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Abstract. Inspired by a recent graphical formalism for λ-calculus based on linear logic
technology, we introduce an untyped structural λ-calculus, called λj, which combines
actions at a distance with exponential rules decomposing the substitution by means of
weakening, contraction and derelicition. First, we prove some fundamental properties
of λj such as confluence and preservation of β-strong normalisation. Second, we add a
strong bisimulation to λj by means of an equational theory which captures in particular
Regnier’s σ-equivalence. We then complete this bisimulation with two more equations for
(de)composition of substitutions and we prove that the resulting calculus still preserves
β-strong normalization. Finally, we discuss some consequences of our results.

Introduction

Linear Logic [13] has been very influential in computer science, especially because it pro-
vides a tool to explicitly control the use of resources by limiting the use of the structural
rules of weakening and contraction. Erasure (weakening) and duplication (contraction) are
restricted to formulas marked with an exponential modality, and can only interact with
non-linear proofs marked with a bang modality. Intuitionistic and Classical Logic can thus
be encoded by a fragment containing such modalities as, for example, the Multiplicative
Exponential Linear Logic (MELL).

MELL proofs can be represented by sequent trees, but MELL Proof-Nets [13] provide a
better geometrical representation of proofs, eliminating irrelevant syntactical details. They
have been used extensively to develop different encodings of intuitionistic logic/lambda-
calculus, giving rise to the geometry of interaction [14].

Normalisation of proofs (i.e. cut elimination) in MELL Proof-Nets is performed in
particular by exponential and commutative rules. Non-linear proofs are distinguished by
surrounding boxes; the exponential rules handle all the possible operations on them: erasure,
duplication and linear replacement, corresponding respectively to a cut elimination step
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involving a box and either a weakening, a contraction or a dereliction. The commutative
rule instead composes non-linear resources.

Different cut elimination systems [11, 24, 20], defined as explicit substitution (ES) cal-
culi, were explained in terms of, or were inspired from, the fine notion of reduction of MELL
Proof-Nets. They all use the idea that the content of a substitution/cut is a non-linear re-
source, i.e. a box that can be composed with another one by means of some commutative
rules. They also share common operational semantics defined in terms of a propagation
system in which a substitution traverses a term until the variables are reached.

The structural λ-calculus. A graphical representation for λ-terms, λj-dags, has
been recently proposed [2]. It denies boxes by representing them with additional edges
called jumps, and does not need any commutative reduction rule to compose non-linear
proofs. This paper studies the term formalism, called λj-calculus, resulting from reading
back λj-dags (and their correspondent reductions) by means of their sequentialisation the-
orem [2]. The deep connection between λj-dags and Danos and Regnier’s Pure (untyped)
Proof-Nets [7] has been already studied in [1].

Beyond this graphical and logical interpretation, the peculiarity of λj-calculus is that it
uses two features which were never combined before: action at a distance and multiplicities.

Action at a distance means that rewriting rules are specified by means of some construc-
tors which are arbitrarily far away from each other. This approach could be understood as
inconvenient but this is only apparent because rewriting rules can be locally implemented
by means of λj-dags. The distance rules of λj do not propagate substitutions through
the term except for the linear ones which are evaluated exactly as meta-level substitutions,
regardless the distance between the involved constructors (variable and jump).

Multiplicities are intended to count the number of occurrences of a given variable af-
fected by a jump, i.e. the rewriting rule to be applied for reducing a term of the form t[x/u]
depends on |t|x, the number of free occurrences of the variable x in the term t. Indeed, we
distinguish three cases, |t|x = 0, |t|x = 1 and |t|x > 1, which correspond, respectively, to
weakening-box, dereliction-box and contraction-box cut-elimination rules in Proof Nets. It
is because of the weakening and contraction rules that we call our language the structural
λ-calculus.

Content of the paper. We start by showing that λj admits a simple and elegant
theory i.e. it enjoys confluence, full composition (FC), and preservation of β-strong normal-
isation (PSN). The proof of PSN is particularly concise because of the distance approach.

The main result of the paper is that the theory of λj admits a modular extension
with respect to propagations of jumps: an equational theory is added on top of λj and
the obtained extension is shown to preserve all the good properties we mentioned before.
Actually, we focus on PSN, since FC and confluence for the extended λj-calculus result as
straightforward.

In the literature there is a huge number of calculi with expicit substitutions, let con-
structs or environments, most of them use some rule to specify commutation (also called
propagation or permutation). In order to encompass these formalisms we do not approach
propagations as rewriting rules, but as equations (which can be used from left to right or
vice-versa) defining an equivalence relation on terms.

This is only possible because propagations are not needed in λj to compute normal
forms, a fact which is a by-product of the distance notion. Moreover, any particular ori-
entation of the equations (from left to right or from right to left) results in a terminating
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rewriting relation, which implies that the system containing any orientation of the equations
still enjoys PSN.

Equations are introduced in two steps. We first consider commutations between in-
dependent jumps and between jumps and abstractions or left sides of applications. This
equivalence, written ≡o, turns out to be a strong bisimulation, i.e. a reduction relation
which is length preserving; thus PSN for the reduction system λj modulo ≡o — noted λj/o
— immediately follows. We also show that ≡o can be seen as a projection of Regnier’s
σ-equivalence [37] on a syntax with jumps. Actually, ≡o can be understood as the quo-
tient induced by the translation [1] of λj-terms to Pure Proof-Nets, which is why it is so
well-behaved, and why we call it the graphical equivalence.

The second step is to extend ≡o with general commutations between jumps and right
sides of applications and contents of jumps. The resulting substitution equivalence ≡obox

does not only subsume composition of jumps, but also decomposition. The equations of
≡obox correspond exactly to the commutative box-box case of Proof-Nets, but they are here
considered as an equivalence — which is a novelty — and not as a rewriting rule. The
reduction relation of λj/obox is a rich rewriting system with subtle behaviour, particularly
because ≡obox affects reduction lengths, and thus is not a strong bisimulation. Nonetheless,
we show that λj/obox enjoys PSN.

This result is non-trivial, and constitutes the main contribution of the paper. The
technique used to obtain PSN for λj/obox consists in

(1) Projecting λj/obox reductions into a calculus that we call λvoid/o,
(2) Proving PSN for λvoid/o,
(3) Infering PSN for λj/obox from (1) and (2).

Actually, λvoid/o can be understood as amemory calculus specified by means of void jumps
— i.e. jumps t[x/u] where x /∈ fv(t) — which generalises Klop’s ΛI -calculus [27]. Despite
the fact that it appears only as a technical tool we claim that it is a calculus interesting on
its own and can be used for proving termination results beyond those of this paper.

The last part of the paper presents some interesting consequences of our main result
concerning different variations on λj/obox.

Road Map.

• Section 1 recalls some general notions about abstract rewriting.
• Section 2 presents the λj-calculus and shows that it enjoys basic properties such as full
composition, simulation of one-step β-reduction, and confluence.
• Section 3 studies preservation of β-strong normalisation (PSN). The PSN property is
proved using a modular technique developed in [21], which results in a very short formal
argument in our case.
• Section 4 first considers λj enriched with the equivalence ≡o, which is related to Regnier’s
σ-equivalence [37], and then with the equivalence ≡obox, which also contains composition
of jumps.
• Section 5 is devoted to the proof of PSN for λj modulo ≡obox, which is the main contri-
bution of the paper.
• Section 6 discusses some consequences of the PSN result of Section 5.

This paper covers some basic results in [3] by extending them considerably. Indeed,
the propagation systems considered in [3] are just particular cases of the general equational
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theory ≡obox studied in this paper. The proof technique used here to show PSN for λj mod-
ulo ≡obox puts in evidence another calculus λvoid/o that has interest in itself. Moreover,
interesting consequences of the main result are included in Section 6.

Related Work. Action at a distance has already been used in [33, 10, 35], but none
of the previous approaches takes advantage of distance plus control of resources by means
of multiplicities. Other works use multiplicities [25] but not distance so that the resulting
formalism contains a lot of rules, which is really less manageable. We think that our
combined approach is more primitive than ES, and the resulting theory is much simpler.
Using distance and multiplicities also provides modularity: the substitution rules become
independent from the set of constructors of the calculus, and thus any change in the language
does not cause any changes in the associated rewriting rules. Our combined approach does
not only capture the well-known notions of developments [17] and superdevelopments [28],
but also allows us to introduce XL-developments, a more powerful notion of development
defined in [3].

In the literature there are many calculi which dealt with permutations of constructors in
intuitionistic calculi, but all use reduction rules rather than equations, which is less powerful.
Some that can be captured by our graphical equivalence appear in [19, 37, 26] and those
captured by our substitution equivalence are [12, 16, 43]. Intuitionistic calculi inspired from
Linear Logic Proof Nets appear for example in [23, 21, 25].

1. Preliminary notions

As several reduction notions are used along the paper, we first introduce general definitions
of rewriting.

A reduction system is a pair (R,→R) consisting of a set R and a binary relation →R

on R called a reduction relation. When (a, b) ∈→R we write a→R b and we say that a
R-reduces to b. The inverse of →R is written R←, i.e. b R←a iff a→R b. The reflexive
and transitive (resp. transitive) closure of →R is written →∗

R (resp. →+
R). Composition of

relations is denoted by juxtaposition. Given k ≥ 0, we write a
k
→R b iff a is R-related to b

in k steps, i.e. a
0
→R b if a = b and a

n+1
→R b if ∃ c s.t. a→R c and c

n
→R b.

Given a reduction system (R,→R), we use the following reduction notions:

• R is locally confluent if R← →R⊆→
∗
R

∗
R←, i.e. if a →R b and a →R c, then ∃d s.t.

b→∗
R d and c→∗

R d.
• R is confluent if ∗

R← →
∗
R⊆→

∗
R

∗
R←, i.e. if a →∗

R b and a →∗
R c, then ∃d s.t. b →∗

R d
and c→∗

R d.
• s ∈ R is in R-normal form, written s ∈ R-nf, if there is no s′ such that s→R s′.
• s ∈ R has an R-normal form iff there exists u ∈ R-nf such that s →∗

R u. When s has
a unique R-normal form, this one is denoted by R(s).
• s ∈ R is R-weakly normalizing, written s ∈ WNR, iff s has an R-normal form.
• s ∈ R is R-strongly normalizing or R-terminating, written s ∈ SNR, if there is no
infinite R-reduction sequence starting at s.
• s ∈ R is R-finitely branching if the set {s′ | s→R s′} is finite.
• If s ∈ R is R-strongly normalizing and R-finitely branching then ηR(s) denotes the
maximal length of an R-reduction sequence starting at s. This notion is extended
to lists of terms by ηR(s1 . . . sm) =

∑m
i=1 ηR(si).
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• R is weakly normalizing (resp. strongly normalizing or terminating) if every
s ∈ R is.

A strong bisimulation between two reduction systems (S,→S) and (Q,→Q) is a
relation E ⊆ S ×Q s.t. for any pair s E t:

• If s→S s′ then there is t′ s.t. t→Q t′ and s′ E t′, and conversely:
• If t→Q t′ then there is s′ s.t. s→S s′ and s′ E t′.

A strong bisimulation for (S,→S) is a strong bisimulation between (S,→S) and
itself. In particular we shall make use of the following property whose proof is straightfor-
ward:

Lemma 1.1. Let E be a strong bisimulation between two reduction systems (S,→S) and
(Q,→Q).

(1) The relation E preserves reduction lengths, i.e. for any s E t

• If s
k
→S s′ then ∃ t′ s.t. t

k
→Q t′ and s′ E t′.

• If t
k
→Q t′ then ∃ s′ s.t. s

k
→S s′ and s′ E t′.

(2) The relation E preserves strong normalization, i.e. for any s E t, s ∈ SN S if and
only if t ∈ SNQ.

Given a reduction relation →S and an equivalence relation E both on S, the reduction
relation →S/E, called reduction S modulo E, is defined by t→S/E u iff t E t′ →S u′ E u.

Lemma 1.2. Let E be a strong bisimulation for (S,→S). Then,

(1) The relation E can be postponed w.r.t →S , i.e. →
∗
S/E=→

∗
S E.

(2) If →S is confluent then →S/E is confluent.
(3) If t ∈ SN S , then t ∈ SN S/E.

Proof. Point 1 is straightforward by induction on the length of →∗
S/E using the definition of

strong bisimulation. Points 2 and 3 follow from Point 1.

We conclude this section by giving an abstract theorem that we will use to prove strong
normalisation for different notions of reduction modulo.

Theorem 1.3 (Termination for reduction modulo by interpretation). Let consider three
reduction systems (A,→A1

), (A,→A2
) and (B,→B). Let E (resp. F) be an equivalence on

A (resp. B). Consider a relation R ⊆ A×B. Suppose that for all u, v, U

(P0) u R U & u E v imply ∃V s.t. v R V & U F V .
(P1) u R U & u→A1

v imply ∃V s.t. v R V & U →∗
B V .

(P2) u R U & u→A2
v imply ∃V s.t. v R V & U →+

B V .
(P3) The reduction relation →A1/E is terminating.

Then, t R T & T ∈ SNB/F imply t ∈ SN (A1∪A2)/E.

Proof. Suppose t /∈ SN (A1∪A2)/E. Then, there is an infinite (A1∪A2)/E-reduction sequence
starting at t, and since →A1/E is a terminating reduction relation by (P3), this reduction
has necessarily the form:

t →∗
A1/E

t1 →+
A2/E

t2 →∗
A1/E

t3 →+
A2/E

t4 →∗
A1/E

. . .
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And can be projected by (P0), (P1) and (P2) into an infinite B reduction sequence as
follows:

t →∗
A1/E

t1 →+
A2/E

t2 →∗
A1/E

t3 →+
A2/E

t4 →∗
A1/E

. . .

R R R R R

T →∗
B/F T1 →+

B/F T2 →∗
B/F T3 →+

B/F T4 →∗
B/F . . .

Since T ∈ SNB/F, then we get a contradiction.

2. The structural λj-calculus

We introduce in this section the structural λj-calculus, which can simply be understood
as a refinement of λ-calculus. To be self-contained, we start this section by recalling the
syntax and semantics of λ-calculus. The set of λ-terms, written Tλ, is generated by the
following grammar:

(Tλ) t, u ::= x | λx.t | tu

Dynamics of λ-terms is given by β-reduction (noted →β) which is defined as the closure by
contexts of the following reduction rule:

(λx.t)u 7→β t{x/u}

where the meta-operation t{x/u} on λ-terms is just a particular case of the meta-operation
on λj-terms given below.

The structural λj-calculus is given by a set of terms and a set of reduction rules.
The set of λj-terms, written T , is generated by the following grammar:

(T ) t, u ::= x | λx.t | tu | t[x/u]

The term x is variable, λx.t an abstraction, tu an application and t[x/u] a sub-
stituted term. The object [x/u], which is not a term, is called a jump. The terms λx.t
and t[x/u] bind x in t, i.e. the sets of free/bound variables of a term are given by the
following definitions:

fv(x) := {x} bv(x) := ∅
fv(tu) := fv(t) ∪ fv(u) bv(tu) := bv(t) ∪ bv(u)
fv(λx.t) := fv(t) \ {x} bv(λx.t) := bv(t) ∪ {x}
fv(t[x/u]) := (fv(t) \ {x}) ∪ fv(u) bv(t[x/u]) := bv(t) ∪ {x} ∪ bv(u)

A jump [x/u] in a term t[x/u] is called void if x /∈ fv(t). The equivalence relation gen-
erated by the renaming of bound variables is called α-conversion. Thus for example

(λy.x)[x/y] ≡α (λy′.x′)[x′/y]. The notation t
1
n is used for the empty sequence of terms if

n = 0 and for the sequence [t1; . . . ; tn] otherwise; t
1
n ⊆ S means that all the elements of the

sequence belong to the set S. If i, n ∈ N we use vt
i
n for the term v if n < i and (vti)t

i+1
n

otherwise; similarly, t[xi/ui]
i
n denotes the term t if n < i and t[xi/ui][xi/ui]

i+1
n otherwise;

t1t2 . . . tn (n ≥ 1) denotes the application (. . . (t1t2) . . . . . .)tn;
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The meta-level substitution operation is defined by induction on terms by using the
following equations on α-equivalence classes:

x{x/u} := u
y{x/u} := y
(λy.t){x/u} := λy.t{x/u} if y /∈ fv(u)
(tv){x/u} := t{x/u}v{x/u}
t[y/v]{x/u} := t{x/u}[y/v{x/u}] if y /∈ fv(u)

We write t ⊲ u or u ⊳ t when u is a (strict) subterm of t. Positions of terms are defined
as expected (see [42], p. 643, for details); t|p denotes the subterm of t at position p and
posx(t) denotes the set of all the positions p of t s.t. t|p = x.

We use |t| to denote the size of t. We write |t|x for the number of free occurrences of the
variable x in the term t, called the multiplicy of x in t. We extend this notion to sets of
variables by |t|Γ := Σx∈Γ|t|x. A key notion used to define the semantics of the λj-calculus

is that of renaming: given a term t and a subset S ⊆ posx(t) ∩ fv(t), we write RS,x
y (t) for

the term t′ verifying t′|p = t|p if p /∈ S and t′|p = y if (t|p = x & p ∈ S). Thus for example,

R
{111,2},x
y (xzxx) = yzxy.

When |t|x = n ≥ 2, we write t[y]x for any non-deterministic replacement of i (1 ≤

i ≤ n− 1) occurrences of x in t by a fresh variable y, i.e. t[y]x denotes any term RS,x
y (t) s.t.

|S| ≥ 2 and S ⊂ posx(t). Thus for example, (xxxx)[y]x may denote (yxyx) or (xyyy) but
not (yyyy).

Contexts are generated by the following grammar:

C ::= � | Cv | vC | v[y/C] | C[y/v] | λy.C

We write C[[t]] to denote the term obtained by replacing the hole � in C by the term t. Thus
for example λx.z[y/w�][[x]] = λx.z[y/wx] (remark that capture of variables is possible).

The binding set of a context is defined as follows:

bs(�) := ∅ bs(t[x/C]) := bs(C)
bs(tC) := bs(C) bs(C[x/v]) := bs(C) ∪ {x}
bs(Cv) := bs(C) bs(λx.C) := bs(C) ∪ {x}

We now consider the rewriting rules of the structural λ-calculus (Figure 1), which
decompose the β-rule into a finer set of rules. The letter L in the rule dB denotes a list
[x1/u1] . . . [xk/uk] of jumps with k ∈ N (so potentially k = 0) such that {x1, . . . , xk} ∩
fv(u) = ∅. The dB rule extends the usual B rule (λx.t)u→B t[x/u] by allowing to introduce
some distance between the abstraction λx.t and the argument u which is specified by means
of a list of substitutions L. This natural extension comes from reading back a multiplicative
cut in λj-dags or Pure Proof-Nets [2, 1].

The substitution rules also deserve some explanation. The side conditions |t|x = 0,
|t|x = 1 and |t|x > 1 are global on terms but local on graphs, simply because in the graph
all the occurrences of the same variable are grouped together. Also, the (global) meta-
substitution operation t{x/u} used in the right-hand side of the rule d is completely local
on graphs. Similarly, the meta-operation t[y]x used in the right-hand side of the c-rule is an
algebraic notation for the local operation on graphs which splits the co-located occurrences
of x into two disjoint and non-empty sets, one of which corresponds to x, while the other
is associated to the fresh variable y. Thus, the structural λ-calculus can be seen as an
algebraic language useful to study λj-dags and Pure Proof-Nets.
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(Beta at a distance) (λx.t)L u 7→dB t[x/u]L
(weakening) t[x/u] 7→w t if |t|x = 0
(dereliction) t[x/u] 7→d t{x/u} if |t|x = 1
(contraction) t[x/u] 7→c t[y]x[x/u][y/u] if |t|x > 1

Figure 1: The λj-reduction system

We close these rules by contexts, as usual: →R denotes the contextual closure of 7→R,
for R ⊆ {dB, w, d, c}. We write →¬w for the reduction relation →dB,d,c. The reduction
relation →λj (resp. →j) is generated by all (resp. all expect dB) the previous rewriting
rules modulo α-conversion.

An expected property of λj is that the reduction relation λj is stable by substitution.

Lemma 2.1. Let t, u ∈ terms.

• If t→λj t
′, then t{x/u} →λj t

′{x/u}.
• If u→λj u

′, then t{x/u} →∗
λj t{x/u

′}.

In the rest of this section we shall prove the following properties of λj: full composition
(Lemma 2.2), simulation of one step β-reduction (Lemma 2.4), termination and uniqueness
of normal forms of the substitution calculus →j (Lemmas 2.9 and 2.10), postponement of
erasing reductions (Lemma 2.12) and confluence of λj (Theorem 2.16).

2.1. Jumps and Multiplicities. The first property we show in this section is full com-
position, stating that any jump [x/u] in a substituted term t[x/u] can be reduced to its
implicit form t{x/u}. There are two interesting points. The first is that in contrast with
most calculi of explicit substitutions, full composition holds with no need of equivalences.
The second is that the proof is by induction on |t|x and not on the structure of t.

Lemma 2.2 (Full Composition (FC)). Let t, u ∈ T . Then t[x/u] →+
j t{x/u}. Moreover,

|t|x ≥ 1 implies t[x/u]→+
d,c t{x/u}.

Proof. By induction on |t|x.

• If |t|x = 0, then t[x/u]→w t = t{x/u}.
• If |t|x = 1, then t[x/u]→d t{x/u}.
• If |t|x ≥ 2, then

t[x/u] →c t[y]x[y/u][x/u] →+
j (i.h.)

t[y]x{y/u}[x/u] →+
j (i.h.)

t[y]x{y/u}{x/u} = t{x/u}

Due to the very general form of the duplication rule of λj, we get the following corollary
which together with full composition can be seen as a generalised composition property:

Corollary 2.3. Given S ⊂ posx(t) s.t. |S| ≥ 2, then t[x/u] →+
j RS,x

y (t){y/u}[x/u], where
y is a fresh variable.

Proof. The term t[x/u] c-reduces to RS,x
y (t)[y/u][x/u]. We conclude by full composition.
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Thus for example (x(xx))[x/u] →+
λj (x(ux))[x/u]. Note that this property is not enjoyed

by traditional explicit substitution calculi: for instance, in λx [6], the term (x(xx))[x/u]
cannot be reduced to (x(ux))[x/u]. However, it holds in calculi with partial substitutions,
as Milner’s calculus λsub [33]. It is not difficult (see e.g. [22]) to define a translation T on
terms such that t →λsub t′ implies T(t) →+

λj T(t′). This property allows in particular to

deduce normalisation properties for λsub from those of λj.

The one-step simulation of λ-calculus follows directly from full composition:

Lemma 2.4 (Simulation of λ-calculus). Let t ∈ Tλ. If t→β t′ then t→+
λj t

′.

Proof. By induction on t →β t′. Let t = (λx.u)v →β u{x/v}, then t →dB u[x/v] →+
j

(Lem. 2.2) u{x/v}. All the other cases are straightforward.

We now introduce a notion that will be useful in various proofs. It counts the maximal
number of free occurrences of a variable x that may appear during a j-reduction sequence
from a term t.

The potential multiplicity of the variable x in the term t, written Px(t), is defined
on α-equivalence classes as follows: if x /∈ fv(t), then Px(t) := 0; otherwise:

Px(x) := 1
Px(λy.u) := Px(u)
Px(uv) := Px(u) + Px(v)
Px(u[y/v]) := Px(u) + max(1, Py(u)) · Px(v)

We can formalise the intuition behind Px(t) as follows.

Lemma 2.5. Let t ∈ T . Then

(1) |t|x ≤ Px(t).
(2) If t is a c-nf then |t|x = Px(t).

Proof. Both points are by induction on the definition of Px(t). The only interesting case is
when t = u[y/v]: the i.h. gives |u|x ≤ Px(u), |u|y ≤ Py(u) and |v|x ≤ Px(v), from which we
conclude with the first point. For the second one, if t is a c-nf every relation given by the
i.h. is an equality and |u|y = Py(u) ≤ 1, otherwise there would be a c-redex. Then we get
Px(t) = Px(u) + max(1, Py(u)) · Px(v) = |u|x + |v|x = |t|x.

Potential multiplicities enjoy the following properties.

Lemma 2.6. Let t ∈ T . Let x, y, z be pairwise distinct variables.

(1) If u ∈ T and y /∈ fv(u), then Py(t) = Py(t{x/u}).
(2) If |t|x ≥ 2, then Pz(t) = Pz(t[y]x) and Px(t) = Px(t[y]x) + Py(t[y]x), where the two occur-

rences of the term t[y]x denote exactly the same term.

(3) If t→j t
′, then Py(t) ≥ Py(t

′).

Proof. By induction on t.
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By exploiting potential multiplicities we can define a measure of the global degree of
sharing of a given term, and use this measure to prove that the j-reduction subsystem
terminates.

We consider multisets of integers. We use ∅ to denote the empty multiset, ⊔ to denote
multiset union, and ⊒ (resp. ⊐) for the standard order (resp. strict order) on multisets [5].
Given an integer n and a multiset M , n · M denotes ∅ if M = ∅ and the multiset [n ·
a1, . . . , n · an] if M = [a1, . . . , an]. The j-measure of t ∈ T , written jm(t), is given by:

jm(x) := ∅
jm(λx.u) := jm(u)
jm(uv) := jm(u) ⊔ jm(v)
jm(u[x/v]) := [Px(u)] ⊔ jm(u) ⊔ max(1, Px(u)) · jm(v)

Note that jm(u) = ∅ for u ∈ Tλ. Potential multiplicities are decreasing by j-reduction,
and we are going to show that the j-measure is strictly decreasing; however both can be
incremented by dB-steps. For example, consider t = (λx.xx)y →dB (xx)[x/y] = t′. We get
Py(t) = 1, Py(t

′) = 2, jm(t) = ∅ and jm(t′) = [2].
The fact that the j-measure decreases by j-reduction is proved as follows:

Lemma 2.7. Let t ∈ T . Then,

(1) jm(t) = jm(t[y]x).
(2) If |t|x = 1, then jm(t[x/u]) ⊐ jm(t{x/u}).

Proof. By induction on t. The proof of the first property is straightforward. For the second
one we show [Px(t)] ⊔ jm(t) ⊔ max(1, Px(t)) · jm(u) ⊐ jm(t{x/u}), which proves the desired
property.

• t = x. Then [1] ⊔ jm(u) ⊐ jm(u) = jm(x{x/u}).
• t = t1[y/t2]. W.l.g we assume y /∈ fv(u).

If x ∈ fv(t1), we reason as follows:

[Px(t)] ⊔ jm(t) ⊔ max(1, Px(t)) · jm(u) =
[Px(t1)] ⊔ [Py(t1)] ⊔ jm(t1) ⊔ max(1, Py(t1)) · jm(t2) ⊔ max(1, Px(t1)) · jm(u) ⊐i.h.

[Py(t1)] ⊔ max(1, Py(t1)) · jm(t2) ⊔ jm(t1{x/u}) =Lem. 2.6:1
[Py(t1{x/u})] ⊔ max(1, Py(t1{x/u})) · jm(t2) ⊔ jm(t1{x/u}) =
jm(t1{x/u}[y/t2]) =
jm(t{x/u})

If x ∈ fv(t2), then 1 ≤ Px(t2) by Lemma 2.5:1 and so max(1, max(1, Py(t1)) · Px(t2)) =
max(1, Py(t1)) · Px(t2) = max(1, Py(t1)) · max(1, Px(t2)). Therefore:

[Px(t)] ⊔ jm(t) ⊔ max(1, Px(t)) · jm(u) =
[max(1, Py(t1)) · Px(t2)] ⊔ [Py(t1)] ⊔ jm(t1) ⊔ max(1, Py(t1)) · jm(t2)
⊔ max(1, max(1, Py(t1)) · Px(t2)) · jm(u) =
[max(1, Py(t1)) · Px(t2)] ⊔ [Py(t1)] ⊔ jm(t1) ⊔ max(1, Py(t1)) · jm(t2)
⊔ max(1, Py(t1)) · max(1, Px(t2)) · jm(u) =
[Py(t1)] ⊔ jm(t1) ⊔ max(1, Py(t1)) · ([Px(t2)] ⊔ jm(t2) ⊔ max(1, Px(t2)) · jm(u)) ⊐i.h.

[Py(t1)] ⊔ jm(t1) ⊔ jm(t2{x/u}) =
jm(t{x/u})

• All the other cases are straightforward.
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Lemma 2.8. Let t0 ∈ T . Then,

(1) t0 ≡α t1 implies jm(t0) = jm(t1).
(2) t0 →j t1 implies jm(t0) ⊐ jm(t1).

Proof. By induction on the relations. The first point is straightforward, hence we only show
the second one. We reason by cases.

• t0 = t[x/u]→w t = t1, with |t|x = 0. Then jm(t0) = jm(t)⊔1 ·jm(u)⊔ [0] ⊐ jm(t) = jm(t1).
• t0 = t[x/u]→d t{x/u} = t1, with |t|x = 1. Then jm(t[x/u]) ⊐Lem. 2.7:2 jm(t{x/u}).
• t0 = t[x/u] →c t[y]x[x/u][y/u] = t1, with |t|x ≥ 2 and y fresh. Then, Lemma 2.6:2 gives
[Px(t)] ⊐ [Px(t[y]x)] ⊔ [Py(t[y]x)] and thus:

jm(t0) =
[Px(t)] ⊔ jm(t) ⊔ Px(t) · jm(u) =
[Px(t)] ⊔ jm(t) ⊔ (Px(t[y]x) + Py(t[y]x)) · jm(u) =Lem.2.7:1
[Px(t)] ⊔ jm(t[y]x) ⊔ (Px(t[y]x) + Py(t[y]x)) · jm(u) ⊐Lem. 2.6:2
[Px(t[y]x)] ⊔ [Py(t[y]x)] ⊔ jm(t[y]x) ⊔ Px(t[y]x) · jm(u) ⊔ Py(t[y]x) · jm(u) =
[Px(t[y]x)] ⊔ [Py(t[y]x [x/u])] ⊔ jm(t[y]x) ⊔ Px(t[y]x) · jm(u) ⊔ Py(t[y]x[x/u]) · jm(u) =
[Py(t[y]x [x/u])] ⊔ jm(t[y]x[x/u]) ⊔ Py(t[y]x [x/u]) · jm(u) = jm(t1)

• t0 = t[x/u]→ t′[x/u] = t1, where t→ t′. Then:

jm(t0) = [Px(t)] ⊔ jm(t) ⊔ max(1, Px(t)) · jm(u) ⊐i.h.

[Px(t)] ⊔ jm(t
′) ⊔ max(1, Px(t)) · jm(u) ⊒Lem. 2.6:3

[Px(t
′)] ⊔ jm(t′) ⊔ max(1, Px(t

′)) · jm(u) = jm(t1)

• All the other cases are straightforward.

The last lemma obviously implies:

Lemma 2.9. The j-calculus terminates.

Furthermore:

Lemma 2.10. The j-reduction relation is confluent and terminating. Moreover, if j(t)
denotes the (unique) j-normal form of t, then the following properties hold:

j(x) = x j(uv) = j(u)j(v)
j(λx.u) = λx.j(u) j(u[x/v]) = j(u){x/j(v)}

Proof. One easily shows that →j is locally confluent, then Lemma 2.9 allows to apply
Newman’s Lemma [42] to conclude with the first part of the statament. The second part
can be shown by induction on the structure of terms. Particularly, when t = u[x/v] one
has u[x/v] →∗

j j(u)[x/j(v)] →
+
j (Lem. 2.2) j(u){x/j(v)}. It is then sufficient to note that

j-normal forms are stable by substitutions of j-normal forms.

We conclude this section by showing another important property of λj concerning the
postponement of erasing steps. We first need the following lemma:

Lemma 2.11. Let t ∈ T . Then:

(1) t→w→¬w t
′ implies t→¬w→

+
w t′.

(2) t→+
w→¬w t

′ implies t→¬w→
+
w t′

Proof. Point 1 is by induction on the relations and case analysis. Point 2 is by induction
on the length of →+

w using Point 1.
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Let us use τ : t →∗ t′ as a notation for a reduction sequence, the symbol ’;’ for the
concatenation of reduction sequences and |τ |¬w for the number of →¬w steps in τ . Then we
obtain:

Lemma 2.12 (w-postponement). Let t ∈ T . If τ : t →∗
λj t′ then ∃ τ ′ : t →∗

¬w→
∗
w t′ s.t.

|τ |¬w = |τ
′|¬w.

Proof. By induction on k = |τ |¬w. The case k = 0 is straightforward. Let k > 0. If
τ : t →¬w u →∗

λj t′ then simply conclude using the i.h. on the sub-reduction ρ : u →∗
λj t′.

Otherwise the sequence τ starts with a w-step. If all the steps in τ are w, then we trivially
conclude. Otherwise τ = τw;→¬w; ρ where τw is the maximal prefix of τ made out of
weakening steps only. By Lemma 2.11:2 we get that t →¬w→

+
w ; ρ t′ and we conclude by

applying the i.h. to →+
w ; ρ.

2.2. Confluence. Confluence of calculi with ES can be easily proved by using Tait and
Martin Löf’s technique (see for example the case of λes [20]). This technique is based on
the definition of a simultaneous reduction relation which enjoys the diamond property. It
is completely standard so we give the statements of the lemmas and omit the proofs.

The simultaneous reduction relation ⇛λj is defined on terms in j-normal form as
follows:

• x ⇛λj x
• If t ⇛λj t

′, then λx.t ⇛λj λx.t
′

• If t ⇛λj t
′ and u ⇛λj u

′, then tu ⇛λj t
′u′

• If t ⇛λj t
′ and u ⇛λj u

′, then (λx.t)u ⇛λj j(t
′[x/u′])

Note that the third and fourth cases overlap, thus for example, (λx.II)II ⇛λj (λx.I)I and
(λx.II)II ⇛λj I, where I denotes the identity function λy.y.

A first lemma ensures that ⇛λj can be simulated by →λj.

Lemma 2.13. If t ⇛λj t
′, then t→∗

λj t
′.

Proof. By induction on t ⇛λj t
′.

A second lemma ensures that →λj can be projected through j(·) on ⇛λj.

Lemma 2.14. If t→λj t
′, then j(t) ⇛λj j(t

′).

Proof. By induction on t→λj t
′.

The two lemmas combined essentially say that ⇛λj is confluent if and only if →∗
λj

is confluent. Then we show the diamond property for ⇛λj, which implies that →λj is
confluent:

Lemma 2.15. The relation ⇛λj enjoys the diamond property.

Proof. By induction on ⇛λj and case analysis.
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Then we conclude:

Theorem 2.16 (Confluence). For all i ∈ {1, 2}, for all t, ui ∈ T s.t. t →∗
λj ui, ∃v s.t.

ui →
∗
λj v.

Proof. Let t→∗
λj ui for i = 1, 2. Lemma 2.14 gives j(t) ⇛∗

λj j(ui) for i = 1, 2. Lemma 2.15

implies ⇛λj is confluent so that ∃v such that j(ui) ⇛
∗
λj v for i = 1, 2. We can then close

the diagram with ui →
∗
j j(ui)→

∗
λj v by Lemma 2.13.

While confluence holds for all calculi with explicit substitutions, metaconfluence does
not. The idea is to switch to an enriched language with a new kind of (meta)variable of
the form X∆, to be intended as a named context hole expected to be replaced by terms
whose free variables form a subset of ∆. This form of metaterm is for example used in
the framework of higher-order unification [18]. In presence of meta-variables not all the
substitutions can be computed. For instance in the metaterm Xy[y/z] the jump [y/z] is
blocked. Consider:

(X{z1}Y {z2})[z1/x][z2/x] c←(X{z}Y {z})[z/x]→c (X
{z1}Y {z2})[z2/x][z1/x]

These metaterms are different normal forms. However, it is enough to add the following
equation to recover confluence:

t[x/u][y/v] ∼CS t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

A proof of confluence of λj modulo CS for metaterms can be found in [38].

3. Preservation of β-Strong Normalization for λj

A reduction system R for a language containing the set Tλ of all λ-terms is said to enjoy
the PSN property iff every λ-term which is β-strongly normalizing is also R-strongly
normalizing. Formally, for all t ∈ Tλ, if t ∈ SN β, then t ∈ SNR.

The PSN property, when it holds, is usually non-trivial to prove. We are going to
show that λj enjoys PSN by giving a particularly compact proof. The proof technique has
been developed by D. Kesner [21]; it reduces PSN to a property called IE, which relates
termination of Implicit substitution to termination of Explicit substitution. It is an abstract
technique not depending on the particular rules of the calculus with explicit substitutions.

A reduction system R for a language TR containing the set Tλ is said to enjoy the IE
property iff for n ≥ 0 and for all t, u ∈ Tλ, v

1
n ⊆ Tλ:

u ∈ SNR & t{x/u}v1n ∈ SNR & t[x/u]v1n ∈ TR imply t[x/u]v1n ∈ SNR

Of course one generally considers a system R which can simulate the λ-calculus, so that
the following properties seem to be natural requirements to get PSN.

Theorem 3.1 (Natural Requirements for PSN). Let R be a calculus verifying the following
facts:

(F0) If t
1
n ⊆ Tλ ∩ SNR, then xt

1
n ∈ SNR.

(F1) If u ∈ Tλ ∩ SNR, then λx.u ∈ SNR.

(F2) If v ∈ Tλ ∩ SNR & u{x/v}t
1
n ∈ Tλ ∩ SNR, then (λx.u)vt

1
n ∈ SNR.

Then, R enjoys PSN.

Proof. We show that t ∈ SN β implies t ∈ SNR by induction on the pair 〈ηβ(t), |t|〉, using
the lexicographic ordering. We reason by cases.
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• If t = xt
1
n, then ti ∈ SN β and 〈ηβ(ti), |ti|〉 <lex 〈ηβ(t), |t|〉. We have ti ∈ SNR by the i.h.

and thus xt
1
n ∈ SNR by fact F0.

• If t = λx.u, then u ∈ SN β and 〈ηβ(u), |u|〉 <lex 〈ηβ(t), |t|〉. We have u ∈ SNR by the i.h.
and thus λx.u ∈ SNR by fact F1.

• If t = (λx.u)vt
1
n ∈ SN β, then u{x/v}t

1
n ∈ SN β and v ∈ SN β. Indeed, ηβ(u{x/v}t

1
n) <

ηβ(t) and ηβ(v) < ηβ(t). We have that both terms are in SNR by the i.h. Then F2
guarantees that t ∈ SNR.

Now we show that λj satisfies the three natural requirements of the last theorem, and thus
it satisfies PSN.

Lemma 3.2 (Adequacy of IE). If λj verifies IE, then λj satisfies PSN.

Proof. By Theorem 3.1 it is sufficient to show F0, F1 and F2. The first two properties

are straightforward. For the third one, assume v ∈ Tλ ∩ SN λj and u{x/v}t
1
n ∈ Tλ ∩ SN λj.

Then in particular u, v, t
1
n ∈ Tλ ∩ SN λj. We show that t = (λx.u)vt

1
n ∈ SN λj by induction

on ηλj(u) + ηλj(v) + Σi ηλj(ti). For that, it is sufficient to show that every λj-reduct of t

is in SN λj. If the λj-reduct of t is internal we conclude by the i.h. Otherwise t = u[x/v]t
1
n

which is in SN λj by the IE property.

As a consequence, in order to get PSN for λj we only need to prove the IE property. For
that, we first generalise the IE property in order to deal with possibly many substitutions.

A reduction system R for a language TR containing the set Tλ is said to enjoy the
Generalised IE property, written GIE, iff for all t, u1

m (m ≥ 1), v1n (n ≥ 0) in TR,
if u1m ⊆ SNR & t{xi/ui}

1
mv1n ∈ SNR, then t[xi/ui]

1
mv1n ∈ SN λj, where xi 6= xj for

i, j = 1 . . . m and xi /∈ fv(uj) for i, j = 1 . . . m.

Theorem 3.3 (GIE for λj). The λj-calculus enjoys the GIE property.

Notation: To improve readability of the proof we shall abbreviate the notation [xi/ui]
1
m

by [·]1m. Similarly for implicit substitutions.

Proof. Suppose u1m ∈ SN λj & t{xi/ui}
1
mv1n ∈ SN λj. We show t0 = t[xi/ui]

1
mv1n ∈ SN λj by

induction on:
〈ηλj(t{xi/ui}

1
mv1n), vx1m

(t), ηλj(u
1
m)〉

where vxi
(t) = 3|t|xi and vx1

m
(t) = Σi∈mvxi

(t).
To show t0 ∈ SN λj it is sufficient to show that every λj-reduct of t0 is in SN λj.

• t0 →λj t[·]
1
j−1[xj/u

′
j ][·]

j+1
m v1n = t′0 with uj →λj u

′
j. Then we get:

− ηλj(t{·}
1
j−1{xj/u

′
j}{·}

j+1
m v1n) ≤ ηλj(t{·}

1
mv1n),

− vx1
m

does not change, and

− ηλj(u
1
j−1u

′
ju

j+1
m ) < ηλj(u

1
m).

We conclude by the i.h. since u1j−1u
′
ju

j+1
m ∈ SN λj and our hypothesis t{xi/ui}

1
mv1n ∈

SN λj is equal or reduces to t{·}1j−1{xj/u
′
j}{·}

j+1
m v1n ∈ SN λj (depending on |t|xj

).

• t0 →λj t
′[·]1mv1n = t′0 with t→λj t

′. Then we have that:

ηλj(t
′{·}1mv1n) < ηλj(t{·}

1
mv1n)

We conclude by the i.h. since t′{·}1mv1n ∈ SN λj.
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• t0 →λj t[·]
1
mv1 . . . v

′
i . . . vn = t′0 with vi →λj v

′
i. Then we have that:

ηλj(t{·}
1
mv1 . . . v

′
i . . . vn) < ηλj(t{·}

1
mv1n)

We conclude by the i.h. since t{·}1mv1 . . . v
′
i . . . vn ∈ SN λj.

• t0 →w t[·]
1
j−1[·]

j+1
m v1n = t′0, with |t|xj

= 0. Then we have that:

ηλj(t{·}
1
j−1{·}

j+1
m v1n) = ηλj(t{·}

1
mv1n)

But v
x1j−1

xj+1
m

(t) < vx1
m
(t). We conclude by the i.h. since t{·}1j−1{·}

j+1
m v1n = t{·}1mv1n ∈

SN λj by hypothesis.

• t0 →d t[·]1j−1{xj/uj}[·]
j+1
m v1n = t′0 with |t|xj

= 1. Note that t′0 = t{xj/uj}[·]
1
j−1[·]

j+1
m v1n.

Then we get:
ηλj(t{xj/uj}{·}

1
j−1{·}

j+1
m v1n) = ηλj(t{·}

1
mv1n)

Since the jumps are independent, then (x1
j−1∪x

j+1
m )∩fv(uj) = ∅ implies v

x1j−1
xj+1
m

(t{xj/uj}) <

vx1m
(t). We conclude since t{·}1j−1{xj/uj}{·}

j+1
m v1n = t{·}1mv1n ∈ SN λj by hypothesis.

• t0 →c t[y]xj [·]
1
j−1[xj/uj ][y/uj ][·]

j+1
m v1n = t′0 with |t|xj

≥ 2 and y fresh. Then,

ηλj(t[y]xj {·}
1
j−1{xj/uj}{y/uj}{·}

j+1
m v1n) = ηλj(t{·}

1
mv1n)) and

v
x1j−1

xjyx
j+1
m

(t[y]xj ) < vx1
m
(t). In order to apply the i.h. to t[y]xj we need:

− u1j−1, uj , uj , u
j+1
m ∈ SN λj. This holds by hypothesis.

− t[y]x1{·}
1
j−1{xj/uj}{y/uj}{·}

j+1
m v1n ∈ SN λj. This holds since the term is equal to

t{·}1mv1n which is SN λj by hypothesis.
Note that this is the case that forces the use of a generalised sequence of substitutions:

if we were proving the statement for t[x/u]v1n using as hypothesis u ∈ SN λj & t{x/u}v1n ∈
SN λj then there would be no way to use the i.h. to get t[y]x[x/u][y/u]v

1
n ∈ SN λj.

• t0 = (λx.t′)[·]1mv1v
2
n →dB t

′[x/v1][·]
1
mv2n = t′0. We have that:

u0 = (λx.t′){·}1mv1v
2
n ∈ SN λj

holds by hypothesis. Then:

u0 →dB t
′{·}1m[x/v1]v

2
n = t′[x/v1]{·}

1
mv2n = u′0

Thus ηλj(u
′
0) < ηλj(u0) and u′0 ∈ SN λj. Since u1m ∈ SN λj by hypothesis we can apply

the i.h. and get t′0 ∈ SN λj.

The following is a consequence of Thereom 3.3: just take the number of substitutions m to
be 1 and consider only the GIE property for Tλ ⊂ T .

Corollary 3.4 (IE for λj). The λj-calculus enjoys the IE property.

Corollary 3.4, then Lemma 3.2 and finally Theorem 3.1 imply:

Corollary 3.5 (PSN for λj). The λj-calculus enjoys PSN, i.e. if t ∈ Tλ ∩ SN β, then
t ∈ SN λj.

Note that Lemma 3.2 and Theorem 3.3, which contains the arguments for PSN, do not
use full composition, nor termination of →j, confluence or postponement of erasures: none
of the properties of λj plays a role in this compact proof of PSN, which is quite surprising.
The crucial point is the formulation at a distance of the rewriting rules. Indeed, we will
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later show that such a simple proof does not longer work when rules propagating jumps are
added to the system.

4. An equational theory for λj

Sections 2 and 3 show that the basic theory of λj enjoys good properties such as full
composition, confluence and PSN. In most calculi with explicit substitutions, where substi-
tutions are propagated through constructors and do not act at a distance, full composition
can only be obtained by adding an equivalence relation ≡CS defined as the contextual and
reflexive-transitive closure of the following equation:

t[x/s][y/v] ∼CS t[y/v][x/s] if x /∈ fv(v) & y /∈ fv(s)

Otherwise a term like x[y/z][x/w] cannot reduce to its implicit form w[y/z] = x[y/z]{x/w}
(and so full composition does not hold). Interestingly, λj enjoys full composition without
using equation CS, which is remarkable since plain rewriting is much easier than rewriting
modulo an equivalence relation.

However, as mentioned at the end of Section 2.2, the equation CS is necessary to recover
confluence on metaterms. It is then natural to wonder what happens when ≡CS is added
to λj. The answer is extremely positive since ≡CS preserves all the good properties of λj,
and this holds in a very strong sense. In fact, ≡CS is a strong bisimulation for (T ,→λj)
(cf. Lemma 4.2), so that ≡CS can be postponed w.r.t. →λj (cf. Lemma 1.2) and λj modulo
≡CS enjoys PSN (cf. Lemma 1.1:2).

As already mentioned in the introduction, λj-terms and λj-dags [1] are strongly bisim-
ilar, but the translation of λj-terms to λj-dags is not injective, i.e. there are different
λj-terms which are mapped to the same λj-dag. It is then interesting to characterise the
quotient induced by the translation [1], which turns out to be ≡CS: indeed t ≡CS u if and
only if t and u are mapped to the same λj-dag G, and since they both behave like G (i.e. are
strongly bisimilar to G), then they behave the same (i.e. they are strongly bisimilar).

The λj-calculus is also interesting since it can be mapped to another graphical language,
Danos’ and Regnier’s Pure Proof-Nets, being able to capture untyped λ-calculus. It
is possible to endow Pure Proof-Nets with an operational semantics1 which makes them
strongly bisimilar to λj. The quotient induced by the translation from λj-terms into Pure
Proof-Nets is given by the graphical equivalence ≡o which is the contextual and reflexive-
transitive closure of the equations in Figure 2.

t[x/s][y/v] ∼CS t[y/v][x/s] if x /∈ fv(v) & y /∈ fv(s)
λy.t[x/s] ∼σ1

(λy.t)[x/s] if y /∈ fv(s)
t[x/s]v ∼σ2

(tv)[x/s] if x /∈ fv(v)

Figure 2: The graphical equivalence ≡o

1Danos’ and Regnier’s original operational semantics does not match exactly λj because they use a big-
steps rule for eliminating exponential cuts, which corresponds to use just one substitution rule t[x/u] →
t{x/u}. However, the refinement of Pure Proof-Nets where duplications are done small-steps is very natural
from an explicit substitution point of view, altough — to our knowledge — it has never been considered
before.
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This means that Pure Proof-Nets quotient more than λj-dags2. As for ≡CS, ≡o is a
strong bisimulation (cf. Lemma 4.2), and thus confluence and PSN of λj automatically lift
to →λj/o (cf. Theorem 4.3), which is the reduction relation λj modulo ≡o.

Another way to explain the o-equivalence is by means of linear constructors. Indeed,
the body of an abstraction cannot be duplicated nor erased by the abstraction itself—in this
sense an abstraction is linear in its body. Similarly, explicit substitutions are linear with
respect to their left subterm, while they are non-linear with respect to their right subterm,
i.e. the content of the jump, which may be duplicated or discarded. Applications are linear
in their left subterm but they are non-linear in their argument, because they can wrap it in a
jump. This linear/non-linear classification reflects the fact that jumps and arguments (and
only them) are associated to !-boxes in Proof-Nets, the non-linear construction of Linear
Logic. The equations defining ≡o can be understood as a permutation between a jump and
a linear subterm of the adjacent constructor.

It is then natural to wonder if ≡o can be extended with equations permuting jumps
with non-linear subterms (see Figure 4, page 22), without breaking confluence and PSN.
The answer is yes; the obtained equational theory is called the substitution equivalence
≡obox, and the fact that λj modulo ≡obox enjoys PSN is the main result of this paper.

Extending ≡o to non-linear permutations is delicate from a termination point of view,
since the use of non-linear equations affects reduction lengths. Indeed, the natural but näıve
extension of ≡o breaks PSN. By analyzing a counter-example to PSN we define ≡obox so
that PSN turns out to be true. The proof of this fact, however, is more involved than that
for ≡CS and ≡o, mainly because ≡obox is not a strong bisimulation. Therefore, we shall
develop a new technique for proving PSN modulo ≡obox.

Section 4.1 starts over by explaining the equivalence ≡o in terms of Regnier’s σ-
equivalence [37], providing a different point of view with respect to what was already
mentioned. Section 4.2 discusses how to extend ≡o to ≡obox by showing the difficulties
to prove PSN for the obtained extension. Section 5 develops the proof of PSN for λj
modulo ≡obox.

4.1. The graphical equivalence. Regnier’s equivalence ≡σ̂ is the smallest equivalence
on λ-terms closed by contexts and containing the equations in Figure 3.

(λx.λy.t)u ∼σ̂1
λy.((λx.t)u) if y /∈ fv(u)

(λx.tv)u ∼σ̂2
(λx.t)uv if x /∈ fv(v)

Figure 3: The equivalence ≡σ̂

Regnier proved that two σ̂-equivalent terms have essentially the same operational behavior:
≡σ̂ is contained in the equational theory generated by β-reduction, i.e. ≡σ̂⊂≡β, and if
t ≡σ̂ t′ then the maximal β-reduction sequences from t and t′ have the same length (the
so-called Barendregt’s norm). That is why Regnier calls ≡σ̂ an operational equivalence.

2λj-dags can be mapped on Pure Proof-Nets, and once again the map is a strong bisimulation.
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It is then natural to expect that the previous property can be locally reformulated in
terms of a strong bisimulation, namely,

t →β u t →β u
≡σ̂ implies ≡σ̂ ≡σ̂

t′ t′ →β u′

Unfortunately, this is not the case. Consider the following example, where grey boxes
are used to help the identification of redexes and their reductions:

t = λy.( (λx.y)z1 )z2 →β (λx.z2)z1 = u

≡σ̂1
6≡σ̂

t′ = ( (λx.(λy.y))z1 )z2 →β (λy.y)z2 = u′

The term t′ has only one redex whose reduction gives u′ which is not ≡σ̂-equivalent to
u, the reduct of t. The diagram can be completed only by unfolding the whole reduction:

t = λy.( (λx.y)z1 )z2 →β (λx.z2)z1 →β z2

≡σ̂1
= (⊆≡σ̂)

t′ = ( (λx.(λy.y))z1 )z2 →β (λy.y)z2 →β z2

Note that the second step from t′ reduces a created redex.

We are now going to analyze ≡σ̂ in the framework of λj. For that, Regnier’s equivalence
can be understood on λj-terms by first removing the dB-redexes. Indeed, let us take the
clauses defining ≡σ̂ and let us make a dB-reduction step on both sides, thus eliminating the
multiplicative redexes as in Regnier’s definition:

(λx.λy.t)u ∼σ̂1
λy.( (λx.t)u ) ( (λx.t)u )v ∼σ̂2

(λx.(tv))u

↓dB ↓dB ↓dB ↓dB

(λy.t)[x/u] λy.( t[x/u] ) t[x/u] v (tv)[x/u]

Now, ≡σ̂ can be seen as a change of the positions of jumps in a given term and par-
ticularly as a permutation equivalence of jumps concerning the linear constructors of the
calculus.

This is not so surprising since such permutations turn into simple equalities when one
extends the standard translation of λ-calculus into Linear Logic Proof-Nets to λj-terms (see
for example [24]). Another interesting observation is the relationship between ≡σ̂ and the
equivalence ≡CS introduced in Section 2.2. To understand this point we proceed the other
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way around by expanding jumps into β-redexes:

t[y/v] [x/u] ≡CS t[x/u] [y/v]

↑dB ↑dB

( (λy.t)v )[x/u] (λy. t[x/u] )v

↑dB ↑dB

(λx.( (λy.t)v ))u (λy.( (λx.t)u ))v

Note that the relation between the resulting terms is contained in ≡σ̂, that is why it was
not visible in λ-calculus:

(λx.((λy.t)v))u ∼σ̂2
(λx.λy.t)uv ∼σ̂1

(λy.((λx.t)u))v

In [1] it has been proved that two λj-terms t and t′ are translated to the same Pure
Proof-Net if and only if t ≡σ,CS t′. More precisely, this relation can be given by the
graphical equivalence ≡o already defined in Figure 2.

The equations defining ≡o are specified by means of local permutations, but it is also
possible to define ≡o in terms of global permutations. First, define a spine context S as:

S ::= � | λx.S | St | S[x/t]

and then define ≡o as the context closure of the following equation ∼o:

S[[t[x/u]]] ∼o S[[t]][x/u] if bs(S) ∩ fv(u) = ∅ and |t|x = |S[[t]]|x

The two definitions are easily seen to be equivalent. We shall now prove that ≡o is a
strong bisimulation, which will immediately imply (Lemma 1.1) that ≡o preserves reduction
lengths. This property is stronger than the one proved by Regnier for ≡σ̂, since it holds for
any reduction sequence, not only for the maximal ones.

Lemma 4.1. Let E be the equivalence relation CS or o, and t, t′ ∈ T s.t. t ≡E t
′. Let u ∈ T .

Then:

(1) |t|x = |t′|x.

(2) For all S ⊆ posx(t) there is S′ ⊆ posx(t
′) s.t. |S| = |S′| and RS,x

y (t) ≡E R
S′,x
y (t′).

(3) t{x/u} ≡E t
′{x/u}.

(4) u{x/t} ≡E u{x/t
′}.

Proof. Straightforward inductions.

Lemma 4.2. The relations ≡CS and ≡o are strong bisimulations for λj.

Proof. We prove the statement for ≡o. The proof for ≡CS is obtained by simply forgetting
the cases {∼σ1

,∼σ2
}. Assume t0 ≡o t1 holds in n-steps, which is written as t0 ≡

n
o t1, and

let t1 →λj s1. We show ∃ s0 s.t. t0 →λj s0 ≡o s1 by induction on n.
The inductive step for n > 1 is straightforward. For n = 1 we reason by induction on the

definition of t0 ≡
1
o t1, given by the closure under contexts of the equations {∼CS,∼σ1

,∼σ2
}.
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We only show here the cases where t0 ≡o t1 is contextual, all the other ones being
straightforward.

• If t0 = t[x/u] ≡o t
′[x/u] = t1 →λj t

′[x/u′] = s1, where t ≡o t
′ and u→λj u

′, then we close
the diagram by t0 →λj t[x/u

′] ≡o s1.
• The case t0 = t[x/u] ≡o t[x/u′] = t1 →λj t′[x/u′] = s1, where u ≡o u′ and t →λj t′ is
analogous to the previous one.
• If t0 = t[x/u] ≡o t′[x/u] = t1 →λj t′′[x/u] = s1, where t ≡o t′ →λj t′′, then by the i.h.
∃ t′′′ s.t. t→λj t

′′′ ≡o t
′′. We close the diagram by t0 →λj t

′′′[x/u] ≡∗
o s1.

• The case t0 = t[x/u] ≡o t[x/u
′] = t1 →λj t[x/u

′′] = s1, where u ≡o u
′ →λj u

′′ is analogous
to the previous one.
• If t0 = t[x/u] ≡o t[x/u

′] = t1 →w t = s1, where u ≡o u
′ and |t|x = 0, then t0 →w t = s1.

• If t0 = t[x/u] ≡o t′[x/u] = t1 →w t = s1, where t ≡o t′ and |t′|x = 0, then the previous
remark implies |t|x = 0 and we close the diagram by t0 →w t ≡o t

′ = s1.
• If t0 = t[x/u] ≡o t[x/u′] = t1 →c t[y]x [x/u

′][y/u′] = s1, where u ≡o u′ and |t|x > 1, then

we close the diagram by t0 →c t = t[y]x [x/u][y/u] ≡
2
o t[y]x[x/u

′][y/u′].
• If t0 = t[x/u] ≡o t

′[x/u] = t1 →c t
′
[y]x

[x/u][y/u] = s1, where t ≡o t
′ and |t′|x > 1, then we

first write t′[y]x as RS′,x
y (t′), where S′ ⊂ post′(x) and |S

′| ≥ 2. Lemma 4.1:1 gives |t|x > 1

and Lemma 4.1:2 gives S ⊂ post(x) verifying |S| = |S
′| and RS′,x

y (t′) ≡o RS,x
y (t). Then,

we close the diagram with t0 →c R
S,x
y (t)[x/u][y/u] ≡o t

′
[y]x

[x/u][y/u].

• If t0 = t[x/u] ≡o t[x/u′] = t1 →d t{x/u′} = s1, where u ≡o u′ and |t|x = 1, then
t[x/u]→d t{x/u} ≡o t{x/u

′}, where the last equivalence holds by Lemma 4.1:4.
• If t0 = t[x/u] ≡o t′[x/u] = t1 →d t′{x/u} = s1, where t ≡o t′ and |t′|x = 1. Then,
t[x/u]→d t{x/u} ≡o t

′{x/u} where the last equivalence holds by Lemma 4.1:1-3.

A consequence (cf. Lemma 1.2) of the previous lemma is that both ≡CS and ≡o can be
postponed, which implies in particular the following.

Theorem 4.3. The reduction systems (T ,→λj/CS) and (T ,→λj/o) are both confluent and
enjoy PSN.

Proof. Confluence follows from Lemma 4.2 and Theorem 2.16 by application of Lemma 1.2:2,
while PSN follows from Lemma 4.2 and Corollary 3.5 by application of Lemma 1.1.

Actually, →λj/o is equal to ≡o→λj≡o. In the framework of rewriting modulo an equiv-
alence relation there are various, non-equivalent, forms of confluence. The one given by
Theorem 4.3 is the weakest one, but the Church-Rosser modulo property also holds in our
framework.

Theorem 4.4 (Church-Rosser modulo CS and o). Let E be the equivalence relation CS or
o. If t0 ≡E t1, t0 →

∗
λj/E u0 and t1 →

∗
λj/E u1, then ∃v0, v1 s.t. u0 →

∗
λj/E v0, u1 →

∗
λj/E v1 and

v0 ≡E v1.

Proof. By Lemma 4.2 and Lemma 1.2.

We finish this section with the following interesting property.

Lemma 4.5. The reduction relation j/o is strongly normalizing.

Proof. The proof uses the measure jm() used to prove Lemma 2.9 and the fact that t ≡o t
′

implies jm(t) = jm(t′).
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4.2. The substitution equivalence. Composition of explicit substitutions is a sensible
topic in the literature, it is interesting to know if λj can be extended with a safe notion of
(structural) composition.

The structural λ-calculus is peculiar since composition of substitution is provided na-
tively, but only implicitly and at a distance. Indeed, a term t[x/u][y/v] s.t. y ∈ fv(u) & y ∈
fv(t) reduces in various steps to:

t[x/u{y/v}][y/v]

but not to the explicit composition t[x/u[y/v]][y/v]. One of the aims of this paper is to
prove that adding explicit composition to λj preserves PSN and confluence.

The second aim concerns explicit decomposition. Indeed, some calculi [36, 31, 40, 16, 15]
explicitly decompose substitutions, i.e. reduce t[x/u[y/v]] to t[x/u][y/v]. We show that PSN
and confluence hold even when extending λj with such a rule.

More generally, having a core system, λj, whose operational semantics does not depend
on propagations, we study how to modularly add propagations by keeping the good prop-
erties. We have already shown that λj is stable with respect to the graphical equivalence,
which can be seen as handling propagations of jumps with respect to linear constructors.
We proved that λj/o is confluent and enjoys PSN (Theorem 4.3). What we investigate here
is if we can extend it to propagations with respect to non-linear constructors.

The idea is to extend ≡o to ≡n, where ≡n is the the contextual and reflexive-transitive
closure of the relation generated by {CS, σ1, σ2} plus:

(tv)[x/u] ∼box0
1

tv[x/u] if x /∈ fv(t)

t[y/v][x/u] ∼box0
2

t[y/v[x/u]] if x /∈ fv(t)

In terms of global permutations ≡n can be defined as the context closure of C[[t[x/u]]] ∼n

C[[t]][x/u] where |t|x = |C[[t]]|x, and C is any context (not just a spine context) which does
not capture the variables of u. These equations are constructor preserving (same kind
and number of constructors), in contrast to more traditional explicit substitution calculi
containing for instance the following rule:

(tu)[y/v] →@ t[y/v]u[y/v]

which achieves two actions at the same time: duplication and propagation of a jump. In
λj/n there is a neat separation between propagations and duplications, so that no propa-
gation affects the number of constructors. The rule →@ can be simulated in λj/n only in
the very special case where t and u both have occurrences of y. In our opinion this is not
a limitation: the rule →@ is particularly inefficient since it duplicates even if there is no
occurrence of y at all, thus it is rather a good sign that λj/n cannot simulate →@.

The reduction relation λj/n does not enjoy PSN, since it is a bit näıve on the way
it handles void substitutions. The following counter-example has been found by Stefano
Guerrini. Let u = (zz)[z/y], then:

t = u[x/u] = (zz)[z/y][x/u] ≡box0
2

(zz)[z/y[x/u]] →c

(z1z2)[z1/y[x/u]][z2/y[x/u]] →
+
d y[x/u](y[x/u]) ≡σ2,box01,α

(yy)[x1/u][x/u] ≡box0
2

(yy)[x1/u[x/u]]
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The term t reduces to a term containing t and so there is a loop of the form t→+ C0[t]→
+

C0[C1[t]] →
+ . . .. Now, take t0 = (λx.((λz.zz)y))((λz.zz)y), which is strongly normalizing

in the λ-calculus. Since t0 λj/n-reduces to t, t0 is not λj/n-strongly normalizing and thus
λj/n does not enjoy PSN. It is worth to note that, in contrast to Melliès counterexample
for λσ [32], the dB-rule has no role in building the diverging reduction: the fault comes only
from the jump subsystem j modulo ≡n.

The key point of the previous counter-example is that the jump [x/u] is free to float
everywhere in the term since x has no occurrence in t. Such behavior can be avoided by
imposing the constraint ”x ∈ fv(v)” to box01 and box02. This has also a natural graphical
justification in terms of Pure Proof-Nets ([1], Chapter 6, page 149), since such constraint
turns box01 and box02 into the exact analogous of the commutative box-box rule of Linear
Logic Proof-Nets, but used here as an equivalence relation. We then modify ∼box0

1
and

∼box0
2
by introducing the equivalence ≡box as the contextual and reflexive-transitive closure

of the equations in Figure 4.

(tv)[x/u] ∼box1 tv[x/u] if x /∈ fv(t) & x ∈ fv(v)
t[y/v][x/u] ∼box2 t[y/v[x/u]] if x /∈ fv(t) & x ∈ fv(v)

Figure 4: The equivalence ≡box

Now, we redefine ≡n in the following way. The substitution equivalence ≡obox is the
smallest equivalence closed by contexts containing all the equations in Figure 5.

t[x/s][y/v] ∼CS t[y/v][x/s] if x /∈ fv(v) & y /∈ fv(s)
λy.(t[x/s]) ∼σ1

(λy.t)[x/s] if y /∈ fv(s)
t[x/s]v ∼σ2

(tv)[x/s] if x /∈ fv(v)
(tv)[x/u] ∼box1 tv[x/u] if x /∈ fv(t) & x ∈ fv(v)
t[y/v][x/u] ∼box2 t[y/v[x/u]] if x /∈ fv(t) & x ∈ fv(v)

Figure 5: The substitution equivalence ≡obox

Alternatively, ≡obox can be defined by the context closure of the following global permutat-
ing equations:

C[[t[x/u]]] ∼obox C[[t]][x/u] if bs(C) ∩ fv(u) = ∅ and |t|x = |H[[t]]|x > 0
S[[t[x/u]]] ∼obox S[[t]][x/u] if bs(S) ∩ fv(u) = ∅ and |t|x = |S[[t]]|x = 0

where C is any context and S is a spine context.

It is now natural to study λj-reduction modulo ≡obox. It is easy to prove that the jump
calculus terminates with respect to the new equivalence ≡obox so that the previous coun-
terexample to PSN is ruled out. We need an auxiliary lemma about potential multiplicities
and the j-measure.

Lemma 4.6. Let t0, t1 ∈ T . If t0 ≡obox t1 then:

(1) Pz(t0) = Pz(t1) for every variable z.
(2) jm(t0) = jm(t1).

Proof. By induction on ≡obox. The base cases are easy calculations, the inductive cases use
the i.h.
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Lemma 2.8 and Lemma 4.6:2 together proves the following corollary.

Corollary 4.7. The reduction relation j/obox is terminating.

5. Preservation of β-Strong Normalization for λj/obox

The structural λ-calculus modulo ≡obox is an incredibly subtle and complex rewriting sys-
tem, and proving PSN is is not an easy task. Some of the difficulties are:

• The relation ≡obox is not a strong bisimulation. It is not difficult to see that λj is confluent
modulo ≡obox (essentially the same proof than for λj). However, ≡obox does not preserve
reduction lengths to normal form, i.e. it is not a strong bisimulation. Two examples can
be given by analysing the interaction between ≡obox with erasure and duplication. Here
is an example for erasure:

z[x/y][y/u] →w z[y/u]
≡box2 ↓w

z[x/y[y/u]] →w z

and here another one for duplication:

(xx)[x/y][y/z] →c (xx1)[x/y][x1/y][y/z] →c (xx1)[x/y1][x1/y2][y1/z][y2/z]
≡box2 ≡obox

(xx)[x/y[y/z]] →c (xx1)[x/y[y/z]][x1/y[y/z]] ≡α (xx1)[x/y1[y1/z]][x1/y2[y2/z]]

Indeed, if ≡obox would have been a strong bisimulation, then in both diagrams the
two terms of the second column would be ≡obox-equivalent, while they are not (remark
that ≡obox preserves the number of constructors so that those terms cannot be ≡obox-
equivalent).
• The relation ≡obox cannot be postponed. The last example shows also that ≡obox cannot
be postponed. This is illustrated by the upper left corner of the previous figure:

(xx)[x/y][y/z] →c (xx1)[x/y][x1/y][y/z]
≡box2

(xx)[x/y[y/z]]

Observe that this phenomenon is caused by the equation ∼box2 . Remark that both com-
position (i.e. →box2) and decomposition (box2←) are used in Guerrini’s counterexemple.
• There is no canonical representant of equivalence classes which is stable by reduction.
Indeed, there are two natural canonical representants in λj/obox. Given t we can define
in(t) as the term obtained by moving all substitution towards the variables as much as
possible and out(t) the term obtained moving substitutions far from variables as much
as possible. Consider t = x[x/(λy.z[z/y])x′] →dB x[x/z[z/y][y/x′]] = t′, then out(t) =
x[x/(λy.z[z/y])x′] does not reduce to out(t′) = x[x/z][z/y][y/x′]. Similarly, for the other
representative since in(t) = (x[y/z]z)[z/z′ ] does not reduce to in(t′) = xz[z/z′].

In [3] we proved that λj enjoys PSN in the cases where the equations {∼box1 ,∼box2} are
both oriented from left to right or from right to left. Here we prove PSN considering them as
equivalences. Surprisingly, the proof of this more general result is relatively more compact
and concise than the one(s) in [3]. Indeed, even if we need to pass through an auxiliary
calculus, such a calculus can be proved to enjoy PSN without using labels, in contrast to
our previous result and proof.
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Let us explain our technique. Even if there is no canonical representative form of an
obox-equivalence class which is stable by reduction (cf. Section 4.2), there is an even more
natural way to reason about PSN in the presence of the non-trivial equations {box1, box2}
which consists in projecting λj/obox over a simpler equational calculus. Since both the
calculus and the projection are quite peculiar we introduce them gradually.

A usual näıve idea consists in projecting λj/obox into the λ-calculus by means of a
function computing the complete unfolding of jumps. This gives the following diagram:

t →λj u
↓∗j ↓∗j
j(t) →∗

β j(u)
(5.1)

This principle could be easily exploited in order to prove some properties of λj/obox (such
as confluence), however, this projection erases divergent sub-terms, therefore it cannot be
used to prove PSN. For instance, consider t = x[y/Ω] (where Ω is a non-terminating term),
which is only λj-weakly normalizing, whereas j(t) = x is in normal form. It is easy to
show that projection of terms without void jumps preserves divergence and thus PSN.
Unfortunately, erasures cannot be postponed in λj/obox.

Roughly speaking, the projection gives j(t) →∗
β j(u) so that there are some steps

t→λj u s.t. j(t) = j(u). It is not really a problem if such (erased) steps are finite, but here
there may be infinite sequences of such (erased) steps. It is then quite natural to change the
complete unfolding j into a non-erasing unfolding wj, which does not project void jumps:

wj(x) := x
wj(λx.u) := λx.wj(u)
wj(uv) := wj(u)wj(v)

wj(t[x/u]) :=

{
wj(t){x/wj(u)} if x ∈ fv(t)
wj(t)[x/wj(u)] if x /∈ fv(t)

(5.2)

Note that there are still some erased steps, as for instance t = x[x/y] →d y = u, where
wj(t) = y = wj(u), but intuition tells that wj preserves divergence, because diverging terms
are no longer erased by the projection. Note also that the image of the projection of the
previous reduction step t →d u is no longer a reduction step in the λ-calculus, so that
we need to specify which are the rewriting rules and the equations of the image of the
translation.

For didactive purpose let us assume that we are able to turn the image of the projection
into a calculus — let us say λvoid/o — such that wj projects λj/obox into λvoid/o and
preserves divergence. Two important remarks are: since wj(·) preserves divergence, then
PSN for λvoid/o implies PSN for λj/obox; also, the λvoid/o-calculus does not contain
the equations {box1, box2} because they were turned into equalities thanks to their side
conditions.

It is then reasonable to expect that proving PSN for λvoid/o is easier than PSN for
λj/obox. Our proof technique can then be summarised as follows:

(1) Introduce λvoid/o;
(2) Prove PSN for λvoid/o;
(3) Show that wj(·) preserves divergence from λj/obox to λvoid/o;
(4) Conclude PSN for λj/obox.
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Section 5.1 presents the rewriting rules of λvoid/o, thus completing point 1. Section 5.2
deals with point 2 and Section 5.3 with points 3 and 4.

We believe that the isolation of λvoid/o is an important contribution of this paper.
Indeed, it is easy to see that λvoid/o should contain at least the three following rewriting
rules:

(λx.t)L u 7→β t{x/u}L if x ∈ fv(t)
(λx.t)L u 7→dB t[x/u]L if x /∈ fv(t)
t[x/u] 7→w t if x /∈ fv(t)

More precisely,

• The reduction step t = (λx.x)y →dB x[x/y] = u projects into wj(t) = (λx.x) y →β y =
wj(u).
• The reduction step t = (λx.z)y →dB z[x/y] = u should map to itself, i.e. wj(t) =
(λx.z)y →dB z[x/y] = wj(u).
• The reduction step t = z[x/y]→w z = u should map to itself, i.e. wj(t) = z[x/y]→w z =
wj(t).

However, projecting on such a simple calculus still does not work. There are three phenom-
ena we should take care of:

(1) Equations. As we already mentioned ≡box1 and ≡box2 vanish, that is, t ≡box1,box2 u
implies wj(t) = wj(u). The graphical equivalence, instead, do not vanish, and must be
added to the intermediate calculus, thus getting the reduction relation to be considered
modulo ≡o.

(2) Generalised erasure. Consider:

t = z[x/y1y2][y1/v1][y2/v2]→w z[y1/v1][y2/v2] = u

where wj(t) = z[x/v1v2] and wj(u) = z[y1/v1][y2/v2]. Hence the w-rule t[x/s] → t if
|t|x = 0 must be generalised in order to replace the jump [x/s] by many (eventually
none) jumps containing subterms of s. We shall then use the following (Hydra like) rule
:

t[x/u] 7→h t[x1/u1] . . . [xn/un] ∀i (xi fresh & ui ⊳ u & fv(ui) ⊆ fv(u) & n ≥ 0)

Where ui ⊳ u means that ui is a subterm of u. The condition upon free variables is
necessary in order to avoid unwanted captures inducing degenerated behaviors. Note
that the particular case n = 0 gives the w-rule.

(3) Unboxing: An erasing step t →w u can cause jumps to move towards the root of the
term. Consider:

t = (zz[x/y])[y/v] →w (zz)[y/v] = u

where wj(t) = zz[x/v] and wj(u) = (zz)[y/v] =α (zz)[x/v]. Hence, to project this step
over λvoid/o we need a rule moving jumps towards the root of the term, which could
have in principle the general form:

C[[t[x/u]]]→ C[[t]][x/u]

This rule is the one that shall demand a more involved — but still reasonable — technical
development. Indeed, reduction that moves any jump towards the root modulo ≡o may
cause non-termination:

λx.x[y/z]→ (λx.x)[y/z] ≡o λx.x[y/z]→ . . .
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In order to avoid this problem we restrict the general form of the rule to a certain kind
of contexts, those whose hole is contained in at least one box, i.e. the argument of an
application or the argument of a jump.

We now develop a PSN proof for λj/obox. Section 5.1 formally defines the intermediate
calculus λvoid/o, while Section 5.2 proves PSN for the intermediate calculus λvoid/o and
Section 5.3 proves the properties of the projection which allows us to conclude PSN for
λj/obox.

Let us conclude this section by observing that the generalised erasure and the unboxing
rules are introduced to project the w-rule and not the equations {box1, box2}. Said in other
words, to prove PSN of the simpler calculus λj (resp. λj/o) through the wj projection
into λvoid (resp. λvoid/o), one still needs the generalised erasure and the unboxing rules.
That is why we believe that the technique developed here is really interesting by itself.

5.1. The λvoid/o-calculus. The λvoid/o-calculus can be understood as a memory calcu-
lus based on void jumps. It is given by a set of terms, written Tv, generated by the following
grammar, where only void jumps are allowed:

(Tv) t, u ::= x | λx.t | tu | t[ /u]

The notation t[ /u] just means that the constant has no (free) occurrence in the term t

and [ /s] denotes a list of void jumps [ /s1] . . . [ /sn].
To define the operational semantics we need to define a particular kind of context.

More precisely, if C denotes a context then a boxed context B is given by the following
grammar:

B ::= tC | t[ /C] | Bt | B[ /t] | λy.B

We now consider the reduction rules and equations in Figure 6. The notation L in the rules
dB and β means a list [ /u1] . . . [ /uk] of void jumps where k ∈ N (so potentially k = 0).

(λx.t)L u 7→β t{x/u}L if x ∈ fv(t)
(λx.t)L u 7→dB t[ /u]L if x /∈ fv(t)
t[ /u] 7→h t[ /u1] . . . [ /un] ∀i (ui ⊳ u & fv(ui) ⊆ fv(u) & n ≥ 0)
B[[t[ /u]]] 7→u B[[t]][ /u] B does not bind u

t[ /s][ /v] ∼CS t[ /v][ /s]
λy.(t[ /s]) ∼σ1

(λy.t)[ /s] if y /∈ fv(s)
t[ /s]v ∼σ2

(tv)[ /s]

Figure 6: The λvoid/o-reduction system

Note that the w-rule t[x/u] → t with x /∈ fv(t) of λj is a particular case of the h-rule.
Remark also that the unboxing rule of λvoid/o moves void jumps outside terms, which
was forbidden in the equation box2 of λj/obox. However, this does not break PSN because
there is no boxing rule in λvoid/o. Indeed, Guerrini’s counterexample uses both boxing
and unboxing.

We write t→λvoid/o t
′ iff t ≡o t1 →λvoid t

′
1 ≡o t

′, where→λvoid is the reduction relation
generated by the previous rewriting rules {β, dB, h, u} and ≡o is the equivalence relation
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defined in Figure 2 but restricted here to the λvoid-syntax. As before, →R denotes the
contextual closure of 7→R, for R ⊆ {β, dB, h, u}.

We now show some properties of the new memory reduction system which are used in
Section 5.2 to show PSN.

Lemma 5.1. Let u, v, s ∈ Tv. If u ⊳ s and x /∈ fv(u), then u ⊳ s{x/v}.

Proof. By induction on s.

Lemma 5.2. Let t0, t1, u0, u1 ∈ Tv.

• If t0 →
∗
h,u/o t1 then t0{x/u0} →

∗
h,u/o t1{x/u0}.

• If u0 →
∗
h,u/o u1 then t{x/u0} →

∗
h,u/o t{x/u1}.

Proof. Straightforward.

Lemma 5.3. Let t, v, u, si ∈ Tv. Let x ∈ fv(v). Then t[ /v{x/u}] →∗
h t[ /s][ /u], where

si ⊳ v and fv(si) ⊆ fv(v) and x /∈ fv(si).

Proof. Straightforward, the case t[ /v{x/u}] = t[ /s][ /u] happening in particular when

v = x and [ /s] is empty.

Lemma 5.4. Let t, u, v ∈ Tv. If y ∈ fv(t) then t{y/v[ /u]} →∗
h,u/o t{y/v}[ /u].

Proof. By induction on t.

Lemma 5.5. Let t0, t1, v ∈ Tv. If t0 →
+
h t1, x ∈ fv(t0) and x 6∈ fv(t1), then t0{x/v} →

∗
h,u/o

t1[ /v].

Proof. By induction on the number of steps from t0 to t1, and in the base case by induction
on the reduction step from t0 to t1.

• t0 = u0[ /u1]→h u0[ /v1] . . . [ /vm] = t1, where vi ⊳ u1 and fv(vi) ⊆ fv(u1). Then x ∈ u1
and x /∈ u0 and x /∈ vi so that

u0[ /u1]{x/v} = u0[ /u1{x/v}] →
∗
h (Lem. 5.3) u0[ /v1] . . . [ /vm][ /v]

• t0 = λy.u0 → λy.u1 = t1, where u0 → u1. Then,

(λy.u0){x/v} = λy.u0{x/v} →
∗
h,u/o (i.h.) λy.u1[ /v] ≡σ1

(λy.u1)[ /v]

• t0 = u0v0 → u1v0 = t1, where u0 → u1. Then,

(u0v0){x/v} = u0{x/v}v0 →
∗
h,u/o (i.h.) u1[ /v]v0 ≡σ2

(u1v0)[ /v]

• t0 = u0[ /v0]→ u1[ /v0] = t1, where u0 → u1. Then,

u0[ /v0]{x/v} = u0{x/v}[ /v0]→
∗
h,u/o (i.h.) u1[ /v][ /v0] ≡CS u1[ /v0][ /v]

• All the remaining cases are straightforward.
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Corollary 5.6. Let t0, t1, v ∈ Tv. If t0 →
+
h,u/o t1, x ∈ fv(t0) and x /∈ fv(t1), then

t0{x/v} →
∗
h,u/o t1[ /v].

Proof. By induction on the number of h-steps in the reduction t0 →
+
h,u/o t1. Note first that

→u and ≡o do not loose free variables.

• If there is only one h-step, then the reduction is of the form t→∗
u/o u0 →h u1 →

∗
u/o t

′. We

have t{x/v} →∗
u/o u0{x/v} →

∗
h,u/o (Lem. 5.5) u1[ /v]→

∗
u/o t

′[ /v].

• If there are n > 1 h-steps, then the reduction is of the form t0 →
∗
u/o u0 →h u1 →

+
h,u/o t1,

with n− 1 < n h-steps from u1 to t1 we consider two cases.
If x ∈ fv(u0) ∩ fv(u1), then x is lost in the subsequence u1 →

+
h,u/o t1. We thus have

t0{x/v} →
∗
u/o u0{x/v} →h u1{x/v} →

∗
h,u/o (i.h.) t1[ /v].

If x ∈ fv(u0) \ fv(u1), then t0{x/v} →
∗
u/o u0{x/v} →

∗
h,u/o u1[ /v] (Lem. 5.5) →∗

h,u/o

t1[ /v].

5.2. Preservation of β-Strong Normalization for λvoid/o. The proof of PSN for
λvoid/o we are going to develop in this section is based on the IE property (cf. Section 3)
and follows the main lines of that of Theorem 3.3. Indeed, given u ∈ SN λvoid/o and

t{x/u}v1n ∈ SN λvoid we show that s = t[ /u]v1n ∈ SN λvoid by using a measure on terms
which decreases for every one-step λvoid/o-reduct of s. However, PSN for λvoid/o is much
more involved: first because of the nature of the reduction rules {h, u}, second because of
the equivalence ≡o.

A first remark is that jumps in λvoid/o are all void so in particular they cannot be
duplicated. As a consequence, there is no need at first sight to generalise the IE property to
terms of the form t[ /ui]

1
mv1n as we did before (Theorem 3.3). However, there are now new

ways of getting jumps on the surface of the term. Indeed, if t = λy.t′[ /v] and y /∈ fv(v)
one has s = t[ /u]v1n ≡o (λy.t′)[ /v][ /u]v1n Things are even more complicated since jumps
can also be moved between the arguments v1, . . . , vn as in:

s ≡o ((λy.t
′[ /v])v1)[ /u]v

2
n

The opposite phenomenon can happen too, i.e. the jump [ /u] can enter inside t, for
instance:

s ≡o λy.(t
′[ /v][ /u])v1n

The main point is that the measure we shall use to develop the proof of the IE property
needs to be stable by the equivalence ≡o, i.e. if s ≡o s

′, then s and s′ must have this same
measure.

In order to handle this phenomenon we are going to split s in two parts: the multiset
SJ(s) of jumps of s which are or can get to the surface, and the trunk T(s), i.e. the
term obtained from s by removing all the jumps in SJ(s). This splitting of the term is then
used to generalise the statement of the IE as follows:

If T(s) ∈ SN λvoid/o and u ∈ SN λvoid/o for every [ /u] ∈ SJ(s) then s ∈ SN λvoid/o.

An intuition behind the scheme of this proof is that the term T(s) and the jumps in
SJ(s) are dynamically independent, in the sense that any reduction of s can be seen as an
interleaving of a reduction (eventually empty) of T(s) and reductions (eventually empty)
of elements of SJ(s). Indeed, the void jumps in SJ(s) cannot be affected by a reduction of
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T(s), since none of their free variables is bound in s, and cannot affect a reduction of T(s)
since they are void. The unboxing rule slightly complicates things, but morally that is why
the new generalised form of the IE property holds.

The attentive reader may wonder why we cannot handle the equivalence ≡o by using
a strong bisimulation argument, as in the case of λj/o (cf. Theorem 4.3). Unfortunately,
≡o is not a strong bisimulation for λvoid as the following example shows:

x[ /t[ /x]v] →h x[ /t[ /x]]
≡o ≡o

x[ /(tv)[ /x]] →h ?

Before starting with the technical details of the proof let us add two more important
remarks. First, we have just used T(s) and SJ(s) for didactic purposes, the actual definitions
are parametrised with respect to a set of variables (those which can be captured in the
context containing s). Moreover, in order to simplify the proofs we will not work directly
with SJ(s): we are going to define a parametrised predicate SNSJΓ(s), which is true when
all the jumps in SJ(s) are in SN λvoid/o, and a parametrised measure MSJΓ(s), built out
from the elements of SJ(s). Second, the unboxing rule makes some inductive reasonings
non-trivial, so we isolate them in an intermediate lemma (Lemma. 5.11).

Given s ∈ Tv and a set of variables Γ, the trunk TΓ(s) is given by the following inductive
definition:

TΓ(x) := x
TΓ(tu) := TΓ(t)u
TΓ(λx.t) := λx.TΓ∪{x}(t)
TΓ(t[ /u]) := TΓ(t) if fv(u) ∩ Γ = ∅
TΓ(t[ /u]) := TΓ(t)[ /u] otherwise

Note that x ∈ fv(s) and x ∈ Γ implies x ∈ TΓ(s). Next, we define a predicate on Tv which
is true when all surface jumps contain terminating terms:

SNSJΓ(x) := true
SNSJΓ(tu) := SNSJΓ(t)
SNSJΓ(λx.t) := SNSJΓ∪{x}(t)
SNSJΓ(t[ /u]) := SNSJΓ(t) & u ∈ SN λvoid/o if fv(u) ∩ Γ = ∅
SNSJΓ(t[ /u]) := SNSJΓ(t) otherwise

Observe that s ∈ SN λvoid/o implies in particular SNSJΓ(s) for any set Γ.
For any term s ∈ Tv s.t. SNSJΓ(s) we define the following multiset measure:

MSJΓ(x) := ∅
MSJΓ(tu) := MSJΓ(t) ⊔MSJΓ(u)
MSJΓ(λx.t) := MSJΓ∪{x}(t)
MSJΓ(t[ /u]) := MSJΓ(t) ⊔ [〈ηλvoid/o(u), |u|〉] if fv(u) ∩ Γ = ∅
MSJΓ(t[ /u]) := MSJΓ(t) ⊔MSJΓ(u) otherwise

Now, we can reformulate a generalised statement for the IE property on Void jumps as
follows:

(VIE) For all t ∈ Tv, if T∅(t) ∈ SN λvoid/o and SNSJ∅(t), then t ∈ SN λvoid/o.

Some lemmas about basic properties of TΓ(t), SNSJΓ(t) and MSJΓ(t) follow.
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Lemma 5.7. Let t ∈ Tv and x /∈ fv(t). Then TΓ∪{x}(t) = TΓ(t) and SNSJΓ∪{x}(t) iff
SNSJΓ(t).

Proof. Straightforward.

Lemma 5.8. Let t, u ∈ Tv s.t. fv(t) ⊆ Γ. Then,

(1) t→∗
h TΓ(t).

(2) If x /∈ Γ then TΓ∪{x}(t){x/u} →
∗
h TΓ(t{x/u}).

Proof.

(1) Straightforward induction on t.
(2) By induction on t.
• t = x. Then TΓ∪{x}(t){x/u} = u→∗

h (Point 1) TΓ(u) = TΓ(t{x/u}).
• t = y. Then TΓ∪{x}(t){x/u} = y = TΓ(t{x/u}).
• The cases t = λy.v and t = uv are straightforward using the i.h.
• t = v[ /w]. Let us analyse one particular case in detail, the other ones being similar
can be proved by application of the definitions and the i.h. Let us suppose Γ∩fv(w) =
∅, x ∈ fv(w) and Γ ∩ fv(u) = ∅. Then
TΓ∪{x}(t){x/u} = TΓ∪{x}(v)[ /w]{x/u} = TΓ∪{x}(v){x/u}[ /w{x/u}] and
TΓ(t{x/u}) = TΓ(v{x/u}[ /w{x/u}]) = TΓ(v{x/u}). The i.h. gives
TΓ∪{x}(v){x/u} →

∗
h TΓ(v{x/u}) and so we conclude with

TΓ∪{x}(v){x/u}[ /w{x/u}]→
∗
h TΓ(v{x/u})[ /w{x/u}] →h TΓ(v{x/u})

Lemma 5.9. Let t, u ∈ Tv and x /∈ Γ. If SNSJΓ∪{x}(t), SNSJΓ(u) and TΓ∪{x}(t){x/u} ∈
SN λvoid/o then SNSJΓ(t{x/u}).

Proof. By induction on t using Lemma 5.7.

Lemma 5.10. Let t0 ∈ Tv s.t. TΓ(t0) ∈ SN λvoid/o and SNSJΓ(t0). If t0 ≡o t1 then
SNSJΓ(t1) and TΓ(t0) ≡o TΓ(t1) and MSJΓ(t0) = MSJΓ(t1). Thus in particular the equality
ηλvoid/o(TΓ(t0)) = ηλvoid/o(TΓ(t1)) holds.

Proof. By induction on t0 ≡o t1.

The next lemma deals with the unboxing rule, which requires a complex induction.

Lemma 5.11. Let t0 ∈ Tv s.t. TΓ(t0) ∈ SN λvoid/o and SNSJΓ(t0). If t0 = B[[s[ /u]]] →u

B[[s]][ /u] = t1, where B does not bind u, then SNSJΓ(t1) and:

⋆ If Γ ∩ fv(u) = ∅ then
− Either TΓ(t0) = TΓ(t1) and MSJΓ(t0) ⊐ MSJΓ(t1),
− Or TΓ(t0)→h TΓ(t1);

⋆ If Γ ∩ fv(u) 6= ∅ then TΓ(t0)→
+
u,h/o TΓ(t1).

Proof. By induction on B.

• Base cases:
− B = vC: then t0 = vC[[s[ /u]]] →u (vC[[s]])[ /u] = t1. Hence TΓ(t0) = TΓ(v)C[[s[ /u]]]

and SNSJΓ(t0) iff SNSJΓ(v). There are two cases:
(1) Γ ∩ fv(u) = ∅: then TΓ(t0) →h TΓ(v)C[[s]] = TΓ(t1). To show SNSJΓ(t1) we need

SNSJΓ(v) & u ∈ SN λvoid/o. The first point is equivalent to SNSJΓ(t0), which
holds by hypothesis, the second holds since u is a subterm of TΓ(t0) ∈ SN λvoid/o.
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(2) Γ ∩ fv(u) 6= ∅: then TΓ(t0)→u (TΓ(v)C[[s]])[ /u] = TΓ(t1). To show SNSJΓ(t1) we

need SNSJΓ(v), which holds by hypothesis.
− B = v[ /C]: there are four cases:

(1) Γ ∩ fv(u) = ∅ & Γ ∩ fv(C[[s]]) = ∅: then TΓ(t0) = TΓ(v) = TΓ(t1). Also, SNSJΓ(t0)
so that SNSJΓ(v) & C[[s[ /u]]] ∈ SN λvoid/o. To show SNSJΓ(t1) we need C[[s]] ∈
SN λvoid/o & u ∈ SN λvoid/o, which clearly follows from C[[s[ /u]]] ∈ SN λvoid/o.
We still need to show that MSJΓ(t0) ⊐ MSJΓ(t1) which holds because MSJΓ(t1)
is just MSJΓ(t0) where the multiset [〈ηλvoid(C[[s[ /u]]]), |C[[s[ /u]]]|〉] ∈MSJΓ(t0) is
replaced by the strictly smaller multiset [〈ηλvoid(C[[s]]), |C[[s]]|〉, 〈ηλvoid(u), |u|〉].

(2) Γ ∩ fv(u) = ∅ & Γ ∩ fv(C[[s]]) 6= ∅: then

TΓ(t0) = TΓ(v)[ /C[[s[ /u]]]]→h TΓ(v)[ /C[[s]]] = TΓ(t1)

Also, SNSJΓ(t0) implies SNSJΓ(v). To show SNSJΓ(t1) we need SNSJΓ(v) & u ∈
SN λvoid/o, which then holds by hypothesis and because u is a subterm of TΓ(t0) ∈
SN λvoid/o.

(3) Γ ∩ fv(u) 6= ∅ & Γ ∩ fv(C[[s]]) = ∅: then

TΓ(t0) = TΓ(v)[ /C[[s[ /u]]]]→u TΓ(v)[ /C[[s]]][ /u]→h TΓ(v)[ /u] = TΓ(t1)

Also, SNSJΓ(t0) implies SNSJΓ(v). To show SNSJΓ(t1) we need SNSJΓ(v) & C[[s]] ∈
SN λvoid/o, which holds by the hypothesis and the fact that C[[s]] is a subterm of
a h-reduct of TΓ(t0) ∈ SN λvoid/o.

(4) Γ ∩ fv(u) 6= ∅ & Γ ∩ fv(C[[s]]) 6= ∅: then

TΓ(t0) = TΓ(v)[ /C[[s[ /u]]]]→u TΓ(v)[ /C[[s]]][ /u] = TΓ(t1)

Also SNSJΓ(t0) implies SNSJΓ(v), which is equivalent to SNSJΓ(t1).
• Inductive cases:
− B = B′[ /v]: We have t0 = B′[[s[ /u]]][ /v]→u B

′[[s]][ /v][ /u] = t1. Also B′[[s[ /u]]]→u

B′[[s]][ /u] and the hypothesis TΓ(t0) ∈ SN λvoid/o and SNSJΓ(t0) imply in particular

TΓ(B
′[[s[ /u]]]) ∈ SN λvoid/o and SNSJΓ(B

′[[s[ /u]]]). The i.h. gives SNSJΓ(B
′[[s]][ /u])

and we distinguish several cases:
(1) Γ ∩ fv(u) = ∅ & Γ ∩ fv(v) = ∅: The hypothesis SNSJΓ(t0) implies in particular

v ∈ SN λvoid/o and the i.h. SNSJΓ(B
′[[s]][ /u]) gives SNSJΓ(B

′[[s]]) & u ∈ SN λvoid/o,
so we conclude also SNSJΓ(t1). We now consider two cases:
(a) If u0 = TΓ(B

′[[s[ /u]]]) = TΓ(B
′[[s]][ /u]) andMSJΓ(B

′[[s[ /u]]]) ⊐ MSJΓ(B
′[[s]])⊔

[〈ηλvoid/o(u), |u|〉], then TΓ(t0) = u0 = TΓ(t1) andMSJΓ(t0) = MSJΓ(B
′[[s[ /u]]])⊔

[〈ηλvoid/o(v), |v|〉] ⊐ MSJΓ(B
′[[s]]) ⊔ [〈ηλvoid/o(u), |u|〉] ⊔ [〈ηλvoid/o(v), |v|〉] =

MSJΓ(t1).
(b) If u0 = TΓ(B

′[[s[ /u]]]) →h TΓ(B
′[[s]][ /u]) = u1, then TΓ(t0) = u0 →h u1 =

TΓ(t1).
(2) Γ ∩ fv(u) = ∅ & Γ ∩ fv(v) 6= ∅: The i.h. SNSJΓ(B

′[[s]][ /u]) gives SNSJΓ(B
′[[s]]) & u ∈

SN λvoid/o, so we conclude also SNSJΓ(t1). We now consider two cases:

(a) If u0 = TΓ(B
′[[s[ /u]]]) = TΓ(B

′[[s]][ /u]) andMSJΓ(B
′[[s[ /u]]]) ⊐ MSJΓ(B

′[[s]])⊔
[〈ηλvoid/o(u), |u|〉], then TΓ(t0) = u0[ /v] = TΓ(B

′[[s]])[ /v] = TΓ(t1) andMSJΓ(t0) =
MSJΓ(B

′[[s[ /u]]])⊔MSJΓ(v) ⊐ MSJΓ(B
′[[s]])⊔ [〈ηλvoid/o(u), |u|〉] ⊔MSJΓ(v) =

MSJΓ(t1).
(b) If u0 = TΓ(B

′[[s[ /u]]])→h TΓ(B
′[[s]][ /u]) = u1, then

TΓ(t0) = u0[ /v]→h u1[ /v] = TΓ(B
′[[s]])[ /v] = TΓ(t1)
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(3) Γ ∩ fv(u) 6= ∅: Then the i.h. gives u0 = TΓ(B
′[[s[ /u]]])→+

h,u/o TΓ(B
′[[s]][ /u]) = u1.

We consider the following cases.
(a) Γ ∩ fv(v) = ∅: then

TΓ(t0) = u0 →
+
h,u/o u1 = TΓ(B

′[[s]])[ /u] = TΓ(t1)

Also SNSJΓ(t0) implies v ∈ SN λvoid/o and the i.h. SNSJΓ(B
′[[s]][ /u]) implies

SNSJΓ(B
′[[s]]), we thus conclude SNSJΓ(t1).

(b) Γ ∩ fv(v) 6= ∅: then
TΓ(t0) = u0[ /v]→

+
h,u/o u1[ /v] = TΓ(B

′[[s]])[ /u][ /v] ≡o

TΓ(B
′[[s]])[ /v][ /u] = TΓ(t1)

Also, the i.h. SNSJΓ(B
′[[s]][ /u]) implies SNSJΓ(B

′[[s]]), we therefore conclude
SNSJΓ(t1).

− The cases B = λy.B′ and B = B′w are similar to the previous ones.

The following lemma states that the measure we use for proving VIE for λvoid/o
decreases with every rewriting step.

Lemma 5.12. Let t0 ∈ Tv s.t. TΓ(t0) ∈ SN λvoid/o and SNSJΓ(t0). If t0 →λvoid t1 then
SNSJΓ(t1) and

− Either TΓ(t0)→
+
λvoid/o TΓ(t1) or

− TΓ(t0) = TΓ(t1) and MSJΓ(t0) ⊐ MSJΓ(t1).

Proof. By induction on t0 →λvoid t1.

• Base cases:
− If t0 = (λx.s)L u→dB s[ /u]L = t1, where x /∈ fv(s).

Let L := [ /v1] . . . [ /vk], Q := {vi | Γ ∩ fv(vi) 6= ∅, i ∈ {1, . . . , k}} and Q := {vi | Γ ∩
fv(vi) = ∅, i ∈ {1, . . . , k}}. Define LQ the sublist of L containing only the elements in
Q. We have
⋆ SNSJΓ(t0) iff SNSJΓ∪{x}(s) =Lem. 5.7 SNSJΓ(s) and vj ∈ SN λvoid/o for every vj ∈

Q.
⋆ TΓ(t0) = (λx.TΓ∪{x}(s))LQ u =Lem. 5.7 (λx.TΓ(s))LQ u.
There are two cases:
(1) Γ ∩ fv(u) 6= ∅. We have TΓ(t1) = TΓ(s)[ /u]LQ. Then TΓ(t0) →dB TΓ(t1). More-

over, SNSJΓ(t1) iff SNSJΓ(s) and vj ∈ SN λvoid/o for every vj ∈ Q , which holds
by the hypothesis SNSJΓ(t0).

(2) Γ ∩ fv(u) = ∅. We have TΓ(t1) = TΓ(s)LQ. Then TΓ(t0) →dB TΓ(s)[ /u]LQ →h

TΓ(s)LQ = TΓ(t1). Moreover, SNSJΓ(t1) iff SNSJΓ(s) and u ∈ SN λvoid/o and vj ∈

SN λvoid/o for every vj ∈ Q. The first and third parts follow from the hypothesis
SNSJΓ(t0) while the second one follows from the hypothesis TΓ(t0) ∈ SN λvoid/o.

− t0 = (λx.s)L u→β s{x/u}L = t1, where x ∈ fv(s).

Let L, Q, Q and LQ be as in the previous case. We have

⋆ SNSJΓ(t0) iff SNSJΓ∪{x}(s) and vj ∈ SN λvoid/o for every vj ∈ Q.
⋆ TΓ(t0) = (λx.TΓ∪{x}(s))LQ u with x ∈ TΓ∪{x}(s).
Then TΓ(t0) →β TΓ∪{x}(s){x/u}LQ →

∗
h (Lem. 5.8) TΓ(s{x/u})LQ = TΓ(t1). Thus in

particular TΓ∪{x}(s){x/u} ∈ SN λvoid/o.
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Since u is a subterm of TΓ(t0), then u ∈ SN λvoid/o and so SNSJΓ(u). Then SNSJΓ(t1)

iff SNSJΓ(s{x/u}) and vj ∈ SN λvoid/o for every vj ∈ Q. The first part holds by
Lemma 5.9, the second one from the hypothesis SNSJΓ(t0).

− t0 = u[ /v] →h u[ /v1] . . . [ /vk] = t1, where k ≥ 0, vj ⊳ v for all j and fv(vj) ⊆ fv(v).
There are two cases:
(1) Γ ∩ fv(v) = ∅: we have that SNSJΓ(t0) implies SNSJΓ(t1). Then TΓ(t0) = TΓ(u) =

TΓ(t1), moreover the multiset [〈ηλvoid(u), |u|〉] of MSJΓ(t0) is replaced by the fol-
lowing multiset ofMSJΓ(t1): [〈ηλvoid(v1), |v1|〉, . . . , 〈ηλvoid(vk), |vk|〉]. Since ηλvoid(v) ≥
ηλvoid(vi) and |v| > |vi| we thus conclude MSJΓ(t0) ⊐ MSJΓ(t1).

(2) Γ ∩ fv(v) 6= ∅: let Q and Q as in de dB-case. Then SNSJΓ(t1) iff the terms in Q are
SN λvoid/o and SNSJΓ(u) holds: the former requirement holds because TΓ(t0) =
TΓ(u)[ /v] and so v ∈ SN λvoid/o, the latter because SNSJΓ(t0) iff SNSJΓ(u). Last,
TΓ(t1) = TΓ(u)LQ, where LQ is the list of substitutions associated to the elements
in Q, then

TΓ(t0) = TΓ(u)[ /v]→h TΓ(u)LQ = TΓ(t1)

− t0 = B[[s[ /u]]]→u B[[s]][ /u] = t1. This case holds by Lemma 5.11.
• Inductive cases:
− t0 = u[ /v]→λvoid u[ /v′] = t1 where v →λvoid v′. We consider three cases.

(1) fv(v) ∩ Γ = ∅ & fv(v′) ∩ Γ = ∅: We have TΓ(t0) = TΓ(u) = TΓ(t1). Also SNSJΓ(t0)
implies v ∈ SN λvoid/o so that v′ ∈ SN λvoid/o and thus SNSJΓ(t1). Finally,

MSJΓ(t0) = MSJΓ(u) ⊔ [〈ηλvoid/o(v), |v|〉] ⊐

MSJΓ(u) ⊔ [〈ηλvoid/o(v
′), |v′|〉] = MSJΓ(t1)

(2) fv(v) ∩ Γ 6= ∅ & fv(v′) ∩ Γ 6= ∅ : We have SNSJΓ(t0) = SNSJΓ(u) = SNSJΓ(t1).
Also TΓ(t0) = TΓ(u)[ /v] and TΓ(t1) = TΓ(u)[ /v

′], thus TΓ(t0)→
+
λvoid/o TΓ(t1).

(3) fv(v) ∩ Γ 6= ∅ & fv(v′) ∩ Γ = ∅: We have that TΓ(t0) ∈ SN λvoid/o implies v ∈
SN λvoid/o, so that v′ ∈ SN λvoid/o and SNSJΓ(t1).
Then TΓ(t0) = TΓ(u)[ /v]→h TΓ(u) = TΓ(t1).

− All the other cases are straightforward.

Theorem 5.13 (VIE for λvoid/o). Let t ∈ Tv s.t. T∅(t) ∈ SN λvoid/o and SNSJ∅(t), then
t ∈ SN λvoid/o.

Proof. We proceed by induction on the measure m(t) = 〈ηλvoid/o(T∅(t)),MSJ∅(t)〉. To show

t ∈ SN λvoid/o it is sufficient to show t′ ∈ SN λvoid/o for every λvoid/o-reduct of t. Take any
of such reducts t′. Then Lemmas 5.10 and 5.12 guarantee T∅(t

′) ∈ SN λvoid/o and SNSJ∅(t
′).

Moreover, ≡o preserves m(t) and →λvoid/o strictly decreases m(t). We thus apply the i.h.
to conclude.

The following is a consequence of the previous theorem: let t, u, v1n ∈ λ-terms and
s = t[ /u]v1n. If T∅(s) = tv1n ∈ SN λvoid and SNSJ∅(s) holds, i.e. u ∈ SN λvoid, then
s = t[ /u]v1n ∈ SN λvoid. Hence:

Corollary 5.14 (IE for λvoid/o). The λvoid/o-calculus enjoys the IE property.

Corollary 5.15 (PSN for λvoid/o). The λvoid/o-calculus enjoys PSN, i.e. if t ∈ Tλ ∩
SN β, then t ∈ SN λvoid/o.
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Proof. By Theorem 3.1 it is sufficient to show F0, F1 and F2. The first two properties

are straightforward. To show F2 assume v ∈ SN λvoid and u{x/v}t
1
n ∈ SN λvoid, both are

λ-terms. Then in particular u, v, t
1
n ∈ SN λvoid. We show that t = (λx.u)vt

1
n ∈ SN λvoid

by induction on ηλvoid(u) + ηλvoid(v) + Σi ηλvoid(ti). For that, it is sufficient to show that
every λvoid-reduct of t is in SN λvoid. If the λvoid-reduct of t is internal we conclude

by the i.h. If t →β u{x/v}t
1
n = t′ with x ∈ fv(u), then t′ ∈ SN λvoid by hypothesis. If

t →dB u[ /v]t
1
n = t′, then t′ ∈ SN λvoid by the IE property (Corollary 5.14). There is no

other possible λvoid-reduct of t which is a λ-term and has no jumps.

5.3. Projecting λj/obox into λvoid/o. In order to relate the λj/obox and the λvoid/o
calculi we define a projection function from λj-terms to λvoid-terms:

wj(x) := x
wj(λx.t) := λx.wj(t)
wj(tu) := wj(t)wj(u)

wj(t[x/u]) :=

{
wj(t){x/wj(u)} if x ∈ fv(t)
wj(t)[ /wj(u)] if x /∈ fv(t)

Notice that fv(t) = fv(wj(t)). Also, wj(t) = t if t ∈ Tλ.
We now state some basic static properties of wj.

Lemma 5.16. Let t, u ∈ T . Then, wj(t{x/u}) = wj(t){x/wj(u)}.

Proof. By induction on t.

Lemma 5.17 (Projection). Let t0 ∈ T . Then,

(1) t0 →dB t1 implies wj(t0)→
+
β,dB wj(t1).

(2) t0 →w,d,c t1 implies wj(t0)→
∗
h,u/o wj(t1).

(3) t0 ≡o t1 implies wj(t0) ≡o wj(t1).
(4) t0 ≡box1,box2 t1 implies wj(t0) = wj(t1).

Proof.

• Base cases:
− t0 = (λx.t)L u→dB t[x/u]L = t1.

Let M = [ /wj(vi)]
1
m (resp. ρ) be the sequence of jumps (resp. the meta-level substitu-

tion) resulting from the projection of t0, i.e. wj(t0) = (λx.wj(t))M ρ wj(u).
If x ∈ fv(t), then:

wj(t0) = (λx.wj(t)ρ)[ /wj(vi)ρ]
1
mwj(u) →β

wj(t)ρ{x/wj(u)}[ /wj(vi)ρ]
1
m =

wj(t){x/wj(u)}ρ[ /wj(vi)ρ]
1
m = wj(t1)

If x /∈ fv(t), then:

wj(t0) = (λx.wj(t)ρ)[ /wj(vi)ρ]
1
mwj(u) →dB

wj(t)ρ[ /wj(u)][ /wj(vi)ρ]
1
m =

wj(t)[ /wj(u)][ /wj(vi)ρ]
1
mρ = wj(t1)

− t0 = t[x/u]→w t = t1 where |t|x = 0. Then wj(t[x/u]) = wj(t)[ /wj(u)]→h wj(t).
− t0 = t[x/u]→d t{x/u} = t1 where |t|x = 1. Then wj(t[x/u]) = wj(t){x/wj(u)} =Lem. 5.16

wj(t{x/u}).
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− t0 = t[x/u]→c t[y]x [x/u][y/u] = t1 where |t|x ≥ 2. Then wj(t[x/u]) = wj(t){x/wj(u)} =
wj(t[y]x){y/wj(u)}{x/wj(u)} =Lem. 5.16 wj(t[y]x[x/u][y/u]).

− t0 = t[x/u][y/v] ≡CS t[y/v][x/u] = t1 where y /∈ fv(u) x /∈ fv(v). There are two cases:
If x ∈ fv(t) or y ∈ fv(t), then we obtain wj(t0) = wj(t1).
If x /∈ fv(t) and y /∈ fv(t), then

wj(t0) = wj(t)[ /wj(u)][ /wj(v)] ≡CS wj(t)[ /wj(v)][ /wj(u)] = wj(t1)

− t0 = (λy.t)[x/u] ≡σ1
λy.t[x/u] = t1 where y /∈ fv(u). There are two cases:

If x ∈ fv(λy.t), then wj(t0) = (λy.wj(t)){x/wj(u)} = λy.wj(t){x/wj(u)} = wj(t1).
If x /∈ fv(λy.t), then wj(t0) = (λy.wj(t))[ /wj(u)] ≡σ λy.wj(t)[ /wj(u)] = wj(t1).

− t0 = (tv)[x/u] ≡σ2
t[x/u]v = t1 where x /∈ fv(v).

There are two cases:
If x ∈ fv(t), then wj(t0) = (wj(t)wj(v)){x/wj(u)} = wj(t){x/wj(u)}wj(v) = wj(t1).
If x /∈ fv(t), then wj(t0) = (wj(t)wj(v))[ /wj(u)] ≡σ wj(t)[ /wj(u)]wj(v) = wj(t1).

− t0 ≡box1,box2 t1. Then trivially wj(t0) = wj(t1).
• The inductive cases:
− t0 = u[x/v] → (resp. ≡) u′[x/v] = t1, where u → (resp. ≡) u′. If x ∈ fv(u) & x ∈

fv(u′) or x /∈ fv(u) & x /∈ fv(u′) then the property is straightforward by the i.h. So
let us suppose x ∈ fv(u) & x /∈ fv(u′) (so that the reduction step is necessarily a
w-step). We have wj(u) →∗

h,u/o (i.h.) wj(u′). But x ∈ fv(u) & x /∈ fv(u′) implies

x ∈ fv(wj(u)) & x /∈ fv(wj(u′)) so that in particular we have wj(u) →+
h,u/o wj(u′).

Then wj(t0) = wj(u){x/wj(v)} →∗
h,u/o wj(u

′)[ /wj(v)] = wj(t1) holds by Corollary 5.6.

− All the other cases are straightforward.

Here are some interesting examples:

t → t′ wj(t) →∗ wj(t′)
f [y/x][x/u] →w f [x/u] f [ /u] = f [ /u]
f [y/xz][x/u][z/v] →w f [x/u][z/v] f [ /uv] →h f [ /u][ /v]
f [y/xx][x/u] →w f [x/u] f [ /uu] →+

h f [ /u]
(f [w/f [y/xz]]g)[x/u][z/v] →w (f [w/f ]g)[x/u][z/v] (f [ /f [ /uv]]g) →h,u (f [ /f ]g)[ /u][ /v]

The previous property allows us to conclude with one of the main results of this paper.

Theorem 5.18 (PSN for λj/obox). The λj/obox-calculus enjoys PSN, i.e. if t ∈ Tλ∩SN β,
then t ∈ SN λj/obox.

Proof. We apply Theorem 1.3, where A = λvoid, A1 = {w, d, c}, A2 = {dB}, E is ≡obox,
F is ≡o and t R wj(t). Property (P0) holds by Lemma 5.17:3-4, Property (P1) holds
by Lemma 5.17:2, Property (P2) holds by Lemma 5.17:1 and Property (P3) holds by
Corollary 4.7. Now, take t ∈ Tλ ∩ SN β so that Corollary 5.15 gives t ∈ SN λvoid/o. Since
wj(t) = t, then t ∈ SN λj/obox by application of the Theorem.

6. Consequences of the main result

In this section we show how the strong result obtained in Section 5.3 can be used to prove
PSN for different variants of the λj/obox-calculus.
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6.1. Adding {u} to λj/obox. We show that the reduction relation u of λvoid/o can be
added to λj/obox without breaking PSN. The main point of this extension is to show that it
is safe to consider unboxing (for void jumps) together with the box equations (for non-void
jumps). For that, we first extend the rule u to act on the whole set T and not only on Tv
(but they still concern void substitutions only). Boxed contexts are extended to non-void
jumps as expected, namely:

B ::= tC | t[x/C] | Bt | B[x/t] | λy.B

Then the rule is given by:

B[[t[x/u]]] 7→u B[[t]][x/u], where B does not bind u & x /∈ fv(t)

Indeed, the wj function maps u-reduction steps of {λj, u}/obox into {h, u}-reduction steps
of λvoid/o, as the next lemma shows.

Lemma 6.1 (Extended Projection). Let t0 ∈ T . Then, t0 →u t1 implies wj(t0) →
∗
h,u/o

wj(t1).

Proof. By induction on the reduction relations.

• t0 = B[[t[x/u]]] →u B[[t]][x/u] = t1 where B does not bind u and x /∈ fv(t). We show a
stronger property, namely:

If t0 = C[[t[x/u]]] → C[[t]][x/u] = t1 where C does not bind u and x /∈ fv(t), then
wj(t0) →

∗
h,u/o wj(t1). Then the property we want show is just a particular case of the

stronger property. By α-conversion we assume w.l.g. that x is not even free in C[[t]].
We reason by induction on C.

− t0 = [[t[x/u]]]→u [[t]][x/u] = t1. Then t0 = t1 so that wj(t0) = wj(t1).
− t0 = C ′[[t[x/u]]]v →u (C ′[[t]]v)[x/u] = t1. Then we conclude by using the i.h. and the

equivalence ≡σ2
.

− t0 = vC ′[[t[x/u]]] →u (vC ′[[t]])[x/u] = t1. Then we conclude by using the i.h. and the
reduction →u.

− t0 = λy.C ′[[t[x/u]]] →u (λy.C ′[[t]])[x/u] = t1. Then we conclude by using the i.h. and
the equivalence ≡σ1

.
− t0 = v[y/C ′[[t[x/u]]]]→u v[y/C

′[[t]]][x/u] = t1. We reason by cases.
If y /∈ fv(v), then:

wj(t0) = wj(v[y/C ′[[t[x/u]]]]) =
wj(v)[ /wj(C ′[[t[x/u]]])] →∗

h,u/o (i.h.)

wj(v)[ /wj(C ′[[t]])[ /wj(u)]] →u

wj(v)[ /wj(C ′[[t]])][ /wj(u)] = wj(t1)

If y ∈ fv(v), then:

wj(t0) = wj(v[y/C ′[[t[x/u]]]]) =
wj(v){y/wj(C ′[[t[x/u]]])} →∗

h,u/o (i.h. & Lem. 5.2)

wj(v){y/wj(C ′[[t]])[ /wj(u)]} →∗
h,u/o (Lem. 5.4)

wj(v){y/wj(C ′[[t]])}[ /wj(u)] =
wj(v[y/C ′[[t]]])[ /wj(u)] = wj(t1)

− t0 = C ′[[t[x/u]]][y/v] →u C ′[[t]][y/v][x/u] = t1. Note that y /∈ fv(u), otherwise the rule
cannot be applied. We reason by cases.
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If y /∈ fv(C ′[[t]]), then:

wj(t0) = wj(C ′[[t[x/u]]][y/v]) =
wj(C ′[[t[x/u]]])[ /wj(v)] →∗

h,u/o (i.h.)

wj(C ′[[t]])[ /wj(u)][ /wj(v)] ≡CS

wj(C ′[[t]])[ /wj(v)][ /wj(u)] = wj(t1)

If y ∈ fv(C ′[[t]]), then:

wj(t0) = wj(C ′[[t[x/u]]][y/v]) =
wj(C ′[[t[x/u]]]){y/wj(v)} →∗

h,u/o (i.h.)

wj(C ′[[t]])[ /wj(u)]{y/wj(v)} =
wj(C ′[[t]]){y/wj(v)}[ /wj(u)] = wj(t1)

• The inductive cases for the abstraction, the application and reduction inside substitution
are straightforward.
• t0 = u0[y/u1] → u′0[y/u1] = t1, where u0 →h u′0 (resp. u0 →u u′0). Since u preserves free
variables, then y ∈ fv(u0) & y ∈ fv(u′0) or y /∈ fv(u0) & y /∈ fv(u′0) so that the property
is straightforward by the i.h.

Theorem 6.2. The {λj, u}/obox-calculus enjoys PSN, i.e. t ∈ Tλ ∩ SN β , then t ∈
SN {λj,u}/obox.

Proof. We apply Theorem 1.3, where A = λvoid, A1 = {w, d, c, u}, A2 =
setdB, E is ≡obox, F is ≡o and t R wj(t). Property (P0) holds by Lemma 5.17:3-4, Property
(P1) holds by Lemmas 5.17:2 and 6.1, Property (P2) holds by Lemmas 5.17:1. To show
Property (P3) we proceed as follows. First of all notice that u/obox is trivially terminating,
then show that A1/obox is terminating by showing that t→A1/obox t

′ implies 〈jm(t), t〉 >lex

〈jm(t′), t′〉, where the first component of the pair is compared with respect to the multiset
order, the second with respect to the terminating relation→u/obox, and the stability of jm( )
by ≡obox, which is given by Lemma 4.6:2. Now, take t ∈ Tλ ∩ SN β so that Corollary 5.15
gives t ∈ SN λvoid/o. Since wj(t) = t, then t ∈ SN {λj,u}/obox by application of the Theorem.

6.2. Orienting the axioms of obox. Another interesting result concerns a more tradi-
tional form of explicit substitutions calculus, called here the inner structural λ-calculus,
and noted λjin, whose rules appear in Figure 7.

Let →in/CS be the context closure of the rules 7→in/CS1,2,3,4 modulo ≡CS.

Lemma 6.3. The reduction relation →in/CS is strongly normalising.

Proof. Define M(t) to be the sum of all the sizes of the subterms of t directly affected by
jumps. It is easily seen that such a measure strictly decreases by one-step rewriting and is
invariant by ≡CS.

Corollary 6.4. The inner structural λ-calculus λjin enjoys PSN.

Proof. By application of Theorem 1.3, where the required properties of the projection of
λjin into λj/obox are guaranteed by Lemmas 5.17 and 6.3.
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(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→w t if |t|x = 0
t[x/u] 7→d t{x/u} if |t|x = 1
t[x/u] 7→c t[y]x [x/u][y/u] if |t|x > 1

(λy.t)[x/u] 7→in/CS1 λy.(t[x/u])
(tv)[x/u] 7→in/CS2 t[x/u]v if x /∈ fv(v)
(tv)[x/u] 7→in/CS3 tv[x/u] if x /∈ fv(t) & x ∈ fv(v)
t[y/v][x/u] 7→in/CS4 t[y/v[x/u]] if x /∈ fv(t) & x ∈ fv(v)

t[x/u][y/v] ∼CS t[y/v][x/u] if x /∈ fv(v) & y /∈ fv(s)

Figure 7: The inner structural λ-calculus λjin

(λx.t)u →B t[x/u]
x[x/u] →d′ u
t[x/u] →w t if x /∈ fv(t)
(tv)[x/u] →@r

tv[x/u] if x /∈ fv(t) and x ∈ fv(v)
(tv)[x/u] →@l

t[x/u]v if x ∈ fv(t) and x /∈ fv(v)
(tv)[x/u] →@ t[x/u]v[x/u] if x ∈ fv(t) and x ∈ fv(v)
(λy.t)[x/u] →λ λy.t[x/u]
t[x/u][y/v] →comp1

t[x/u[y/v]] if y /∈ fv(t) and y ∈ fv(u)
t[x/u][y/v] →comp2

t[y/v][x/u[y/v]] if y ∈ fv(t) and y ∈ fv(u)

t[x/u][y/v] ∼CS t[y/v][x/u] if y /∈ fv(u) and x /∈ fv(v)
(and x 6= y)

Figure 8: The λes-calculus

The inner structural λ-calculus can be seen as a refinement of Kesner’s λes [20], an explicit
substitution calculus related to Proof-Nets, whose rules are in Figure 8.

Indeed, only rules {@, comp2} are not particular cases of rules of λjin, but they can be
decomposed by using duplication followed by propagations as follows:

(tv)[x/u] →@ t[x/u]v[x/u]

↓c ↑in/CS3

(tv{x/y})[x/u][y/u] →in/CS2 (t[x/u]v{x/y})[y/u] ≡α (t[x/u]v)[x/u]

It is then straightforward to simulate λes inside λjin, so we get:

Corollary 6.5. The λes-calculus enjoys PSN.

The second author shows in [21] that from PSN of λes one can infer PSN of a wide
range of calculi, λx, Kesner’s λes and λesw [20], Milner’s calculus λsub [33], David’s and
Guillaume’s λws [9], the calculus with director strings of [41]. Hence PSN for λj/obox
encompasses most results of PSN in the literature of explicit substitutions.
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(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→w t if |t|x = 0
t[x/u] 7→d t{x/u} if |t|x = 1
t[x/u] 7→c t[y]x[x/u][y/u] if |t|x > 1

λy.(t[x/u]) 7→out1 (λy.t)[x/u] if y /∈ fv(u)
t[x/u]v 7→out2 (tv)[x/u]
tv[x/u] 7→out3 (tv)[x/u]
t[y/v[x/u]] 7→out4 t[y/v][x/u]

t[x/u][y/v] ∼CS t[y/v][x/u] if x /∈ fv(v) & y /∈ fv(s)

Figure 9: The outer structural λ-calculus λjout

The interesting feature of λjin with respect to λes is that the propagation subsystem
→in/CS is not needed in order to compute a normal form. Propagations are rather (lin-
ear) re-arrangements of term constructors which may be used as the basis of some term
transformations used for compilation or optimisation.

The strength of a splitting of the whole calculus into a core and propagation system
lies in the fact that the latter can be changed without affecting the former. In particular,
it is possible to orient the axioms {σ1, σ2, box1, box2} in the opposite direction by getting
the outer structural λ-calculus λjout, whose rules are in Figure 9.

Observe that in contrast to the inner calculus the outer box rules act also on void
jumps, i.e. they are not just an orientation of the box equations, but an extension too.
This is possible because — as showed earlier (Theorem 6.2) — extending λj/obox with
unboxing for void jumps is safe (while we do not know whether it is safe to extend λj/obox
with boxing for void jumps). Let →out/CS be the derived context closure of the outer rules
7→out1,2,3,4 modulo ≡CS.

Lemma 6.6. The reduction relation →out/CS is strongly normalising.

Corollary 6.7. The outer structural λ-calculus λjout enjoys PSN.

Proof. By application of Theorem 1.3, where the required properties of the projection of
λjout into λj/obox are guaranteed by Lemmas 5.17 and 6.6.

In fact, it is easily seen that no matter how the axioms {σ1, σ2, box1, box2} are oriented
that they get a terminating rewriting system. As for λjin and λjout, PSN can also be
proved for the remaining 14 derived calculi, even if it is not clear to what extent they would
be interesting.

6.3. Adding equations to λ-terms. We briefly present here the results of [4], which
extends and complement those of this paper. As discussed in Section 4.1, the equations
≡σ1

and ≡σ2
can be seen as a jump reformulation of Regnier’s σ̂-equivalence on λ-terms

after the elimination of dB-redexes. It is also possible to apply the dB-rule in the other sense
(i.e. as a dB-expansion) to the equations {∼box1 ,∼box2} in order to obtain other equations
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on λ-terms. If x /∈ fv(t) and x ∈ fv(v), the equation ∼box1 can be dB-expanded to the new

equation b̂ox:

(tv) [x/u] ∼box1 tv [x/u]

↑dB ↑dB

(λx.tv)u ∼
b̂ox

t ((λx.v)u)

Axiom b̂ox is a more general instance of the rule called assoc [34, 30, 8] (which usually is
not taken modulo but oriented from right to left). The axiom ∼box2 dB-expands to a special
case of ∼

b̂ox
, and thus it is subsumed by it. Indeed:

t [y/v] [x/u] ∼box2 t [y/v[x/u]]

↑dB ↑dB

( (λy.t)v ) [x/u] ∼box1 (λy.t)v [x/u]

↑dB ↑dB

(λx.((λy.t)v))u ∼
b̂ox

(λy.t) ((λx.v)u)

Last, one can turn the unboxing rule into its λ-calculus form, getting:

t((λx.v)u) 7→û (λx.tv)u if x /∈ fv(t) & x ∈ fv(v)

Let ≡Π be defined as the smallest equivalence relation containing ≡{σ̂1,σ̂2,b̂ox}
and ≡obox. In

[4] we show that the {λj, u, û}/Π-calculus in Figure 10 enjoys PSN. The proof is obtained
via a simple function which eliminates dB-redexes, and that project this calculus over the
{λj, u}/obox-calculus, whose PSN is given by Theorem 6.2. The main result of [4], however,
is that the the {λj, u, û}/Π-calculus is also Church-Rosser modulo the whole equational
theory. This is proved via M-developments, a new notion of development taking advantage
of jumps. Actually, in [4] we use a macro-steps substitution rule t[x/u]→sub t{x/u} instead
of our subsystem→j: we do so because the fine granularity of→j plays no role in the proof
of these properties, their refinement to →j is straightforward.

Let us call permutative λ-calculus (see Figure 11) the set of λ-terms plus the opera-
tional semantics given by {β, û}/P, where ≡P is the smallest equivalence relation containin

σ̂1, σ̂2, b̂ox. Such a calculus can be (strictly) simulated into the {λj, û, u}/Π-calculus and
thus it enjoys PSN. This result generalises all known results in the literature about PSN
for λ-calculus extended with permutative conversion [8, 39, 30]. In [4] we also prove that it
is Church-Rosser modulo ≡P.

7. Conclusions

We have introduced the structural λj-calculus, a concise but expressive λ-calculus with
jumps admitting graphical interpretations by means of λj-dags and Pure Proof-Nets. Even



PSN MODULO PERMUTATIONS FOR THE STRUCTURAL LAMBDA CALCULUS 41

(λx.t)L u 7→dB t[x/u]L
t[x/u] 7→w t if |t|x = 0
t[x/u] 7→d t{x/u} if |t|x = 1
t[x/u] 7→c t[y]x[x/u][y/u] if |t|x > 1

B[[t[x/u]]] 7→u B[[t]][x/u] B does not bind u
t((λx.v)u) 7→û (λx.tv)u if x /∈ fv(t) & x /∈ fv(v)

(λx.λy.t)u ∼σ̂1
λy.((λx.t)u) if y /∈ fv(u)

(λx.tv)u ∼σ̂2
(λx.t)uv if x /∈ fv(v)

(λx.tv)u ∼
b̂ox

t((λx.v)u) if x /∈ fv(t) & x ∈ fv(v)

t[x/s][y/v] ∼CS t[y/v][x/s] if x /∈ fv(v) & y /∈ fv(s)
λy.(t[x/s]) ∼σ1

(λy.t)[x/s] if y /∈ fv(s)
t[x/s]v ∼σ2

(tv)[x/s] if x /∈ fv(v)
(tv)[x/u] ∼box1 tv[x/u] if x /∈ fv(t) & x ∈ fv(v)
t[y/v][x/u] ∼box2 t[y/v[x/u]] if x /∈ fv(t) & x ∈ fv(v)

Figure 10: The structural λ-calculus modulo

(λx.t)u 7→β t{x/u}
t((λx.v)u) 7→û (λx.tv)u if x /∈ fv(t) & x /∈ fv(v)

(λx.λy.t)u ∼σ̂1
λy.((λx.t)u) if y /∈ fv(u)

(λx.tv)u ∼σ̂2
(λx.t)uv if x /∈ fv(v)

(λx.tv)u ∼
b̂ox

t((λx.v)u) if x /∈ fv(t) & x ∈ fv(v)

Figure 11: The permutative λ-calculus

if λj has strong linear logic background, the calculus can be understood as a particular
reduction system, based on the notion of multiplicity and reduction at a distance, and
being independent from any logic or type system. We established different properties for λj
such as confluence and PSN. Moreover, full composition holds without any need of structural
composition nor commutation of jumps. The λj-calculus admits a graphical operational
equivalence ≡o allowing to commute jumps with linear constructs. The relation ≡o can be
naturally understood as Regnier’s σ-equivalence on λ-terms and turns out to be a strong
bisimulation. Moreover, ≡o can be further extended to the substitution equivalence ≡obox

allowing to commute also jumps and non-linear constructs. The resulting calculus enjoys
PSN, a non-trivial result from which one derives several known PSN results.

PSN of λj modulo ≡obox is shown by means of an auxiliary calculus λvoid/o which can
be understood as a memory calculus specified by means of void substitutions. A memory
calculus due to Klop [27] is often used for termination arguments. Its syntax is usually
presented as follows:

t, u ::= x | λx.t | tu | [t, u]
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where x ∈ fv(t) for every term λx.t and the memory construct [t, u] is used to collect in u
the arguments of the erasing β-redexes. The rule associated to this calculus are:

(λx.t)u 7→β t{x/u}
[t, v]u 7→π [tu, v]

If one interprets [t, v] as t[ /v] then Klop’s calculus can be mapped into λvoid/o: β maps to
β and π becomes the reduction rule t[ /v]u→ (tu)[ /v], which is subsumed by the equation
≡σ2

of λvoid/o. Indeed, λvoid/o is more expressive than Klop’s calculus. We claim that
λvoid/o is interesting on its own and can be used for proving termination results beyond
those of this paper.

We do not know whether λj/obox extended with unrestricted boxing, in contrast to
λj/obox extended with unrestricted unboxing presented in Section 6.1, enjoys PSN. The
point is delicate, indeed from the literature ([32]) we know that unrestricted boxing together
with the following traditional explicit substitution rule (without side condition on x):

(tv)[x/u] →@ t[x/u]v[x/u]

break PSN. Now, the rule →@ cannot be simulated in λj/obox, so it would be interesting
to understand if λj/obox plus unrestricted boxing enjoys PSN.

An interesting research direction would be to formalise the link between λj, linear logic
and abstract machines. Indeed, in contrast to explicit substitution calculi, λj naturally
expresses the notion of linear head reduction [7], which relates in a simpler way to Krivine’s
Abstract Machine [29]. This is because linear head reduction performs the minimal amount
of substitutions necessary to find which occurrences of variables will stand in head positions.
While this is not a reduction strategy in the usual sense of λ-calculus, it can be seen as
a clever way to implement β-reduction by means of proof-nets technology, which can be
reformulated in the λj-calculus as a strategy.

The structural λ-calculus has been used in [3] to specify XL-developments, a terminating
notion of reduction generalising those of development [17] and superdevelopment [28]. It
would be interesting to better understand XL-developments.

It would also be interesting to exploit distance and multiplicities in other frameworks
dealing for example with pattern matching, continuations or differential features. A direc-
tion which seems particularly challenging is standardization for λj. It would be interesting
in particular to obtain a notion of standard reduction which is stable by ≡o-equivalence
(or at least ≡CS, so that the result would pass to λj-dags). Indeed, classical notions as
leftmost-outermost reduction do not easily generalise to λj modulo ≡o, where jumps can
be swapped and permuted with linear constructors.
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