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Abstract. The detailed behaviour of a system is often represented as a labelled transition
system (LTS) and the abstract behaviour as a stuttering-insensitive semantic congruence.
Numerous congruences have been presented in the literature. On the other hand, there
have not been many results proving the absence of more congruences. This publication
fully analyses the linear-time (in a well-defined sense) region with respect to action prefix,
hiding, relational renaming, and parallel composition. It contains 40 congruences. They
are built from the alphabet, two kinds of traces, two kinds of divergence traces, five kinds
of failures, and four kinds of infinite traces. In the case of finite LTSs, infinite traces lose
their role and the number of congruences drops to 20. The publication concentrates on the
hardest and most novel part of the result, that is, proving the absence of more congruences.

1. Introduction

A sequential program can usually be thought of as computing a partial function from
the set of possible inputs to the set of possible outputs. Sometimes the program is not
assumed to be deterministic, in which case its meaning is not a partial function but a more
general relation. It is widely agreed that relations from inputs to outputs are usually the
most appropriate class of mathematical objects for modelling the semantics of sequential
programs at the abstract level. Two programs are equivalent if and only if they compute
the same relation.

The situation is entirely different with concurrent systems. Process algebra researchers
have introduced numerous abstract equivalence notions for comparing the behaviours of
systems or subsystems. Many are surveyed in [5]. It is desirable that an equivalence is a
congruence, that is, if a subsystem is replaced by an equivalent subsystem, then the system
as a whole remains equivalent. Whether or not an equivalence is a congruence depends on
the set of operators used in building systems from subsystems. Although the congruence
requirement narrows the range down, there is no consensus about which abstract congruence
is the most appropriate. Indeed, the abstract congruence that is best for some purpose is
not necessarily the best for another purpose.

Behaviours of (sub)systems are often represented as labelled transition systems, abbre-
viated LTS. The congruence property makes it possible to apply reductions to subsystems
or their LTSs, and thus construct a reduced LTS of the system as a whole that is equivalent
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to the full LTS of the system but often much smaller. This compositional approach is a key
ingredient in many advanced process-algebraic verification methods, see, e.g., [6, 9, 19].

We say that “∼=1” implies “∼=2”, if and only if L ∼=1 L
′ implies L ∼=2 L

′ for every L and
L′. We say that “∼=1” is weaker (or coarser) than “∼=2”, if and only if “∼=2” implies “∼=1”
but not vice versa. We say that “∼=” preserves a property, if and only if L ∼= L′ implies that
either none or both of L and L′ have the property. If, for instance, “∼=” preserves deadlocks,
L is complicated, L′ is simple, and we can reason that L ∼= L′, then we can analyse the
deadlocks of L by analysing the deadlocks of L′. On the other hand, if “∼=” also preserves
some other information (say, livelocks) about which L and L′ disagree, then L 6∼= L′. In
that case, we cannot use L′ to analyse the deadlocks of L because we cannot reason that
L ∼= L′. Therefore, we would ideally like to use the weakest possible deadlock-preserving
congruence in this analysis task.

Finding the weakest congruence that preserves a given property has been tedious. A
handful of such results has been published (e.g., [2–4, 8, 12–14, 17]), but if none of them
directly matches, then the user is more or less left with empty hands. Furthermore, to
fully exploit the weakest congruence, reduction algorithms have to be adapted to it. The
prospect of rewriting the reduction tools for each property is not attractive.

This publication shows that for a significant set of properties and widely accepted
set of process operators, the situation is not that bad. This publication simplifies the
selection of the abstract congruence that is most appropriate for a task, by listing all

abstract congruences within a reasonably wide region with respect to a reasonable set of
operators. The operators are parallel composition, hiding, relational renaming, and action
prefix. The list will make it easy to answer such questions as “what is the weakest congruence
that distinguishes a from τ a ?”

By abstract we mean that invisible actions are not directly observable, although they
may have indirect observable consequences. In the vocabulary of linear temporal logic [10],
we only consider stuttering-insensitive properties. It is generally accepted that this is a
reasonable restriction in the case of concurrent systems. Basically all process-algebraic
verification methods make it.

The region that we cover is abstract linear-time congruences, in the following sense. A
linear-time property holds or fails to hold on an individual complete execution of the system.
The system has the property if and only if all its complete executions have it. We originally
only consider the execution of visible actions, deadlock, and livelock as directly observable.
Then the congruence requirement will bring so-called refusal sets into consideration in the
end, but not in the middle, of a sequence of visible actions. The modern version [16]
of Hoare’s CSP- or failures-divergences equivalence [7] is within our scope, while Milner’s
observation equivalence or weak bisimilarity [11] is not. Our notion of linear-time is slightly
more general than that of the famous stuttering-insensitive linear temporal logic of [10].
This is because we do but the logic does not distinguish deadlock from livelock. The
congruence that matches the logic precisely will be found in Section 7. On the other hand,
we will see in Section 3 that our notion of linear-time is less general than another line of
thought yields.

Two results of this kind were discussed in Chapters 11 and 12 of [16]. With the CSP
set of operators and a certain notion of finite linear-time observations, there are only three
congruences. Therefore, if the given property meets that notion, to find the weakest con-
gruence that preserves it, it suffices to test the three congruences. If also infinite behaviour
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LC c1
c2

Run(Σ)

a1 am. . .

RD(Σ)

a1 am. . .
τ

RDL(Σ)
τ

a1 am. . .
τ

Figure 1: Some simple LTSs. The alphabet of LC is {c1, c2}. The alphabet of the others is
Σ = {a1, a2, . . . , am}, where grey notation indicates that, despite the drawing, Σ
(and consequently ∆) may be infinite.

is observable, another set of only three congruences is obtained. Our range covers 40 con-
gruences. Four of them are the same as in [16] and two are trivial. The remaining 34 are
obtained because we cover a different set of properties and use a smaller set of operators
than [16]. The additional two congruences in [16] assume the ability to also observe refusal
sets in the middle of a trace.

This publication is based on [20, 21]. The former solved the problem for finite LTSs,
finding 20 congruences. The case of infinite LTSs was analysed in [21]. Some of the earlier
congruences were split into two and some into three, so the number grew to 40. In [20,21]
and this publication, we concentrate on proving that there are no other congruences than
those that we discuss, and skip the proofs that they indeed are congruences.

Section 2 presents the background definitions. Section 3 introduces the strongest ab-
stract linear-time congruence (in our sense). Congruences that are weaker than it are found
in Sections 4 to 7. Finally Section 8 summarizes the publication.

2. Basic Definitions

In this publication, systems are composed of labelled transition systems using the action
prefix, hiding, relational renaming, and parallel composition operators. In this section we
define these and some related concepts, including bisimilarity.

We reserve the symbol τ to denote so-called invisible actions. A labelled transition

system or LTS is the tuple (S,Σ,∆, ŝ), where τ /∈ Σ, ∆ ⊆ S × (Σ ∪ {τ}) × S, and ŝ ∈ S.
We call S the set of states, Σ the alphabet, ∆ the set of transitions, and ŝ the initial state.
An LTS is finite if and only if its S and Σ (and thus also ∆) are finite. Unless otherwise
stated, L1 denotes the LTS (S1,Σ1,∆1, ŝ1), and similarly with L, L′, L2, and so on. When
we show an LTS as a drawing, unless otherwise stated, its alphabet is precisely the labels in

the drawing excluding τ . Fig. 1 shows as examples some simple LTSs that are needed later.
LTSs L1 and L2 are bisimilar, denoted with L1 ≡ L2, if and only if there is a relation

“∼” ⊆ S1 × S2 such that

(1) Σ1 = Σ2,
(2) ŝ1 ∼ ŝ2, and
(3) for every s1 ∈ S1, s2 ∈ S2, s

′

1 ∈ S1, s
′

2 ∈ S2, and a ∈ Σ ∪ {τ} such that s1 ∼ s2,
(a) if (s1, a, s

′

1) ∈ ∆1, then there is an s′ such that s′1 ∼ s′ and (s2, a, s
′) ∈ ∆2, and

(b) if (s2, a, s
′

2) ∈ ∆2, then there is an s′ such that s′ ∼ s′2 and (s1, a, s
′) ∈ ∆1.

The relation “∼” is a bisimulation.
It is well known that bisimilarity is a very strong equivalence. For the purposes of this

publication (and, indeed, almost everywhere in concurrency theory), bisimilar LTSs can be
informally thought of as identical. Formal justification for this comes from the fact (whose
proof we skip) that replacing an LTS by a bisimilar one in any of our definitions may change
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the resulting LTS to a bisimilar one but cannot cause any other difference. For instance, if
an LTS deadlocks, then also all its bisimilar LTSs deadlock.

Because the purpose of an LTS is to represent the behaviour of a system, it seems
intuitively that only the part of the LTS that is reachable from the initial state is significant.
Indeed, if L′ is the reachable part of L, by letting s ∼ s′ if and only if s = s′ ∈ S′ we see
that L ≡ L′. So also in our theory, only the reachable part matters.

If Φ is any set of pairs, we define D(Φ) := {a | ∃b : (a, b) ∈ Φ} (the domain) and
R(Φ) := {b | ∃a : (a, b) ∈ Φ} (the range). We also define Φ(a, b) :⇔ (a, b) ∈ Φ ∨ a = b /∈
D(Φ). This definition makes Φ(a, a) hold whenever a is not in the domain of Φ.

The operators that we use for building systems are defined as follows:

Action prefix: Let a 6= τ . The LTS L′ = a.L is defined as S′ = S ∪ {ŝ′}, where ŝ′ /∈ S,
Σ′ = Σ ∪ {a}, and ∆′ = ∆ ∪ {(ŝ′, a, ŝ)}. That is, a.L executes a and then behaves like L.
We do not define τ.L as we will not need it, but it is clear that it can be built from a.L
and the next operator by choosing an a that is not in Σ.
Hiding: Let A be a set. The LTS L′ = L \ A is defined as S′ = S, Σ′ = Σ \ A, ∆′ =
{(s, a, s′) | ∃b : (s, b, s′) ∈ ∆ ∧ (a = b /∈ A ∨ a = τ ∧ b ∈ A)}, and ŝ′ = ŝ. That is, L \ A
behaves otherwise like L, but all actions in A are replaced by τ .
Relational renaming: Let Φ be a set of pairs such that τ /∈ D(Φ) ∪ R(Φ). The LTS
L′ = LΦ is defined as S′ = S, ŝ′ = ŝ, Σ′ = {b | ∃a ∈ Σ : Φ(a, b)}, and ∆′ = {(s, b, s′) | ∃a :
(s, a, s′) ∈ ∆∧Φ(a, b)}. That is, LΦ behaves otherwise like L, but the labels of transitions
are changed. A label may be replaced by more than one label, resulting in more than one
copy of the original transition. If Φ does not specify any new label for a transition, then
it keeps its original label. This is in particular the case with τ -transitions.
Parallel composition: The LTS L = L1 || L2 is defined as S = S1 × S2, Σ = Σ1 ∪ Σ2,
ŝ = (ŝ1, ŝ2), and ((s1, s2), a, (s

′

1, s
′

2)) ∈ ∆ if and only if
(1) a /∈ Σ2, (s1, a, s

′

1) ∈ ∆1, and s′2 = s2,
(2) a /∈ Σ1, (s2, a, s

′

2) ∈ ∆2, and s′1 = s1, or
(3) a ∈ Σ1 ∩Σ2, (s1, a, s

′

1) ∈ ∆1, and (s2, a, s
′

2) ∈ ∆2.
That is, if a belongs to the alphabets of both L1 and L2, it is executed simultaneously
by both. If a = τ or a belongs to the alphabet of precisely one of L1 and L2, then it
is executed by one of L1 and L2 while the other stays in the state where it is. Clearly
L2 || L1 ≡ L1 || L2 and L1 || (L2 || L3) ≡ (L1 || L2) || L3, so we may write L1 || · · · || Ln

without confusion.

The CSP language [16] has these operators (and many more), and every major process-
algebraic language has at least something similar. Therefore, requiring the congruence
property with respect to these operators is justified. One has to keep in mind, however,
that if the language does not have all these operators, then it may have more abstract linear-
time congruences than the ones in this publication. Indeed, we will see after Theorem 1
that the ability of the renaming operator to convert a single action into many actions is
important, and so is the availability of the action prefix operator.

Because the notion of congruence depends on the set of operators and because listing
the set in theorems is clumsy, we state the following:

In the theorems of this publication, “∼=” is a congruence means that it is

an equivalence and for all LTSs L and L′, if L ∼= L′, then a.L ∼= a.L′,

L \A ∼= L′ \ A, LΦ ∼= L′Φ, L || L′′ ∼= L′ || L′′, and L′′ || L ∼= L′′ || L′.
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It follows by structural induction that if f(L1, . . . , Ln) is any expression only made of these
four operators, and if Li

∼= L′

i for 1 ≤ i ≤ n, then f(L1, . . . , Ln) ∼= f(L′

1, . . . , L
′

n).

3. The Strongest Abstract Linear-time Congruence

In this section, we first define some concepts and notation that are useful for discussing
abstract linear-time equivalences. Then we transform the notion of “linear-time” of [10]
to the vocabulary of this publication. (Unlike [10], we distinguish between deadlock and
livelock.) The resulting abstract equivalence is not a congruence. We analyse what has to be
added to make it a congruence. Thanks to the additions, some original information becomes
redundant. So we throw it away. We call the result an abstract linear-time congruence,
because it does not preserve more information than is necessary to cover linear temporal
logic in the sense described above. It is the strongest such congruence, because it does not
preserve less information than that. Finally we set the target for the rest of this publication.

For discussing abstract equivalences, it is handy to have notation for talking about
paths between states such that only the non-τ labels along the path are shown. Let Σ∗

and Σω denote the sets of all finite and infinite sequences of elements of Σ. By s=ε⇒ s′ we
mean that there are s0, . . . , sn such that s = s0, sn = s′, and (si−1, τ, si) ∈ ∆ for 1 ≤ i ≤ n.
By s=a1a2 · · · an⇒ s′, where a1a2 · · · an ∈ Σ∗, we mean that there are s0, s

′

0, . . . , sn, s
′

n

such that s0 = s, s′n = s′, si=ε⇒ s′i for 0 ≤ i ≤ n, and (s′i−1, ai, si) ∈ ∆ for 1 ≤ i ≤ n. If we
do not want to mention s′, we write s=a1a2 · · · an⇒, and s=a1a2 · · ·⇒ denotes the similar
notion for infinite sequences a1a2 · · · . An infinite path can also consist of an uninterrupted
infinite sequence of invisible transitions. This is denoted with s−τω→.

Let s ∈ S. We say that s is a deadlock or deadlocked if and only if ∀a : ∀s′ : (s, a, s′) /∈ ∆.
We say that s is stable if and only if ∀s′ : (s, τ, s′) /∈ ∆.

An execution of L is any path that starts at ŝ. An execution is complete if and only
if it is infinite or leads to a deadlock. If an infinite execution only has a finite number of
visible actions, then it consists of a finite prefix and a livelock, that is, an infinite path only
consisting of τ -transitions.

In the linear temporal logic of [10], “linear-time” means that the models of logical
formulae are certain kind of abstractions of individual complete executions, and a system
satisfies a formula if and only if all its complete executions satisfy it. Analogously, we
say that the linear-time semantics of L consists of the complete executions of L. There is,
however, one difference: in [10], deadlocking executions are extended to infinite by repeating
the last state forever, that is, deadlocks are unified with livelocks. We will not do so, because
not unifying them gives a more natural and richer theory, from which the theory with the
unification is trivially obtained as a corollary.

The abstract linear-time semantics of L consists of the abstractions of the complete
executions of L, that is, deadlocking traces, divergence traces, and infinite traces, defined as
follows:

Dℓ(L) := {σ ∈ Σ∗ | ∃s : ŝ=σ⇒ s ∧ ∀a : ∀s′ : (s, a, s′) /∈ ∆}

Div(L) := {σ ∈ Σ∗ | ∃s : ŝ=σ⇒ s ∧ s−τω→}

Inf (L) := {ξ ∈ Σω | ŝ=ξ⇒}

For uniformity, from now on Σ(L) denotes the alphabet of L.
We say that the equivalence induced by Σ, Dℓ, Div, and Inf is the one defined by

Σ(L) = Σ(L′) ∧Dℓ(L) = Dℓ(L′) ∧Div(L) = Div(L′) ∧ Inf (L) = Inf (L′). Unfortunately, it
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b3 · · ·
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am
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Figure 2: An LTS for detecting the stable failure (b1 · · · bn, {a1, . . . , am}).

is not a congruence. To fix this, we define stable failures:

Sf (L) := {(σ,A) ∈ Σ∗ × 2Σ | ∃s : ŝ=σ⇒ s ∧ ∀a ∈ A ∪ {τ} : ∀s′ : (s, a, s′) /∈ ∆}

It was proven in [17] that any congruence “∼=” that preserves Σ and Dℓ also preserves
Sf . We repeat the proof here to get familiar with the proof technique. To talk about a
finite set {a1, . . . , am} or the infinite set {a1, a2, . . .}, we use the notation {a1, . . . , am} where
“, am” is grey.

Proof. Assume that (b1 · · · bn, {a1, . . . , am}) ∈ Sf (L). Let T be the LTS in Fig. 2 with
Σ(T ) = Σ(L). By letting L execute b1 · · · bn so that it then refuses a1, . . . , am, and τ ,
we see that b1 · · · bn ∈ Dℓ(L || T ). Let L ∼= L′. We have Σ(L′) = Σ(L) because “∼=”
preserves Σ. By the congruence property L || T ∼= L′ || T . That “∼=” preserves Dℓ yields
b1 · · · bn ∈ Dℓ(L′ || T ). That is only possible if L′ can execute b1 · · · bn such that it then
refuses a1, . . . , am, and τ . That is, (b1 · · · bn, {a1, . . . , am}) ∈ Sf (L′). We have proven that
Sf (L) ⊆ Sf (L′). By symmetry, Sf (L′) ⊆ Sf (L).

Therefore, we must add Sf to the semantics. We have Dℓ(L) = {σ | (σ,Σ) ∈ Sf (L)}.
This implies that if Σ(L) = Σ(L′) and Sf (L) = Sf (L′), then Dℓ(L) = Dℓ(L′). As a conse-
quence, the equivalence induced by Σ, Dℓ, Sf , Div , and Inf is the same as the equivalence
induced by Σ, Sf , Div , and Inf . That is, we no longer need Dℓ as such in the semantics.

The equivalence induced by Σ, Sf , Div , and Inf is a congruence [23]. It is implied by
“≡”. It has traditionally been called chaos-free failures divergences equivalence or CFFD-

equivalence for the reason explained in Section 7. We will denote it with “
.
=”.

Finite, not necessarily complete executions induce traces:

Tr(L) := {σ ∈ Σ∗ | ŝ=σ⇒}

If (σ,A) ∈ Sf (L), then clearly (σ, ∅) ∈ Sf (L) and σ ∈ Tr(L). We will later define also
other subsets of Σ∗ × 2Σ that have the similar property. With Sf and them, the following
notation will be handy:

XTr (L) := {σ | (σ, ∅) ∈ X(L)}

CFFD-equivalence contains full information on traces even without explicitly mention-
ing them, because of the following easily proven fact:

Tr(L) = Div(L) ∪ Sf Tr (L) (3.1)

We will also need the following fact.

Inf (L) ⊆ {a1a2 · · · ∈ Σω | ∀i : a1a2 · · · ai ∈ Tr(L)} (3.2)

In the case of finite LTSs, even Inf is unnecessary because of the following (see, e.g., [22,23]):

Inf (L) = {a1a2 · · · ∈ Σω | ∀i : a1a2 · · · ai ∈ Tr(L)} , if L is finite. (3.3)

To summarize, if we define “
.
=” as the equivalence induced by Σ, Sf , Div , and Inf , then

L
.
= L′ also implies Tr(L) = Tr(L′) and Dℓ(L) = Dℓ(L′). For finite LTSs, the assumption

Inf (L) = Inf (L′) is not needed. Because we derived “
.
=” by starting with the abstract
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linear-time semantics and strengthening it only as much as was necessary to make it a
congruence, it is reasonable to call it the strongest abstract linear-time congruence.

This is not the only possible use of the phrase “linear-time”, however. For instance, one
could classify as linear-time everything that can be defined in terms of individual executions
and the next-label sets N(s) of the states s along each execution, where N(s) := {a | ∃s′ :
(s, a, s′) ∈ ∆}. Now Sf (L) can be rephrased as the set of pairs (σ,A) ∈ Σ∗ × 2Σ such that
σ leads to a stable state s such that A ⊆ Σ \N(s). So “

.
=” is linear-time also in this sense.

However, so is also the equivalence obtained otherwise similarly, but letting A = Σ \N(s).
This equivalence is a congruence. It is trivially strictly stronger than “

.
=”, so it is outside

our notion of linear-time.
Our goal is to find all congruences that are implied by “

.
=”. For any stuttering-

insensitive linear-time property in the sense of [10], its optimal congruence is among them.
To break our task into smaller parts, let us consider all possibilities when Σ = ∅. Then

Tr(L) = {ε}, Inf (L) = ∅, Sf (L) is either ∅ or {(ε, ∅)}, and Div(L) is either ∅ or {ε}.
By (3.1) they cannot both be empty. This leaves three possibilities. They can be drawn as
follows.

τ τ τ

We will study each of the cases ∼= τ, ∼= τ τ 6∼= τ, 6∼= τ 6∼= τ τ 6∼= , and
6∼= τ ∼= τ τ in turn.

4. When Deadlock Is Livelock

In this section we find all congruences that are implied by “
.
=” and unify deadlock with

livelock, that is, have ∼= τ. Theorems 1, 6, 7, and 4 say that if “∼=” preserves any
information whatsoever, then it preserves at least Σ; if it preserves more than that, then
it also preserves Tr ; if it preserves more than that, then it also preserves Inf ; and that
is all. The technique used in all but one such proofs in this publication is developed and
illustrated. It is based on Lemma 3. The section also presents two lemmas related to
preserving or not preserving Tr . Theorem 1 is different from others in this section in that
it uses a different proof technique and does not make the assumptions mentioned above. So
it also applies to bisimulation-based semantics. However, perhaps surprisingly, it depends
on the presence of both action prefix and relational renaming in our set of operators.

We define the dullest congruence by L ∼= L′ holds for every L and L′. It is obviously
the weakest of all congruences. The next theorem implies that it is the only congruence
that does not imply Σ(L) = Σ(L′), that is, preserve Σ. We define Stop(A) as the 1-state
LTS whose alphabet is A and which has no transitions. (So Stop(∅) = .)

Theorem 1. If “∼=” is implied by “≡”, is a congruence, and does not preserve Σ, then “∼=”
is the dullest congruence.

Proof. Because “∼=” does not preserve Σ, there are LTSs M1 and M2 and an a such that
M1

∼= M2 and a ∈ Σ1 \ Σ2. Let C = ({c} ∪ Σ1 ∪ Σ2) \ {a}, where c 6= a and c 6= τ .
When i ∈ {1, 2}, let f(Mi) = (c.Mi || Stop({c})) \ C. Because c.Mi initially commits to
c and Stop({c}) blocks all c-transitions, f(Mi) has no reachable transitions and only one
reachable state. C contains all visible actions of f(Mi) except a. So f(M1) ≡ Stop({a})
and f(M2) ≡ Stop(∅) ≡ . Because M1

∼= M2, we have Stop({a}) ≡ f(M1) ∼= f(M2) ≡ .
This yields ∼= Stop({a}), because “≡” implies “∼=” and “∼=” is an equivalence.
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We prove next that each LTS with the empty alphabet is equivalent to . Let L′ =
(S′, ∅,∆′, ŝ′) be an LTS. Let L′

a = (S′, {a},∆′

a, ŝ
′), where ∆′

a = {(s, a, s′) | (s, τ, s′) ∈ ∆′}.
By the definition of “\”, L′ ≡ L′

a \ {a} ≡ (L′

a || ) \ {a} ∼= (L′

a || Stop({a})) \ {a} ≡ .
Then we prove that each LTS is equivalent to an LTS with the empty alphabet. Let

L = (S,Σ,∆, ŝ), ΦΣ
a = {a} × Σ, ∆′ = ∆ ∩ (S × {τ} × S), and L′ = (S, ∅,∆′, ŝ). By the

definition of “Φ”, ≡ ΦΣ
a
∼= Stop({a})ΦΣ

a ≡ Stop(Σ). Therefore, L ≡ L|| ∼= L||Stop(Σ) ≡
(S,Σ,∆′, ŝ) ≡ L′ || Stop(Σ) ∼= L′ || ≡ L′.

As a conclusion, every LTS is equivalent to and thus to any other.

This theorem relies on the ability of Φ to convert a single action to an infinite set of
actions. Without that ability, the following would be a congruence: L ∼= L′ if and only if
(Σ(L) \ Σ(L′)) ∪ (Σ(L′) \ Σ(L)) is finite. Also action prefix is necessary for this theorem.
Without it, the following would be a congruence: L ∼= L′ if and only if L ≡ L′ or both
ŝ−τω→ and ŝ′−τω→. That is, initially diverging LTSs could be declared equivalent, even
if they had different alphabets.

Theorem 1 says that if a congruence makes any distinctions between LTSs at all, then
it preserves at least Σ. On the other hand, it is easy to check from the definitions that the
equivalence induced by Σ is a congruence. So it is the second weakest congruence. We have
now two congruences that are both trivial.

The next lemma will be needed soon.

Lemma 2. Any congruence that preserves Inf also preserves Σ and Tr .

Proof. Let “∼=” be a congruence that preserves Inf . Then a 6∼= a , so “∼=” preserves Σ
by Theorem 1. Let L ∼= L′, Σ = Σ(L) = Σ(L′), and b /∈ Σ∪{τ}. If σ = a1a2 · · · an ∈ Tr(L),
then let T b

σ be a1 a2 · · ·
an b with the alphabet Σ ∪ {b}. We have σbω ∈ Inf (L || T b

σ) =
Inf (L′ || T b

σ), yielding σ ∈ Tr(L′). So Tr(L) ⊆ Tr(L′). By symmetry, Tr(L′) ⊆ Tr(L).

The following lemma is central. Many of the subsequent proofs use it. In it, X1, . . . ,
Xk are functions from LTSs to sets, like Tr and Sf .

Lemma 3. Assume that “∼=” is an equivalence, is implied by “
.
=”, and preserves Σ and X1,

. . . , Xk. Assume that there is a function f such that for every LTS L we have L ∼= f(L), and
Sf (f(L)), Div(f(L)), and Inf (f(L)) can be represented as functions of Σ(L) and X1(L),
. . . , Xk(L). Then “∼=” is the equivalence induced by Σ and X1, . . . , Xk.

Proof. Obviously “∼=” implies the equivalence induced by Σ and X1, . . . , Xk.
To prove the implication in the opposite direction, let Σ(L) = Σ(L′) andXi(L) = Xi(L

′)
for 1 ≤ i ≤ k. We need to prove that L ∼= L′. We have Σ(f(L)) = Σ(L) = Σ(L′) = Σ(f(L′)),
because L ∼= f(L) and “∼=” preserves Σ. When X ∈ {Sf ,Div , Inf }, let λX be the function
that represents X(f(L)) as was promised. Then X(f(L)) = λX(Σ(L),X1(L), . . . ,Xk(L)) =
λX(Σ(L′),X1(L

′), . . . ,Xk(L
′)) = X(f(L′)). We get f(L)

.
= f(L′). So L ∼= f(L)

.
= f(L′) ∼=

L′ and L ∼= L′.

The following proof illustrates, in a simple context, the use of Lemma 3. The f in the
proof preserves the congruence and consequently also Σ, Tr , and Inf . It throws away all
information on Sf and Div , except what can be derived from Tr and Inf via such facts
as Div(L) ⊆ Tr(L). Throwing information away is possible because of the assumption
∼= τ. Although Div(f(L)) is neither ∅ nor Σ(L)∗, it contains no genuine information,

because it is fully determined by Tr(L).
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τ
b1

τ
b2 · · ·

· · ·
bn

τ

a1
am

. . .

Figure 3: An LTS for detecting the trace b1b2 · · · bn.

Theorem 4. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Inf , and ∼= τ,

then “∼=” is the equivalence induced by Σ, Tr , and Inf .

Proof. By Lemma 2, “∼=” preserves Σ and Tr . Let f(L) = L || τ. We have L ≡ L || ∼=
L || τ = f(L). Clearly Sf (f(L)) = ∅, Div(f(L)) = Tr(L), and Inf (f(L)) = Inf (L).
Lemma 3 gives the claim if we choose k = 2, X1 = Tr , and X2 = Inf .

In forthcoming proofs, we will employ renaming and hiding such that precisely those
actions synchronize which we want to synchronize. To facilitate that, we introduce the
following notation for temporarily attaching an integer i to symbols other than τ . In the
notation, a 6= τ /∈ A and aj 6= τ for 1 ≤ j.

a[i] := (a, i)

(a1a2 · · · an)
[i] := a

[i]
1 a

[i]
2 · · · a

[i]
n

(a1a2 · · · )
[i] := a

[i]
1 a

[i]
2 · · ·

A[i] := {a[i] | a ∈ A}
⌈L⌉[i] := LΦ, where Φ = {(a, a[i]) | a ∈ Σ}
⌊L⌋[i] := LΦ, where Φ = {(a[i], a) | a[i] ∈ Σ}

We will use this notation in the proof of the following lemma, to ensure that certain sets
are disjoint.

Lemma 5. If “∼=” is a congruence and preserves Σ but not Tr , then for any set A such that
τ /∈ A there are LTSsMA

1 andMA
2 such thatMA

1
∼= MA

2 , Σ(MA
1 ) = Σ(MA

2 ) = A, Sf (MA
1 ) =

Sf (MA
2 ) = ∅, Tr(MA

1 ) = Div(MA
1 ) = A∗, Tr(MA

2 ) = Div(MA
2 ) = {ε}, Inf (MA

1 ) = Aω, and
Inf (MA

2 ) = ∅.

Proof. There are M1, M2, and σ such that M1
∼= M2 and σ ∈ Tr (M1) \ Tr(M2). Let

ΣM = Σ(M1) = Σ(M2), b1 · · · bn = σ[1], and {a1, . . . , am} = A[2]. When i ∈ {1, 2}, let

MA
i = ⌊ (Tσ || ⌈Mi⌉

[1]) \ Σ
[1]
M ⌋[2] ,

where Σ(Tσ) = Σ
[1]
M ∪ A[2] and otherwise Tσ is like in Fig. 3. In the rightmost state of Tσ,

there is an a-loop for every a ∈ A[2]. We haveMA
1

∼= MA
2 because of the congruence property

of “∼=”. Because X [1] and Y [2] are disjoint for any X and Y , we have Σ( (Tσ ||⌈Mi⌉
[1])\Σ

[1]
M )

= (Σ
[1]
M ∪A[2] ∪Σ

[1]
M) \Σ

[1]
M = A[2]. This yields Σ(MA

1 ) = Σ(MA
2 ) = A. Because Tσ does not

have stable states, we get Sf (MA
1 ) = Sf (MA

2 ) = ∅.
Thanks to how renaming and hiding are used, Tσ executes its a-transitions without Mi,

while it executes its b-transitions synchronously withMi and invisibly from the environment.
The environment sees the a-transitions with their A-names (instead of A[2]-names). Because
of the synchronization with Tσ, Mi can only execute τ -transitions and some prefix of σ.
Because M1 can but M2 cannot execute σ completely, Tσ can reach its rightmost state
when in MA

1 but not when in MA
2 . Therefore, Tr (MA

1 ) = Div(MA
1 ) = A∗, Inf (MA

1 ) = Aω,
Tr(MA

2 ) = Div(MA
2 ) = {ε}, and Inf (MA

2 ) = ∅.
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τ
b1

a1

am
τ

... τ
b2

a1

am
τ

... τ
b3

a1

am
τ

... · · ·

Figure 4: An LTS for detecting the infinite trace b1b2 · · · .

Let Run(A) denote the LTS whose alphabet is A, which has one state, and whose
transitions are {(ŝ, a, ŝ) | a ∈ A} (please see Fig. 1). The following theorem tells that all
remaining congruences in this section preserve Σ and Tr .

Theorem 6. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Σ but not Tr , and

∼= τ, then “∼=” is the equivalence induced by Σ.

Proof. Let L be any LTS and A = Σ(L). We can reason Run(A) ≡ Run(A) || ∼=
Run(A) || τ

.
= MA

1
∼= MA

2 , where MA
1 and MA

2 are the LTSs in Lemma 5. By choosing
f(L) = L || MA

2 we get L ≡ L || Run(A) ∼= L || MA
2 = f(L), so L ∼= f(L). Because MA

2

lacks stable failures and blocks all visible actions of L in L || MA
2 , we have Sf (f(L)) = ∅,

Div(f(L)) = {ε}, and Inf (f(L)) = ∅. They are constants, so Lemma 3 yields the claim if
we choose k = 0 in it.

It is widely known that the equivalence induced by Σ and Tr is a congruence. The next
theorem says that climbing up the ladder, Inf has to be preserved.

Theorem 7. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Tr but not Inf , and

∼= τ, then “∼=” is the equivalence induced by Σ and Tr .

Proof. There are M1, M2, and ξ such that M1
∼= M2 and ξ ∈ Inf (M1) \ Inf (M2). Because

“∼=” preserves Tr , Theorem 1 implies that it also preserves Σ, so we may let ΣM = Σ(M1) =

Σ(M2). Let b1b2 · · · = ξ[1]. Let A be any set such that τ /∈ A. Let {a1, a2, . . . , am} = A[2].
When i ∈ {1, 2}, let

MA
i = ⌊ (Tξ || ⌈Mi⌉

[1]) \ Σ
[1]
M ⌋[2] ,

where Σ(Tξ) = Σ
[1]
M ∪ A[2] and otherwise Tξ is like in Fig. 4. Because X [i] and Y [j] are

disjoint whenever i 6= j, we have Σ(MA
1 ) = Σ(MA

2 ) = A. Thanks to the τ -loops in
Fig. 4, Sf (MA

1 ) = Sf (MA
2 ) = ∅. By (3.2), M1 can execute any finite prefix of ξ. This

yields Tr(MA
1 ) = Div(MA

1 ) = A∗. By the congruence property MA
1

∼= MA
2 . Because “∼=”

preserves Tr , also Tr (MA
2 ) = Div(MA

2 ) = A∗. Since M1 can but M2 cannot execute ξ
completely, we get Inf (MA

1 ) = Aω and Inf (MA
2 ) = ∅.

Let L be any LTS and A = Σ(L). We can reason Run(A) ≡ Run(A)|| ∼= Run(A)|| τ
.
=

MA
1

∼= MA
2 , and L ≡ L || Run(A) ∼= L ||MA

2 . Lemma 3 gives the claim if we choose k = 1,
X1 = Tr , and f(L) = L ||MA

2 , because then L ∼= f(L), Sf (f(L)) = ∅, Div(f(L)) = Tr(L),
and Inf (f(L)) = ∅.

The above proof constructed a function f(L) that throws away all information (modulo
“
.
=”) except Σ and Tr, while preserving “∼=”. Information on Sf and Div was thrown away
using the assumption that ∼= τ. Information on Inf was thrown away by starting with
an arbitrary difference on Inf , and amplifying it to a function

f ′(L,M) = L || ⌊ (Tξ || ⌈M⌉[1]) \ Σ
[1]
M ⌋[2]

so that f ′(L,M1) preserves Inf (L) while f ′(L,M2) wipes it out. The permission to also
throw away all information on Sf and Div simplified the design. We have L ∼= f ′(L,M1) ∼=
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f ′(L,M2) = f(L), where the first “∼=” takes care of Sf and Div , and the second of Inf . In
the construction of f , despite the use of notation defined in this section, ultimately only
operators from Section 2 were used.

By Theorem 4, there are no more congruences in this section. In conclusion, altogether
precisely four abstract linear-time congruences satisfy ∼= τ: those induced by the first
zero, one, two, or three of Σ, Tr , and Inf . That also the last one is a congruence is widely
known and proven, e.g., in [23].

5. When Deadlock Is Bothlock Is Not Livelock

In this section we show that only three congruences that are implied by “
.
=” satisfy ∼=

τ τ 6∼= τ. We also introduce an “internal choice” operator L ⊓ L′ that will be used
in this and later sections. It can be built from the four operators in Section 2, so any
equivalence that is a congruence with respect to them also is a congruence with respect to
internal choice.

The next theorem tells that all congruences in this section preserve Sf . By Theorem 1,
they also preserve Σ.

Theorem 8. If “∼=” is a congruence, “
.
=” implies “∼=”, and τ τ 6∼= τ, then “∼=”

preserves Sf .

Proof. If “∼=” does not preserve Sf , then there are M1, M2, σ = b1 · · · bn, and A =
{a1, . . . , am} such that M1

∼= M2 and (σ,A) ∈ Sf (M1) \ Sf (M2). Let ΣM = Σ(M1). If
Σ(M2) 6= ΣM , then Theorem 1 yields τ ∼= τ τ . Otherwise, if TA

σ is the LTS in Fig. 2
with Σ(TA

σ ) = ΣM , we have (M2 ||T
A
σ ) \ΣM

.
= τ and (M1 ||T

A
σ ) \ΣM

.
= τ τ . In both

cases, τ ∼= τ τ , contrary to our assumption. Thus “∼=” preserves Sf .

The equivalence induced by Σ and Sf is a congruence [23]. However, if the so-called
interrupt operator found in CSP or Lotos [1] is employed, then it is no longer a congru-
ence [17].

To prove the next result, the “internal choice” operator of CSP would be handy. It is
equivalent to the CCS expression τ.P+τ.Q. Fortunately, it can be built from our operators.

L1 ⊓ L2 :=
(

(LC || c1.⌈L1⌉
[1] || c2.⌈L2⌉

[2] ) \ {c1, c2}
)

Φ ,

where c1 = 1[0], c2 = 2[0], Φ = {(a[1], a) | a ∈ Σ1} ∪ {(a[2], a) | a ∈ Σ2}, and LC has
SC = {ŝC , sC}, ΣC = {c1, c2}, ∆C = {(ŝC , c1, sC), (ŝC , c2, sC)}, and ŝC 6= sC (please see

Fig. 1). (Here c1 and c2 could be any distinct symbols that are not in Σ
[1]
1 ∪ Σ

[2]
2 .)

The CFFD-semantics of this operator is simple:

Σ(L ⊓ L′) = Σ(L) ∪ Σ(L′)

Sf (L ⊓ L′) = Sf (L) ∪ Sf (L′)

Div(L ⊓ L′) = Div(L) ∪Div(L′)

Inf (L ⊓ L′) = Inf (L) ∪ Inf (L′)

The next congruence in this section also preserves Tr .

Theorem 9. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Sf but not Tr , and

∼= τ τ , then “∼=” is the equivalence induced by Σ and Sf .
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RA
1
τ τ a1

am

...

τ RA
2

τ τ

τ

τ

τ

τ

τ
· · ·
· · ·

τ

a1

am

...

a1

am

...

a1

am

...

a1

am

... · · ·

Figure 5: RA
1 has Σ(RA

1 ) = A = {a1, . . . , am}, Sf (RA
1 ) = A∗ × {∅}, Div(RA

1 ) = A∗, and
Inf (RA

1 ) = Aω. RA
2 has the same except Inf (RA

2 ) = ∅.

Proof. Let L be any LTS and A = Σ(L). By Theorem 1, “∼=” preserves Σ. The assumptions
of Lemma 5 hold, so we can use its MA

1 and MA
2 . Let f(L) = (L ||τ τ )⊓MA

1 . We have
L ≡ L || ∼= L ||τ τ .

= (L ||τ τ )⊓MA
2 , so L ∼= f(L). Furthermore, Sf (f(L)) = Sf (L),

Div(f(L)) = A∗ = Σ(L)∗, and Inf (f(L)) = Aω = Σ(L)ω. With k = 1 and X1 = Sf ,
Lemma 3 gives the claim.

The equivalence induced by Σ, Tr , and Sf is a congruence [23].
At the next level, also Inf has to be preserved. To prove this, we need a more compli-

cated construction than in the proof of Theorem 7, because this time Sf has to be preserved.

Theorem 10. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Tr and Sf but not

Inf , and ∼= τ τ , then “∼=” is the equivalence induced by Σ, Tr , and Sf .

Proof. Let M1
∼= M2, ξ ∈ Inf (M1) \ Inf (M2), b1b2 · · · = ξ[1], and A be any set such that

τ /∈ A. By Theorem 1, “∼=” preserves Σ. Let ΣM = Σ(M1) = Σ(M2). When i ∈ {1, 2}, let

MA
i = ⌊ (Tξ || ⌈Mi⌉

[1]) \ Σ
[1]
M ⌋[2] ,

where Σ(Tξ) = Σ
[1]
M ∪A[2] and otherwise Tξ is like in Fig. 4.

Because Tξ does not have stable states, we have Sf (MA
1 ) = Sf (MA

2 ) = ∅. Because

⌈M2⌉
[1] lacks the infinite trace b1b2 · · · , we have Inf (M

A
2 ) = ∅. Let RA

1 and RA
2 be the LTSs

in Fig. 5. We have Div(RA
2 ) = A∗. These imply MA

2 ⊓ RA
2

.
= RA

2 . On the other hand,
Inf (MA

1 ) = Inf (RA
1 ) = Aω, Sf (RA

1 ) = Sf (RA
2 ), and also Div(RA

1 ) = A∗, so MA
1 ⊓RA

2
.
= RA

1 .
As a consequence, RA

1
.
= MA

1 ⊓RA
2
∼= MA

2 ⊓RA
2

.
= RA

2 .
By choosing A = Σ(L) and f(L) = L ||RA

2 we get L ≡ L || ∼= L ||τ τ .
= L ||RA

1
∼=

L || RA
2 , so L ∼= f(L). We have Sf (f(L)) = Sf (L), Div(f(L)) = Tr(f(L)) = Tr(L), and

Inf (f(L)) = ∅. With k = 2, X1 = Tr , and X2 = Sf , Lemma 3 gives the claim.

The equivalence induced by Σ, Tr , Sf , and Inf is the intersection of the equivalences
induced by (Σ,Tr ,Sf ) and (Σ,Tr , Inf ). So it is the intersection of two congruences and
thus a congruence. We now show that it is the last one in this section.

Theorem 11. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Sf and Inf , and

∼= τ τ , then “∼=” is the equivalence induced by Σ, Tr , Sf , and Inf .

Proof. By Lemma 2, “∼=” preserves Σ and Tr . Let f(L) = L ||τ τ . We have L ≡ L || ∼=
L || τ τ = f(L). Clearly Sf (f(L)) = Sf (L), Div(f(L)) = Tr(L), and Inf (f(L)) =
Inf (L). Letting k = 3, X1 = Tr , X2 = Sf , and X3 = Inf , Lemma 3 gives the claim.

To summarize, precisely three abstract linear-time congruences satisfy ∼= τ τ 6∼=
τ: those induced by (Σ,Sf ), (Σ,Tr ,Sf ), and (Σ,Tr ,Sf , Inf ).
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Section 4: ∼= τ

Section 5: ∼= τ τ 6∼= τ

Section 6: 6∼= τ 6∼= τ τ 6∼=

Σ

Tr

Inf

Sf

minD
anT
anI

Div
eanI

aenI

.

=

Figure 6: The congruences in Sections 4, 5, and 6 as a Hasse diagram. Names in italics

indicate the new preserved set(s).

6. When All Three Are Non-equivalent

Figure 6 shows the results of the previous two sections and this section. In this section
we survey the region where 6∼= τ 6∼= τ τ 6∼= . We need new semantic sets. They
are defined in Subsection 6.1. Many proofs in this and the next section treat end states
of divergence traces differently from end states of other traces. For this to be possible, no
state must be simultaneously the end state of both a divergence trace and a nondivergent
trace. Subsection 6.3 presents a construct with which LTSs can be transformed into such a
form, while preserving bisimilarity. The theorems that there are no other congruences are
presented in Subsections 6.2 and 6.4.

6.1. New kinds of divergence and infinite traces. In this subsection we define new
semantic sets that are related to divergence traces or infinite traces, and briefly study their
properties.

Minimal divergence traces minD are divergence traces whose proper prefixes are not
divergence traces. Finite extensions of minimal divergence traces extT are an alternative
representation for the same information (assuming that Σ is available). Also infinite ex-
tensions extI can be derived from minD . Always-nondivergent traces anT are traces which
and whose proper prefixes are not divergence traces, and similarly with always-nondivergent

infinite traces anI . Eventually-always-nondivergent infinite traces eanI may have a finite
number of divergence traces as prefixes. Always-eventually-nondivergent infinite traces aenI
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have an infinite number of prefixes that are not divergence traces.

minD(L) := {a1 · · · an ∈ Div(L) | ∀i; 0 ≤ i < n : a1 · · · ai /∈ Div(L)}

extT (L) := {a1 · · · an ∈ Σ(L)∗ | ∃i; 0 ≤ i ≤ n : a1 · · · ai ∈ minD(L)}

extI (L) := {a1a2 · · · ∈ Σ(L)ω | ∃i; i ≥ 0 : a1 · · · ai ∈ minD(L)}

anT (L) := Tr(L) \ extT (L)

anI (L) := Inf (L) \ extI (L)

eanI (L) := {a1a2 · · · ∈ Inf (L) | ∃n;n ≥ 0 : ∀i; i ≥ n : a1 · · · ai /∈ Div(L)}

aenI (L) := {a1a2 · · · ∈ Inf (L) | ∀n;n ≥ 0 : ∃i; i ≥ n : a1 · · · ai /∈ Div(L)}

We have

minD(L) = {a1 · · · an ∈ extT (L) | n = 0 ∨ a1 · · · an−1 /∈ extT (L)} ,

anT (L) = Sf Tr (L) \ extT (L) , and
anI (L) ⊆ eanI (L) ⊆ aenI (L) ⊆ Inf (L) .

Lemma 12. Any congruence that preserves minD also preserves Σ and anT .

Proof. By Theorem 1, it preserves Σ. Let L ∼= L′ and b /∈ Σ(L) ∪ {τ}. For each σ =
a1 · · · an ∈ Σ(L)∗, let Tσ be the LTS whose graph is a1 a2 · · ·

an b τ and whose alpha-
bet is Σ(L) ∪ {b}. We have σ ∈ Tr(L) if and only if σb ∈ Div(L || Tσ). If 0 ≤ i ≤ n, then
a1 · · · ai ∈ Div(L) if and only if a1 · · · ai ∈ Div(L || Tσ). Therefore, σ ∈ anT (L) if and only
if σb ∈ minD(L || Tσ) if and only if σb ∈ minD(L′ || Tσ) if and only if σ ∈ anT (L′).

Lemma 13. Any congruence that preserves minD also preserves Σ and anI .

Proof. By Theorem 1, it preserves Σ. Let L ∼= L′, a1a2 · · · ∈ anI (L), and T = a1 a2 · · ·
with Σ(T ) = Σ(L). None of a1 · · · ai is in minD(L) = minD(L′), yielding minD(L′ ||T ) = ∅.
On the other hand, ε ∈ minD( (L || T ) \ Σ(L) ) = minD( (L′ || T ) \ Σ(L′) ). So a1 · · · ai /∈
Div(L′ || T ), a1a2 · · · ∈ Inf (L′ || T ), a1a2 · · · ∈ Inf (L′), and a1a2 · · · ∈ anI (L′).

Lemma 14. Any congruence that preserves Div also preserves Tr .

Proof. σ ∈ Tr(L) ⇔ σ ∈ Div(L || τ).

Lemma 15. Any congruence that preserves Div also preserves Σ and eanI .

Proof. By Theorem 1, it preserves Σ. Let L ∼= L′ and ξ ∈ eanI (L). If no prefix of ξ is
in Div(L), then let i = 1, and otherwise let i be 2 plus the length of the longest prefix
of ξ that is in Div(L). Let ai /∈ Σ(L) ∪ {τ} and, when 1 ≤ j 6= i, let aj be such that
ξ = a1 · · · ai−1ai+1 · · · . When j ≥ 0, none of a1 · · · ai−1ai+1 · · · ai+j is in Div(L) = Div(L′).
Let T be the LTS whose alphabet is Σ(L) ∪ {ai} and whose graph is a1 a2 · · ·. We have
a1 · · · ai+j /∈ Div(L′ || T ) but ai ∈ Div( (L || T ) \ Σ(L) ) = Div( (L′ || T ) \ Σ(L′) ). As a
consequence, a1a2 · · · ∈ Inf (L′ || T ), ξ ∈ Inf (L′), and ξ ∈ eanI (L′).

6.2. Lower sub-region. In this subsection we survey the part of the current region that
is below the dashed grey line in Fig. 6.

Thanks to the next theorem, all congruences in this and the next section preserveminD .

Theorem 16. If “∼=” is a congruence, “
.
=” implies “∼=”, and 6∼= τ τ , then “∼=” preserves

minD .
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Proof. To derive a contradiction, let L ∼= L′ and σ = a1 · · · an ∈ minD(L) \ minD(L′). If
there is an i < n such that a1 · · · ai ∈ minD(L′), then swap the roles of L and L′, and use
a1 · · · ai instead of σ. Now no prefix of σ is in minD(L′).

If Σ(L) 6= Σ(L′), then Theorem 1 yields ∼= τ τ . Otherwise, let Tσ be the LTS
whose graph is a1 a2 · · ·

an and alphabet is Σ(L). We have (L || Tσ) \ Σ(L)
.
= τ τ

or (L || Tσ) \ Σ(L)
.
= τ. Furthermore, (L′ || Tσ) \ Σ(L)

.
= . These imply ∼= τ τ or

∼= τ. If ∼= τ, then τ
.
= τ τ || τ ∼= τ τ || ≡ τ τ , so ∼= τ τ . All

cases contradict the assumption 6∼= τ τ .

By Lemmas 12 and 13, all congruences in this and the next section also preserve Σ,
anT , and anI . Furthermore, in this section also Theorem 8 is applicable. So Sf must be
added to the semantics. Doing so yields a congruence (proof skipped). After adding Sf ,
anT can be removed because anT (L) = Sf Tr (L) \ extT (L). Thus the weakest congruence
in this section is induced by Σ, Sf , minD , and anI .

Adding Tr to this also yields a congruence. The next theorem says that it is the next
congruence. We will need the construction in the proof of the theorem also in Section 7, so
we isolate it in a lemma.

Lemma 17. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves minD but not

Tr , then for every LTS L there is an LTS f(L) such that L ∼= f(L), Tr(f(L)) = anT (L) ∪
extT (L), Sf (f(L)) = Sf (L), Div(f(L)) = extT (L), and Inf (f(L)) = anI (L) ∪ extI (L).

Proof. By Theorem 1, “∼=” preserves Σ. LetM1
∼= M2, σ ∈ Tr(M1)\Tr(M2), b1 · · · bn = σ[1],

and c = 1[0]. Let ΣM = Σ(M1) = Σ(M2). For any LTS L, let ΣL = Σ(L), and let g(L)
be the LTS that is obtained as follows: the label of every visible transition is transformed
from a to a[2], and a c-transition to the initial state of Fig. 3 is added to every divergent

state. In Fig. 3, {a1, . . . , am} = Σ
[2]
L . The alphabet of g(L) is {c} ∪Σ

[1]
M ∪ Σ

[2]
L .

When i ∈ {1, 2}, let

fi(L) = ⌊ (g(L) || c.⌈Mi⌉
[1]) \ ({c} ∪ Σ

[1]
M ) ⌋[2] .

By construction, fi(L) can do everything that L can do, and also try to hiddenly execute

cσ[1]. Attempts to execute cσ[1] start at divergent states and, thanks to the τ -loops in
Fig. 3, do not lead to stable states. Thus Sf (f1(L)) = Sf (f2(L)) = Sf (L). Because

f2(L) cannot execute cσ[1] completely, f2(L)
.
= L. On the other hand, f1(L) can, so

Tr(f1(L)) = anT (L)∪extT (L), Div(f1(L)) = extT (L), and Inf (f1(L)) = anI (L)∪extI (L).
We have L

.
= f2(L) ∼= f1(L). Therefore, f1 qualifies as the f of the claim.

Theorem 18. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Sf and minD

but not Tr , then “∼=” is the equivalence induced by Σ, Sf , minD , and anI .

Proof. Lemma 13 implies that “∼=” preserves Σ and anI . Because extT (L) and extI (L) are
functions of Σ(L) and minD(L), the f of Lemma 17 qualifies as the f of Lemma 3 with
k = 3, X1 = Sf , X2 = minD , and X3 = anI .

6.3. Unambiguation of LTSs. In this subsection we motivate and present two functions,
called Una and PD, that transform any LTS to a bisimilar LTS that has some useful property.

To continue the survey, we need a construction that preserves anI but not Inf . It will
block infinite traces after a minimal divergence trace, while not affecting them before a
minimal divergence trace. Blocking does not have the desired effect unless all executions
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L
b

a

b

τ a
Det(L)

a a

b a

Una(L)
b aτ a

b a

PD(L)
b aτ a

b
a a

Figure 7: An example of L, Det(L), Una(L), and PD(L).

of each minimal divergence trace switch it on. Forcing the execution of the switch at every
divergent state does not suffice, because the same trace may have two executions, one
leading to a divergent and the other to a nondivergent state. This is exemplified by the
trace b of the L in Fig. 7. Even if we knew that this is the case with some nondivergent
state, we could not blindly implement the switch there, because it may also be reachable
via another, always-nondivergent trace. An example is the trace a in the figure.

To cope with this problem, we define a function Una that, given an LTS, yields a
bisimilar LTS where different traces lead to the same state only if they have the same
futures. This is obtained by keeping track, in a new component of the state, of the set of
original states that can be reached via the trace that has been executed so far. To do that,
we first define the determinization of L as the LTS

Det(L) := (SD,Σ,∆D, ŝD), where

Sσ = {s | ŝ=σ⇒ s}

SD = {Sσ | σ ∈ Tr(L)}

∆D = {(Sσ, a, Sσa) | a 6= τ ∧ σa ∈ Tr(L)}

ŝD = Sε

Lemma 19. If σ ∈ Tr(L), then ŝD=σ⇒Sσ. If ŝD=σ⇒ sD, then sD = Sσ and σ ∈ Tr(L).

Proof. We prove the first claim by induction. Clearly ŝD=ε⇒ ŝD = Sε. If σa ∈ Tr(L),
then a 6= τ and (Sσ, a, Sσa) ∈ ∆D. By the induction assumption ŝD=σ⇒Sσ, yielding
ŝD=σa⇒Sσa.

Also the second claim is proven by induction. The definition of ∆D constructs no τ -
transitions, so if ŝD=ε⇒ sD, then sD = ŝD = Sε. Trivially ε ∈ Tr(L). If ŝD=σa⇒ sD,
then consider the last transition along the path. By the definition of ∆D, it is of the form
(Sρ, a, Sρa), where ρa ∈ Tr(L), ŝD=σ⇒Sρ, and Sρa = sD. By the induction assumption
Sρ = Sσ. We get sD = Sρa = {s | ∃s′ ∈ Sρ : s′=a⇒ s} = {s | ∃s′ ∈ Sσ : s′=a⇒ s} = Sσa.
Because ρa ∈ Tr(L), we have ∅ 6= Sρa = Sσa, so σa ∈ Tr(L).

Then we define the unambiguation of L as

Una(L) := L || Det(L) .

Lemma 20. Una(L) ≡ L, that is, Una(L) is bisimilar with L.

Proof. Let Una(L) = (SU,ΣU,∆U, ŝU). The states of Una(L) are of the form sU = (s, Sσ).
Let “∼” ⊆ S×SU be defined by s ∼ (s′, Sσ) if and only if ŝ=σ⇒ s = s′. We now show that
“∼” is a bisimulation. “(1)”, etc., refer to the numbers in the definition on p. 3.

(1) Clearly Σ(Una(L)) = ΣU = Σ ∪Σ = Σ = Σ(L).
(2) We have ŝU = (ŝ, ŝD) = (ŝ, Sε) and ŝ=ε⇒ ŝ, so ŝ ∼ ŝU.
(3) Let s ∼ (s, Sσ), that is, ŝ=σ⇒ s.



ALL LINEAR-TIME CONGRUENCES FOR FAMILIAR OPERATORS 17

(3a) If (s, τ, s′) ∈ ∆, then ((s, Sσ), τ, (s
′, Sσ)) ∈ ∆U and ŝ=σ⇒ s′, yielding s′ ∼ (s′, Sσ). If

(s, a, s′) ∈ ∆ where a ∈ Σ, then ŝ=σa⇒ s′. The definition of ∆D yields (Sσ, a, Sσa) ∈
∆D, implying ((s, Sσ), a, (s

′, Sσa)) ∈ ∆U. We have s′ ∼ (s′, Sσa).
(3b) If ((s, Sσ), τ, (s

′, s′
D
)) ∈ ∆U, then by the definitions of “||” and ∆D we have (s, τ, s′) ∈ ∆

and s′
D
= Sσ. Furthermore, ŝ=σ⇒ s′. So s′ ∼ (s′, s′

D
). If ((s, Sσ), a, (s

′, s′
D
)) ∈ ∆U

where a ∈ Σ, then (s, a, s′) ∈ ∆. It implies ŝ=σa⇒ s′. We also have (Sσ, a, s
′

D
) ∈ ∆D,

yielding σa ∈ Tr (Det(L)) and s′
D
= Sσa by Lemma 19. Again s′ ∼ (s′, s′

D
).

We say that a state of Una(L) is potentially divergent if it can be reached via a divergence
trace, and certainly nondivergent otherwise. These phrases do not actually refer to the
properties of the state but to the properties of the traces that lead to it. The essential
useful property of Una(L) is stated in the following lemma.

Lemma 21. If state sU of Una(L) is potentially divergent, then all traces that lead to it
belong to Div(L). If state sU of Una(L) is certainly nondivergent, then no trace that leads
to it belongs to Div(L).

Proof. If ŝU=σ⇒ sU, then sU is of the form (s, sD), where ŝ=σ⇒ s and ŝD=σ⇒ sD. By
Lemma 19, sD = Sσ. If also ŝU=ρ⇒ sU, then Sρ = sD = Sσ. If σ ∈ Div(L), then there is
an s′ ∈ Sσ = Sρ such that s′−τω→, implying ρ ∈ Div(L). Therefore, either none or all of
the traces that lead to sU are divergence traces.

In Fig. 7, the rightmost state of L has been split to two states in Una(L), a certainly
nondivergent one led to by a and a potentially divergent one led to by b.

Then we define a function PD that makes the following property hold while preserving
bisimilarity: for every state s, either no or all traces that lead to s have a divergence trace as
a prefix. This is obtained by adding a component to Una(L) that remembers if the execution
has gone through a divergence trace. Formally, by PD(L) we mean the LTS (SP,Σ,∆P, ŝP)
that is obtained as follows. Let [σ] = pre if σ ∈ anT (L) and [σ] = post otherwise. Let
στ = σ and σa = σa if a ∈ Σ. First L is replaced by Una(L) = (SU,Σ,∆U, ŝU). Then let

SP = {(sU, [σ]) | ŝU=σ⇒ sU}

∆P = {((sU, [σ]), a, (s
′

U, [σa])) | ŝU=σ⇒ sU ∧ (sU, a, s
′

U) ∈ ∆U}

ŝP = (ŝU, [ε])

We say that (sU, x) is pre-divergent if x = pre and post-divergent otherwise.

Lemma 22. We have PD(L) ≡ L. If state sP of PD(L) is pre-divergent, then all traces
that lead to it belong to anT (L). If state sP of PD(L) is post-divergent, then no trace that
leads to it belongs to anT (L).

Proof. We have PD(L) ≡ Una(L) ≡ L, because the relation (sU, [σ]) ∼ s′
U
⇔ sU = s′

U
is a

bisimulation between SP and SU.
If [σa] = pre, then σa ∈ anT (L), implying σ ∈ anT (L) and [σ] = pre. Thus PD(L) has

no transitions from post-divergent to pre-divergent states.
Let ŝP=ρ⇒ (sU, x) and ρ ∈ Div(L). Because (sU, x) ∈ SP, there is a σ such that

ŝU=σ⇒ sU and x = [σ]. Because ρ ∈ Div(L), sU is potentially divergent. By Lemma 21,
all traces that lead to it are divergence traces. That includes σ. Thus x = post. As a
consequence, each divergence trace only leads to post-divergent states. By the first result
in this proof, the same holds for each trace that has a divergence trace as a prefix.
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a c b1
τ

b2 · · ·
· · ·τ

bn−1
τ
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Figure 8: An LTS fragment for detecting the divergence trace b1b2 · · · bn.

If an execution of PD(L) leads to a post-divergent state, then ŝP is post-divergent or
the execution contains a transition of the form ((sU, pre), a, (s

′

U
, post)). In the first case,

[ε] = post, so ε ∈ Div(L). In the second case, by the definition of ∆P, there is a σ such
that ŝU=σ⇒ sU, σ ∈ anT (L), and σa /∈ anT (L). This implies σa ∈ Div(L). So s′

U
is

potentially divergent and all traces that lead to it are divergence traces. As a consequence,
each post-divergent state has a divergence trace in each of its histories.

In Fig. 7, the rightmost state of Una(L) has been split to two states in PD(L), one such
that all traces leading to it start with the only divergence trace b, and another such that
no trace leading to it starts with b.

6.4. Upper sub-region. In this subsection we survey the rest of the current region.
Armed with PD, we can attack the case where Tr , Sf , and minD are preserved, but

Div and Inf are not. This time there is no unique next congruence, but two. Therefore, the
proof consists of two parts, where the first throws away information on divergence traces
that are not minimal, and the second on infinite traces that are not always-nondivergent.
Again, to reuse the construction in Section 7, we present it as a lemma that does not assume
that Sf is preserved.

Lemma 23. Assume that “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Tr

and minD but not Div .

(a) For every LTS L there is an LTS f(L) such that L ∼= f(L), Sf (f(L)) = Sf (L),
Div(f(L)) = Tr(L) ∩ extT (L), and Inf (f(L)) = Inf (L).

(a) If “∼=” does not preserve Inf , then for every LTS L there is an LTS f(L) such that
L ∼= f(L), Sf (f(L)) = Sf (L), Div(f(L)) = Tr(L) ∩ extT (L), and Inf (f(L)) = anI (L).

Proof. Let M1
∼= M2, σ ∈ Div(M1) \ Div(M2), b1 · · · bn = σ[1], c = 1[0], and d = 2[0]. By

Theorem 1, “∼=” preserves Σ, so we may let ΣM = Σ(M1) = Σ(M2). For any LTS L,
let ΣL = Σ(L) and let g(L) be the LTS that is obtained as follows. First L is replaced

by PD(⌈L⌉[2]). If ŝP is pre-divergent, then it is the new initial state, and each transition
(s, a, s′) where s is pre-divergent and s′ is post-divergent is replaced by a copy of the LTS
fragment shown in Fig. 8. Otherwise a copy of Fig. 8 is added such that its a-transition is
left out, the start state of the c-transition is the new initial state, and the LTS fragment

leads to ŝP. The alphabet of g(L) is {c}∪Σ
[1]
M ∪Σ

[2]
L . When completing a minimal divergence

trace of ⌈L⌉[2], g(L) executes cσ[1] before continuing, but otherwise it behaves like ⌈L⌉[2].
Later, in the proof of claim (b), we will introduce ΣN , N ′

1, and N ′

2. To have a place
for them in our construction, we now let N ′

0 = (with Σ(N ′

0) = ∅). When i ∈ {1, 2} and

j ∈ {0, 1, 2}, let M ′

i = c.⌈Mi ⊓M2⌉
[1] and

fi,j(L) = ⌊ ( g(L) ||M ′

i ||N ′

j ) \ ({c, d} ∪ Σ
[1]
M ∪ Σ

[3]
N ) ⌋[2] .

Clearly N ′

0 has no effect on the behaviour. With N ′

0, independently of what ΣN is, also the

hiding with Σ
[3]
N has no effect.
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Figure 9: A switchable LTS for detecting the infinite trace e1e2 · · · .

We show now that L
.
= f2,0(L). Before completing any minimal divergence trace, f2,0(L)

behaves like L. When g(L) executes c, one of the two copies of M2 in M ′

2 is switched on.

Then g(L) tries to execute σ[1]. If it fails because M2 blocks it, then f2,0(L) diverges due to
the τ -loops in Fig. 8. That is still equivalent to L, because the trace that has been executed is
a minimal divergence trace. For the same reason it is okay if M2 diverges before completing
σ. The execution of σ may also succeed, because σ ∈ Div(M1) ⊆ Tr(M1) = Tr (M2). In
that case, because σ /∈ Div(M2), M2 is left in a nondivergent state, having no effect on the
further behaviour. So f2,0(L) continues like L.

Because M ′

1 has a copy of both M1 and M2, f1,0(L) behaves otherwise like f2,0(L),
but it has additional behaviour caused by M1 starting in M ′

1, executing σ completely,
and diverging. In that case, every subsequent state of f1,0(L) is divergent. Thus L

.
=

f2,0(L) ∼= f1,0(L), Tr(f1,0(L)) = Tr(L), Sf (f1,0(L)) = Sf (L), minD(f1,0(L)) = minD(L),
Div(f1,0(L)) = Tr (L) ∩ extT (L), anI (f1,0(L)) = anI (L), and Inf (f1,0(L)) = Inf (L). As a
consequence, f1,0 qualifies as the f of claim (a).

In the case of claim (b), there are N1, N2, and ξ such that N1
∼= N2 and ξ ∈ Inf (N1) \

Inf (N2). Let e1e2 · · · = ξ[3], ΣN = Σ(N1) = Σ(N2), and {a1, a2, . . . , am} = Σ
[2]
L . When

j ∈ {1, 2}, let N ′

j = Tξ || d.⌈Nj⌉
[3], where Tξ is the LTS in Fig. 9 with the alphabet

{c, d} ∪ Σ
[2]
L ∪ Σ

[3]
N .

If j ∈ {1, 2}, c makes Tξ enter one of its two branches. Its initial state and upper branch

can parallel any finite execution of g(L). Because Tξ never refuses any other subset of Σ
[2]
L

than ∅, and because of the stable states initially and in the upper branch, Sf (f1,j(L)) =
Sf (f1,0(L)). Furthermore, Div(f1,j(L)) = Div(f1,0(L)), because Tξ cannot diverge before
executing c, and all traces that involve the execution of c are in Div(f1,0(L)).

The upper branch of Tξ does not yield infinite traces. In its lower branch Tξ switches
Nj on by executing d. Thanks to the initial state of Tξ and because N2 cannot execute ξ,
we have Inf (f1,2(L)) = anI (f1,0(L)). Because N1 can execute ξ, we have Inf (f1,1(L)) =
Inf (f1,0(L)). We get f1,0(L)

.
= f1,1(L) ∼= f1,2(L). So f1,2 qualifies as the f of claim (b).

Theorem 24. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Tr , Sf , and

minD but neither Div nor Inf , then “∼=” is the equivalence induced by Σ, Tr , Sf , minD ,
and anI .

Proof. By Lemma 13, “∼=” preserves Σ and anI . The f of Lemma 23(b) qualifies as the f
of Lemma 3.

We have now two directions to go: one where Inf is preserved and another where Div

is preserved. Given the work we have done already, the former is easy.
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Theorem 25. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Sf , minD , and

Inf but not Div , then “∼=” is the equivalence induced by Σ, Tr , Sf , minD , and Inf .

Proof. By Lemma 2, “∼=” preserves Σ and Tr . The f of Lemma 23(a) qualifies as the f of
Lemma 3.

We still have the case where Div is preserved but Inf is not.

Lemma 26. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Div but not

aenI , then for every LTS L there is an LTS f(L) such that L ∼= f(L), Sf (f(L)) = Sf (L),
Div(f(L)) = Div(L), and Inf (f(L)) = eanI (L).

Proof. Let M1
∼= M2 and ξ ∈ aenI (M1) \ aenI (M2). By Theorem 1, “∼=” preserves Σ. Let

ΣM = Σ(M1) = Σ(M2), c = 0[0], c1 = 1[0], and c2 = 2[0]. Because “∼=” preserves Div , M1

and M2 agree on which prefixes of ξ are divergence traces. Infinitely many of them are not,
by the definition of aenI . So non-empty σ1, σ2, σ3, . . . exist such that σ1σ2σ3 · · · = ξ[1]

and σ1, σ1σ2, σ1σ2σ3, . . . are not divergence traces. Let Tξ be the LTS whose alphabet is

{c, c1, c2} ∪ Σ
[1]
M and whose graph is

c1 c σ1 c2 c1 σ2 c2 c1 σ3 · · · .

For any LTS L, let g(L) be the LTS that is obtained as follows. First L is replaced by

Una(⌈L⌉[2]). Then each transition whose label a is visible and which ends in a potentially

divergent state is replaced by a c1 τ c2 . The alphabet of the result is {c1, c2} ∪ Σ
[2]
L ,

where ΣL = Σ(L). When i ∈ {1, 2}, let

fi(L) = ⌊ ( g(L) || Tξ || c.⌈Mi⌉
[1] ) \ ({c, c1, c2} ∪ Σ

[1]
M) ⌋[2] .

Each time when g(L) is about to enter a potentially divergent state, it executes c1. This

makes Tξ move one step and then let c.⌈Mi⌉
[1] try to execute up to a nondivergent state. If

it succeeds, Tξ lets g(L) continue by executing c2. In the opposite case, g(L) is trapped in
the τ -loop between c1 and c2.

The LTS M1 has every prefix of ξ as its trace. By Lemma 14, “∼=” preserves Tr .
So both ⌈M1⌉

[1] and ⌈M2⌉
[1] may succeed in executing σ1σ2 · · · σi for any i. This implies

Tr(f1(L)) = Tr(f2(L)) = Tr(L). Clearly g(L) mimics the divergence traces of L. When
M1 or M2 diverges, g(L) is in a τ -loop and the trace that has been executed is a divergence
trace. Thus Div(f1(L)) = Div(f2(L)) = Div(L).

When g(L) is in a stable state (other than the start states of c1), then c.⌈M1⌉
[1] and

c.⌈M2⌉
[1] do not diverge, so Sf (f1(L)) = Sf (f2(L)) = Sf (L). Because M2 does but M1 does

not necessarily prevent g(L) from infinitely many times continuing with c2 after a divergence
trace, we have Inf (f1(L)) = Inf (L) but Inf (f2(L)) = eanI (L). So L

.
= f1(L) ∼= f2(L).

Theorem 27. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Sf and Div but

not aenI , then “∼=” is the equivalence induced by Σ, Sf , Div , and eanI .

Proof. By Lemma 15, “∼=” preserves Σ and eanI . The f of Lemma 26 qualifies as the f of
Lemma 3.
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Figure 10: An LTS for detecting an infinite trace with only finitely many nondivergent

prefixes. The thick arrows with Σ
[3]
L denote that there is a transition from each

start state of the thick arrows to their common end state for each a ∈ Σ
[3]
L .

Lemma 28. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Div and aenI but

not Inf , then for every LTS L there is an LTS f(L) such that L ∼= f(L), Sf (f(L)) = Sf (L),
Div(f(L)) = Div(L), and Inf (f(L)) = aenI (L).

Proof. For the purpose of this proof, we define eventually-always-divergent infinite traces
as eadI (L) = Inf (L) \ aenI (L). Let M1

∼= M2 and ξ ∈ Inf (M1) \ Inf (M2). By Theorem 1,

“∼=” preserves Σ. Let ΣM = Σ(M1) = Σ(M2), c = 0[0], c1 = 1[0], and c2 = 2[0]. Because
“∼=” preserves aenI , ξ ∈ eadI (M1). Because “∼=” preserves Div , M1 and M2 agree on
which prefixes of ξ are divergence traces. From some point on all of them are, because
ξ ∈ eadI (M1).

For any LTS L, let ΣL = Σ(L), and let g(L) be obtained as follows. Each transition of
Una(L) whose label a is visible is replaced by

a[2] c1 , if it starts in a certainly nondiv. and ends in a potentially divergent state;
a[2] c2 , if it starts and ends in a potentially divergent state;
a[3] , if it starts in a potentially divergent and ends in a certainly nondiv. state;
a[2] , if it starts and ends in a certainly nondivergent state.

If the initial state of Una(L) is potentially divergent, then a c1-transition is added to its

front. The alphabet of g(L) is {c1, c2} ∪ Σ
[2]
L ∪ Σ

[3]
L .

Let b1b2 · · · = ξ[1]. Let Tξ be the LTS whose alphabet is {c, c1, c2} ∪ Σ
[1]
M ∪ Σ

[3]
L and

whose graph is in Fig. 10. When i ∈ {1, 2}, let

fi(L) =
(

( g(L) || Tξ || c.⌈Mi⌉
[1] ) \ ({c, c1, c2} ∪ Σ

[1]
M )

)

Φ ,

where Φ renames each a[2] and each a[3] to a.
While g(L) traverses among certainly nondivergent states, f1(L) and f2(L) behave like

L. When g(L) enters a potentially divergent state, Tξ prepares for an arbitrary finite number
of transitions between potentially divergent states. The divergence of Tξ is not a problem,
because the trace that has been executed is a divergence trace. As long as Tξ is in its middle
row excluding its leftmost state, g(L) can execute transitions at will. These states of Tξ

are stable and offer all actions in Σ(g(L)) ∩ Σ(Tξ) except c1 that also g(L) refuses, so Sf

is preserved. If g(L) enters a certainly nondivergent state, then Tξ goes back to its initial
state. As a consequence, f1(L) and f2(L) have at least the same stable failures, divergence
traces, and always-eventually-nondivergent infinite traces as L, and no extra stable failures,
divergence traces, or infinite traces have so far been found.

If g(L) executes more transitions between potentially divergent states than Tξ has
been prepared for, Tξ reaches the leftmost state of its middle row. Then it executes c,
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Table 1: All congruences when no two of deadlock, livelock, and bothlock are equivalent

preserves does not preserve induced by theorem
Sf , minD Tr Σ, Sf , minD , anI 18
Tr , Sf , minD Div , Inf Σ, Tr , Sf , minD , anI 24
Sf , minD , Inf Div Σ, Tr , Sf , minD , Inf 25
Sf , Div aenI Σ, Sf , Div , eanI 27
Sf , Div , aenI Inf Σ, Sf , Div , aenI 29
Sf , Div , Inf Σ, Sf , Div , Inf

switching M1 or M2 on. From then on all states are divergent and g(L) is prevented
from leaving potentially divergent states, so no new stable failures or divergence traces are
introduced. f2(L) does not introduce any new infinite traces either, while f1(L) may execute
all the remaining infinite traces of L, that is, eadI (L). So Sf (f1(L)) = Sf (f2(L)) = Sf (L),
Div(f1(L)) = Div(f2(L)) = Div(L), Inf (f1(L)) = Inf (L), and Inf (f2(L)) = aenI (L).
Clearly L

.
= f1(L) ∼= f2(L).

Theorem 29. If “∼=” is a congruence, “
.
=” implies “∼=”, and “∼=” preserves Sf , Div , and

aenI but not Inf , then “∼=” is the equivalence induced by Σ, Sf , Div , and aenI .

Proof. By Theorem 1, “∼=” preserves Σ. The f of Lemma 28 qualifies as the f of Lemma 3.

Both branches of reasoning have now led to congruences that preserve both Div and
Inf . In this section also Sf is preserved. The equivalence induced by Σ, Sf , Div , and Inf

is “
.
=”. So “

.
=” is the last congruence in this section.

There are thus six congruences in this section. They are summarized in Table 1. If a
congruence is implied by “

.
=” and preserves the sets in the first column of the table but

does not preserve the sets in the second column, then it is the equivalence induced by the
sets in the third column. The sets in the third column that are not in the first column of
the same row must be added to meet the congruence requirement while preserving the sets
in the first column. By Theorems 8 and 16, the congruence on the first row is the weakest
in this section. By comparing the second column to the first column one may check that
all possibilities between the first row and “

.
=” are covered.

7. When Deadlock Is Not Livelock Is Bothlock

In this section 6∼= τ ∼= τ τ . By Theorem 16, minD is preserved also in this section.
However, τ ∼= τ τ implies that Sf is not preserved. Subsection 7.1 introduces the
new kinds of failures that replace Sf . The region is shown in Fig. 11. Its two lowest and
the highest layer are surveyed in Subsections 7.2 and 7.3, respectively.

7.1. New kinds of failures. In this subsection we define four new kinds of failures and
briefly analyse their relation to divergence traces.

The next lemma reveals that the essence of τ ∼= τ τ is that those stable failures
whose trace is a divergence trace do not matter. The function ν in the lemma throws away
all information on such failures, by making ν(L) have the maximum possible set of them
allowed by Σ(L), independently of what L has.
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minD
anT
anI

Tr

Inf
Div
eanI

aenI

sanF

CSP, anF

snF

nF

NDFD

Figure 11: The congruences in Section 7 as a Hasse diagram. Names in italics indicate the
new preserved set(s). Other names are the names of the congruences.

Lemma 30. If “∼=” is a congruence, “
.
=” implies “∼=”, and τ ∼= τ τ , then for every

LTS L there is an LTS ν(L) such that ν(L) ∼= L, Σ(ν(L)) = Σ(L), Sf (ν(L)) = Sf (L) ∪
(Div(L)× 2Σ(L)), Div(ν(L)) = Div(L), and Inf (ν(L)) = Inf (L).

Proof. Let M1 = τ and M2 = τ τ . Let c /∈ Σ(L) ∪ {τ}. Let g(L) be the LTS that
is obtained by adding, from each divergent state of L, a c-transition to a deadlock state.
When i ∈ {1, 2}, let fi(L) = (g(L) || c.Mi) \ {c}. The only difference of f1(L) from L is an
additional divergence where L already has a divergence, so L

.
= f1(L). On the other hand,

f2(L) also has there a deadlock. Thus f2(L) has the properties promised of ν(L).

In this section we have to proceed in two dimensions. On one hand, we have to start
with no information on stable failures and add it until we have all stable failures whose
trace is not a divergence trace. On the other hand, for each level of information on stable
failures, we have to investigate different kinds of divergence and infinite traces, like in the
previous section.

We will need four new kinds of failures: nondivergent, strongly nondivergent, always
nondivergent, and strongly always nondivergent.

nF (L) := {(σ,A) ∈ Sf (L) | σ /∈ Div(L)}

snF (L) := {(σ,A) ∈ nF (L) | ∀a ∈ A : σa /∈ Div(L)}

anF (L) := {(σ,A) ∈ Sf (L) | σ /∈ extT (L)}

sanF (L) := {(σ,A) ∈ anF (L) | ∀a ∈ A : σa /∈ minD(L)}

All these four sets X(L) have the property that if (σ,A) ∈ X(L), then (σ, ∅) ∈ X(L) and
σ ∈ Tr (L). Like before, with XTr (L) we denote the set {σ | (σ, ∅) ∈ X(L)}. We have the
following:

nFTr(L) = snFTr (L) = Tr(L) \Div(L)
anFTr(L) = sanFTr (L) = anT (L)
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The ν of Lemma 30 satisfies

Sf (ν(L)) = Sf (L) ∪ (Div(L)× 2Σ(L)) = nF (L) ∪ (Div(L)× 2Σ(L)) .

The number of possible combinations of semantic sets is restricted a bit by the next
lemma.

Lemma 31. Any congruence that preserves nF or snF also preserves Div .

Proof. By Theorem 1, it preserves Σ. Let σ = a1 · · · an. We have σ ∈ Div(L) if and only if
σ /∈ nFTr (L ⊓ a1 a2 · · ·

an ). The same proof works for snF .

7.2. (Strongly) always nondivergent failures. In this subsection, we essentially repeat
the analysis in Section 6 three times, with nothing, sanF , or anF in the place of Sf . Of
course, we also prove that if any information on stable failures is preserved then sanF is
preserved, at the next level anF or snF is preserved, and then both are preserved.

The next lemma is central in proving that if any information on stable failures is
preserved, then at least sanF must be preserved.

Lemma 32. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves minD but not sanF ,

and τ ∼= τ τ , then for every LTS L there is an LTS h(L) such that h(L) ∼= L,
Sf (h(L)) = Tr(L)× 2Σ(L), Div(h(L)) = Div(L), and Inf (h(L)) = Inf (L).

Proof. By Theorem 1, “∼=” preserves Σ. Let M1
∼= M2 and (σ,A) ∈ sanF (M1) \ sanF (M2).

Let ΣM = Σ(M1) = Σ(M2), b1 · · · bn = σ[1], and {a1, . . . , am} = A[1]. Let L be any LTS and

ΣL = Σ(L). Let Tσ,A be like in Fig. 2, except that each τ -loop is replaced by an a[2]-loop

for each a ∈ ΣL, and the alphabet is Σ
[1]
M ∪ Σ

[2]
L . When i ∈ {1, 2}, let

g(Mi) = ⌊ (Tσ,A || ⌈Mi⌉
[1]) \Σ

[1]
M ⌋[2] .

By the definition of sanF , g(M1) does not diverge. Because “∼=” preserves minD , g(M2)
does not diverge. We have Run(ΣL)

.
= g(M2) ∼= g(M1)

.
= RD(ΣL), where RD(ΣL) is

obtained from Run(ΣL) by adding a second state and a τ -transition to it from the original
state (please see Fig. 1).

We have L ≡ L ||Run(ΣL) ∼= L ||RD(ΣL) ∼= ν(L ||RD(ΣL)), where ν is from Lemma 30.
The LTS L||RD(ΣL) is otherwise like L, but its stable failures are Sf

Tr (L)×2ΣL . Therefore,
and given (3.1), ν(L || RD(ΣL)) qualifies as the h(L).

We can now list the first six congruences in this section, and prove that the next ones
must preserve sanF .

Table 2: The congruences of Theorem 33

preserves does not preserve induced by
minD Tr , sanF Σ, anT , minD , anI
Tr , minD sanF , Div , Inf Σ, Tr , minD , anI
minD , Inf sanF , Div Σ, Tr , minD , Inf
Div sanF , aenI Σ, Tr , Div , eanI
Div , aenI sanF , Inf Σ, Tr , Div , aenI
Div , Inf sanF Σ, Tr , Div , Inf
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Theorem 33. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves the sets in the first

column of Table 2 but not the sets in the second column, and τ ∼= τ τ , then it is the
equivalence induced by the sets in the third column.

Proof. Let [r1] to [r6] refer to the rows in the table.
Lemmas 2 [r3], 12 [r1], 13 [r1,2], 14 [r4,5,6], and 15 [r4,5,6] imply that if “∼=” preserves

the sets in the first column, then “∼=” also preserves the additional sets in the third column.
To prove the first claim that “∼=” can be no other equivalence, let f be the f of Lemma 17

and h be the h of Lemma 32. We have L ∼= f(L) ∼= h(f(L)),

Sf (h(f(L))) = Tr(f(L))× 2Σ(f(L)) = (anT (L) ∪ extT (L))× 2Σ(L) ,
Div(h(f(L))) = Div(f(L)) = extT (L) , and
Inf (h(f(L))) = Inf (f(L)) = anI (L) ∪ extI (L) .

Because extT (L) and extI (L) are functions of Σ(L) and minD(L), Lemma 3 applies and
gives the claim.

The remaining five claims that “∼=” can be no other equivalence are proven in a similar
way using the f from Lemmas 23(b) [r2], 23(a) [r3], 26 [r4], and 28 [r5], and the function

f(L) = L [r6]. In all cases Sf (h(f(L))) = Tr(f(L))× 2Σ(f(L)) = Tr(L)× 2Σ(L). Depending
on the case, Div(h(f(L))) is Tr(L) ∩ extT (L) [r2,3] or Div(L) [r4,5,6], and Inf (h(f(L))) is
anI (L) [r2], eanI (L) [r4], aenI (L) [r5], or Inf (L) [r3,6].

The weakest livelock-preserving congruence is the weakest congruence that guarantees
for every L and L′ that if Div(L) = ∅ 6= Div(L′), then L 6∼= L′. In [13] it was proven that the
weakest livelock-preserving congruence with respect to L \ A and L || L′ is the equivalence
induced by Σ, anT , minD , and anI . Only equivalences that preserve Σ were considered.
In the present publication, the apparently weaker starting point 6∼= τ τ was used and
the same result was obtained as Theorem 16 and Lemmas 12 and 13. When taking the
preservation of Σ as an assumption, their proofs only use L \A and L ||L′. The equivalence
induced by Σ, Tr , Div , and eanI is the weakest congruence with respect to L\A and L ||L′

that preserves divergence traces [13]. This result corresponds to Lemmas 14 and 15.
After adding sanF , there is no unique next set of stable failures, but two. So we need

two different functions that throw out some information on stable failures while preserving
the congruence.

The function h1 in the next lemma throws away all information on stable failures at
and after minimal divergence traces. To facilitate the use of the lemma in two different
situations, it has two alternative assumptions on Div .

Lemma 34. Assume that “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Σ but not

snF , and τ ∼= τ τ . For every LTS L such that Div(L) = Tr(L) ∩ extT (L) there is

an LTS h1(L) such that h1(L) ∼= L, Sf (h1(L)) = anF (L) ∪ ( (Tr (L) ∩ extT (L)) × 2Σ(L) ),
Div(h1(L)) = Div(L), and Inf (h1(L)) = Inf (L). If “∼=” preserves Div , then the assumption
Div(L) = Tr(L) ∩ extT (L) is not needed.

Proof. Let ν be from Lemma 30. If Div(L) = Tr(L) ∩ extT (L), then ν qualifies as the h1.
The case remains where “∼=” preserves Div . LetM1

∼= M2, (σ,A) ∈ snF (M1)\snF (M2),

ΣM = Σ(M1) = Σ(M2), b1 · · · bn = σ[1], {a1, . . . , am} = A[1], c = 1[0], and ΣL = Σ(L). Let

Tσ,A be like in Fig. 12 with the alphabet {c} ∪ Σ
[1]
M ∪ Σ

[2]
L . Let g(L) be ⌈ν(L)⌉[2] with a

c-transition added from each divergent state to itself. When i ∈ {1, 2}, let

fi(L) = ⌊ (g(L) || Tσ,A || c.⌈Mi⌉
[1]) \ ({c} ∪ Σ

[1]
M ) ⌋[2] .
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Figure 12: An LTS for detecting a strongly nondivergent failure. The thick arrows denote

that there is a transition for each a ∈ Σ
[2]
L .

Σ
[2]
L

Σ
[3]
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[2]
L

Σ
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[3]
L

Σ
[2]
L

τ b1 b2
τ
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Figure 13: An LTS for detecting an always nondivergent failure.

By construction, fi(L) can do everything that ν(L) can do, but it can also hiddenly execute
c from any divergent state. After executing c, fi(L) tries to hiddenly execute σ[1]. If that
fails, then fi(L) is trapped in a divergence. If that succeeds, then g(L) can continue but
Tσ,A is in an unstable state and Mi is at an end state of σ. We have Inf (fi(L)) = Inf (L).
By the definition of snF , M1 does not diverge when Tσ,A is in any of its last three states,

but if Tσ,A continues, then Tσ,A || c.⌈M1⌉
[1] may deadlock. Thanks to the use of ν, also g(L)

may enter a stable state, resulting in a total deadlock. So f1(L) behaves otherwise like L,

but has also the stable failures (Tr (L) ∩ extT (L))× 2Σ(L).
Because “∼=” preserves Div , M2 cannot cause a divergence when Tσ,A is in any of its last

three states. It cannot cause a deadlock either, because (σ,A) /∈ snF (M2). So f2(L)
.
= ν(L).

In conclusion, L ∼= ν(L)
.
= f2(L) ∼= f1(L), and f1(L) qualifies as the h1.

The function h2 in the next lemma throws away all information on stable failures whose
trace is or whose refused action would complete a divergence trace. Its construction requires
that no state is the end state of both a divergence trace and a nondivergent trace. To cope
with this problem, we use the function Una defined in the previous section.

Lemma 35. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves minD but not anF ,

and τ ∼= τ τ , then for every LTS L there is an LTS h2(L) such that h2(L) ∼= L,

Sf (h2(L)) = (Div(L)× 2Σ(L)) ∪ {(σ,A1 ∪A2) | (σ,A1) ∈ snF (L) ∧ ∀a ∈ A2 : σa ∈ Div(L)},
Div(h2(L)) = Div(L), and Inf (h2(L)) = Inf (L).

Proof. By Theorem 1, “∼=” preserves Σ. Let M1
∼= M2, (σ,A) ∈ anF (M1) \ anF (M2),

ΣM = Σ(M1) = Σ(M2), b1 · · · bn = σ[1], and d = 1[0]. Let L be any LTS and ΣL = Σ(L).

Let T d
σ be the LTS with the alphabet {d}∪Σ

[1]
M ∪Σ

[2]
L ∪Σ

[3]
L whose graph is in Fig. 13. When

i ∈ {1, 2}, let

M ′

i = ( (T d
σ ||MiΦ

[1],d) \Σ
[1]
M )Φ

[3]
d ,

where Φ
[3]
d renames d to each x ∈ Σ

[3]
L , and Φ[1],d renames each x ∈ ΣM to x[1] and each

x ∈ A also to d. If A = ∅, we let MiΦ
[1],d = ⌈Mi⌉

[1] || Stop{d}, so that d is not accidentally

left out from the alphabet Σ
[1]
M ∪ {d}. Clearly Mi refuses A if and only if MiΦ

[1],d refuses d.

Let Ξ = Σ
[2]
L ∪ Σ

[3]
L . We have Σ(M ′

i) = Ξ.
Clearly Inf (M ′

1) = Inf (M ′

2) = Ξω. Because (σ,A) ∈ anF (M1) and “∼=” preserves
minD , M ′

i cannot diverge before executing d. The leftmost state of T d
σ is stable, ensuring

(σ, ∅) ∈ Sf (M ′

i) for every σ ∈ Ξ∗. No other states of T d
σ can add to Sf (M ′

i), except perhaps
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the start state of the d-transition. Because M2 cannot execute σ or refuse A after it,
T d
σ ||M2Φ

[1],d cannot refuse d after b1 · · · bn. So Sf (M ′

2) = {(σ, ∅) | σ ∈ Ξ∗}. Since M1 can,

Sf (M ′

1) = {(σ,B) | σ ∈ Ξ∗ ∧B ⊆ Σ
[3]
L }.

Let g(L) be Una(L) with each visible label x replaced by x[3] if the transition ends

in a potentially divergent state, and x[2] otherwise. Let Φ[2,3] rename each x[2] and x[3]

to x. Consider fi(L) = (g(L) || M ′

i)Φ[2,3]. When M ′

i diverges, d has just been executed.
Thus g(L) has just completed a divergence trace and M ′

i blocks the visible transitions.
So Div(fi(L)) = Div(L). M ′

2 does not affect the behaviour of g(L) in any other way, so
f2(L)

.
= L. On the other hand, M ′

1 can block all actions that would complete a nonempty
divergence trace of L. So

Sf (f1(L)) = {(σ,B1 ∪B2) | (σ,B1) ∈ Sf (L) ∧ ∀a ∈ B2 : σa ∈ Div(L)} .

It implies

nF (f1(L)) = {(σ,B1 ∪B2) | (σ,B1) ∈ nF (L) ∧ ∀a ∈ B2 : σa ∈ Div(L)}

= {(σ,A1 ∪A2) | (σ,A1) ∈ snF (L) ∧ ∀a ∈ A2 : σa ∈ Div(L)} ,

where the last equality is obtained by letting A2 = {a ∈ B1 ∪ B2 | σa ∈ Div(L)} and
A1 = (B1 ∪B2) \A2.

As a consequence, ν(f1(L)) qualifies as the h2(L), where ν is from Lemma 30.

The following theorem lists the next six congruences and points direction to the next nine.

Table 3: The congruences of Theorem 36

preserves does not preserve induced by
sanF , minD Tr , anF Σ, sanF , minD , anI
Tr , sanF , minD anF , Div , Inf Σ, Tr , sanF , minD , anI
sanF , minD , Inf anF , Div Σ, Tr , sanF , minD , Inf
sanF , Div anF , snF , aenI Σ, Tr , sanF , Div , eanI
sanF , Div , aenI anF , snF , Inf Σ, Tr , sanF , Div , aenI
sanF , Div , Inf anF , snF Σ, Tr , sanF , Div , Inf

Theorem 36. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves the sets in the first

column of Table 3 but not the sets in the second column, and τ ∼= τ τ , then “∼=” is
the equivalence induced by the sets in the third column.

Proof. Let [r1] to [r6] refer to the rows in the table.
Lemmas 2 [r3], 13 [r1,2], 14 [r4,5,6], and 15 [r4,5,6] imply that if “∼=” preserves the sets

in the first column, then it preserves also the additional sets in the third column.
To prove the claims that “∼=” can be no other equivalence, let f ′ be the f in Lemma 17

[r1], 23(b) [r2], 23(a) [r3], 26 [r4], or 28 [r5], or the function f ′(L) = L [r6]. So Div(f ′(L))
is either extT (L) [r1], Tr (L) ∩ extT (L) [r2,3], or Div(L) [r4,5,6]; and Inf (f ′(L)) is ei-
ther anI (L) ∪ extI (L) [r1], anI (L) [r2], eanI (L) [r4], aenI (L) [r5], or Inf (L) [r3,6]. Fur-
thermore, Sf (f ′(L)) = Sf (L) and f ′(L) ∼= L. Because “∼=” preserves minD or Div , we
have minD(f ′(L)) = minD(L) and extT (f ′(L)) = extT (L). Excluding [r1], we also have
Tr(f ′(L)) = Tr(L).

Let h1 and h2 be like in Lemmas 34 and 35, and let f(L) = h2(h1(f
′(L))). The validity

of some assumptions of Lemma 34 is not immediately obvious, so let us check them. By
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Lemma 14, Div is not preserved on [r1]. By Lemma 31, snF is not preserved on [r1,2,3].
It is explicitly given in the table that snF is not preserved on [r4,5,6]. On [r4,5,6], Div

is preserved. We show next that [r1,2,3] satisfy Div(f ′(L)) = Tr(f ′(L)) ∩ extT (f ′(L)).
By Lemma 23, [r2,3] have Div(f ′(L)) = Tr(L) ∩ extT (L) = Tr(f ′(L)) ∩ extT (f ′(L)). By
Lemma 17, [r1] has Div(f ′(L)) = extT (L) = extT (f ′(L)) = Tr(f ′(L)) ∩ extT (f ′(L)),
because Div(f ′(L)) ⊆ Tr(f ′(L)) by the definition of Div . So Lemma 34 can be used.

We have L ∼= f ′(L) ∼= h1(f
′(L)) ∼= f(L), Div(f(L)) = Div(f ′(L)), and Inf (f(L)) =

Inf (f ′(L)). All assumptions of Lemma 3 can now be checked except the Sf (f(L)) assump-
tion. To facilitate checking it, too, we show next that Sf (f(L)) = F (L), where

F (L) =
( (

Tr (f ′(L)) ∩ extT (f ′(L))
)

× 2Σ(L)
)

∪

{(σ,A1 ∪A2) | (σ,A1) ∈ sanF (f ′(L)) ∧ ∀a ∈ A2 : σa ∈ minD(f ′(L))} .

Let σ ∈ Tr(f ′(L)), A ⊆ Σ(L), A2 = {a ∈ A | σa ∈ Div(f ′(L))}, and A1 = A \A2.
Assume first that σ ∈ extT (f ′(L)). Then clearly (σ,A) ∈ F (L). By Lemma 34,

(σ,A) ∈ Sf (h1(f
′(L))). If σ ∈ Div(h1(f

′(L))), then the first part and otherwise the second
part of the expression for Sf (h2(. . .)) in Lemma 35 yields (σ,A) ∈ Sf (f(L)).

In the remaining case σ /∈ extT (f ′(L)). That implies σ ∈ anT (f ′(L)). Then σa ∈
minD(f ′(L)) if and only if σa ∈ Div(f ′(L)) if and only if σa ∈ Div(h1(f

′(L))). Furthermore,
(σ,A) ∈ F (L) if and only if (σ,A1) ∈ sanF (f ′(L)) if and only if (σ,A1) ∈ sanF (h1(f

′(L)))
if and only if (σ,A1) ∈ snF (h1(f

′(L))) if and only if (σ,A) ∈ Sf (f(L)).
We have shown Sf (f(L)) = F (L).
Because f ′ preserves Sf and minD , we have sanF (f ′(L)) = sanF (L). On [r1],

Tr (f ′(L)) = Div(f ′(L)) ∪ Sf Tr (f ′(L)) = extT (L) ∪ Sf Tr (L) = extT (L) ∪ sanFTr (L) ,

because if σ /∈ extT (L) and (σ, ∅) ∈ Sf (L), then (σ, ∅) ∈ sanF (L). In the remaining cases
“∼=” preserves Tr , so Tr(f ′(L)) = Tr(L). Thus Lemma 3 applies in all cases.

The equivalence induced by Σ, sanF , minD , and anI is the weakest “any-lock”-
preserving congruence (that is, the weakest congruence that distinguishes LTSs that can
stop executing visible actions from those that cannot) with respect to L \A and L || L′, as
was proven in [12].

Six more congruences follow.

Table 4: The congruences of Theorem 37

preserves does not preserve induced by
anF , minD Tr Σ, anF , minD , anI
Tr , anF , minD Div , Inf Σ, Tr , anF , minD , anI
anF , minD , Inf Div Σ, Tr , anF , minD , Inf
anF , Div snF , aenI Σ, Tr , anF , Div , eanI
anF , Div , aenI snF , Inf Σ, Tr , anF , Div , aenI
anF , Div , Inf snF Σ, Tr , anF , Div , Inf

Theorem 37. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves the sets in the first

column of Table 4 but not the sets in the second column, and τ ∼= τ τ , then “∼=” is
the equivalence induced by the sets in the third column.
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Proof. The proof is like the proof of Theorem 36 with the following differences. Now h2 is
not used, so f(L) = h1(f

′(L)). By the definition of h1,

Sf (f(L)) = anF (f ′(L)) ∪ ( (Tr (f ′(L)) ∩ extT (f ′(L))) × 2Σ(L) ) .

We have anF (f ′(L)) = anF (L). On [r1], Tr(f ′(L)) = extT (L) ∪ sanFTr (L) = extT (L) ∪
anFTr (L).

The congruence induced by Σ, anF , minD , and anI is the same as the well-known
failures-divergences equivalence in the CSP theory [16]. It is more often defined by requiring
that Σ, CFail , and CDiv are preserved, where (in our terminology) CDiv(L) = extT (L) and

CFail(L) = Sf (L) ∪ (CDiv(L)× 2Σ(L)). That anI is preserved is not required, because the
LTSs are assumed to be finitely branching, that is, for every s, the set {s′ | ∃a : (s, a, s′) ∈ ∆}
is finite. It makes anI a function of anT . Often other parallel composition operators than
the one defined in this publication are used, making it unnecessary to talk about Σ.

In CSP theory, the congruence was defined using a fixed-point method that gives a
meaning to recursively defined process expressions without appealing to LTSs. A natu-
ral consequence of this method is that the resulting congruence preserves no information
beyond minimal divergence traces. With it, each divergence is equivalent to RDL(ΣL) in
Fig. 1. This phenomenon is called catastrophic divergence and RDL(ΣL) is called chaos.
The phenomenon is harmful in many applications. This motivated the development and
name of CFFD-equivalence, that is, chaos-free failures divergences equivalence. Recently, a
complicated fixed-point definition for the equivalence induced by Σ, Tr , Div , and eanI has
been found [15]. To this, Sf can be added.

7.3. (Strongly) nondivergent failures. We still have to consider the congruences that
preserve snF or more and satisfy τ ∼= τ τ . There are three groups of them. Again,
each group corresponds to Section 6. However, because of Lemma 31, each group only
contains congruences that preserve Div , so it only contains three congruences.

Table 5: The congruences of Theorem 38

preserves does not preserve induced by
snF anF , aenI Σ, snF , Div , eanI
snF , aenI anF , Inf Σ, snF , Div , aenI
snF , Inf anF Σ, snF , Div , Inf

Theorem 38. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves the sets in the first

column of Table 5 but not the sets in the second column, and τ ∼= τ τ , then “∼=” is
the equivalence induced by the sets in the third column.

Proof. Lemmas 31 and 15 imply that “∼=” preserves Div , Σ, and eanI .
To prove the claims that “∼=” can be no other equivalence, let f ′ be the f in Lemma 26

or 28, or the function f ′(L) = L. Let h2 be like in Lemma 35, and let f(L) = h2(f
′(L)).

We have L ∼= f(L), Div(f(L)) = Div(L), Inf (f(L)) = Inf (f ′(L)), and

Sf (f(L)) = (Div(L)× 2Σ(L)) ∪ {(σ,A1 ∪A2) | (σ,A1) ∈ snF (L) ∧ ∀a ∈ A2 : σa ∈ Div(L)} .

Furthermore, Inf (f ′(L)) is either eanI (L), aenI (L), or Inf (L). So Lemma 3 applies.
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Figure 14: An LTS for detecting a nondivergent failure.

Lemma 39. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves Div but not nF ,

and τ ∼= τ τ , then for every LTS L there is an LTS h(L) such that h(L) ∼= L,
Div(h(L)) = Div(L), Inf (h(L)) = Inf (L), and

Sf (h(L)) = anF (L) ∪ (Div(L)× 2Σ(L)) ∪

{(σ,A1 ∪A2) | (σ,A1) ∈ snF (L) ∧ σ ∈ extT (L) ∧ ∀a ∈ A2 : σa ∈ Div(L)} .

Proof. Theorem 1 implies that “∼=” preserves Σ. Let M1
∼= M2, (σ,A) ∈ nF (M1)\nF (M2),

ΣM = Σ(M1) = Σ(M2), b1 · · · bn = σ[1], c = 1[0], and d = 2[0]. Let L be any LTS and

ΣL = Σ(L). Let T d
σ be the LTS whose alphabet is {c, d}∪Σ

[1]
M ∪Σ

[2]
L ∪Σ

[3]
L and whose graph

is in Fig. 14. When i ∈ {1, 2}, let

M ′

i = ( (T d
σ || c.(MiΦ

[1],d) ) \ ({c} ∪ Σ
[1]
M ) )Φ

[3]
d ,

where Φ[1],d renames each x ∈ ΣM to x[1] and each x ∈ A also to d, and Φ
[3]
d renames

d to each x ∈ Σ
[3]
L . We use the same trick as in the proof of Lemma 35 to ensure that

Σ(MiΦ
[1],d) = Σ

[1]
M ∪ {d} even if A = ∅. Let Ξ = Σ

[2]
L ∪ Σ

[3]
L . We have Σ(M ′

i) = Ξ.
Clearly Inf (M ′

1) = Inf (M ′

2) = Ξω. Because (σ,A) ∈ nF (M1) and “∼=” preserves Div ,

σ /∈ Div(M1) = Div(M2). Therefore, Div(M ′

1) = Div(M ′

2) ⊆ {σa | σ ∈ Ξ∗ ∧ a ∈ Σ
[3]
L }. The

leftmost state of T d
σ is stable, ensuring (σ, ∅) ∈ Sf (M ′

i) for every σ ∈ Ξ∗. No other states of
T d
σ can affect Sf (M ′

i), except perhaps the start state of the d-transition. Because M2 cannot

execute σ or refuse A after it, T d
σ || c.(M2Φ

[1],d) cannot refuse d after b1 · · · bn. Therefore,
Sf (M ′

2) = {(σ, ∅) | σ ∈ Ξ∗}. However, M1 can, so we have Sf (M ′

1) = {(σ, ∅) | σ ∈ Ξ∗} ∪

{(σaρ,B) | σρ ∈ Ξ∗ ∧ a ∈ Σ
[3]
L ∧B ⊆ Σ

[3]
L }.

Let g(L) be Una(L) with each visible label x replaced by x[3] if the transition ends in

a potentially divergent state of g(L), and x[2] otherwise. Let Φ[2,3] rename each x[2] and

x[3] to x. Consider fi(L) = (g(L) || M ′

i)Φ[2,3]. When M ′

i diverges, also g(L) completes a
divergence trace and M ′

i blocks the visible transitions. M ′

2 does not affect the behaviour
of g(L) in any other way, so f2(L)

.
= L. On the other hand, M ′

1 can block all actions that
would complete a nonminimal divergence trace.

Let ν be like in Lemma 30. Clearly ν(f1(L)) ∼= L, Div(ν(f1(L))) = Div(L), and
Inf (ν(f1(L))) = Inf (L). By analysing in turn the stable failures whose trace is always-
nondivergent, divergent, or neither of them, we see that

Sf (ν(f1(L))) = anF (L) ∪ (Div(L)× 2Σ(L)) ∪
{(σ,A1 ∪A2) | (σ,A1) ∈ snF (L) ∧ σ ∈ extT (L) ∧ ∀a ∈ A2 : σa ∈ Div(L)}.

Thus ν(f1(L)) qualifies as the h(L) of the claim.
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Table 6: The congruences of Theorem 40

preserves does not preserve induced by
anF , snF nF , aenI Σ, anF , snF , Div , eanI
anF , snF , aenI nF , Inf Σ, anF , snF , Div , aenI
anF , snF , Inf nF Σ, anF , snF , Div , Inf

Theorem 40. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves the sets in the first

column of Table 6 but not the sets in the second column, and τ ∼= τ τ , then “∼=” is
the equivalence induced by the sets in the third column.

Proof. The proof is like the proof of Theorem 38, but using the h of Lemma 39 instead of
the h2 of Lemma 35.

Table 7: The congruences of Theorem 41

preserves does not preserve induced by
nF Sf , aenI Σ, nF , Div , eanI
nF , aenI Sf , Inf Σ, nF , Div , aenI
nF , Inf Sf Σ, nF , Div , Inf

Theorem 41. If “∼=” is a congruence, “
.
=” implies “∼=”, “∼=” preserves the sets in the first

column of Table 7 but not the sets in the second column, and τ ∼= τ τ , then “∼=” is
the equivalence induced by the sets in the third column.

Proof. The proof is like the proof of Theorem 38, but using the ν of Lemma 30 instead of
the h2 of Lemma 35.

The equivalence induced by Σ, nF , Div , and eanI is the weakest congruence that
preserves all traces that can lead to an “any-lock” (that is, deadlock or livelock) with respect
to L \ A and L || L′, as was proven in [12]. The same (pre)congruence is the weakest that
preserves so-called conditional liveness properties [4]. The equivalence induced by Σ, nF ,
Div , and Inf is called nondivergent failures divergences equivalence or NDFD-equivalence.
In [8] it was proven that it is the weakest congruence that preserves all properties that can
be formulated in the stuttering-insensitive linear temporal logic of [10]. A variant of this
result, where the logic is connected to LTSs in a more intuitive way, was presented in [18].

A comparison of the “induced by” and “does not preserve” colums of Table 2 to 7
reveals that all possibilities with 6∼= τ ∼= τ τ have been investigated.

8. Conclusion

Fig. 15 shows the relations between the abstract linear-time congruences discussed in this
publication as a Hasse diagram. There are altogether 40 of them. If the set of considered
operators is a.L, L \ A, LΦ, and L || L′, then for any stuttering-insensitive linear-time
property, its optimal congruence is among those in the figure.

For instance, what is the weakest linear-time congruence that distinguishes a from
τ a ? Clearly the equivalence induced by Σ, Tr , Div , and Inf does not separate them.

This also rules out the nine equivalences that are connected downstream to it in the figure.
On the other hand, the equivalence induced by Σ and Sf separates them, and so does the
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Inf

Sf

minD
anT
anI

Div
eanI

aenI

sanF

CSP, anF

snF

nF

NDFD

CFFD

Figure 15: All abstract linear-time congruences with respect to a.L, L \A, LΦ, and L ||L′.
Names in italics indicate the new preserved set(s). Other names are the names
of the congruences. There is a path from “∼=1” down to “∼=2” if and only if “∼=1”
implies “∼=2”.

equivalence induced by Σ, sanF , minD , and anI . So there is no unique weakest linear-
time congruence, but two. It is worth mentioning that outside linear-time, also observation
equivalence [11] separates them, although it is not strictly stronger than the two linear-time
congruences mentioned above.

With a smaller set of operators, there may be more congruences. With a bigger set,
there may be fewer. However, it may also be that “

.
=” is not a congruence with respect

to the bigger set. Then it is necessary to strengthen “
.
=”. This makes room for more

congruences. This happens if the “choice” operator of CCS is employed. Then one must
add one bit to the semantics that tells if the initial state is stable [22,23]. This splits some
congruences in the figure to two, one with and another without the initial stability bit.

If the LTSs are finite, then the distinction between Tr , aenI , and Inf disappears,
because then the infinite traces are determined by the traces, as shown by (3.3). Then some
congruences merge, leaving 20 distinct congruences.
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