player stochastic parity game with arena A=

〈(S,E), (S1, S2, SN , B1, B2), π〉, where Bi=Pl
−1({i}). The functions VAL↓(G) and VAL↑(G),

of type S→ [0, 1], are fixed points of the functional F : [0, 1]S → [0, 1]S defined as follows:
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F(f)(s) =











































































Ω(s) (mod 2) if E(s)=∅, i.e, if s is a terminal state
⊔

t∈E(s)

f(t) if s∈S1

l

t∈E(s)

f(t) if s∈S2

∑

t∈E(s)

π(s)(t) · f(t) if s∈SN

∐

t∈E(s)

f(t) if s∈B1

∏

t∈E(s)

f(t) if s∈B2

Proof. The proof is carried out following the same methodology of, e.g., Proposition 4.19
in [26]. The interesting cases are associated with the analysis of the branching nodes s∈B1

and s∈B2. In what follows we just show that, for every s∈B1, the following equality holds:

VAL↓(G)(s)≥
∐

t∈E(s) VAL↓(G)(t).

The reverse inequality VAL↓(G)(s)≤
∐

t∈E(s) VAL↓(G)(t), as well as all other cases for s ∈

{S1, S2, SNB2} can be proved in a similar way. We refer to Theorem 5.2.10 of [25] for a
detailed proof covering all cases.

By Definition 4.12 of VAL↓(G), we need to prove that the equality
⊔

σ1

d
σ2

E(M s
σ1,σ2

)≥
∐

t∈E(s)

(
⊔

τ1

d
τ2
E(M t

τ1,τ2)
)

holds. Let E(s) = {ti}i∈I . At the state s the game is split

in I-many subplays continuing their execution from the states ti. Let τ i1 be a εi-optimal
strategy (see Definition 4.13) for Player 1, with εi>0.

Define the strategy σ1 for Player 1, when the game starts at s and the I-many subplays
are generated, to behave in the subplay continuing its execution from ti as the strategy τ i1.
Given any strategy σ2 for Player 2, the Markov branching play M s

σ1,σ2
can be depicted2 as

follows:

s

ti
. . .

M ti
τ i1,τ

i
2

tj
. . .

M
tj

τ j1 ,τ
j
2

where, for each i ∈ I, the strategy τ i2 is specified as τ i2(~ti) = σ2(s.~ti) for all finite paths ~ti
with first(~ti) = ti. Let us denote, to improve readability, with M and Mi, for i ∈ I, the
Markov branching plays M s

σ1,σ2
and M ti

τ i1,τ
i
2
, respectively. We are now going to show that

the following equality holds:

PM(ΦΩ,Pl)=
∐

i∈I

PMi
(ΦΩ,Pl) (4.1)

2The edge connecting s with ti has not been dashed to highlight that s is a branching node.
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holds. This will conclude the proof. Indeed note that, by construction of σi
1, the inequality

PMi
(ΦΩ,Pl) ≥ VAL↓(G)(ti) − εi holds. Thus, the strategy σ1 guarantees, by appropriate

choices of values εi, for i∈I, a value closed to
∐

i∈I

VAL↓(G)(ti) as desired.

For what concerns PM , we can restrict attention to the set of branching plays BPs,
where BPs denotes the set of branching plays in A rooted at s, since the set of all other
branching plays in G gets assigned probability 0 by Definition 4.7 of PM . Similarly, when
considering PMi

, we can restrict to the set BPi of branching plays rooted at ti. We can
depict the branching plays in BPs and the branching plays in BPi as follows:

s

ti
. . .

Ti

tj
. . .

Tj

ti

Ti

where we use Ti to range over the set of branching plays in G rooted at ti. We denote
with s[Ti]i∈I the branching play on the left. Let

∏

i BPi be endowed with the product
topology. Define m :

∏

i BPi →BPs as m({Ti}i∈I) = s[Ti]i∈I . It is easy to verify that m is
a homeomorphism. Consider the product measure ×i∈IPMi

on the space
∏

i BPi. We now
show that the equality

×i∈I PMi
(X)=PM (m(X)) (4.2)

holds for every measurable X ⊆
∏

i BP i. By regularity of measures in Polish spaces (see,
e.g., [17]), we just need to prove that for each basic open set O ⊆

∏

i BPi the equality
×i∈IPM i(O)=PM (m(O)) holds. The basic sets O in the product topology are of the form
OF0×. . .×OFk

×
∏

i>k BPi with OFn ⊆BPn, for some k∈N and 0 ≤ n ≤ k. As usual, OFn

denotes the basic open set of branching plays containing the finite tree Fn. Equality 4.2
then follows by definition of m and Definition 4.7 of the probability measures PM and PMi

.
The validity of Equation 4.1 is then derived as follows:

PM (ΦΩ,Pl) =A PM (ΦΩ,Pl ∩ BPs)

=B PM

(

m(
∏

i∈I(ΦΩ,Pl ∩ BPi))
)

=C 1− PM

(

m(
∏

i∈I(ΦΩ,Pl ∩ BPi))
)

=D 1−×i∈IPMi
(ΦΩ,Pl ∩ BPi)

=E 1−
∏

i∈I

(

1− PMi
(ΦΩ,Pl ∩ BPi)

)

=F 1−
∏

i∈I

(

1− PMi
(ΦΩ,Pl)

)

=G

∐

i∈I

PMi
(ΦΩ,Pl).

where the overlined sets denote the expected complements. Steps (A) and (F) hold by
previous observations. To justify step (B), observe (using a standard strategy stealing
argument) that a branching play s[Ti]i∈I is winning for Player 1 (i.e., it is in ΦΩ,Pl) if and
only if at least one of its subtrees Ti is winning for Player 1. This is because the state
s ∈ B1 is under the control of Player 1 in the inner game. Step C is valid because m
is a homeomorphism, thus a bijection. Step (D) holds by Equation 4.2. Step E holds
by definition of product measure. Lastly, step (G) holds by De Morgan dualities of the
operations of product and coproduct.
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We conclude this section by remarking that the notion of 21
2 -player meta-parity game

can be further generalized, allowing the inner games to be 2-player games with general Borel
winning sets. We refer to [25, §5] for an analysis of this sort of games.

5. Game semantics of pLµ⊙

In this section we define the game semantics of the logic pLµ⊙. As for Lµ [30] and pLµ

[23, 26], given a PLTS 〈P, {
a

−→}a∈L〉 and an interpretation of the variables ρ a game GF
ρ is

constructed for every pLµ⊙ formula F . The game semantics of a formula F at a state p is
defined as the value of the game at a designated state 〈p, F 〉. The logics Lµ and pLµ are
interpreted using ordinary 2-player parity games and 21

2 -player parity games, respectively.

As anticipated earlier, we shall interpret pLµ⊙ with the novel class of 21
2 -player meta-parity

games. Following the approach of [30], we first identify a class of pLµ⊙ formulas which is
easier to work with and allow the simplification of some definitions.

Definition 5.1 ([30]). We say that a pLµ⊙ formula F is in normal form, if every occurrence
of a µ or ν binder binds a distinct variable, and no variable appears both free and bound.
Every formula can be put in normal form by standard α-renaming of the bound variables.

Definition 5.2 ([30]). Given a pLµ⊙ formula F in normal form, we say that a variable X
subsumes a variable Y if X and Y are bound in F by the subformulas ⋆1X.G and ⋆2Y.H
respectively, and ⋆2Y.H∈Sub(G), for ⋆1, ⋆2∈{µ, ν}.

Definition 5.3. We say that a pLµ⊙ formula F is in product normal form if

(1) it is in normal form, and
(2) it does not contain subformulas of the form G ·G or G⊙G.

Every formula can be put in product normal form by (recursively) replacing every subfor-
mula G ⋆ G with, e.g., the semantically equivalent formula G ⋆ (G ∨G), for ⋆∈{·,⊙}.

In what follows we shall restrict our attention, without loss of generality, to formulas in
product normal form. While the advantage of restricting to normal formulas is clear [30], the
product normal form is useful for the following reason. As anticipated in the introduction,
we shall interpret game-states of the form 〈p, F · G〉 and 〈p, F ⊙ G〉 as branching states
having the states 〈p, F 〉 and 〈p,G〉 as children. When F =G, the set of children becomes a
singleton, and this does not reflect the intended game interpretation. The product normal
form is one of the simplest way to avoid this kind of situations. As an alternative solution,
one might consider multisets of successor states, rather than sets, in the definition of 21

2 -
player meta-parity games.

We are now ready to specify how, given a PLTS L=〈P, {
a

−→}a∈L〉, the 2
1
2 -player meta-

parity game GF
ρ = 〈A,ΦΩ,Pl〉, associated with a pLµ⊙ formula F and a [0, 1]-interpretation

ρ of the variables, is constructed.
The game arena A = 〈(S,E), (S1, S2, SN , B), π〉 is defined as follows. The set of game

states S is defined as S
def
=

(

P×Sub(F )
)

∪
(

D(L)×Sub(F )
)

∪ {⊤,⊥}, where D(L) denotes
the (countable) set of probability distribution in L (see Definition 2.2), and {⊤,⊥} are two
special states representing immediate win and loss for Player 1, respectively. The relation

E is defined as follows: E(〈d,G〉)
def
= {〈p,G〉 | p ∈ supp(d)} for every d ∈ D(L). The set

E(〈p,G〉) is defined, by case analysis on the outermost connective of G, as follows:
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(1) if G=X, with X free in F , then E(〈p,G〉)
def
= {⊥,⊤}.

(2) ifG=X, withX bound in F by the subformula ⋆X.H, with ⋆ ∈ {µ, ν}, then E(〈p,G〉)
def
=

{〈p,H〉}.

(3) if G=⋆X.H, with ⋆∈{µ, ν}, then E(〈p,G〉)
def
= {〈p,H〉}.

(4) if G=〈a〉H, then E(〈p,G〉)
def
= {〈d,H〉 | p

a
−→ d}.

(5) if G=[a]H, then E(〈p,G〉)
def
= {〈d,H〉 | p

a
−→ d}.

(6) if G=H ⋆H ′ with ⋆ ∈ {∨,∧,⊙, ·} then E(〈p,G〉)={〈p,H〉, 〈p,H ′〉}

Lastly we define ⊤ and ⊥ to be terminal states, i.e., E(⊥) = E(⊤) = ∅. The partition
(S1, S2, SN , B) of S is defined as follows: every state 〈p,G〉 with G’s main connective in
{〈a〉,∨, µX} or with G = X where X is a µ-variable, is in S1. Dually, every state 〈p,G〉 with
G’s main connective in {[a] ,∧, νX} or with G = X where X is a ν-variable, is in S2. Every
state of the form 〈d,G〉 or 〈p,X〉, with X free in F , is in SN . Every state 〈p,G〉 whose G’s
main connective is either · or ⊙ is in B. Lastly we define the terminal states ⊥ and ⊤ to be
in S1 and S2 respectively. The function π :SN →D(S) assigns a probability distribution to
every state under the control of Nature (thus specifying its indended probabilistic behavior)
and it is defined as π(〈d,G〉)(〈p,G〉)=d(p) on all states of the form 〈d,G〉. All other states
in SN are of the form 〈p,X〉, with X free in F . The function π is defined on these states
as follows:

π(〈p,X〉)(s)
def
=







ρ(X)(p) if s = ⊤
1− ρ(X)(p) if s = ⊥
0 otherwise

The priority assignment Ω :S→N is defined as usual in µ-calculus games: an odd priority
is assigned to the states 〈p,X〉 with X a µ-variable and, dually, an even priority is assigned
to the states 〈p,X〉 with X a ν-variable, in such a way that if Z subsumes Y in F then
Ω(〈p, Z〉) > Ω(〈p, Y 〉). Moreover, for every terminal state s ∈ S, we define Ω(s) = 0 if
s ∈ S1, and Ω(s) = 1 if s ∈ S2. This implements the policy that a player who gets stuck
at a terminal state loses (see Theorem 4.22). All other states get assigned, by convention,
priority 0. Lastly, the player assignment Pl :B→{1, 2} is defined as Pl(〈p,G1⊙G2〉)=1 and
Pl(〈p,G1 ·G2〉)=2, for every p∈P and G1, G2∈Sub(F ).

Remark 5.4. We now list some useful observations about the above defined game GF
ρ .

(1) If no (co)product operators occur in F , then B = ∅, and the game GF
ρ is equivalent

to the pLµ games of [23, 26] (see Remark 4.19). Thus the game semantics for pLµ⊙

generalizes the game semantics of pLµ, as previous claimed.
(2) If the PLTS L is finite then the game arena A of GF

ρ is finite too.
(3) Note how the only role of two game states {⊤,⊥} is to interpret the game states 〈p,X〉

with X a free variable. By application of Theorem 4.22, it follows that the game values
at ⊤, ⊥ and 〈p,X〉 are 1, 0, and ρ(X)(p) respectively, as expected. This solution avoid
the otherwise necessary introduction of [0, 1]-valued payoff functions in the definition of
21
2 -player meta-parity games.

We are now ready to state our main result.

Theorem 5.5 (MAℵ1). Given a PLTS L= 〈P, {
a

−→}a∈L〉, for every state p∈P , interpre-
tation of the variables ρ and pLµ⊙ formula F , the following equalities hold:

VAL↓(GF
ρ )(〈p, F 〉) = VAL↑(GF

ρ )(〈p, F 〉) = JF Kρ(p).
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Note that Theorem 5.5 asserts that pLµ⊙ games are determined. In light of this result,
we can just write VAL(GF

ρ ) for the unique value function of the game GF
ρ . The game

semantics of F at p under the interpretation ρ is then defined as VAL(GF
ρ )(〈p, F 〉), and it

coincides with the denotational semantics JF Kρ(p), as desired.
The game semantics for pLµ⊙ offers a clear and simple operational interpretation for

the meaning of the qualitative threshold modalities P>0 and P=1 (see Definition 3.3). Let

us consider, for example, the game GP>0F
ρ associated with a PLTS L = 〈P, {

a
−→}a∈L〉, a

[0, 1]-interpretation ρ and the pLµ⊙ formula P>0F
def
= µX.(F ⊙X). The game GP>0F

ρ , at the
state 〈p, µX.(F ⊙X)〉, for some p∈P , can be depicted as follows:

〈p, F 〉 〈p,X〉

��

〈p,F⊙X〉

ck 3;

〈p,µX.(F⊙X)〉

OO

After an initial unfolding step from 〈p, µX.(F ⊙X)〉 to 〈p, F ⊙X〉, the game is split in two
concurrent sub-games, one continuing its execution from the state 〈p, F 〉 (this sub-game
can be considered an instance of the game GF

ρ starting at 〈p, F 〉) and the other from the

state 〈p,X〉. In order to win the game GP>0F
ρ , Player 1 has to win in at least one of the

two generated sub-games, thus either in the instance of GF
ρ or in the sub-games continuing

at 〈p,X〉. This second sub-game, however, after an unfolding step, progresses to the game
state 〈p, F ⊙X〉, where the protocol is repeated generating yet another two sub-games. The
infinite execution of the game leads to the generation of infinitely many instances of the

game GF
ρ . A branching play T in GP>0F

ρ can be depicted as follows:

〈p, µX.(F ⊙X)〉

〈p, F ⊙X〉

〈p, F 〉

T1

〈p,X〉

〈p, F ⊙X〉

〈p, F 〉

T2

〈p,X〉

where T1, T2, . . . , represent the branching plays corresponding to the plays in each generated
instance of the game GF

ρ . Since the variable X unfolded infinitely often in the rightmost
path in T is bound by a least fixed point in µX.(F ⊙X), and since the ⊙ nodes are Player
1 choices in the inner game GT , we have that T is a winning branching play for Player 1 if
and only if there exists some n∈N such that Tn, the outcome of the n-th generated instance

of G(F, ρ), is winning for Player 1. Thus, the game GP>0F
ρ , at the state 〈p, µX.F ⊙X〉 can

be simply described as follows: generate an infinite number of instances of the game GF
ρ at

the state 〈p, F 〉; Player 1 wins if at least one of the infinitely many generated instances of
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GF
ρ ends up in a winning branching play and Player 2 wins otherwise. It is then quite clear

that if VAL(GP>0F
ρ )(〈p,P>0F 〉)>0 (or, equivalently, JF Kρ(p)>0 by Theorem 5.5), then the

probability that at least one (and in fact countably many) of the infinitely many instances
of GF

ρ will result in a win for Player 1, is 1. Similarly, if JF Kρ(p)= 0, then the probability

that at least one of the instances of GF
ρ will result in a win for Player 1, is 0.

The game semantics for pLµ⊙ thus offers a straightforward interpretation for the prob-
abilistic qualitative modality P>0 exploiting the simple idea that an event (which we can,
at some extent, see as a pLµ⊙ property) has probability greater than zero if and only if,
when repeated infinitely many time, it almost surely occurs at least once. An analogous
straightforward interpretation can be given to the other qualitative threshold modality

P=1F
def
= νX.(F ·X): generate an infinite number of instances of the game GF

ρ at the state
〈p, F 〉; Player 1 wins if all of them end up in a winning branching play for Player 1, and
Player 2 wins otherwise.

6. Inductive characterization of the winning set of GµX.F
ρ

In this section we provide a transfinite inductive characterization of the set ΦµX.F of winning

branching plays of the game GµX.F
ρ , for an arbitrary pLµ⊙ formula F and interpretation

ρ. This result will be used in the proof of our main result, in Section 8. The inductive
characterization of ΦµX.F will be obtained exploiting the similarities between the pLµ⊙

games GµX.F
ρ and the simpler (in the complexity of the formula) game GF

ρ . The game

arenas of the two games, denoted here by AµX.F and AF , are almost identical as they differ
only in the following aspects:

(1) The set of game states of AµX.F is the set of states of AF plus the set of states of the
form 〈p, µX.F 〉. The latter states, however, play almost no role in the game because
they have only one successor, namely 〈p, F 〉, and are not reachable by any other state.

(2) More importantly, the states of the form 〈p,X〉, which are present in both game arenas,

are Player 1 states in GµX.F
ρ (with 〈p, F 〉 as unique successor), and Nature states in

GF
ρ (with two3 terminal successors, ⊤ and ⊥, reachable with probability ρ(X)(p) and

1−ρ(X)(p), respectively).

Moreover observe that the player assignments of the two games, denoted here by Pl
F and

Pl
µX.F , are identical, and that the priority assignments, ΩF and ΩµX.F , differ only on the

game-states s of the form 〈p,X〉: ΩF (s) = 0 and ΩµX.F (s) = p for some odd (maximal)
priority p=max(ΩµX.F ) (see Definition 4.15).

A branching play T in the game GF
ρ , rooted at the game state 〈p, F 〉, can be depicted

as in figure 3(a). The triangle represents4 the set of paths in T never reaching a state of
the form 〈q,X〉, for q ∈ P , and the other edges represents the (possibly empty) collection
of paths {~si}i∈I in T , for some countable index set I, reaching a state of the form 〈pi,X〉
which is (necessarily) followed by a terminal state bi ∈ {⊤,⊥}. Similarly a branching play

3Note that the set of successor state of 〈p,X〉) is defined to be {⊤,⊥}, even when ρ(X)(p)∈ {0, 1}.
4The picture is quite simplistic. For example there are, in general, paths in T never reaching a state of

the form 〈q,X〉, that nonetheless branch away from the paths ~si, for i∈I , somewhere between the root 〈p,F 〉
and the last state 〈pi, X〉, whereas the picture depicts all such branches as branching away immediately at
the root 〈p,F 〉.
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〈p, F 〉

〈p0,X〉

...

b0

〈pi,X〉

...

bi

(a) Branching play in GF
ρ

〈p, F 〉

〈p0,X〉

...

〈p0, F 〉

T0

〈pi,X〉

...

〈pi, F 〉

Ti

(b) Branching play in GµX.F
ρ

〈p, F 〉

〈p0,X〉

...

〈pi,X〉

...

(c) Branching pre-play T [xi]i∈I

Figure 3: Branching plays and pre-plays

T in GµX.F
ρ , rooted at 〈p, F 〉, can be depicted as in figure 3(b). We extract the common

part between the branching plays of GF
ρ and GµX.F

ρ by the following definition.

Definition 6.1 (Branching pre-play). Let T be a branching play in GF
ρ or in GµX.F

ρ , and
{~si}i∈I be the I-indexed set of paths in T reaching a state of the form 〈pi,X〉, as described
above. The branching pre-play T [xi]i∈I , which can be depicted as in figure 3(c), is the tree
obtained from the branching play T by pruning its subtrees rooted at ~si, for i∈I.

The notation adopted for branching pre-plays is motivated by the use we make of
them. We consider a branching pre-play T [xi]i∈I as a context on which we can plug in
other branching plays: at the hole indexed by i, for i ∈ I, any branching play rooted at
〈pi,X〉 can be plugged. If we desire to obtain a branching play for the game GF

ρ , we shall

fill the branching pre-play T [xi]i∈I with branching plays Ti rooted at 〈pi,X〉 in AF . These
are trees ending immediately either in the leaf ⊤ or in the leaf ⊥. We denote with T [bi]i∈I
the branching play in GF

ρ obtained by filling the hole indexed by i with the branching play
rooted at 〈pi,X〉 and having bi as leaf, for bi ∈{⊤,⊥} (see Figure 3(a)). Similarly given a
I-indexed family {Ti}i∈I of branching plays in GµX.F , where each Ti is rooted in 〈pi,X〉, we

denote with T [Ti]i∈I the branching play in GµX.F
ρ obtained by filling the hole indexed by i

with the branching play Ti (see Figure 3(b)).
Clearly every branching play T in GF

ρ , rooted at 〈p, F 〉, is uniquely of the form T [bi]i∈I
for an appropriate sequence {bi}i∈I . Similarly every branching play T rooted at 〈p, F 〉 in

GµX.F
ρ is of the form T [Ti]i∈I for an appropriate sequence {Ti}i∈I . We now exploit these

observations to define the following function from branching plays in GµX.F
ρ to branching

plays in GF
ρ .

Definition 6.2. Let X⊆BPµX.F be a set of branching plays in the game GµX.F
ρ . We define

the function mX :BPµX.F →BPF , from branching plays in GµX.F
ρ to branching plays in GF

ρ ,
as follows:

mX(T [Ti]i∈I) = T [Ti∈X]i∈I where Ti∈X
def
=

{

⊤ if Ti ∈ X
⊥ otherwise



PROBABILISTIC MODAL µ-CALCULUS WITH INDEPENDENT PRODUCT 23

Thus, the function mX maps a branching play (uniquely expressible as T [Ti]i∈I , as
observed above) to the corresponding branching play T [bi]i∈I in GF

ρ , obtained by filling the
i-th hole of T [xi]i∈I , with the branching play having ⊤ as leaf if and only if Ti belongs to
the set X.

Lemma 6.3. Let X⊆BPµX.F be an open (Borel, universally measurable) set of branching

plays in the game GµX.F
ρ . Then the function mX is continuous (Borel measurable, univer-

sally measurable).

Proof. It is clear that the function λT.(T∈X) of Definition 6.2 is continuous (Borel, univer-
sally measurable) precisely when X is open (Borel, universally measurable), where {⊤,⊥} is
endowed with the discrete topology. The proof is then carried out with standard arguments
(see, e.g., Theorem 6.2.18 in [25]). Here we omit the routine details.

We are now ready to define the operator of which ΦµX.F , the winning set of the game

GµX.F
ρ , is the least fixed point.

Definition 6.4. The operator W : BPµX.F →BPµX.F is defined as follows:

W(X)
def
= m−1

X (ΦF ) = {T [Ti]i∈I | T [Ti∈X]i∈I ∈ ΦF}

where ΦF is the winning set of the game GF
ρ .

We now prove a few important properties of the operator W.

Lemma 6.5. If X is a set of branching plays winning for Player 1 in GµX.F
ρ , i.e., if

X⊆ΦµX.F , then W(X)⊆ΦµX.F too.

Proof. Fix some X ⊆ΦµX.F and consider an arbitrary branching play T1 = T [Ti]∈W(X).
It follows by definition of W that T2 = T [Ti∈X]i∈I ∈ΦF , i.e., T2 is a winning branching play
in the game GF

ρ . Equivalently, Player 1 has a winning strategy σ in the inner game GT2

(see Section 4.1). We now prove that T1∈ΦµX.F , i.e., that Player 1 has a winning strategy
τ in the inner game GT1 (see Section 4.1) by a strategy stealing argument, exploiting the
common structure (the branching pre-play T [xi]i∈I) of the two branching plays T1 and
T2. The strategy τ behaves as the strategy σ until a hole ~si, for i ∈ I, is reached. Thus
if no hole is ever reached, the plays in the two games are identical, hence Player 1 wins
following τ , as desired. If a hole ~si∈I is reached, then it is necessarily the case that Ti∈X,
because otherwise the play in GT2 would end in the losing state ⊥=Ti∈X while playing in
accordance with the winning strategy σ. A contradiction. We then define the strategy τ to
play the rest of the game as a winning strategy τi for the inner game GTi

. Note that such a
strategy exist because Ti∈X ⊆ ΦµX.F . It then follows that Player 1, playing in accordance
with τ , always produces a play with a winning tail. Thus, τ is winning, as desired.

Lemma 6.6. The operator W is monotone, i.e., W(X)⊆W(Y ) holds for every X⊆Y .

Proof. Fix X ⊆ Y ⊆ BPµX.F . Assume T1 = T [Ti]i∈I ∈W(X), i.e., T [Ti∈X]i∈I ∈ ΦF . We
need to prove that T1∈W(Y ) too, i.e., that T2 = T [Ti∈Y ]i∈I ∈ ΦF . Equivalently, we need
to show that if Player 1 has a winning strategy in the inner game GT1 associated with T1,
then they have a winning strategy in GT2 too. The two parity games GT1 and GT2 are
almost identical, except that a play ending in one of the holes ~si, for i∈I, might be losing
for Player 1 in GT1 (when the game ends in the leaf ⊥=Ti∈X) but winning in GT2 (when
Ti∈Y =⊤). The desired result then trivially follows.
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As a consequence, by application of the Knaster–Tarski theorem, the operator W has
a least fixed point lfp(W). We are now ready to prove the main result of this section.

Theorem 6.7. The following equality holds: ΦµX.F = lfp(W).

Proof. We already know, by application of Lemma 6.5, that lfp(W)⊆ΦµX.F . We now prove
that the equality holds by showing that, for every T 6∈ lfp(W), the branching play T does
not belong to ΦµX.F . Fix an arbitrary T 6∈ lfp(W). We show that T 6∈ΦµX.F by constructing
a winning strategy σT

2 for Player 2 in the inner game GT . By assumption we have that
T = T [Ti]i∈I 6∈ lfp(W) or, equivalently, T [Ti∈lfp(W)]i∈I 6∈ΦF . For notational convenience,
let us denote with R the branching play T [Ti∈lfp(W)]i∈I in GF

ρ . Let τR2 be a strategy
winning for Player 2 in the inner game GR. As already done in the proof of Lemma 6.5, we
define σT

2 exploiting the common structure (the branching pre-play T [xi]i∈I) of T and R.
The strategy σT

2 behaves as the strategy τR2 until a hole ~si, for i∈I, is reached. Thus if no
hole is ever reached, the plays in the two games are identical, hence Player 2 wins following
σT
2 , as desired. If a hole ~si ∈ I is reached, then it is necessarily the case that Ti 6∈ lfp(W),

because otherwise the play in GR would end in the state ⊤=Ti∈lfp(W), which is winning
for Player 1, while playing in accordance with the winning strategy σR

2 . A contradiction.
We then define the strategy σT

2 to play the rest of the game (forgetting the previous history)

as the strategy σTi
2 , constructed as for σT

2 , but with respect to the branching play Ti. We
shall call this a re-starting point of the play. We now prove that the strategy σT

2 is winning
for Player 2 as desired. There are two cases to consider. A play in the game GT played in
accordance with σT

2 can have,

(1) either finitely many restarting points, or
(2) infinitely many restarting points, i.e., infinitely many occurrences of states of the form

〈pi,X〉, for i∈I.

In the first case, following earlier observations, the resulting path has a winning tail and
thus is winning. In the second case, since the states of the form 〈pi,X〉 are assigned maximal

odd priority in GµX.F
ρ , the play is winning for Player 2 (see Definition 4.16).

The following results will be used for dealing with the measure-theoretic complications
associated with the complexity of the winning set ΦµX.F .

Lemma 6.8. The least fixed point of W is reached in at most ω1 iterations, i.e., the equality
lfp(W)=

⋃

α<ω1
Wα holds, where Wα=

⋃

β<αW(Wβ).

Proof. Assume T [Ti]i∈I ∈Wω1+1 or, equivalently, T [Ti∈Wω1 ]∈ΦF . Let J = {i | Ti∈Wω1}.
For each j ∈J , let βj be the least ordinal such that Tj ∈Wβj

. Note that βj is a countable
ordinal, since Wω1 =

⋃

α<ω1
Wα, and ω1 is the least uncountable ordinal. Let β =

⊔

j∈J βj
be the supremum ordinal of all βj . Note that β is a countable ordinal since I is countable
and J ⊆ I. It then follows, by Definition 6.4, that T [Ti∈Wβ] and T [Ti∈Wω1 ] are identical
branching plays. Thus T [Ti]i∈I ∈Wβ+1 ⊆ Wω1 . Hence Wω1+1 ⊆ Wω1 as desired.

The result of Lemma 6.8 can be shown to be strict. One can indeed construct a pLµ⊙

game GF
ρ such that Wα(ΦµX.F for every countable ordinal α. We refer to Lemma 6.3.8 in

[25] for a proof of this fact.
We now show that each set in the chain {Wα}α<ω1 , having ΦµX.F as limit, is provably

universally measurable in ZFC +MAℵ1 set theory.
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〈p, F 〉

〈p0,X〉

...

⊤

λ0

⊥

1− λ0

. . . 〈pi,X〉

...

⊤

λi

⊥

1− λi

Figure 4: Markov branching play M [λi]i∈I

Lemma 6.9 (MAℵ1). If X⊆ BPµX.F is universally measurable then so is W(X), i.e., the
function W maps universally measurable sets to universally measurable sets.

Proof. By Definition 6.4, we need to show that W(X)
def
= m−1

X (ΦF ) is universally measur-

able. By application of Theorem 4.20 and Theorem 2.10, the winning set ΦF is provably
universally measurable in ZFC + MAℵ1 . The desired result then follows by application of
Lemma 6.3 and Theorem 2.8(b).

The techniques adopted in this section can be trivially adapted to get the expected
dual results which we simply summarize in the following proposition.

Proposition 6.10. The following assertion holds for every pLµ⊙ formula νX.F and inter-
pretation ρ:

(1) the winning set ΦνX.F is the greatest fixed point of the operator W,
(2) gfp(W) =

⋂

α<ω1
Wα, where Wα =

⋂

β<αW(Wβ),

(3) (MAℵ1) for every countable ordinal α, the set Wα is universally measurable.

7. Robust Markov Branching Plays

In this section we identify a property of Markov branching plays in pLµ⊙ games which will
be used in the proof of Theorem 5.5 in the next section.

Given a pLµ⊙ game GF
ρ , with F a pLµ⊙ formula (having a free variable X) and ρ a [0, 1]-

interpretation of the variables, respectively, we extend the graphical notation, introduced in
Section 6 for branching plays, to Markov branching plays in the expected way. Thus, given
a Markov branching play M in GF

ρ rooted at 〈p, F 〉 (for some state p), we depict M as in
Figure 4 and denote it by M [λi]i∈I , with λi∈ [0, 1] being the probability labeling the edge
connecting 〈pi,X〉 with ⊤. Note that, by definition of the game GF

ρ , the value λi coincides
with ρ(X)(pi), for i∈ I. However, it is convenient to consider, as a technical tool, Markov
branching plays of the form M [λi]i∈I having λi, for i∈I, of an arbitrary value, even though
these plays never really correspond to achievable plays in GF

ρ . The associated probability

measure PM [λi]i∈I
over branching plays in GF

ρ is defined as expected.

Definition 7.1 (Robust Markov branching plays). Fix a pLµ⊙ formula F (with a free
variable X) and a [0, 1]-interpretation ρ. We say that a Markov branching play M [λi]i∈I in
GF
ρ , for I ⊆ N, is robust in the variable X, or just robust when X is clear from the context,

if for every ε > 0 the following properties hold,

(1) E(M [γi]) ≥ E(M [λi])−
∑

i∈I
ε

2i+1 , and
(2) E(M [δi]) ≤ E(M [λi]) +

∑

i∈I
ε

2i+1 ,
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〈p, µX.(Y ⊙X)〉

〈p, Y ⊙X〉

〈p, Y 〉

⊤
λ0

⊥
λ0

〈p,X〉

〈p, Y ⊙X〉

〈p, Y 〉

⊤
λ1

⊥
λ1

〈p,X〉

Figure 5: Illustrative example. The symbol λi denotes the value 1− λi.

for every sequences {γi}i∈I and {δi}i∈I of reals in [0, 1] such that, for every i ∈ I, the
inequalities γi ≥ λi −

ε
#(i) and δi ≤ λi +

ε
#(i) hold (see Definition 2.4 of #:N→N).

The notion of robustness captures a useful substitutivity property. If, in a Markov
branching play M [λi]i∈I , the probability λi of reaching from the state 〈pi,X〉 the winning
(for Player 1) state ⊤ is replaced with a smaller but close enough value γi, then the resulting
Markov branching play M [γi]i∈I has an expected value close to that of M [λi]i∈I too.

Note how, in Definition 7.1, the constraint on the distance between γi (δi) and λi

crucially depends on the index i∈ I. Definition 7.1 has been identified to meet the nature
of Markov branching plays in pLµ⊙ games and, as we shall see in the next section, every
Markov branching play in a pLµ⊙ game is indeed robust in every free variable. However, it
is useful to observe that the dependence on i∈I for the constraint on the distance between
γi (δi) and λi is necessary. Indeed, the simpler property

(2′) E(M [δi]) ≤ E(M [λi]) + c1 where ∀i.
(

δi < λi + c2
)

(7.1)

for some constant values c1, c2∈(0, 1), is not satisfied (in general) by pLµ⊙ Markov branch-
ing plays. In other words, Markov branching plays in pLµ⊙ are not stable (in their expected
value) if the values λi are altered uniformly, i.e., by a fixed c2> 0. Consider, for example,
the Markov branching play, having countably many holes, depicted as in Figure 5. Assume
that λi=0, for every i∈N and fix some c2>0. Then it is simple to verify that E(M [λi])=0
and E(M [δi])= 1 (where δi= c2, for all i∈ I), contradicting (2′) above. This phenomenon
reflects the discontinuity of the denotational interpretation of pLµ⊙ formulas on the free
variables (see Proposition 3.5). Indeed note that the play of Figure 5 is a Markov branching

play of a pLµ⊙ game associated with a formula of the form µX.(Y ⊙X)
def
= P>0Y , similar

to the one discussed in the proof of Proposition 3.5.
We now establish a useful property relating expected values of Markov branching plays

in GG
ρ and in the game GµX.G

ρ . Again, following established notation, we denote with
M [Mi]i∈I the Markov branching play depicted as in Figure 6. The Markov branching pre-
play M [xi]i∈I captures the common structure of the Markov branching plays M [Mi]i∈I and

M [λi]i∈I in GµX.F
ρ and GF

ρ , respectively.

Lemma 7.2. Let µX.F be a pLµ⊙ formula and ρ a [0, 1]-interpretation of the free vari-

ables. Let M [Mi]i∈I be a Markov branching play in GµX.F
ρ . For an ordinal β, let γβi =
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〈p, F 〉

〈p0,X〉

...

〈p0, F 〉

M0

〈pi,X〉

...

〈pi, F 〉

Mi

Figure 6: Markov Branching play M [Mi]i∈I

PMi
(
⋃

α<β Wα) be the probability of the event
⋃

α<β Wα (see Lemma 6.8) associated with
the sub-Markov branching play Mi, for i∈I. Then the equality

PM [Mi]i∈I
(Wβ) = P

M [γβ
i ]i∈I

(ΦF )

holds, where ΦF is the winning set of the game GF
ρ .

Proof. Consider the function mX , as specified in Definition 6.2. Recall that, by definition,
the equalities

Wβ =
⋃

α<β W(Wα) = m−1⋃
α<β Wα

(ΦF )

hold. The proof is completed by showing that the following property holds:

PM [Mi]i∈I
(m−1⋃

α<β Wα
(X)) = PM [γi]i∈I

(X), (7.2)

for every Borel measurable set X ⊆ BPF , where BPF denotes the set of branching plays
in GF

ρ . Indeed the desired result follows from Equation 7.2 by taking X = ΦF . Since
probability measures in Polish spaces are regular, we can restrict X to range over basic
open sets. Equation 7.2 can then be proved, with routine techniques, by induction of the
complexity of basic open sets OT (see Definition 4.5), i.e., on the size of the finite tree T .

Note that, as observed earlier, the Markov branching playM [γi]i∈I considered in Lemma
7.2, might not be a real play in GF

ρ , i.e., one induced by a strategy profile. This is the case
when γi 6=ρ(X)(pi) for some i∈I.

8. Proof of Equivalence of Game and Denotational Semantics

This section is devoted to the proof of Theorem 5.5. The proof technique we adopt is
based on the unfolding method of [11]. The unfolding method can be roughly described as
a technique for proving properties of (some sort of) two-player parity games by induction
on the number of priorities used in the game. Usually, the first step is to prove that the
property under consideration holds for all parity games with just one priority. Then the
the general result for games with n+ 1 priorities follows by some argument making use of
the inductive hypothesis. In our setting we are interested in two-player meta-parity games
of the form GF

ρ , and the property we want to prove is that the lower and upper values of
these games coincide with the denotational value of F under the interpretation ρ. We prove
this by induction of the structure of F rather than on the number of priorities used in the
game GF

ρ . This allows a more transparent and arguably simpler proof. The structure of our
proof closely resembles the one of [26], where the equivalence of the game and denotational
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semantics for the logic pLµ is proved using the unfolding method. In the present context,
the proof is a significantly more technical undertaking due to the complexity of two-player
meta-parity games: the ∆1

2-complexity of the winning sets (Theorem 4.20), their transfinite
inductive characterization up to the first uncountable ordinal ω1 (Theorem 6.8) and the dis-
continuity in the free variables of the denotational semantics (see Theorem 3.5 and Section
7). In what follows, we shall focus primarily on the novel aspects of the proof, referring
to [26] for a detailed analysis of the simpler cases that easily generalize to the present setting.

We prove, by induction on the structure of the formulas that, for every PLTS L =

〈P, {
a

−→}a∈L〉, pLµ
⊙ formula F and [0, 1]-interpretation ρ of the variables, the following

assertions hold:
JF Kρ(p) = VAL↓(G

F
ρ )(〈p, F 〉) = VAL↑(G

F
ρ )(〈p, F 〉), (8.1)

and
M is robust in the variable X (see Definition 7.1) (8.2)

for every free variable X in F , and Markov branching play M rooted at 〈p, F 〉 in GF
ρ .

Base case: F=X, for some variable X∈Var .
It follows immediately by application of Theorem 4.22 that point 8.1 holds. For what
concerns point 8.2, a Markov branching play M rooted at 〈p,X〉 in GG

ρ is of the following
form:

〈p0,X〉

⊤

λ0

⊥

1− λ0

where λ0 = ρ(X)(p). Thus, M has only one hole (i.e., M = M [λ0]) and E(M) = λ0. The
Markov branching play M [γ], can then be depicted as above, replacing λ0 with γ, for every
γ∈ [0, 1]. Therefore, E(M [γ])=γ and point 8.2 is trivially satisfied as desired.

Inductive cases F=G1 ⋆G2 or F=◦G, for ⋆∈{∨,∧, ·,⊙} and ◦∈{〈a〉, [a]}.
For all these cases, the proof of point 8.1 follows easily by application of Theorem 4.22. The
result can be proved following the same lines of the proof of (the corresponding inductive
cases of) Theorem 5.1 in [26], thus we omit the routine details.

We now prove that point 8.2 holds for F = G1 · G2. The other cases can be proved
in a similar way. Let us consider an arbitrary Markov branching play M in GF

ρ rooted
at 〈p,G1 · G2〉. Then, M can be depicted as follows, where M1 and M2 denote the two
sub-Markov branching plays rooted at 〈p,G1〉 and 〈p,G2〉.

〈p,G1 ·G2〉

〈p,G1〉

M1

〈p,G2〉

M2

Note that, by definition of the game GF
ρ , the sub-Markov branching play Mi is also a Markov

branching play rooted at 〈p,Gi〉 in the game GGi
ρ , for i∈{1, 2}. Also note that X is free in

both G1 and G2, since it is free in G by assumption. Let M [xi]i∈I be the Markov branching
pre-play obtained by pruning M at the states of the form 〈pi,X〉, as described in Section
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7. Let λi, for i∈I, be the probability labeling the edge connecting the i-th hole in M (i.e.,
the state 〈pi,X〉), to the state ⊤. By Definition 7.1, we need to prove that

(1) E(M [γi]i∈I) ≥ E(M [λi]i∈I)−
∑

i∈I
ε

2i+1 , and
(2) E(M [δi]i∈I) ≤ E(M [λi]i∈I) +

∑

i∈I
ε

2i+1 ,

hold, for every sequence {γi}i∈I and {δi}i∈I of reals in [0, 1] such that, for every i∈ I⊆N,
the inequalities γi ≥ λi −

ε
#(i) and δi ≤ λi +

ε
#(i) hold. We just show how to prove the first

inequality because the second one can be proved in a similar way.
Let I1 and I2 be the partition of the index set I specified as follows. The index i∈I of

a path ~si in M [xi]i∈I (connecting 〈p,G1⊙G2〉 with the hole 〈pi,X〉) is in I1 if ~si lies in M1,
i.e., its second state is 〈p,G1〉. Similarly, the index i belongs to I2 if ~si lies in M2. Note that
I1 indexes all the holes of the sub-Markov branching play M1 and, similarly, I2 indexes the
holes of M2. Thus, let us denote with M1[xi]i∈I1 the Markov branching pre-play associated
with M1, and similarly for M2[xj ]j∈I2 and M2. Then, by the inductive hypothesis on the
complexity of G1 and G2, we know that M1 and M2 are robust in X, i.e., the following
assertions, with respect to inequality (1) above,

a) E(M1[γi]i∈I1) ≥ E(M1[λi]i∈I1)−
∑

i∈I1
ε

2i+1 , and
b) E(M2[γj ]j∈I2) ≥ E(M2[λj ]j∈I2)−

∑

j∈I2
ε

2j+1 ,

hold. By applying the product measure technique adopted in the proof of Theorem 4.22,
it is easy to verify that the equalities E(M [λi]i∈I) = E(M1[λi]i∈I1) · E(M2[λj ]j∈I2) and
E(M [γi]i∈I)=E(M1[γi]i∈I1) ·E(M2[γj ]j∈I2) hold. The desired equation (1) above can then
be derived as follows:

E(M [γi]i∈I) = E(M1[γi]i∈I1) · E(M2[γj ]j∈I2)
≥b) E(M1[γi]i∈I1) ·

(

E(M2[λj ]j∈I2)−
∑

j∈I2
ε

2j+1

)

≥∗

(

E(M1[γi]i∈I1) ·E(M2[λj ]j∈I2)
)

−
∑

j∈I2
ε

2j+1

≥a)

(

(

E(M1[λi]i∈I1)−
∑

i∈I1
ε

2i+1

)

· E(M2[λj ]j∈I2)
)

−
∑

j∈I2
ε

2j+1

≥∗

(

E(M1[λi]i∈I1) ·E(M2[λj ]j∈I2)
)

−
∑

i∈I1
ε

2i+1 −
∑

j∈I2
ε

2j+1

≥I=I1⊎I2

(

E(M1[λi]i∈I1) ·E(M2[λj ]j∈I2)
)

−
∑

i∈I
ε

2i+1

= E(M [λi]i∈I)−
∑

i∈I
ε

2i+1

where the steps labeled with (∗) are valid because all terms have values in the interval [0, 1].

Inductive case F=µX.G.

• We first prove that point 8.1 holds.

For every state p and every interpretation ρ we have, by definition of the denotational
semantics, that the following equality holds:

JµX.GKρ(p) def
= lfp

(

λf ∈ [0, 1]P .
(

JGKρ[f/X]

)

)

(p).

By the Knaster–Tarski theorem, the previous equation can be rewritten as:

JµX.GKρ(p) =
⊔

α

JGKαρ , (8.3)

where α ranges over the ordinals, and JGKαρ is defined as
⊔

β<αJGK
ρ[JGKβρ/X]

. Let us denote

with γ the least ordinal such that JGKγρ = JµX.GKρ, and with ργ ∈ [0, 1]P the interpretation
ρ[JGKγρ/X]. Thus, the following equation holds:

JGKργ = JµX.GKρ. (8.4)
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Let us now turn our attention to the 21
2 -player meta-parity game GµX.G

ρ . Our goal is
to prove that point 8.1 holds, i.e., that the following equalities

JµX.GKρ(p) = VAL↓

(

GµX.G
ρ

)

(〈p, µX.G〉) = VAL↑

(

GµX.G
ρ

)

(〈p, µX.G〉) (8.5)

hold, for every p∈P . As a first observation, note that the state 〈p, µX.G〉 is not reachable
by any other game state, and that it has the state 〈p,G〉 as its only successor state. It then
follows by application of Proposition 4.22 that, in order to prove the desired result (8.5),
we just have to show that the equalities

JGKργ (p) = VAL↓

(

GµX.G
ρ

)

(〈p,G〉) = VAL↑

(

GµX.G
ρ

)

(〈p,G〉) (8.6)

hold. In order to improve readability, we shall denote with LµX.G M⋆ρ :P → [0, 1] the function

defined as λp∈P.
(

VAL⋆

(

GµX.G
ρ

)

(〈p,G〉)
)

, for ⋆∈{↓, ↑}. Thus, Equation 8.6 can be rewritten

as follows:
JGKργ (p) = LµX.G M↓ρ(p) = LµX.G M↑ρ(p). (8.7)

Note that the analogous functions LG M⋆ρ[f/X] :P→ [0, 1] specified, for ⋆∈{↓, ↑}, as

λp∈P.
(

V al⋆
(

GG
ρ[f/X]

)

(〈p,G〉)
)

, satisfy the following equation:

JGKρ[f/X] = LG M↓ρ[f/X] = LG M↑ρ[f/X] (8.8)

for all f ∈ [0, 1]P , by induction hypothesis (8.1) on G.

We prove Equation 8.7 by exploiting the similarities between the game GµX.G
ρ and the

game GG
ρ[f/X], already discussed in Section 6. Our first observation is the following:

LµX.G M⋆ρ = LG M⋆ρ[LµX.G M⋆ρ/X]

Eq. 8.8
= JGKρ[LµX.G M⋆ρ/X] (8.9)

for ⋆∈{↓, ↑}. Indeed when a state of the form 〈p,X〉 is reached in the game GµX.G
ρ the play

continues from the state 〈p,G〉 and ends in a victory for Player 1 with (lower or upper)
value LµX.G M⋆ρ(p), and, similarly, when the state 〈p,X〉 is reached in GG

ρ[LµX.G M⋆ρ/X], the

play immediately terminates in favor of Player 1 with probability LµX.G M⋆ρ(p).
By application of Equation 8.8, this implies that both LµX.G M↑ρ and LµX.G M↓ρ are

fixed points of the functional λf ∈ [0, 1]P .(JGKρ[f/X]). Note that, for all p ∈ P , the in-

equality LµX.G M↓ρ(p) ≤ LµX.G M↑ρ(p) trivially holds. Moreover the inequality JµX.GKρ(p) ≤
LµX.G M↑ρ(p) holds, for all p∈P , because JµX.GKρ (or, equivalently, JGKργ) is the least fixed
point of λf ∈ [0, 1]P .(JGKρ[f/X]).

We shall prove the desired result (Equation 8.7) by showing that, for all p ∈ P , the
inequality

LµX.G M↑ρ(p)
def
= V al↑

(

GµX.G
ρ

)

(〈p,G〉) ≤ JGKργ (p) (8.10)

holds. We do this by constructing, for every ε> 0 a strategy σε
2 for Player 2 in the game

GµX.G
ρ , satisfying the following inequality:

⊔

σ1

E(M
〈p,G〉
σ1,σε

2
) ≤ JGKργ(p) + ε. (8.11)
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The strategy σε
2 is constructed using the collection of δ-optimal strategies, for δ>0, in

the game GG
ργ , i.e., strategies τ δ2 such that the following equality holds:

⊔

τ1

E(M
〈p,G〉

τ1,τδ2
) ≤ VAL

(

GG
ργ

)

(〈p,G〉) + δ
Eq. 8.8
= JGKργ (p) + δ. (8.12)

Let e :P<ω
µX.G→N be a numbering (i.e., an injective map into the natural numbers) of the

finite paths in the game GµX.G
ρ . The strategy σε

2 is defined, for every ε>0, as follows:

σε
2(~s) =











τ
ε
2
2 (~s) if ~s does not contain states of the form 〈p,X〉, for p∈P

σ
ε
2
· 1
#(e(~sj ))

2 (~t) if ~s=~sj.~t with last(~sj) = 〈p,X〉 for some p∈P

for every finite path ~s whose last state belong to Player 2 (i.e., such that last(~s)∈S2), where
the function # :N→N is specified as in Definition 2.4. The strategy σε

2 can be informally

described as follows. When the game begins σε
2 behaves as the strategy τ

ε
2
2 until a state of

the form 〈p,X〉 is reached. This is a good definition because plays in the two games GµX.G
ρ

and GG
ργ are identical until states of this form are reached. If a state of the form 〈p,X〉 is

eventually reached following some path ~sj , then Player 2 improves their strategy, and plays
the rest of the game (starting at the unique successor state 〈p,G〉 of 〈p,X〉) in accordance

with the better strategy σ
ε
2
· 1
#(e(~sj ))

2 . Note how the choice of the new strategy to be followed
crucially depends on the path ~sj.

We are now going to show that, for every ε > 0, the strategy σε
2 satisfies the desired

inequality 8.11. We need to show that, for every strategy σ1 for Player 1, the inequality

E(M
〈p,G〉
σ1,σε

2
) ≤ JGKργ (p) + ε. (8.13)

holds. Recall that, by definition, E(M s
σ1,σε

2
)=Ps

σ1,σε
2
(Φ), where P

〈p,G〉
σ1,σε

2
denotes the probability

measure over branching plays in GµX.G
ρ induced by the Markov branching play M s

σ1,σε
2
, and

Φ denotes the set of winning branching plays for Player 1 in GµX.G
ρ . By Theorem 6.7 and

Lemma 6.8, we know that Φ=
⋃

α<ω1
Wα. Thus, the previous equation can be rewritten as

follows:
P
〈p,G〉
σ1,σε

2

(

⋃

α<ω1

Wα

)

≤ JGKργ (p) + ε. (8.14)

By application of Theorem 2.10, under the set-theoretic assumption MAℵ1 we can further
rewrite the previous equation as follows:

⊔

α<ω1

(

P
〈p,G〉
σ1,σε

2
(Wα)

)

≤ JGKργ (p) + ε. (8.15)

This step allow us to set up a proof by transfinite induction for the desired Equality 8.11.
We shall now prove that for every countable ordinal β < ω1 and every ε > 0, the inequality

P
〈p,G〉
σ1,σε

2
(Wβ) ≤ JGKργ (p) + ε. (8.16)

holds. Assume Equation 8.16 holds for every ordinal α < β. The Markov branching play

M
〈p,G〉
σ1,σε

2
can be depicted, following the notation introduced in sections 6 and 7, as in Figure

7. By definition of σε
2, the sub-Markov branching plays Mi, for i∈I, are Markov branching

plays played in accordance with the strategy σεi
2 , with εi=

ε
2 · 1

#(e(~si))
. Let us denote with
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〈p,G〉

〈p0,X〉

...

〈p0, G〉

M0

〈pi,X〉

...

〈pi, G〉

Mi

Figure 7: Markov Branching play M [Mi]i∈I

〈p,G〉

〈p0,X〉

...

⊤

δ0

⊥

1− δ0
. . . 〈pi,X〉

...

⊤

δi

⊥

1− δi

Figure 8: Markov branching play M [δi]i∈I

δαi the value PMi
(Wα), where PMi

denotes the probability measure associated with Mi, and
α < β. Moreover, let us denote with δi, for i∈ I the value

⊔

α<β δ
α
i . Then, by induction

hypothesis on the ordinals, we know that, for every α<β, the inequality

δαi ≤ JGKργ (p) +
ε

2
·

1

#(e(~si))
(8.17)

holds, for every i ∈ I. By application of Lemma 7.2, we know that the following equality
holds:

P
〈p,G〉
σ1,σε

2
(Wβ) = E(M [δi]i∈I ]) (8.18)

where M [δi]i∈I denotes the Markov branching play in the game GG
ργ , obtained from M

〈p,G〉
σ1,σε

2

as specified in Section 7, which can be depicted as in Figure 8. Let us denote with λi, for
i∈ I, the value JGKργ (pi). Observe that the Markov branching play M [λi]i∈I (depicted by

replacing δi with λi in Figure 8) is a Markov branching play in the game GG
ργ . Moreover, by

definition of σε
2, the Markov branching play M [λi]i∈I is played by Player 2 in accordance

with the ε
2 -optimal strategy τ

ε
2
2 . It then follows by Equation 8.12 that

E(M [λi]i∈I) ≤ JGKργ (p) +
ε

2
(8.19)

Recall that, by induction hypothesis (8.2) on G, the Markov branching play M [λi]i∈I is
robust is the free (in G) variable X. Thus the following inequality holds:

E(M [δi]i∈I) ≤ E(M [λi]i∈I) +
∑

i∈I

(ε

2
·

1

#(e(~si))

)

. (8.20)

Since the numbering e is injective, it follows from equation 8.19 and 8.20 that E(M [δi]i∈I) ≤
JGKργ (p)− ε

2 − ε
2 . Thus, Equation 8.16 holds as desired.

• We now prove that point 8.2 holds.
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〈p,G〉

〈p0,X〉

...

〈p0, G〉

M0

〈pi,X〉

...

〈pi, G〉

Mi

(a) Markov Branching play M
〈p,G〉

〈p0,X〉

...

〈⊤〉

λα
0

〈⊥〉

〈pi,X〉

...

〈⊤〉

λα
i

〈⊥〉

(b) Markov Branching play M [λα
i ]i∈I

Figure 9: Markov branching plays M=M [Mi]i∈I in GµX.G
ρ and M [λα

i ]i∈I in GG
ρ

We just discuss the main ideas of the proof as the necessary techniques have been already
introduced in the proof of point 8.1 above.

We need to show that every Markov branching play M in GµX.G
ρ , rooted at 〈p, µX.G〉

is robust in every free variable Y . Clearly Y 6=X, since X is bound in µX.F . As already
observed earlier, we can just consider Markov branching plays M rooted at 〈p,G〉, since the
state 〈p, µX.G〉 has 〈p,G〉 has its only successor state, and it is not reachable by any other
states. Let J ⊆N be the set indexing the paths from the root 〈p,G〉 of M to states of the
form 〈pj, Y 〉. Let us denote with M [yj]j∈J the associated Markov branching pre-play. Let
λj ∈ [0, 1], for j ∈J , be the value labeling the edge connecting the j-th hole in M with the
state ⊤, i.e., λj = ρ(Y )(pj). Thus M = M [λj ]j∈J . We need to prove that, for every ε > 0,
the inequalities

(1) E(M [γj ]j∈J) ≥ E(M [λj ]j∈J)−
∑

j∈J
ε

2j+1 , and

(2) E(M [δj ]j∈J) ≤ E(M [λj ]j∈J) +
∑

j∈J
ε

2j+1 ,

hold for every sequences {γj}j∈J and {δj}j∈J of reals in [0, 1] such that, for every j∈J⊆N,
the inequalities γj ≥ λj−

ε
#(j) and δj ≤ λj+

ε
#(j) hold. We just consider the first inequality,

as the second one can be proved in a similar way.
Recall that, by application of Theorem 2.10, under the set-theoretic assumption MAℵ1 ,

the equality E(M [γj ]j∈J)
def
= PM [γj ]j∈J

(Φ) =
⊔

α<ω1
PM [γj ]j∈J

(Wα) holds. Similarly for

E(M [λj ]j∈J). We shall then prove (1) above, by proving the following more general prop-

erty: for all Markov branching plays M = M [λj ]j∈J in GµX.G
ρ rooted at 〈p,G〉 and sequence

{γj}j∈J as described above, the following equality holds:

PM [γj ]j∈J
(Wα) ≥ PM [λj ]j∈J

(Wα)−
∑

j∈J

ε

2j+1
(8.21)

This is proven, again, by transfinite induction on the ordinals. Suppose the property holds
for all α < β. The main idea to prove the inductive step is to reduce the problem on M
(which can be depicted as in Figure 9(a) by exposing the collection of paths reaching states
of the form 〈pi,X〉, for an index set I) to that of M [λα

i ]i∈I (where λ
α
i =PMi

(
⋃

α<β Wα)), the

Markov branching play in GG
ρ constructed as described in Lemma 7.2 and depicted in Figure

9(b). The result then follows by applications of Lemma 7.2 (relating the values PM(Wβ)
and of E(PM [λα

i ]
)), by induction hypothesis on α (8.21) and by induction hypothesis (8.2)

on the robustness of the Markov branching plays M [λα
i ]i∈I in GG

ρ . We omit the technical
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details. A detailed proof of (a generalized version of) this result can be found in [25, §4.3].

Inductive case G=νX.G.
Similar to the previous one and based on the properties summarized in Proposition 6.10.

8.1. Remarks about the use of MAℵ1. We conclude this section by highlighting the two
critical steps in our proof where the set-theoretic assumption MAℵ1 is used.

As already discussed in Section 4, we make use of Martin’s Axiom at ℵ1 to ensure that
the ∆1

2 winning set of a pLµ⊙ game is universally measurable. The universal measurability
of ∆1

2 sets can, however, be proved in other extensions of ZFC. For example, determinacy-
based axioms such as Analytic Determinacy [15], suffice (see, e.g., [17, §36.E]).

The second use we make of the axiom MAℵ1 is in the derivation of Equation 8.15
in the proof above. This is a fundamental step required to set up a proof by transfinite
induction on the countable ordinals. As stated in Theorem 2.10, one of the consequences of
Martin’s Axiom at ℵ1 is that probability measures on Polish spaces are ω1-continuous. Such
a property, clearly implying the negation of the Continuum hypothesis, does not follow from
determinacy-based axioms mentioned above. As mentioned after Lemma 6.8, our inductive
characterization of the winning set of pLµ⊙ games, can be shown to require, in general,
ω1-iterations (i.e., approximants) to converge. Thus some form of ω1-continuity seems to
be required by the proof technique adopted in this Section.

9. Conclusions and Future Work

One of the primary interests in a game semantics for pLµ⊙, and more generally for all
logics having a [0, 1]-valued semantics with an intended probabilistic reading, is to offer an
accessible and clear interpretation for the property described by a formula. We suggest
that our game semantics, built on top of the elementary idea of concurrent execution of
independent sub-istances of the game, succeeds in this task. The logic pLµ⊙ is expressive
enough to encode the qualitative threshold modalities P>0 and P=1 which, as discussed at
the end of Section 5, are interpreted within the game semantics in a straightforward way.

Despite the naturalness of the definition, our proof of equivalence is a technically under-
taking. Our result, based on a transfinite characterization of pLµ⊙ winning sets, is carried
out in ZFC+MAℵ1 set-theory to deal with the measure theoretic complications associated
with the complexity of winning sets. We are not aware of any other result in theoretical
computer science whose proof is (or at least was originally) carried out in proper extensions
of ZFC set theory. Thus, our proof of determinacy, which is generalized in [25] from the
pLµ⊙ games considered in this paper to arbitrary two-player stochastic meta-parity games,
is perhaps noteworthy as being a first example of this kind of result.

Although the logic pLµ⊙ subsumes the qualitative fragment of the logic PCTL of [2],
it does not seem possible to encode the full logic PCTL within pLµ⊙. In [25] an extension
of pLµ⊙, obtained by adding to the syntax of the logic yet another pair of De Morgan
dual connectives, is considered. Interestingly, this extension, which is capable of encoding
the full logic PCTL, can be given an appropriate game semantics in terms of two-player
stochastic meta-parity games. We refer to [25] for a proof of this fact, which serves as a
demonstration of the expressive power of the new class of two-player stochastic meta-parity
games introduced in this paper.
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Our work leaves open several directions for future research. From a theoretical point of
view, it would be interesting to remove the dependencies on the set-theoretic assumption
MAℵ1 from our proof. This, in light of the remarks of Section 8.1, looks as a challenging
task. In another direction, it would be interesting to investigate the theory of two-player
stochastic meta-games. Preliminary results, such as the fact that Blackwell games can
be encoded as tree games and that the open problem of qualitative determinacy [6] for
stochastic games can be formulated as a determinacy problem for tree games, are obtained
in the author’s PhD thesis [25]. However, several questions remain open. For example,
the concept of independent execution of actions in two-player games have been already
considered as a tool for understanding logics of imperfect information (see, e.g., [4], [12]).
It is then be natural to explore the expressive power of tree games in this setting. A very
general class of two-player games with concurrent behaviors, based on event structures, has
recently been considered in [9] where a determinacy theorem is obtained for games satisfying
appropriate restrictions. Comparing our notion of tree games with their concurrent games,
and the corresponding determinacy results, looks like a promising direction for future work.
Similarly, it is interesting to compare two-player non-stochastic meta-parity games with
the, apparently very similar, hierarchical four player games (2 vs 2) of [16], which are used
to formalize the semantics of first order logic extended with game quantifiers. Developing
verification methods is another source of possible research directions. For instance, it is
interesting to study themodel checking problem for the logic pLµ⊙. Is it possible to compute,
or at least approximate to an arbitrary degree of precision, the value JF K(p) assigned by
a formula to a state p of a finite PLTS? The problem seems far from trivial. A source of
difficulty comes from the fact that (finite) two-player stochastic meta-parity games are not
positionally determined. We refer to [25, §8] for an overview of these issues.
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