
Logical Methods in Computer Science
Vol. 9(3:8)2013, pp. 1–26
www.lmcs-online.org

Submitted Jan. 14, 2013
Published Aug. 30, 2013

ALGEBRAIC STRUCTURE OF COMBINED TRACES ∗

ŁUKASZ MIKULSKI

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Chopina
12/18, Poland, and
School of Computing Science, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K.
e-mail address: lukasz.mikulski@mat.umk.pl

Abstract. Traces – and their extension called combined traces (comtraces) – are two
formal models used in the analysis and verification of concurrent systems. Both models
are based on concepts originating in the theory of formal languages, and they are able to
capture the notions of causality and simultaneity of atomic actions which take place during
the process of a system’s operation. The aim of this paper is a transfer to the domain of
comtraces and developing of some fundamental notions, which proved to be successful in
the theory of traces. In particular, we introduce and then apply the notion of indivisible
steps, the lexicographical canonical form of comtraces, as well as the representation of a
comtrace utilising its linear projections to binary action subalphabets. We also provide
two algorithms related to the new notions. Using them, one can solve, in an efficient
way, the problem of step sequence equivalence in the context of comtraces. One may view
our results as a first step towards the development of infinite combined traces, as well as
recognisable languages of combined traces.

1. Introduction

The dynamic behaviours of concurrent systems are usually described as sequences of atomic
actions of such systems, which leads to its formal language semantics. Using this simple
approach we cannot express some phenomena, e.g, concurrency and causality, that are crucial
in the process of understanding and analysing concurrent behaviours of a system. In the
case of a particular operational model, one can consider extending the sequential description
by adding some information about the relevant properties of behaviours. One can do it by
considering sequences of steps of actions and by adding some causal dependencies between
actions. A well known approach that helps to capture concurrency and causality of a system
are traces [CF69, Maz77].

Consider, for example, the elementary net system with inhibitor arcs in Example 1.1(a).
We have four actions, a, b, c and d, which may be executed in the initial marking, and two
actions, e and f , which need a previous history of computation to be enabled. Let us focus
on action e. To enable this action we need to execute actions a and c. We can execute

2012 ACM CCS: [Theory of computation]: Models of computation—Concurrency.
Key words and phrases: concurrency, causal structures, combined traces, Mazurkiewicz traces, Petri nets,

elementary net systems.
∗ A short variant of this paper, without proofs, appeared in the CONCUR 2012 conference proceedings.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:8)2013

c© Ł. Mikulski
CC© Creative Commons

http://creativecommons.org/about/licenses

2 Ł. MIKULSKI

them together or in any order. To capture the concurrent behaviour of this computation we
need to identify two sequences of executions – ace and cae. Using step semantics, which is
not necessary in this case, we add also step sequence (ac)(e) as another possible execution.
Traces are sufficient to deal with such behaviours.

The situation is more complex in the case of action f . Now we need three tokens in
the pre-set of the considered action, hence actions b, c and d should be executed before
the action f . Because of the presence of inhibitors, there is only one way to execute them
sequentially, they should be executed in the order dcbf . Note that bdcf or bcdf are not
correct sequences of execution. There are, however, other possibilities to execute the four
actions in the step semantics. For instance all three actions may be executed simultaneously
as a step containing b, c and d. This gives (bcd)(f) as our allowed sequence of steps. Other
step sequences are (d)(bc)(f) and (cd)(b)(f). It is important that action d has to be executed
not later than action c, and action c has to be executed not later than action b. In this case
traces are still applicable, but they lose some important behavioural information.

Another case is depicted in Example 1.1(b). The upper part of the net is identical to
the first case. Here, however, there is a single action g that waits for tokens in all four
middle places. In other words, whole tuple (a, b, c, d) has to be executed before action g.
It is easy to see that because of inhibitors there is no valid sequential execution of the four
actions. After executing one of these actions, one of the remaining becomes disallowed.
The only possible execution is the step sequence (abcd)(f). Those two situations cannot be
precisely described by traces, we need a more complex notion that capture “not later than”
relationship between actions. To address this issue one can use a natural generalisation of
traces called combined traces (see [JK95]).

Example 1.1. Two elementary net systems with inhibitor arcs.

a b c d

e f

(a)

a b c d

g

(b)

In this paper, we are concerned with the understanding of the algebraic inner structure
of the combined traces (comtraces in short). We start by recalling some standard notions
about formal languages, traces and comtraces. In particular, we give the definition of a lexi-
cographical order on step sequences. We then recall the Foata canonical form of a comtrace
that turns out to be maximal with respect to their order, and propose another canonical
representative - the lexicographical canonical form. Then, we discuss the phenomenon of
indivisibility in the case of comtraces and its connections with lexicographical canonical
form. In the following sections, we propose an algebraic representation of a comtrace based

ALGEBRAIC STRUCTURE OF COMBINED TRACES 3

on projections onto sequential subalphabets, and give a nondeterministic procedure that
allows to reconstruct step sequences of the original comtrace. We also give two strategies of
determining such reconstruction, each leading to a proper canonical form of a comtrace. In
the final section, we describe some natural applications of the algebraic properties developed
in this paper, and sketch the directions for further research.

The preliminary version of this paper was presented on the CONCUR 2012 conference
(Newcastle, UK) and published in local proceedings. The present paper is significantly
extended and improved version.

2. Preliminaries

Throughout the paper we use the standard notions of the formal language theory. In par-
ticular, by an alphabet we mean a nonempty finite set Σ, the elements of which are called
(atomic) actions. Finite sequences over Σ are called words. The set of all finite words,
including the empty word ǫ, is denoted by Σ∗.

Let w = a1 . . . an and v = b1 . . . bm be two words. Then

w ◦ v = wv = a1 . . . anb1 . . . bm

is the concatenation of w and v. The alphabet alph(w) of w is the set of all the actions
occurring within w, and #a(w) is the number of occurrences of an action a within w. By
|w| we denote the length of word w. More generally, for an object X, whenever the notion
of size is clear from the contexts, we denote its size by |X|.

Let w = a1 . . . an be a word. We use the notions of prefix and suffix of the word w. For
any k ≤ n, the k-suffix of w, denoted by suffk (w), is a word ak . . . an. Similarly, the k-prefix
of w, denoted by prefk (w), is the word a1 . . . ak.

We assume that the alphabet Σ is given together with a total order ≤, called lexico-
graphical order and extend it to the level of words. Such an order is inherited from the first
actions on which two words being compared differ. In the case that one word is a prefix of
another - the former is the smaller one.

The projection onto a binary subalphabet {a, b} is the function Πa,b : Σ
∗ → Σ∗ defined

as follows:

Πa,b(cw) =

{
cΠa,b(w) for c ∈ {a, b}
Πa,b(w) for c /∈ {a, b}

and Πa,b(ǫ) = ǫ. In the same way we define a projection onto a unary subalphabet {a},
denoted by Πa,a : Σ∗ → Σ∗.

The algebra of binary relations over set X (i.e., subsets of X × X) is equipped with
a concatenation operation ◦, where R1 ◦ R2 = {(x, y) | ∃z∈X xR1y ∧ yR2z}. The neutral
element for ◦ is the identity relation IX = {(x, x) | x ∈ X}, the index X is omitted if it is
clear from context. The n-th power of a relation R is defined as Rn = Rn−1 ◦R for all n ≥ 1,
where R0 = I. The transitive closure of R is R+ = R1∪R2∪ . . ., while its reflexive transitive
closure is R∗ = R0 ∪R+. Moreover, for a relation R ⊂ X ×X we define the reverse of R by
R−1 = {(x, y) | (y, x) ∈ R}, and its symmetric closure by Rsym = R ∪ R−1. We also define
the largest equivalence relation contained in the reflexive and transitive closure of relation
R as

R⊛ = {(x, y) | xR∗y ∧ yR∗x}.

4 Ł. MIKULSKI

The relation R ⊆ X × X is called symmetric if R = R−1, reflexive if I ⊆ R, irreflexive if
I ∩R = ∅, transitive if R2 ⊆ R, and acyclic if R+ is irreflexive. Moreover, for every Y ⊆ X
we define the restriction of the relation R ⊆ X ×X to the set Y by

R|Y = {(x, y) ∈ R | x, y ∈ Y }.

A directed acyclic graph is a pair dag = (X,R), where X is a finite set and R is an
acyclic irreflexive binary relation on X. In a diagrammatical representation, X is the set
of vertices while R the set of arcs. A directed acyclic graph po = (X,≺) is a poset if the
relation ≺ is transitive. An upper set is a nonempty subset U of poset po = (X,≺) such
that for every x ∈ U if x ≺ y then y ∈ U .

2.1. Elementary Net Systems with Inhibitor Arcs. In this paper we introduce some
algebraic properties of combined traces which are the abstract model that describes causal
relationships between executed actions of a concurrent system. The underlying structure,
which was a motivation to define combined traces, are elementary net systems with inhibitor
arcs.

Formally, the elementary net system with inhibitor arcs (or ENI − system) is a tuple
N = (P, T, F, I,M0), where P and T are two disjoint and finite sets of places and transitions
(or actions) respectively. Two other components, F ⊆ (P × T) ∪ (T × P) and I ⊆ P × T
are relations, called flow relation and inhibition relation. These relations describe possible
dynamic behaviours of a net, which are manifested by executing sets of enabled transitions
called steps. Such an execution leads from one set of places (called marking) to another.
The initial marking M0 ⊆ P , from which the action of a system begins, is the last element
of the tuple N .

Given an ENI-system N = (P, T, F, I,M0) and x ∈ P ∪ T , the pre-set (set of inputs) of
x, denoted by •x, is defined as •x = {y|(y, x) ∈ F}, while the post-set (set of outputs) of x,
denoted by x•, is defined as x• = {y|(x, y) ∈ F}. We also use the notion •x• for the union of
the post-set and pre-set of x, calling it the set of neighbouring places/transitions (or simply
the neighbourhood). Moreover, if x ∈ T , the inh-set (set of inhibitors) of x, denoted by ◦x,
is defined by ◦x = {y|(y, x) ∈ I}. The set of neighbouring places together with the inh-set
forms an extended neighbourhood of an action.

The dot notations are lifted in the usual way to sets of elements. Hence, by •X we
denote the set {y | (y, x) ∈ F ∧x ∈ X}, X• = {y | (x, y) ∈ F ∧x ∈ X}, and ◦X = {y | (y, x) ∈
I ∧ x ∈ X}. Graphically, the places are drawn as circles, transitions as rectangles, elements
of flow relation as arcs, and elements of inhibition relation as arcs with small circles as
arrowheads. Marked places are depicted by drawing small dot called token inside.

We say that a step S = {t1, t2, . . . , tn} is enabled in marking M if •S ⊆M , S•∩M = ∅,
◦S ∩M = ∅ and •ti ∩

•tj = ∅ for any i 6= j. The execution of such a step S leads from the
marking M to the new marking M ′ = (M \ •S) ∪ S•.

An ENI-system with empty inhibition relation, often considered under the sequential
rather than step semantics, is called an elementary net system (or EN − system).

ALGEBRAIC STRUCTURE OF COMBINED TRACES 5

Example 2.1. Consider a system N = (P, T, F, I,M0) depicted below.

p1

p2

p8

a

p3

c

p4 p5 p6 p7

d

b

The set of places has eight elements (from p1 to p8), the set of transitions has four elements
(T = {a, b, c, d}). In the initial marking, three places are marked – (p1, p6, p8). Therefore,
seven steps – including (a), (d) and (ad) – are enabled. Note that after executing transition
d, transition a remains enabled, however, this does not hold in the opposite direction, i.e.
after executing transition a there is a token in place p3 and transition d is no more enabled.

2.2. Traces. In this section we recall well-known notion of traces (see [DR95, Maz77,
Mik08]). Traces are an abstract model describing causal relationships between executed
actions in, for example EN-systems. They capture independence, hence the possibility to
be executed in any order (and also together) for some actions. Structurally, pairs of actions
with disjoint sets of neighbouring places are in the independence relation.

A concurrent alphabet is a pair Ψ = (Σ, ind), where Σ is an alphabet and ind ⊆ Σ×Σ is
an irreflexive and symmetric independence relation. The corresponding dependence relation
is given by dep = (Σ× Σ) \ ind .

A concurrent alphabet Ψ defines an equivalence relation ≡Σ
Ψ identifying words which

differ only by the ordering of independent actions. Two words, w, v ∈ Σ∗, satisfy w ≡Σ
Ψ v if

there exists a finite sequence of commutations of adjacent independent actions transforming
w into v. More precisely, ≡Σ

Ψ is a binary relation over Σ∗ which is the reflexive and transitive
closure of the relation ∼Σ

Ψ such that w ∼Σ
Ψ v if there are u, z ∈ Σ∗ and (a, b) ∈ ind satisfying

w = uabz and v = ubaz.
Equivalence classes of ≡Σ

Ψ are called (Mazurkiewicz) traces and the trace containing a
given word w is denoted by [w]. The set of all traces over Ψ is denoted by Σ∗/≡Σ

Ψ
, and the

pair (Σ∗/≡Σ
Ψ
, ◦) is a (trace) monoid, where τ ◦τ ′ = [w ◦w′], for any words w ∈ τ and w′ ∈ τ ′,

is the concatenation operation for traces. Note that trace concatenation is well-defined as
[w ◦w′] = [v ◦v′], for all w, v ∈ τ and w′, v′ ∈ τ ′. Similarly, for every trace τ = [w] and every
action a ∈ Σ, we can define

alph(τ) = alph(w) #a(τ) = #a(w).

Projections onto unary and binary dependent subalphabets (i.e. {a, b} ⊆ Σ such that
(a, b) ∈ dep) are invariants for traces (see [Mik08]). It is possible to formulate the trace
equivalence in terms of projections. Two words u,w ∈ Σ∗ are in relation ≡Σ

Ψ if and only if

∀(a,b)∈dep Πa,b(u) = Πa,b(w).

Following [Mik08], we define the projection representation of τ as a function Πτ : dep → Σ∗,
where Πτ (a, b) = Πa,b(τ).

6 Ł. MIKULSKI

Example 2.2. Consider a concurrent alphabet Ψ with four actions Σ = {a, b, c, d} together
with a dependence relation dep given by:

a

dep

b

cd

or, equivalently,

an independence relation
a

ind

b

cd

Then w = abbaacd ≡Σ
Ψ abbcaad.

The projection representation of a trace τ = [w] is

Πa,a(τ) = aaa Πb,b(τ) = bb Πc,c(τ) = c Πd,d(τ) = d
Πa,b(τ) = abbaa Πa,d(τ) = aaad Πb,c(τ) = bbc Πc,d(τ) = cd

A word w ∈ Σ∗ is in Foata canonical form (see [DM97]) w.r.t. the dependence relation
dep and a lexicographical order ≤ on Σ, if w = w1 . . . wn (n ≥ 0), where each wi is a
nonempty word such that:

• alph(wi) is pairwise independent and wi minimal w.r.t. lexicographical order ≤ among
[wi]
• for each i > 1 and action a occurring in wi, there exists action b occurring in wi−1 such

that (a, b) ∈ dep.

Another canonical (normal) form of a trace that one may consider is the lexicographical
canonical form (see also [DM97]). It is based only on the lexicographical order and is de-
fined as the least representative of a trace with respect to the lexicographical ordering. The
intuition behind the Foata canonical form is that it groups actions into maximally concur-
rent steps, while the lexicographical canonical form is very useful in some combinatorial
approaches (see [MPS11]). Each trace contains exactly one sequence in the Foata canonical
form, and exactly one sequence in the lexicographical canonical form. It may happen that
the two versions of canonical form coincide.

2.3. Step Traces. Let us lift the notion of traces from the sequential semantics discussed
above to the step semantics. Instead of identifying sequences of actions over alphabet Σ, we
will identify sequences of sets of actions, called steps. We demand that a step should consist
of mutually independent actions only.

For a given concurrent alphabet Ψ = (Σ, ind) we define a set SΨ of all nonempty subsets
A ⊆ Σ such that for all a, b ∈ A we have a 6= b⇒ (a, b) ∈ ind . If the concurrent alphabet Ψ
is clear from the context, we would write S instead of SΨ. To avoid confusion with the well-
established operation of concatenating sets in formal languages theory, we follow Diekert
([DM97]) and denote a step containing actions a and b by (ab) rather then {a, b}, etc. Finite
sequences in S∗, including the empty one λ = (ǫ), are called step sequences.

We now lift a number of notions and notations introduced for words to the level of step
sequences. In what follows, Ψ = (Σ, ind) is a fixed concurrent alphabet. Let w = A1 . . . An

and v = B1 . . . Bm be two step sequences. Then w ◦ v = wv = A1 . . . AnB1 . . . Bm is
the concatenation of w and v. The alphabet alph(w) of w comprises all actions occurring

ALGEBRAIC STRUCTURE OF COMBINED TRACES 7

within w, and #a(w) is the number of occurrences of an action a within w. Moreover, we
define the step alphabet Alph(w) ⊆ S of a step sequence w as the set of all steps occurring
in w.

Both independence and dependence relations may be extended to the case of steps. Two
steps A,B ∈ S are independent if and only if A × B ⊆ ind , otherwise they are dependent.
We not only allow to commute, but also to join/split pairs of independent steps. In fact, the
commutation of two independent steps may be composed as two join/split operations. More
precisely, ≡S

Ψ is a binary relation over S∗ which is the reflexive, symmetric and transitive

closure of the relation ∼S
Ψ such that w ∼S

Ψ v if there are u, z ∈ S∗ and A,B ∈ S satisfying
w = uABz, v = u(A∪B)z, and A×B ⊆ ind . Note that A∩B = ∅, since ind is irreflexive.
Equivalence classes of ≡S

Ψ are called step traces (see [Vog91]). The trace containing a step
sequence w is denoted by [w], while set of all step traces – by S∗/≡S

Ψ
. Step traces are a

conservative extension of sequential traces. To justify this statement we prove

Proposition 2.3. Let Ψ = (Σ, ind) be a concurrent alphabet, and w, v two step sequences
over Ψ. If w = uABz and v = uBAz, where u, z ∈ S∗ and A×B ⊆ ind then w ≡S

Ψ v.

Proof. Directly from the definition, both w and v are in the relation ∼S
Ψ with y = u(A∪B)z.

Since ≡S
Ψ is the reflexive, symmetric and transitive closure of ∼S

Ψ, we have w ≡S
Ψ y and

v ≡S
Ψ y, so also w ≡S

Ψ v.

We define two operations which help to move from step semantics into sequential se-
mantics and vice versa. Let A ∈ S be a step and ≤ be a total order on Σ. Using the relation
≤ we define min(A), the minimal representative of a step ∅ 6= A ∈ S as the minimal action
in A with respect to ≤. Note that min(∅) is not defined. We define the lexicographical
linearization of step A as

lex(A) =

{
ǫ for A = ∅

min(A)lex(A \min(A)) for A 6= ∅.

We extend the operation lex to step sequences and sets of step sequences in the usual way:

lex(A1A2 . . . An) = lex(A1)lex(A2) . . . lex(An),

lex(X) = {lex(w) | w ∈ X}.

As a reverse operation, we define a singletonization of an action a by sstep(a) = {a} and
extend it to the case of sequences by sstep(a1 . . . an) = sstep(a1) . . . sstep(an).

Since no two dependent actions may occur in the same step, we can easily lift the notion
of projections onto unary and binary dependent subalphabets to the case of step sequences
being representatives of step traces:

Πa,b(Aw) =





aΠa,b(w) for a ∈ A
bΠa,b(w) for b ∈ A
Πa,b(w) for {a, b} ∩A = ∅

and Πa,b(λ) = ǫ. Note that both actions a and b can not simultaneously be in A, since they
are dependent.

Proposition 2.4. Let Ψ = (Σ, ind) be a concurrent alphabet, and w, u ∈ S∗ two step
sequences over Ψ. Then w ≡S

Ψ u if and only if lex(w) ≡Σ
Ψ lex(u).

8 Ł. MIKULSKI

Proof. Since every action in sequential semantics can be treated as a singleton step in step se-
mantics, the implication lex(w) ≡Σ

Ψ lex(u)⇒ w ≡S
Ψ u follows directly from Proposition 2.3.

Therefore we need to prove that w ≡S
Ψ u⇒ lex(w) ≡Σ

Ψ lex(u).
Recalling the definition of step traces, it is sufficient to show that for A,B ∈ S such

that A × B ⊆ ind we have lex(A)lex(B) ≡Σ
Ψ lex(A ∪ B). We make use of the projection

formulation for sequential trace equivalence. Since A × B ⊆ ind we have A ∩ B = ∅.
Moreover A∪B is a step, hence for every dependent pair (a, b) we have Πa,b(A ∪B) empty
or equal to a single action (also in the degenerated case a = b).

Therefore for every (a, b) ∈ dep we have either

Πa,b(A ∪B) = Πa,b(A) when {a, b} ∩A 6= ∅ ∧ {a, b} ∩B = ∅,

or
Πa,b(A ∪B) = Πa,b(B) when {a, b} ∩B 6= ∅ ∧ {a, b} ∩A = ∅.

Hence Πa,b(A ∪B) = Πa,b(A)Πa,b(B) and lex(A)lex(B) ≡Σ
Ψ lex(A ∪B).

Proposition 2.5. Let w be a step sequence over a concurrent alphabet Ψ. Then the sequences
of singletons are fixpoints of the function sstep ◦ lex, i.e.

sstep ◦ lex(w) = w ⇐⇒ ∀A∈Alph(w) |A| = 1.

Proof.
=⇒:
Let w ∈ S∗ and A ∈ Alph(w) be such that |A| > 1. Without loss of generality we may
assume that A is the first step in w. Then

lex(w) = lex(Aw′) = lex(A)lex(w′) = min(A)lex(A \min(A))lex(w′),

hence
sstep ◦ lex(w) = sstep(min(A))sstep ◦ lex((A \min(A))w′).

As a result we get that the first step in sstep◦ lex(w) is a singleton, which is in contradiction
with the assumption |A| > 1. Hence ∀A∈Alph(w) |A| = 1.

⇐=:
The second implication is straightforward, since |A| = 1 implies A = {a} and a = min(A),
so lex(A) = a and sstep ◦ lex(A) = sstep(a) = {a} = A. Let w = A1 . . . An. Directly from
the definitions

sstep ◦ lex(w) = sstep ◦ lex(A1) . . . sstep ◦ lex(An) = A1 . . . An = w.

Proposition 2.6. Let u be a sequence over a concurrent alphabet Ψ. Then lex◦sstep(u) = u.

Proof. Let u = a1 . . . an and Ai = {ai}. Analogously to the proof of Proposition 2.5, we
have ai = lex(Ai) and sstep(ai) = Ai, so

lex ◦ sstep(u) = lex ◦ sstep(a1 . . . an) = lex(sstep(a1) . . . sstep(an))

= lex(A1 . . . An) = lex(A1) . . . lex(An) = a1 . . . an = u.

ALGEBRAIC STRUCTURE OF COMBINED TRACES 9

The pair (S∗/≡S

Ψ
, ◦) is a (step trace) monoid, where τ ◦ τ ′ = [w ◦w′], for any step sequences

w ∈ τ and w′ ∈ τ ′. Step trace concatenation is well-defined as [w ◦ w′] = [v ◦ v′], for all
w, v ∈ τ and w′, v′ ∈ τ ′. A step trace τ is a prefix of a step trace τ ′ if there is a step trace
τ ′′ such that τ ◦ τ ′′ = τ ′. As in the case of sequential traces, for every step trace τ and every
a ∈ Σ, we can define alph(τ) = alph(w) and #a(τ) = #a(w), where w is any step sequence
belonging to τ . The situation with the step alphabet, as it is not an invariant of a step
trace, is a bit more complex: we define Alph(τ) =

⋃
w∈τ Alph(w).

Theorem 2.7. Let Ψ be a concurrent alphabet, and w, u ∈ S∗. Then w ≡S
Ψ u if and only if

∀(a,b)∈dep Πa,b(w) = Πa,b(u).

Proof. The proof follows directly from Proposition 2.4 and the projection based definition
of trace equivalence (in sequential semantics).

Next, we give the canonical (normal) form of a step trace which essentially captures a
greedy, maximally concurrent, execution of the actions occurring in the step trace conforming
to the independence relations. A step sequence w = A1 . . . An ∈ S∗ is in Foata canonical
form if, for each i ≤ n, whenever Av ≡S

Ψ Ai . . . An for some A ∈ S and v ∈ S∗, then A ⊆ Ai.
One can see that all suffixes and all prefixes of a step sequence in Foata canonical form are
also in Foata canonical form, and that each step trace comprises a unique step sequence in
Foata canonical form. Note that the following statement holds:

Proposition 2.8. Let Ψ be a concurrent alphabet. A step sequence w = A1 . . . An ∈ S∗ is
in Foata canonical form if and only if for every i < n, there is no ∅ 6= A ⊆ Ai+1 such that
Ai ×A ⊆ ind .
Proof.
=⇒:
Let w = A1 . . . An be in Foata canonical form. Suppose that there are i < n and ∅ 6= A ⊆ Ai

such that A×Ai ⊆ ind . Then, since for every Ak we have Ak ×Ak ⊆ (ind ∪ I),

AiAi+1 . . . An ≡
S
Ψ AiA(Ai+1 \ A)Ai+2 . . . An ≡

S
Ψ (Ai ∪A)(Ai+1 \ A)Ai+2 . . . An,

and by A 6= ∅ we obtain that w is not in Foata canonical form. Hence there are no such
i < n and A ⊆ Ai+1.

⇐=:
Let w = A1 . . . An and for every i < n, there is no ∅ 6= A ⊆ Ai+1 such that Ai × A ⊆ ind .
Assume moreover that Av ≡S

Ψ Ai . . . An and let B = Ai \ A. Suppose that B is not empty
and let j be the least index such that B ∩Aj 6= ∅. By Theorem 2.7 not only such j exist,
but also we get that B × Ak ⊆ ind for every i < k < j. Hence B ∩ Aj is a nonempty
step contained in Aj and (B ∩ Aj) × Aj−1 ⊆ ind , which gives a contradiction with the
assumptions, and so B has to be empty, which ends the proof.

We can also distinguish one of the representatives of τ , built from singletons. Note that
such step sequences may be considered as sequences over Σ and compared using lexicograph-
ical order ≤. Similarly to the case of sequential traces, we call the least (with respect to the
order ≤) singleton based representative of a step trace τ its lexicographical canonical form.

Canonical forms of sequential and step traces connect those two worlds. More precisely,
the following hold:

10 Ł. MIKULSKI

Theorem 2.9. Let Ψ = (Σ, ind) be a concurrent alphabet. Then a step sequence w is in
lexicographical canonical form if and only if all A ∈ Alph(w) are singletons and the sequence
lex(w) is in lexicographical canonical form.

Proof. According to Proposition 2.5, it is only an equivalent reformulation of the definition.

Theorem 2.10. Let Ψ = (Σ, ind) be a concurrent alphabet. If a step sequence w =
A1A2 . . . Ak is in Foata canonical form then the sequence u = lex(w) is in Foata canon-
ical form.

Proof. We have to prove that sequences lex(A1), . . . , lex(Ak) satisfy the conditions from the
definition of Foata canonical form in the case of sequential trace. The elements of every
Ai are pairwise independent since Ai is a step. Let us suppose that there exist 1 < i ≤ k
and a ∈ Ai such that a is independent with every action b from Ai−1. Let A = {a}. Then
A 6= ∅, A ⊆ Ai, and Ai−1 × A ⊆ ind . From the definition of Foata canonical form in the
case of step traces we have that w is not in Foata canonical form. Hence, u is indeed in
Foata canonical form.

Theorem 2.11. Let Ψ = (Σ, ind) be a concurrent alphabet. If a sequence u = a1a2 . . . an is
in Foata canonical form then there exists a step sequence w = A1A2 . . . Ak in Foata canonical
form such that u = lex(w).

Proof. From the definition of Foata canonical form, we know that there exist sequences
u1, . . . , uk such that the elements of alph(ui) are pairwise independent for every 0 < i ≤ k.
Hence, for every 0 < i ≤ k we have that alph(wi) is a step over Ψ. Let Ai = alph(wi).
Suppose that w is not in Foata canonical form. Then, there exist nonempty A ∈ S and
0 < i < k such that A ⊆ Ai+1 and Ai × A ⊆ ind . Let a ∈ A. Since Ai × A ⊆ ind there is
no b ∈ A dependent with a. Hence u is not in Foata canonical form. This contradicts the
assumptions and proves the theorem.

We conclude this subsection by formulating and proving a result that establishes a
relationship between two semantics in which we can consider traces:

Theorem 2.12. Let σ ∈ Σ∗/≡Σ
Ψ

be a trace (in sequential semantics). Then there exists a

unique step trace τ such that lex(τ) = σ.

Proof. Theorems 2.10 and 2.11 allow us to associate sequential trace σ with a trace τ using
their Foata canonical forms.

Let w be a lexicographical canonical form of τ . By Theorems 2.9 and 2.7, and defini-
tion of sequential traces based on projections, we get that lex(w) ∈ σ and lexicographical
canonical forms of σ and τ also overlaps. By Proposition 2.4 we conclude that lex(τ) ⊆ σ.

Let X = {sstep(u) | u ∈ σ}. By Propositions 2.6 and 2.4 we get that X ⊆ τ and
lex(X) = σ. Hence σ = lex(X) ⊆ lex(τ) which ends the proof.

2.4. Comtraces. Whereas traces are satisfactory to describe the concurrent behaviour of
EN-systems, they are not sufficient to capture the behaviour of systems with inhibitor arcs.
To deal with such systems, we recall the notion of combined traces (see [JK95]).

A comtrace alphabet is a triple Θ = (Σ, sim , ser), where Σ is an arbitrary alphabet and
ser ⊆ sim ⊆ Σ × Σ are two relations, respectively called serialisability and simultaneity ; it

ALGEBRAIC STRUCTURE OF COMBINED TRACES 11

is assumed that sim is irreflexive and symmetric. Intuitively, if (a, b) ∈ sim then a and b
may occur simultaneously, whereas (a, b) ∈ ser means that in such a case a may also occur
before b (with both executions being equivalent). The set of all (potential) steps over Θ, or
step alphabet, is then defined as the set SΘ comprising all nonempty sets of actions A ⊆ Σ
such that (a, b) ∈ sim, for all distinct a, b ∈ A. If the comtrace alphabet Θ is clear from the
context, we would write S instead of SΘ.

The comtrace congruence over Θ, denoted by ≡Θ, is the reflexive, symmetric and transi-
tive closure of the relation ∼Θ⊆ S∗×S∗ such that w ∼Θ v if there are u, z ∈ S∗ and A,B ∈ S

satisfying w = uABz, v = u(A ∪ B)z and A × B ⊆ ser . Note that A ∩ B = ∅ as ser is
irreflexive.

Equivalence classes of the relation ≡Θ are called comtraces (see [JKK11]), and the
comtrace containing a given step sequence w is denoted by [w]. The set of all comtraces is
denoted by S∗/≡Θ

, and the pair (S∗/≡Θ
, ◦) is a (comtrace) monoid, where τ ◦ τ ′ = [w ◦ w′],

for any step sequences w ∈ τ and w′ ∈ τ ′. Comtrace concatenation is well-defined as
[w ◦ w′] = [v ◦ v′], for all w, v ∈ τ and w′, v′ ∈ τ ′. A comtrace τ is a prefix of a comtrace
τ ′ if there is a comtrace τ ′′ such that τ ◦ τ ′′ = τ ′. As in the case of step traces, for every
comtrace τ and every a ∈ Σ, we can define alph(τ) = alph(w) and #a(τ) = #a(w), where
w is any step sequence belonging to τ . Moreover, Alph(τ) =

⋃
w∈τ Alph(w).

Next, we give the canonical form of a comtrace which essentially captures a greedy,
maximally concurrent, execution of the actions occurring in the comtrace conforming to the
simultaneity and serialisability relations. A step sequence w = A1 . . . An ∈ S∗ is in Foata
canonical form if, for each i ≤ n, whenever Av ≡Θ Ai . . . Ak for some A ∈ S and v ∈ S∗,
then A ⊆ Ai. This canonical form of a comtrace is extensively discussed in [JL11]. One
can see that all suffixes and all prefixes of step sequence in Foata canonical form are also
in Foata canonical form, and that each comtrace comprises a unique step sequence in Foata
canonical form.

Note that an alternative (equivalent) definition of normal form requires that, for every
i < k, there is no ∅ 6= A ⊆ Ai+1 such that Ai×A ⊆ ser and A×(Ai+1\A) ⊆ ser . Moreover,
in the cases of sequential and step traces we define two canonical forms. The first is, as in
the case of comtraces, Foata canonical form, while the latter is called lexicographical. Both
of those canonical forms prove to be very elegant and useful theoretical tool (as an example
see prove of Theorem 2.12). In the next section we define the lexicographical canonical form
of a comtrace. It is one of the main notions introduced and utilised in this paper. But
previously, let us discuss in detail direct relationships between atomic actions.

2.5. Relations between actions. In our discussion, we use a number of relations capturing
semantically meaningful relationships between individual actions (see also [MK11]):

• Dependence dep = (Σ× Σ) \ sim, and independence ind = ser ∩ ser−1.
Both relations have their counterparts in trace theory, and we denote them in the same
way. If two actions are dependent then they never occur in a common step. Two actions are
independent if they can be executed in any order as well as simultaneously (as ser ⊆ sim).
• Semi-independence sin = sim \ ser .

In contrast to the situation found in traces, dependence and independence do not describe
all possible relationships between individual actions in comtraces. The remaining ones are

12 Ł. MIKULSKI

called, due to the possibility of occurring together without being fully independent, semi-
independent actions. Semi-independent actions may be further divided into symmetric
and antisymmetric parts:
− Strong simultaneity ssm = sim \ (ser ∪ ser−1) = sin \ ser−1.

If two actions are strongly simultaneous then may occur simultaneously but cannot
be serialised at all. This means that two occurrences of strongly simultaneous ac-
tions which appear together in a step sequence w would appear together in every step
sequence belonging to the comtrace [w].

− Weak dependence wdp = ser−1 \ ser = sin \ sin−1.
Two actions are weakly dependent if they can be serialised only in one way. This
means that for any two actions (a, b) ∈ wdp, if their occurrences appear in the order
‘a followed by b’ then they behave like completely dependent actions, while appearing
in the order ‘b followed by a’ allows one to equivalently execute (if there are no other
obstacles) a step (ab).

The main motivation to define all those classes was to capture the essence of the interplay
between single atomic elements of concurrent systems modelled using comtraces. As a result
we achieve the projection representation defined later.

Similarly to the case of simultaneity and serialisability, each of proposed relations can
be described semantically by specific relationships between pre-sets, post-sets and inh-sets
of pairs of actions. Note that if the set of neighbouring places of two actions overlaps, then
those places are automatically considered as dependent (like in the case of traces and EN-
systems). The main role in the further partition is played by the extended neighbourhoods.
To capture dependence we have to add (to the overlapping of strict neighbourhoods) the
situation when one action has an input place that is simultaneously an inhibitor for the
other.

The intersections of post-sets and inh-sets of two different actions are significant if they
are not dependent. Namely, if they are totally disjoint, which means that their extended
neighbourhoods are disjoint, those two actions are independent. Remaining situations corre-
spond to the cases when two action have disjoint neighbourhoods as well as disjoint pre-sets
and inh-sets, but still overlapping extended neighbourhoods and are captured by the semi-
independence relation.

Note that in the favourable circumstances both of them might be executable (like in the
case of independence), but the execution of one of them may disable the execution of the
other. If (◦b∩ a•) 6= ∅∧ (◦a∩ b•) = ∅ then after executing b we can immediately execute
a, but not vice versa. While if both ◦b∩ a• and ◦a∩ b• are nonempty then we cannot split
simultaneous execution of a and b. The following table gives a straightforward description
of all seven relations for ENI-systems.

ALGEBRAIC STRUCTURE OF COMBINED TRACES 13

simultaneity (a, b) ∈ sim •a• ∩ •b• = ∅ ∧ (◦a ∩ •b) ∪ (◦b ∩ •a) = ∅

serialisability (a, b) ∈ ser (a, b) ∈ sim ∧ a• ∩ (•b ∪ ◦b) = ∅

dependence (a, b) ∈ dep •a• ∩ •b• 6= ∅ ∨ (◦a ∩ •b) ∪ (◦b ∩ •a) 6= ∅

independence (a, b) ∈ ind (a, b) /∈ dep ∧ (◦a ∩ b•) ∪ (◦b ∩ a•) = ∅

semi-independence (a, b) ∈ sin (a, b) /∈ dep ∧ (◦b ∩ a•) 6= ∅

strong simultaneity (a, b) ∈ ssm (a, b) /∈ dep ∧ (◦b ∩ a•) 6= ∅ ∧ (◦a ∩ b•) 6= ∅

weak dependence (a, b) ∈ wdp (a, b) /∈ dep ∧ (◦b ∩ a•) 6= ∅ ∧ (◦a ∩ b•) = ∅

Example 2.13. Consider a comtrace alphabet Θ for ENI-system N from Example 2.1. The
simultaneity and serialisability relations are given by:

sim =
a b

cd

ser =
a b

cd

In the net N we have a pair of independent actions (a, b). Note that their extended neigh-
bourhoods are disjoint. The only pair of different and dependent actions is (b, d). The reason
for their dependency is the non-emptiness of their neighbourhoods. All the remaining pairs
of different actions are semi-independent. Only one of them, namely (a, c), is strongly si-
multaneous. Note that the post place of one of these actions is an inhibitor place of another,
forming in the net graph a special kind of cycle. Similar behaviour (post place which is
simultaneously inhibitor place), may be observed in the remaining cases, namely for pairs
(a, d), (d, c) and (c, b). However, we have there an asymmetric situation and those pairs of
actions are weakly dependent. The five derived relations on actions are as follows:

ind =
a b

cd

sin =
a b

cd

dep =
a b

cd

ssm =
a b

cd

wdp =
a b

cd

The combined trace of one of the possible executions in the net N is τ = {w, v, u, z}, where:

w = (d)(ab)

v = (d)(a)(b)

u = (ad)(b)

z = (d)(b)(a) .

Moreover, u is a step sequence in Foata canonical form.

14 Ł. MIKULSKI

3. Lexicographical canonical form

We extend the order on actions to the case of steps (sets of actions). Let A,B ∈ S be

two steps. If the size of A is smaller then the size of B then A≤̂B. If the sizes are equal,
A≤̂B if A = B or A 6= B and min(A \ B) ≤ min(B \ A). In this way, (S, ≤̂) becomes a
totally ordered set.

Using the order ≤̂ we can define lexicographical order on step sequences in the usual
way. The lexicographical canonical form of a comtrace τ , denoted by minlex(τ), is the least

(with respect to the lexicographical order ≤̂) step sequence contained in the comtrace. Note
that, in contrast to the Foata canonical form, the lexicographical canonical form captures
one of the most sequential executions of a comtrace. Hence the two canonical forms lie on
the opposite sides of the concurrent/sequential spectrum of behaviours. Note that the step
sequence v from Example 2.13 is in lexicographical canonical form (assuming a < b < c < d).

Theorem 3.1. For a given comtrace τ , its Foata canonical form is the ≤̂-greatest, and its
lexicographical canonical form is the ≤̂-least, step sequence contained in τ .

Proof. The lexicographical canonical form is the ≤̂-least step sequence contained in τ directly
from the definition. We need to prove that Foata canonical form is greater than any other
step sequence contained in τ .

Let u = A1 . . . An, v = B1 . . . Bm, u 6= v, u ≡Θ v, and u be in Foata canonical form.
Moreover, let i = min{k |k ≤ n ∧ Ak 6= Bk}. Note that such a number i exists, since u 6= v
and u ≡Θ v so one sequence cannot be a prefix of another.

We have A1 . . . Ak−1 = B1 . . . Bk−1, so directly form the definition of Foata canonical

form Bk 6= Ak ∧Bk ⊆ Ak. Since Bk≤̂Ak, we have Bk . . . Bm≤̂Ak . . . An, and v≤̂u.

3.1. Indivisible steps and sequences. The structure and semantics of relations sim and
ser mean that some actions have to appear simultaneously in every step sequence contained
in a comtrace (in other word, they cannot be separated according to the comtrace con-
gruence). A very good example of such actions are those in the ssm relation. The strong
simultaneity, however, does not exhaust all situations when actions are “glued” together in a
permanent manner. Such a behaviour was used in [MK11] to form so called folded actions.
It is also worth to observe that the notion of indivisible steps was discussed, in the case of
step traces with auto-concurrency, in [Vog91]. In this section, we discuss the phenomenon
of the indivisibility (in the case of comtraces) in depth.

Let us consider a step A ∈ S and a relation ≡A⊆ A × A, such that, for all a, b ∈ A,
we have a ≡A b if (a, b) ∈ (sin |A)

⊛. Intuitively, the relation ≡A joins actions that can be
executed simultaneously, but cannot be executed in a sequential way (see Example 3.2).
Note that, for arbitrary step A, the relation ≡A is an equivalence relation.

We say that a step A ∈ S is indivisible if ∀a,b∈A a ≡A b. The set of all indivisible steps

is denoted by Ŝ. By indiv(τ) we denote the set of all step sequences contained in a comtrace
τ and built with indivisible steps only.

Example 3.2. Let us recall the comtrace alphabet from Example 2.13 and the relations
sim and sin, which are crucial in determining indivisible steps.

ALGEBRAIC STRUCTURE OF COMBINED TRACES 15

sim =
a b

cd

sin =
a b

cd

The set of all possible steps is S = {(a), (b), (c), (d), (ab), (ac), (ad), (bc), (cd), (abc), (acd)},

while the set of all indivisible steps is Ŝ = {(a), (b), (c), (d), (ac), (acd)}. Note that step
A = (abc) is divided by the relation ≡A into two indivisible steps B = (b) and C = (ac) and
step B occurs not later than step C, while step D = (ab) is divided by the relation ≡D into
two, completely independent, indivisible steps (a) and (b).

Moreover, there are only two sequences of indivisible steps contained in the comtrace τ
which is defined in Example 2.13. These two sequences are v = (d)(a)(b) and z = (d)(b)(a).

Intuitively, we can treat the indivisible step sequences belonging to indiv(τ) as classical

sequences over the alphabet Ŝ. Hence we define two complementary relations over this

alphabet, the independence relation înd and the dependence relation d̂ep. We say that two
indivisible steps A and B are independent if A × B ⊆ ind = ser ∩ ser−1; otherwise two
indivisible steps are dependent.

Proposition 3.3. All steps contained in the lexicographical canonical form of a comtrace
are indivisible (minlex(τ) ∈ indiv(τ)).

Proof. Suppose, to the contrary, that minlex(τ) = uAv contains a non-indivisible step A.
We conclude from Lemma 3.4 that for two disjoint steps B and C we have a step sequence
uBCv ∈ τ which is different from the step sequence minlex(τ). Since B ⊆ A and A 6= B

we have uBCv ≤̂ uAv so we found a step sequence contained in τ that is lexicographically
smaller than minlex(τ), which contradicts our assumption. Hence all steps contained in
minlex(τ) are indivisible.

Recall the lex operator defined in Section 2.3. It allows us to translate a step sequence
to a sequence of actions, and was very helpful in dealing with step traces. In the case
of comtraces, however, it has rather narrower application. Therefore, we define the split
operator that translates arbitrary step sequences to step sequences of indivisible steps as

̂: S∗ → Ŝ∗ as
̂(A1 . . . An) = Â1 . . . Ân = minlex(A1) . . . minlex(An).

The following facts justify an observation that the split operator does not lead beyond the
comtrace, see Proposition 3.7.

Lemma 3.4. Let A ∈ S \ Ŝ be a step that is not indivisible. Then there exist two steps, B
and C, such that A ∼Θ BC. Moreover, A/≡A

= B/≡B
∪ C/≡C

.

Proof. Since A is not indivisible, the relation ≡A divides A into at least two equivalence
classes. In the following proof we choose an indivisible step, to play a role of B. However,
at first we separate a special subset of A, denoted by D. One can think about D as a set of
elements from A, which form a minimal layer in the graph of the relation (sin |A)

∗.
Let D be the set of all actions b ∈ A such that, ∀a∈A (b, a) ∈ (sin |A)

∗ ⇒ a ∈ [b]≡A
.

Suppose that D is empty. Let us take any b1 ∈ A. Then, by D = ∅, there exists b2 ∈ A
such that b2 /∈ [b1]≡A

and (b1, b2) ∈ (sin|A)
∗. Continuing in this way, we can construct an

infinite sequence of actions bi ∈ A such that, for all i, bi+1 /∈ [b1]≡A
∧ (bi, bi+1) ∈ (sin |A)

∗.

16 Ł. MIKULSKI

Since A is finite, the elements contained in this sequence have to repeat. Let bn = bm and
n < m. Since (sin |A)

∗ is transitive we have (bn+1, bn) ∈ (sin|A)
∗ and (bm, bn+1) ∈ (sin |A)

∗,
so bn+1 ∈ [bn]≡A

which contradicts the assumption. Hence D is not empty.
Let d be an arbitrary element from D and B = [d]≡A

. A is not indivisible, hence A 6= B.
Moreover, directly from the construction of the set D, B ⊆ D. Let b ∈ B and a ∈ A \ B.
From the definition of D we have that (b, a) /∈ (sin|A)

∗, so (b, a) /∈ wdp and (b, a) /∈ ssm .
We also have (a, b) /∈ dep since a and b are both contained in A. This gives

∀a∈A\B∀b∈B (a, b) ∈ wdp ∨ (a, b) ∈ ind .

Hence
∀a∈A\B∀b∈B (b, a) ∈ ser

and finally A ∼Θ B(A \B).

It remains to be proven that A/≡A
= B/≡B

∪ C/≡C
. According to the definition of the

comtrace equivalence, A ∼Θ BC implies that B × C ⊆ ser . It means that for every pair
of actions b ∈ B and c ∈ C we have (b, c) /∈ sin . Hence for every a, b ∈ A we have
a ≡A b ∧ a ∈ B ⇒ b ∈ B and a ≡A b ∧ a ∈ C ⇒ b ∈ C.

It means that the graphs of the relation sin restricted to steps B and C not only are
vertex induced parts of the graph of the relation sin restricted to the step A, but also are a
division of this graph (i.e., the union of strongly connected components of graphs sin|B and
sin|C is equal to the set of strongly connected components of the graph sin|A), which end
the proof.

Proposition 3.5. Let τ be a comtrace over Θ and A ∈ Alph(τ). Then

A/≡A
⊆ Alph(τ).

Proof. Since A ∈ Alph(τ), there exists w, u ∈ S such that wAu ∈ τ . Applying Lemma 3.4 we
can construct the step sequence A1 . . . An composed of indivisible steps only and equivalent
to step sequence consisting of A only. Moreover, A/≡A

=
⋃

i=1...nAi and wA1 . . . Anu ∈ τ .
As a result we get that Ai ∈ Alph(τ), hence A/≡A

⊆ Alph(τ).

Theorem 3.6. Let τ be a comtrace. The set indiv(τ) is a trace (with sequential semantic)

over the concurrent alphabet (Ŝ, d̂ep).

Proof. To prove the statement of the theorem it is sufficient to show two facts. Firstly, we

need to prove that relation înd is symmetric and irreflexive. Secondly, we need to argue that
by the repeated transposing of two subsequent and independent actions (in fact indivisible
steps) we can reach any of other elements of the set indiv(τ) and cannot go beyond this set.

We start from the first statement. By the definition of ser the relation ind = ser∩ser−1

is symmetric and irreflexive. Since two indivisible steps A and B are in relation înd if all

pairs of actions (a, b) ∈ A × B are independent, we conclude that the relation înd is also
symmetric and irreflexive.

Let w = uABv be a step sequence from indiv(τ) and (A,B) ∈ înd . By the definition

of the înd relation we have AB ∼Θ C and BA ∼Θ C, where C = A ∪ B. Therefore
uABv ≡Θ uBAv and the set indiv(τ) is equal to its own trace closure. The last needed
statement follows from Lemma 3.4 (about indivisibility of indivisible steps).

Let us suppose that there are two comtrace equivalent step sequences u and v belonging
to indiv(τ) that are not trace equivalent. Hence they differ in at least one projection to a

ALGEBRAIC STRUCTURE OF COMBINED TRACES 17

binary dependent subalphabet, so there are two occurrences of indivisible steps A and B

that appear in the two different orders and are dependent ((A,B) ∈ d̂ep). Let A precede
B in the step sequence u, and B precede A in the step sequence v. From the definition of
comtrace equivalence there exists a sequence of equivalent step sequences (wi)i=1...n such
that u = w1, wi ∼Θ wi+1, and wn = v. In this sequence there has to exist an element
wi where the considered occurrences of indivisible steps were for the last time in the same
order as in u (wi = w′

iXiYiw
′′
i and wi+1 = w′

i+1Ziw
′′
i+1 and A ⊆ Xi and B ⊆ Yi). Hence

A×B ⊆ ser . Moreover, there exists an element wj where the considered occurrences occur
for the first time after wi in the same order as in v (wj = w′

jZjw
′′
j and wj+1 = w′

j+1XjYjw
′′
j+1

and A ⊆ Xj and B ⊆ Yj). Hence also B × A ⊆ ser . Therefore (A,B) ∈ înd , which gives a
contradiction and completes the proof.

Proposition 3.7. Let [w] be a comtrace over Θ. Then

ŵ ∈ [w]

and
ŵ = w ⇔ w ∈ indiv(τ).

Proof. Let w = A1 . . . An. By the definition of the operator ,̂ we get

ŵ = minlex(A1) . . . minlex(An).

Since minlex(Ai) ≡Θ Ai we get ŵ ≡Θ w, so ŵ ∈ [w].

Since |minlex(Ai)| ≥ 1 and |minlex(Ai)| = 1 if and only if minlex(Ai) = (̂Ai) = Ai we
conclude that

ŵ = w ⇔ ∀i Âi = Ai.

By Lemma 3.4, (̂Ai) = Ai if and only if Ai is indivisible. Hence ŵ = w if and only if all Ai

are indivisible and
ŵ = w ⇔ w ∈ indiv(τ).

As an immediate corollary of Theorem 3.6 and Proposition 3.7, we can observe that

Corollary 3.8. There is a one to one correspondence between the comtraces over comtrace

alphabet Θ = (Σ, sim , ser) and traces over concurrent alphabet Ψ = (Ŝ, d̂ep) given by the
construction of the set of indivisible steps and dependence relation on them.

τ τ̂ τ ′

over
̂
−−→ over ←→ over

Θ Θ̂ Ψ

One can consider using the above correspondence to apply the methods of enumerating
all traces of a given size [MPS11] to enumerate comtraces of a given size.

18 Ł. MIKULSKI

4. Projection Representation of Comtraces

In the trace theory employing projections onto the cliques of the graph of dependence relation
(see also [Shi85]) turned out to be a very useful tool. We now extend this notion in the case of
the binary and unary cliques only (see also [Mik08]), to define the projection representation
of comtraces. In the case of traces, we have only two kinds of relationships between actions.
As independent actions may be executed in any order (or together in case of step semantics)
one can focus on the order implied by the dependence relation.

In the case of comtraces, the situation is more complicated. However, once more we can
ignore independent actions and store information about the other three types of relations
(dependency, weak dependency and strong simultaneity). Once more, it is sufficient to store
the information in the form of sequences. In the case of strong simultaneity, however, we
need to add a special symbol ⊥ that separates the situations of sequential and simultaneous
execution of pairs of actions being considered.

Let a, b ∈ Σ and (a, b) /∈ ind (possibly a = b). For each such pair we define the projection
function Π⊥

a,b : S
∗ → (Σ ∪ {⊥})∗ as follows. First, for a step A ∈ S we have

Π⊥
a,b(A) =





ǫ for {a, b} ∩A = ∅

a for a ∈ A ∧ b /∈ A
ba for {a, b} ⊆ A ∧ (a, b) ∈ wdp

ab for {a, b} ⊆ A ∧ (b, a) ∈ wdp

⊥ for {a, b} ⊆ A ∧ (a, b) ∈ ssm

Note that there is a straightforward symmetry, namely for all (a, b) /∈ ind the equation
Π⊥

a,b = Π⊥
b,a holds. Moreover, according to the definition, we have Π⊥

a,a(A) = ǫ if a /∈ A and

Π⊥
a,a(A) = a if a ∈ A. Then, for a step sequence w = A1A2 . . . An we have

Π⊥
a,b(w) = Π⊥

a,b(A1) ◦Π
⊥
a,b(A2) ◦ . . . ◦ Π

⊥
a,b(An).

Theorem 4.1. Let w, u be step sequences over a comtrace alphabet Θ = (S, sim, ser). Then
w ≡Θ u ⇔ ∀(a,b)/∈ind Π⊥

a,b(w) = Π⊥
a,b(u).

Proof. ⇒:
We first prove that

w ≡Θ u ⇒ ∀(a,b)/∈ind Π⊥
a,b(w) = Π⊥

a,b(u).

According to the definition of comtrace equivalence, it is sufficient to prove the statement in
the case of equivalent step sequences w = A and u = BC. Let a, b ∈ A. We consider all but
one of the possible relationships of these actions (the remaining case is that of independence).

Case 1: (a, b) ∈ dep.
Since actions a and b occur simultaneously in the step A, this is impossible.

Case 2: (a, b) ∈ ssm .
Since actions a and b are strongly simultaneous, Lemma 3.4 shows that they both have

to occur in step B or C. It means that

Π⊥
a,b(BC) = Π⊥

a,b(B)Π⊥
a,b(C) =⊥ ǫ = Π⊥

a,b(A)

or
Π⊥

a,b(BC) = Π⊥
a,b(B)Π⊥

a,b(C) = ǫ ⊥= Π⊥
a,b(A).

ALGEBRAIC STRUCTURE OF COMBINED TRACES 19

Case 3: (a, b) ∈ wdp.
Since B × C ⊆ ser , it is impossible that b ∈ C and a ∈ B. If they both belong to one

step, we have
Π⊥

a,b(BC) = Π⊥
a,b(B)Π⊥

a,b(C) = (ba)ǫ = Π⊥
a,b(A)

or
Π⊥

a,b(BC) = Π⊥
a,b(B)Π⊥

a,b(C) = ǫ(ba) = Π⊥
a,b(A)

while belonging to the different steps (namely b ∈ B and a ∈ C) gives

Π⊥
a,b(BC) = Π⊥

a,b(B)Π⊥
a,b(C) = ba = Π⊥

a,b(A),

which completes the first part of the proof.

⇐:
Now, let us assume that we have two step sequences u, v ∈ S∗ and

∀(a,b)/∈ind Π⊥
a,b(v) = Π⊥

a,b(u).

Without loss of generality we can assume that u = Au′ is in the lexicographical canonical
form and v consists of indivisible steps only. We claim that then there exist v′, v′′ ∈ S∗ such
that v = v′Av′′, no action occurring in A occurs in v′ and A× alph(v′) ⊆ ind .

Directly from the definition of the projection representation we see that all projections
onto the subalphabets containing actions from the indivisible step A start with the actions
contained in A. More precisely, if a, b ∈ A then Π⊥

a,b(u) starts with ab, ba or ⊥, depending

on the relation between a and b. If a ∈ A and b /∈ A however, Π⊥
a,b(u) starts with a single

action a.
Let v′ be the longest prefix of v such that alph(v′) ∩A = ∅ and v = v′Bv′′. Obviously,

all projections onto the subalphabets containing actions from the step A are equal for v and
Bv′′. Moreover, from the definition of the indivisible step, between every two actions a, b
contained in A there is a sequence of pairwise different actions a = a1, . . . , an = b contained
in A such that for every i < n we have (ai+1, ai) ∈ sin. It means that for every such a pair
of consecutive actions we have Π⊥

ai,ai+1
(B) = aiai+1 if (ai+1, ai) ∈ wdp or Π⊥

ai,ai+1
(B) =⊥

if (ai+1, ai) ∈ ssm. Nevertheless, if ai+1 is in B then also ai have to be in B. Otherwise
Π⊥

ai,ai+1
(B) would start with ai+1. This proves that, since A ∩ B 6= ∅, A ⊆ B. Using

similar arguments, we can see that since B is indivisible, no other action may occur in B
and A = B.

It remains to be shown that A× alph(v′) ⊆ ind . Let a ∈ A and c ∈ alph(v′). Clearly,
c /∈ A from the definition of sequence v′. In the step sequence v the action c appears before
action a so, if they are not independent, Π⊥

a,c(v) = Π⊥
a,c(u) starts with c. But a ∈ A and

c /∈ A, and so Π⊥
a,c(u) starts with a. This contradicts our assumption that a and c are not

independent and proves that v ≡Θ Av′v′′. Repeating the above reasoning, we obtain that u
is the lexicographical canonical form of v which ends the second part of the proof.

The projection representation of a comtrace τ is a function Π⊥
τ : (Σ×Σ)\ ind → (Σ∪{⊥})∗,

given by Π⊥
τ (a, b) = Π⊥

a,b(τ). Moreover, any function Π⊥ : (Σ × Σ) \ ind → (Σ ∪ {⊥})∗ is
called a projection set. Clearly, not every projection set is a projection representation of a
comtrace. In the next section, we give a procedure that decides whether a given projection
set is a projection representation of a comtrace. Moreover, if the answer is positive, the
procedure computes a representative of such a comtrace.

20 Ł. MIKULSKI

First, however, we provide the algorithm computing projection representation of a com-
trace. This algorithm comes directly from the definition. However, to say anything about
the time complexity of the algorithm, it is important to discuss the data structures which
might be used by this algorithm. At the beginning, let us consider the input. We get a com-
trace alphabet Θ which consists of the alphabet Σ of size k and two relations, sim and ser ,
of size at most k2 each. We also get a step sequence w which steps consist of n occurrences
of atomic actions (elements of Σ) all together. As a result, we obtain the set of at most k2

sequences (projections onto specified subalphabets).
We process the step sequence w step by step, which means that the algorithm is online

(i.e. during the computation we achieve correct results for each proper prefix of w). The
processing of a single step is done according to the definition of projections onto the pairs
in the specified relation. It is worth carrying out some preprocessing and, for every action,
compute the list of all subalphabets in which it may occur. By storing, for every computed
projection, the number of the step when it was most recently updated, we avoid problems
with the special cases of relations wdp and ssm (in these cases two rather than one action
may be added to one sequence while processing a single step).

Proposition 4.2. The procedure of computing Π⊥
τ from a step sequence w ∈ τ has the time

and memory complexity of O(nk).

Proof. The proof is straightforward. The algorithm is naturally divided into n stages grouped
by steps of input step sequence. In each stage we process a single action and add it to at
most k sequences updating at most k counters. Hence each stage can be done in the time
linearly proportional to the size of the alphabet. Therefore whole procedure has the time
complexity of O(nk).

Theorem 4.3. Testing comtrace equivalence can be done in the time complexity of O(nk).

Proof. Notice that the output of procedure discussed in Proposition 4.2 has also memory
complexity of O(nk). Hence for two step sequences we can compute their projection repre-
sentations and compare them sequence by sequence.

4.1. Reconstructing Step Sequence from Projection Set. The idea of constructing
a step sequence from a projection set is based on revealing the first possible step whose
projection representation would form a set of prefixes of a given projection set. At first, we
identify the set of all possible elements of such a step. We do it in two stages. We first
identify the set of conditionally possible actions, i.e. those actions whose first occurrences
are the first (or in particular situations the second) actions in all projections, where they
could appear. Note that we treat the special symbol ⊥ as a pair of proper actions, so its
occurrence means that both actions might be conditionally possible. After this identification,
we remove actions that cannot satisfy some of the necessary conditions. These conditions
are related to the cases when the considered action appears as the second action in some
sequences connected with the weak dependence relation or are verified positively because of
the special symbol ⊥.

As a result of the first stage, we obtain the set of all actions that may appear in the
first step of the constructed sequence. The second stage consists of dividing this set into
indivisible steps and combining those indivisible steps into one of the allowed steps. The
result is obtained by taking advantage of the weak dependence relation inside the set of

ALGEBRAIC STRUCTURE OF COMBINED TRACES 21

indivisible steps. It is similar to the ideas behind the proof of Lemma 3.4. Let us look into
the details of the proposed procedure.

Recall that by prefk (w) = a1 . . . ak we denote the k-prefix of w. Let Π⊥ be a projection
set. We say that an action a ∈ Σ is conditionally possible for projection set Π⊥ if and only
if for all b ∈ Σ the following implications are satisfied:

• (a, b) ∈ dep ⇒ pref1 (Π
⊥(a, b)) = a

• (b, a) ∈ wdp ⇒ pref1 (Π
⊥(a, b)) = a

• (a, b) ∈ wdp ⇒ pref1 (Π
⊥(a, b)) = a ∨ pref2 (Π

⊥(a, b)) = ba
• (a, b) ∈ ssm ⇒ pref1 (Π

⊥(a, b)) = a ∨ pref1 (Π
⊥(a, b)) =⊥

We denote all conditionally possible actions as cpa and define the relation cnd ⊆ Σ×Σ,
which describes the conditions that must be satisfied. Only in situations where

(a, b) ∈ wdp ∧ pref2 (Π
⊥(a, b)) = ba

or
(a, b) ∈ ssm ∧ pref1 (Π

⊥(a, b)) =⊥

we say that the existence of action b in the constructed step is a necessary condition for the
presence of action a in this step, which is denoted by (a, b) ∈ cnd.

We exclude conditionally possible actions with conditions impossible to satisfy to form
the set of possible actions. Any action a ∈ Σ that is not conditionally possible in Π⊥ is
impossible in Π⊥. Moreover, any action a conditionally possible under impossible condition
(i.e. (a, b) ∈ cnd and b is impossible) is also impossible. Formally, the set of impossible
actions for the projection function Π⊥ is the smallest set imp that satisfies the following
conditions:

• Σ \ cpa ⊆ imp
• b ∈ imp ∧ (a, b) ∈ cnd⇒ a ∈ imp

Let M(Π⊥) be the set of actions which are not impossible (which means that they are
possible) for projection set Π⊥. The next operation is to choose a subset of M(Π⊥) which
could be a first step of the reconstructed step sequence. To do so we take a sequential trace

over Ŝ, given by the step sequence M̂(Π⊥) (see Corollary 3.8). Note that for any a ∈M(Π⊥)

we have #a(M̂(Π⊥)) ≤ 1. We take any nonempty trace prefix B1 . . . Bn of step sequence

M̂(Π⊥) and set B =
⋃

i Bi as a requested step. The procedure just described is justified
by the following facts:

Proposition 4.4. Let Π⊥ be a projection set over a comtrace alphabet Θ and B ⊆M(Π⊥)
a set of actions constructed according to the procedure described above.

If b ∈ B and a ∈M(Π⊥) then

(b, a) ∈ sin∗ =⇒ [a]≡
M(Π⊥)

⊆ B.

Proof. Let M̂(Π⊥) = B1 . . . Bn, where all the Bm’s are indivisible. Since a, b ∈ M(Π⊥)
there exist 1 ≤ p, q ≤ n such that a ∈ Bp and b ∈ Bq. By Lemma 3.4 [a]≡

M(Π⊥)
= Bp. By

Corollary 3.8, M̂(Π⊥) forms a sequential trace over Ŝ. In the above procedure we use one of

trace prefixes of M̂(Π⊥), taking B as the union of all indivisible steps (actions of Ŝ) contained
in this prefix. Hence Bq ⊆ B. If p = q we have that Bp = Bq and Bp = [a]≡

M(Π⊥)
⊆ B. Let

22 Ł. MIKULSKI

us consider the case Bp 6= Bq. It is sufficient to prove that Bp occurs before Bq in all trace

prefixes of M̂(Π⊥).
Since (b, a) ∈ sin∗, there exists a sequence of actions b = c1 . . . ck = a such that

(ci, ci+1) ∈ sin for every 0 < i < k. Hence there exists a sequence of steps u = C1 . . . Ck

such that ci ∈ Ci. Clearly, Ci might be equal to Ci+1, for some 0 < i < k, but surely

C1 6= Ck. However, for distinct i, j we have (Ci, Cj) ∈ d̂ep. Moreover, each Ci is contained
in Alph(M(Π⊥)) and if Ci occurs before Cj in u, then it also has to occur before Cj in

M̂(Π⊥).

If Ci and Ci+1 are different, then during the division of the step M̂(Π⊥) (see Lemma 3.4)
they have to get to different parts (like steps B and C in Lemma 3.4). Since (ci, ci+1) ∈ sin,
it is impossible to have Ci ×Ci+1 ⊆ ser . This shows that their orders of occurring in u and

M̂(Π⊥) are reversed. Moreover, this remains true for every sequence over Ŝ equivalent to

M̂(Π⊥). Finally, we conclude that what we have shown applies not only to consecutive and
distinct steps of u but also to all its distinct elements, including C1 = Bq and Ck = Bp,
which end the proof.

Theorem 4.5. Let w = A1 . . . An be a step sequence, and Π⊥ be the projection representation
of [w]. Then

A1 ⊆M(Π⊥).

Proof. Since Π⊥ is the projection representation of [w], for all (a, b) /∈ ind we have

Π⊥(a, b) = Π⊥
a,b(w) = Π⊥

a,b(A1 . . . An).

Hence all actions contained in A1 are conditionally possible. Moreover, (a, b) ∈ cnd means
that (a, b) ∈ wdp or (a, b) ∈ ssm . In the first case, pref2 (Π

⊥(a, b)) = ba, so b ∈ A1. Similarly,
if (a, b) ∈ ssm then pref2 (Π

⊥(a, b)) =⊥, so b ∈ A1.
Since (a, b) ∈ cnd and a ∈ A1 implies b ∈ A1, and A1 ⊆ cpa, we conclude that

A1 ∩ imp = ∅. This proves that A1 ⊆M(Π⊥).

As a result, we can extract step B from Π⊥. The extraction function

extr : ((Σ× Σ \ ind)∗ → (Σ∪ ⊥)∗)× S→ ((Σ× Σ \ ind)∗ → (Σ∪ ⊥)∗)

for projection set Π⊥ and set B ⊆M(Π⊥) constructed using the procedure described above
is defined as:

extr(Π⊥, B)(a, b) =





Π⊥(a, b) for |{a, b} ∩B| = 0
suff2 (Π

⊥(a, b)) for |{a, b} ∩B| = 1
suff2 (Π

⊥(a, b)) for |{a, b} ∩B| = 2 ∧ (a, b) ∈ ssm

suff3 (Π
⊥(a, b)) for |{a, b} ∩B| = 2 ∧ (a, b) ∈ wdp ∪ wdp−1

Example 4.6. Let us consider the comtrace τ from Example 2.13.
The projection representation of τ (omitting projections to the unary subalphabets),

grouped by the types of relation between the elements of subalphabets on which we project
are:

dep : Π⊥
τ (b, d) = db Π⊥

τ (c, d) = d
ssm : Π⊥

τ (a, c) = a
wdp : Π⊥

τ (c, b) = b Π⊥
τ (d, a) = da

ALGEBRAIC STRUCTURE OF COMBINED TRACES 23

The set of conditionally possible actions for Π⊥
τ is {a, d}, while (a, d) ∈ cnd. Every condi-

tionally possible action is also possible, and so M(Π⊥
τ) = {a, d}. This gives the set of two

indivisible steps (a) and (d) and, finally, two steps that may appear as the first step of the
constructed sequence: (d) and (ad).

Theorem 4.7. Let Π⊥
τ be the projection representation of a comtrace τ , and M(Π⊥) be a

maximal possible step of Π⊥
τ . For every allowed set B ∈ S, we have

τ = B ◦ σ, where Π⊥
σ = extr(Π⊥

τ , B).

Proof. By the Theorem 4.1 it is sufficient to prove that Π⊥
τ = Π⊥

B◦σ . In other words, we

have to show that for all (a, b) /∈ ind , we have Π⊥
τ (a, b) = Π⊥

B(a, b) ◦ Π
⊥
σ (a, b).

The proof can be split in a natural way into three parts, depending on the type of relation
between the actions being considered. Let us examine the projections onto (a, b) ∈ dep. We
have Π⊥

B(a, b) that is equal to the first action of Π⊥
τ (a, b) if |B ∩ {a, b}| = 1, and to ǫ

otherwise. In both cases Π⊥
B(a, b) ◦ Π

⊥
σ (a, b) = Π⊥

τ (a, b).
Almost the same proof works for the remaining two cases, when (a, b) ∈ wdp or (a, b) ∈

ssm .

By suitably using the extraction function, we can compute any representative of a
comtrace τ . In particular, similarly to the case of canonical forms, we can do this using a
maximal or minimal strategy. In the maximal strategy, we always take the whole set M(Π⊥)
and, as a result, we obtain Foata canonical form of the original comtrace. In the minimal

strategy, we take the first step of the step sequence M̂(Π⊥) and obtain the lexicographical
canonical form.

The algorithm reconstructing a step sequence from a projection representation of a
comtrace follows the notions defined above. From the technical point of view, some concrete
decisions concerning data structures are worth noticing. The whole algorithm can be divided
into stages. In each stage we compute a set of allowed steps, choose one, and extract it
from the projection set. The procedure is repeated until a projection set Π⊥

i or computed
set M(Π⊥

i) become empty. In the first case, it returns a step sequence consisting of n
occurrences of actions. In the second case, the algorithm returns that an input is not a
projection representation of a comtrace.

A single stage starts from computing the set of conditionally possible actions and the
relation cnd describing the conditions. A good idea is to preprocess, for every action, a list
of pointers which helps to investigate only the projections related to this action. Doing so,
we can check conditional possibility in the time linearly dependent on the size of alphabet,
denoted by k. Simultaneously, we build the directed graph of conditions. In the time linearly
dependent on the number of arcs in this graph, we remove from the set of conditionally
possible actions all impossible ones (browsing, using DFS, all paths which begin in vertices
which are not conditionally possible).

In the next phase, we compute a vertex induced subgraph of the sin relation that
contains all possible actions and, once more using DFS, we compute a graph of its strongly
connected components (called condensation graph [Deo74]). The condensation graph is an

acyclic directed graph of the partial order of the sequential trace associated with M̂(Π⊥).
We choose an arbitrary upper set of the condensation graph, that corresponds to the trace

prefix of M̂(Π⊥). To obtain Foata canonical form, we take the maximal upper set by
choosing the whole condensation graph. If we wish to obtain the lexicographical canonical

24 Ł. MIKULSKI

form, we should choose the ≤̂-smallest allowed step. To compute it, we may consider only
the maximal elements of provided condensation graph. They correspond to the elements of

Ŝ which may be placed at the first positions in the sequential trace M̂(Π⊥).
In the last phase, we need to extract the chosen allowed step. We do it according to

the definition of the extraction operation. During this phase, we can once more use the
precomputed lists of pointers.

Proposition 4.8. Projection set Π⊥ is the projection representation of a comtrace if and
only if the procedure described above ends with the empty projection set.

Proof. We give the proof only for the case when the maximal strategy is used. Note that the
input data is finite and the procedure stops when the set M(Π⊥) is empty for the remaining
set of words. From Theorem 4.7 we deduce that if the remaining projection set is empty
then the input is the projection representation of the constructed comtrace. Suppose that
we have nonempty projection set Π⊥ that is a projection representation of comtrace τ and
empty set of allowed actions. Let us consider an arbitrary step sequence u = A1 . . . An

that is contained in τ , and an arbitrary action a contained in A1. Then, by the definition
of projection representation, the action a has to be possibly allowed. This proves that
A1 ⊆ cpa. Moreover, since in any projection before, or simultaneously with, a may occur
only other action from the step A1, if the existence of action b is a necessary condition for
the presence of action a (i.e. (a, b) ∈ cnd), then b is also an element of A1. Therefore,
none of the actions from step A1 is impossible, which contradicts the emptiness of the set
of allowed actions and ends the proof.

Theorem 4.9. The procedure of computing canonical forms from a projection representation
of a comtrace has the time complexity of O(nk2).

Proof. The procedure consist of at most n stages. In each part, we carry out some operations
on at most k2 lists and graph of size k2. All graph operations, including computing the
compensation graph and choosing minimal or maximal upper set are linear in the size of
graph. This gives an overall time complexity of O(nk2).

4.2. Traces as a subclass of comtraces. In Section 1 we defined EN-systems as a special
case of ENI-systems without inhibitors and with the sequential semantics. We also intro-
duced traces as a model of the causal behaviour of EN-systems. In this section, we show
what kind of comtraces are directly related to systems without inhibitors.

A comtrace alphabet Θ = (Σ, sim , ser) with the empty relation sin is called radical
comtrace alphabet. Moreover, comtraces over this alphabet are called radical comtraces. The
radicalism of such comtraces means that the actions may be only dependent or independent,
hence they behave exactly like step traces. Later in this section we discuss some properties
of this subclass.

Proposition 4.10. Let τ ∈ S∗ be a radical comtrace and w ∈ indiv(τ). Then each step of
w is a singleton.

Proof. The proof is straightforward. Notice that since the relation sin is empty, every action
a of every step A ∈ S forms an indivisible step. Hence all indivisible steps are singletons,
which ends the proof.

ALGEBRAIC STRUCTURE OF COMBINED TRACES 25

Corollary 4.11. Let Θ = (Σ, sim, ser) be a radical comtrace alphabet. Then

lex(Ŝ) = Σ.

Note that since the relation sin is empty and all steps are singletons, for all steps

A,B ∈ Ŝ we have (A,B) ∈ d̂ep if and only if (lex(A), lex(B)) ∈ dep.
Using Theorem 3.6 and Lemma 4.11 we can associate an alphabet of indivisible steps

Ŝ with Σ and radical comtrace τ over a comtrace alphabet Θ = (Σ, sim, ser) with a step
trace σ over the concurrent alphabet Ψ = (Σ, ind). We say that such a step trace σ is a
trace representation of a radical comtrace τ . The following facts show this correspondence
in details.

Proposition 4.12. Let Θ = (Σ, sim , ser) be a radical comtrace alphabet. Then a set A ⊆ Σ

is a step in Θ if and only if A is a step in Ψ = (Σ, d̂ep).

Proof. It is sufficient to prove that sim = ind .
Indeed, since sin is empty, we have sim \ser = ∅, hence by ser ⊆ sim we get sim = ser .

Recall that sim is symmetric, and so is ser . By the definition of relations in comtraces,

ind = ser ∩ ser−1 = ser = sim.

Theorem 4.13. Let τ be a radical comtrace and σ be its step trace representation. Then
Π⊥

τ = Πσ.

Proof. Let τ = [A1 . . . An] = σ. The relation sin is empty, so in the case of comtraces we
consider only projections to pair of actions that are dependent. As a result, we conclude that
the projections on the same pairs of actions are the same, no matter whether we consider
comtraces or step traces, Π⊥

a,b(τ) = Πa,b(σ) for every (a, b) ∈ dep, hence Π⊥
τ = Πσ.

Corollary 4.14. Let τ ∈ S∗ be a radical comtrace and σ be its step trace representation.
Their canonical forms (both lexicographical and Foata) are equal.

Corollary 4.15. The correspondence between comtraces over Θ = (Σ, sim , ser) and traces

over Ψ = (Ŝ, d̂ep) (see Corollary 3.8) collapses in case of radical comtraces to

τ σ
over ←→ over
Θ Ψ

,

where τ = σ as sets of step sequences.

5. Summary and future work

In this paper we presented a number of algebraic aspects of combined traces. Similar alge-
braic tools were successfully used in the study of the Mazurkiewicz traces, a simpler model
for capturing and analysing concurrent behaviours.

In particular, we defined lexicographical canonical form of a comtrace and its projection
representation. We gave two simple algorithms which generate these representations from
arbitrary step sequence. Those algorithms seem to have the potential to provide a base for
the development of solutions to some natural problems related to the comtrace theory, like

26 Ł. MIKULSKI

model verification [EH08, RSK13]. In particular, one can use them to design efficient meth-
ods for the enumeration of all the representatives of a fixed comtrace, and the enumeration
of all comtraces of a given size.

Another interesting direction of further studies would be the notion of recognisable
and rational languages of combined traces. The projection representation seems to be a
good starting point in this area; in particular, if one recalls Zielonka’s asynchronous au-
tomata [Zie87] for traces. Finally, the projection representation may find an application in
another important aspect of combined trace theory. A fair strategy of reconstructing step
sequences from a projection set might be useful as a starting point in the theory of infinite
combined traces.

Acknowledgments. I would like to thank Maciej Koutny and anonymous reviewers for
their constructive comments, which helped to improve this paper.
This research was supported by a fellowship funded by the “Enhancing Educational Potential
of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences”
Project POKL.04.01.01-00-081/10.

References

[CF69] P. Cartier and D. Foata. Problèmes Combinatoires de Commutation et Réarrangements, volume 85
of LNM. Springer, Berlin, 1969.

[Deo74] N. Deo. Graph theory with applications to engineering and computer science. Prentice-Hall, 1974.
[DM97] V. Diekert and Y. Métivier. Partial commutation and traces. In Handbook of Formal Languages,

volume 3, pages 457–533. Springer, 1997.
[DR95] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, Singapore, 1995.
[EH08] J. Esparza and K. Heljanko. Unfoldings: A Partial-Order Approach to Model Checking. Monographs

in Theoretical Computer Science. 2008.
[JK95] R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Computation, 123(1):1–16,

1995.
[JKK11] R. Janicki, J. Klein, and M. Koutny. Quotient monoids and concurrent behaviours. In Carlos

Martín-Vide, editor, Scientific Applications of Language Methods, chapter 6, pages 313–386. Im-
perial College Press, London, 2011.

[JL11] R. Janicki and D. T. M. Le. Modelling concurrency with comtraces and generalized comtraces.
Information and Computation, 209(11):1355–1389, 2011.

[Maz77] A. Mazurkiewicz. Concurrent program schemes and their interpretations. Daimi report pb-78,
Aarhus University, 1977.

[Mik08] Ł. Mikulski. Projection representation of Mazurkiewicz traces. Fundamenta Informaticae, 85:399–
408, 2008.

[MK11] Ł. Mikulski and M. Koutny. Hasse diagrams of combined traces. Technical report cs-tr-1301, New-
castle University, 2011.

[MPS11] Ł. Mikulski, M. Piątkowski, and S. Smyczyński. Algorithmics of posets generated by words over
partially commutative alphabets. In Jan Holub and Jan Žďárek, editors, Proceedings of the Prague
Stringology Conference 2011, pages 209–219, Czech Technical University in Prague, Czech Repub-
lic, 2011.

[RSK13] C. Rodríguez, S. Schwoon, and V. Khomenko. Contextual merged processes. In José-Manuel Colom
and Jörg Desel, editors, Proceedings of the 34th International Conference on Applications and
Theory of Petri Nets (ICATPN’13), volume 7927 of Lecture Notes in Computer Science, pages
29–48. Springer, 2013.

[Shi85] M. W. Shields. Concurrent machines. The Computer Journal, 28(5):449–465, 1985.
[Vog91] W. Vogler. A generalization of traces. ITA, 25:147–156, 1991.
[Zie87] W. Zielonka. Notes on finite asynchronous automata. RAIRO, 21:99–135, 1987.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Elementary Net Systems with Inhibitor Arcs
	2.2. Traces
	2.3. Step Traces
	2.4. Comtraces
	2.5. Relations between actions

	3. Lexicographical canonical form
	3.1. Indivisible steps and sequences

	4. Projection Representation of Comtraces
	4.1. Reconstructing Step Sequence from Projection Set
	4.2. Traces as a subclass of comtraces

	5. Summary and future work
	Acknowledgments

	References

