
Logical Methods in Computer Science
Vol. 10(2:16)2014, pp. 1–22
www.lmcs-online.org

Submitted Oct. 31, 2013
Published Jun. 27, 2014

SMALL STONE IN POOL

SAMUEL R. BUSS a AND LESZEK ALEKSANDER KO LODZIEJCZYK b

a Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA
e-mail address: sbuss@math.ucsd.edu

b Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
e-mail address: lak@mimuw.edu.pl

Abstract. The Stone tautologies are known to have polynomial size resolution refutations
and require exponential size regular refutations. We prove that the Stone tautologies also
have polynomial size proofs in both pool resolution and the proof system of regular tree-like
resolution with input lemmas (regRTI). Therefore, the Stone tautologies do not separate
resolution from DPLL with clause learning.

I have said it thrice; What I tell you three times is true.
Fit the First — The Landing; The Hunting of the Snark

Lewis Carroll

1. Introduction

The Davis-Putnam-Logemann-Loveland (DPLL) proof search method [DLL62, DP60], aug-
mented with clause learning [MSS99], has become a core method for solving the satisfiability
(SAT) problem, especially for large-scale instances of SAT that arise in industrial applica-
tions. However, when restarts are not allowed, the proof strength of DPLL with clause
learning relative to full resolution remains unknown. On one hand, if Γ is a set of clauses,
and DPLL with clause learning can show that Γ is unsatisfiable in n steps, then Γ has a
resolution refutation with size polynomially bounded by n (see [BKS04]). On the other
hand, the results of [AJPU07, Urq11, BB12, BBJ14] imply that the length of DPLL with
clause learning proof searches can be nearly exponentially smaller than the length of the
shortest regular resolution proofs. Systems designed to correspond to DPLL with clause
learning, such as pool resolution ([VG05]) and regRTI ([BHJ08]), are therefore simulated

2012 ACM CCS: [Theory of computation]: Computational complexity and cryptography—Proof
complexity.

2010 Mathematics Subject Classification: 03B05, 03B35, 03F20, 68T15.
Key words and phrases: pool resolution, conflict driven clause learning, Stone tautologies.
Supported in part by NSF grants DMS-1101228 and CCR-1213151.

a,b This work was carried out while the second author was visiting the University of California, San Diego,
supported by Polish Ministry of Science and Higher Education programme “Mobilność Plus” with additional
support from a grant from the Simons Foundation (#208717 to Sam Buss).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(2:16)2014

c© S. Buss and L. Kołodziejczyk
CC© Creative Commons

http://creativecommons.org/about/licenses

2 S. BUSS AND L. KO LODZIEJCZYK

by resolution and strictly stronger than regular resolution. Determining the exact strength
of those systems is an open problem.

The two papers [AJPU07, Urq11] gave examples of three principles which have poly-
nomial size resolution refutations, but require exponential size regular refutations. In the
terminology of [BB12, BBJ14], these three principles were (1) the guarded graph tautolo-
gies, (2) the Stone tautologies, and (3) the guarded pebbling tautologies. Subsequently,
[BB12, BBJ14] showed that the guarded graph tautologies and the guarded pebbling tau-
tologies have polynomial size pool and regRTI refutations, and hence can be refuted by
polynomially long DPLL search with clause learning and without restarts.

It remained open whether the same holds for the Stone tautologies. There seems to be
an inherent simplicity in the irregularity introduced by “guarded” versions of combinatorial
principles, such as (1) and (3). This is because the guarded principles have refutations in
which all irregularities are at the initial inferences; namely, the resolution refutation can
start by using resolution to remove the guard literals, and then give a (regular) refutation
of the underlying principle as usual. In contrast, the prior known resolution refutations
for the Stone principles of [AJPU07] use irregularity in a more essential fashion, with the
irregularities distributed throughout the refutation. Because of this, it was conjectured
that the Stone principles might be examples where the pool and regRTI systems, and thus
DPLL with clause learning and no restarts, require exponential size refutations. That is,
the Stone tautologies were viewed as candidates for separating DPLL with clause learning
from resolution.

The present paper, however, refutes this conjecture and establishes that the Stone
tautologies do indeed have polynomial size pool refutations and regRTI refutations. In light
of this, the possibility that pool and regRTI actually simulate the full power of resolution
perhaps becomes slightly more plausible. Nevertheless, even if such a general simulation
result does hold, it is far from clear whether the methods we use to deal with the Stone
tautologies can be of much help in proving it.

The remainder of this introduction gives a review of the basic definitions, first of the
Stone principles, then of the various proof systems. It concludes by stating our main
theorems about the existence of pool and regRTI refutations. The reader is encouraged
to consult the introductory sections of [BB12, BBJ14] for a more extensive discussion of
prior work, and to consult [AJPU07] for more on the Stone principles. A good general
introduction to DPLL with clause learning is [BKS04].

Definition 1.1. A literal is either a propositional variable x or a negated variable x. A
clause is a set of literals, usually written as a list of literals separated by either ∨’s (dis-
junctions) or commas. A clause is interpreted as the disjunction of its members. A set Γ
of clauses is interpreted as the conjunction of its members, so Γ represents a propositional
formula in conjunctive normal form.

The next definition describes the Stone principle of [AJPU07] as a set of clauses. The
Stone principle is a kind of induction principle. For a given directed acyclic graph (dag),
it states that if each source vertex is pebbled with a red stone and if each vertex whose
immediate predecessors are pebbled with red stones is also pebbled with a red stone, then
the sink vertex is pebbled with a red stone.

Definition 1.2. Assume that G = (V,E) is a dag with a single sink, with vertices V =
{1, . . . , N}, such that each non-source vertex of G has in-degree 2. We assume that vertices
are numbered consistently with the directions of the edges of G so that if there is an edge

SMALL STONE IN POOL 3

(i′, i) ∈ E from i′ to i then i′ > i, and so that the source nodes of G are exactly vertices
n+1, n+2, . . . , N for some n. Vertex 1 is the sole sink of G. Further assume that m ≥ N ;
here, m is the number of “stones”. The (negation of the) Stone tautology for G and m
is denoted Stone(G,m) and uses variables pi,j to indicate that vertex i ∈ V is marked
(“pebbled”) with the j-th stone and variables rj to indicate that the j-th stone is colored
red. Stone(G,m) contains the following clauses:

•
∨m

j=1 pi,j, for each vertex i in G. (Each vertex is pebbled by at least one stone.)

• pi,j ∨ rj , for each j = 1, . . . ,m, and each source vertex i in G. (Each stone on a source
vertex is colored red.)

• p1,j ∨ rj, for each j = 1, . . . ,m. (The sink vertex 1 is not pebbled by any red stone.)
• pi′,j′ ∨ rj′ ∨ pi′′,j′′ ∨ rj′′ ∨ pi,j ∨ rj , whenever i′ and i′′ are the two vertices such that
(i′, i) ∈ E and (i′′, i) ∈ E and j /∈ {j′, j′′}. (If the two predecessors of i in G are pebbled
by red stones, then every stone pebbling vertex i is also red. These “induction clauses”
are equivalent to pi′,j′ ∧ rj′ ∧ pi′′,j′′ ∧ rj′′ ∧ pi,j → rj.)

It is permitted that vertices are pebbled with more than one stone; likewise, the same stone
may pebble multiple vertices.

The Stone clauses are clearly inconsistent since if the source vertices are pebbled with
red stones then the induction clauses imply that all other vertices are also pebbled with red
stones, and this contradicts the third group of clauses asserting that the sink vertex is not
pebbled with a red stone.

We next recall the definitions of various types of resolution.

Definition 1.3. Let A, B, and C be clauses, and x a literal such that x /∈ A and x /∈ B.
Consider the inference

A B
C

The literal x is the resolution variable. Three kinds of inferences are defined by:

Resolution rule: We have x ∈ A, x ∈ B, and C = (A \ {x}) ∨ (B \ {x}).
Degenerate resolution rule: [HBPVG08, VG05] If x ∈ A and x ∈ B, then C is obtained

as in the resolution rule. If x ∈ A and x /∈ B, then C is B. If x /∈ A and x ∈ B, then C
is A. Otherwise C is one of A or B.

w-resolution rule: [BHJ08] The clause C equals (A \ {x}) ∨ (B \ {x}).

The three different types of resolution coincide when x ∈ A and x ∈ B, in which case
we refer to the inference as non-degenerate.

Definition 1.4. A resolution derivation D of a clause C from a set Γ of clauses is a sequence
of clauses C1, . . . , Cs=C and such that each Ci is either a clause from Γ or is inferred by
a resolution rule from two previous clauses. If C is the empty clause, D is a resolution
refutation of Γ. Degenerate resolution and w-resolution derivations and refutations are
defined similarly.

The size of a refutation C1, . . . , Cs=⊥ is defined to be s.

Derivations are typically viewed as directed acyclic graphs. A derivation is tree-like
provided its dag is a tree. It is well known that (tree-like) resolution is sound and complete,
in that Γ has a refutation iff it is unsatisfiable.

4 S. BUSS AND L. KO LODZIEJCZYK

Definition 1.5. A refutation D is regular provided that no variable is used as a resolution
variable more than once along any path in the directed acyclic graph of D. A derivation D
of a clause C is regular provided that, in addition, no variable appearing in C is used as a
resolution variable in D.

We next define “regular resolution derivation trees with lemmas”, or “regRTL”, follow-
ing [BHJ08]. The idea is that a dag-like proof can by rewritten as a tree-like proof in which
clauses obtained earlier in the proof can be used freely as “learned” lemmas. This will be
the key component in defining Van Gelder’s notion of pool proofs.

Definition 1.6. Given a tree T , the postorder ordering <T of the nodes is defined as follows:
if u, v, w are distinct nodes of T , v is a node in the subtree rooted at the left child of u, and
w is a node in the subtree rooted at the right child of u, then v <T w <T u. The preorder
ordering <′

T is defined similarly, but stipulates that u <′
T v <′

T w.

Definition 1.7. A regRTL derivation [BHJ08] of a clause C from a set of initial clauses Γ
is a tree-like resolution derivation T that fulfills the following conditions: (a) each leaf is
labeled with either a clause of Γ or a clause (called a “lemma”) that appears earlier in T in
the <T ordering; (b) each internal node is labeled with a clause and a literal, and the clause
is obtained by resolution from the clauses labeling the node’s children by resolving on the
given literal; (c) the proof tree is regular; (d) the root is labeled with C. If the labeling of
the root is the empty clause, T is a regRTL refutation.

A regWRTL derivation [BHJ08] is defined similarly, but allowing w-resolution inferences
instead of just resolution inferences.

A pool resolution derivation [VG05] is also defined similarly, but allowing degenerate
resolution inferences.

Proposition 1.8. If Γ has a regWRTL refutation R, then Γ has a pool resolution refuta-
tion R′ with the size of R′ no greater than the size of R.

The proof of Proposition 1.8 is simple. Each clause C in R corresponds to a clause C ′

in R′ with C ′ ⊆ C. Arguing inductively, suppose that C is derived in R from the clauses
C1 and C2 using resolution literal x. Then, it is straightforward to define C ′ from C ′

1 and
C ′

2 as the unique clause that can be inferred by degenerate resolution from C ′
1 and C ′

2 with
respect to x.

The strategy of proving the existence of short pool refutations via constructing short
regWTRL refutations is employed in the proof of Theorem 1.14 below.

Definition 1.9. ([BHJ08]). A “lemma” in clause (a) of the definition of regRTL derivations
is called an input lemma if it is derived by an input subderivation, namely by a subderivation
in which each inference has at least one hypothesis which is a member of Γ or a lemma. A
regRTI derivation is a regRTL derivation which uses only input lemmas as lemmas.

A bit more generally, we say that a clause is “learned” provided it is available for use as a
lemma by virtue of having been learned earlier in the postorder traversal of the proof, or
by virtue of being an initial clause:

Definition 1.10. Suppose that R is a regRTL (respectively, a regRTI) refutation of Γ, and
let C be a clause in R. The learned clauses of R at clause C are the clauses which are
either in Γ or which have been derived in R (respectively, have been derived by an input
subderivation in R) before C in the postordering of R.

SMALL STONE IN POOL 5

Theorem 5.1 of [BHJ08] gives a polynomial equivalence between regRTI proofs and
DPLL with clause learning without restarts. This equivalence, however, uses non-greedy
DPLL; namely, the DPLL proof search may need to ignore contradictions during its search.
Since most real-world DPLL search algorithms do not ignore contradictions, and use unit
propagation whenever possible, is it natural to posit similar properties for regRTI proofs.
These are formalized by the next two definitions.

Definition 1.11. Let C be a clause appearing in a regular derivation R. Following [BBJ14],
we write Cpool to denote the clause containing the literals that appear in any clause in the
path from the root of R up to and including C.

The clause Cpool is the same as what [BB12] calls C+. The regularity of R ensures that
Cpool contains no contradictory literals.

Definition 1.12. Let R be a tree-like refutation of Γ. A clause D in R is prior-learned for
a clause C in R if either D ∈ Γ or there is an occurrence of D as a learned clause which
appears in R before C in both postorder and preorder.

The intuition for “prior-learned”, is that, when reaching the clause C while construct-
ing R in left-to-right, depth-first order, the prior-learned clauses are the clauses that are
already available to help derive C.

Definition 1.13. (See [BB12]). A refutation R is greedy provided that, for each clause C
of R, if C or any subclause of C is prior-learned, then C itself is a prior-learned clause
and is a leaf clause of R. A refutation R is greedy and unit-propagating provided that, for
each clause C of R, if there is an input derivation of some clause C ′ ⊆ Cpool from the
prior-learned clauses of R at C which does not resolve on any literal in Cpool, then C is
derived in R by such a derivation.

We can now state our main results.

Theorem 1.14. The Stone principles Stone(G,m) have regWRTL refutations, and thus
pool refutations, of size O(Nm3).

Theorem 1.15. The Stone principles Stone(G,m) have regRTI refutations of size O(N3m4).

It follows from Theorem 1.15 and Theorem 5.1 of [BHJ08] that DPLL proof search with
clause learning and without restarts can refute the Stone principle clauses in polynomial
time. It is possible that the regRTI refutations of Theorem 1.15 can be made greedy and
unit-propagating, but we have not tried to prove this.

The proofs of Theorems 1.14 and 1.15 are given in Sections 3 and 4, respectively. Sec-
tion 2 first gives some preliminary resolution derivations that will be useful for both proofs.

Of course, Theorem 1.15 implies Theorem 1.14 apart from the size bounds. However,
it seems useful to prove the two theorems separately, since the proof of Theorem 1.14 is
substantially simpler than the proof of Theorem 1.15.

The intuition behind both proofs is similar. The reason the Stone tautologies seem
highly irregular is that, in the earlier refutations given by [AJPU07], some of the vari-
ables (the rj ’s) are resolved on repeatedly during the refutation. The intuition is that the
regWRTL/regRTI proofs for Theorems 1.14 and 1.15 can be built in a bottom-up fashion
starting from the empty clause, by first resolving on the variables pi,j that do not cause
irregularities, and saving the problematic variables rj to be resolved on later (higher in the

6 S. BUSS AND L. KO LODZIEJCZYK

proof). This is not quite completely true, since our derivations do also resolve again on
pi,j’s at the top of the derivations; it is nonetheless a useful intuition.

2. Learning and 3-Learning

The regWRTL refutation for Theorem 1.14 and the regRTI refutation for Theorem 1.15
both work by learning the clauses pi,j, rj . If i is a source vertex of G then these clauses are
Stone clauses, but otherwise they must be learned.

Suppose that i is a non-leaf vertex, and i′ and i′′ are the two predecessors of i in G.
In addition, suppose that every clause pi′,j, rj and pi′′,j, rj has already been learned. Fix a
value of j. A derivation of pi,j, rj proceeds in the following three steps.

First, for each j′ 6= j′′, both distinct from j, derive the clause

pi′,j′, pi′′,j′′ , pi,j, rj (2.1)

by resolving a Stone clause against the two learned clauses pi′,j′ , rj′ and pi′′,j′′, rj′′ using rj′
and rj′′ as resolution variables:

pi′,j′, rj′ , pi′′,j′′, rj′′ , pi,j, rj pi′,j′ , rj′

pi′,j′, pi′′,j′′ , rj′′ , pi,j, rj pi′′,j′′ , rj′′

pi′,j′ , pi′′,j′′, pi,j , rj

For j′ = j′′ 6= j, the clause (2.1) is derived in one step by resolving the Stone clause against
only one of the two learned clauses pi′,j′, rj′ and pi′′,j′′ , rj′′ .

Second, for each j′′ 6= j, resolve the Stone clause
∨m

j′=1 pi′,j′ against the learned

clause pi′,j, rj and against m− 1 of the clauses (2.1) to obtain

pi′′,j′′ , pi,j, rj . (2.2)

This is shown in Figure 1.
Third, resolve the Stone clause

∨m
j′′=1 pi′′,j′′ against the learned clause pi′′,j, rj and

against the m − 1 many clauses (2.2), and derive the desired clause pi,j, rj . This is shown
in Figure 2.

For the regWRTL proof constructed in Section 3, the clause pi,j, rj will be learned and
available to use as a lemma once the above three steps have been carried out.

For the regRTI proof described in Section 4, this is not sufficient, since only clauses
derived by input subderivations are learned. For regRTI proofs, the above three steps are
used the first time pi,j, rj is derived. This results in the clauses (2.1) being learned as input
lemmas, but not the clauses (2.2). The second time pi,j, rj is derived, only the second and
third steps of the above derivation are carried out. This results in the clauses (2.2) becoming
learned, but not the clause pi,j, rj . The third time pi,j, rj is derived, only the third step is
needed; this results in the clause pi,j, rj becoming learned as an input lemma.

This leads to the following definition, which will be useful for the regRTI derivations of
Section 4:

Definition 2.1. Let i, i′, i′′, j be as above, so in particular all the clauses pi′,j′, rj′ and
pi′′,j′′ , rj′′ are learned. The clause pi,j, rj is called 3-learned provided it has been learned.
It is called 2-learned if all of the clauses (2.2) for j′′ 6= j have been learned. It is called
1-learned if all of the clauses (2.1) for j′ 6= j, j′′ 6= j have been learned.

SMALL STONE IN POOL 7

pi′′,j′′, pi,j , rj

pi′,1, pi′′,j′′ , pi,j, rj pi′,1, pi′′,j′′ , pi,j, rj

pi′,1, pi′,2, pi′′,j′′ , pi,j, rj pi′,2, pi′′,j′′, pi,j, rj

pi′,1, pi′,2, . . . , pi′,m−2, pi′′,j′′, pi,j, rj

pi′,m−1, pi′′,j′′, pi,j, rjpi′,1, pi′,2, . . . , pi′,m−1, pi′′,j′′, pi,j, rj

pi′,1, pi′,2, . . . , pi′,m pi′,m, pi′′,j′′, pi,j , rj

Figure 1: The derivation of a clause (2.2) follows this pattern with the one exception (not
shown) that the clause pi′,j, pi′′,j′′, pi,j, rj is not one of the m− 1 clauses (2.1) and
the learned clause pi′,j , rj is used instead.

pi,j, rj

pi′′,1, pi,j, rj pi′′,1, pi,j, rj

pi′′,1, pi′′,2, pi,j, rj pi′′,2, pi,j, rj

pi′′,1, pi′′,2, . . . , pi′′,m−2, pi,j , rj

pi′′,m−1, pi,j, rjpi′′,1, pi′′,2, . . . , pi′′,m−1, pi,j , rj

pi′′,1, pi′′,2, . . . , pi′′,m pi′′,m, pi,j, rj

Figure 2: The derivation of the clause pi,j, rj follows this pattern with the one exception
(not shown) that the clause pi′′,j, pi,j, rj is not one of the m− 1 clauses (2.2) and
the clause pi′′,j, rj is used instead.

A vertex i is defined to be K-learned, for K = 1, 2, 3, if and only if every pi,j, rj has
been K-learned. It is also allowed that K = 0: every clause pi,j, rj and every vertex i is
considered to be 0-learned.

8 S. BUSS AND L. KO LODZIEJCZYK

Since axiom clauses are considered to be learned, the source vertices i > n are 3-learned
by definition.

The next theorem summarizes the above construction.

Theorem 2.2. Let i′ and i′′ be the two predecessors of vertex i. There is a regular tree-like
derivation of the clause pi,j, rj from Stone clauses and the clauses pi′,j′, rj′ and pi′′,j′′ , rj′′,

which has size O(m2) and resolves on (only) the variables rk for k 6= j and the variables
pi′,k and pi′′,k for all k.

In the setting of a regRTI proof, if i′ and i′′ are 3-learned, and pi,j, rj was already
K-learned for K < 3, then there is a regular tree-like derivation of pi,j, rj from learned
clauses (including Stone clauses) which causes it to become (K+1)-learned. This derivation
has size O(m2) and resolves on at most the variables rk for k 6= j and variables pi′,k and
pi′′,k for all k.

It will also be useful to modify the derivations described above to allow side variables
rj1 , . . . , rjℓ . This is summarized by the next theorem.

Theorem 2.3. Let i, i′, i′′ be as above. Let F = {rj1 , . . . , rjℓ} where rj /∈ F . There is
a regular tree-like derivation of the clause F, pi,j, rj from Stone clauses and the clauses

pi′,j′ , rj′ and pi′′,j′′ , rj′′ , which has size O(m2) and resolves on (only) the variables rk for
k /∈ {j, j1, . . . , jℓ} and the variables pi′,k and pi′′,k for all k.

The derivation for Theorem 2.3 is obtained from the derivation for Theorem 2.2 by
omitting inferences that resolve on the literals rjq against the clauses pi′,jq , rjq and pi′′,jq , rjq .

3. The pool/regWRTL refutation

This section proves Theorem 1.14 by describing regWRTL proofs of the Stone principles.
Fix an instance of the Stone principle for a dag G as above with N vertices and m stones.
Recall that G has n < N non-source vertices.

The regWRTL refutation of Stone(G,m) will be a tree with its final, empty, clause
at the bottom. The main part of the regWRTL refutation above the empty clause is a
“skeleton”, which consists of a long branch containing n segments of length m each, as
is shown in Figures 3 and 4. Each segment in the skeleton corresponds to a non-source
vertex in G, and the role of the i-th segment is that clauses of the form pi,j, rj are learned
on branches to the right of the segment. In keeping with the intuition discussed in the
introduction, this skeleton is the bottom part of the proof which resolves on the literals pi,j;
the variables rj (plus additional variables pi′,j′ with i′ > i) will be resolved on above the
skeleton.

The first, second, and last segments of the skeleton are pictured in Figure 3. Each of
these three segments is somewhat atypical, but the i-th segment for a typical intermedi-
ate i ∈ {3, . . . , n−1} is pictured in Figure 4. In the typical situation, the idea is that for

given 3 ≤ i ≤ n−1 and j < m, the clause pi,j, rj is learned in the
. . .

... . .
.
part of the proof

above the clause p1,m, pi−1,m, pi,j on the right hand side of Figure 4. For i = 1, 2, n and

j 6= m, the idea is that the clause pi,j , rj is learned in the
. . .

... . .
.
part of the proof above the

clause containing pi,j. There are various exceptions to this idea, and several complications,

as discussed below. However, in all cases, when working in the subproof in the
. . .

... . .
.
part

SMALL STONE IN POOL 9

⊥

p1,1 p1,1

. . .
... . .

.

p1,1, p1,2 p1,2

. . .
... . .

.

p1,1, p1,2, . . . , p1,m−2

p1,m−1

. . .
... . .

.

p1,1, p1,2, . . . , p1,m−1

p1,1, p1,2, . . . , p1,m p1,m

p1,m, p2,1 p1,m, p2,1

. . .
... . .

.

p1,m, p2,1, p2,2 p1,m, p2,2

. . .
... . .

.

p1,m, p2,1, p2,2, . . . , p2,m−2

p1,m, p2,m−1

. . .
... . .

.

p1,m, p2,1, p2,2, . . . , p2,m−1

p2,1, p2,2, . . . , p2,m p1,m, p2,m

p1,m, pn−1,m

p1,m, pn−1,m, pn,1 p1,m, pn−1,m, pn,1

. . .
... . .

.

p1,m, pn−1,m, pn,1, pn,2 p1,m, pn−1,m, pn,2

. . .
... . .

.

p1,m, pn−1,m, pn,1, pn,2, . . . , pn,m−2

p1,m, pn−1,m, pn,m−1

. . .
... . .

.

p1,m, pn,1, pn,2, . . . , pn,m−1

pn,1, pn,2, . . . , pn,m p1,m, pn,m

. . .
... . .

.

Figure 3: The “skeleton” of the regWRTL proof.

of the proof above the clause containing pi,j, all clauses of the form pi′,j′, rj′ with i′ > i
have already been learned. To maintain the regularity property, this subproof must itself
be regular, and will not resolve on any literals pi′,j′ with i′ ≤ i.

10 S. BUSS AND L. KO LODZIEJCZYK

p1,m, pi−1,m

p1,m, pi−1,m, pi,1 p1,m, pi−1,m, pi,1

. . .
... . .

.

p1,m, pi−1,m, pi,1, pi,2 p1,m, pi−1,m, pi,2

. . .
... . .

.

p1,m, pi−1,m, pi,1, pi,2, . . . , pi,m−2

p1,m, pi−1,m, pi,m−1

. . .
... . .

.

p1,m, pi,1, pi,2, . . . , pi,m−1

pi,1, pi,2, . . . , pi,m p1,m, pi,m

. . .
... . .

.

Figure 4: The i-th segment of the skeleton, for 3 ≤ i < n.

p1,m, pi−1,m, pi,j

pi,j, rj

. . .
... . .

.

p1,m, [pi,j,] rj , pi−1,m

p1,m, rm [pi,j,] rj , pi−1,m, rm

. . .
... . .

.

Figure 5: The proof above p1,m, pi−1,m, pi,j.

We now outline how a clause pi,j, rj is learned in the most typical case, where i =
3, . . . , n−1 and j ≤ m−2 or i = n and j ≤ m−1. (The restriction that j < m−2 when
i < n−1 is made because a more complicated construction will be needed when j = m−1
in order to also learn pi,m, rm.) The part of the proof directly above p1,m, pi−1,m, pi,j is
presented in Figure 5.

The clause pi,j, rj on the left hand side of Figure 5 is the clause we want to learn. This
clause is derived, and learned, by the derivation given by Theorem 2.2. If i′ and i′′ are the
two predecessors of i in G, then i′ > i and i′′ > i and thus the clauses pi′,j′, rj′′ and pi′′,j′′, rj′′
will have all already been learned, so Theorem 2.2 is applicable.

On the right hand side of Figure 5, we do not need to learn anything. We only need
to make sure that the right hand side is a well-formed proof. The notation [pi,j,] indicates
that pi,j may not be present. In fact, pi,j is present exactly when i is a predecessor of i−1;
otherwise, it is absent.

To describe the right hand side of Figure 5, first suppose that vertex i is not a prede-
cessor of vertex i−1 in the graph. In this case, the literal pi,j is not present, and the leaf
clause rj, pi−1,m, rm can be proved by the proof given by Theorem 2.3. Second, suppose

SMALL STONE IN POOL 11

that vertex i is a predecessor of i−1. We must give a derivation of

pi,j, rj, pi−1,m, rm. (3.1)

Let i′ > i be the other predecessor of i−1. The derivation proceeds as follows. First, for
each j′ /∈ {j,m}, it resolves the learned clause pi′,j′, rj′ against the Stone clause

pi′,j′, rj′ , pi,j, rj , pi−1,m, rm

to obtain
pi′,j′, pi,j, rj , pi−1,m, rm. (3.2)

These steps use the resolution variables rj′ for j
′ /∈ {j,m}. For j′ = j, the clause (3.2) is a

Stone clause and does not need to be derived. Then, it resolves the Stone clause
∨

j′ pi′,j′
against the learned clause pi′,m, rm and the m − 1 many clauses (3.2), resolving on the
literals pi′,j′. This yields the desired clause (3.1).

That completes the description of the typical case of learning pi,j, rj . In less typical
cases, the changes are as follows:

• i = 2 and j ≤ m − 2. As described above, except that the variables p1,m and pi−1,m

coincide.
• i = 1, j ≤ m− 2. There is no pi−1,m. The clause p1,j is derived from p1,j , rj and p1,j, rj.
The former is learned using the derivation of Theorem 2.2, while the latter is a Stone
clause.

• i = n and j = m. The clause p1,m, pn,m is derived from pn,m, rm and p1,m, rm. The former
is learned via Theorem 2.2, the latter is a Stone clause.

• 2 ≥ i ≥ n − 1 and j = m − 1,m. There is no natural place in the i-th segment of
the skeleton to learn clause pi,m, rm, but we must learn it somewhere. To create “room”
to learn both pi,m−1, rm−1 and pi,m, rm, the clause p1,m, pi−1,m, pi,m−1 is derived by w-
resolution on the resolution variable pi,m from the two clauses p1,m, pi−1,m, pi,m−1 (i.e.,
itself) and p1,m, pi,m. The derivation proceeds as in the typical case above the former
clause and as over p1,m, pn,m above the latter.

• i = 1, j = m− 1,m. The clause p1,m−1 is derived using a w-resolution inference with the
resolution variable p1,m from itself and p1,m. Above those two clauses, the proof proceeds
as in all other cases with i = 1.

We have now fully described the polynomial size refutation for the Stone principle in
regWRTL. A size bound of O(nm3) = O(Nm3) is immediate from inspection, using the
bound of O(m2) for the size of the derivations of Theorems 2.2 and 2.3. This completes the
proof of Theorem 1.14.

Note that our construction of the regWRTL refutation of Stone(G,m) makes no use of
the assumption that m ≥ N . This is in contrast to the construction of regRTI proofs in the
next section.

4. The RegRTI proof

We now give a regRTI refutation R for the Stone(G,m) principles. We describe R by
building it from the bottom up, constructing R in a left-to-right depth-first fashion. At
each point of the construction, R is a partially formed regRTI refutation. The leaves of R
are designated as either “finished” or “unfinished”, and all finished leaves are to the left
of all unfinished leaves. The finished leaves are learned clauses; namely, they are either
valid Stone clauses or have been derived by an input subderivation earlier in the postorder

12 S. BUSS AND L. KO LODZIEJCZYK

of R. Clauses pi,j, rj , or vertices i are defined to be K-learned, K = 0, 1, 2, 3, according to
whether they have been K-learned in R at the point of reaching the leftmost unfinished leaf
of R.

Each unfinished leaf will contain a clause C of the form

pi1,j1 , pi2,j2 , . . . , pik ,jk , (4.1)

for k ≥ 0. The domain, dom(C), of C is equal to {i1, . . . , ik}. Clauses of the form (4.1) will
be required to have distinct values for the iℓ’s; for convenience we assume that

i1 < i2 < · · · < ik. (4.2)

We let max dom(C) denote the maximum member of dom(C), namely ik. We let dom(Cpool)
denote the set of i such that some pi,j ∈ Cpool.

We define the notion of a “well-formed unfinished clause” momentarily. The intuition
behind an unfinished leaf C is based on the idea that a proof is being constructed from the
bottom up, by a search process which sets the values of resolution variables in such a way
that the clause reached at a given point becomes false. Upon reaching C, the search process
has set all of the literals in C (and Cpool) false, so that each vertex iℓ ∈ dom(C) has been
pebbled with stone jℓ. The search process will generate a derivation of C by proving that
each such stone jℓ is red, namely that rjℓ is true. Since well-formed initial clauses will have
i1 = 1, this will yield a contradiction and thereby the desired refutation.

The stone jℓ can be shown to be red using one of the following three scenarios: (1) iℓ
is a source vertex in G, (2) there is iℓ′ > iℓ such that jℓ′ = jℓ and stone jℓ′ is red, or (3) the
two predecessors of iℓ in G are pebbled with red stones. Accordingly, for a fixed clause C
of the form (4.1) satisfying (4.2), we define:

Definition 4.1. Let 1 ≤ ℓ ≤ k. The vertex iℓ is said to be bypassed if there is some ℓ′ > ℓ
such that jℓ′ = jℓ. For the maximum such value ℓ′, the vertex iℓ′ is called the max-bypasser
of iℓ.

Now let 1 ≤ ℓ < ℓ′ ≤ k. We say that vertex iℓ′ directly supports vertex iℓ if either (1) iℓ′ is
the max-bypasser of iℓ, or (2) iℓ is not bypassed and iℓ′ is one of the two predecessors of iℓ
in G. Note that iℓ can directly support multiple iℓ′ ’s.

The “supports” relation is the reflexive, transitive closure of “directly supports”; namely,
if iℓ1 > iℓ2 > · · · > iℓs , s ≥ 1, and each iℓq directly supports iℓq−1

, then iℓ1 supports iℓs .
We use Sℓ(C) to denote the set of vertices in dom(C) which support iℓ. Note that Sℓ(C) ⊆
{iℓ, . . . , ik}.

The construction of R starts with the empty clause as the first unfinished clause. The
first step will be to generate new unfinished clauses of the form p1,j1 ; namely of the form (4.1)
with k = 1 and i1 = 1. In subsequent steps, an unfinished clause is extended by adding
literals pik+1,jk+1

where ik+1 is the least vertex > ik which supports the vertex i1 = 1. The
next definitions make this formal.

Definition 4.2. A clause C is a well-formed unfinished clause provided C is of the form (4.1),
satisfies (4.2) with i1 = 1 and ik ≤ n, and the following three conditions hold:

i: Cpool contains only literals of the form pi,j for i ≤ ik, and for each i there is at most one j

such that pi,j in Cpool.
ii: Let 1 ≤ ℓ ≤ k, and consider iℓ. Then either

a: The vertex iℓ is bypassed, or

SMALL STONE IN POOL 13

b: The vertex iℓ is not bypassed, and each predecessor i′ of iℓ in G satisfies one of the
following three conditions:
(α): i′ ∈ dom(C);
(β): Vertex i′ is already 3-learned, and i′ /∈ dom(Cpool); or
(γ): i′ > ik, and i′ is not 3-learned.
In case (α), i′ may or may not be 3-learned.

iii: Each iℓ ∈ dom(C) supports i1 = 1. Equivalently, S1(C) = dom(C).

The empty clause is also a well-formed unfinished clause.

Definition 4.3. A non-empty well-formed unfinished clause of the form (4.1) is extendible
provided there is some iℓ with at least one predecessor i′ in G that satisfies condition (γ).
The empty clause is also extendible.

During the construction of R, all unfinished leaves will be well-formed unfinished clauses.
To describe the construction, we explain how to handle the leftmost unfinished leaf of the
so-far constructed portion of R.

The extendible case. First suppose that the leftmost unfinished leaf is an extendible
clause C of the form (4.1) with k > 0. Considering all vertices iℓ, find one with the least
predecessor i′ that satisfies (γ). This least i′ is denoted ik+1. In the special case where
k = 0 and R contains just the empty clause (as C), let ik+1 = 1. In either case, ik+1 is not
3-learned and not a source vertex for G, so ik+1 ≤ n.

With ik+1 chosen, define Dt to be the clause C, pik+1,t
. The idea is that we would like

to replace C in R with a derivation of C from the Stone clause pik+1,1, . . . , pik+1,m and the
clauses Dt for t = 1, . . . ,m by resolving on the variables pik+1,t. The problem with this is
that the Dt’s may not be well-formed unfinished clauses. So, we consider the set S1(Dt),
namely the set of literals that support the root vertex 1 in Dt.

Claim 4.4. ik+1 ∈ S1(Dt).

The claim is trivial for k = 0. To prove it when k > 0, first suppose that t is equal
to some jℓ for ℓ ≤ k. Choose iℓ to be the least value such that t = jℓ; of course ik+1 is a
max-bypasser for iℓ in Dt. Using the fact that S1(C) contains every iℓ′ for ℓ

′ ≤ k, a simple
induction argument proves that iℓ′ ∈ S1(Dt) for every ℓ′ ≤ ℓ. It follows that ik+1 ∈ S1(Dt)
since it is the max-bypasser of iℓ ∈ S1(Dt). Second, suppose that t is distinct from all the jℓ
values. A similar induction argument proves readily that S1(Dt) contains every iℓ for ℓ ≤ k.
Hence ik+1 ∈ S1(Dt) since ik+1 is a predecessor of some non-bypassed iℓ ∈ S1(Dt).

Claim 4.5. There is a t such that S1(Dt) = {i1, . . . , ik, ik+1}.

To prove this, take t distinct from all jℓ values, and use the result from the second
subcase of the previous claim. There must exist such a t since m ≥ N , i.e., there are at
least as many stones as vertices.

Define Ct to be the clause containing the literals piℓ,jℓ for iℓ ∈ S1(Dt) with 1 ≤ ℓ ≤ k.
Claim 4.5 shows that C =

⋃

t Ct. With the aid of Claim 4.4 and the fact that C satisfies
conditions ii and iii of the definition of well-formedness, it follows from the definition of Ct

that the clause Ct, pik+1,t
also satisfies the conditions ii and iii.

Now replace the clause C in R with the resolution derivation shown in Figure 6. The
clauses Ct, pik+1,t

are clearly well-formed unfinished clauses, the Ct’s are subclauses of C,

14 S. BUSS AND L. KO LODZIEJCZYK

C

C∗
m−1, pik+1,m

Cm, pik+1,m

C∗
m−2, pik+1,m−1, pik+1,m

Cm−1, pik+1,m−1

C∗
2 , pik+1,3, . . . , pik+1,m

C2, pik+1,2C1, pik+1,2, . . . , pik+1,m

pik+1,1, . . . , pik+1,m C1, pik+1,1

Figure 6: The proof in the extendible case. The resolution variables are the pik+1,s’s. Each
clause C∗

i is the union of the clauses C1, . . . , Ci.

and the (sub)clauses C∗
j in the figure are defined to equal

⋃

t≤j Ct. By Claim 4.5, C∗
m is

equal to C, which implies that the inference used to derive C is a valid non-degenerate
resolution inference. For all the other newly added inferences, this is clear.

That completes the construction in the case where the leftmost unfinished leaf is ex-
tendible.

The non-extendible case. The construction for the case where the leftmost unfinished
leaf is not extendible is summarized in the following lemma.

Lemma 4.6. Suppose that clause C, of the form (4.1), is the leftmost unfinished leaf of R,
and that C is not extendible. Then there is a regRTI derivation RC of C from the Stone
clauses and the learned clauses in R to the left of C. If the clause pik,jk , rjk was already
K-learned for K < 3, then it becomes (K+1)-learned after the clause C is replaced in R
with RC . The only variables used as resolution variables in RC are variables rj , and vari-

ables pi,j for i /∈ dom(Cpool). The size of RC is O(Nm2).

Proof. First suppose that k = 1. Then i1 = 1, so pi1,j1 , ri1 is a Stone clause. Since C is not
extendible, the two predecessors i′ and i′′ of i1 are 3-learned. Theorem 2.2 gives a resolution
derivation L1 of pi1,j1 , rj1 from 3-learned clauses using resolution on (at most) the variables
rj with j 6= j1 and the variables pi′,j and pi′′,j. Form the derivation RC as

. . .
... . .

.L1

pi1,j1 , rj1 pi1,j1 , rj1
pi1,j1

(4.3)

Here and in the sequel, notation of the form
.. .

... . .
.L

indicates that the dots should be
replaced by the derivation L without its (already pictured) final clause.

SMALL STONE IN POOL 15

By the second half of Theorem 2.2, if pi1,j1, rj1 was K-learned for K < 3, it becomes

(K+1)-learned. The size of L1 is O(m2).
We now assume that k > 1. This case is more involved, and takes up most of the rest

of the paper.
Define B to be the set of those non-bypassed vertices iℓ ∈ dom(C) that have at least one

predecessor outside of dom(C). Note that since C is not extendible, a non-bypassed element
of dom(C) belongs to B exactly if it has a predecessor satisfying condition (β) from the
definition of well-formedness; in particular, the predecessor has to be 3-learned. We further
split B into the sets B1 and B2 depending on whether one or both predecessors satisfy (β).
Note that i1 = 1 might be in B1, but it cannot be in B2, because i2 is either a predecessor
or a max-bypasser of i1. On the other hand, ik must be in B2. We also define B+ to be the
set containing B and all those iℓ which are bypassed by a max-bypasser iℓ′ ∈ B. Thus, a
vertex iℓ is in B+ if, according to the minimal partial assignment falsifying clause C, iℓ is
pebbled by a stone that also covers some vertex in B.

The idea behind the construction of RC is that vertices iℓ that belong to B ∪ {1}
determine a “partition” of G↾dom(C) into possibly overlapping subgraphs (namely the sets

SB
ℓ (C) defined next). RC will deal with these subgraphs independently. The set SB

ℓ (C) is
a subgraph with sink iℓ:

Definition 4.7. For iℓ ∈ dom(C), the set SB
ℓ (C) is the smallest set containing iℓ and

satisfying the following whenever iℓ′ ∈ SB
ℓ (C) and either ℓ′ = ℓ or iℓ′ /∈ B: (1) If iℓ′ is

bypassed in C by max-bypasser iℓ′′ /∈ B, then iℓ′′ ∈ SB
ℓ (C) and (2) if iℓ′ is not bypassed

in C and iℓ′′ is a predecessor of iℓ′ in G, then iℓ′′ ∈ SB
ℓ (C).

Note that the closure condition (1) does not allow iℓ′′ ∈ B, whereas (2) does allow it.
Enumerate B ∪ {1} in decreasing order as it1 , it2 , . . . , itr so that t1 = k and tr = 1.

Below, we use the convention that the index q ranges over 1, . . . , r, so that the vertices itq
are the members of B ∪ {1}.

The overall structure of the derivation RC is shown in Figure 7 below. RC will be
built around certain clauses related to the vertices itq ∈ B ∪ {1} (the clauses C∗

q−1, Fq in

Figure 7). To complete RC , we will have to construct derivations of the clauses to the side
of this “skeleton” (the derivations Ltq of the clauses Ctq , Fq, rjtq in Figure 7). In the case

where itq ∈ B2, this is easy (Lemma 4.12 below), and this easy case is the one which makes
it1 = ik become (K+1)-learned instead of K-learned. In the case where itq ∈ B1 ∪ {1}, we
only need to obtain a valid derivation, but this requires a relatively complex construction
based on the structure of the subgraph determined by itq (Lemma 4.13).

A clause appearing in RC will contain some literals of the form pi,j, some literals of
the form rj, and at most one literal of the form rj. These literals have to be selected
so as to avoid irregularities and degenerate inferences. RC is defined using four special
types of clauses: Cℓ, C

∗
q , Eℓ, and Fq. (The Cℓ’s are different from the Ct’s used for the

extendible case.) The Cℓ’s and C∗
q ’s consist of pi,j’s, while the Eℓ’s and Fq’s consist of rj’s.

As suggested by the notation, the C∗
q ’s and Fq’s are parametrized by vertices itq ∈ B ∪ {1},

whereas the Cℓ’s and Eℓ’s are parametrized by vertices iℓ ∈ dom(C).

Definition 4.8. If iℓ is not bypassed in the clause C, then Cℓ is the clause containing the
literals piℓ′ ,jℓ′ for iℓ′ ∈ SB

ℓ (C). If iℓ is bypassed in C, then Cℓ is the same set except the
literal piℓ,jℓ is omitted.

Definition 4.9. C∗
q equals {p1,j1} ∪

⋃

q′>q Ctq′
.

16 S. BUSS AND L. KO LODZIEJCZYK

The reason we have to explicitly include p1,j1 in C∗
q is that p1,j1 /∈ C1 if vertex 1 is

bypassed.

Definition 4.10. If iℓ ∈ B, then the clause Eℓ is the set of literals rjℓ′ such that ℓ′ 6= ℓ

and iℓ′ ∈ SB
ℓ (C) ∩ B+. For iℓ /∈ B, the clause Eℓ contains the literals rjℓ′ such that

iℓ′ ∈ SB
ℓ (C) ∩B+.

Informally, Eℓ contains the literals rjℓ′ for iℓ′ ∈ B+ a source (leaf) vertex above iℓ
relative to the subgraph SB

ℓ (C).
The cases where iℓ is bypassed by a max-bypasser iℓ′ deserve special mention. Of course,

jℓ = jℓ′ . If iℓ′ ∈ B, then iℓ ∈ B+ \ B, and we have SB
ℓ (C) = {iℓ}, Cℓ = ∅, and Eℓ = {rjℓ}.

On the other hand, if iℓ′ /∈ B, then iℓ /∈ B+, and we have SB
ℓ (C) = {iℓ} ∪ SB

ℓ′ (C), Cℓ = Cℓ′ ,
and Eℓ = Eℓ′ .

Before defining the Fq’s, we prove a lemma listing some basic properties of the C’s,
C∗’s, and E’s:

Lemma 4.11.

(a): Each iℓ 6= 1 is a member of some SB
tq
(C). Thus, C∗

0 is equal to C.

(b): If 1 is bypassed by max-bypasser iℓ, then ℓ = 2.
(c): rjtr−1

∈ E1.

(d): Etq ⊆ {rjt1 , . . . , rjtq−1
}, for all q.

Proof. (a) Given ℓ 6= 1, consider a chain iℓ=iℓ1 > iℓ2 > · · · > iℓs=1 of directly supporting
vertices from iℓ to 1. Let iℓa be the first member of B ∪ {1} in this sequence. Then ℓa = tq′

for some q′, and we have iℓ ∈ SB
tq′
(C). Thus, piℓ,jℓ is in Ctq′

and hence C∗
0 .

(b) Suppose that 1 has max-bypasser iℓ with ℓ > 2. Then iℓ > i2. There must exist a
chain of directly supporting vertices from i2 to 1, but this contradicts iℓ > i2.

(c) Consider a chain itr−1
=iℓ1 > iℓ2 > · · · > iℓs=1 of directly supporting vertices from

itr−1
to 1. By the descending order of the tq’s, none of iℓ2 , . . . , iℓs−1

is in B. If itr−1
is not

the max-bypasser of iℓ2 , then itr−1
∈ SB

1 (C) and thus rjtr−1
∈ E1. Suppose instead that

itr−1
is the max-bypasser of iℓ2 , so iℓ2 ∈ B+ \ B. Then iℓ2 ∈ SB

1 (C), so rjℓ2 ∈ E1. By the
definition of bypasser, jℓ2 = jtr−1

, so rjtr−1
∈ E1.

(d) Let rjℓ ∈ Etq , so ℓ ≥ tq and iℓ ∈ B+. If iℓ ∈ B, then ℓ > tq, and thus ℓ = tq′ for
some q′ < q. If iℓ ∈ B+ \ B, then iℓ has max-bypasser iℓ′ ∈ B. Then ℓ′ > ℓ ≥ tq and thus
ℓ′ equals tq′ for some q′ < q, and by the definition of bypasser jℓ′ = jℓ. Therefore rjℓ is the
same as rjt

q′
.

Define Fq to be the clause

Fq :=

{

Etr = E1 if q = r and 1 /∈ B
rjt1 , . . . , rjtq−1

otherwise

By Lemma 4.11(d), Etq ⊆ Fq. Note that F1 = ∅, because r 6= 1 and so in evaluating F1 we
use the second case of the definition of Fq.

We can now describe the derivation RC in detail. As mentioned, the general structure
of RC is shown in Figure 7. The parts of the derivation displayed in brackets are omitted
if 1 ∈ B+ \B.

Note that C∗
0 , F1, the final clause of RC , is the same as C. For q < r, the inference

SMALL STONE IN POOL 17

Ctq , Fq, rjtq C∗
q , Fq+1

C∗
q−1, Fq

resolves on rjtq , and it is non-degenerate by the definitions of the Fq’s and C∗
q ’s. (By

Lemma 4.11(c,d), this is true even in the case where q = r − 1 and 1 /∈ B.) It follows that
the resolution variables on the path from Ctq , Fq, rjtq to C are exactly rjt1 , . . . , rjtq . The

derivation Ltq is described below (cf. Lemmas 4.12 and 4.13).

For q = r, we have tq equal to 1. If 1 /∈ B+ \B, then, as shown in Figure 7, the clause
C∗
r−1, Fr is derived by:

. . .
... . .

.L1

C1, Fr, rj1 p1,j1 , rj1
C∗
r−1, Fr

Again, the final inference deriving C∗
r−1, Fr is non-degenerate. The upper right clause

p1,j1 , rj1 is a Stone clause. The derivation L1 is described in Lemma 4.13.

On the other hand, if 1 ∈ B+ \ B and thus 1 has max-bypasser i2 ∈ B, then C∗
r−1 is

p1,j1 and Fr = E1 is rj1 . Therefore clause C∗
r−1, Fr is equal to the Stone clause p1,j1 , rj1 ,

and there is no need to add to RC anything above it.
To finish the description of RC , we must describe the derivations Ltq . This is done by

the next two lemmas.

Lemma 4.12. Suppose that itq ∈ B2. Then there is a regRTI proof Ltq of Ctq , Fq, rjtq of

size O(m2). The variables used as resolution variables in Ltq are (at most) the variables rj
where rj /∈ Fq ∪ {rjtq} and the variables pi′,j and pi′′,j for i′ and i′′ the predecessors of itq
in G.

In the special case of q = 1, so t1 = k, if pik,jk , rjk was K-learned for K < 3, then
pik,jk , rjk becomes (K+1)-learned in Lk.

Note that the values i′ and i′′ are not in dom(Cpool) by the definition of B2; therefore,
the resolution variables pi′,j and pi′′,j do not violate the regularity condition. Also note
that, since 1 /∈ B2, we have tq 6= 1 and the condition that rj /∈ Fq ∪ {rjtq} is equivalent to

j /∈ {jt1 , . . . , jtq}. This is precisely what is needed to ensure regularity.

Proof. The clause Ctq consists of the single literal pitq ,jtq . Thus the derivation Ltq is the

derivation given by Theorem 2.3. When q = 1 and tq = k, we have F1 = ∅ and Ck is the
clause pik,jk . In this case, Lk is the derivation given by the second part of Theorem 2.2.

Lemma 4.13. Suppose that 1 ≤ q ≤ r, and itq ∈ B1 ∪ {1} and itq /∈ B+ \ B. Let

Nq = |SB
tq
(C)|.

(a): There is a regular dag-like derivation L′
tq of size O(Nq) which contains each clause

Cℓ, Eℓ, rjℓ for iℓ /∈ B+ such that iℓ ∈ SB
tq (C). The subderivation L′

ℓ of L′
tq that ends

with Cℓ, Eℓ, rjℓ uses as resolution variables precisely the variables rjℓ′ such that jℓ 6= jℓ′ ,

iℓ′ ∈ SB
ℓ (C), and iℓ′ /∈ B+.

If itq /∈ B1, then tq = 1 and q = r and the final clause of L′
tq

is C1, E1, rj1 (that is,

with ℓ = tq = 1). Suppose instead that itq ∈ B1 and iℓ is the (only) predecessor of itq

18 S. BUSS AND L. KO LODZIEJCZYK

C∗
0 , F1

Lt1 . . .
... . .

.

Ct1 , F1, rjt1
C∗

1 , F2

Lt2 . . .
... . .

.

Ct2 , F2, rjt2

C∗
r−2, Fr−1

Ltr−1 . . .
... . .

.

Ctr−1
, Fr−1, rjtr−1

C∗
r−1, Fr

[L1 . . .
... . .

.

C1, Fr, rj1

]

[p1,j1 , rj1]

Figure 7: The structure of the derivation RC .

such that iℓ ∈ dom(Cpool). If iℓ ∈ B+, then SB
tq (C) ⊆ B+ and L′

tq is empty. If iℓ /∈ B+,

then the final clause of L′
tq

is Cℓ, Eℓ, rjℓ.

(b): There is a regRTI derivation Ltq of Ctq , Fq, rjtq of size O(N2
q +m). The variables used

as resolution variables in Ltq are at most the variables rj where rj /∈ Fq ∪ {rtq} and, if

itq ∈ B1, the variables pi′′,j where i′′ is the predecessor of itq such that i′′ /∈ dom(Cpool).

Note that itq ∈ B+ \B only if tq = 1, and this is the case where L1 is not needed.

Proof. The regular dag-like refutation L′
tq for part (a) is constructed by induction on ℓ such

that iℓ ∈ SB
tq
(C)\B+. We add the clauses Cℓ, Eℓ, rjℓ to L

′
tq
for larger values of ℓ first, making

sure that the condition on resolution variables remains satisfied. The inductive argument
splits into four cases.

Case 1: iℓ is bypassed by max-bypasser iℓ′ . Since iℓ /∈ B+, we have iℓ′ /∈ B+. The
induction hypothesis tells us that Cℓ′ , Eℓ′ , rj′

ℓ
appears in the already constructed portion

of L′
tq . ¿From the remarks after the definitions of Cℓ and Eℓ, we have jℓ = jℓ′ and Cℓ = Cℓ′

and Eℓ = Eℓ′ . Thus Cℓ′ , Eℓ′ , rj′
ℓ
is exactly the same clause as Cℓ, Eℓ, rjℓ . So no further

resolution inferences need to be added to L′
tq

to handle iℓ, and L′
ℓ = L′

ℓ′ . Since SB
ℓ (C) =

{iℓ}∪S
B
ℓ′ (C) and iℓ /∈ B+, the subderivation L′

ℓ satisfies the condition about which resolution
variables are used.

The remaining cases all assume that iℓ is not bypassed.
Case 2 (the base case): both of iℓ’s predecessors iℓ′ and iℓ′′ are in B+. Then Cℓ is

piℓ′ ,jℓ′ , piℓ′′ ,jℓ′′ , piℓ,jℓ. Also, Eℓ is rjℓ′ , rjℓ′′ . Therefore the Stone clause (4.4) is the same as

Cℓ, Eℓ, rjℓ , so L′
ℓ consists of just this clause.

SMALL STONE IN POOL 19

Case 3: neither of iℓ’s predecessors iℓ′ and iℓ′′ is in B+. The already constructed
part of L′

ℓ contains the clauses Cℓ′ , Eℓ′ , rjℓ′ and Cℓ′′ , Eℓ′′ , rjℓ′′ . Assume for the moment that
jℓ′ 6= jℓ′′ . W.l.o.g., the highest index s′′ such that js′′ = jℓ′′ is strictly greater than highest
index s′ such that js′ = jℓ′ ; otherwise interchange ℓ′ and ℓ′′. It follows from the induction
step for Case 1 that L′

ℓ′′ equals L′
s′′ . Therefore, by the assumption that s′ < s′′ and the

inductive condition on resolution variables, rjℓ′ is not resolved on in L′
ℓ′′ .

Using the Stone clause

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , rjℓ′′ , piℓ,jℓ, rjℓ (4.4)

form L′
ℓ as

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , rjℓ′′ , piℓ,jℓ, rjℓ

. . .
... . .

.L
′
ℓ′′

Cℓ′′ , Eℓ′′ , rjℓ′′

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , Cℓ′′ , Eℓ′′ , piℓ,jℓ, rjℓ

. . .
... . .

.L
′
ℓ′

Cℓ′ , Eℓ′ , rjℓ′

Cℓ, Eℓ, rjℓ

(4.5)

We have Eℓ = Eℓ′ ∪ Eℓ′′ . The literals piℓ′ ,jℓ′ and piℓ′′ ,jℓ′′ may or may not appear in Cℓ′

and Cℓ′′ (respectively), but in any case Cℓ is the same as piℓ′ ,jℓ′ , Cℓ′ , piℓ′′ ,jℓ′′ , Cℓ′′ , piℓ,jℓ. Note
that the proof as pictured above might be slightly misleading: we are constructing a dag-
like derivation, not a tree-like derivation and the subderivations L′

ℓ′ and L′
ℓ′′ need not be

disjoint. The regularity of L′
ℓ follows from the induction hypotheses and the fact that rjℓ′ is

not a resolution variable of L′
ℓ′′ . The condition on which resolution variables are used in L′

ℓ

follows from SB
ℓ (C) = {iℓ} ∪ SB

ℓ′ (C) ∪ SB
ℓ′′(C).

For the remaining part of case 3, suppose that jℓ′ = jℓ′′ . Let s be the highest index
such that js = jℓ′ = jℓ′′ . By the remarks after the definitions of Cℓ and Eℓ, we have
Cℓ′ = Cℓ′′ = Cs and Eℓ′ = Eℓ′′ = Es. Thus also L′

ℓ′ = L′
ℓ′′ = L′

s. Now, argue as in the
previous case, but replace the inferences (4.5) with the inference

piℓ′ ,js , piℓ′′ ,js, rjs , piℓ,jℓ, rjℓ

. . .
... . .

.L
′
s

Cs, Es, rjs

Cℓ, Eℓ, rjℓ

The left hypothesis is a Stone clause. The rest of the argument for this subcase is as in the
previous case.

Case 4: iℓ has predecessors iℓ′ /∈ B+ and iℓ′′ ∈ B+. The induction hypothesis says that
the clause Cℓ′ , Eℓ′ , rjℓ′ has already been derived. Then Cℓ is piℓ′ ,jℓ′ , piℓ′′ ,jℓ′′ , piℓ,jℓ , Cℓ′ , and

Eℓ is rjℓ′′ , Eℓ′ , so we can form L′
ℓ as

piℓ′ ,jℓ′ , rjℓ′ , piℓ′′ ,jℓ′′ , rjℓ′′ , piℓ,jℓ , rjℓ

. . .
... . .

.L
′
ℓ′

Cℓ′ , Eℓ′ , rjℓ′

Cℓ, Eℓ, rjℓ

using resolution on rℓ′ . The regularity of L′
ℓ and the conditions on which resolution variables

are used in L′
ℓ follow from the induction hypothesis for L′

ℓ′ and the fact that SB
ℓ (C) =

{iℓ, iℓ′′} ∪ SB
ℓ′ .

20 S. BUSS AND L. KO LODZIEJCZYK

That completes the proof of part (a). The size bound O(Nq) on L′
ℓ follows from the

fact that each of the four cases in the construction of L′
ℓ added O(1) clauses.

To apply part (a) in the proof of (b), we need regRTI derivations L′′
tq
, instead of the

regular dag-like refutations L′
tq
. For this, Theorem 3.3 of [BHJ08] states that the desired

derivation L′′
tq , containing exactly the same clauses as L′

tq , can be constructed from L′′
tq with

the size of L′′
tq

bounded by the product of the size and the height of L′
tq
. Thus, the size

of L′′
tq is O(N2

q). Furthermore, L′′
tq uses the same resolution variables as L′

tq .

We now prove part (b). First suppose that q = r and 1 /∈ B. Then tq = 1 and
Fq = E1. In this case, the regRTI derivation L′′

1 obtained from part (a) is already the
desired derivation. This only uses resolution variables rjℓ such that iℓ /∈ B+ and hence
jℓ /∈ {jt1 , . . . , jtq}.

Otherwise, itq ∈ B1, and hence Fq = {rjt1 , . . . , rjtq−1
}. Let iℓ′ and i′′ be the predecessors

of itq ; so, i′′ is 3-learned and i′′ /∈ dom(Cpool). Note that jℓ′ may or may not be in
{jt1 , . . . , jtq}. Consider the m− 2 many Stone clauses for j′′ /∈ {jtq , jℓ′}:

piℓ′ ,jℓ′ , rjℓ′ , pi′′,j′′ , rj′′ , pitq ,jtq , rjtq .

Resolving these with the 3-learned clauses pi′′,j′′, rj′′ for j
′′ /∈ {jt1 , . . . , jtq , jℓ′} and the Stone

clause
∨

j′′ pi′′,j′′ gives the clause

piℓ′ ,jℓ′ , rjℓ′ , Fq, pitq ,jtq , rjtq (4.6)

by resolution on the variables rj′′ for j
′′ /∈ {jt1 , . . . , jtq , jℓ′} and the variables pi′′,j′′ for all j

′′.

Suppose that iℓ′ ∈ B+ and thus rjℓ′ ∈ Fq and Ctq is the clause piℓ′ ,jℓ′ , pitq ,jtq . Then

(4.6) is the same as Ctq , Fq, rjtq and the construction of Ltq for part (b) is complete. In this

case, Ltq has size O(m).
Alternately, suppose that iℓ′ /∈ B+, so rjℓ′ /∈ Fq. By the last assertion of part (a), L′′

tq is

a regRTI derivation of Cℓ′ , Eℓ′ , rjℓ′ of size O(N2
q). Form Ltq by resolving this against (4.6)

on the variable rjℓ′ to obtain Ctq , Fq, rjtq . This is a valid resolution inference since Ctq is

pitq ,jtq , piℓ′ ,jℓ′ , Cℓ′ , and Eℓ′ ⊆ Fq. The size of Ltq is O(N2
q +m).

This completes the description of Ltq , and the proof of Lemma 4.13.

This also completes the construction of the derivation RC of Lemma 4.6. Since the
construction of RC invokes Lemmas 4.12 and 4.13 at most N times, the size of RC is
bounded by O(Nm2 +N(N2 +m)) = O(Nm2).

Finishing the proof. All that remains to finish the proof of Theorem 1.15 is to bound
the size of the refutation R. As described above, R is built up from a derivation containing
only the empty clause by applying the constructions of Figure 6 and Lemma 4.6, always to
the leftmost currently unfinished leaf.

If the clause at that leaf is non-extendible, it is dealt with using Lemma 4.6, and no
new unfinished leaves appear.

Otherwise, the leftmost unfinished leaf contains an extendible clause, and it is dealt
with using the construction of Figure 6, leading to m new unfinished leaves, at least one of
them labeled with a clause Ct, pik+1,t

such that pik+1,t
, rt has not been 3-learned.

A clause of the type allowed to appear in an unfinished leaf can be iteratively extended
at most n times, so at some point we have to reach a situation in which the construction of
Figure 6 produces only non-extendible clauses. When Lemma 4.6 is applied to those clauses,

SMALL STONE IN POOL 21

at least one K-learned clause of the form pi,j, rj becomes (K+1)-learned. There are nm
clauses of the form pi,j, rj to be learned. Once all of them have been 3-learned, all remaining
unfinished leaves become non-extendible and can be dealt with using the construction of
Lemma 4.6.

Consider the set of clauses in R which at some point were unfinished leaves during
the construction of R. Call such a clause green if it was handled with Lemma 4.6 and
thereby a clause of the form pi,j , rj became (K+1)-learned instead of K-learned. The
remaining clauses are called non-green: these clauses were either handled by Lemma 4.6 but
without any clause pi,j , rj becoming (K+1)-learned, or were handled with the construction
of Figure 6. These green and non-green clauses inherit a tree structure from R. It follows
from the discussion above that this tree is m-branching, has depth at most n, and contains
at most 3nm green leaves. Moreover, each node in the tree is a green leaf, is an ancestor or
sibling of a green leaf, or is the sibling of an ancestor of a green leaf. It is straightforward to
prove that such a tree has at most O(n2m2) leaves. Since each of these leaves corresponds
to a single application of Lemma 4.6, the size of R is at most O(N3m4). This completes
the proof of Theorem 1.15.

Since the Stone tautologies contain O(Nm3) many symbols, and since N ≤ m, the size
upper bound O(N3m4) is quadratic in the size of the clauses being refuted.

The refutation R described above may not be greedy. Although we lack a proof, it is
possible that R can be made greedy by omitting subderivations of already learned clauses.
It is also possible that R is, or could be made to be, unit-propagating. In particular, note
that the only unit clauses that appear in R are the literals p1,j that appear as unfinished
clauses in the very first step of the construction of R. However, we have not tried to formally
analyze the greedy or unit-propagating properties of R.

Acknowledgement

We thank the two anonymous referees for useful comments and suggestions.

The proof is complete, If only I’ve stated it thrice.
Fit the Fifth – The Beaver’s Lesson, The Hunting of the Snark

Lewis Carroll

References

[AJPU07] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. Theory of Computing, 3(5):81–102, 2007.

[BB12] Maria Luisa Bonet and Samuel R. Buss. An improved separation of regular resolution from
pool resolution and clause learning. In Proc. 15th International Conference on Theory and
Applications of Satisfiability Testing – SAT 2012, Lecture Notes in Computer Science #7317,
pages 45–57, 2012.

[BBJ14] Maria Luisa Bonet, Samuel R. Buss, and Jan Johannsen. Improved separations of regular
resolution from pool resolution and clause learning. Journal of Artificial Intelligence Research,
49:669–703, 2014.

[BHJ08] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Resolu-
tion refinements that characterize DLL-algorithms with clause learning. Logical Methods in
Computer Science, 4, 4:13(4:13):1–18, 2008.

22 S. BUSS AND L. KO LODZIEJCZYK

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understanding and harnessing
the potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351, 2004.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem prov-
ing. Communications of the ACM, 5(7):394–397, 1962.

[DP60] Martin Davis and Hillary Putnam. A computing procedure for quantification theory. Journal
of the Association for Computing Machinery, 7(3):201–215, 1960.

[HBPVG08] Philipp Hertel, Fahim Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning can
effectively p-simulate general propositional resolution. In Proc. 23rd AAAI Conf. on Artificial
Intelligence (AAAI 2008), pages 283–290. AAAI Press, 2008.

[MSS99] João P. Marques-Silva and Karem A. Sakallah. GRASP — A new search algorithm for satisfi-
ability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[Urq11] Alasdair Urquhart. A near-optimal separation of regular and general resolution. SIAM Journal
on Computing, 40(1):107–121, 2011.

[VG05] Allen Van Gelder. Pool resolution and its relation to regular resolution and DPLL with clause
learning. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005), Lec-
ture Notes in Computer Science 3835, pages 580–594. Springer-Verlag, 2005.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Learning and 3-Learning
	3. The pool/regWRTL refutation
	4. The RegRTI proof
	The extendible case
	The non-extendible case
	Finishing the proof

	Acknowledgement
	References

