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1.

ABSTRACT. We introduce an extension of Hoare logic for call-by-vahigher-order functions with
ML-like local reference generation. Local references maygbnerated dynamically and exported
outside their scope, may store higher-order functions aad lbe used to construct complex muta-
ble data structures. This primitive is captured logicakyng a predicate asserting reachability of a
reference name from a possibly higher-order datum and iigasitover hidden references. We ex-
plore the logic’s descriptive and reasoning power with trdrial programming examples combining
higher-order procedures and dynamically generated Idate.s Axioms for reachability and local

invariant play a central role for reasoning about the exaspl
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1. INTRODUCTION

Reference Generation in Higher-Order Programming. This paper proposes an extension of
Hoare Logic [1F7] for call-by-value higher-order functiomgth ML-like new reference generation
[1,[2], and demonstrates its use through non-trivial reimgpexamples. New reference generation,
embodied for example in ML'sef-construct, is a highly expressive programming primitiidie
first key functionality of this construct is to introduce #atate into the dynamics of programs by
generating a fresh reference inaccessible from the out€idesider the following program:

Tnc ©'1et x=ref(0) in A().(X:=Ix+1; Ix) (1.2)

where “ref(M)” returns a fresh reference whose content is the value wiicvaluates to; %’
denotes dereferencing the imperative variabland “;” is sequential composition. 16.(1.1), a ref-
erence with content 0 is newly created, but never exportdidmutside. When the anonymous
function in Inc is invoked, it increments the content of the local variaklend returns the new
content. The procedure returns a different result at eaghadzose source is hidden from external
observers. This is different fromy().(x :=!x+ 1; Ix) wherex is globally accessible.

Secondly, local references may be exported outside of dhigiinal scope and be shared, con-
tributing to the expressivity of significant imperativeadis. Let us show how stored procedures
interact with new reference generation and sharing of eefsgs. We consider the following pro-
gram from [49, § 6]:

incShared &' a:=Inc;b:=la; z1:=('a)();z2:=('b)(); za+!2z) (1.2)

The initial content of the hiddexis 0. Following the standard semantics of MLI[38], the assignt

b :=!a copies the code (or a pointer to the code) frarto b while sharing the storg. Hence the
content ofx is incremented every time the functions storedaiandb, sharing the same store

are called, returning 3 at the end of the prograntShared. To understand the behaviour of
incShared precisely and give it an appropriate specification, we magtwre the sharing of
between the procedures assignedatandb. From the viewpoint of visibility, the scope ofis
originally restricted to the function stored &but gets extruded to and shared by the one stored in
b. If we replaceb :=!a by b := Inc as follows, two separate instancesiat (hence with separate
hidden stores) are assignedatandb, and the final result is not 3 but 2.

incUnShared &' a:=1Inc; b:=1Inc;z:=(1a)();z2:=(!b)(); ('z1+'2) (1.3)

Controlling the sharing of local references is essentiamiting concise algorithms that manipulate
functions with shared store, or mutable data structurel agdrees and graphs, but complicates
formal reasoning, even for relatively small programs [143/36].

Thirdly, through information hiding, local references daused for efficient implementations
of highly regular observable behaviour, for example, pufahctional behaviour. The following
program, taken from_[49, § 1], calletmFact, is a simple memoised factorial.

memFact & leta= ref(0), b=ref(1) in
AX.if Xx=lathen!belse (a:=X; b:=fact(X);!b) (1.4)

Herefact is the standard factorial function. To external observessFact behaves purely func-
tionally. The program implements a simple case of memaisatwhenmemFact is called with a
stored argument ig, it immediately returns the stored valuewithout calculation. Ii differs from
a’s content, the factoriafx is calculated and the new pair is stored. For complex funstimemoi-
sation can lead to substantial speedups, but for this to lamimgful we need a memoised function
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to behave indistinguishably from the original function emtfor efficiency. So we ask: why can
we saymemFact is indistinguishable from the pure factorial function? Tdrmeswer to this question
can be articulated clearly througHazal invariant property]49] which can be stated informally as
follows:

Throughout all possible invocations eémFact, the content of b is the factorial of
the content of a.

Such local invariants capture one of the basic patternsagramming with local state, and play a
key role in preceding studies of operational reasoning apoagram equivalence in the presence
of local state![27, 48, 49, 59]. Can we distill this princi@&iomatically and use it to validate
efficiently properties of higher-order programs with lostdte such asemFact?

As a further example of local invariants, this time involyimutually recursive stored functions,
consider the following program:

mutualParity el x:=An.if n=0then f else not((ly)(n—1)); (1.5)
y:=An.if n=0then t else not((!x)(n—1)) '

After runningmutualParity, the application(!x)n returnst if nis odd and otherwisé; (ly)n
acts dually. But sincex andy are free, a program may distuttutualParity’s functioning by
inappropriate assignment: if a program reads fsoamd stores it in another variable, sgyassigns
a diverging function tok, and feeds the content afwith 7, then the program diverges rather than
returningt.

With local state, we can avoid unexpected interferenceaaidy.

safe0dd & let x=ref(An.t), y=ref(An.t) in (mutualParity;!x) (1.6)
safeEven = let Xx=ref(An.t), y=ref(An.t) in (mutualParity;!y) (1.7)

(Here An.t can be any initialising value.) Now thaty are inaccessible, the programs behave
like pure functions, e.gsafe0dd(3) always returnstrue without any side effects. Similarly
safe0dd(16) always returng. In this case, the invariant says:

Throughout all possible invocationsafe0dd is a procedure which checks if its ar-
gumentis odd, provided y stores a procedure which does thiewdbereasafeEven
is a procedure which checks if its argument is even, whenegrres a dual pro-
cedure

Later we present general reasoning principles for locadriamts which can verify properties of
these two and many other non-trivial examples [27| 31, 3248449].

Contribution. This paper studies a Hoare logic for imperative higher-ofdections with dynamic
reference generation, a core part of ML-like languagestiStgfrom their origins in thé\-calculus,
the syntactic and semantic properties of typed higherrdraestional programming languages such
as Haskell and ML have been studied extensively, making temdeal target for the formal vali-
dation of properties of programs on a rigorous semanticsb&airther, given the expressive power
of imperative higher-order functions (attested to by theoglability of objects|[10, 46, 47] and of
low-level idioms [58]), a study of logics for these languageay have wide repercussions on logics
of programming languages in general.

Such languages|[1, 2] combine higher-order functions amgkrative features including new
reference generation. Extending Hoare logic to these gegileads to technical difficulties due to
three fundamental features:

e Higher-order functions, including stored ones.
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e General forms of aliasing induced by nested reference types
e Dynamically generated local references and scope exirusio

The first is the central feature of these languages; the deanses by allowing reference types
to occur in other types; the third feature has been discuasBede. In preceding studies, we built
Hoare logics for core parts of ML which cover the first two feas [6, 22, 24, 25]. On the basis
of these works, the present work introduces an extensioroaféllogic for ML-like local reference
generation. As noted above, this construct enriches pmgjreehaviour radically, and has so far
defied clean logical and axiomatic treatment. A centrallehgk is to identify simple but expressive
logical primitives, proof rules (for Hoare triples) and axis (for assertions), enabling tractable
assertions and verification.

The program logic proposed in the present paper introdugeedicate representing reacha-
bility of a reference from an arbitrary datum in order to esg@nt new reference generation. Since
we are working with higher-order programs, a datum and aest® may as well be, or store, a
higher-order function. We shall show that this predicatéully axiomatisable using (in)equality
when it only involves first-order data types (the result asely related with known axiomatisations
of reachability [45]). However we shall also show that thedicate becomes undecidable when
higher-order types are involved, indicating an inheretractability.

A good news is, however, that this predicate enables us, adrabined with a pair of mutually
dual hiding quantifiers (i.e. quantifiers ranging over Valea denoting hidden references), to obtain
a simple compositional proof rule for new reference gemamatpreserving all the compositional
proof rules for the remaining constructs from our foreggaggram logics.

At the level of assertions, we can find a set of useful axiomgun)reachability and the hid-
ing quantifiers, which are effectively combined with lodigaimitives and associated axioms for
higher-order functions and aliasing studied in our prawgaiorks [6, 25]. These axioms for reach-
ability and hiding quantifiers are closely related with @@eg principles studied in existing seman-
tic studies on local state, such as the principle of locadiiants [49] . The local invariant axioms
capture common patterns in reasoning about local stategaable us to verify the examples in
[27,131,32] 34, 48, 49] axiomatically, including prograniscdssed above. The program logic also
satisfies strong completeness properties including thmelatd relative completeness as discussed
later. As a whole, our program logic offers an expressivearing framework where (relatively)
simple programs such as pure functions can be reasoned @dingtsimpler primitives while pro-
grams with more complex behaviour such as those with neiaitnise of local state are reasoned
about using incrementally more involved logical conssuard axioms.

Outline. This paper is a full version of [63], with complete definitioand detailed explanations
and proofs. The present version not only gives more detaitedysis for the properties of the
models, axioms and proof rules, but also more examples witldérivations and comprehensive
comparisons with related work.

Section 2 presents the programming language and the asskiguage. Sectidd 3 gives the
semantics of the logic. Sectibh 4 proposes the proof ruldpasves soundness. Sectidn 5 explores
axioms of the assertion language. Sectiohs 6 discussesséhefithe logic through non-trivial
reasoning examples centring on local invariants. Se¢fisnrimarises extensions including the
three completeness results of the logic, gives the comgerisvith related works, and concludes
with further topics. Appendix lists auxiliary definitionsié detailed proofs. Larger examples of
reasoning about mutable data structures can be found|in [62]
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2. ASSERTIONS FOR_LOCAL STATE

2.1. A Programming Language. Our target programming language is call-by-value PCF with
unit, sums, products and recursive types, augmented wbriative constructs. Letb,....x,y,...
range over an infinite set of variables, and , ... over an infinite set of type variablBsThen types,
values and programs are given by:

a,B = Unit|Bool|Nat|a=B|axB|a+p|Ref(a)|X|px.a
VW = o[ X | MM | =By M | (V,W) | inj (V)
M,N = vyMNyM:zN\ref(M)\!M\op(M)\m(M)y(M,N>yinji‘”5(|\/|)

| if M then M else Mz | case M of {inj(X").Mi}ic(12}

We use standard notation [14) 46] like constan{sinit (); booleanst, £; numbersa; and location
labels also called simpljocations LI’,...) and first-order operationsp (+, —, X, =, =, A, ...).
Locations only appear at runtime when references are gededd etc. denotes a vector asdhe
empty vector. A program islosedif it has no free variables. Note that a closed program might
contain free locations. We use abbreviations such as:

AM T M (xg (M)
M;N (A).N)M
letx=MinN (AX.N)M (x& fv(M))

We use the standard notion of types for imperalvealculi [14, 46] and use the equi-isomorphic
approach [46] for recursive typeNat, Bool andUnit are calledbase typesWe leave the illustration
of each language construct to standard textbaoks [46] peXoereference generatiaref (M), the
focus of the present studyef(M) behaves as follows: firdil of typea is evaluated and becomes
a valueV; then afreshreference of typ&ef(a) with initial contentV is generated.

The behaviour of the programs is formalised by the reduatides. Leto denote astore a
finite map from locations to closed values. We wse [l — V] to denote the result of disjointly
adding a pai(l,V) to 0. A configurationis of the form(vl)(M, o) whereM is a programg a store,
andl| a vector of distinct locations (the order is irrelevant) weimg in o, and hidden bw. The
need ofv-biniding is discussed in[§ 2.3 and Remark 3.4.

A reduction relation or oftenreductionfor short, is a binary relation between configurations,
written

def

def

(VI)(M,01) — (V")(N,02)
The relation is generated by the following rules. First weehthe standard rules for call-by-value

PCF:
AXM)V  — MNV/X

m((Vi,V2)) — Wi
if t then MjelseM, — Mg
(LEAGN)W  —  NW/g|[uf.Ag.N/f]
case ing(W) of {inj(X).Mi}ici12) — M1[W/xq]

Iror simplicity, we omit the polymorphism from the languagee [24].
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Then we have the reduction rules for imperative construigs assignment, dereference and new-
name generation.
(1, 0) — (a(l), o)
(I =V, 0) - (()’ O[I HV])
(ref(V),0) — (v, o”[l —V])
In the reduction rule for references, the resulting configan uses a&-binder, which lets us directly
capture the observational meaning of programs. Finallylesee— under evaluation contexts and
v-binders. . ~
(V1) (M, 0) — (vIz)(M',0)
(V1) (EM],0) — (Vll2)(EM'],0)
wherel are disjoint from botH; andi,, &-] is the left-to-right call-by-value evaluation context
(with eager evaluation), inductively given by:
-] u= (ELM) | (VEL]) | (V.E[]) | (e[ M) | T(E[]) | imi(€[-])
| op(V,E[-],M) | if &[-]then M else N | case £[-] of {in;(X).Mi}ic(12}
| L =M V=€) | ref(€]-])
We write (M, o) for (ve)(M, o) with € denoting the empty vector. We define:
o (V)(M,0) I (vI")(V,d) meangvi)(M,0) —* (vI")(V,0)
e (VI)(M,0) || meangvl)(M,0o) |} (vI')(V,0’) for some(vl’)(V,d")
An environment , A, ... is a finite map from variables to types and from locations terence types.
The typing rules are standard [46] and are left to AppehdixSAqguents have the form- M : a,
to be read:M has typea underl". A storeo is typed undei), written A + g, when, for each in
its domain,a(l) is a closed value which is typed underA, where we assum&(l) = Ref(a). A
configuration(M, o) is well-typedif for somel" anda we havel - M : a andl’ - 0. Standard type
safety holds for well-typed configurationklenceforth we only consider well-typed programs and
configurations.
We define the observational congruence between confignsatissumé, I~1.2 1G12FMyo:a
andr,l~1.2 : 61.2 Fo1o. Write

[ (vi1)(M1,01) 2 (vi2) (Mg, 02)

if, for each typed contex€] - | which produces a closed program which is typedJag underA
and in which no labels frorh » occur, the following holds:

(Vi) (CMy], o1) I iff  (Vi2)(C[M2], 02) |

which we often write(vi1)(M1,01) = (vi2)(My,02) leaving type information implicit. We also
write ' = M1 =2 M, or simplyM; = M5 leaving type information implicit, ifl, = 0; =0 (i = 1, 2).

2.2. A Logical Language. The logical language we shall use is that of standard fidg¢ologic
with equality [33, § 2.8], extended with the constructs fbritigher-order application [24, 25] (for
imperative higher-order functions); (2) quantificatioreosgtore content [6] (for aliasing); (3) reach-
ability and quantifications over hidden names (for locatetaFor (1) we decompose the original
construct|[24, 25] into more elementary constructs, whiebdmes important for precisely captur-
ing the semantics of higher-order programs with local saaig for obtaining strong completeness
properties of the logic, as we shall discuss in later sestion
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The grammar follows, letting € {A,V, D}, Q € {3,V,v,V} andQ’ € {3,V}.
e = x|c|op® | (e€) | inf%e) | le

C == e=¢€ | C|CxC' | QX*C | Ix.C | ['glC | (le)C
| eed=x{C} | OC | OC | e—¢€|ete

The first grammard, €, ...) definesterms the secondormulae(A,B,C,C',E,...). Terms include
variables, constants (unit (), numbersn, booleanst, f and locationd,!’,...), pairing, injection
and standard first-order operationg.denotes the dereference of a refereac&ormulae include
standard logical connectives and first-order quantifieg$. [3

The remaining constructs in the logical language are foturaqm the behaviour of imperative
higher-order functions with local state. First, the undadrand existential quantifiersx.C and
Jx.C, are standard. We include, following [6, 24], quantificatmver type variablesx(Y,...). We
also use the two quantifiers for aliasing introduced.in [6{C is universal content quantification of
x in C, while (!x)C is existential content quantification of x in @ both,x should have a reference
type. [!X|C saysC holds regardless of the value stored in a memory cell naxnadd (!x)C says
C holds for some value that may be stored in the memory cell damdn both, what is being
quantified is the content of a stomt the name of that store. [hx]C and (!X)C, C is thescopeof
the quantification. The free variabkgs not a binder: we have ((!x)C) = fv([!X|C) = {x} Ufv(C)
wherefv(C) denotes the set of free variables@n We define(!e)C as a shorthand fofix.(x =
e (IX)C), assuming ¢ fv(C). Likewise,[!€|C is short forvx.(x = e D [IX]C) with x being fresh.
The scope of a content quantifier is as small as possible]®@.D> C’ stands for([!X|C) > C'.

Decomposing the original evaluation formulael[24, 25] ie#ce’ = x{C} and[JC, is used for
describing the behaviour of functiofse e = x{C}, which we call (one-sidedjvaluation formula
intuitively says:

The application of a function e to an argumehserting from thepresenstate will
terminate with a resulting value (name it xX) and a final stébggether satisfying C

wheread1C, which we readalways G intuitively means:
C holds in any possible state reachable from the current one

Its dual is writters> C (defined as-[1—C), which we readscomeday CWe call(d (resp.<>) necessity
(resp.possibility) operators. As a typical usage of these primitives, comside

O(CHS fex=y{C}) (2.1)

This can be read: “for now or any future state, o@dwlds, then the application dfto x terminates,
with both a return valug and a final state satisfying@”. Note that [2.1) corresponds to the original
evaluation formula in.[24, 25]. Further, in the presenceocfl state,[(2]1) can describe situations
which cannot be represented using the original evaluatomdla (see § 2|13 for examples). The
decomposition[(2]1) can also generalise the local inveiaaiom in Propositiori 5.15 from [63].
Thus this decomposed form is strictly more expressive. $b allows a more streamlined theory.
There are two new logical primitives for representing Iatate — in other words, for describ-
ing the effects of generating and using a fresh referencst, Fehiding-quantifiersvx.C (for some
hidden reference x, C holgandvx.C (for each hidden reference x, C ho)dguantify over refer-
ence variables, i.e. the type wfaibove should be of the forRef(B). These quantifiers range over
hidden references, suchagenerated bync in (1.1) in §1. The need for having these quantifiers

2We later showIC is expressible by e € = x{C}: nevertheless treating C independently is convenient for our
technical development.
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in addition to the standard ones is illustrated 2.3 anan&&[3.4. The formal difference ofas
a quantifier fromd will be clarified in §5.8, Proposition 5.8.

The second new primitive for local stategs— e, (with e, of a reference type), which we call
reachability predicate This predicate says:

We can reach the reference denoted pfrem a datum denoted by e

As an example, ik denotes a starting point of a linked lists— y says a referencgoccurs in one
of the cells reachable from We set its dual [12, 55], writtee#€/, to mean-€ — e. This negative
form says:

One can never reach a reference e starting from a datum derioyte.

# is frequently used for representing freshness of newentes.

Note that expressions of our logical language do not inchrdérary programs. If we enlarge
terms in the present logical language to encompass asbjiragrams, then terms in the logic will
have effects when being evaluated (suchA\yas := 3). In addition, the axiomatisation of equality
would feature involved axioms likg = (x:= 3). Note also that the inclusion of application leads to
expressions whose evaluation may be non-terminating.ulixaj such arbitrary terms means that
we can use standard first-order logic with equality and itmlbaxiomatisation as its basis, avoiding
non-termination and side-effects when calculating aesext

Terms are typed inductively starting from types for varsband constants and signatures for
operators. The typing rules for terms follow the standardsoior programs_[46] and are given in
Figure[3 in AppendiX_A. We writd - e: a whene has typea such that free variables mhave
types followingl; andl - C when all terms irC are well-typed undefr.

Equations between terms of different types will always eatd toF BThe falsityF is definable

as 1# 1, and its duall . Thesyntactic substitution @/!x] is also used frequently: the defini-
tion is standard, save for some subtlety regarding subistitinto the post-condition of evaluation
formulae, details can be found in Appendix Blin [6lenceforth we only treat well-typed terms and
formulae.

Further notational conventions follow.

Notation 2.1 (Assertions)

(1) Inthe subsequent technical development, logical octives are used with their standard prece-
dence/association, with content quantification given #iraesprecedence as standard quantifi-
cation (i.e. they associate stronger than binary conrejti-or example,

~AABDWCV (lelD D E

is a shorthand fof (-A) A B) D (((¥x.C) v ({!e)D)) D E). The standard binding convention
is always assumed.

(2) C1 =G, stands for(Cy D Cy) A (C, D Cy), stating the logical equivalence 6f andC,.

(3) e# € stands for-e=¢.

(4) Logical connectives are used not only syntacticallydsb semantically, i.e. when discussing
meta-logical and other notions of validity.

(5) We write {C} ejee; =z{C'} for CDejee, =Z{C'}.

(6) ep e e, = €{C} stands fore; e e, = Xx{x = & AC} wherex is fresh ande is not a variable;
e, e &,{C} stands fore; e e, = (){C}; ande; e & |} stands for the convergenege e, = x{T}.
We apply the same abbreviations{td} e; e, =z {C'}.

3To be precise, “terms of unmatchable types”: this is becafithe presence of type variables. For example, the
equation €% = 1Nat” can hold depending on models buef(X) = 1Nat" never holds.



10 N. YOSHIDA, K. HONDA, AND M. BERGER

(7) For convenience of rule presentation we will use prijestts (e) as a derived term. They are
redundant in that any formula containing projections carnrameslated into one without: for
examplery (e) = € can be expressed dg.e= (€,y).

(8) We denotdv(C) (resp.fl(C)) for the set of the free variables (resp. free locationg}.in

(9) ['%1..%p)C for [!x3]..['%n]C. Similarly for (!x;..x,)C.

(10) We writee#te for Ajg #e; e#éfor Ajette; ande#€ for Aije.#e’j.

2.3. Assertions for Local State. We explain assertions with examples.

(1) The assertiont = 6 says thak of type Nat is equal to 6.

(2) Assumingx has typeRef(Nat), Ix = 2 meansx stores 2. Next assume that ande, have a
reference type carrying a functional type, $%f(Nat — Nat). Then we can specify equality
of the contents of the reference as; £!e,. Note that neithee; nor e, containsh-expressions.
Sectior 5.1l shall show that the standard axioms for the égimalld in our logic.

(3) Consider a simple commamxd=y;y := z;w .= 1. After its run, we can reach reference name
z by dereferencing, andy by dereferencing. Hencez is reachable frony, y from x, hencez
from x. So the final state satisfi#gs— y Ay — zA x — zwhich implies by transitivity.

(4) Next, assumingv is newly generated, we may wish to sayis unreachablefrom x, to ensure
freshness ofv. For this we assemv#x, which, as noted, stands for(x — w). x#y always
impliesx # y. Note thatx — x = x —Ix=T andx#x = F. But Ix — x may or may not hold
(since there may be a cycle betweéncontent andck in the presence of recursive types).

(5) We consider reachability in procedures. Assuxe(x := 1) is named ad,,, similarly A().!x
as f,. Sincef,, can write tox, we havef,, — x. Similarly f, — x. Next supposéet X =
ref(z) in A().x has namd andzs type isRef(Nat). Thenf; — z(e.g. consider(f¢()) := 1).
Howeverx is not reachable from\().((Ay.())(A().x)) since semantically, this function never
touchesx.

(6) O!'x = 1 says thak’s content is unchanged from 1 forever, which is logicallyigglent toF
(sincex might be updated in the future). Instegdx = 1= T. On the other handix = 1=
$x=1=x=1(since a value of a functional variable is not affected leystate).

(7) The following program:

f2A(.(x:=1x+1;1%) (2.2)

satisfies the following assertion, when named
OViNet {Ix=ilue () =z{Ix=zAlx=i+1}
saying:
now or for any future state, invoking the function named wenents the content of x
and returns that content.
Stating it for a future state is important since a closureateptially invoked many times in
different states.

(8) We often wish to say that the write effects of an applaratire restricted to specific locations.
The following located assertiorj6] is used for this purposeee € = x{C}@€ where eaclg
is of reference type and does not contain a derefereatecdlledeffect setwhich might be
modified by the evaluation. As an example:

inc(u, x) d:efDVi.{!x =itue()=z{z=IXA IXx=i+1}@x (2.3)
is satisfied byf in (2.2), saying that a function namerl when invoked, will: (1) increment
the content ok and (2) return the original content gfwithout modifying (in an observational
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fashion) any state excepmt As in |6], located assertions can be translated into noattd
evaluation formulae together with content quantificatiog[2.2, see Propositign 5.5.

(9) Assumingf denotes the result of evaluatirigic in the introduction, we can assert, using the
existential hiding quantifier and naming by

VX.(IX=10 A inc(u,x)) (2.4)

which says: there is a hidden referencgoring 0 such that, wheneveiis invoked, it writes at
x and returns the increment of the value stored at the time of invocation.

(10) We illustrate that combining hiding quantifiers and tio@-reachability predicate is necessary
for describing the effects and use of newly generated neéexe Consider:

let X=ref(2) iny:=X (2.5)

The location denoted by the bound variabkie, at the time when the new reference is generated,
hidden and disjoint from any existing datum. The locatigoresented by is still hidden but it
has now become accessible from a varighland this location is still unreachable from other
references. Thus hiding and disjointness are separatecm@nd, assumirgjo be a reference
disjoint fromy, the post-state of (2.5) can be described as:

VX.(ly=XA Ix=2 A z#X) (2.6)

(11) The functionf; %" AnNat ref(n), namedu, meets the following specification. Leandx be

fresh.
fresh %' Ovnet vx.viX.uen=2z{vx.(1z=n A z#i A z= )} @0. (2.7)

The above assertion says thatvhen applied to, will always return a hidden fresh reference
z whose content is:1 and which is unreachable from any datum existing at the timthe
invocation; and in the execution it will leave no writing &fts to the existing state. Since
ranges over arbitrary data, unreachabilityxdfom each such in the post-condition indicates
thatx is freshly generated and is not stored in any existing ratare

(12) Now let us consider the following three formulae:

freshy 2 vnNat yx viX.uen=z{ux.(lz=n A z#i Az=x)}@0 (2.8)
fresh, % vnNat yx viX Ouen=z{ux.(Iz=n A z#i Az=x)}@0 (2.9)
freshs &' OvnVat yx. viX Ouen=z{vx.(Iz=n A z#i Az=x)} @0 (2.10)

Each formula is read as follows:

e freshy means that the procedure namedubyhen invoked in the present state with number
n, will create a cell with that content which is freshthe current state

e freshy, means that the procedusewhen invoked with numbenm in the present or any future
state, will create a cell with contentwhich is freshin the current state For example the
following program satisfies this assertion (naming itias

f, € 16t x = ref(0) in AYN.(x:= y; X) (2.11)

The function returned by (2.11) does return a fresh refere@pon initial invocation: but from
the next time this function returns the same reference tmitavith the new value specified.
So it will be fresh with respect to the current state (for vihice are asserting this formula)
but not necessarilywith respect to each initial state of invocation.

e freshg means that if we invoke the procedurén the current state or in any further future
state, it will create a cell which is fresh in that state.
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Then we have:
fresh = freshz D freshy D freshy (2.12)

which we shall prove by the axioms fot later. The prograni (2.11) satisfifgsh; andfreshy,

but doesnot satisfyfresh (nor freshs) since f, returns the same location. On the other haid,
satisfies all offresh, freshq, fresh, andfreshz. This example demonstrates that a combination
of [J and a decomposed evaluation formula gives precise speidfisan the presence of the
local staté]

3. MODELS AND SEMANTICS

3.1. Models. We introduce the semantics of the logic based on the opeedtgemantics of pro-
grams, using partially hidden stores. Our purpose is to lagweciseand clear correspondence
between programs’ operational behaviour (and the indutseérgational semantics) and the se-
mantics of assertions. This is the reason for defining ouraisoaberationally. This approach offers
a simple framework to reason about the semantic effectsdoliehi (and/or newly generated) stores
on higher-order imperative programs (for further disomssj see Rematk 3.3 later). For capturing
local state, our models incorporate hidden locations usibinders, suggested by threcalculus
[37]. For example, consider the programic from the introduction.

Inc 16t x = ref(0) in A().(x :=Ix+ 1; IX) (3.1)

Recall that after runningnc, we reach a state where a hidden name stores 0, to be used by the
resulting procedure when invoked. Henta¢ namedu, is modelled as:

(VO {u:A().(1:=1+1; 1)}, {I —0}) (3.2)

which says that the appropriate behaviour ig,ah addition to a hidden referen¢estoring 0.

Definition 3.1. (models) Anopen model of typE is a tuple(&, o) where:

e ¢, calledenvironmentis a finite map from variables idom(I") to closed values such that, for
eachx € dom(I"), §(x) is typed ad (x) underT, i.e.T F &(X) : [ (X).

e 0, calledstore is a finite map from labels ifil || € dom(I") } to closed values such that for each
| € dom(0), I(l) has typeRef(a), theno(l) has typea underTl, i.e.l - o(l) : a.

Whenr includes free type variable§,maps them to closed types, with the obvious corresponding

typing constraints. Anodelof typeT is a structurgvl)(&,o) with (€,0) being an open model of
typel,A with {I} = dom(A). (vl) acts as binders\(,M’, ... range over models.

An open model maps variables and locations to closed valesodel then specifies part of the
locations as “hidden”. For exampléyl)(x:1-y:l',[l — 3]-[I' — 3]) is a model with a typing
environment” = {x: Ref(Nat),y: Ref(Nat),|” : Ref(Nat)}. We often omit” and a mapping from
type variables to closed types frdn.

Since assertions in the present logic are intended to @aptgervable program behaviour, the
semantics of the logic uses models quotiented by an obgaradly sound equivalence, which we
choose to be the standard contextual congruence itself.

4Note that infresh and freshs, it is essential that we put universal quantificatiaf$é and viX after 0. This has
not been possible in the two-sided evaluation formulae usétk logics for pure and imperative higher-order funcsion
without local state in 6, 22, 24, 5]. Sdée (2.1).
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Definition 3.2. AssumeM; def (vﬂ)(i : \7i,oi) typable undef”. Then we writeM; ~ M, if the

following clause holds for each typed contéXt: | which is typable undef and in which no labels
from 11, occur: N N N N
) (V) (C[(V1)],01) it (VI2)(C[(V2)],02) | (3.3)

where(V) is then-fold pairings of a vector of values.

Definition[3.2 in effect takes models up to the standard ctné congruence. We could have
used a different program equivalence (for example caNddye Bn convertibility), as far as it is
observationally sound. Note that we have

(VY (E-x:Vp, 01 —Wh) = (VD)(E-X:Va,0-1 — W) (3.4)

whenevel; =V, andW; = W5, where= is the contextual congruence on programs definedinl§ 2.1.
To see the reason why we take the models up to observationgtumnce, let us consider the
following program:

Inc2 2 1et x= ref(0), y=ref(0) in A().(X:=Ix+1L;y:=ly+1; (Ix+1y)/2) (3.5)
which is contextually equivalent ttac. Then we have the following model fahc2.
(VI {u: A).(x =41y =y + 1; (Ix+1y) /2), x: 1,y '}, {1 — 0, " — 0}) (3.6)

Since the two programs originate in the same abstract balrawive wish to identify the model in
(3.2) and the above model, taking them up to the equivalence.

Remark 3.3. (presentation of models) The model as given above can berngeskalgebraically us-
ing the language of categories [59]. One method, which et triding as above categorically, uses
a class of toposes which treat renaming through symmegis YVe can also use the “swapping”-
based treatment of binding based lon [13]. Note however higatise of such different presentations
(with respective merits) doestalter the equational and other properties of models andatiiefac-
tion relation, as far as we wish to use the standard obsenaitsemantics (Morris-like contextual
congruence) or the equivalent models (so-called fullyrabsimodels) as a basis of our logic. An-
other significant point is that the game-based modellin [4hésonly known model satisfying this
(full abstraction) criteria, whose morphisms are isomarph a class of typed-calculus processes
[21]. The presented “operational” model is hinted at by, sntlose to, thatcalculus presentation
of semantics of the target language. The present approkutsals to have models which are au-
tomatically faithful to the standard observational serizandf the language, directly capturing the
effects of hidden stores by semantics of the logic. Otheratsothay as well be used for exploring
various aspects of the presented logic.

Remark 3.4. (hidden locations) Following standard textbooks [14, &6 treat locations as values
(which is natural from the viewpoint of reduction). A siga#int point is that distinctions among
these values (locations) matter even if they are hidden. eample if we have:

% (ret(2),ret(2)) (3.7)
and evaluateVl, we get a pair of two fresh locations both storing 2. For theodigtion of this
resulting value, it is essential that these two referenoesligtinct. For example the program:

N %" 1et x=ref(2) in (x,X) (3.8)
has a different observable behaviour, as justified by a gb6{d LT T[] =Tp[] then 1 else 2.
Thus distinctions matter, even if locations are hidden.
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3.2. Semantics of Equality. For the rest of this section, we give semantics to assertimanly
focussing on key features concerning local state and whigtefore differ from the previous logics
[6]. We start with the semantics of equality.

A key example are the programsicShared in (1.2) andincUnShared in (L.3) from the
introduction. After the second assignment [of {(1.2) dnd)(M& consider whether we can assert
“l'a = !b” (i.e. the content ofa andb are equal). For this inquiry, let us first recall the follogin
defining clause for the satisfaction of equality of two l@diterms from [6] which follows the
standard definition of logical equality. First we set, with- e: a, ' - M and an open model
M = (§,0), an interpretation of underM as follows3

Mleo=¢€x) ['elec=0([€les) [cleo=c [or(€)leo = op([Eeo)

[(e€)]eo = ([€]eo, [€]leo) [inji(€)Je o = inji([€]e o)
which are all standard. Then we define:

o
=

(the definition fromi[6]) MEe =& = lewlv =~ [ex]ln (3.9)
Note that[(3.P) says tha = e is true under an open modal iff their interpretations iV are
congruent. Now suppose we apdly (3.9) to the questiom cf!'b in incUnShared. Since the two
instances ofinc stored ina and b have the identical denotation (or identical behaviour: alpse
they are exactly the same programs), the equadity=!'b holds forincUnShared if we use [3.9).
However this interpretation is wrongwe observe that, inncUnShared, running b twice and
running & and b consecutively lead to different observable behaviours, tdutheir distinct local
states (which can be easily represented using evaluatiomufae). Hence we must hava £ b,
which says the standard definitidn_(3.9) is not applicabl¢hian presence of the local state. On
the other hand, runningaland running b have always identical observable effects: that is we can
always replace the content afwith the content ob in incShared, hence the equalitya! = !b
should hold forincShared.

The reason that the standard equality does not hold is bed¢awscurrently identical stateful
procedures will in future demonstrate distinct behavi@m.the other hand, two identical functions
which share the same local state always show the same bah&ence inincShared we obtain
equality.

This analysis indicates that we need to consider prograateglin contexts to compare them

precisely, leading to the following extension for the setitgnfor the equality, assumingy( def

(i)(E,0):

o

MEe=¢e e Mlu:e] ~Mu: e (3.10)
whereM][u: €| denotes(vi)(&-u: [€lz.6,0) with u fresh and the variables and labelseishould
be free inM. Note thatM][u : € offers the notion of a “program-in-context” whendenotes a
program. For example let us consider a model for the statesihiately after the assignment=!a

in incShared. Then the model may be written as (takiagndb to be locations):

a— A).(I:=11+1;1),
Mincsharea = (V1) [ 0, b= A().(I:=H4+1;1), (3.11)
l—n
We obtain (writing the map foa, b,| above as for brevity):
Mincsharea[U 1@ = (V1) (u: A().(1:=1+1;1), ©o) (3.12)

5Since a model ir [6] does not have local state, it suffices tmicker open models.
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Notice that the function assigned ticshared in the environment: we are interpreting the derefer-
ence &"in context”. Similarly we obtain:
Mincsharea[U D] = (V1) (u: A().(1:=1+1;1), ©o) (3.13)

By which we concludéi,csnarea =!a=!b: if the results of interpreting two terms in context are
equal then we know their effects to the model are equal. Weel@ato the reader to check the
inequality betweend and b for the corresponding model representiiigcUnShared.

The definition of equality above satisfies the standard agiofmequality as we shall see in
8[0. It is also accompanied by a notionsyfimmetrywhich can be used for checking (in)equality,
introduced below.

Definition 3.5 (permutation) Let M def (vr)(E -v:V-w:W, o) whereM is typed undef andv,w
have the same type under Then, we set:

M) LW E-v:W-w:V, o) (3.14)

called apermutation ofMl at v and w. We extend the notion to an arbitrary bijectipondom(I"),
writing M[p]. A permutationp on M is asymmetry oM whenM|[p] ~ M.

Proposition 3.6(symmetries)

(1) GivenMj > and a bijectionp on free variables in the domain 0ff;, >, we haveM; ~ M, iff

Ma[p] ~ Mz[p].
(2) If My~ My andp is symmetry oM,, thenp is symmetry oM.

Proof. Obvious by definition. O

We illustrate how we can use the result above to model théetulatf equality of behaviours with
shared local state. Let us consider the following mo@éjsandM>, which represent the situations
analogous taincShared and incUnShared (again after running the second assignment). The
defining clause for equality gives , usifd [u: V] ~ M [u:w:

My = (‘")< w:);\(())'.((ll::Zz!!llill;;!!ll))’, 'H0> Fv=w (3.15)
On the other hand, we have:
, SAO.( = D), | — 0,

This is becausg,") is a symmetry of\(z[u:V], butnotof Mz[u:w]. The latter can be examined by
comparing the following two models (writings;w : V” to denote ‘U : V,w:V”):

p A= D), | — 0,
Mofu:w] = (vl )< \G’WE))\(O‘(I,I:L'%JL)L”/), |/HOO > (3.17)
(Veluw ) - = (V”/)< o :(;'((;.27!:|:+!|'1ﬂ’;!|'), o ) (3.18)

which differ semantically when e.g.andw are invoked consecutively. Hence by Proposifiod 3.6
(@), My[u:v] % Ma[u:w], justifying the above inequality # w. The permutations also help to prove
the axioms of equality in §l5.
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3.3. Semantics of Necessity and Possibility OperatorsWe define, withu fresh,

M[u:N] 4 M’ when(NE, o) |} (vi')(V,0") with M = (vi)(E, o) andM’ = (viT")(E - u:V, o)
where we always assumeis fresh and the variables and labelsNrare free inM. The above
definition intuitively means thaw( canreduce tdM’ through arbitrary effects oivl by an external
program: in other wordsM’ is a hypothetical future state (or “possible world”) f. Then we
generatéV(~ M’ by
1) M~~M
(2) if M~»Mo andMp[u: N | M, thenV~ M
ThusM~ M’ reads:

M may evolve to\[’ by interaction with zero or more typable programs
Note that~ is reflexive and transitive. l{~»M’ andM’ adds the new domaifx;..x, }, thenx;..x,
is its incrementand we often explicitly writeV{ %3" M.
The semantics dflC says that for any target of evolutio@,should hold:

MEOC E v (MM >M Q). (3.19)

Dually we set:

o

ef

MEGC = IM.(M~M A M =C). (3.20)

3.4. Semantics of Evaluation Formulae. The semantics of the evaluation formula is given below:
def
MEeed =x{C} = IVM.M[x:ed] M A M [=C)

which says that in theurrent state, if we applye to €, then the return value (namedl and the
resulting state together satisy

We already motivated the decomposition of the original@atibn formulael[6] into the simpli-
fied evaluation formulae and the necessity operator frdm38L2t us write the original evaluation
formulae in [6) 25] a{C}ee € =x{C'}*. Then we can translate this in the present language as:

(Cleed =x{C'V & If,g.(f =eAg=€ AD{C}feg=x{C'})

that is, we interpree and€ in the present state and name thérandg, and assert that, now or in
any future state in whicld is satisfied, if we applyf to g, then it returns< which, together with the
resulting state, satisfi€¥. The original clause says:

In any initial hypothetical state which is reachable frone fresent state and which
satisfies C, the application of e t6 terminates and both the result x and the final
state satisfy C

To see the reason why we requirkein the specification of functions , we set:
M Z WD AOM, wiAQd = 4L e ) (3.21)

We can check that the set of all legitimate hypotheticalestdtom this state (i.eM’ such that
M][z: N] § M) can be enumerated by:

Mz T W u=A0M, WAL =141 e m) (3.22)

for eachm > 5 (since these are essentially all the models reachable Jfopas outside programs
can create new references).
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Thus we have, foM in (3.21):
MEOwe () =x{x>5} (3.23)

which says in anyuture state wherev is invoked, it always returns something no less than 5, which
is operationally reasonable.
We can use this formula for specifying the following program

L % jeex= ref(5) in

letu= )\()IX in (3 24)
let w= A().x:=!X+1in '
(fw); if X>5thent else f

When the applicatiorfw takes place, some unknown computation occurs which maygehtre
value ofx: but as far adw terminates, it always returns To reach[(3.23), we need to considdir
possibleM’ with the effect from the outside. Since subfl satisfies[(3.22), we can conclude the
programL always returng (if fw terminates).

3.5. Semantics of Universal and Existential Quantification. The universal and existential quan-
tifiers also need to incorporate local state. We need oneitil&fiio identify a set of terms which
do not change the state of any models. Beldivindicates thaiM is typable undeF .

Definition 3.7 (Functional Terms)We define the set dinctional termsf typel”, denotedt", or
often simplyF leaving its typing implicit, as:

F LN YMT. (MU N] M D M =M /u)}

whereM/u def (VD) (E,0) if M = (vi)(E-u:V,0); andM/u %'t whenu & fv(M). We writeL, L', ...
for functional terms, often leaving their types implicit.

Above M = M’ /u ensures that does not affecM during evaluation of. in M. Note that values
are always functional terms. In a context of reasoning fgeakoriented languages, a similar
formulation (called strong purity) is used In [44] for juUgtng the semantics of method invocations
whose evaluation has no effect on the state of existing tshjec

Now we define:

MEWXC = vVLeF.Mx:L] M >M C) (3.25)
Dually, we have:

MEXC £ 3LeF.Mx:L] 4 M A M =C) (3.26)
If we restrictL above to a value, then the definition coincides with the pebone in [6]. We
need to extend values to functional terms so that a term eghindormation from hidden locations
(cf. the semantics of equaligi = ;). As a simple example, consider:

ME Wl )y 1, Ty Dl 2)

Under this model, we wish to sayl |= Ix.x =!y. But if we only allowx to range over values, this
standard tautology does not hold fef. Using the functional termyle F, we can expand the entry
x with !y, and we have:

def

MX Wy J(vll) (X 1yl =l lo = 2) =M A M Ex=y
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Thus using a functional terrn instead of a valu® for a quantified variable is necessary for rea-
sons similar to those that required modifying the semamtfesquality. Universal and existential

quantifiers satisfy the standard axioms familiar from fosder logic, some of which are studied
later.

3.6. Semantics of Hiding. The universal hiding-quantifier has the following semasitic
MEWC Z v (WM ~M> M[x:1] =C) (3.27)
wherel is fresh, i.e.l € fl(M) wherefl(M) denotes free labels iv. The notation(vl )M’ denotes
addition of the hiding of to M’, as well as indicating thatoccurs free ifV’. M[x: 1] addsx: | to
the environment part dwt.
Dually, with | fresh again:

Q.
=

MEWC £ 3IV.(V)M =M A M[x:1] =C) (3.28)
which says thak denotes a hidden reference, $agnd the result of taking it off frortM satisfies
C.

As an example of satisfaction, let:

M E WD ({uz 0.1 =1 +1;1)), {l—0}) (3.29)
then we have:
M EwxC (3.30)
with
C Lx=0AOVi.{Ix=ilue() =2Z{z=IXA Ix=i+1} (3.31)
using the definition in(3.28) above. To see this holds, let
M E (U AQ.( =1+ 1;1)}, {1 —0}) (3.32)

We have(vl)M' ' M and M'[x: 1] E=C. HereM represents a situation wherés hidden andu

denotes a function which increments and returns the conféntvhereas\’ is the result of taking
off this hiding, exposing the originally local state, ¢f1]1

Despitex’s type being a reference&x.C differs substantially fronvx.C. The former says that
for any reference, which can be either (1) an existing free reference; (2) astiag hidden ref-
erence reachable through dereferences; or (3) a frestemekemwith arbitrary content, the model
satisfiesC. On the other hand, the latter means that for any refer@neich is hidden in the
present modelC should hold: in this casg cannot be a free reference nhame hence (1) is not in-
cluded. Similarly for their dual existential versions.

3.7. Semantics of Content Quantification. Next we define the semantics of the content quantifi-
cation. Let us writeM[x — V] for (vI)(&,a]l — V]) with M = (vI)(§,0) and§(x) = 1. In [6]
(without local state)M = [!X|C is defined a&V.M[x — V] = C which means that for all content
of x, C holds. In the presence of the local state, we simply exteadiie of values to the use of
functional terms in the sense of Definition13.7 as follows:

MEPdC £ vieFMe— L =C (3.33)
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where we writéM[e— L] for (vi) (€, 0]l — V]), assuming\l = (Vi) (€, o), [elea =1 (VI)(LE,0) |
M andM’ ~ (vI)(V,0). Thus we consider an update through the assignment of amakfanc-
tional termL to a location i under local names. With this definition, all the axioms anaurant

rules in [6] stay unchanged.

3.8. Semantics of Reachability. We now define the semantics of reachability. tdde a store and
Sc dom(o). Then thelabel closure of S iro, written Ic(S 0), is the minimum se§ of locations
such that: (1)Sc S and (2) Ifl € S thenfl(a(l)) C S. The label closure satisfies the following
natural properties.

Lemma 3.8. For all o, we have:

(1) SCle(S0); S1 € S impliesle(S;,0) C lc(S,0); andlc(S,0) = Ic(Ic(S,0),0)
(2) 1e(S1,0) Ule(S,0) = 1c(SLUS, 0)

(3) S1 Cle(S,0) and S C Ic(Ss,0), then § C Ie(Sz,0)

(4) there exist®’ C o such thatic(S o) =fl(0’) = dom(d’).

Proof. (1,2) are direct from the definition. (3) follows immediatétom (1,2). For (4), takey' =
Ueie(so)ll = a(1)]. Then obviouslyo’ € ¢ andlc(S o) = fl(a") = dom(a’). 0

For reachability, we define:

MEe—e if [el:sclc(fl([esq),0) foreach(vl)(&,0) =M

The clause says the set of all reachable locations &pmcludese, modulo=.

For the programs in[82.8I(5), we can chdgk— x, f, — xandf. < zhold underfy, : A().(x:=
1), fr:A().Ix, fc:let x=ref(z) in A().x (regardless of the store part).

The following characterisation of # is often useful for jighg fresh name axioms. Below
0 = 01 W0y indicates that is the union ofo; ando,, assuminglom(o;) Ndom(oy) = 0.

Proposition 3.9(partition). M |= x#u if and only if for somé V, | andoy », we haveM ~ (vf)(E -u:
V-x:l, 010 02) such thatc(fl(V),01 W 02) = fl(01) = dom(01) and | € dom(02).

Proof. For the only-if direction, assun® = x#u. By the definition of (un)reachability, we can set

(uptor) M def (V") (£-u:V-x:1, o) such that & Ic(fl(V), o). Now takeo; such thatc(fl(V), o) =

lc(fl(V),01) = fl(01) = dom(o1) by Lemm&3.8. Note by definitioh¢ dom(o;). Now leto =
010z, Sincel € dom(o), we knowl € dom(02), hence done. The if-direction is obvious by
definition of reachability. O

The characterisation says thakifs unreachable from then, up to=, the store can be partitioned
into one covering all reachable names frarmnd another containing

Now we give the full definition of the satisfaction relatiofror readability, we first list the
auxiliary definitions many of which have already been stéefdre.

Notation 3.10.

(@) M[u:€] denotegvl) (€ -u: [€]s 5,0) where we always assumes fresh and the variables and
labels ine are free inM. .

(b) M/udenotegvl)(&,0) if M = (vI)(&-u:V,0); and ifu & fv(M) we setM/u=M.

(c) M[u:N] | M when(NE,o) J (vI")(V,0") andM’ = (VII")(& -u:V, o’) with M = (vI)(&, o)
where we always assunuds fresh and the variables and labelNmare free inM.

(d) M~2M'is generated by: (I/{~M; and (2) if M~ Mg andMp[u : N |} M/, thenM ~ M.
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(e) We writeM[e— V] for (vI)(E,a[l — V]) with M = (vi)(£,0) and[[e]e o = .
(f) We write M-x :a for M = (vi)(&-X : a,0) with M = (v)(§,0) wherex is not inM anda is
closed.

Definition 3.11 (Satisfaction) The semantics of the assertions follows. All omitted casedg de
Morgan duality.
(1) MEe =eif Mu:e]~Mu: e.
(2) M =Ci AG, if M |=Cy andM = C.
(3) M =—-Cif not M |=C.
(4) M =0OC if M. (M~»M > M =C).
(5) M =VvxCif YL e F.(M[x:L] § M' DM =C)
(6) M EwxCif VM'.(v)M' ~M > M'[x:1] =C)
(7) M E vx.Cif for all closed typesa, M-X:a = C.
(8) M |= ['¢C if for eachVL € . M[e+— L] =C.
(9) M = e — e if foreach(vl)(§,0) = M, [&]s o € lc(fl([e1]ls ), 0).
(10) M |= eed = Z{C} if IM'.(M[x: e€] 4 M’ A M =C).
(11) M =ee€ = Z{C}@W if
AM.( Mz:e€] | M A M EC A
VM. (M[z: let X=Winlety=e€inW:=X | M" D M" ~M][z: ()]))

In the defining clauses above, we assutite, e; 2, €) C fv(M), fl(e e 2,€) C fI(M), fv(L) C fv(M)
andfl(L) C fl(M), as well as well-typedness of models and formulae.

In Definition[3.11,[(2) and {3) are standardl (7) is from [2@thers have already been explained. In
(11), the programet X=!Win let y = e€ in W:= Xfirst keeps the content @f ifi X and executes
the applicatiore€; then finally restores the original contentvin By M” ~ M|z : ()] the resulting
modelM” has no state change w.r.t. the original madiglthis means€ only updates aiv Up to

~
~.

This concludes the introduction of the satisfaction relafior the present logic. The properties
of models are explored further in the rest of this sectioniarfs.

3.9. Thin and Stateless Formulae.In this subsection, we introduce two kinds of formulae which
play a key role in the reasoning principles of the preserit|ag particular the proof rules discussed
in the next section.

The first definition introduces formulae in which the thirgiof unused variables from models
can be done as in first-order logic.

Definition 3.12 (Thin Formula) Let T - C andy € dom(I") such that ¢ fv(C). Then we say that
C is thin with respect to yif for eachM typable undef’, M = C impliesM/y = C. We sayC is
thin if under each typing and for eagh¢ fv(C), C is thin w.r.t.y.

In a thin formulaC, reference names which do not appedt ido not affect the meaning @f. There
are formulae which are not thin (we see some examples belawthby are of a very special kind.
In our experience they never appear in practical reasonicigding our reasoning examples ial§ 6.

As examples of formulae which are not thin, when an evalaatismula occurs negatively,
formulae may cease to be thin. Consider the following sadi&in:

VI WA, x: L= 11— 1) E Que()=2z{z=2}
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which means thatl is a function which might return omedaysince a value stored il can be
changed vix (for example, by the command = 2). When we delet& from the above model, the
behaviour ofu will change as follows.

() (U AN 1) = Oue () =2z{z=1}
since nowu alwaysreturns 1 when it is invoked. The above judgement entails:

VI WA)N VL) B Que() =2{z=2}
Hence{ ue () = z{z= 2} is not thin. Similarly{) Jue () = z{z= 0} is not a thin formula.

As noted, formulae which are not thin hardly appear in remsprall formulae appearing in[8 6
are thin; the proof rules always generate thin formulae ftiloim formulae. We shall however work
with general formulae since many results hold for none-thimulae too.

The following syntactic characterisation of thin formulaeiseful.

Proposition 3.13(Syntactically Thin Formula)(1) If T -C, I +y: a anda € {Unit, Bool, Nat},
then C is thin with respect to y.

(2) e=¢€,e#¢€,e— € and g€ are thin.

(3) IfC,C are thin w.rt. y, then @ C', CvC', ¥x*.C for all a, 3x*.C witha € {Unit, Bool, Nat},
3IX.C,VX.C,vx.C,vx.C,0C, ['X|C and es € = x{C'} are thin w.r.t. y.

Proof. (1,2) are immediate. For (3), suppg@@ndC’ are thin w.r.ty, y ¢ fv(C,C’') andM =CAC'.
ThenM = C henceM/y = C, similarly forC’, henceM /y = CAC'. Similarly for other cases. Next
let C be thin w.r.t.y andM = vx.C. Then there existd!’ such thatvl)M’ ~ M andM'[x: 1] =C.
Then(vI)M'/y ~ M/y. By assumptionM'[x: 1]/y = C, and hencéV/y |= vx.C, as desired. Next
let C be thin w.r.t.y. SupposéVl = ee€ = z{C}, i.e. M[z: e€] | M’ andM’ |=C. Then we have
M/y[z: e€] | M'/y. SinceC is thin w.r.t.y, we haveM’ /y |= C, as required. O

The next set of formulae astateless formulagrhose validity does not depend on the state part
of the model, cf. stateless formulae lin([6, 25].

Definition 3.14 (Stateless Formula)C is statelessff C > [1C is valid. We letA,B,A’,B',... range
over stateless formulae.

Proposition 3.15(Stateless Formulaej1) For all C, (C is stateless.
(2) If C is stateless then € OC =0O0C.

Proof. Both are immediate from the definition, see al$o § 5.2 fohentelated results. O

The above proposition says thatdfis stateless the@ holds in any future state starting from the
present state. The following generalisation of this noiaps that the validity of a formula does not
depend on the stateful part of modelcept at specific location3 his notion is used by the axioms
for local invariants later.

Definition 3.16 (Stateless Formula Excepg). "We say thatC is stateless exceX if, whenever
M E C andM~» M such thatM andM’ coincide in their content a¢ 6f reference types, i.e.

(1) M~ (vlg)(&, 0);

(2) M' =~ (vlpl1)(§- &, d’); and

(3) a(&(x)) =’ (§(x)) for eachx; € {X},

thenM’ =C.
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Definition [3.16 uses the internal representation of modeéléernatively we may define am-~
preserving ternwhich has the shape:

lety; =!x in...let Yo =Xy inlet z= N in (X; ‘= VY1;...;% = Yn; 2) (3.34)

then sayC is stateless exceptifwheneverM = C andM[u: N] |} M’ whereN is axX‘preserving
term we have\l’ =C.

Note if X is empty in Definitio 3.16 then the third clause is vacuousnde in this case the
definition means that for eadil such thatM = C we haveM ~» M’ impliesM’ = C, that isC is
stateless.

It is convenient to be able to check the statelessness ofdamirelative to references) syntac-
tically. For an inductive characterisation, we introdulce tollowing notion. As always we assume
the standard bound name convention.

Definition 3.17 (Tame Formulae) The set oftame formulads generated by the following rules:

e = & ande; # & are tame.

e — & ande; #e, are tame.

For anyC, CIC is tame.

if C is tame thervy®.C, 3y*.C, 3x.C, ¥X.C, [ly|C and(!y)C are all tame.
if C,C’ are tame the@ AC’ andC v C’ are tame.

We say thatx is anactive dereferencen C if C is tame andx (with x being free or bound) occurs
neither in the scope @fl, [!x] nor (!x).

The following result (though not used in the present work)adgable for carrying over reasoning
techniques from the logic for aliasing [6].

Proposition 3.18(Decomposition) Suppose C is tame. Then there is tame@h that C= C’ and
C’ does not contain content quantifications except under thpesof].

Proof. The proof follows precisely that ofl[6, 86.1, Theorem 1]. O
We can now introduce syntactic stateless formulae.

Definition 3.19 (Syntactic Stateless Formulad)e sayC is syntactically stateless excepif C is
tame and only names fromafe among the active dereference€in

Proposition 3.20.

(1) If C is syntactically stateless excepthen C is stateless except
(2) If ['X|C is syntactically stateless then C is stateless extept

Proof. (1) is by induction of the generation of tame formulae. Baages and]C are immediate.
Among the inductive cases the only non-trivial case is gtieations of references. SuppoSsds
tame and contains active dereferencesyat ~

e If the validity of C relies ony (i.e. for someM; » which differ only aty we haveM; = C and
M; £ C) thenvy®.C is falsity: if not Yy®.C andC are equivalent. In either case we kn@nis
stateless except ~

o If validity of C relies ony then3y®.C is truth: if not3dy®.C andC are equivalent. The rest is the
same.

e If validity of [!y|C relies on the content of then[!y|C is falsity: the rest is the same. Similarly
for (ly)C.

The cases o AC' andC v C’ are immediate by induction. (2) is an immediate corollargldf O
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4. PROOFRULES AND SOUNDNESS

4.1. Hoare Triples. This subsection summarises judgements and proof rulesdat ttate. The
main judgement consists of a program and a pair of formuld@smg Hoare [17], augmented with
a fresh name callednchor[22,124 | 25],

{Ct M {C}
which says:

If we evaluate M in the initial state satisfying C, then itntenates with a value,
name it u, and a final state, which together satisfy C

Note that our judgements are about total correctness. 8txhave identical shape as those in
[6,125]: the computational situations described is howeute different, in that bot& andC’ may
now describe behaviour and data structures with local.state

The same sequent is used for both validity and provabilitye wish to be specific, we prefix
it with either (for provability) or = (for validity). We assume that judgements are well-typed in
the sense that, ifiC} M, {C'} withT =M :a, A+ Candu:a,l, A+ C' for someA such that
dom(A) N (dom(M)uU{u}) =0.

In {C} M :, {C'}, the nameu is theanchorof the judgement, which shoultbt be indom(I") U
fv(C); andC is thepre-conditionandC’ is thepost-condition Theprimary namesredom(I") U{u},
while theauxiliary namegranged over by, j,k, ...) are those free names@andC’ which are not
primary. An anchor is used for naming the value fridrand for specifying its behaviour. We use
the abbreviatiofC} M{C'} to denote{C} M :, {u= () AC'}.

4.2. Proof Rules. The full compositional proof rules and new structure rulesgiven in Figurél.
In each proof rule, we assume all occurring judgements toddetyped and no primary names in the
premise(s) to occur as auxiliary names in the conclusionwite C™* to indicatefv(C) N {X} = 0.
Despite our semantic enrichment, all compositional pratds in the base logic|[6] (andREcRen
from [23]) syntactically stay as they are, except for:

e adding arule for the reference generation,
e revising JAbg and [App so they use one-sided evaluation formulae ,
¢ adding the thinness condition in the post-condition of theatusion in Casd, [Apd, [Assign
and Deref]
The thinness condition is required when the anchor namesinghe premise contribute @ in
the conclusion. The reason for this becomes clearer whemave poundness . This condition does
not jeopardise the completeness of our logic. All reasoeixgmples we have explored meet this
condition including those in[g 6.
Note that in Add], sinceC’ is always thin with respect twy by Proposition 3.113(1), we do not
have to state this condition explicitly. Similarly fdf] sinceC’ is always thin with respect to.
[Assign useslogical substitutionwhich is built with content quantification to represent subs
tution of content of a possibly aliased reference [6].

def
Cle/ler} = vm(m=e D [lel](leg =m>DC)).
with mfresh (we have a dual characterisation(bsi)). Intuitively C{ex/!e;[} describes the situa-

tion where a model satisfying is updated at a memory cell referred tody(of a reference type)
with a valuee, (of its content type), withey » interpreted in the current model.
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_ _ {C} M1 :m {Co} {Co} Ma :m, {C/[my+mo/ui}
CWaixaiel Ceemyener A4 [CIMy My 5 (C)

{C} M 3y {C'[injy (v)/u]} {CFY M im {C5F} {Colinji(x)/m} Mi =y {C' 5
e ey T3, M) (€] (C2% ™ (CF case M oF 3mi(%)-Mificiz) ' (C)

(€M (Cm(m/ul} o (O} M1im (Co}{Co} Mon {C(m /)
e (M) {C {C) Vs, M) {C)

AN ACIM i {C' {C} M :m {Co} {Co} N:n {men=u{C’} }
[Abg {A} )\x.M{:u {O in}.({C}u{o x}: m{C'}} [ApH {C}MN: {C'}

1 1CIM b (o) [Coft/b)) M [C)_(Colf/bl} M 3, (C')
{C} if M then M; else My :, {C'}

Deref ACHMim {CTM/Ul} (o {CHM i {Co} {Co} N {C'{ln/!mi}}

[Var]

[Proj,]

{CI M, {C} {C}M:=N{C}
] {A-f} AXM 1y {B} {C} M :m {C/}
RecReNa niaxM s (BT R Ozt (M) sy (o (C hu/m] n s A=)

{CVy {C} {C}M:, {C'} aisbaset
ANt ey AW [T M, {voi(fxl.sc:'}(?l R
C > Co {Co}M 4 {Ch} Cy o C (CYM: {C} ugfpn(e)
(Consed——""C} M {C} [SUb% = CTe/ify M {CTe/iT}

{Co} M :m{Cp} xfresh; l"auxiliary

OVX.VI.{Co}xe ()=m{C{} D OVX.Vi.{C}xe()=m{C'}
{C}M:m {C'}

We requireC’ is thin w.r.t. min [Casé and [Deref], andC' is thin w.r.t. m,nin [App, Assigr.

[Cons-Evdl

Figure 1: Proof Rules

In rule [Rel, u#i indicates that the newly generated aeib unreachable from ariyof arbitrary
type X in the initial state: then the result of evaluatikbjis stored in that cefl. Herei is a(ny) fresh
variable denoting an arbitrary datum which already exitedhie pre-state. Just as the standard
auxiliary variable in Hoare-like logics, thisis semantically bound at the sequent level. In a large
proof, we may want each instance @&dl to use a fresh and distinct variable, even though in
practice we usually apply the substitution rule discussgdvbto instantiate this “bound” variable
into an appropriate expression so name clash may not Beceur.

For the structural rules (i.e. those which only manipulasegtions), those given inl[6, §7.3]
for the base logic stay valid except that the universal abstn rule[Aux,] in [6, §7.3] needs to
be weakened g#&wux,] and[Aux,V] in Figure[1. Note that the original structural riksux,|, which
does not have this condition, is not valid in the presenceeuf reference generation. For example
we can take:

{T} ref(3) :y {u#inlu=3} (4.1)

60ne may write the conclusion of this rulef@} ref (M) :y {(C'['u/m] Au#iX)} which may be useful for readability.
In this paper however we intentionally do not introduce thisther abbreviations for the sake of clarity.

"The treatment of a fresh variable as an input bindeRigl[is useful for mechanisation of reasoning, just like awxii
variables in Hoare triples.
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which is surely valid. But without the side condition, we dafer the following from [(4.1).
{T} ref(3) :y {Vi.(u#inlu=3)}

which does not make sense (just substitutior i). This is becausé cannot range over newly
generated names: such an interplay with new name generstimt possible if the target program
is a value, or ifi is of base type.

We also have two useful structural rules added in the prdsgi@t. The first rule is $ub$in
Figure[1, which can be used to instantiate the fresh variablgRe] with an arbitrary datum. The
rule uses the following set of reference names.

Definition 4.1 (Plain Name) We write fpn(e) for the set offree plain namef e, defined as:
fpn(x) = {x}, fpn(c) = fpn(le) = 0, fpn((e €)) = fpn(e) Ufpn(€), andfpn(inj;(e)) = fpn(e).

In brief, the set of free plain names®¢tontains reference namesdthat do not occur dereferenced,
as first described in Definitidn 4.1. As we shall see laterstte condition for ub$ usingfpn(e)
is necessary for soundness.

As an example usage db{ib$, consider:

{1z=2}ref(2) :\m {Im=2A1#m} 4.2)
where we take off by an axiom later. We can then usgup$ to show:
{1z=2}ref(2) :;m {Im=2Az#m} (4.3)

Note m € fpn(m): hence wecannotusem instead ofz in (4.3), which is obviously unsound. As
another use ofgub$, consider a judgement:

{THref(2),ref(2)) :m {!1u(m) = 2AlT(M) = 2ATH(M) # TR(M)} (4.4)
In order to derive[(4]4), we simply combirie_(4.2) with thddualing judgement:
{Im=2Ai#m}ref(2) :;n {Im=2AIn=2A j#n} (4.5)

where we use a different fresh varialjleNe can now replacgwith musing [Sub$, and via [Cong
we obtain:

{Im=2Ai#m}jref(2) \n {!Im=2AIn=2Am#n} (4.6)
from which we can infer (4]4) by pairing, combined with (4.2)

Another significant additional rule i€pns-Evd, also given in Figurgll. This is a strengthened
version of the standard consequence rule, and is used wbemparating the local invariant axiom
of the evaluation formula for derivations of the example§[@ Technically, this is a consequence
of (a) having a proof system by which we can compositionallitdoproofs; and (b) representing
fresh generation of references by disjointness from frestakles. We shall see in examples that it
is useful in reasoning.

The full list of structural rules can be found in Appenfik B.

4.3. Located Judgements.Proof rules which contain an explicit effect set (similaidoated eval-
uation formulae) were introduced in [6] and are of subs#hriitelp in reasoning about programs.
Located Hoare triples take the form:

{CIM  {C'} @€
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where eaclg is of a reference type and does not contain (sub)expressiotie form g B eais
called effect set We prefix it with either- (for provability) or = (for validity) if we wish to be
specific.

The full rules are listed in Figuifd 4 (proof rules) and FigHréstructure rules) in Appendix] B.
All rules come from [[6] except for the new name generatior mmd the universal quantification
rule, both corresponding to the new rules in the basic prgstesn. The structures rules are also
revised along the lines of Figuré 1.

4.4. Invariance Rules for Reachability. Invariance rules are useful for modular reasoning. A
simple form is when there is no state change:

{C}V n{C'}
{CACo}V im {C' ACo}

Alternatively if a formula is stateless it continues to hosteispective of state change.

{CtM:m{C}
Inv-Stateleg
[ ]S{C/\DCO}M :m {C' AOCo}
When it is formulated with (un)reachability predicateswewer, one needs some care. Since reach-
ability is a stateful property, it is generalhot invariant under state change. For example, suprose
is unreachable frong; after runningy := x, x becomes reachable fropn Hence the following rule

is unsound.

{C}M:m{C'}
{Cre#e} M {C Aet€}
From the following general invariance ruly], we can derive an invariance rule for #.

(I {CtM:m{C}@W  GCyistame
{CA[WICo} M :m {C" A ['W]Co} @
In [InV], the effect setvgives the minimum information by which the assertion we wishdd,Co,
can be stated as an invariant sirjb&|Cy says thatCy holds regardless of the contentwf Thus
Co can stay invariant after execution ldf. Unlike the existing invariance rules as found in standard
Hoare logic or in Separation Logic [56], we need no side ciioli“M does not modify stores
mentioned inCy”: C andCy may even overlap in their mentioned references, @mbes not have
to mention all referencesl may read or write.
The following instance oflpv] is useful.

{C} M, {C'}@x no dereference occurs @ ~
{CAX#E M i {C' A x#E} @X

In [Inv-#], we note[!X|x#€& = x#€is always valid ifecontains no dereference, cf. Proposition 5.9
3-(5) later. Henca#€is stateless exceptat The side condition is indispensable: consifiéx:=
x{T}@x (which is typable with recursive types), which does not impt#!x}x := x{x#!x} @x.

One of the important aspects of these invariance rules ighbaeffect set of a located judge-
ment or assertion can contain a hidden name — a name whictebascbeated and which is (par-
tially) accessible. For example, we can infer (usjbegtRef in §[BJ)E

{ly=h}let x=ref(2) inly = x:y {vx.(lh=xAlx=2Aly = hA x#i)}@h

[Inv-Val]

[Unsound-Iny

(unsound)

[Inv-#]

8 This restriction is for a simplification of the interpretati and can be taken offéiS interpreted in the pre-condition.
9Since Y is stated in the pre-condition, we can also WHE} let x = ref(2) in ly = x:y {vx.(Ix = 2Ally =
XAX#i)}@ly, cf. footnotd 8.
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4.5. Soundness.Let M be a modelvi)(&,0) of typel, andl" - M : a with u fresh. Thervalidity

E {C}M :, {C'} is given by (withM including all variables iM, C andC’ exceptu):
E{CIM{C) £ v (MEC > (MuM] LM A M =C))

where the notatiodv([u: N] |} M’ appeared in Definition 3.11(c). This is equivalent to, it

A().M:

YM.(M[m: V] = O{C}me()=u{C'}) 4.7
Similarly the semantics of the located judgement:
F{C} My {C}@X (4.8)

is given through the corresponding located assertiongubia following term (lekz be fresh):

V 2" 1et z= ref(0) in A().if Iz=Othen let m= M in (z:=lz+ 1;m) else Q  (4.9)

whereQ is a diverging closed term (in fact any closed program work)e use ofz is to pre-
vent leakage of information frorm after the evaluation: after evaluatiomcan never reveal any
information thus it is the same thing as evaluatvigonce.

With thisV we set the definition of (418) as follows:

YM.(M[m: V] = O{Ctme () =u{C'}@x) (4.10)

Among the proof rules the only non-trivial addition from thieceding systems (in fact the only dif-
ference) is the rule for reference generation. For its snessiwe use the free plain names as defined
in Definition[4.1 (recallfpn(e) is the set of reference nameserthat do not occur dereferenced).
For free plain names we note:

Lemma 4.2. Let u¢ fpn(e). Then for all M, with u fresh, we havév{[u:ref(M)] | M’ implies
M = u#te.
Proof. SupposéVl = (V)(€,0) andM[u:ref(M)] 4 M. ThenM’ = (vil )(§-u:l,0-[I — V]) with
uegfv(§), | ¢fl(o,§) and(v )(ME 0o) 4 (Vlo)(V,0). Then one can chec[[i]]z.u;m.“HV] = [ile.o
and[lifs g € lc(l,0- [l = V]) =Ic(I, [l = V]). O
We can now establish:
Theorem 4.3(Soundness)- {C}M :, {C'} impliesE= {C}M :, {C'}.
Proof. Except Rel, all rules precisely follow [6, §8.2] (except for the usetbinness which allows
the same reasoning as in [6, 88.2] to go through). Red]we have, withl fresh:
MEC = MMMJ{M AMEC Hypothesis
=  Mm:M]uiret(m)] § vVO)M" A M" =C' Alu=m
with M” E' M [u: 1]l — V]

=  Muiref(M)] | (vVD)OM"/m A M"/mEC'[Im/u] A u#i Lemmd4.R

= M'/mx:1]EC['m/ul A u#i A x=u

=  (VOM"/mEvx.(C'['m/u] A u#i A x=u)
See Appendik BJ1 for the full proofs. O
Theorem 4.4(Soundness)t {C}M :, {C'} @€ implies= {C}M :, {C'} @¢€.

Proof. As above (and for remaining rules as in [6, 88.2]). See AppeBdl for [Rel and the
invariant rules. O
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5. AXIOMS AND LOCAL INVARIANTS

This section studies the basic axioms for the logical casstr including those for local state.

5.1. Axioms for Equality. Equality, logical connectives and quantifiers satisfy thedard axioms
(quantifications need a modest use of thinness, see Priopdsi8 later). For logical connectives,
this is direct from the definition. For equality and quangfion, however, this is not immediate,
due to the non-standard definition of their semantics.

First we check the equality indeed satisfies the standadires<for equality. We start from the
following lemmas.Clu/v;v/u] denotes a simultaneous substitution.

Lemma 5.1. LetM have typd .

(1) (injective renaming) Letw € dom(I"). ThenM = C iff M[u/v;v/u] = C[u/v;Vv/u].

(2) (permutation) Let w € dom(I"). Then we haveV = C iff ({)) M = Clu/v;v/ul.

(3) (exchange) Letw ¢ fv(e,€). Then we have[u:€g][v:€] = C iff M|v:€][u: €] =C.

(4) (partition and monotonicity) LeM = (vi)(&,0) be of typel” and M’ = (vil")(§-&',0-0') be
such that(fl(a’) UfI(E')) N {i’} = 0. Further letl" - C. ThenM [= C iff M = C. In particular
with u ¢ fv(C) we haveM |= C iff M[u:V] = C.

(5) (symmetryM = e, = e iff for fresh and distinct w: M[u:e;][v:ex] ~ Mu:e][v:ey].

(6) (substitution)M[u:X][v: €] ~ Mu:X][v:e[u/X]]; and M[u: €][v: €] ~ M]u:€|[v: € [e/u]].

Proof. All are elementary, mostly by (simultaneous) inductionGn O

In (@) above, note that the extended parf\it on the top ofM may refer to free labels dfl but
(sinceM is a model) no labels iVl can ever refer to (free or bound) labelsNti.
We are now ready to establish the standard axioms for egualit

Lemma 5.2. (axioms for equality)For any modelM and x, y, z and C:

1) MEXx=Xx, MEXx=yDy=x andM = (X=YyAy=2) DX=2.

(2) M= (Cxy) Ax=y) D C(x,%).

where Gx,y) indicates C together with some of the occurrences of x andije ®(x, x) is the result
of substituting x fory, i.e. X, y)[x/y| see [33,82.4].

Proof. For the first clause, reflexivity is becausgu: x| ~ M]u:x], while symmetry and transitivity
are from those of-. For the second clause, we proceed by inductio@.owe show the case where
Cise =e. The cas&€ is e; — & is straightforward by definition. Other claims are by indoict
onC.
It suffices to provéVl = x =y andM = C imply M = C[x/y].
MEx=y= Mu:xX|[v:iy] = M[u:y][v:X] (5.1)
= M[u:X][v:y][w:g] =~ Mu:y][v:X][w:g] (5.2)

Here [5.1) is by Lemmia8[1.5 arld (b.2) follows from the coegay of~.

Mlu:X|[v:y][w:g] =~ Mu:x][v:y][w:e[v/y] (Lem.[5.1(®))
~ Muyllvixw:elv/y] G.1)
~ Mluzyllvix[w:e[v/x[v/y]] (Lem.[5.1(6))
~ Mluzyllvix[w:e [x/x][x/y]] (Lem.[5.1(6))
~ Mlw:ax/X[x/ylj[u:y][v:x] (Lem.[5.1(3))
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MI=er=e = MuxXvy] = e =& (Lem.[5.1(#))
= Mu:x|[v:y][w:er] = Mu:X][v:y][w: e)]
Thus we get
Mw: e [x/x][x/y]][u:y][v:X] ~ M[u:x][v:y][w:e]
~Mu:X|[viy][w:e]
~ Mw:ez[x/x][x/yl][u:yl[v:X]

This allows to conclude to:
Miw: e [x/x][x/y]] ~ Mw: e2[x/X] [x/y]]
which is equivalent t\l = C(x,x), as required. O

5.2. Axioms for Necessity Operators. We list basic axioms for Necessity and Possibility Opera-
tors. Below recall thatyC & ~(0-C).

Proposition 5.3(Necessity Operatar)
(1) OC1D0Cy) DOC D OC; OCOC, OOC=0C; CD $C. HencelC D C.
(2) (permutation and decomposition)
(@ Oe=e=¢ =6 andle; # & = e # & if g does not contain dereference.
(b) O (Cl/\Cz) =0C,A0C.
(c) OCvOC, D O(CLVECy).
(d) OVx.C D> ¥x.OC anddvx.JC =OVx.C.
(e) IxOC > O3Ix.C andO3IX*.C = Ix*.0OC witha € {Unit, Bool,Nat}.
() Ovx.C =wvx.OJC andvx.JC D Ovx.C.
(g) Odx.C=3ax.OC; anddVvXx.C = ¥x.OIC.
(h) d[!I¥C =['xOC=0OC and(!x)OC =0OC > O{!x)C.

Proof. See Appendik C]2. O

By the second axiom in (d), we can derifresh = freshg in the last example of & 2.3.

The following proposition clarifies the interplay betwdelC and evaluation formulae, and is
useful in many examples. Recall below tleate’ 1} (defined in Notatiofh 2]1) means the application
leads to the divergence.

Proposition 5.4(Perpetuity) With z fresh[1C = ¥x,v.fX=Y xX (f ex D fex=2z{(JC}). Again
with z fresh[JC = ¥x,Y.f%=Y xX (fex|D fex=2z{C}).

Proof. Throughout we us€lC = OOC. For the first equivalence suppodé = OC and M|f :
Lj[x: L'][z: fx § M'. Then step by step we readtt’ = (JC by the definition of JC. For the
other direction, supposk( = [1C and for allN,N’, we haveM[u: N][w: N’| |} M'. By assumption
M[f :A()-N][z: f()][w: N']§ M such thatvl’ = C with M~»M’'. SinceM]u: N]jw: N'] =C, we
haveM[u: N] = 0C, as required. For the second equivalence, the “only-ifédion is immediate,
while the “if” direction is proved as in the previous “if” diction, observing that we can combine
an arbitrary number of applications into a single one. O
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The first logical equivalence of Proposition15.4 allows usdy that ifC1C holds and if a procedure
is executed and if the evaluation terminates th&h(hence in particula€) holds again. In essence,
this is why a specification usingC (or the equivalent) is useful: it allows us specify a behario
which holds regardless of execution of other proceduresrasdlting state change. The second
logical equivalence shows that, in addition, we can in fagtné[J C via evaluation formulae (which
in fact directly corresponds to the semantics 1 in §[3).

Next, the following proposition says that located assegiare derived constructs, definable by
combining non-located assertions and content quantiicati

Proposition 5.5(Decomposition of Located Evaluation Formula)xey = z{C}@W =
yuUnit=Unit (ye () || 5 xey=2{C A (IF)ue () |})

Proof. In the following discussions we considertd be a singletonv for simplicity. First assume

the left-hand side holds for a model saf. Then the application only changes the contenivpf

hence ifue () |} then by restoring the content of we again havese () ||. Secondly assume the
right-hand side holds but the left-hand side does not. Theretmust be some which uses this

difference atv to change its diverging behaviour, hence a contradiction. O

This decomposition uses content quantification to definatémt evaluation formulae where the
effect set is restricted to specified finite locations. We ganeralise located assertions to those
which can specify the range of effects by formulae, whictoimetimes useful. Such formulae can
also be decomposed in the same way using an extended formteht@uantification.

5.3. Axioms for Hiding. Next we list basic axioms for hiding quantifiers. The mostesnent ax-
iom is about the elimination of hiding quantifiers, introéddy reference generation. To formulate
this, we need some preparation.

Definition 5.6 (Monotone/Anti-Monotone Formulael is monotonaf M = C andl ¢ fI(C) imply
(V)M = C. C is anti-monotonéf —C is monotone.

The proof of the following proposition is similar to Proptien[3.13.

Proposition 5.7(Syntactic Monotone/Antimonotone Formulae)

(1) T,F,e=¢€,e#¢€, e— € and e#€ are monotone.

(2) If C,C’ are monotone, then &C', CVvC/, vx?.C for all a, 3x*.C with a € {Unit, Bool, Nat},
3IX.C, VX.C,vx.C,vx.C,OC, ['X|C, and e € = x{C'} are monotone.

(3) The conditions exactly dual to 1 and 2 give antimonotone tidaim

Proposition 5.8(Axioms forV, 9 andv). Below we assume there is no capture of variables in types
and formulae.

(1) (introduction)C D vx.C if x & fv(C)

(2) (elimination)vx.C =C if x ¢ fv(C) and C is monotone.

(3) For any C we have © 3Ix.C. Given C such that g fv(C) and C is thin with respect to x, we
havedx.C > C.

(4) For any C we hav&'x.C D C. For C such that ¥ fv(C) and C is thin with respect to x, we have
C o WwxC.

(5) vX.(CL ACy) D VX.Cy AVX.Co.

(6) vx.(C1VCy) =Vx.CyVIXCo.

(7) vy.¥x.C D ¥x.vy.C

(8) Ix.vy.C D vy.Ix.C and3Ix?.vy.C = vy.3x*.C witha € {Unit, Bool, Nat}.
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(9) vy.ux.C D vx.vy.C; andvy.vx.C = vx.vy.C.
(20) vy.IX.C = IX.vy.C; andvy.vx.C D VX.vy.C.
(11) vy.['X|C D [IX]vy.C andvy.({!x)C D (Ix)vy.C

Proof. See Appendik Cl4. O

For (1) and (2), it is notable that we dwt generally haveC D vx.C even ifC is thin. Neither
vx.C D C with x ¢ fv(C) holds generally.

For the counterexample &f O vx.C without the side condition, 1ét( def ({x: 1, X0}, {l—
5}). ThenM = x =X but we donothaveM = vy.y = X sincel is certainly not hiddenxis renamed
to freshy to avoid confusion).

def

For the counterexample ok.C D C with x ¢ fv(C), letM = (vI)({u:A().!l}, {I —5}). Then
we have:
MpEOue () =2z{z=5}
Also we have:
ME (vx)Que () =2z{z=0}
with M[x: 1] = Que() = z{z=0}. If we applyvx.C =C to the above formula, we havg =
Que () =2z{z= 0}, which contradicts\ = O{T}ue () = z{z= 5}.

Note this shows that integrating these quantifiers with thedard universal and existential
quantifiers lets the latter loose their standard axiomsimMauirig the introduction of the-operator :
from Propositiod 5.8 (1,2,3), eitheix.C > vx.C or vx.C D Ix.C (with x typed by a reference type)
does not hold in general (¢ fv(C) andC is thin, thendx.C O C D vx.C; and ifx ¢ fv(C) andC is
monotone, therx.C 5 C D Ix.C).

The content quantifiers also have useful axioms. Appdndidi§ts a selection.

5.4. Axioms for Reachability. We start from axioms for reachability. Note that our typedude
recursive types.

Proposition 5.9 (axioms for reachability) The following assertions are valid.

Q) )x—=% (2)X—>YyAYy—Z D X—Z;

(2) 1) y#xX* with a € {Unit,Nat,Bool}; (2) x#y = X#VY; (3)X#AWAW — U D x#u.

3) (1) (%) =Y = xu—=YyVxa—Y; (2 inji(X) =y = x—=y; @) x— y*@ 5 x—ly;
(4) xRef@ s yAx#£y DIx—y; (5) [IXy — X = y— xand[IX|x#y = x#y.

Proof. 1, 2 and 3.(1-4) are direct from the definition (e.g. for 3¥2) observd € fl(inj;(V)) iff

| € I(V)). For 3-(5), suppos@( =y — x, and takeM’ which only differs fromM in the stored value

at (the reference denoted by)SinceM =y — x holds, there is a shortest sequence of connected
references frony to x which, by definition, does not includeas its intermediate node. Hence this
sequence also exists M, i.e. M’ =y — X, proving[!x]y — x = y < x. Similarly, we can prove
[IX|x#y = x#y. 0

3-(5) says that altering the contentofloes not affect reachability x. Note [!x]y#x = y#x is not
valid at all. 3-(5) was already used for derivifigv-#] in §4.2 (notice that we cannot substitute !
for yin [IX]x#y to avoid name capture![6]).

Let us sayu is finite if it does not contains an arrow type or a type variable. Weesay € is
finite if e has a finite type.

Theorem 5.10(elimination) Suppose all reachability predicates in C are finite. Themdlexists
C’ such that C= C’ and no reachability predicate occurs if.C
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Proof. By Propositiori 5.8. See Appendix C.5. O

The elimination of reachability predicates crucially usgse information in logical terms: as a
simple example consider— y wherex has typeRef(Ref(Nat)) andy has typeRef(Nat). Then we
havex — y =!lx =y. The precise inductive elimination rules are given in Apir(C.5.

For analysing reachability with function types, it is udefu define the following “one-step”
reachability predicate. Below is of a reference type.

MEese if [elso (el foreach(vi)(E,o) ~ M (5.3)

The predicate > I’ meand’ occurs in any-variant of the progrant.
The following is straightforward from the definition.

Proposition 5.11(Support) (vI)(§,0) =x>1"iff I’ e N{fl(V) |V = &(X)}.

The latter says thdt is in the support [12, 51, 59] of
We setx>"y for n > 0 by:

xxly = x=y
xely = xpy
x>Mly = Jz(x>zalze"y) (n>1)

By definition, we immediately observe:
Proposition 5.12.x —y = In.(xp>"y) = (X=yV X>yV IZ(X>ZAZAYANZ<Y)).

Propositio 5.12, combined with Theorém 3.10, suggestsftiva can clarify one-step reachability
at function types then we will be able to clarify the reachigbielation as a whole. Unfortunately
this relation is inherently intractable.

Proposition 5.13 (undecidability of> and ). (1) M = f%® > x is undecidable. (2) M =
fo=B —, x is undecidable.

Proof. For (1), letV def ().if M= () then| else Ref(0) with a closed PCFv-teri of type Unit.
Thenf :V,x: | E f>xiff M |}, reducing the satisfiability to the halting problem of PGEwms.
For (2), take the samé so that the type dfandx is Ref(Nat) in which case> and— coincide. O

The same result holds for call-by-valfg-equality. Propositio 5.13 indicates inherent in-
tractability of>> and—.

However Propositioh 5.13 does not imply that we cannot ahiaeful axioms for (un)reacha-
bility at function types. Next, we discuss a collection ofcams with function types. First, the
following axiom says that ik is unreachable fronfi, y andw, then the application of to y with the
effect setwnever exports.

Proposition 5.14 (unreachable functions)or an arbitrary C, the following is valid with i ana
fresh:

O{CAx#fyW) fey=2{C'}@WF D OVX,i*.{CAx#TfiyW} f ey=2{C A x# fiyal} @W
Proof. See Appendik CI6. O
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5.5. Local Invariants. We now introduce an axiom for local invariants. Let us firshgider a
function which writes to a local reference of base type. Ewaigrams of this kind pose fundamental
difficulties in reasoning, as shown in [34]. Take the follogiprogram:

compHide %M et x= ref(7) in Ay.(y >!x) (5.4)

The program behaves as a pure functigny > 7). Clearly, the obvious local invariank &= 7
is preserved. We demand this assertion to survive underaspinvocations okompHide: thus
(naming the functioru) we arrive at the following invariant:

Co & 1x=7 A Ovy.{Ix=Tluey=z{Ix = 7} @0 (5.5)

Assertion [(5.b) says: (1) the invariant + 7 holds now; and that (2) once the invariant holds, it
continues to hold for ever (notecan never be exported due to the typey@ndz so that onlyu
will touch x). Using this assertior;ompHide satisfies the following with fresh:

{T}compHide :y {vx.(x#i* A Cy A C1)} (5.6)

G E Ow.{Ix=Tluey = z{z= (y> 7)} @0. (5.7)

Thus, notingZy is only about the content of(in fact it is syntactically stateless excegh the sense
of Definition[3.19, we can conclud&, continues to hold automatically over any future computatio
by any programs. Hence we can@gltogether withx:

{T}compHide :y {OVyuey=2z{z=(y>7)}} (5.8)

which describes a purely functional behaviour.
Now we leave the example and move to the general case, stifguthe underlying reasoning
principle as an axiom. Let z be fresh. We define:

Inv(U,Co,X) & Co A (OWyi{Coluey D OWyi{Coluey=2{Co A %#2))  (5.9)

whereCp D X#iy. Inv(u,Co,Xx) says that currentl{y holds; and that iCy holds, applyingu to y
results in, if it ever converge§g again and the returneds disjoint fromX. The axiom also uses:
x> g ¥ vz(xszoze {§)) (5.10)

Thusx —* § says that all references reachable frgrare inside{y}. We write X—* ¥ for the
conjunctionAjx <—* ¥. The axiom follows.

Proposition 5.15(axiom for information hiding) Assume g= Cy A X#iy A § —* X, G is stateless
exceptX, C is antimonotone, Gs monotone,,im are fresh andX,§} N (fv(C,C") U{W}) = 0. Then
the following is valid:

(AIH)  VX.Vi*X.me ()=u{(VKIG.E1) AE} D VX.Vi*X.me()=u{E2AE}
with
o E1 & Inv(u,Co,%) A DIWYi.{CoACIUe y=2{C'} @WK
e £ % Ovy.{Cluey=27{C'}@ and
e E is an arbitrary formula.
Proof. See Appendik C]7. O
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(AIH) is used with the refined consequence f@ens-Eval (cf. Figure[1l) to simplify fromE; to Ej,
eliminating hidings. Its validity is proved using Propa=it[3.9. The axioftf] says:

if a function u with fresh reference is generated, and if it has a local invariantyC

on the content ofjxthen we can canceld@ogether with x

Note that:

e The statelessness G exceptx'ensures that satisfaction 6} is not affected by state change
except akand

e The quantificatiord§.E; of § in (AIH) allows the invariant to contain free variables, extending
applicability of the axiom, for example in the presence ofwiar references as we shall use in
gd for safeEven. § —* X ensures thag are contained in the-Aidden part of the model.

Coming back tocompHide, we take, forAIH):

(1) C;to be k =7 which is syntactically stateless except

(2) Co to beCy A x#i;

(3) Sandw empty,

(4) bothC andE to beT (which is anti-monotonic by Propositién 5.7, and
(5) C' to bez= (y > 7) (which is monotonic by the same proposition),

thus arriving at the desired assertion.
(AIH) eliminatesv from the post-condition based on local invariants. Theofelhg axiom also
eliminatesvx, this time solely based on freshness and disjointness of

Proposition 5.16(v-elimination) Let x¢ fv(C) and mi, X be fresh. Then the following is valid:
VX, i%. me () =u{V&.([!XJICAX#uUi*)} D me()=u{C} (5.11)
Proof. See Appendik C]8. O

This proposition says that if a hidden (and newly createchtionx in the post-state is disjoint from
any asserted data including the used function itself angetho the pre-state, then we can safely
neglect it (in this sense it is a garbage collection rule wierare not concerned with newly created
variables).

The following axiom stipulates how an invariant canttznsferredby a function (caller) which
uses another function (callee) when the latter only affacdst of references unreachable from the
former.

Proposition 5.17(invariant by application) Assume gis stateless except & Cy D X#y and y¢
fv(Cp). Then the following is valid.

(OVY.{Co} f ey=2{Co}@X A TI{C}ge f =2{C'}) D O{CACyoAK#g}ge f =2Z{CoAC'}
Proof. See Appendik C]9. O

The axiom says that the result of applying a functipdisjoint from each local referencein X, to
the argument functiorf which satisfies a local invariant exclusivelyxatgain preserves that local
invariant.

Propositiori 5.7]7 may be considered as a higher-order veo$iBropositiori 5.14 and in fact is
closely related in that both depend on localised effectsfohation at references.

10we believe that the monotonicity & and anti-monotonicity of are unnecessary in Propositlon §.15, though the
present proof uses them.
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6. REASONING EXAMPLES

This section demonstrates the usage of the proposed logiegh concrete reasoning examples.

6.1. New Reference Declaration.We first show a useful derived rule given by the combination of
“let” and new reference generation.

{C}M (i {Co} {Co['x/m Ax#€E} N1y {C'} x¢ fpn(E)
{C} let x=ref(M) in N :, {vx.C'}
whereC' is thin w.r.t. m. Abovefpn(e) denotes the set dfee plain namesf e which are reference

names ire that do not occur dereferenced, given in Definifion 4.1. Tle&aning ofx#€& was given
in Notation[2.1 in € 2.8. The rule reads:

Assumg1) executing M with precondition C leads t@,Gvith the resulting value
named m; and2) running N from @ with m as the content of x together with
the assumption x is unreachable from eaghl@ads to C with the resulting value
named u. Then runninget x = ref(M) in N from C leads to Cwhose x is fresh
and hidden.

The side conditiorx ¢ fpn(g) is essential for consistency (e.g. without it, we could assx#X,
i.e. F); andvx.C’ cannot be strengthenedx#i A C’ sinceN may storex in an existing reference.
The use of generaiS also essential since the we can start from total disjesgr(separation) and
reach possibly partial disjointness in the conclusion. thiz purpose we need to have explicité
initially, which may possibly be weakened in the post-ctindiC through the actions .

The rule directly gives a proof rule for new reference detlan [34)48| 56]new X:=M in N,
which has the same operational behaviout@sx = ref(M) in N.

We can derivéLetRef as follows. Belowi is fresh.

[LetRef

1. {C} M :m{Co} (premise)
2. {Co['x/m] Ax#E} N :y {C'} with x¢ fpn(€) (premise)
3. {C} ref(M) ix {VY.(Co[!X/m Ax#i AX=Y)} (1,Ref)

4. {C} ref(M) ix {Vy.(Co[!X/m| AX#HEAX=Y)} (Subsn-times)

5. {Co[!'x/m Ax#EAX =y} N:y {C'Ax=y} (2, Invariance)

6. {C} let x=ref(M) in N, {vy.(C'Ax=Yy)} (4,5,LetOpen)

7. {C} let x=ref(M) in N :, {vxC'} (Conseq)
[LetOpetis the rule for let to open the scope:
{C} M {W.Co}@& {Co} N1y {C}@&
{C} let x= M in N, {v§.C'} @& &
whereC’ is thin w.r.t. x. [LetOpei and [Sub$ (both rules being for located judgements) are found
in Figure[6 in AppendiXB, and their soundness is proved inexufix[B.3.

[LetOpen
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6.2. Shared Stored Function. We present a simple example of hiding-quantifiers and uhgeac
bility using incShared in (1.2) from §1.

incShared & a:= Inc;b:=la;c1:=('a)();c2:=(!b)(); ('c1+!c)
with Inc £ 1et x = ref(0) in A().(X:=Ix+1;!x). Naming itu, the assertiorvx.inc’(u,x,n)
(defined below) captures the behaviouriat:

inc(xu) = OVj{x=jlue()=]+1{Ix=j+1}@x.

€

inc’(u,x,n) = Ix=nAinc(x,u).

The following derivation forincShared sheds light on how shared higher-order local state can be
transparently reasoned in the present logic. For brevityward with the implicit global assumption

thata, b, c1, ¢, are pairwise distinct and safely omit an anchor from judgeierhen the return value
is of unit type.

1. {T} Inc:y {vxinc'(u,x,0)}

o
=+

2. {T}a:=Inc {vx.inc'('a,x,0)} (1, Assign)

3. {ind'(la,x,0)} b:=!a {inc'(!a,x,0) Ainc’(b,x,0)}  (Assign)

4. {ind'(la,x,0)} c1 := ('a)() {ind'(!a,x,1)Alc; =1}  (Assign)
5. {ind'(Ib,x,1)} c2:= (b)() {inc'('b,x,2)Alc, =2}  (App etc.)

6. {lcy = 1Nl =2} (ler) + (Iep) u {u=3} (Deref etc.)
7.{T} incShared :, {vx.u=3} (2—6, LetOpen)
8. {T} incShared:, {u=3} (Conseq)

Line 1 is by |LetRe}. Line 8 uses Propositidn 3.8(2)x.C > C.
To shed light on how the difference in sharing is capturedhfarences, we list the inference
for a program which assigrdistinctcopies ofinc to a andb,

incUnShared %' a:=1Inc;b:=Inc;cy:= ('a)();c2:=("b)(); (e +!ep)
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This program assigns @mandb two separate instances Dic. This lack of sharing betweemand
bin incUnShared is captured by the following derivation:

1.{T} Inc :m{vx.inc(u,x,0)}

2.{T} a:=Inc {vx.inc(la,x,0)}

3.{inc(!a,x,0)} b:= Inc {vy.inc’(0,0)}

4.{inc'(0,0)} z, := (1a)() {inc'(1,0)Alz = 1}

5{inc'(1,0)} z»:= ('b)() {ind (L, )Nz = 1}
6{!lzn=1WN2z=1} (1) + (1) :w {u=2}

7.{T} incUnShared :, {vxy.u =2}

8.{T} incUnShared:, {u=2}

Aboveinc’(n,m) i inc(a,x,n) Ainc(!b,y,m) Ax #y. Notex # y is guaranteed byLetRef. This

is in contrast to the derivation famcShared, where, in Line 3x is automatically shared after
“b:=!a” which leads to scope extrusion.

6.3. Memoised Factorial. Next we treat the memoised factorial {1.4) (frami [49]) in theoduc-

tion.
memFact &' let a= ref(0), b=ref(1) in
AX.if x=lathen !belse (a:=x;b:=fact(x);!b)
Abovefact is the standard factorial function.
Our target assertion specifies the behaviour of a pure fattor

Fact(u) M Ovxuex= y{y=x}@0.
The following inference starts from thet-body ofmemFact, which we namé/. We set:

Eia OVxi.{Co}uex=y{Cp A ab#ty} @ab
Eip Ovxi.{Co ACluex=Yy{C'}@ab

and we se€ to beab#ix A 'b=(a)!, Cto beT, andC’ to bey = XI. Note that b=('a)! is stateless
exceptab by Propositioh 5.9(5); and that, by the typexandy beingNat and Propositiof 519 2-(1),
we haveab#x = ab#y=T.

Q.
[0
pLN
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We can now reason:

1{T}0:a{a=0}@0 (Const)
2{a=0}1;p {b=a}@0 (Const)
3T}V {OWxi.{Coluex=y{Cy A C'}}@D (Abs)
4{T}V :y{E1aNEp} @0 (3, Conseq)
5.{ab#inlb=la)l } V :y {ab#inlb=(1a)l AEja AEip}@0 (4, Inv-#, Inv-Val in §4.4)
6.{T} memFact :, {vah (Co A Ea A Ep)} @0 (1,2,4, LetRef in §6]1)
7.me()=u{vab.(Co A Eza/\ Eqp)} D me()=u{Fact(u)} (*)
8.{T} memFact :, {Fact(u)} @0 (6,7,ConsEval)

Line 4 uses the axiorfC} f e x=y{C1AC2}@W D Ai—12{C}f ex=y{C;}@W (in [6]). Line 7 uses
(AIH).

6.4. Information Hiding (2): Stored Circular Procedures. We next consider stored higher order
functions which mimic stored procedures.

We start with a simple one,ircFact from [25], which uses a self-recursive higher-order local
store.

circFact % x:= Azif z=0then1elsezx (X)(z—1)
def

safeFact = letX=ref(AyYy) in (circFact;!X)
In [25], we have derived the following judgement.
{T}circFact i, {CircFact(u,x)}@x (6.1)
where

CircFact(u,x) &f Ovn{Ix=u}!xen=z{z=nIAIx=u}@0 A !X=u

which says:

After executing the program, x stores a procedure which @oalculate a factorial
if X stores that behaviour, and that x does store the behaviou

We now showsafeFact namedu satisfied~act(u). Below we use:

CR Lef Ovn.{!Ix=u}!'xen = z{!Ix=u}@0
Ch, = 0OVn{lx=u}'xen=z{z=nl}@0
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(note thatx#z = T andx#n = T by Propositiort 519 (2)-1).
L{THyy m{T}@0
2{T}circFact; !Ix: {CircFact(u,x)}@x

3{T}circFact; !Xy {IXx=u A CRy A CRy}@X (2, Conseq)

4. {x#i}circFact; Xy {X#iIAIX=UACRACR}@x (3, Inv-#)

5{T}safeFact :y {VX.(CoACRACR,) }@0 (4, LetRef)
6.me ()=u{vx.(Co ACRACRy)} D me()=u{Fact(u)} (%)
7.{T}safeFact :, {Fact(u)} @0 (5, 6, ConsEval)

Line 1 is immediate. Line 2 id(6.1). Line &x) is by (AIH), Proposition 5.15, settinGo =

x#ti Alx=u,CE EY Tandc € y—x.

6.5. Mutually Recursive Stored Functions. Now we investigate the program from (IL.6) in the
introduction. The reasoning easily extends to programshviase multiple locally stored, and
mutually recursive, procedures.

We first verify the followingmutualParity (the let-body).

mutualParity ¢l x:=An.if n=0then f else not((ly)(n—1)); (6.2)
y:=An.if n=0then t else not((!x)(n—1)) '

Then we have:
{T}mutualParity:, {3gh.lsOddEvefgh,!xly,xy,n)} (6.3)
where, withEver(n) = 3x.(h=2 x x) andOdd(n) = Ever(n+1):

IsOddE vefgh, wu, xy, n) &f (IsOddw, gh,n,xy) A IsEverfu,gh,n,xy) A !Ix=gAly=h)
IsOdd(u, gh, n, xy) = O{Ix=gAly=h}luen=z{z=0dd(n) A Ix=gA ly=h}@xy
ISEveriu,gh,n,xy) = O{!x=gAly=h}luen=2z{z=Ever(n) A Ix=gA !ly=h}@xy
The detailed derivations are given in AppendixID.1. Abts@dd(u,gh, n,xy) says that
Ix and!y remain unchanged, and that u checks if its argument is odd.

Similarly for ISEverfu,gh,n,xy). Then abovésOddEveiigh,wu,xy, n) says that

X stores a procedure which checks if its argument is odd ibyesta procedure
which does the dual, and x does store the behaviour; and yltily.

Note that sOddandIsEven the effect set igy sincex andy are free and assigned to the abstractions
in mutualParity.
Our aim is to derive the judgement feafeEven given below:

safeEven = let x=ref(An.t), y=ref(An.t) in (mutualParity;ly) (6.4)
We start from[(6.8) (the case feafe0dd is symmetric).
{T}safeEven:, {Vn.Ouen=z{z= Evenn)}@0}
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We first identify the local invariant:
Co & IX=gA ly=h A IsEverth,gh,n,xy) A xy#ijn A gh—°Xxy
Note we have a free variable SinceCy only talks aboug, h and the content of andy, we know
IXx=gA ly=h A IsEverth,gh, n,xy) is stateless excepty, andxy#n = xy#z= T by Proposition
5.9 (2)-1.
Let us define:

pLN

de

ValEverju) = 0OVn{T}uen=2z{z=Evern)}@0
Evenn & Ovn.{Coluen=2z{Co}@xy
Evenn & [0vn.{Coluen=2z{z=Ever(n)}@xy

The derivation is given as follows.
L{TIAn.t :, {T} @0

2.{T}mutualParity;!y:, {3ghIsOddEvefgh, gu,xy,n)}@xy

3{T}mutualParity; !y :, {3gh.(!x=gAly = hAlsOddg,gh n,xy) AEven, A Even)}@xy

4. {xy#ij }mutualParity;!y:, {3gh.(Co A Every A Even)}@xy

5{T}safeEven:, {vxy.dgh.(Co A Even, A Even)}@0
6.{T}me()=u{vxydgh.(Co A EvenyAEven)} D {T}me()=u{ValEveriu)} (by (AIH))

7.{T}safeEven:, {ValEveriu)} @0
As we can see, the derivation follows the same pattern asth@moFact andsafeFact.

6.6. Higher-Order Invariant. We move to a program (from_[59, p.104]) whose invariant be-
haviour depends on another function. The program instrisngmprogram with simple profiling,
counting the number of invocations.

profile © 1et x=ref(0) in Ay.(x:=Ix+1; fy)
Sincex is never exposed, this program should behave precisely Bsus our aim is to derive:
{OVy.{C}f ey =Z{C'}@W} profile:, {OVy.{C}uey=z{C'}@W} (6.5)

with x ¢ fv(C,C’) (by the bound name condition) and arbitrary anti-monot@and monotonic'.
This judgement says:

if f satisfies the specification E OVvy.{C}f ey=2{C'} @W, thenprofile satis-
fies the same specification E
To derive [6.b), we first sdiy, the invariant, to be# fiyw.
As with the previous derivations, we use two subderivations
First we derive:

E € OwiClfey=2zCl@#
5 Eo & Owi{C A x#fiyW) f ey=2{C'} @Vix Axiom (e8) in [25]

D E1 = OWi{C A x#fiyw}fey=2z{C' A x#zfiyW}@Wx  Axiom (e8) in [25]

[eN
-+
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where Axiom(e8) in [25] is given as:
(CD>Co A {Colxey=2{Ci} A C;DC) D {Clxey=2z{C'}
we use the first axiom in Proposition 5.3 (1). We also let
E» & Owyi{[IXC A Colf ey =2{C' A Co}@Vix
The inference follows.

L{T}x:=Ix+1{T}@x (Assign)
2{['XICAEAX#fiyW} x:=Ix+1{CAE A x# fiyW} @x (Inv-#, Conseq)
3{CAEAGCy} fy:; {C' ACol@Wix (App, Conseq)
4{[IXCAEACy}x:=x+1;fy :; {C'ACol@xW (2,3, Seq)
S5{E} Ay.(x:=x+1;fy) \y {E2}@0 (4, Abs, Inv)
6.{E} Ay.(x:=x+1;fy) :y {Inv(u,Cp,X)} @D (Similar to 1-5 fromEy)

7{E}profile{vx.(Inv(u,Co,x) N Ez)}@0 (5, 6, LetRef in §6.11)
8.me () = u{vx.(Inv(u,Co,X) A E2)} Dme () =u{E} (*)

9.{E}profile:, {E}@0 (7, 8, ConsEval)

Above in Line 2, we noté is tame (because @fl) and equivalent td!X E, hence [nv] becomes
applicable. Line 8 is inferred by Propositibn 5.15.

6.7. Nested Local Invariant from [34,27]. The next example uses a function with local state as

an argument to another function. I@td:efuf.)\().(f()). Beloweverin) tests for evenness of

MeyerSieber % et x= ref(0) inlet f = A().x:=Ix+2

in (gf; if everf!x) then () else Q())
Note Q() immediately diverges. Sinceis local, and becauggwill have no way to accessexcept
by calling f, the local invariant that stores an even number is maintained. HeMegerSieber
satisfies the judgement:
{EAC} MeyerSieber {C'} (6.6)
where, withx, m¢ fv(C,C'):

EE v (Ofe(){TI@0 > T{C}ge f{C'})

(anchors of typéJnit are omitted following Notatioh 211(6)). The judgement jGséys that:

if feeding g with a total and effect-free f always satis{fie$ge f{C'}, thenMeyerSieber
starting from C also terminates with the final state C
Note suchf behaves askip.
For the derivation of((616), from the axiom for reachabilityPropositior 5.1]7, we can derive
E D E’ where

EEvi(@Ofe(){TI@ > O{XCAx#g}ge f{[IXC'})
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FurtherA().x :=Ix+ 2 namedf satisfies both:

A Omife){TI@x and A€ O{Ever(!x)}f o (){Ever('x)}@x

Then fromA; andE’, we obtain&, = 0I{[1XC A x#g}ge f{[IXC'}.

Using Proposition 5.1737 andA, we obtain:
{Ever(!x) A [!X|C A E Ax#gi}M{[!X|C’ A x#i}

with M £ et = A().x:=Ix+21in (gf; if everf!X) then () else Q()).

We then apply a variant ofptRef (replacingCo[!x/m] in the premise oflletRef in §4.2 with
['X]CoA Ix = m) to obtain

{E AC} MeyerSieber {Vx.([!X|C' A x#i)}

Finally by Propositiof 5.16 (noting the returned value hhase type, cf. Proposition 5.9 2-(1)), we
reach{E AC} MeyerSieber {C'}. The full derivation is given in Appendix Di.2.

6.8. Information Hiding (5): Object. As final example, we treat information hiding for a program
with state, a small object encoded in imperative higheeofdnctions, taken from [27] (cf._[10, 46,
471]). The following program generates a simple object eawh it is invoked.
let Xp1 = ref(Z) in let y= ref(0) in
cellGen &' )z A().if everily) then !xg else !Xy,
A (Y:=ly+1; X1 :=W)

The object has a getter and a setter method. Instead of hammdpcal variable, it uses two with
the same content, of which one is read at each odd-turn ofrée™ requests, another at each
even-turn. When writing, it writes the same value to botmc8ihaving two variables in this way

does not differ from having only one observationally, we eotpthe following judgement to hold
cellGen:

{T} cellGen:, {CellGer(u)} (6.7)
where we set:
CellGeriu) € DOvziuez=o{vx.(Cell(0,x)Alx =2z A 0#i A x=0)}@0
Cell(o,x) &f Ovv{Ix=v}m(o)e() =z{z=Vv A Ix=Vv}@0 AOVYW.T(0) e W{!x = w}@x

Cell(o,x) says that(0), the getter ob, returns the content of a local variableand,(0), the
setter ofo, writes the received value to ThenCellGer{u) says that, when s invoked with a value,
sayz, an object is returned with its initial fresh local stateialised toz. Note both specifications
only mention a single local variable. A straightforward idation of (6.7) usesxy =!x; as the
invariant to erase;: then wea-convertsxp to X to obtain the required asserti@ell(o,x). See
Appendix(D.3 for full inferences.
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7. EXTENSION, RELATED WORK AND FUTURE TOPICS

For lack of space, detailed comparisons with existing @oygtogics and reasoning methods, in
particular with Clarke’s impossibility result, Spatial gic [11] (which contain a hiding quantifier
used in a concurrency setting), as well as other logics sadtCé, Dynamic logic, higher-order
logic and specification logic are left to our past papers §5122, 25]. Below we focus on directly
related work that treats locality and freshness in highideiolanguages.

7.1. Three Completeness ResultsWe discuss completeness properties of the proposed logic. A
strong completeness property calléeiscriptive completeness studied inl[23]. Descriptive com-
pleteness means that characteristic assertions are pedealeach program (i.e. an assertion char-
acterising a program’s behaviour uniquely up to obseraati@ongruence). We have shown![23]
that this property implies two other completeness progetim our base logiaelative complete-
ness(which says that provability and validity of judgementsrande, i.e. completeness relative to
an oracle which can decide the validity of formulae in theegssn language) andbservational
completenes@vhich says that validity precisely characterises thedses contextual equivalence).

For lack of space, we only state the latter, which we regaiazesic semantic property of the
logic.

Write = for the standard contextual congruence for programs [4@8ihér writeM; = M, to
mean & {C}M; :;, {C'} iff ={C}M>:, {C'}). We have:

Theorem 7.1(observational completenessfor eachl"; A+ M; : a (i = 1,2), we have M = M»
iff M1 = Ma.

The proofs of descriptive, observational and relative detepess follow|[23] and are detailed in

[5].

7.2. Local Variables in Hoare Logic. To our knowledge, Hoare and Wirth [19] are the first to
present a rule for local variable declaration. In our notatiheir rule is written as follows.

{CAX#F}P{C'} xgWv(C)U{F)
{Cle/'X|} new x:=ein P {C'}

Because this rule assumes references are never exporteddbtheir original scope, there is no
need to havexin C'. Since aliasing is not permitted in [19] either, we can alspehse with # ¥
in the premise. [LetRef in §[6.2 differs from Hoare-WirtH in that the former can treat aliased
references, higher-order procedures and new referencesagion extruded beyond their original
scope. Hoare-WirtH is derivable from[LetRe}, [Assign andv-elimination in Prop[5.16.

Among the studies of verification methods for ML-like langaa [2| 38] Extended MU57] is
a formal development framework for Standard ML. A specifarais given by combining module
signatures and algebraic axioms. Correctness of an implti@n w.r.t. a specification is verified
by incremental syntactic transformationkarch/ML [61] is a design proposal of a Larch-based
interface language for ML. Integration of typing and int& specification is the main focus of the
proposal in[[61]. These two works do not (aim to) offer a pargrogic with compositional proof
rules; nor do either of these works treat specifications dimicfions with dynamically generated
references.

[Hoare-Wirth

7.3. Related Work and Future Topics.
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Reasoning Principles for Functions with Local StateThere is a long tradition of studying equiv-
alences over higher-order programs with local state. MayerSieber [34] present examples and
reasoning principles based on denotational semanticsomMaslcott and others [26, 131,/32] in-
vestigate equational axioms for an untyped version of thguage treated in the present paper,
including local invariance. Pitts and Stark [48, 49, 59]gamet powerful operational reasoning prin-
ciples for the same ML-fragment considered here, includaagoning principle for local invariance
at higher-order types [49]. Our axioms for information higlin §[3, which capture a basic pattern
of programming with local state, are closely related witksta reasoning principles. Our logic dif-
fers in that its aim is to offer a method for describing anddating properties of programs beyond
program equivalence. Equational and logical approactesanplimentary: Theorem 7.1 offers a
basis for integration. For example, we may consider degigaiproperty of the optimised versidfl

of M: if we can easily verify{ C}M :, {C'} and if we knowM = M’, we can conclud¢C}M’ :, {C'},
which is useful ifM is better structured thav’.

Separation Logic. The approach by Reynolds et al.|[56] represents fresh datergigon by relative
spatial disjointness from the original datum, using a subetural separating conjunction. This
method captures a significant part of program propertieg prbposed logic represents freshness
as temporal disjointness through generic (un)reachwaldiidm arbitrary data in the initial state.
The presented approach enables uniform treatment of knatentgpes in verification, including
product, sum, reference, closure, etc., through the useabfoais, which matches the observational
semantics precisely: we have examined this point througérabexamples, including objects from
[27], circular lists from|[29], and tree-, dag- and graphpgdrom [9]. These results will be reported
in future expositions. Reynolds [56] criticises the useeaatahability for describing data structures,
taking in-place reversal of a linear list as an example.dwilig §[6, tractable reasoning is possible
for such examples using reachability combined witiv] and located assertions, seel[62].

Birkedal et al. [3] present a “separation logic typing” fovariant of Idealised Algol where
types are constructed from formulae of disjunction-frepasation logic. The typing system uses
subtyping calculated via categorical semantics, the foftseir study. The work |7] extends sepa-
ration logic with higher-order predicates (higher-ordanie rule), and demonstrates how the exten-
sion helps modular reasoning about priority queues. Bottksvoonsider neither exportable fresh
reference generation nor higher-order/stored procednifed generality, so it would be difficult to
represent assertions and validate the example$in § 6. Biagthe use of higher-order predicate
abstraction in the present logic is an interesting futupacto

Other Hoare Logics. Names have been used in Hoare logic since early work by Kowaki [28],
and are found in the work by von Oheimb [60], Leavens and Bfg@&rand Abadi and Leina [3],
for treating parameter passing and return values. Thesksvdor not treat higher-order procedures
and data types, which are uniformly captured in the presagit lalong with parameters and return
values through the use of names. This generality comes ferfact that a large class of program
behaviour is faithfully represented as name passing psesasghich interact at names: our assertion
language offers a concise way to describe such interactkiaviour in a logical framework.
Nanevski et al..[42, 43] study Hoare Type Theory (HTT) whiombines dependent types and
Hoare triples with anchors based on a monadic understammdiogmputation. HTT aims to pro-
vide an effective general framework which unifies standéaticschecking techniques with logical
verification. Their system emphasises the clean separagitmeen static validation and assertions.
In their later work [42], the integration of programs and @fpeations in HTT is further pursued
by introducing local state. Because of their basis in tyg®iiy one interesting aspect is that their
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“Hoare Triple” of the form {P}x: A{Q}" is in fact atypeand thatA can contain an arbitrary com-
plex specification. Note that the use of type theory doesipitgbotentially useful assertions about
circular data structures and references (this is calledralisess” condition). The use of monad in
their logic poses a question whether if we equip the undsglprogramming language with monad
what reasoning principles we may obtain as a refinement girémgent program logic.

Reus and Streicher_[54] present a Hoare logic for a simplguage with higher-order stored
procedures, extended in [53], with primitives for the dymamlocation and de-allocation of ref-
erences. Soundness is proved with denotational methotigompleteness is not proved. Their
assertions contain quoted programs, which is necessargndlér recursion via stored functions.
Their language does not allow procedure parameters andajeaference creation.

No work mentioned in this section studies local invariantehe context of program logics.

Dynamic and Evaluation Logics.Dynamic Logic [16], introduced by Pratt [52] and studied by
Harel and others [15], uses programs and predicates on thpartof formulae, facilitating detailed
specification of various programs properties such as (tem)nation, or more intensional features.
As far as we know, higher-order procedures and local state tat been treated in Dynamic Logic,
even though we believe part of the proposed method to trgaehiorder functions would work
consistently in their framework.

Evaluation Logic, introduced by Pitts [50] and studied bydgb|39,140], is a typed logic
for higher-order programs based on the metalanguage foputtional monads which permits
statements about the evaluation of programs to values asalgation modalities. Recently Mossa-
kowski et. al [41] studied a generic framework for reasordgut purity [44] and effects based
on a monad-based dynamic logic which is similar to Evaluatiogic. Evaluation logic is closely
related to the present logic in that it is based on the decsitipo of semantic points into values
and computation and that it captures applications as pdheologic even though the approach of
Evaluation Logic is based on denotations. Evaluation Lbgis uniformity in that it does not use
separate judgements such as Hoare triples. Evaluatiorcladgp includes expressions involving
applications as part of terms. Thus its assertion langulagady includes judgements for programs.

The logic studied in the present paper distinguishes faamudibr evaluation in the logical
language (evaluation formulae) from judgements for pnogrdpre/post conditions together with
an anchor). This is motivated by our wish to have the assefinguage separate (independent)
from programs, which we believe to fit such engineering psegas design-by-contract (where one
wishes to have abstract description of behavigefiorewe construct programs). This aspect of the
present logic is closely related with its compositionalilye wish to build assertions for a program
from those for its subprograms, and if one of its subprograsagM, allows the same assertion as
another program, sayl’, then we caneplace Mby M’ and still obtain the same assertion for the
whole program. Separating the assertion language fronramsgyis also vital for verification of
multi-language programs. We believe that it is a meaninigipiic to explore a uniform treatment of
both assertions for evaluations and judgements for progjrarhile keeping the key features of the
present logic.

Meta-Logical Study on FreshnessFreshness of names has recently been studied from the view-
point of formalising binding relations in programming larsges and computational calculi. Pitts
and Gabbay| [12, 51] extend first-order logic with construotseason about freshness of names
based on the theory of permutations. The key syntactic iadditare the (inter-definable) “fresh”
guantifierll and the freshness predicate #, mediated by a swapping (fi@iteutation) predicate.
Miller and Tiu [35] are motivated by the significance of gaador eigen-) variables and quantifiers
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at the level of both formulae and sequents, and split urivepsantification in two, introduce a self-
dual freshness quantifier and develop the corresponding sequent calculus of Gengfgeinents.
While these logics are not program logics, their logical hiaery may well be usable in the present
context. As noted in Propositidn 5]12, reasoning abeutbr # is tantamount to reasoning abott
which denotes the support (the semantic notion of freelyiwoty locations) of a datum/program.
A characterisation of support by the swapping operation ie&y to deeper understanding of reach-
ability axiomatisations.
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APPENDIXA. TYPING RULES

The typing rules are standard [46], and listed in Figure 2dééerence (we list only two first-
order operations). We take the equi-isomorphic appraaéhfpt recursive types. In the first rule
of Figure[2,c€ indicates a constarthas a base typ@.

We also list the typing rules for terms and formulae in FidBire
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[Constant=———~

[Var] TFc:C

F,x:cx_kx:a [Label r-1 :O(_H Ta
I'I—M1,2:Nat I'D—M1,2:Nat
Add i v Vet (B TR ML =M, : Bool

[If]FFM:BooI MENcop (i=1,2)
[Fif M thenNj else Ny : a

rxaFM:B rN-M:a=p IN-N:a
[Abs}l'l—)\x“.M:a:B [ApH r-MN:B

rxoa=BFAY.M:a=p

NrN-M:a a=p

Re Iso

| quux“:‘B.)\y“.M:cxéB 10T E N
EM: Ref(a) . 2THFM:Ref(ad) TEN:a

[Deref] “TEM o [Assign TEFM =N_:Unit
revV:ao Fr’'EM:a [,x:Ref(a)FN:B

[Refr Fref(V): Ref(a) [New MNnewXx :=MinN:B

[inj] r-M:aq; [Casé Fr=M:ag+o0p x:0 ENi:B
IMFin(M):o1+02 Ik case M of {in; (Xiqi).Ni}ie{l,z} B

r=Mi:ai(i=1,2) [Proj] F'EM:oqx0o

[Pair]FF<M1,M2>:O(1><O(2 reEm(M):a; (i=1,2)

Figure 2: Typing Rules

I-x:Ref(a) -C

— - — — [+ e: Bool
FEx:T(x) TEn:Nat TFtf:Bool THI:T(I) TF—e:Bool

r-e:q e:aq; I - e:Ref(a)
(e, &) to1x02 [ Finjf 2(e) a1 +a; S CH

r-e:a; rec M=Cipo r-xokC
Fece [F-C Trosc <MY2t Froec 2€ivd

_ N-e:Ref(ad) THC T Fe:Ref(a
Qe vy} LhSoaeiv3 (a) (a)

r-c

T OxC FF[leC FF(le)C

NlFei0=p MNke:a M-z:pEC  rrc rec
FFeee=2C] FFOC TFOC

Fe:a F-€:Ref(B) ThFe:Ref(a) THE:B
frNFe—¢d I e#e

Figure 3: Typing rules for terms and formulae
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[Var]

[Const

[CR/UT X4 {CI @0 {Clc/dT e {CI@®

IAdd {CIM1my {Co} @& {Co} Mz :m, {C[my +mp/u]} @&
{CIM1+M; 3y {C'}@E:&

Ing] LCEM 0 {C'liniy v/} @6
{C}inj;(M) u {C} @€
Case 1S M im (G @8 {Coling (x)/m]} M 2, (€7} @6,
{C} case M of {inj(X)-Mi}ici1,2} ‘u {C @& &
{C} M m {C'[ru(m) /] } @6
{C m(M) y {C'r @&
{C} M1 iy {Co} @& {Co} M im, {C'[{m, M)/ U]} @€
{C} (M1,M2) 1y {C'}@&:&
Abg {CAAYYI M o {C 1 @6 (A} \yM 1, {Bl@6
{A} MM 1y {OVxi.({Cluex=m{C'})} @0 L uxAy.M 1, {B[u/x]} @&
iAo {CIM 1 {Col@€ {Co} N :n {men=u{C'}&}@&
{C} MN:y {C'} @&

1 151 M (Co} @81 {Colt/b]} M3, (C)@8 {Colf/bl} Mz ()@
{C} if M then M; else My ;y {C'} @&,

CIM:m {C']! @é
Deref) {CH = L 108

ICIM i {Col@é1 {Co} N {C/{n/Imll@& Co D m=¢
[Asslgr]|{ ;i {Co) {C{} M}::NEC’%éaé[ié

Ref {C}M m{C}@E
{C} ref(M) :y {vx.(C'[tu/m] Au#i® Au=x)} @&

[Proj,]

[Pair]

[Rec-Reh A

We requireC’ is thin w.r.t. min [Casé and [Derefl, andC’ is thin with respect tan,n in [App,
Assign.

Figure 4: Derived Compositional Rules for Located Assedio

APPENDIXB. PROOFRULES
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(A} M (C} @
[CATWICo} M im {C"A [ WICo} @W

ClV :m{Cl @0
[inv-val {CA{QEV m }C/];\Co}@(b

(inv-#] 1 M m {C'}@x_no dereference occurs @ ~
{CAX#E} M :m {C' Ax#E @X

CoC {Co} My {Cyl@€ GG C
[Cong CI M {C@8

{Co} M:m {Cp} @€ xfresh; i auxiliary
Vi {Co}xe ()=m{C{} D Vi.{C}xe ()=m{C}
{CIM:m{C}@e

[CAALV 1 {CY @0
[CTV W {A>C @0

[Cons-Evdl

[CYM {A>C @6
[CAAIM 3 [C @6

[A-D] [>-7]

CiiM:{Cl@ {C)}M:{Cl@é CIM:{Cil@ {C}M: {Cl@é
(v-pre 51 {Cf\/}ész{U?}C}@e”{} € [npost S {é}lh; ue{Cl{/\}Cz}@e{ e1C8

CIM:, {C Y @e
[Aux] {{Eli.}C} M ;{U {C’}}@ee"

[AuxV] {C}vu{Cl@e {C'} M {C1@E o is of a base type.

IV L (it cr@s AW (CI M (7 C1 @6
{C(i*)} M :, {C'(i")} @€ o atomic Ve {C(c")} M 1y {C'(")} @€
Ainsl () M TCTET @8 At I M, (C17) ] @8

{C} M {C'} @& .. {CAlE =i} M :m {C'A\I€ =i}@EE ifresh
(Weak ey M (CT@ed | Thinning CI M [CT @8

Figure 5: Structural Rules for Located Judgements.

B.1. Proofs of SoundnessWe prove the soundness theorem. We use the following lemma.

Lemma B.1(Substitution and Thinning)

(1) MECAu=V iff M[u:V] =C.

(2) Suppose mmy,mp ¢ fv(M,C) U {u,v}. Then:
(@) If (vI)Jv[[m V]lu: inj;(m)] =C, then(vI)M[u:inji(V)] =C.
(b) If (v[)J\/[ [m:V][u: m(m)] |= C, then(vi)M]u: (V)] =C.

(c) If (Wvh)M[my : Vi][mp 1 Vo][u ~<m1, mp)] = C, then(vl)M[u: (V1, V2)] = C.

(d) Suppose ¥& fI(M). Then(vil)M[m:1][u: V][l — V] = C implies(v)M[u:V]|=C

(e) Suppose ¥ fi(M) andfv(V)Ufl(V) = 0. Then(v)M[m: ][l — V] =C impliesM = C.
(f) Suppose ¥ fI(M) andfv(V)Ufl(V) = 0. ThenM|m: ][l — V] |= C impliesM |=C.

(3) M = Im.({Ix)(CAlx=m) Am=g) iff M[x+— [€]s 5] =C
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New {C} M :m {Col@&  {Co[!x/m] Ax#E} N iy {C'}@EX  x¢ fpn(6)
{C} 1et x= ref(M) in N :y {vx.C'} @& &

Red {A™ AV] S i.B()[x/ul} AyM 1 {B(i) "} @€
{A} pxAy.M :, {Vi.B(i) } @€

{CIM 5 {Col @8 {Co} N4 {C'}@€ [C) M 5 (v5.Co} @6, {Co} N 4 {C} @6
e e et x= M in N (Cr@e  [-eOPe e k= M in Ny (V5.C 1 @86

{Cre} M1 {C'}@E {CA—e} My {C'}@E
{C} if ethen M; else M, {C'} @&

[IfH]

[SimPl¢ reeriTen [Cras

«C O {C}es (e1.6,) = u{C'1@¢ {CYM:, {C}@¢ udfpn(e)
AP e o) - [CT0E [SU0% et W (CTe/ ] @6

Seq [CIM(Co1@€ {Co}N(CH@E (g0 1y (G} M {CII@G {Co} N (C@6
{CYM;N {C}@& {CLA[1&]Co} MiN {C; A (1&)C1} @616
C'is thin w.r.t. min [Newandx in [Let, LetOpeh C; andC; are tame in$eqg-Iny.

Figure 6: Other Located Proof Rules.

Proof. For (1), we derive:

MECAU=V MECAME=u=V
MECAMu:V]~M

Mu:V]EC
(2) is mechanical by induction d@. We only show some interesting cases. Others are similar. Fo
(2-a), letMy = (vVI)M[m: V][u: inj;(m)] andMy = (VI)M[u: inj;(V)].
AssumeC = e; = . Then, withw fresh andn ¢ fv(ey, ), we haveMi[w: e1] ~ Mi[w: &)
iff Ma[w:er] = Mo[w: e]. HenceM; = e = e iff My = e = e,.
AssumeC = Vx.C'. Then we have:

Ml ): vx.C’

VLe FMy[x: L] =C
VL' € FMy[x: L' =EC' such tham¢ fv(L')
M; | vx.C'
AssumeC = vx.C'. Then we have:
My EwvxC IMo. (M = (V)Mo AMp[x: 1] EC)
AMG. (Mz =~ (V)M AMp[x: 1] [=C)  such thatvif = Mo/mV /m|
Mz ’: vx.C’
AssumeC = xey = z{C'}. Then we derive:

M1 Exey=2{C'} = IML.(Mz:xy] § MIAM] =C)

with M = (V)M [m:V][u: inj;(m)]
MG (Mz[z: xy] | MyAMS [=C)
with M, = (vI)M'[u: inj;(V)] and (IH)
= My Exey=2z{C'}
Others (b-f) are similar. (3) is froml[6]. O
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Below we write:
MIM EC for MM A M EC
We start with par].
MECKX/U = MECAU=X
= Mu:x] EC LemmdB.1(1)
Similarly for [Cons} using LemmaB.l(1). NextAdd] is proved as follows:

Ml:C = M[m]_:Ml]UM]_l:Co IH
= Mjy[mp:Ma] | My = C'[my + mp/u IH
= M[my:Mq][mp:Mo][uimg +mp] | M =C/
= M[u:My+My] | M'/mymyp =C’ Proposition 3.113(1)
[Inj1] is proved as:
MEC = Mm:M] V)M [m:V] EC[inj;(m)/u IH
= Mm:M][urinj;(m)] § (vhOM'[M:V]u:inj (V)] =C' LemmdB.1(1)
=  (V)M'[u:inj (V)] EC LemmdB.1(2-a)

= Mu:inj,;(M)] =C
[Proj] and [Pair] are similarly proved using Lemnia B.1(2-b,c) respectively
For [Casg, we reason:
MEC= Mm:M]{ (") Mo[m: inj(V)] = Co
if M= (V)(€,0), (V)(ME,0) § (vi")(inj;(V),0’), andMo = (§,0")
= (v")Mo[m:inj;(V)] £ CoAm=inj;(x)
= (v")Mo[m: nj; ()] Uz Mi] 4 (V) [m: iy (V)] [u:W] = C
= IMMu:w]C
The last line is by the thinness 6f with respect tan.
Now we reason for4bg. We note, ifA is stateless (cf. Definition 3.14) and = A, then:
M[u:M] |} M’ with u fresh impliesM’ = A.
M = AD M[u:AxM] = 0Ovxi.{Cluex=m{C'}
M = A D Mu:AxM][x: N[ NJ[K:N] S M A MM /5 A M = {Cluex=m{C'}
MEAD (MU AXM]X:N[FN]KN] M A MM /xi A M =C)
DM [m:ud I M A M =C)
MEAD (MU AXM][x:Ny] [N [K:N] M A M~ M /xi A M =CAA)
DM [m:ud I M A M =C)

C M EAACD M[Mm:M]{|M' AM" EC)
[App is reasoned as follows. Belokfresh.
MEC = Mm:M] Mo kCo

=  M[n:N] | My =CiAmen=n{C’}
= M[m:M][n:N]ju:mn | M’ =C’
= M[m:M][n:N]J[u:MN] | M' =C’
=  M[u:MN] { M'/mnE=C

The last line is derived by the thinness@fwith respect tan, n.
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For [Deref], we infer:
MEC = MmM]M EC['m/u
= MmMmIM] M /mEC
For [Assign Assumeu is fresh.
MEC = MmM]JME=Co
Mpo[n:N] § M’ =C'{n/!mj}
Mme—n M EC LemmdB1(3)
Mu:M :=N] M’ /mnu: ()] EC' A u=()

4l

For [Rec-Re
MEA M[u:Ax.M] =B
M[f:pfAXM][U:AXM] E A
[
[

]

M[f:pf AXM][u:ufAXM] = A
]
]

LR O

Mu:pfAXM]=f=uDA
Mlu:pfAxM] E Alu/f] LemmdB.1(1)

[If] is similar with [Add| using Propositiof]1.
[Rel appeared in the main text (the second last line uses Ldmfi(@48) to deletem).
We complete all cases. O

Y

B.2. Soundness of the Invariant Rule. Among the structural rules, we prove the soundness of the
main invariance rule lfiv] in Figure[3.

Lemma B.2. Suppose C is tame add =C. Suppos@( X5 M’ andM ~ M/uz..Up. ThenlM' =C.
Proof. By mechanical induction o8 noting it only contains evaluation formulae under O

Lemma B.3. SupposeéM = [!W|C and C is tame. Then for each M atd’ if M[u:M] | M’ and
M[z:let X=Winlety= M inW:=X | M" s.t. M"" /z~ M then we havé\’ =C.

Proof. For simplicity we assume i$ a singleton (the general case is the same). et [!'w|C
andC be tame. Suppos®([u: M] |} M’ such that only the content of is affected. We let with
appropriate closedy:
Mx:w][y: ref(Mp)][u:let m= M in (y:=lww:=xm)] | M" M~M"/xyu (B.1)
Hence by LemmBBI2 we have:
M = [w]C (B.2)
Further note
M w —ty] | m” M ~M" /xy (B.3)
By (B.2) and [B.B) we obtaitM” = C. By LemmdB.2 and this, we havd’ |= C, as required. O

We now prove:

Proposition B.4. The following rule is sound.
(I {C}M:n{C}@W  Cyistame
{CATWCo} M im {C' A [WCo} @W
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Proof. Assume{C} M :, {C'}@w. Then by definition, for eac such thatM |= C we have:

Mu:M] 4 M =C (B.4)
M[z:let X=Winlety= €€ inW:=% | M" s.t.M"/z= M (B.5)
Then:
MFEC A [WCo
= MFE[W][\WCy,  (by the axiom[!W]['W]Co = ['W]Cp)
= VM M.(M[u:M] | M’ A
M[z:let X=!Winlety=e€ inW:= X | M" =~ M[z: ()] D M’ = ['W]Cp)
~ W (B4[B3) above)
= M EC A [WC
Hence we havéC A [!W|Co} M :m {C' A ['W]Co } @W, as required. 0

B.3. Soundness of [LetOpen] and [Subs]. We prove soundness df¢tOpet and [Sub$ used in
8[6.1. For LetOpen (we prove the case thatiS a singleton), we derive:
MEC = Mx:M]{§M E=vyCy Assumption
= Mx:M]J M A IMo. (M = (V)Mo A Mo = Cop)
Also we have:
MoECo = Mu:N]JM;E=C' Assumption
Combining these two, we have:
MEC = Mx:M]J M AIMo.(M = (V)Mo AMpo[u: N] 4 Mg AMg =C)
= Mu:let x=M in N] J M" AM” = C" with M” /x = M
The last line is by thinness.
For [Sub$ (we prove the case thatiS a singleton), we have:
MEC = Mu:M{MAMEC
= VMo.(MoEi=eAMpu:M]IM = MEi=¢) (u¢fpn(e))
=  YMo.MoE (CAi=e)AMp[u:M] | M = (C'Ai=¢)

APPENDIXC. SOUNDNESS OF THEAXIOMS

This appendix lists the omitted proofs from Sectidn 5. We far®ve the basic lemma and
propositions. In § CJ3, we show the axioms for the contenntifieations. In §CJ7, we prove
(AIH)-axioms.
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C.1. Proofs of Lemmal5.1. For (1), both directions are simultaneously establisheéhbuction
on C, proving for bothC and its negation. I€ is e; = e, we have, letting\( dEf( vi)(E,0), & 5%
[u/v;v/u] andg’ d:eféé:

£.0),0) Zia (V) (E-X: [&]£.0), 0)
.0):0) Zia ()X [ed:0),0) (5

Above (x) used[& ] o) def [&9] (). Dually for its negation. The rest is easy by inductionl. (2)
is by precisely the same reasoningl (3) is immediate fidnaft)[2). [4) is similar, for which we
again show a base case.

MEe=e
& Mx: e ~M[x: e (By Definition)
& Mx:e]u:egr~Mx:elu: € (congruency ofx)
M|

& Mu:ex:e]~Mu:elx: e (By @3))
Dually for the negation. Fof[5), the “only if” direction:

MEe =g
& Mu:e]~Mu: e (By Definition)
& Mu:ev:e]~Mu:e[v:e] A
Mu:e]v:e] ~Mu:elvie]  (By (@)

= Mu:e[v:e]~Mu:el[v:el.
Operationally, the encoding of models simply removes d#lrences tas, v and replaces them by
positional information: hence all relevant differenceriduced, if ever, by behavioural differences
betweene; ande,, which however cannot exist by assumption. The “if” direntis immediate by
projection. B
() is best argued using concrete models. For the formeN(let (vI)(E,o) and let(x) =W.
We infer:

Vi)(E-u:W-v: e, o)
Vi) (E-u: W-v: (e[u/x))E, o)

For the latter, let = (vi)(&,0) andW = [€]¢ o (the standard interpretation ety & ando). We
then have

Mlu:X][v:eg] =

Q.

@

P
—~

Mu:gv:e] ~ (V)(Eu:W-v:[€]eg, 0)
def

= (V)Eu:wv:[ee/ueo, 0)

The last line is because the interpretation is homomorphic. O

C.2. Proof of Proposition[5.3.
Proposition[5.3.
(1) OC10C) DOC; D OC; OCOC; OOC=0C; CD $C. HencedC D {C.
(2) (permutation and decomposition)
(@ Oe=e=¢ =6 andle; # & = e # & if g does not contain dereference.
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(b) O (C]_/\Cz) =0C A0OC.

(c) OCvOC, D O(CLVECy).

(d) Ovx.C o> vx.OOC andOvx.JC =0Wwx.C.

(e) IxOC > O3x.C.

() Ovx.C=wx.OOC; andvx.JC D Ovx.C.

(g) O3Ix.C=3Ix.0C andO¥x.C =vx.OC.

(h) d['¥C =['xOC=0OC and(!x)OC =0C > O{!x)C.
(1) is obvious by definition. For (2-a), suppdsel= e; = &,. Then by definition~, for all M’ such
that M ~~ M', we haveM'[u: e;] = M'[u: &]. HenceM = e, = e, as required. Similarly for
e1 # . For (2-b), we have:

MEDCIAC) = VM. (M~M DM ECAM =Cyp)
YM.(M~M DM =C) (i=1,2)

M EOCADC,

For (2-c), we derive:
MEOCVOC= VM. M~M DM EGC) (i=1vi=2)
= YM.M~~M DM ECVECy)
= MEOCVGC)
For (2-d(1)), we derive, withi fresh:

M = OvxC
= VM. (Mu:NJIMDOVLeF.(M[x: L] I M DM EC))
= VMg, L € FYN. M[x: LJlu: N[L'/x]] | MG D MG = C) such thau & fv(L')
= VMg, L' € FYN.M[x: L']u: N] |} Mg D MG = C) such thau & fv(L')
= MEwWOC

Note thatx ¢ fv(N) in the second line. To derive the third line, we use the factfbL € F such
thatu & fv(L) and allN, if M[x: L][u: N[L/x]] { M/, thenM[x: L][u: N] J M.
For (2-d(2)), byddC D C, we havedVvx.JC D OJVx.C. The other direction is proved with
O0OC=0C, asdvx.C=00vx.C > Ovx.OC.
For (f-1), we derive, withu fresh:
M EwxOC
VM. (VDM & M D YMY, NV [x: 1 [us NJ 3V E oD x: 1][u: V] > M7 = C))
VMo, N.(M[u: N Mo D VMG (Mo &~ (V)M D Mg[x: 1] =C))
such that,x & fv(N) UfI(N)
with Mo &' (VI v)M”[u: V], M, E WM [u: V]
= MEDOwC

For (f-2), we derive, withu fresh:
M= wx.OC
= IV (V)M ~ MAYM X 1[u: N] 4 M7 E )M [x: 1][u: V] > M” = C))
= VMo.(M[u: N]J Mo D IMG. (Mo =~ (V)M AMp[x: 1] =C))
with Mo &' Wi vHM”[u: V], M, E WM [u: V)
= MEOwC
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(9) is trivial. For (h), we prove the first equation. Wittfresh, we have:
MEDOIXC = YN Mu:NJ M DVLe FM[x— L] =C)
= VLeFYNMu: ((x:=L);N)]IM DM [C
= ME[IXOC
= MEOC

The last line is by the axiorfix]C > C. For other direction, withu fresh,

MEOC YN.(M[u:NJ M DM =C)
VL e FYN.M[u: (x:=L;N)] | M' DM =C)
M = [IXOC

VL,L" € F,YN.(M[x+— L][u: (N;x:=L")] I M' DM EC)
VL € FYN. (M[Xx—!X][u: (N;x:=L")] I M' DM EC)
VL' € F)YN.(M[u: (N;x:=L)] I M DM EC)

= ME0O[IXC

In Line 5, we use the faci!is a functional term. In Line 6, we note thaf[x —!x] = M. The
equation for(!x)C is similar. This concludes the proofs.

My 4y m

C.3. Axioms for Content Quantification. The axiomatisation of content quantificationlin [6] uses
the well-known axiomd [33, §82.3] for standard quantifierespite the presence of local state, most
of the axioms stay valid.

Proposition C.1(Axioms for Content QuantificationsRecall A denotes the stateless formula.
1) 'XA=A
(2 Xly=z=x#yNly=z

[
(3) 'X(['XC1 D Cz) D (['XIC1 D [IXICy).
(4) ['Y[I{C=]'XC
(5) ['X|[lylc = [ly]['xIC
) Fx] (CLACy) = [IXC1 A [IXCs

(7) ['XIC1V ['X|C2 D ['X](C1 VCy)

Proof. For (1), assumét = OA. By definition, for allN, if M[u: N] § M, thenM’ = A. This
implies: for allV andL € &, if M[u: x:=V;L]{ M/, thenM’ = A, which mean$\ = [!x]A. Others
are proved as in [6, Appendix C]. O

C.4. Proof of Proposition[5.8.

Proposition Axioms for V, 3 and v. Below we assume there is no capture of variables in types and
formulae.

(1) (introduction)C D vx.C if x & fv(C)

(2) (elimination)vx.C =C if x ¢ fv(C) and C is monotone.

(3) For any C we have © 3Ix.C. Given C such that g fv(C) and C is thin with respect to x, we
havedx.C O C.

(4) For any C we hav&'x.C D C. For C such that ¥ fv(C) and C is thin with respect to x, we have
COWxC.

(5) VX.(C1 ACy) D vX.Cy AVX.Co.

(6) VX.(C1VCy) =Vvx.Cy VVXCy.

(7) vy.¥x.C D ¥x.vy.C
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(8) Ix.vy.C D vy.Ix.C and3Ix?.vy.C = vy.3x*.C witha € {Unit, Bool, Nat}.
(9) vy.vx.C D vx.vy.C; andvy.vx.C = vx.vy.C.

(10) vy.Ix.C = dx.vy.C; andvy.¥X.C D VX.vy.C.

(11) vy.['XIC D [IxJvy.C andvy.(!IX)C D (Ix)vy.C
(1) is by definition. For (2), we have:

MEwC = IV (v)M =M A Mx:1]=C)
= M, L(v)M =M A M EC) Lemmd5.1[(%)
= (V)M EC Cis monotone

For (7), we derive:
MEWYWXC = IMp,VL e F.( M~ (VI)MoA (
= VL e F,IMo.(M[x: L]~ ((vI)
M |= ¥x.vy.C
For (8-1), we derive:
M = 3Ixvy.C

Mo[x: L] § Mg > M =C))
Mo)[X: L] AMp[x: L] = C) such that & fI(L)

AL e F.(M[x: L] I M ATIMo. (M = (V)Mo AMply : 1] =C)

L € F,Mo. (M ~ (M[x: L])/x~ ((vI)Mp)/XAMp[y: 1] =C)

L e F,MG. (M~ (V)Mo AMgly : 1][x: L] =C)  with Mg = M/x

ME= vy.Hx.C

Note that the other direction does not generally hold. Qterdit = vy.3x.C. This is equivalent to:
JL € F,Mp. (M =~ (V)Mo AMpgly : ][x: L] =C)

SinceL might contain the new referentdidden inM, M[x: L[l /y]] is undefined (hence we cannot

permutely : I] and[x: L[l /y]]).
For (8-2), we only have to prowey.3x*.C D 3x%.vy.C with a € {Unit,Bool,Nat}. We derive:
MEvVy.IxC = 3IMg,c.(M =~ (V)Mo AMoly: 1][x: c] EC)
= Jc, Mo.(M[x: c] = (VI)Mo)[x: c] AMp[x: ¢c][y: 1] EC) =M [ 3Ixvy.C
For (9-2), we have:
MFE vx.vy.C

4

IM . (M~ (VM AM'[x: 1] = vy.C)

IM, M (M~ (VDM AM [ 1]~ (vI)YM' AM"[y:1'] =EC)
AWM M (M~ (VDM = (VIlYM" AM[x: 1] = (vI")YM" AM"[y: '] =EC)
ME vy.vx.C

For (11), we derive:
MEvy.[!XC IMp.(M ~ (V)Mo AVL € F.(Mply : 1][x+— L] =C))

VL € F.3Mo. (M ~ (V)Mo AMply : I][x— L] =C))
such that,y ¢ fv(L) Ufl(L)

VL € F.3Mo.(M[x+— L] = (VI)(Mo[x— L]) AMo[x— L]ly: 1] EC))

MFE [IXjvy.C

The remaining claims are similar.
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C.5. Proof of Theorem[5.10.

Theorem[5.10. Suppose all reachability predicates in C are finite. Thendhexists C such that
C = C’ and no reachability predicate occurs if.C

As the first step, we define a simple inductive method for dedimeachability from a datum of a
finite type.

Definition C.2. (i-step reachability) Lett be a finite type. Then thiestep reachability predicate
reach(x?, yRef(B)_iNat) (read“a reference y is reachable from x in at most i-steps inductively
given as follows (below we assurgés typedRef(B), C € {Unit, Bool,Nat}, and omit types when
evident).

reach(x”, y, O
reach(>XC, y, n+1
reach(x22*%2 'y n+41
reach(x*1t%2 y n+41

X=y

F

Vireach(Tg(x), ¥, n) V reach(X, y, n)
= IX.(X =1inj,(X) A reach(X,y, n)) Vv
IX.(X = inj,(X) A reach(X,y, n)) v
reach(x, y, n)

Ref (a)

reach(x , Y, n+1) = reach(Ix, y, n) V reach(X, y, n)

With C being a base typegach(X®, y, 0) = x =y = F (since a referencg cannot be equal to
a datum of a base type).
A key lemma follows.

Proposition C.3. If a is finite, then the logical equivalencé x- y= Ji.reach(x?, y, i) is valid, i.e.
is true in any model.

Proof. For the “if” direction, we show, by induction on reach(x?, y, i) D xX* < y. For the base
case, we have= 0, in which caseeach(x?,y, 0) DX=yD X< Y.

For induction, let the statement holds umtd/NVe only show the case of a product. Other cases
are similar.

reach(xX?2*% 'y n+1) = Vjreach(T§(X), y, n) V reach(x, y, n)
= ViT{(X) =y V X—=y

But if y(X) — y thenx — y by the definition of reachability. Similarly whem(x) — y, hence
done.

For the converse, we show the contrapositive, showing:

ME —di.reach(x®,y, i) = ME-X"—y

If we haveM = —Ji.reach(x?, y, i) with a finite, then the referencg is not among references
reachable fronx (if it is, then eitherx =y or y is the content of a reference reachable frobecause
of the finiteness ofi, so that we can find somesuch thatVl = reach(x?, y, i)), hence done. O

Now let us define the predicat® —° yRef(B) with a finite, by the axioms given in Proposition
[5.9 which we reproduce below€ (€ {Unit, Bool, Nat}).
XC 0 yReF(B) F
X002 0 yRef (P 2. (X= (X1, %2) A Vi—12% —°Y)
xArtaz o yRef(B X ((Viep2X = 1inj(X)) A X' =°y)
yRef(a) o yRef(B X=yVIx—°y

)
)
)
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The inductive definition is possible due to finiteness. We shaw:

Proposition C.4. If a is finite, then the logical equivalencé, x-° yRef(B) = Ji reach(x, yRef(B) i),
is valid.

Proof. reach(x®, yRef(B) i) 5 x& o yRef(B) s by induction oni. The converse is by induction on
a. Both are mechanical and omitted. O

Corollary C.5. If a is finite, then the logical equivalencé x- yRef(B) = @ .o yRef(B) js valid, i.e.
— is completely characterised by the axioms<{ef given above.

Proof. Immediate from Propositioris §.3 and C.4. O

C.6. Proof of Proposition[5.14.
Proposition[5.14. For an arbitrary C, the following is valid with, i fresh:

O{CAx#TyW) fey=2{C'}@W D OVX,i*.{CAx#TfiyW} f ey=2{C A x# fiyal} @W

Proof. The proof traces the transition of state using the elemgffiéat that the set of names and
labels in a term always gets smaller as reduction goes by d@@eapve have

M = O{x#fywAC} fey=2{C'}@w
The definition of the evaluation formula says:
(M~>Mo A Mo = x#fywiAC) D IM . (M[z: fy] M AM =C).

We prove suctVl’ always satisfied’ = x# fiyzw. Assume

Mo ~ (Vi) (&, 00 oy)
with &(x) =1, &(y) =Wy, &() =V and&(w) = I, such that

lc(fI(Vt,Vy, lw), 00 0x) = fl(0g) = dom(0p)
andly € dom(0y). By this partition, during evaluation af: fy, oy is unchanged, i.e.
(V) (E-z: fy,00 W 0y) —— (VI)(E - z:ViVy,0p Oy) —— (VI")(E-2: Vy, 08 ay)
Then obviously there exists; such thao, C o; and
lc(fI(Vz, ), 0p W 0x) = fl(01) = dom(071)

Hence by Proposition 3.9, we haW, = x#fyiwz, completing the proof. O
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C.7. Proof of Propositions[5.15.
Proposition[5.15. Assume g= Cj A X#iy A § —* X, G is stateless excefit C is anti-monotone,C
is monotone,,im are fresh andX,§} N (fv(C,C") U {W}) = 0. Then the following is valid:
(AIH)  VX.Vi*X.me()=u{(VX3G.E1) AE} D ¥YX.ViX.me()=u{E, AE}
with
o E+ & Inv(u,Co,%) ADIWYi.{CoAC}uey=2{C'} @WK and
o E; € Ow.{Cluey=2{C'} @W.

Proof. W.l.o.g. we assume all vectors are unary, settinrgr; W= w, X = x andg'= g. The proof
proceeds as follows, starting from the current mddgl

Stage 1.We takeM such that:
Mo-BM
We then take off the hiding, namextand the result is called,
(V) (M. /X) =~ M.
Stage 2. We further letM evolve so that:
M~ M
We then again take off the corresponding hiding, nameaitd the result is calledit’,
(V1) (M, /) = M
Stage 3.We show if M, satisfiesCy then agairVl’, satisfiesCy again:
M.,ECo D M. G
usinglnv(u,Co,X) as well as the unreachability gffrom u.

By reaching Stage 3, we knowJ = C then it is also the cask(, = Cy A C hence we can use the
assumption (together with monotonicity ©f):

Vyi.{CoNC}uey=2{C'}@WK

hence we know we arrive & as a result.
We now implement these steps. We set:

E = T. (C.1)
The trivialisation ofE (taken as truth) is just for simplicity and does not affe& éngument. Now
fix an arbitraryMg and suppose we reach:

Mo~ M (C.2)

This gives the status of the post-condition of the whole iden(to be precise this is through the
encoding in[(4.B) in §4]5 to relat@e () and the transition above). Assuming the hidden the
formula inE; is about a (freshl) we can set:

M & V(I (E, 0]l —V]) = vxIg.E; (C.3)

as well as by revealing

M, Wiy E -x:1-g:U,0- [ —V]) & E; (C.4)

Note by assumption we have:

| & fl(E,0). (C.5)
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FurtherU does not contain any hidden or free locations fibtrby g —*° X.
Now we consider the right-hand side®f, [JVyi.{CoAC}uey=2z{C'}@WX by taking for fresh

N:
M[f N M (C.6)
Corresponding to the relationship betwe&drandM, we set:
M, [ NJ | ML (C.7)
Note we have
(VI)(M, /xg) =~ M’ (C.8)
We now show:
M.ECo D> M EGo (C.9)
that isCy is invariant under the evaluation (effects)df Assume
M. =Co (C.10)
First observe
M, =Co A x#yrw (C.11)

Now in the standard wail can be approximated by a finite term, that is a term which do¢s n
contain recursion except divergent programs. We diles such an approximation without loss of
generality. SuctN can be written as a sequence of let expressions includingnassnts. Without
loss of generality we focus on a “let” expression which isigita function call or an assignment.
Then at each evaluation we have either:

e The let has the formet x = uV in M’ that is it invokesu;
e The let has the formet x = WV in M’ whereW is notu.
e The let has the fornv/ :=V;M’.

We observe:

e In the first caseu is directly invoked: thus by the invariandev(u,Cy,X), Co continues to hold.
Notew is notx sinceN has no access toexcept throughu.

¢ In the second case of the let (i.@.is not called), since is disjoint from all visible data, by
Proposition 5.14 we know (hence the content of) is never touched by the execution of the
function body after the invocation, until agairis called (if ever): sinc€y is insensitive to state
change except at(by being stateless exceyt it continues to hold again in this case.

¢ In the third case agaixis not touched hendg, continues to hold.

Thus we have:

M, f=Cq (C.12)
Now suppose we have
MEC (C.13)
By anti-monotonicity ofC we have
M./xgEC (C.14)
By LemmdX5.1[(4), we can arbitrarily weaken a disjoint exiemgatx andg) so that:
M. =C (C.15)
Thus we know:
M, =CyAC (C.16)

Now we can apply:
M = vx.3g.Vy.{CoACluey=2Z{C'} @Wx (C.17)
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by which we know:

M z:uy ¢ M =C (C.18)
Accordingly let
M[z:uy] I M" =~ (vI)(M/x) (C.19)
for which we know, by[(C.18) and (C.119) together with mondtay of C':
M =C (C.20)
Hence we know:
M E {Cluey=2z{C'}@w (C.21)
which is the required assertion. O

C.8. Proof of Proposition[5.16.
Proposition[5.16. Let x¢ fv(C) and mi, X be fresh. Then the following is valid:
VX, iX.me () =u{vXk.([IXICAK#ui*)} D me()=u{C}
Proof. For simplicity, seixto be a singletorx. Assume
Muzm()] § M
By assumption we can set 3
M~ (v)(vI')(&§-u:V,0-1 —W)
such that .
(I (E-u:V-x:1,0-1+—W) = [IXC
wherel is not reachable from anywhere else in the model. By LefnmanR. bbtain(vi’)(&-u:
V,0) EC, thatisM’ = C, as required. 0

C.9. Proof of Proposition[5.17. AssumeCy is stateless exceptahd suppose:

M E Inv(f,Co,X) A {T}ge f =2{T}. (C.22)
Further assuma{~ Mg and

Mp = Co AK#gF and Mp(z: fg] |} M. (C.23)

By Inv(f,Co,X) we know that onc€, holds andf is invoked, it continues to hold. B{T}ge f =
z{T}, we know the applicatiog f always terminates. Now this application invokiegero or more
times. First time it can only apply to somexunreachable datum. Similarly for the second time,
since the context cannot obtairréachable datum (givemitself isX-unreachable). By induction the
same holds up to the last invocation. In each invocaftigns invariant. Further, other computations
in fg never touch the content &f ience because Gf being stateless excextwe knowCy is again
invariant in such computations. Thus we conclude @yatill holds in the post-condition, and that
the return value being-Gnreachable, i.ex#z, as required. O

APPENDIXD. DERIVATIONS FOREXAMPLES IN SECTION[G

This appendix lists the derivations omitted in Secfibn 6.
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1. {(n>1>IsEver(ly,ghn—1,xy)) A n=0} £ :;{z=0dd(n) A Ix=gA!ly=h}@0
(Const)

2. {(n>1>IsEver(ly,ghn—1,xy)) A n>1}
not((ly)(n—1)):z{z=0dd(n) A Ix=g A ly=h}@0 (Simple, App)

3. {n>1>IsEver(ly,ghn—1xy)}
if Nn=0then f elsenot((ly)(n—1)) :m {z=0dd(n) A Ix=gA ly=h}@0 (IfH)

4. {T}An.if n=0then f elsenot((ly)(n—1))
{ Ovgh,n > 1.{IsEveri(h,gh,n— 1 xy) }Juen=2z{z= Odd(n) A Ix=gA ly=h} @0} @0
(Abs, V, Conseq)

5. {T} Mx:u{Vghn> 1.(IsEverth,gh,n— 1 xy) D> IsOdd(u,gh, n,xy))} @0 (Conseq)

6. {T}x:=My{Vvghn>1(IsEverth,ghn—1xy) D IsOdd!x,gh,n,xy)) A Ix= g}@x
(Assign)

7. {T}y:=My{Vghn>1.(IsOddg,gh,n—1,xy) D IsEver{ly,gh,n,xy)) Aly=h}@y

8. {T}mutualParity
{¥gh.n> 1.((IsEverth,gh,n—1,xy) AlsOddg,gh,n— 1,xy)) D
(IsEvertly,gh,n,xy) A IsOdd(!x,gh, n,xy)A!x = gAly = h) }@xy (A\-Post)

9. {T}mutualParity
{¥n > 1gh.((IsEverth,gh,n— 1,xy) AIsOdd(g,gh,n— 1,xy)Alx=gAly=h) D
(IsEvertly,gh,n,xy) A IsOdd(!x,gh, n,xy)A!x = gAly = h) } @xy (Conseq)

10. {T}mutualParity
{¥n > 1gh.((IsEverf!y,gh,n— 1,xy) A1sOdd!x,gh,n— 1,xy)Alx=gAly=h) D
(IsEverfly,gh,n,xy) A1sOdd(!x,gh,n,xy)Alx = gAly = h) } @xy (Conseq)

11, {T} mutualParity
{¥n> 1.(3gh.(IsEver{!x,gh,n— 1,xy) A1sOdd!y,gh,n— 1 xy)Alx=gAly =h) D
dgh.(IsEverly,gh,n,xy) A IsOdd(!x, gh,n,xy)Alx= gAly = h) } @xy (Conseq)

12, {T} mutualParity{3gh.IsOddEveilgh, !x!y,xy,n)}@xy

Figure 7:mutualParity derivations

D.1. Derivation for mutualParity. Let us define:
My % Anif y=0then f else not((ly)(n—1))
My % Anif y=0then t else not((!X)(n—1))

We also use:
IsOdd (u,gh, n,xy) & IsOdd(u,gh,n,xy)A Ix=gAly=h
IsEveri(u,gh, n, xy) & IsEverfu,gh,n,xy)A Ix=gAly=h

Figure[T lists the derivation fafutualParity. In Line 4, h in the evaluation formula can be
replaced byy and vice versa because gf+ h and the universal quantification bf

vh.ly=hA{Clhen=2z{C'}) = Vh(ly=hA{C}(ly)en=2{C'})
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In Line 5, we use the following axiom for the evaluation folmérom [25]:
{CAA}eee;=2{C'} = A D {Cleeer=27{C}
whereA s stateless and we s&t= IsEverth,gh,n—1,xy). Line 9 is derived as Line 4 by replacing

h andg by !y and ¥, respectively. Line 11 is the standard logical implicatigtx.(C; D C;) D
(Ix.C1 D IXCy)).

D.2. Derivation for Meyer-Sieber. For the derivation of (6]6) we use:

E € vi(@{TIfe(){T}@0 > D{Clge f{C})

We use the followindLetRef which is derived byRef whereC’ is replaced by!x|C'.
'm{Co} {['X|CoAlx=mAXx#E} N:, {C'} x¢ fpn(é)
{C} let x=ref(M) in N :y {vx.C'}
with C’ think w.r.t. m. The derivation follows. BelowMs ; is the body of the first/second lets,
respectively.

[LetRef {CiM

1{Ever(!x) A[IX|C'} if ever{!X) then () else Q() {[!X|C'} @0 (1)
2.{[IXC} gf {[INC"} (cf. 8[6.7)
3.{Ever(!x) A ['X|C} gf {Ever(!x) A ['X|C'} (2, Inv)

4{EN[IXICAEver(!x) Ax#gi}let f =...in (gf;...){['X|[C' Ax#i} (3, Seq, Let)

5.{E AC} MeyerSieber {vx.([!X|C' Ax#i)} (4, LetRef)

6.{E AC} MeyerSieber {C'} (9, Prop[5.1B)

D.3. Derivation for Object. We need the following generalisation. The proceduie (AlH) is of
function typea =- 3: when values of other types suchas [3 or a + 3 are returned, we can make
use of a generalisation. For simplicity we restrict ourratt to the case when types do not contain
recursive or reference types.

Inv(uP.Co,%) = Ai—ralnv(Tg(u),Co,X)
|nV(Ua+B,Co,X) déf Ai:l.ZVyi'(u = In.]l(yl) ) |nV(yi,C0,)z))
Iv(l®,Co,%) & T (ae {Unit,Nat,Bool})

Using this extension, we can general{®¢H) so that the cancelling diy is possible for all com-
ponents olu. For example, iu is a pair of functions, those two functions need to satiseygdame
condition as in(AlH). This is what we shall use fatel1Gen. We call the resulting generalised
axiom(AlH.).

Let cell be the internak-abstraction otellGen. First, it is easy to obtain:

{Tlcell:p {lo A Gy A Gy A E'} (D.1)
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o def . . def
where, withlg = IXg =IX1 A Xo#iw (notingx#v = T) andE’ = IXg=12
def

G1 = UO{lp}ru(o)e() =v{v=IxAlo}@0
G, o Ovw.{lo} 1y (0) eW{!Xg = WA lg} @XpX1
which will become, after taking off the invariahg
def
G, £ Om(o)e()=vv=Ix}@0
def
G, £ Ovwry(o)ew{IXo=W}@Xo.
Note lg is stateless except fog. In Gp, notice the empty effect set meang Hoes not change
from the pre to the post-condition. We now present the imfeze Below we setell’ % ot y=

ref(0) in cell andi,k fresh.
1{T} cell:y {loAGIAGAE'}

2T} cell’ :;x {IXo=IX¢ NG1AGAE'} (LetRef)
3{T} let Xy =2zincell i {VX]_.(|0/\G1/\G2) AN E/} (LetRef)
4{T} let x3 = zincell :; {G;AG,AE'} (AlH, ConsEval)

5{T} let Xo1 = zin cell’ ;; {vx.( x#kACell(o,x)Alx=2)} (LetRef)

6.{T} cellGen:, {CellGer(u)} . (Abs)

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
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