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Abstract. Desharnais, Gupta, Jagadeesan and Panangaden introduced a family of be-
havioural pseudometrics for probabilistic transition systems. These pseudometrics are a
quantitative analogue of probabilistic bisimilarity. Distance zero captures probabilistic
bisimilarity. Each pseudometric has a discount factor, a real number in the interval (0, 1].
The smaller the discount factor, the more the future is discounted. If the discount factor is
one, then the future is not discounted at all. Desharnais et al. showed that the behavioural
distances can be calculated up to any desired degree of accuracy if the discount factor is
smaller than one. In this paper, we show that the distances can also be approximated if the
future is not discounted. A key ingredient of our algorithm is Tarski’s decision procedure
for the first order theory over real closed fields. By exploiting the Kantorovich-Rubinstein
duality theorem we can restrict to the existential fragment for which more efficient decision
procedures exist.

1. Introduction

For systems that contain quantitative information, like, for example, probabilities, time
and costs, several behavioural pseudometrics (and closely related notions) have been intro-
duced (see, for example, [6, 8, 10, 14, 15, 18, 19, 20, 21, 28, 33]). In this paper, we focus on
probabilistic transition systems, which are a variant of Markov chains. Desharnais, Gupta,
Jagadeesan and Panangaden [18] introduced a family of behavioural pseudometrics for these
systems. These pseudometrics assign a distance, a real number in the interval [0, 1], to each
pair of states of the probabilistic transition system. The distance captures the behavioural
similarity of the states. The smaller the distance, the more alike the states behave. The
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distance is zero if and only if the states are probabilistic bisimilar, a behavioural equivalence
introduced by Larsen and Skou [26].

The pseudometrics of Desharnais et al. are defined via real-valued interpretations of
Larsen and Skou’s probabilistic modal logic. Formulae assume truth values in the interval
[0, 1]. Conjunction and disjunction are interpreted using the lattice structure of the unit
interval. The modality 〈a〉 is interpreted arithmetically by integration. The behavioural
distance between states s1 and s2 is then defined as the supremum over all formulae ϕ of
the difference in the truth value of ϕ in s1 and in s2.

1

The definition of the behavioural pseudometrics of Desharnais et al. is parametrized by
a discount factor δ, a real number in the interval (0, 1]. The smaller the discount factor,
the more (behavioural differences in) the future are discounted. In the case that δ equals
one, the future is not discounted. All differences in behaviour, whether in the near or far
future, contribute alike to the distance. For systems that (in principle) run forever, we may
be interested in all these differences and, hence, in the pseudometric that does not discount
the future.

In [16], Desharnais et al. presented an algorithm to approximate the behavioural dis-
tances for δ smaller than one. The first and third author [7] presented also an approximation
algorithm for δ smaller than one.

There is a fundamental difference between pseudometrics that discount the future and
the one that does not. This is, for example, reflected by the fact that all pseudometrics that
discount the future give rise to the same topology, whereas the pseudometric that does not
discount the future gives rise to a different topology (see, for example, [18, page 350]). As a
consequence, it may not be surprising that neither approximation algorithm mentioned in
the previous paragraph can be modified in an obvious way to handle the case that δ equals
one.

The main contribution of this paper is an algorithm that approximates behavioural
distances in case the discount factor δ equals one. Starting from the logical definition of
the pseudometric by Desharnais et al., we first give a characterisation of the pseudometric
as the greatest (post-)fixed point of a functional on a complete lattice [0, 1]S , where S is
the set of states of the probabilistic transition system in question. This functional is closely
related to the Kantorovich metric [24] on probability measures. Next, we dualize this
characterization exploiting the Kantorovich-Rubinstein duality theorem [25]. Subsequently,
we show, exploiting the dual characterization, that a pseudometric being a post-fixed point
can be expressed in the existential fragment of the first order theory over real closed fields.
Based on the fact that this first order theory is decidable, a result due to Tarski [31], we
show how to approximate the behavioural distances. Finally, we discuss an implementation
of our algorithm in Mathematica.

Exploiting the techniques put forward in this paper, we have also developed an algo-
rithm to approximate the behavioural pseudometric that is presented in [3]. The other
algorithm can be found in [30].

1More generally, de Alfaro [13] and McIver and Morgan [27] have given real-valued interpretations to the
modal mu-calculus following this pattern. Moreover, de Alfaro has shown that the behavioural pseudometrics
induced by mu-calculus formulae agree with those of [18].
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2. Systems and pseudometrics

Some basic notions that will play a role in the rest of this paper are presented below.
First we introduce the systems of interest: probabilistic transition systems.

Definition 2.1. A probabilistic transition system is a tuple 〈S, π〉 consisting of

• a finite set S of states and
• a function π : S × S → [0, 1] ∩ Q satisfying

∑

s′∈S π(s, s′) ∈ {0, 1}.

We write s→ if
∑

s′∈S π(s, s′) = 1 and s 6→ if
∑

s′∈S π(s, s′) = 0.

For states s and s′, π(s, s′) is the probability of making a transition to state s′ given
that the system is in state s. Each state s either has no outgoing transitions (s 6→) or
a transition is taken with probability 1 (s →). To simplify the presentation, we do not
consider the case that a state s may refuse to make a transition with some probability, that
is,

∑

s′∈S π(s, s′) ∈ (0, 1). However, all our results can easily be generalized to handle that
case as well (see [30]). We also do not consider transitions that are labelled with actions.
All our results can also easily be modified to handle labelled transitions (see [30]). In the
labelled case, the definition of probabilistic transition system is a mild generalisation of the
notion of Markov chain.

We restrict to rational transition probabilities in order that probabilistic transitions
systems be finitely representable. Here we assume that rational numbers are represented
as pairs of integers in binary. We believe that the algorithm presented in this paper could
be adapted to accommodate transition probabilities that are algebraic numbers, but we do
not pursue this question here.

In the rest of this paper, we will use the following probabilistic transition system as our
running example.

Example 2.2. We consider a probabilistic transition system with five states: s1, s2, s3, s4
and s5. The following table contains the transition probabilities and, hence, captures π.

s1 s2 s3 s4 s5
s1 0 2

5
3
5 0 0

s2
7
10 0 0 1

5
1
10

s3 0 0 1 0 0
s4 0 0 0 0 0
s5 0 0 0 0 1

The probabilistic transition system can be depicted as the following graph.
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We consider states of a probabilistic transition system behaviourally equivalent if they
are probabilistic bisimilar [26].

Definition 2.3. Let 〈S, π〉 be a probabilistic transition system. An equivalence relation
R on the set of states S is a probabilistic bisimulation if s1 R s2 implies

∑

s∈E π(s1, s) =
∑

s∈E π(s2, s) for all R-equivalence classes E. States s1 and s2 are probabilistic bisimilar,
denoted s1 ∼ s2, if s1 R s2 for some probabilistic bisimulation R.
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Note that probabilistic bisimilar states s1 and s2 have the same probability of transi-
tioning to an equivalence class E of probabilistic bisimilar states.

Example 2.4. Consider the probabilistic transition system of Example 2.2. The smallest
equivalence relation containing (s3, s5) is a probabilistic bisimulation. Hence, the states s3
and s5 are probabilistic bisimilar.

The behavioural pseudometrics that we study in this paper yield pseudometric spaces
on the state space of probabilistic transition systems.

Definition 2.5. A 1-bounded pseudometric space is a pair (X, dX ) consisting of a set X
and a distance function dX : X ×X → [0, 1] satisfying

(1) for all x ∈ X, dX(x, x) = 0,
(2) for all x, y ∈ X, dX(x, y) = dX(y, x), and
(3) for all x, y, z ∈ X, dX(x, z) ≤ dX(x, y) + dX(y, z).

Instead of (X, dX ) we often write X and we denote the distance function of a metric space
X by dX .

Example 2.6. Let X be a set. The discrete metric dX : X ×X → [0, 1] is defined by

dX(x1, x2) =

{

0 if x1 = x2

1 otherwise.

A (1-bounded) pseudometric space differs from a (1-bounded) metric space in that
different points may have distance zero in the former and not in the latter. Since differ-
ent states of a system may behave the same, such states will have distance zero in our
behavioural pseudometrics.

In the characterization of a behavioural pseudometric in Section 4 nonexpansive func-
tions play a key role.

Definition 2.7. Let X be a 1-bounded pseudometric space. A function f : X → [0, 1] is
nonexpansive if for all x1, x2 ∈ X,

|f(x1) − f(x2)| ≤ dX(x1, x2).

The set of nonexpansive functions from X to [0, 1] is denoted by X ------< [0, 1].

Example 2.8. If the set X is endowed with the discrete metric, then every function from
X to [0, 1] is nonexpansive.

3. Behavioural pseudometrics

Desharnais, Gupta, Jagadeesan and Panangaden [18] introduced a family of behavioural
pseudometrics for probabilistic transitions systems. Below, we will briefly review the key
ingredients of their definition.

To define their behavioural pseudometrics, Desharnais et al. defined a real-valued se-
mantics of a variant of Larsen and Skou’s probabilistic modal logic [26]. We describe this
variant, adapted to the case of unlabelled transition systems, in Definition 3.1.

Definition 3.1. The logic L is defined by

ϕ ::= true | ♦ϕ | ϕ ∧ ϕ | ¬ϕ | ϕ⊖ q

where q ∈ [0, 1] ∩ Q.
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The main difference between the above logic and the one of Larsen and Skou is that
we have ♦ϕ and ϕ⊖ q whereas they combine the operators ♦ and ⊖q into one. Since they
consider labelled transitions, they use the notation 〈a〉q for this combined operator.

Desharnais et al. provided a family of real-valued interpretations of the logic. That is,
given a probabilistic transition system and a discount factor δ, the interpretation gives a
quantitative measure of the validity of a formula ϕ of the logic in a state s of the system.
The interpretation JϕKδ(s) is a real number in the interval [0, 1]. It measures the validity of
the formula ϕ in the state s. This real number can roughly be thought of as the probability
that ϕ is true in s.

Definition 3.2. Given a probabilistic transition system 〈S, π〉 and a discount factor δ ∈
(0, 1], for each ϕ ∈ L, the function JϕKδ : S → [0, 1] is defined by

JtrueKδ(s) = 1
J♦ϕKδ(s) = δ

∑

s′∈S π(s, s′)JϕKδ(s
′)

Jϕ ∧ ψKδ(s) = min{JϕKδ(s), JψKδ(s)}
J¬ϕKδ(s) = 1 − JϕKδ(s)

Jϕ⊖ qKδ(s) = max{JϕKδ(s) − q, 0}

Example 3.3. Consider the probabilistic transition system of Example 2.2. For this system,
J♦trueKδ(s3) = δ and J♦trueKδ(s4) = 0.

Given a discount factor δ ∈ (0, 1], the behavioural pseudometric dδ assigns a distance, a
real number in the interval [0, 1], to every pair of states of a probabilistic transition system.
The distance is defined in terms of the logical formulae and their interpretation. Roughly
speaking, the distance is captured by the logical formula that distinguishes the states the
most.

Definition 3.4. Given a probabilistic transition system 〈S, π〉 and a discount factor δ ∈
(0, 1], the distance function dδ : S × S → [0, 1] is defined by

dδ(s1, s2) = sup
ϕ∈L

JϕKδ(s1) − JϕKδ(s2).

Example 3.5. Consider the probabilistic transition system of Example 2.2. For example,
the states s3 and s4 are δ apart. This distance is witnessed by the formula ♦true. The
distances2 are collected in the following table. Since a distance function is symmetric and
the distance from a state to itself is zero, we do not give all the entries.

s1 s2 s3 s4

s2
25δ2−2δ4

125−25δ−35δ2+7δ3

s3
2δ3

25−7δ2

5δ2

25−7δ2

s4 δ δ δ

s5
2δ3

25−7δ2

5δ2

25−7δ2 0 δ

Proposition 3.6 ([18, Theorem 5.2]). dδ is a 1-bounded pseudometric space.

Proof. First, observe that

JϕKδ(s1) − JϕKδ(s2) = J¬ϕKδ(s2) − J¬ϕKδ(s1).

2These distances were obtained by ad-hoc methods including Proposition B.5 and checked for numerous
different discount factors using the algorithm described in [7].
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As a consequence, we can replace JϕKδ(s1)− JϕKδ(s2) in the definition of dδ with |JϕKδ(s1)−
JϕKδ(s2)|. Checking now that dδ satisfies the three conditions of Definition 2.5 is straight-
forward.

States having distance zero defines an equivalence relation. That is, for a pseudometric
d on states, the relation ≡d on states defined by

s1 ≡d s2 if d(s1, s2) = 0

is an equivalence relation. We denote the equivalence class that contains the state s by [s]d,
that is,

[s]d = { s′ ∈ S | d(s, s′) = 0 }.

Each behavioural pseudometric dδ is a quantitative analogue of probabilistic bisimilar-
ity. This behavioural equivalence is exactly captured by those states that have distance
zero.

Proposition 3.7 ([18, Theorem 4.10]). Given a probabilistic transition system 〈S, π〉 and

a discount factor δ ∈ (0, 1],
≡dδ

= ∼.

Proof. We split the proof in two parts.

• Assume that s1 ∼ s2. It suffices to show that JϕKδ(s1) = JϕKδ(s2) for all ϕ ∈ L. We can
prove this by structural induction on ϕ. We focus here on the only nontrivial case: ♦ϕ.
Let {Ei | i ∈ I } be the ∼-equivalence classes. Assume that ei is an element of Ei. By
induction, the function JϕKδ restricted to Ei is constant. Hence,

J♦ϕKδ(s1) = δ
∑

s∈S

π(s1, s)JϕKδ(s)

= δ
∑

i∈I

∑

s∈Ei

π(s1, s)JϕKδ(s)

= δ
∑

i∈I

JϕKδ(ei)
∑

s∈Ei

π(s1, s)

= δ
∑

i∈I

JϕKδ(ei)
∑

s∈Ei

π(s2, s) [s1 ∼ s2]

= J♦ϕKδ(s2).

• We show that the relation ≡dδ
is a probabilistic bisimulation. Obviously, ≡dδ

is an
equivalence relation. Assume that s1 ≡dδ

s2. That is, dδ(s1, s2) = 0. Let E be an ≡dδ
-

equivalence class. Without loss of any generality, we may assume that E is of the form
[s]dδ

. From the definition of dδ we can infer that all states in [s]dδ
assign the same value

to each formula. For each state s′ 6∈ [s]dδ
there exists a formula ϕs′ such that Jϕs′Kδ(s) 6=

Jϕs′Kδ(s
′). Without loss of any generality, we may assume that Jϕs′Kδ(s) > Jϕs′Kδ(s

′).
Hence, there exists a rational qs′ in [0, 1] such that Jϕs′⊖qs′Kδ(s

′) = 0 and Jϕs′⊖qs′Kδ(s)>0.
Now consider the formula

ϕ =
∧

s′ 6∈[s]dδ

ϕs′ ⊖ qs′ .
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Then JϕKδ(s
′′)> 0 iff s′′ ∈ [s]dδ

. As a consequence,

δJϕKδ(s)
∑

s′∈[s]dδ

π(s1, s
′)

= δ
∑

s′∈[s]dδ

π(s1, s
′)JϕKδ(s

′)

= δ
∑

s′′∈S

π(s1, s
′′)JϕKδ(s

′′) [JϕKδ(s
′′) = 0 for all s′′ 6∈ [s]dδ

]

= J♦ϕKδ(s1)

= J♦ϕKδ(s2) [dδ(s1, s2) = 0]

= δJϕKδ(s)
∑

s′∈[s]dδ

π(s2, s
′).

Therefore,
∑

s′∈[s]dδ
π(s1, s

′) =
∑

s′∈[s]dδ
π(s2, s

′) and, hence, ≡dδ
is a probabilistic bisim-

ulation.

In [16], Desharnais et al. present a decision procedure for the behavioural pseudometric
dδ when δ is smaller than one. Let us briefly sketch their algorithm. They define the depth
of a logical formula as follows.

depth(true) = 0
depth(♦ϕ) = depth(ϕ) + 1

depth(ϕ ∧ ψ) = max{depth(ϕ),depth(ψ)}
depth(¬ϕ) = depth(ϕ)

depth(ϕ⊖ q) = depth(ϕ)

One can easily verify that JϕKδ(s1)−JϕKδ(s2) ≤ δdepth(ϕ) for each ϕ ∈ L. This suggests that
one can compute dδ to any desired degree of accuracy by restricting attention to formulae
ϕ of a fixed modal depth. Clearly, there exist infinitely many formulae of each fixed modal
depth. Nevertheless, Desharnais et al. show how to construct a finite subset Fn of the
logical formulae of at most depth n such that

dδ(s1, s2) − sup
ϕ∈Fn

JϕKδ(s1) − JϕKδ(s2) ≤ δn.

In this way, dδ(s1, s2) can be approximated up to arbitrary accuracy provided δ is smaller
than one.

4. A fixed point characterization and its dual

For the rest of this paper, we focus on the behavioural pseudometric that does not
discount the future. That is, we concentrate on the pseudometric d1. Below, we present an
alternative characterization of this pseudometric. In particular, we characterize d1 as the
greatest (post-)fixed point of a function ∆ from a complete lattice to itself. This character-
ization can be viewed as a quantitative analogue of the greatest fixed point characterization
of bisimilarity [29].

We also dualize the definition of ∆ exploiting the Kantorovich-Rubinstein duality the-
orem [25]. As we will see in Section 5, this dual characterization will allow us to define ∆
as the solution to a minimization problem rather than a maximization problem, as above.
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In turn this will allow us to capture the fact that a pseudometric is a post-fixed point of ∆
in the existential fragment of the first order theory over real closed fields.

For the rest of this paper, we fix a probabilistic transition system 〈S, π〉. We endow the
set of pseudometrics on S with the following order.

Definition 4.1. The relation ⊑ on 1-bounded pseudometrics on S is defined by

d1 ⊑ d2 if d1(s1, s2) ≥ d2(s1, s2) for all s1, s2 ∈ S.

Note the reverse direction of ⊑ and ≥ in the above definition. We decided to make
this reversal so that d1 is a greatest fixed point, in analogy with the characterization of
bisimilarity, rather than a least fixed point. This choice has no impact on any results in
this paper.

Proposition 4.2 ([17, Lemma 3.2]). The set of 1-bounded pseudometrics on S endowed

with the order ⊑ forms a complete lattice.

Proof. Obviously, ⊑ is a partial order. The top element is the 1-bounded pseudometric ⊤
defined by

⊤(s1, s2) = 0.

The bottom element is the 1-bounded pseudometric ⊥ defined by

⊥ (s1, s2) =

{

0 if s1 = s2
1 otherwise.

Let D be a nonempty set of 1-bounded pseudometrics on S. The meet of D is the 1-bounded
pseudometric

d
D defined by

(
l
D)(s1, s2) = sup

d∈D

d(s1, s2).

The join ofD can be expressed in terms of the meet ofD (see, for example, [12, Lemma 2.15]).

Whereas meets of pseudometrics are computed pointwise using the supremum on [0,1],
joins of pseudometrics are not.

Next, we introduce a function from this complete lattice to itself of which the be-
havioural pseudometric d1 is the greatest fixed point.

Definition 4.3. Let d be a 1-bounded pseudometric on S. The distance function ∆(d) :
S × S → [0, 1] is defined by

∆(d)(s1, s2) = max

{

∑

s∈S

f(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

f ∈ (S, d) ------< [0, 1]

}

if s1 → and s2 →, and ∆(d)(s1, s2) =

{

0 if s1 6→ and s2 6→
1 otherwise.

Note that we can write max above rather than sup since (S, d) ------< [0, 1], being a closed
subset of the product space [0, 1]S , is compact.

The functional ∆ is closely related to the Kantorovich metric [24] on probability mea-
sures. In the definition of that metric, nonexpansive functions play a key role.3

3The Kantorovich metric is the smallest distance function on probability measures for which integration
of nonexpansive functions is nonexpansive.



APPROXIMATING A BEHAVIOURAL PSEUDOMETRIC 9

Proposition 4.4. ∆(d) is a 1-bounded pseudometric on S.

Proof. Note that f ∈ (S, d) ------< [0, 1] implies 1 − f ∈ (S, d) ------< [0, 1]. Furthermore, if s1 →
and s2 → then

∑

s∈S

(1 − f)(s)(π(s1, s) − π(s2, s))

=
∑

s∈S

π(s1, s) −
∑

s∈S

π(s2, s) +
∑

s∈S

f(s)(π(s2, s) − π(s1, s))

=
∑

s∈S

f(s)(π(s2, s) − π(s1, s))

=
∑

s∈S

f(s)π(s2, s) −
∑

s∈S

f(s)π(s1, s).

As a consequence, if s1 → and s2 → then

∆(d)(s1, s2) = max

{∣

∣

∣

∣

∣

∑

s∈S

f(s)π(s1, s) −
∑

s∈S

f(s)π(s2, s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ∈ (S, d) ------< [0, 1]

}

.

Now that we have this alternative representation of ∆(d), checking that it satisfies the three
conditions of Definition 2.5 is straightforward.

Proposition 4.5 ([4, Proposition 38]). ∆ is order-preserving.

Proof. Let d1 and d2 be 1-bounded pseudometrics on S with d1 ⊑ d2. Note that any function
S → [0, 1] that is nonexpansive with respect to d2 is also nonexpansive with respect to d1.
Therefore ∆(d2)(s1, s2) ≤ ∆(d1)(s1, s2) for all s1, s2 ∈ S since the latter involves taking the
max over a larger set.

Since ∆(d) is a 1-bounded pseudometric on S and ∆ is order-preserving, we can conclude
from Tarski’s fixed point theorem [32, Theorem 1] that ∆ has a greatest fixed point. We
denote the greatest fixed point of ∆ by gfp(∆). This greatest fixed point of ∆ is also the
greatest post-fixed point of ∆ (see, for example, [12, Theorem 4.11]4).

Theorem 4.6. d1 = gfp(∆).

Proof. We first prove that d1 is a post-fixed point of ∆. That is, we show that ∆(d1)(s1, s2) ≤
d1(s1, s2). To prove this, we distinguish the following three cases.

• If s1 6→ and s2 6→ then the property is vacuously true.
• If s1 6→ and s2 →, or s1 → and s2 6→, then the formula ♦true witnesses that the states
s1 and s2 have distance one.

• Assume that s1 → and s2 →. According to [6, Proposition 39], the set { JϕK1 | ϕ ∈ L}
is dense in (S, d1) ------< [0, 1], that is, each f ∈ (S, d1) ------< [0, 1] can be approximated up to

4d is a post-fixed point of ∆ if d ⊑ ∆(d). In [12, page 94], such a d is called a pre-fixpoint.
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arbitrary accuracy by some JϕK1. As a consequence,

max

{

∑

s∈S

f(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

f ∈ (S, d1) ------< [0, 1]

}

= max

{

∑

s∈S

JϕK1(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

ϕ ∈ L

}

= max

{

∑

s∈S

π(s1, s)JϕK1(s) −
∑

s∈S

π(s2, s)JϕK1(s)

∣

∣

∣

∣

ϕ ∈ L

}

= max

{

J♦ϕK1(s1) − J♦ϕK1(s2)

∣

∣

∣

∣

ϕ ∈ L

}

≤ d1(s1, s2).

Next we prove that d1 is the greatest post-fixed point of ∆. Assume that d is a post-
fixed point of ∆. We have to show that d ⊑ d1. That is, d1(s1, s2) ≤ d(s1, s2). We restrict
our attention to the case that s1 → and s2 →. It suffices to show that

JϕK1(s1) − JϕK1(s2) ≤ d(s1, s2)

for all ϕ ∈ L. This can be proved by structural induction on ϕ. We consider only the
nontrivial case: ♦ϕ.

J♦ϕK1(s1) − J♦ϕK1(s2)

=
∑

s∈S

π(s1, s)JϕK1(s) −
∑

s∈S

π(s2, s)JϕK1(s)

=
∑

s∈S

JϕK1(s)(π(s1, s) − π(s2, s))

≤ max

{

∑

s∈S

f(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

f ∈ (S, d) ------< [0, 1]

}

[by induction, JϕK1 ∈ (S, d) ------< [0, 1]]

= ∆(d)(s1, s2)

≤ d(s1, s2) [d is a post-fixed point of ∆]

A similar result can be obtained by combining Theorem 40 and 44 of [4].
Let us recall (a minor variation of) the Kantorovich-Rubinstein duality theorem. Let X

be a 1-bounded compact pseudometric space. Let µ1 and µ2 be Borel probability measures
on X. We denote the set of Borel probability measures on the product space with marginals
µ1 and µ2, that is, the Borel probability measures µ on X2 such that for all Borel subsets
B of X,

µ(B ×X) = µ1(B) and µ(X ×B) = µ2(B),

by µ1 ⊗ µ2. The Kantorovich-Rubinstein duality theorem tells us

max

{∫

X

fdµ1 −

∫

X

fdµ2

∣

∣

∣

∣

f ∈ X ------< [0, 1]

}

= min

{∫

X2

dXdµ

∣

∣

∣

∣

µ ∈ µ1 ⊗ µ2

}

.
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The following proposition, which is a consequence of the Kantorovich-Rubinstein duality
theorem, defines ∆(d) as a minimum as opposed to the maximum in Definition 4.3.

Proposition 4.7 ([7, Corollary 19]). Let d be a 1-bounded pseudometric on S. Let s1,

s2 ∈ S such that s1 → and s2 →. Then

∆(d)(s1, s2) = min







∑

(si,sj)∈S2

d(si, sj)µ(si, sj)

∣

∣

∣

∣

µ ∈ π(s1, ·) ⊗ π(s2, ·)







where µ ∈ π(s1, ·) ⊗ π(s2, ·) if

∀sj ∈ S
∑

si∈S

µ(si, sj) = π(s1, sj) ∧ ∀si ∈ S
∑

sj∈S

µ(si, sj) = π(s2, si).

Proof. Since the set S is finite, the space (S, d) is compact. The probability distributions
π(s1, ·) and π(s2, ·) define Borel probability measures on (S, d). Applying the Kantorovich-
Rubinstein gives us the desired result.

5. The algorithm

Before we present our algorithm, we first show that the fact that a pseudometric is
a post-fixed point of ∆ can be expressed in (the existential fragment of) the first order
theory over real closed fields. This will allow us to exploit Tarski’s decision procedure to
approximate the behavioural pseudometric.

For the rest of this paper, we assume that the probabilistic transition system 〈S, π〉 has
N states s1, s2, . . . , sN . Instead of π(si, sj) we will write πij. We represent a 1-bounded
pseudometric on the set S of states of the probabilistic transition system, as (the values of)
a collection of real valued variables dij .

The fact that d is a 1-bounded pseudometric can now be captured as follows.

Definition 5.1. The predicate pseudo(d) is defined by

pseudo(d) ≡
∧

1≤i,j≤N

dij ≥ 0 ∧ dij ≤ 1 ∧

∧

1≤i≤N

dii = 0 ∧
∧

1≤i,j≤N

dij = dji ∧
∧

1≤h,i,j≤N

dhj ≤ dhi + dij

Furthermore, the fact that d is a post-fixed point of ∆ can be captured as follows.

Definition 5.2. The predicate post-fixed(d) is defined by

post-fixed(d)

≡
∧

1≤i0,j0≤N

post-fixed1(d, i0, j0) ∨ post-fixed2(d, i0, j0) ∨ post-fixed3(d, i0, j0)
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where

post-fixed1(d, i0, j0) ≡
∑

1≤i≤N

πi0i > 0 ∧
∑

1≤j≤N

πj0j > 0 ∧

∃(µij)1≤i,j≤N

∧

1≤i,j≤N

µij ≥ 0 ∧ µij ≤ 1

∧

1≤j≤N

∑

1≤i≤N

µij = πi0j ∧

∧

1≤i≤N

∑

1≤j≤N

µij = πj0i ∧

∑

1≤i,j≤N

dijµij ≤ di0j0

post-fixed2(d, i0, j0) ≡
∑

1≤i≤N

πi0i = 0 ∧
∑

1≤j≤N

πj0j = 0 ∧ 0 ≤ di0j0

post-fixed3(d, i0, j0) ≡









∑

1≤i≤N

πi0i > 0 ∧
∑

1≤j≤N

πj0j = 0



∨





∑

1≤i≤N

πi0i = 0 ∧
∑

1≤j≤N

πj0j > 0







 ∧

1 ≤ di0j0

Now we are ready to present our algorithm. Consider the states si0 and sj0. We restrict
our attention to the case that si0 → and sj0 →. In the other cases the computation of the
distance is trivial.

In our algorithm, we use the algorithm tarski that takes as input a sentence of the
first order theory of real closed fields and decides the truth or falsity of the given sentence.
The fact that there exists such an algorithm was first proved by Tarski [31].

Let ǫ be the desired accuracy. That is, we want to find an interval [ℓ0, u0] ⊆ [0, 1] such
that u0 − ℓ0 ≤ ǫ and d1(si0 , sj0) ∈ [ℓ0, u0]. The algorithm approximate takes as input an
interval [ℓ, u] ⊆ [0, 1] such that d1(si0 , sj0) ∈ [ℓ, u] and returns the desired result. As a
consequence, approximate(0, 1) returns an approximation of d1(si0 , sj0) with accuracy ǫ.

approximate(ℓ, u):

if u− ℓ ≤ ǫ

return [ℓ, u]

else

m = ℓ+u
2

if tarski(∃dpseudo(d) ∧ post-fixed(d) ∧ di0j0 ≤ m)

return approximate(ℓ, m)

else

return approximate(m, u)
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Note that the argument of tarski is a sentence that is part of the existential fragment
of the first order theory over real closed fields. For this fragment there are more efficient
decision procedures than for the general theory (see, for example, [2]).

Let us sketch a correctness proof of our algorithm. Assume that d1(si0 , sj0) ∈ [ℓ, u]. We
distinguish the following three cases.

• If u− ℓ ≤ ǫ, then the algorithm obviously returns the desired result.
• Assume that u−ℓ>ǫ and suppose that tarski returns true. Then there exists a 1-bounded

pseudometric d that is a post-fixed point of ∆ and d(si0 , sj0) ≤ m. Since d1 is the greatest
post-fixed point of ∆, we have that d ⊑ d1. Hence, d1(si0, sj0) ≤ d(si0 , sj0) ≤ m. By
assumption d1(si0, sj0) ∈ [ℓ, u], therefore d1(si0 , sj0) ∈ [ℓ,m].

• Assume that u − ℓ > ǫ and suppose that tarski returns false. Then d(si0 , sj0) > m for
every 1-bounded pseudometric d that is a post-fixed point of ∆. Since d1 is a post-fixed
point of ∆, we have that d1(si0, sj0) > m. By assumption d1(si0, sj0) ∈ [ℓ, u], therefore,
d1(si0, sj0) ∈ [m,u].

Obviously, the algorithm terminates.

6. Conclusion

This paper combines a number of ingredients, known already for a long time, including
the Kantorovich-Rubinstein duality theorem of the fifties, Tarski’s fixed point theorem of
the forties and Tarski’s decision procedure for the first order theory of real closed fields of
the thirties. We show that the behavioural pseudometric d1, which does not discount the
future, can be approximated up to an arbitrary accuracy. While the combination of the
above results into a decision procedure for the pseudometric is not technically difficult, we
do solve a problem that has been open since 1999. Most of the results in Section 3 and 4 are
(variations on) known results. As far as we know, the results in Section 5 and Appendix B
are new. The techniques exploited in this paper have also been used to approximate other
behavioural pseudometrics that do not discount the future such as, for example, the one
presented in [3]. Furthermore, our algorithm can easily be adjusted to the discounted case.

Since the satisfiability problem for the existential fragment of the first order theory of
real closed fields is in PSPACE, it is not surprising that our algorithm can only handle
small examples as we have shown in Appendix B. As a consequence, the quest for practical
algorithms to approximate d1 is still open. Since the closure ordinal of ∆ is ω, as proved in
Appendix A, an iterative algorithm might be feasible.

As future work, we plan to apply our techniques to obtain approximation algorithms
for other behavioural pseudometrics such as, for example, the one for systems that combine
nondeterminism and probability presented in [15] and the pseudometric for weak probabilis-
tic bisimilarity in [17]. In the latter case the pseudometric can be characterized as the fixed
point of a functional based on the Kantorovich and Hausdorff metrics. These can easily be
encoded in the first-order theory of the reals. However, the need to consider the transitive
closure of the silent transition relation suggests that some non-trivial extension of the work
presented here is called for.
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Appendix A. Closure ordinal of ∆

The greatest fixed point of an order-preserving function on a complete lattice can be
obtained by iteration (see, for example, [12, Exercise 4.13]).

Definition A.1. For each ordinal α, the 1-bounded pseudometric dα on S is defined by

d0 = ⊤
dα+1 = ∆(dα)

dβ =
l

α∈β

dα if β is a limit ordinal

As we will see in the next example, for some systems we need at least ω iterations to
reach the greatest fixed point of ∆.

Example A.2. Consider the system of Example 2.2. For all n,

dn+1(s1, s2) = 1
4 + 5

8dn(s1, s3)
dn+1(s1, s3) = 2

5dn(s2, s3)
dn+1(s2, s3) = 1

5 + 7
10dn(s1, s3)
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Hence, for this system we need ω iterations.

In the rest of this appendix, we prove that we need at most ω iterations for any system.
This tells us that the closure ordinal of ∆ is ω, that is, ∆(dω) = dω. As a consequence,
dω is the greatest fixed point of ∆ (see, for example, [12, Example 4.13]). As we will see
below, the fact that dω is a fixed point of ∆ follows from the facts that ∆ is order-preserving
(Proposition 4.5) and Lipschitz (Proposition A.6).

In [17, page 418], Desharnais et al. state that a functional similar to ∆ has closure
ordinal ω.

Recall that for a pseudometric d, the equivalence relation ≡d relates states that have
distance zero. From each equivalence class [s]d we pick a designated state which we denote
by 〈s〉d. Hence, 〈s〉d ∈ [s]d and also d(s, 〈s〉d) = 0.

Proposition A.3. For all s1, s2 ∈ S,

d(〈s1〉d, 〈s2〉d) = d(s1, s2).

Proof.

d(〈s1〉d, 〈s2〉d)

≤ d(〈s1〉d, s1) + d(s1, s2) + d(s2, 〈s2〉d)

= d(s1, s2)

≤ d(s1, 〈s1〉d) + d(〈s1〉d, 〈s2〉d) + d(〈s2〉d, s2)

= d(〈s1〉d, 〈s2〉d).

Let d1 ⊑ d2. The ratio ρ(d1, d2) of d1 and d2 is defined by

ρ(d1, d2) = min

{

d2(s1, s2)

d1(s1, s2)

∣

∣

∣

∣

d2(s1, s2)> 0

}

Note that we never divide by zero since d1 ⊑ d2 and, hence, d1(s1, s2) ≥ d2(s1, s2).
Below, we will use the convention that the minimum of the empty set is one and the

maximum of the empty set is zero.
Given pseudometrics d1 and d2 such that d1 ⊑ d2 and given an f ∈ (S, d1) ------< [0, 1], we

next show that there exists a gf ∈ (S, d2) → [0, 1] that is nonexpansive.

Proposition A.4. Let d1 ⊑ d2 and f ∈ (S, d1) ------< [0, 1]. Let gf : S → [0, 1] be defined by

gf (s) = ρ(d1, d2)f(〈s〉d2
).

Then gf ∈ (S, d2) ------< [0, 1].

Proof. Let s1, s2 ∈ S. We have to show that

|gf (s1) − gf (s2)| ≤ d2(s1, s2).

We distinguish two cases. If d2(s1, s2) = 0 then 〈s1〉d2
= 〈s2〉d2

and, hence, f(〈s1〉d2
) =

f(〈s2〉d2
). Therefore gf (s1) = gf (s2) and, hence, the property is vacuously true. Let

d2(s1, s2)> 0. According to Proposition A.3, d2(〈s1〉d2
, 〈s2〉d2

)> 0. Also d1(s1, s2)> 0 since
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d1 ⊑ d2, and

|gf (s1) − gf (s2)|

= |ρ(d1, d2)f(〈s1〉d2
) − ρ(d1, d2)f(〈s2〉d2

)|

= ρ(d1, d2)|f(〈s1〉d2
) − f(〈s2〉d2

)|

≤ ρ(d1, d2)d1(〈s1〉d2
, 〈s2〉d2

) [f ∈ (S, d1) ------< [0, 1]]

≤
d2(〈s1〉d2

, 〈s2〉d2
)

d1(〈s1〉d2
, 〈s2〉d2

)
d1(〈s1〉d2

, 〈s2〉d2
)

= d2(〈s1〉d2
, 〈s2〉d2

)

= d2(s1, s2) [Proposition A.3]

Next, we bound f − gf from above.

Proposition A.5. Let d1 ⊑ d2 and f ∈ (S, d1) ------< [0, 1]. Let µ = min{ d1(s1, s2) |
d1(s1, s2)> 0 }. Then

f(s) − gf (s) ≤
µ+ 1

µ
max

s′
1
,s′

2
∈S
d1(s

′
1, s

′
2) − d2(s

′
1, s

′
2)

for all s ∈ S.

Proof. Let s ∈ S. Then

f(s) − gf (s)

= f(s) − ρ(d1, d2)f(〈s〉d2
)

= (f(s) − f(〈s〉d2
)) + (f(〈s〉d2

) − ρ(d1, d2)f(〈s〉d2
)).

Furthermore,

f(s)− f(〈s〉d2
)

≤ d1(s, 〈s〉d2
) [f ∈ (S, d1) ------< [0, 1]]

= d1(s, 〈s〉d2
) − d2(s, 〈s〉d2

) [d2(s, 〈s〉d2
) = 0]

≤ max
s′
1
,s′

2
∈S
d1(s

′
1, s

′
2) − d2(s

′
1, s

′
2)

and

f(〈s〉d2
) − ρ(d1, d2)f(〈s〉d2

)

≤ 1 − ρ(d1, d2)

= 1 − min

{

d2(s1, s2)

d1(s1, s2)

∣

∣

∣

∣

d2(s1, s2)> 0

}

= max

{

d1(s1, s2) − d2(s1, s2)

d1(s1, s2)

∣

∣

∣

∣

d2(s1, s2)> 0

}

≤
1

µ
max { d1(s1, s2) − d2(s1, s2) | d2(s1, s2)> 0 }

≤
1

µ
max

s′
1
,s′

2
∈S
d1(s

′
1, s

′
2) − d2(s

′
1, s

′
2).
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Now we can prove that ∆ is Lipschitz, that is,

max
s1,s2∈S

∆(d1)(s1, s2) − ∆(d2)(s1, s2) ≤ λ max
s′
1
,s′

2
∈S
d1(s

′
1, s

′
2) − d2(s

′
1, s

′
2).

for some constant λ.

Proposition A.6. Let d1 ⊑ d2. For all s1, s2 ∈ S,

∆(d1)(s1, s2) − ∆(d2)(s1, s2) ≤ |S|
µ+ 1

µ
max

s′
1
,s′

2
∈S
d1(s

′
1, s

′
2) − d2(s

′
1, s

′
2).

Proof. Let s1, s2 ∈ S. Then

∆(d1)(s1, s2) − ∆(d2)(s1, s2)

= max

{

∑

s∈S

f(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

f ∈ (S, d1) ------< [0, 1]

}

−

max

{

∑

s∈S

g(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

g ∈ (S, d2) ------< [0, 1]

}

= max

{

min

{

∑

s∈S

f(s)(π(s1, s) − π(s2, s)) −
∑

s∈S

g(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

g ∈ (S, d2) ------< [0, 1]

}

∣

∣

∣

∣

f ∈ (S, d1) ------< [0, 1]

}

= max

{

min

{

∑

s∈S

(f(s) − g(s))(π(s1, s) − π(s2, s))

∣

∣

∣

∣

g ∈ (S, d2) ------< [0, 1]

}

∣

∣

∣

∣

f ∈ (S, d1) ------< [0, 1]

}

≤ max

{

∑

s∈S

(f(s) − gf (s))(π(s1, s) − π(s2, s))

∣

∣

∣

∣

f ∈ (S, d1) ------< [0, 1]

}

[Proposition A.4]

≤ max

{

∑

s∈S

f(s) − gf (s)

∣

∣

∣

∣

f ∈ (S, d1) ------< [0, 1]

}

≤ |S|
µ+ 1

µ
max

s′
1
,s′

2
∈S
d1(s

′
1, s

′
2) − d2(s

′
1, s

′
2) [Proposition A.5]

Finally, we prove that the closure ordinal of ∆ is ω.

Proposition A.7. ∆(dω) = dω.

Proof. First, we show that ∆(dω) ⊑ dω. By definition, dω =
d

n∈ω d
n ⊑ dn for all n ∈ ω.

Since ∆ is order-preserving, ∆(dω) ⊑ ∆(dn) = dn+1 for all n ∈ ω. Obviously, ∆(dω) ⊑ d0.
Therefore, ∆(dω) is a lower bound of { dn | n ∈ ω }. Since dω is the greatest lower bound
by definition, ∆(dω) ⊑ dω.
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We have left to show that ∆(dω) ⊒ dω, that is, ∆(dω)(s1, s2) ≤ dω(s1, s2) for all s1,
s2 ∈ S. Let s1, s2 ∈ S. Let ǫ > 0. It suffices to show that there exists an n such that
∆(dω)(s1, s2) − dn+1(s1, s2) ≤ ǫ. Let µ = min{ dω(s1, s2) | d

ω(s1, s2) > 0 }. Since the set S
is finite, for every δ > 0 there exists an n such that for all s′1, s

′
2 ∈ S,

dω(s′1, s
′
2) − dn(s′1, s

′
2) ≤ δ.

Here we pick δ to be µǫ
(µ+1)|S| . From Proposition A.6 we can conclude that

∆(dω)(s1, s2) − dn+1(s1, s2)

= ∆(dω)(s1, s2) − ∆(dn)(s1, s2)

≤ ǫ.

Appendix B. An implementation in Mathematica

A decision procedure for the first order theory of real closed fields based on quantifier
elimination was first given by Tarski [31]. A number of algorithms have been developed
thereafter for the theory (see, for example, [2, 11, 23]). Collin’s algorithm is implemented
in the tool Mathematica and can be used for solving our formulae. However, it works for
very small examples and therefore it is essential to simplify the formula and reduce its size
to make it solvable. To simplify the formula, we first compute some of the distances using
the following results.

Proposition B.1.

• If s1 6→ and s2 6→ then d1(s1, s2) = 0.
• If s1 6→ and s2 →, or s1 → and s2 6→ then d1(s1, s2) = 1.

Proof. We only consider the first case. The second one can be proved similarly. If s1 6→
and s2 6→ then δ(s1, s2) = ∆(δ)(s1, s2) = 0.

Example B.2. Consider the probabilistic transition system of Example 2.2. State s4 has
distance one to all other states.

Next, we present a simple characterization of the distance between a state that never
terminates (that is, the probability of reaching a state with no outgoing transitions is zero)
and another state.

Given a state s and n ∈ ω + 1, τn(s) is the probability of terminating in less than n

transitions when started in s.

Definition B.3. For each n ∈ ω + 1, the function τn : S → [0, 1] is defined by

τ0(s) = 0

τn+1(s) =

{

1 if s 6→
∑

s′∈S π(s, s′)τn(s′) otherwise
τω(s) = supn∈ω τn(s)

Example B.4. Consider the probabilistic transition system of Example 2.2. Then we have
that τω(s1) = 1

9 , τω(s2) = 5
18 , τω(s3) = 0, τω(s4) = 1 and τω(s5) = 0.
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Obviously, for a state s without outgoing transitions, we have that τω(s) = 1. For a
state s that cannot reach any state without outgoing transitions, we have that τω(s) = 0.
For the remaining states, we can compute the probability of termination using standard
techniques as described in, for example, [22, Section 11.2].

Proposition B.5. If τω(s2) = 0 then d1(s1, s2) = τω(s1).

Proof. Assume that τω(s2) = 0. We prove that for all n ∈ ω + 1,

dn(s1, s2) = τn(s1)

by induction on n.

• Obviously, d0(s1, s2) = 0 = τ0(s1).
• We have to prove that dn+1(s1, s2) = τn+1(s1). We distinguish the following two cases.
− If s1 6→ then dn+1(s1, s2) = 1 = τn+1(s1).
− Now let us assume that s1 →. First we show that τn as a function from (S, dn) to [0, 1]

is nonexpansive. For all s, s′,

|τn(s) − τn(s′)| = |dn(s, s2) − dn(s′, s2)| [induction]

≤ dn(s, s′) [triangle inequality]

Since

dn+1(s1, s2)

= ∆(dn)(s1, s2)

≥
∑

s∈S

τn(s)(π(s1, s) − π(s2, s)) [τn is nonexpansive]

=
∑

s∈S

τn(s)π(s1, s) −
∑

s∈S

τn(s)π(s2, s)

= τn+1(s1) − τn+1(s2)

= τn+1(s1) [τω(s2) = 0 and, hence, τn+1(s2) = 0]

Let f ∈ (S, dn) ------< [0, 1]. For all s,

f(s) − f(s2) ≤ |f(s) − f(s2)| ≤ dn(s, s2) = τn(s).

As a consequence,
∑

s∈S

f(s)(π(s1, s) − π(s2, s))

=
∑

s∈S

f(s)π(s1, s) −
∑

s∈S

f(s)π(s2, s)

=
∑

s∈S

(f(s) − f(s2))π(s1, s) −
∑

s∈S

(f(s) − f(s2))π(s2, s)

[
∑

s∈S
f(s2)π(si, s) = f(s2)]

=
∑

s∈S

(f(s) − f(s2))(π(s1, s) − π(s2, s))

≤
∑

s∈S

τn(s)(π(s1, s) − π(s2, s))

= τn+1(s1).
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Since f was chosen arbitrarily, we can conclude that

dn+1(s1, s2) ≤ τn+1(s1).

− Finally,

dω(s1, s2) = sup
n
dn(s1, s2)

= sup
n
τn(s1) [by induction]

= τω(s1).

From Theorem 4.6 and Proposition A.7 we can conclude that d1(s1, s2) = dω(s1, s2) =
τω(s1).

Example B.6. Consider the probabilistic transition system of Example 2.2. From Proposi-
tion B.5 we can conclude that d1(s1, s3) = 1

9 , d1(s2, s3) = 5
18 , d1(s4, s3) = 1 and d1(s5, s3) =

0.

Given a probabilistic bisimulation R, we can quotient the probabilistic transition system
〈S, π〉 as follows.

Definition B.7. Let R be a probabilistic bisimulation. The probabilistic transition system
〈SR, πR〉 consists of

• the set SR = { [s] | s ∈ S } of R-equivalence classes and
• the function πR : SR × SR → [0, 1] defined by

πR([s], [s′]) =
∑

s′′Rs′

π(s, s′′).

Note that the function πR is well-defined since R is a probabilistic bisimulation. We will
apply the above quotient construction for probabilistic bisimilarity (which can be computed
in polynomial time [1]).

Example B.8. Consider the probabilistic transition system of Example 2.2. The small-
est equivalence relation containing {〈s3, s5〉} is a probabilistic bisimulation. The resulting
quotient can be depicted as

[s1]

2

5

++

3

5

��

[s2]
7

10

kk

1

5

��
1

10

xxppppppppppppp

[s3]1
22

[s4]

By quotienting, the number of states that need to be considered and, hence, the num-
ber of variables in the formula may be reduced. However, we still have to check that
the quotiented system gives rise to the same distances. Next we relate the behavioural
pseudometric d1 of the original system 〈S, π〉 with the behavioural pseudometric dR of the
quotiented system 〈SR, πR〉.

Proposition B.9. For all s1, s2 ∈ S, dR([s1], [s2]) = d1(s1, s2).

Proof. First all, note that
∑

s′∈S

π(s, s′) =
∑

[s′]∈SR

∑

s′′Rs′

π(s, s′′) =
∑

[s′]∈SR

πR([s], [s′]).
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As a consequence, we have left to consider the case s1 → and s2 →. We prove that for all
n ∈ ω + 1, dn

R([s1], [s2]) = dn
1 (s1, s2) by induction on n. We distinguish the following three

cases.

• If n = 0 then the property is vacuously true.
• Assume that dn

R([s′1], [s
′
2]) = dn

1 (s′1, s
′
2) for all s′1, s

′
2 ∈ S. Let s1, s2 ∈ S. We have to prove

that dn+1
R ([s1], [s2]) = dn+1

1 (s1, s2). In the proof of this case, we make use of the following
two observations. For each f ∈ (SR, d

n
R) ------< [0, 1], there exists a g ∈ (S, dn

1 ) ------< [0, 1] such
that g(s) = f([s]) for all s ∈ S, since

|g(s) − g(s′)| = |f([s]) − f([s′])|

≤ dn
R(s, s′) [f is nonexpansive]

= dn
1 (s, s′) [induction].

Similarly, we can show that for each g ∈ (S, dn
1 )------<[0, 1], there exists f ∈ (SR, d

n
R)------<[0, 1]

such that f([s]) = g(s) for all s ∈ S. Note that if states s and s′ are probabilistic
bisimilar then d1(s, s

′) = 0 and, hence, dn
1 (s, s′) = 0 and, therefore, g(s) = g(s′), since g

is nonexpansive.

dn+1
R ([s1], [s2])

= ∆(dn
R)([s1], [s2])

= max







∑

[s]∈SR

f([s])(πR([s1], [s]) − πR([s2], [s]))

∣

∣

∣

∣

f ∈ (SR, d
n
R) ------< [0, 1]







= max







∑

[s]∈SR

f([s])
∑

s′Rs

(π(s1, s
′) − π(s2, s

′))

∣

∣

∣

∣

f ∈ (SR, d
n
R) ------< [0, 1]







= max







∑

[s]∈SR

∑

s′Rs

f([s′])(π(s1, s
′) − π(s2, s

′))

∣

∣

∣

∣

f ∈ (SR, d
n
R) ------< [0, 1]







= max

{

∑

s∈S

g(s)(π(s1, s) − π(s2, s))

∣

∣

∣

∣

g ∈ (S, dn
1 ) ------< [0, 1]

}

= ∆(dn
1 )(s1, s2)

= dn+1
1 (s1, s2).

• Furthermore,

dω
R([s1], [s2]) = sup

n
dn
R([s1], [s2])

= sup
n
dn
1 (s1, s2) [induction]

= dω
1 (s1, s2).

To simplify the formula even further, we exploit the following three observations.

• Since d is a pseudometric, d(si, si) = 0 and d(si, sj) = d(sj , si). Therefore, in pseudo(d)∧
post-fixed(d) we can replace all dii’s with zero and all dij ’s where i > j with dji’s. As
a consequence, we only need to consider dij ’s with i < j. This reduces the number of
variables in the formula considerably.
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• Let C be the set of pairs of states for which the distances have already been computed.
Then

∃dpseudo(d) ∧ post-fixed(d) ∧ di0j0 ≤ m

is equivalent to

∃dpseudo(d) ∧ post-fixed(d) ∧ di0j0 ≤ m ∧
∧

(i,j)∈C

dij = d1(si, sj)

since d1 is the greatest post-fixed point. As a consequence, we can replace all dij ’s where
(i, j) ∈ C with their already computed distances d1(si, sj). Again, the number of variables
may be reduced.

• If πi0j = 0, we can infer that µij = 0 for all 1 ≤ i ≤ N . As a consequence, we can replace
the occurrences of all those µij’s with 0. Symmetrically, if πj0i = 0 we can simplify the
formula similarly. Also this simplification may reduce the number of variables.

We have implemented these simplifications in the form of a Java program that takes
as input the probability matrix π and that produces as output the simplified formula in a
format that can be fed to Mathematica.5

Example B.10. Consider the probabilistic transition system of Example 2.2. The simpli-
fied formula for this system is given below.

1 Reduce[

2 Exists[d12,

3 (0 <= d12 <= 1) && (0.11112 <= d12 + 0.27778) && (d12 <= 0.38889) &&

4 Exists[{u12,u13,u32,u42,u43,u33},

5 (0 <= u12 <= 1) && (0 <= u13 <= 1) && (0 <= u32 <= 1) &&

6 (0 <= u42 <= 1) && (0 <= u43 <= 1) &&

7 (u12 + u32 + u42 == 0.4) && (u13 + u43 + u33 == 0.6) &&

8 (u12 + u13 == 0.7) && (u32 + u33 == 0.1) && (u42 + u43 == 0.2) &&

9 (d12 * u12 + 0.11112 * u13 + 0.27778 * u32 + u42 + u43 <= d12)] &&

10 Exists[{u21,u23,u24,u31,u33, u34},

11 (0 <= u21 <= 1) && (0 <= u23 <= 1) && (0 <= u24 <= 1) &&

12 (0 <= u31 <= 1) && (0 <= u34 <= 1) &&

13 (u21 + u31 == 0.7) && (u23 + u33 == 0.1) && (u24 + u34 == 0.2) &&

14 (u21 + u23 + u24 == 0.4) && (u31 + u33 + u34 == 0.6) &&

15 (d12 * u21 + 0.27778 * u23 + u24 + 0.11112 * u31 + u34 <= d12)] &&

16 (0 <= d12 <= 0.5)]]

Line 3 correspond to pseudo(d), line 4–9 correspond to post-fixed1(d, 1, 2) and line 10–15
correspond to post-fixed1(d, 2, 1). The formula was reduced to true by Mathematica in 8.2
seconds on a 3GHz machine with 1GB RAM. When feeding Mathematica the formula that
has not been simplified, it runs out of memory after some time.

We also attempted to solve this example with a solver called QEPCAD B [9] but the
performance of Mathematica on this example was better.

5The code and documentation is available at the URL www.cse.yorku.ca/~franck/research/pm2m.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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