
Logical Methods in Computer Science
Vol. 7 (1:3) 2011, pp. 1–31
www.lmcs-online.org

Submitted Apr. 15, 2010
Published Mar. 16, 2011

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC

BY A FIRST-ORDER THEORY MODULO ∗

GUILLAUME BUREL

Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
e-mail address: guillaume.burel@ens-lyon.org

Abstract. In deduction modulo, a theory is not represented by a set of axioms but
by a congruence on propositions modulo which the inference rules of standard deductive
systems—such as for instance natural deduction—are applied. Therefore, the reasoning
that is intrinsic of the theory does not appear in the length of proofs. In general, the
congruence is defined through a rewrite system over terms and propositions. We define
a rigorous framework to study proof lengths in deduction modulo, where the congruence
must be computed in polynomial time. We show that even very simple rewrite systems
lead to arbitrary proof-length speed-ups in deduction modulo, compared to using axioms.
As higher-order logic can be encoded as a first-order theory in deduction modulo, we
also study how to reinterpret, thanks to deduction modulo, the speed-ups between higher-
order and first-order arithmetics that were stated by Gödel. We define a first-order rewrite
system with a congruence decidable in polynomial time such that proofs of higher-order
arithmetic can be linearly translated into first-order arithmetic modulo that system. We
also present the whole higher-order arithmetic as a first-order system without resorting to
any axiom, where proofs have the same length as in the axiomatic presentation.

1. Introduction

Studying the length of the proofs produced by a logical system can of course have
practical motivations. Indeed, shorter proofs seem to be easier to find out—either by hand
or automatically—, to share and to maintain. Automated provers may be able to find proofs
that are longer than proofs done by humans, they have nevertheless bounded capacities.
Even if computing power is always increasing, so that one is no longer afraid to use SAT-
solvers within verification tools (mainly because worst cases do not often occur in practice),
it is not conceivable to build an automated theorem prover that produces only proofs of
non-elementary length.

1998 ACM Subject Classification: F.2.2, F.4.1.
Key words and phrases: proof complexity, arithmetic, deduction modulo, higher-order logic, proof-length

speed-ups, term rewriting.
∗ Parts of this paper have previously appeared in (Burel, 2007). In particular, this paper contains the

proofs missing there.

Present address: École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise, 1 square de
la résistance, 91025 Evry Cedex, France.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (1:3) 2011

c© G. Burel
CC© Creative Commons

http://creativecommons.org/about/licenses

2 G. BUREL

This study is also theoretically interesting. As remarked by Parikh in the introduc-
tory paragraph of Gödel (1986), “the celebrated P=NP? question can itself be thought
of as a speed-up question.” (See also Cook and Reckhow, 1979.) This explains the re-
search for speed-ups between proof systems—for instance, it is shown that Frege systems
have an exponential speed-up over resolution for propositional logic (Buss, 1987)—and for
new formalisms whose deductive systems provide smaller proofs, such as for instance the
calculus of structures of Brünnler (2003) w.r.t. the sequent calculus of Gentzen (1934)
(see Bruscoli and Guglielmi, 2009). The goal is to find a so-called super proof system
(Cook and Reckhow, 1974), which can build polynomially sized proofs of each proposi-
tional tautology, or to refute the existence of such a system, in which case NP 6=coNP, which
would imply P 6=NP. In this paper, the length of a proof corresponds to its number of steps
(sometimes called lines), whatever the actual size of the propositions appearing in them is.

Proofs are rarely searched for without context: mathematical proofs rely on set theory,
or Euclidean geometry, or arithmetic, etc.; proofs of program correctness are done using
e.g. pointer arithmetic and/or theories defining data structures (chained lists, trees, . . .);
concerning security, theories are used for instance to model properties of encryption algo-
rithms. In this paper, we are therefore interested in the length of proofs in a theory. This
length may depend on several factors. First, the strength of the theory plays a key role, as
shown by the following result: it has been proved by Parikh (1973) that second-order arith-
metic provides shorter proofs than first-order arithmetic. (This result was stated earlier by
Gödel (1936), unfortunately without proof.) This was generalized to all orders by Kraj́ıček
(1989), and was proved for the true language of arithmetic by Buss (1994). (The former
results used an axiomatization of arithmetic using ternary predicates to represent addition
and multiplication.) The theorem proved by Buss is stated as follows:

Theorem 1.1 (Buss (1994, Theorem 3)). Let i ≥ 0. There is an infinite family F of
propositions of the language of first-order arithmetic such that

(1) for all P ∈ F , Zi ⊢ P
(2) there is a fixed k ∈ N such that for all P ∈ F , Zi+1 k steps P
(3) there is no fixed k ∈ N such that for all P ∈ F , Zi k steps P .

where Zi corresponds to the (i+1)th-order arithmetic (so Z0 is in fact first-order arithmetic),
and Zi k steps P means that P can be proved in at most k steps within a schematic system

—i.e. a Hilbert-type (or Frege) system with a finite number of axiom schemata and inference
rules— for (i + 1)th-order arithmetic. (In fact, Buss proved this theorem also for weakly
schematic systems, i.e. schematic systems in which every tautology can be used as an axiom,
as well as generalizations of axioms, but we will not use this fact here.)

The length of the proofs depends also on the presentation of the theory. For in-
stance, if we present the theory T by taking all the propositions that hold in that the-
ory ({P : T |= P}) as axioms, then for all true propositions P there is a one-step “proof”,
namely using the axiom P . Of course, we can argue whether those are really proofs. In-
deed, in that case, proof checking consists of checking that P holds in T , and is therefore
undecidable in general. On the other hand, using a finite first-order axiomatization of the
theory does not seem optimal, in particular when computations are involved. For instance,
a proof of 2 + 2 = 4 should be straightforward and should not contain more than one step
that consists of checking the computation that “2 + 2 makes 4”. Then, it seems important
to distinguish what part of a proof corresponds to computation and what part is real deduc-
tion, in order to better combine them. Such an idea is referred to as Poincaré’s principle.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 3

Deduction modulo (Dowek, Hardin, and Kirchner, 2003) is a formalism deriving from this
principle. The computational part of a proof is put in a congruence between propositions
modulo which the application of the deduction rules takes place. This leads for instance
to the sequent calculus modulo and to the natural deduction modulo. The congruence is
often defined as a set of rewrite rules that can rewrite terms but also atomic propositions.
Indeed, one wants for instance to consider the definition of the addition or multiplication
using rewrite rules over terms as part of the computation, but also the following rewrite
rule:

x× y = 0 → x = 0 ∨ y = 0 .

This rule rewrites an atomic proposition to a proposition. Then, the following simple
natural-deduction-modulo proof of t× t = 0 can be deduced from a proof π of t = 0:

π
t = 0

∨-i t× t = 0 −→ t = 0 ∨ t = 0
t× t = 0

.

Rewriting of propositions is essential to being able to encode expressive theories in
deduction modulo, as has been done for first-order arithmetic (Dowek and Werner, 2005),
Zermelo’s set theory (Dowek and Miquel, 2006), simple type theory (a.k.a. higher-order
logic) (Dowek, Hardin, and Kirchner, 2001) or pure type systems (Cousineau and Dowek,
2007; Burel, 2008).

As computations are not part of the deduction in the proof, they should not be counted
in the length of the proof. Indeed, a proof in deduction modulo consists only of the deductive
steps, and the computational steps are replayed during proof checking. However, this is too
general if we are concerned with the notion of proof length. Because rewriting is Turing-
complete, a whole proof system can be encoded in the computational part. This leads to the
same problem as using all propositions of the theory as axioms: proof checking is no longer
decidable. We therefore need a more rigorous framework to study proof length in deduction
modulo. We argue that we should only call a proof an object that can be checked feasibly,
that is, in polynomial time. This is of course an arbitrary criterion (we could for instance
have chosen another complexity class), but it seems natural. Furthermore, this is requested
if one wants to link proof theory with complexity theory. Indeed, Cook and Reckhow (1979)
defined a framework in which a proof system for a theory T is an onto function computable
in polynomial time from the words over some alphabet (representing the proofs) to the set
of propositions that hold in T . Starting from a more conventional proof system, the idea is
to map a correct proof with its conclusion, and an incorrect proof to any proposition of T .
As the function must be computable in polynomial time, proof checking in the real system
has to be feasible. In deduction modulo, this requirement implies that the congruence must
be checkable in polynomial time. In this paper, we will consider rewrite systems that are
confluent and that have a polynomial derivational complexity, i.e. the number of rewrite
steps of a term of size n must be bounded by a polynomial of n.

Deduction modulo is logically equivalent to the axiomatic theory corresponding to the
congruence (Dowek et al., 2003, Proposition 1.8), but proofs are often considered as simpler,
because the computation is hidden, letting the deduction clearly appear. Proofs are also
claimed to be shorter for the same reason. Nevertheless, this fact was never quantified.
Besides, it is possible, in deduction modulo, to build proofs of Higher-Order Logic using
a first-order system (Dowek et al., 2001). Using this, a step of higher-order resolution is
completely simulated by a step of ENAR, the resolution and narrowing method based on
deduction modulo. It looks like this is also the case for the associated sequent calculi,

4 G. BUREL

although this was not clearly stated. Therefore, it seems reasonable to think that deduction
modulo is able to give the same proof-length speed-ups as the ones occurring between
(i + 1)th- and ith-order arithmetic. This paper therefore investigates how to relate proof-
length speed-ups in arithmetic with the computational content of the proofs.

Our first result is to show that even a very simple rewrite system can lead to arbitrary
proof-length speed-ups (Theorem 2.5). By arbitrary proof-length speed-up, we mean, as in
Theorem 1.1, that we can find a family of propositions that can be proved by a bounded
number of steps in one system, whereas in the other, the minimal proof length depends
on the proposition that is proved. Thus, proofs in the second system are arbitrarily longer
than in the first. Then, we show how to encode everything concerning higher orders up
to i > 0 into a confluent rewrite system HOi with polynomial derivational complexity.
Modulo this rewrite system, we show that it is possible to stay in first-order arithmetic
while preserving the proof lengths of higher-order arithmetic (Theorem 4.9). This shows
that the origin of the speed-up theorem of Buss can be, at least to some extend, expressed
as simple computations. Note that HOi is not the restriction of the encoding of HOL by
Dowek et al. (2001) up to the order i, because we were not able to prove that its derivational
complexity is bounded.

In this paper, we are also concerned with extending the work of Dowek and Werner
(2005), in which the whole first-order arithmetic is expressed as a rewrite system. In that
case, we speak of a purely computational presentation of the theory. Thus, we show how to
express higher-order arithmetic as a purely computational theory. This permits to recover
desirable properties such as disjunction and witness properties for higher-order Heyting
arithmetic (i.e. intuitionistic arithmetic). This is not just the combination of the encoding
of higher orders and the formulation of first-order arithmetic by Dowek and Werner (2005),
because the latter does not preserve the length of proofs. We define higher-order arithmetic
as a purely computational theory HHAmod

i which has the same speed-up over first-order
arithmetic as the axiomatic presentation. Unfortunately, the rewrite system of this presen-
tation is not terminating. The rule that breaks the termination is the one encoding the
induction principle, which is not surprising, because this is where the strength of arithmetic
lies. We therefore advocate the use of a new inference rule corresponding to it.

This works revisits and extends a previous work (Burel, 2007) where we looked at the
relations between computations and proof-length speed-ups. We work in a much more
rigorous framework here. For instance, in 2007, we only stated that the rewrite systems
we were using were “simple”, whereas we request here that they are confluent and with a
polynomially bounded derivational complexity. Also, in 2007, in the translation of Zi to
Zi−1 modulo, there remained axioms in which function symbols of order i were involved,
which is no longer the case here.

The next section will present the minimal knowledge needed on deduction modulo to
make the paper self-contained, it defines the notion of polynomially bounded derivational
complexity, and shows that arbitrary proof-length speed-ups naturally occur thanks to
deduction modulo, even for very simple rewrite systems with polynomially bounded deriva-
tional complexity. In Section 3 we present proof systems for higher-order arithmetic, and
we prove that using schematic systems or natural deduction is not relevant w.r.t. arbitrary
proof-length speed-ups. Then, Section 4 presents how to efficiently encode higher orders,
and then higher-order arithmetic. Finally, in Section 5 we apply these results to investigate
the origin of the speed-ups in arithmetic.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 5

2. Proof Speed-ups in Deduction Modulo

2.1. Rewriting propositions. In this section, we recall the definition of deduction mod-
ulo, as introduced by Dowek, Hardin, and Kirchner (2003) and Dowek and Werner (2003).
In deduction modulo, propositions are considered modulo some congruence defined by some
rules that rewrite not only terms but also propositions. We use standard definitions, as given
by Baader and Nipkow (1998), and extend them to proposition rewriting (Dowek et al.,
2003).

First, let us recall how to build many-sorted first-order propositions (see Gallier, 1986,
Chapter 10), mainly to introduce the notations we will use. A (first-order) many-sorted
signature consists of a set of function symbols and a set of predicates, all of them with
their arity (and co-arity for function symbols). We denote by T (Σ, V) the set of terms built
from a signature Σ and a set of variables V . An atomic proposition is given by a predicate
symbol A of arity [i1, . . . , in] and by n terms t1, . . . , tn ∈ T (Σ, V) with matching sorts. It
is denoted A(t1, . . . , tn). Propositions can be built using the following grammar:

P ::= ⊥ | ⊤ | A | P ∧ P | P ∨ P | P ⇒ P | ∀x. P | ∃x. P

where A ranges over atomic propositions and x over variables. P ⇔ Q is used as a syn-
tactic sugar for (P ⇒ Q) ∧ (Q⇒ P), as well as ¬P for P ⇒ ⊥. Positions in a term or a
proposition, free variables and substitutions are defined as usual (see Baader and Nipkow,
1998). The replacement of a variable x by a term t in a proposition P is denoted by
{t/x}P , the subterm or subproposition of t at the position p by t|p, and its replacement
in t by a term or proposition s by t[s]p. Propositions are considered modulo α-conversion
of the variables bound by ∀ and ∃. Applying a substitution does not capture variables:
{s/x}(P (x) ∧ ∀x. P (x)) = P (s) ∧ ∀x. P (x). Replacing a subterm by another can capture
variables (∀x.P (x, t))[s(x)]1.2 = ∀x. P (x, s(x)) .

A term rewrite rule is the pair of terms l, r such that all free variables of r appear in
l. It is denoted l → r. A term rewrite system is a set of term rewrite rules. A term s
can be rewritten to a term t by a term rewrite rule l → r if there exists some substitution
σ and some position p in s such that σl = s|p and t = s[σr]p. We extend this notion to
propositions: a proposition Q can be rewritten to a proposition R by a term rewrite rule
l → r if there exists some substitution σ and some position p in Q such that σl = Q|p and
R = Q[σr]p.

A proposition rewrite rule is the pair of an atomic proposition A and a proposition
P , such that all free variables of P appear in A. It is denoted A → P . A proposition
rewrite system is a set of proposition rewrite rules. A proposition Q can be rewritten to a
proposition R by a proposition rewrite rule A→ P if there exists some substitution σ and
some position p in Q such that σA = Q|p and R = Q[σP]p. Semantically, this proposition
rewrite relation must be seen as a logical equivalence between propositions.

A rewrite system is the union of a term rewrite system and a proposition rewrite system.
The fact that P can be rewritten to Q either by a term or by a proposition rewrite rule of
a rewrite system R will be denoted by A−→

R
P . The transitive (resp. reflexive transitive)

closure of this relation will be denoted by
∗
−→
R

(resp.
∗
←→
R

).

Definition 2.1. The derivational length of a term or proposition t w.r.t. a rewrite system R
is the maximal length of a derivation starting from t usingR. The derivational complexity of

6 G. BUREL

[A]

B
⇒-i if C

∗
←→
R

A⇒ B
C

A C⇒-e if C
∗
←→
R

A⇒ B
B

A B
∧-i if C

∗
←→
R

A ∧B
C

C∧-e if C
∗
←→
R

A ∧ B or C
∗
←→
R

B ∧ A
A

A
∨-i if C

∗
←→
R

A ∨ B or C
∗
←→
R

B ∨A
C C

[A]

D

[B]

D∨-e if C
∗
←→
R

A ∨B
D

{y/x}A
∀-i

if B
∗
←→
R
∀x. A and y is not free

in A nor in the assumptions of
the proof above

B
A

∀-e if A
∗
←→
R
∀x. C and B

∗
←→
R
{t/x}C

B

B
∃-i if A

∗
←→
R
∃x. C and B

∗
←→
R
{t/x}C

A B

[{y/x}A]

C
∃-e

if B
∗
←→
R
∃x. A and y is not free

in C nor in the assumption of
the proof above except {y/x}A

C

⊤-i if A
∗
←→
R
⊤

A
A

⊥-e if A
∗
←→
R
⊥

B
classical if A

∗
←→
R

B ∨ (B ⇒ ⊥)
A

Figure 1: Inference Rules of Natural Deduction Modulo R.

a rewrite systemR is the function that maps a natural number n to the maximal derivational
length w.r.t. R of the terms and propositions of size at most n.

In this paper, we are interested in rewrite systems that are confluent and whose deriva-

tional complexity can be bounded by a polynomial. This implies that
∗
←→
R

is decidable in

polynomial time.

2.2. Natural deduction modulo. Using an equivalence
∗
←→
R

defined by a term and propo-

sition rewrite system R, we can define natural deduction modulo R as Dowek and Werner
do (2003). Its inference rules are represented in Figure 1. They are the same as the ones in-

troduced by Gentzen (1934), except that we work modulo the rewrite relation
∗
←→
R

. Leaves

of a proof that are not discarded by the inference rules of the proof (on the contrary to A
in ⇒-i for instance) are the assumptions of the proof. A cut in a proof is an introduction
rule immediately followed by an elimination rule. In particular, one says that the proof cuts
trough A if there is a derivation

[A]

B
⇒-i

A⇒ B A⇒-e
B

in it.
The length of a proof is the number of inferences used in it. We will denote by T N

k R P
the fact that there exists a proof of P of length at most k using a finite subset of T (T
can be infinite) as assumptions. In the case where R = ∅, we are back to pure natural

deduction, and we will use T N
k P .

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 7

Definition 2.2 (Compatible presentation (Dowek et al., 2003, Definition 1.4)). An ax-
iomatic presentation Γ of a theory is called compatible with a rewrite system R if:

• P
∗
←→
R

Q implies Γ N P ⇔ Q;

• for every proposition P ∈ Γ, we have N
R P .

For instance, B ⇒ A is compatible with A → A ∨ B: it possible to prove A ⇔ A ∨ B
assuming B ⇒ A with the proof:

A (i)
∨-i

A ∨B
⇒-i (i)

A⇒ A ∨B

A ∨B (ii) A (iii)

B (iii) B ⇒ A
⇒-e

A
∨-e (iii)

A
⇒-i (ii)

A ∨B ⇒ A
∧-i

A⇔ A ∨B
(other cases of equivalent propositions can be derived from it), and reciprocally, B ⇒ A has
the following proof modulo A→ A ∨B:

B (i)
∨-i A −→ A ∨ B

A
⇒-i (i)

B ⇒ A
Given a rewrite system, a compatible presentation always exists: a proposition rewrite

rule A→ B (resp. a term rewrite rule l → r) corresponds to an axiom ∀x1, . . . , xn. A⇔ B
(resp. ∀x1, . . . , xn. l = r) where x1, . . . , xn are the free variables of A (resp. l). One
can show that proving modulo a rewrite system is the same as proving using a compatible
presentation as axioms (Dowek et al., 2003, Proposition 1.8).

Proof lengths in finite compatible presentations are essentially the same:

Proposition 2.3. Let Γ1 and Γ2 be two finite presentations compatible with the same rewrite
system R. It is possible to translate a proof of length n in Γ1 into a proof of length O(n) in
Γ2.

Γ1
N
k P ; Γ2

N
O(k) P

Proof. We show that every axiom of Γ1 can be translated into a proof of bounded depth in

Γ2. By definition of compatibility, for all P ∈ Γ1, we have a proof N
R P . Then, whenever

the congruence is used in that proof, we replace it by a cut with the corresponding proof in
Γ2 thanks to compatibility. For instance, if we have

̟
A

∀-e with A
∗
←→
R
∀x. C and B

∗
←→
R
{t/x}C

B

we know by compatibility that there exists proofs π1 of Γ2
N A ⇔ ∀x. C and π2 of

Γ2
N B ⇔ {t/x}C, so that we have

π2
B ⇔ {t/x}C

∧-e
{t/x}C ⇒ B

π1
A⇔ ∀x. C∧-e
A⇒ ∀x. C

̟
A⇒-e

∀x. C
∀-e
{t/x}C

⇒-e
B

8 G. BUREL

Transforming all applications of the congruence in that way, we obtain a proof πP of Γ2
N P .

As Γ1 is finite, there is a maximum K on the length of such proofs, and a proof of length n
in Γ1 can be transformed into a proof of length at most K ×n in Γ2 by replacing an axiom
P by its corresponding proof πP .

Remark 2.4. This proposition holds also if one considers only cut-free proofs. Indeed,
even if the proof πP above contains cuts, it is possible to eliminate them to obtain a proof
̟P . (Indeed, πP is a proof in standard natural deduction.) The resulting proof may be
much bigger, but we only do so for the finite number of P in Γ1. Therefore, there remains
a constant K ′ bounding the length of such proofs ̟P , and replacing the axioms P by the
proofs ̟P in a cut-free proof of size n in Γ1 leads to a cut-free proof in Γ2 of size K ′ × n.

2.3. A Simple Proof-Length Speed-up. Because part of the proofs are put into the
congruence, it is quite easy to get arbitrary proof-length speed-ups in deduction modulo,
even for very simple rewrite systems.

Consider the proposition rewrite system

Add
def
=

{

Add(O, y, y)→ ⊤

Add(s(x), y, s(z)) → Add(x, y, z)
.

It is easy to prove that the derivational complexity of Add is polynomially bounded. Fur-

thermore, it is confluent, and
∗
←→
Add

is clearly decidable in polynomial time. However, proving

modulo Add leads to an arbitrary proof-length speed-up compared to proving using a finite
compatible presentation.

Theorem 2.5. There is an infinite family F of propositions such that for all finite axiomatic
presentations Γ compatible with Add,

(1) for all P ∈ F , Γ N P

(2) for all P ∈ F , N
1 step Add

P

(3) there is no fixed k ∈ N such that for all P ∈ F , Γ N
k steps P .

Proof. Let n denote s(· · · s(
︸ ︷︷ ︸

n times

O)···) for n ∈ N. Consider the following family of propositions

(Add(i, i, 2i))i∈N. Clearly, (1) holds. Since Add((i, i, 2i)
∗
−→
Add

Add(O, i, i)−→
Add
⊤, we have the

following proof modulo Add:

⊤-i Add((i, i, 2i)
∗
←→
Add
⊤

Add(i, i, 2i)

Hence, (2) holds. Consider the presentation containing the two axioms ∀x. Add(x,O, x) and
∀x y z. Add(s(x), y, s(z)) ⇔ Add(x, y, z). It is easy to prove that this finite presentation is
compatible with Add. To prove Add(i, i, 2i) in this presentation, we need to use the second
axiom at least i times, so that the length of the proofs cannot be bounded by a constant.
Now consider another finite presentation compatible with Add, Proposition 2.3 tells us that
the length of the proofs cannot be bounded by a constant in that presentation neither.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 9

Remark 2.6. The theorem above is not true for infinite compatible presentations, since
such presentations can contain F .

3. Proof systems for ith-order arithmetic

In higher-order arithmetic, one wants to reason about natural numbers, but also about
properties of these numbers, and properties of these properties, etc. There are several way to
present higher-order arithmetic. One of them is to define it as a theory of higher-order logic,
that is, with the possibility to quantify over propositions. In that setting, the induction
schema can be expressed as an axiom ∀P ι→o. P (0) ∧ (∀βι. P (β)⇒ P (s(β)))⇒ ∀αι. P (α).
It is also possible to consider Girard’s System F as a system for second-order arithmetic. In
this paper, we use another presentation of higher-order arithmetic which is more common
when speaking about proof length, and which consists of a first-order theory presented by
what is called a schematic system. The idea is to use comprehension axioms to link each
proposition A to a first-order object α, which can be thought of as the set of terms satisfying
the proposition:

∃αj+1. ∀βj. β ∈ α⇔ A(β) (α is not free in A(β))

There are therefore several layers of terms: the one in which live the natural numbers (which
corresponds to the sort 0 below), the one in which live the sets of natural numbers (sort 1),
the one for the set of set of natural numbers, etc. Then, to quantify over a proposition,
one has to quantify over its corresponding set. For instance, the induction schema could be
presented as ∀s1. 0 ∈ s ∧ (∀β0. β ∈ s ⇒ s(β) ∈ s) ⇒ ∀α0. α ∈ s. Notwithstanding, we do
not do so in the following to have a definition of i-th order arithmetic that works also when
i = 1.

3.1. Schematic systems. We recall here, using Buss’ 1994 terminology, what a schematic
system consists of. It is essentially an Hilbert-type (or Frege) proof system, i.e. valid
propositions are derived from a finite number of axiom schemata using a finite number
of inference rules. Theorem 1.1 is true on condition that proofs are performed using a
schematic system.

Given a many-sorted signature of first-order logic, we can consider infinite sets of
metavariables αi, βi, γi, . . . for each sort i (which will be substituted by variables), of term
variables τ i for each sort i (which will be substituted by terms) and proposition variables
A(x1, . . . , xn) for each arity [i1, . . . , in] (which will be substituted by propositions).

Metaterms are built like terms, except that they can contain metavariables and term
variables. Metapropositions are built like propositions, except that they can contain propo-
sition variables (which play the same role as predicates) and metaterms, and that they can
bind metavariables.

A schematic system is a finite set of inference rules, where an inference rule is a triple
of a finite set of metapropositions (the premises), a metapropositions (the conclusion), and
a set of side conditions of the forms αj is not free in Φ or s is freely substitutable for αj in
Φ where Φ is a metaproposition and s a metaterm of sort j. It is denoted by

Φ1 · · · Φn (R)
Ψ

10 G. BUREL

An inference with an empty set of premises will be called an axiom schema. An axiom
schema without metaproposition is an axiom.

3.2. ith-order arithmetic. ith-order arithmetic (Zi−1) is a many-sorted theory with sorts
0, . . . , i− 1 and the signature

0 : 0 + : [0; 0]→ 0 = : [0; 0]
s : [0]→ 0 × : [0; 0]→ 0 ∈j : [j; j + 1]

.

The schematic system we use here consists of the following inference rules:
15+ 2× i axiom schemata of classical logic. These axiom schemata, together with the
inference rules below, defines classical many-sorted first-order logic with sorts 0, . . . , i − 1.
We take those used by Gentzen (1934, Chapter 5) to prove the equivalence of his formalisms
with an Hilbert-type proof system:

A⇒ A (I)

A⇒ B ⇒ A (K)

(A⇒ A⇒ B)⇒ A⇒ B (W)

(A⇒ B ⇒ C)⇒ B ⇒ A⇒ C (C)

(A⇒ B)⇒ (B ⇒ C)⇒ A⇒ C (B)

(A ∧B)⇒ A (Projl)

(A ∧B)⇒ B (Projr)

(A⇒ B)⇒ (A⇒ C)⇒ A⇒ (B ∧ C) (Pair)

A⇒ (A ∨B) (Injl)

B ⇒ (A ∨B) (Injr)

(A⇒ C)⇒ (B ⇒ C)⇒ (A ∨B)⇒ C (Case)

(A⇒ B)⇒ (A⇒ B ⇒ ⊥)⇒ A⇒ ⊥ (Contradiction)

(A⇒ ⊥)⇒ A⇒ B (EFSQ)

⊤ (T)

(∀αj . A(αj))⇒ A(τ j) (UI)
(
τ j is freely substitutable for αj in A(αj)

)

A(τ j)⇒ ∃αj. A(αj) (EI)
(
τ j is freely substitutable for αj in A(αj)

)

A ∨ (A⇒ ⊥) (TND)

1+ 2× i inference rules of classical logic. They are the only inference rules of our
schematic system. Again, we take those used by Gentzen (1934):

A A⇒ B
B

(MP)

A⇒ B(βj)
(βj is not free in A⇒ ∀αj. B(αj))

A⇒ ∀αj. B(αj)
(Gen)

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 11

B(βj)⇒ A
(βj is not free in (∃αj . B(αj))⇒ A)

(∃αj . B(αj))⇒ A
(Part)

2 identity axiom schemata. They define the particular relation =:

∀α0. α0 = α0 (Refl)

∀α0β0. α0 = β0 ⇒ A(α0)⇒ A(β0) (Leibniz)

7 Robinson’s axioms. They are the axioms defining the function symbols of arith-
metic (Mostowski, Robinson, and Tarski, 1953):

∀α0. ¬ 0 = s(α0) (0 6= s)

∀α0β0. s(α0) = s(β0)⇒ α0 = β0 (Injs)

∀α0. (¬ α0 = 0)⇒ ∃β0. α0 = s(β0) (Ontos)

∀α0. α0 + 0 = α0 (+0)

∀α0β0. α0 + s(β0) = s(α0 + β0) (+s)

∀α0. α0 × 0 = 0 (×0)

∀α0β0. α0 × s(β0) = α0 × β0 + α0 (×s)

i+ 1 induction and comprehension axiom schemata. The induction schema is es-
sential to have first-order arithmetic, and not Robinson’s arithmetic that is considerably
weaker. It allows for instance to prove ∀α0. s(α0) 6= α0.

A(0)⇒
(
∀β0. A(β0)⇒ A(s(β0))

)
⇒ ∀α0. A(α0) (Ind)

The comprehension axiom schemata permits to introduce higher-order objects up to
order i. For all 0 ≤ j < i− 1,

∃αj+1. ∀βj. βj ∈j αj+1 ⇔ A(βj) (αj+1 is not free in A(βj)) (Compj)

From this point on, we will denote by Zi−1
S
k P the fact that there exists a proof of P

of length at most k in this schematic system, i.e. P can be derived using at most k instances

of these inference rules. Abusing notations, we will write Zi−1
N
k P to say that there is a

proof of P in natural deduction of length at most k using as assumptions a finite subset of
instances of the axiom schemata (Refl), (Leibniz), Robinson’s axioms, (Ind) and (Compj).

3.3. Translations between schematic systems and natural deduction. Buss’ theorem
is true in schematic systems, but deduction modulo is mostly studied in natural deduction
or in the sequent calculus. It is important to get bounded translations between these for-
malisms to show that the speed-ups we will be considering are not artifacts of the deductive
system.

3.3.1. From Zi
S to Zi

N. We want to translate a proof in the schematic system of Zi into a
proof in pure natural deduction using as assumptions instances of the axiom schemata (Refl)
to (Compj).

For the axiom schemata and inference rules of classical logic, we use the same translation
as Gentzen, for instance the axiom schema (C) is translated into the natural deduction proof

12 G. BUREL

B (ii)

A (iii) A⇒ B ⇒ C (i)
⇒-e

B ⇒ C
⇒-e

C
⇒-i (iii)

A⇒ C
⇒-i (ii)

B ⇒ A⇒ C
⇒-i (i)

(A⇒ B ⇒ C)⇒ B ⇒ A⇒ C

and the inference rule (Part) into

∃αj . B(αj) (i)

B(βj) (ii) B(βj)⇒ A
⇒-e

A
∃-e (ii)

A
⇒-i (i)

∃αj. B(αj)⇒ A

(note that the side condition ensure that it is possible to consider that what will be sub-
stituted for β is free in A and the assumptions of the proof above B(βj) ⇒ A). All these
inference rules have a translation whose length does not depend on the propositions finally
substituted in the proof.

In a schematic system proof, there is also a finite number of instances of the axiom
schemata for identity, Robinson’s axioms and induction and comprehension schemata. We
keep these instances as assumptions in natural deduction, so that we obtain a proof in natu-
ral deduction using as assumptions a finite subset of instances of the axiom schemata (Refl)
to (Compj), and whose length is linear compared to the schematic system proof:

Proposition 3.1. It is possible to translate a proof of length n in the schematic system for
Zi into a proof of length O(n) in (pure) natural deduction using assumptions in Zi.

Zi
S
k P ; Zi

N
O(k) P

3.3.2. From Zi
N to Zi

S . In this section, we consider a proof of P in natural deduction,
using as assumption finite instances of (Refl) to (Compj) in the language of Zi. We translate
it into a proof in the schematic system for Zi.

This is essentially a generalization of the translation from the λ-calculus to combinatory
logic (see Curry, Feys, and Craig, 1958). We define mutually recursively two functions by
induction on the inference rules: T transforms a proof of P in natural deduction using
assumptions Γ into a proof of P in the schematic system (I) to (Part) plus Γ. TA transform
a proof of P in natural deduction using assumptions Γ, A into a proof of A ⇒ P in the
schematic system consisting of the rules (I) to (Part) and the propositions of Γ (seen as
axioms). The translation can be found in the appendix.

It can be verified that this transformation is at most exponential in the length of
proofs. Due to Cook and Reckhow (1979, Corollary 3.4), we could have found, at least for
the propositional part, a polynomial translation. Nevertheless all we need in this paper is
the fact that the increase of the proof length in the translation is bounded.

Proposition 3.2. There exists some constant K such that it is possible to translate a proof
of length n in the (pure) natural deduction using assumptions in Zi into a proof of length
O(Kn) in the schematic system for Zi.

Zi
N
k P ; Zi

S
O(Kk) P

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 13

Proof. Let K be the maximum number of steps that appear in addition of the recursive
calls in the definition of TA (note that it does not depend on A). First, if a proof ̟ does
not contain ⇒-i, ∨-e or ∃-e, then |TA(̟)| ≤ K|̟|. We prove this by induction on ̟. Let
us detail ⇒-e only, using notations of the appendix, the other cases being similar:

|TA (̟) | = |TA (π1) |+ |TA (π2) |+ 7

≤ K|π1|+K|π2|+K by induction hypothesis, and by definition of K

≤ K (|π1|+ |π2|+ 1)

≤ K|̟|

Now let us show that in all cases |TA(̟)| ≤ K |̟|. This is also proved by induction on
̟. We only detail the case of ⇒-i. |TA (̟) | = |TA (TB (π)) |. By induction hypothesis,

|TB (π) | ≤ K |π|. Furthermore, TB (π) does contain neither ⇒-i, ∨-e nor ∃-e, so that

|TA (TB (π)) | ≤ K|TB (π) | ≤ K ×K |π| = K |π|+1 = K |̟|. From this result, we can deduce
the bound for T.

4. Higher-order arithmetic as a first-order theory modulo

In this section, we want to express higher-order arithmetic as a rewrite system, while
preserving the length of proofs. We first encode everything related to higher orders into a
rewrite system, keeping axioms concerned only with first order. Second, we show how to
orient the remaining axioms as rewrite rules, therefore obtaining a rewrite system encoding
higher-order arithmetic as a whole.

4.1. Encoding higher orders using classes. First, we want to toss away every axioms
that include a higher-order symbol by translating them into rewrite rules. We also want to
keep a finite number of axioms, and not for instance axiom schemata. Indeed, first-order
theorem provers generally cannot handle such schemata. Therefore, we want to obtain
a presentation of higher-order arithmetic with a finite number of first-order-only axioms,
resorting to the congruence to get the higher orders again.

To do so, we first consider the theory consisting of the axioms in (Refl) to (×s), so
without the axiom schemata (Leibniz), (Ind) and (Compj) that corresponds to an infi-
nite number of axioms. Those are replaced by three new axioms (Leibnizax), (Indax) and

(Compjax). To do so, we use the work of Kirchner (2007) which permits to express first-order
theories using a finite number of axioms. The idea is to transform each metaproposition
A(t1, . . . , tn) used in an axiom schema into a proposition of the form 〈t1, . . . , tn〉 ǫ γ where
γ is a variable that will be instantiated by a term representing what proposition is actually
substituted for A. Such a term is called a class, by reference to set theory where a class is
a collection of sets defined by some property they share. Note that is long known that us-
ing classes permits to have finite first-order axiomatization (see for instance Kleene, 1952),
but Kirchner’s work shows how to handle the classes with a simple rewrite system of weak
explicit substitutions.

Following Kirchner’s method, we add the new sorts ℓ for lists and c for classes, as well
as the new function symbols and predicate

14 G. BUREL

1j : j
Sj : [j]→ j
·[·]j : [j; ℓ]→ j

nil : ℓ
::j : [j; ℓ]→ ℓ
.
= : [0; 0]→ c

∈̇j : [j; j + 1]→ c

∪ : [c; c]→ c
∩ : [c; c]→ c
⊃ : [c; c]→ c

∅ : c
Pj : [c]→ c
Cj : [c]→ c
ǫ : [ℓ; c]

.

〈α1, . . . , αn〉 will be syntactic sugar for α1 ::
j1 · · · :: αn ::jn nil for the appropriate jm. Note

that we only need one sort of class, and not one for each order, as we could have done.
That way, all substitutions are done in the same setting. We change the axiom schemata
(Leibniz), (Ind) and (Compj) into the following axioms:

∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc (Leibnizax)

∀γc.〈0〉 ǫ γc ⇒
(
∀β0. 〈β0〉 ǫ γc ⇒ 〈s(β0)〉 ǫ γc

)
⇒ ∀α0. 〈α0〉 ǫ γc (Indax)

For all 0 ≤ j < i,

∀γc. ∃αj+1. ∀βj. βj ∈j αj+1 ⇔ 〈βj〉 ǫ γc (Compjax)

We also need weak-substitution axioms which permit to decode the classes (see Kirchner,
2007, Definition 4).

∀αj. αj [nil]j = αj (WSnil)

∀αj . ∀lℓ. 1j [αj ::j lℓ]j = αj (WS1j)

∀αj . ∀βk. ∀lℓ. Sj(αj)[βk ::k lℓ]j = αj [lℓ]j (WSSj)

∀α0. ∀lℓ. s(α0)[lℓ]0 = s(α0[lℓ]0) (WSs)

∀α0. ∀β0. ∀lℓ. (α0 + β0)[lℓ]0 = α0[lℓ]0 + β0[lℓ]0 (WS+)

∀α0. ∀β0. ∀lℓ. (α0 × β0)[lℓ]0 = α0[lℓ]0 × β0[lℓ]0 (WS×)

∀α0. ∀β0. ∀lℓ. lℓ ǫ
.
= (α0, β0)⇔ α0[lℓ]0 = β0[lℓ]0 (WS=)

∀αj . ∀βj+1. ∀lℓ. lℓ ǫ ∈̇j(αj , βj+1)⇔ αj [lℓ]j ∈j βj+1[lℓ]j+1 (WS∈j)

∀αc. ∀βc. ∀lℓ. lℓ ǫ αc ∪ βc ⇔ lℓ ǫ αc ∨ lℓ ǫ βc (WS∨)

∀αc. ∀βc. ∀lℓ. lℓ ǫ αc ∩ βc ⇔ lℓ ǫ αc ∧ lℓ ǫ βc (WS∧)

∀αc. ∀βc. ∀lℓ. lℓ ǫ αc ⊃ βc ⇔ lℓ ǫ αc ⇒ lℓ ǫ βc (WS⇒)

∀lℓ. lℓ ǫ ∅ ⇔ ⊥ (WS⊥)

∀αc. ∀lℓ. (lℓ ǫ Pj(αc)⇔ ∃βj . βj ::j lℓ ǫ αc) (WS∃j)

∀αc. ∀lℓ. (lℓ ǫ Cj(αc)⇔ ∀βj . βj ::j lℓ ǫ αc) (WS∀j)

Definition 4.1. The axiomatic presentation Zws
i consists of the axioms (Refl), Robinson’s

axioms, (Leibnizax), (Indax), (Compjax) and all (WS) axioms.

In other words, Zws
i is the finite axiomatic presentation obtained by applying Kirchner’s

ideas to Zi.

Proposition 4.2. The theory Zws
i is a conservative extension of Zi.

Proof. This is the Proposition 4 of Kirchner (2007).

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 15

t[nil]j → t
1j [t ::j l]j → t

Sj(n)[t ::k l]j → n[l]j

s(n)[l]0 → s(n[l]0)
(t1 + t2)[l]

0 → t1[l]
0 + t2[l]

0

(t1 × t2)[l]
0 → t1[l]

0 × t2[l]
0

l ǫ
.
= (t1, t2) → t1[l]

0 = t2[l]
0

l ǫ ∈̇j
′

(t1, t2) → t1[l]
j′ ∈j

′
t2[l]

j′+1

l ǫ A ∪B → l ǫ A ∨ l ǫ B
l ǫ A ∩B → l ǫ A ∧ l ǫ B
l ǫ A ⊃ B → l ǫ A⇒ l ǫ B

l ǫ ∅ → ⊥
l ǫ Pj(A) → ∃x. x ::j l ǫ A
l ǫ Cj(A) → ∀x. x ::j l ǫ A

x ∈j
′
compj

′+1(A)→ x ::j
′
nil ǫ A

for all 0 ≤ j ≤ i, 0 ≤ k ≤ i and 0 ≤ j′ < i.

Figure 2: Rewrite rules of HOi

Now, we use skolemization to transform (Compjax) (see van Dalen, 1989, Section 3.4).
We add new function symbols compj : [c] → j for all 0 < j ≤ i. We then consider the

skolemized version of (Compjax):

∀γc. ∀βj. βj ∈j compj+1(γc)⇔ 〈βj〉 ǫ γc (Compjsk)

Definition 4.3. The axiomatic presentation Zsk
i consists of the axioms (Refl), Robinson’s

axioms, (Leibnizax), (Indax), (Compjsk) and all (WS) axioms.

In other words, Zsk
i is the presentation obtained by skolemizing axiom (Compjax) in

Zws
i .

Proposition 4.4. The theory Zsk
i is a conservative extension of Zws

i .

Proof. According to van Dalen (1989, Corollary 3.4.5), Zsk
i ∪ {(Compjax)} is a conservative

extension of Zws
i . But (Compjax) can be proved in Zsk

i so that we can drop it.

We can then transform each axiom where a higher-order function symbol or predicate
appears, as well as each axiom decoding classes, into a rewrite rule, and work modulo the
resulting rewrite system. We denote by HOi the rewrite system defined in Figure 2. This
rewrite system has the following properties:

• It is finite (for a given i).
• It is terminating in a polynomial number of steps (Proposition 4.5).
• It is confluent: it terminates and it is locally confluent, since the only critical pairs, of
the form f(t1, . . . , tn)←−

HOi

f(t1, . . . , tn)[nil]−→
HOi

f(t1[nil], . . . , tn[nil]) where f ∈ {+;×; s},

are easily joinable.
• It is left-linear, i.e. variables appears only once on the left-hand side of each rule.

Before showing that HOi has a polynomially bounded derivational complexity, let us
first see how HOi works and, in particular, how it can be used to encode propositions as
terms. Proposition 2 of Kirchner (2007) states that, for all propositions P of the language

of ith-order arithmetic, and for all finite lists of variables αj1
1 , . . . , αjn

n , it is possible to prove
constructively

∃βc. ∀αj1
1 · · ·α

jn
n . 〈αj1

1 , . . . , αjn
n 〉 ǫ βc ⇔ P .

16 G. BUREL

Hence, the proof of this proposition shows us how to construct the witness for βc. We will

denote it by E
α
j1
1 ,...,αjn

n

P , and it is therefore defined as:

||αj ||∅
def
= αj

||αj1
1 ||

α
j1
1 ,...,αjn

n
def
= 1j1

||αj ||α
j1
1 ,...,αjn

n
def
= Sj(||αj ||α

j2
2 ,...,αjn

n) if αj 6= αj1
1

||0||∅
def
= 0

||0||α
j1
1 ,...,αjn

n
def
= S0(||0||α

j2
2 ,...,αjn

n)

||s(t)||α
j1
1 ,...,αjn

n
def
= s(||t||α

j1
1 ,...,αjn

n)

||t1 + t2||
α
j1
1 ,...,αjn

n
def
= ||t1||

α
j1
1 ,...,αjn

n + ||t2||
α
j1
1 ,...,αjn

n

||t1 × t2||
α
j1
1 ,...,αjn

n
def
= ||t1||

α
j1
1 ,...,αjn

n × ||t2||
α
j1
1 ,...,αjn

n

E
α
j1
1 ,...,αjn

n

t1=t2

def
=

.
= (||t1||

α
j1
1 ,...,αjn

n , ||t2||
α
j1
1 ,...,αjn

n)

E
α
j1
1 ,...,αjn

n

t1∈jt2

def
= ∈̇j(||t1||

α
j1
1 ,...,αjn

n , ||t2||
α
j1
1 ,...,αjn

n)

E
α
j1
1 ,...,αjn

n

⊥
def
= ∅

E
α
j1
1 ,...,αjn

n

P⇒Q
def
= E

α
j1
1 ,...,αjn

n

P ⊃ E
α
j1
1 ,...,αjn

n
q

E
α
j1
1 ,...,αjn

n

P∧Q
def
= E

α
j1
1 ,...,αjn

n

P ∩ E
α
j1
1 ,...,αjn

n
q

E
α
j1
1 ,...,αjn

n

P∨Q
def
= E

α
j1
1 ,...,αjn

n

P ∪ E
α
j1
1 ,...,αjn

n
q

E
α
j1
1 ,...,αjn

n

∀αj . P

def
= Cj(E

αj ,α
j1
1 ,...,αjn

n

P) if αj 6∈ {αj1
1 , . . . , αjn

n }

E
α
j1
1 ,...,αjn

n

∃αj . P

def
= Pj(E

αj ,α
j1
1 ,...,αjn

n

P) if αj 6∈ {αj1
1 , . . . , αjn

n }

Then, one can prove that 〈t1, . . . , tn〉 ǫ Eα1,...,αn

P
∗
−→{t1/α1, . . . , tn/αn}P .

For instance, consider the proposition P
def
= x = 0 ∨ ∃y. x ∈0 y. Then Ex

P equals
.
= (10, S0(0)) ∪ P1

(

∈̇0(S0(10), 11)
)

and 〈t〉 ǫ Ex
P can be rewritten to t = 0∨∃x1. t ∈0 x1:

〈t〉 ǫ Ex
P −→ 〈t〉 ǫ

.
= (10, S0(0)) ∨ 〈t〉 ǫ P1

(

∈̇0(S0(10), 11)
)

2
−→

(
10[t ::0 nil] = S0(0)[t ::0 nil]

)
∨ ∃x1. 〈x1, t〉 ǫ ∈̇0(S0(10), 11)

3
−→ (t = 0[nil]) ∨ ∃x1. S0(10)[x1 ::1 t ::0:: nil] ∈0 11[x1 ::1 t ::0:: nil]

3
−→ t = 0 ∨ ∃x1. 10[t ::0:: nil] ∈0 x1

−→ t = 0 ∨ ∃x1. t ∈0 x1

Proposition 4.5. The derivational complexity of HOi is polynomially bounded.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 17

∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc (Leibnizax)
∀-e

∀α0β0. α0 = β0 ⇒ A(α0)⇒ A(β0)

(because 〈α0〉 ǫ Ex
A(x) ⇒ 〈β

0〉 ǫ Ex
A(x)

∗
−→A(α0)⇒ A(β0))

∀γc.〈0〉 ǫ γc ⇒
(
∀β0. 〈β0〉 ǫ γc ⇒ 〈s(β0)〉 ǫ γc

)
⇒ ∀α0. 〈α0〉 ǫ γc (Indax)

∀-e
A(0)⇒

(
∀β0. A(β0)⇒ A(s(β0))

)
⇒ ∀α0. A(α0)

(because for all t, 〈t〉 ǫ Ex
A(x)

∗
−→A(t))

βj ∈j compj+1(Ex
A(x)) (i)

⇒-i (i)
βj ∈j compj+1(Ex

A(x))⇒ βj ∈j compj+1(Ex
A(x))

βj ∈j compj+1(Ex
A(x)) (ii)

⇒-i (ii)
βj ∈j compj+1(Ex

A(x))⇒ βj ∈j compj+1(Ex
A(x))

...

...
∧-i

βj ∈j compj+1(Ex
A(x))⇔ βj ∈j compj+1(Ex

A(x))
∀-i
∀βj . βj ∈j compj+1(Ex

A(x))⇔ βj ∈j compj+1(Ex
A(x))

∃-i
βj ∈j compj+1(Ex

A(x)
)

−→〈βj〉 ǫ Ex
A(x)

∗
−→A(βj)∃αj+1. ∀βj . βj ∈j αj+1 ⇔ A(βj)

Figure 3: Translations of the axiom schemata (Leibniz), (Ind) and (Compj).

Proof. Let us note WS i the system HOi without the last rule. WSi is computing the
application of a substitution to (the encoding of) a proposition. It cannot be applied more
than the size of the right-hand side of ǫ and the left-hand side of ·[·] (by simple induction
on the derivation). Therefore, the derivational complexity of WSi is linear. Now, note that
a substitution is blocked by all compj, i.e. compj(t)[l] cannot be reduced if neither t nor l
can. Therefore, the last rule of HOi can only be applied to the outermost compjs: due to

the sort constraints, ∈j cannot appear inside a compj
′
, and if a ∈̇j is transformed into a ∈j

by the rule l ǫ ∈̇j(t1, t2) → t1[l]
j ∈j t2[l]

j+1, the substitution applied to t2 blocks compj+1

if it is its function symbol. Applying WSi can duplicate the initially outermost compjs,
but not more than the total number of 1j

′
in the initial term. Once the last rule of HOi is

applied to all these copies of the outermost compjs, only WSi can be applied. Therefore,
the derivational complexity of HOi is polynomially bounded.

The axiom schemata (Leibniz), (Ind) and (Compj) can be replaced by the proofs in
Figure 3. Note that the replacement for (Compj) does not need extra axioms, because all
is done in the congruence.

Definition 4.6. The finite axiomatic presentation FZ consists of (Refl), Robinson’s axioms,
(Leibnizax) and (Indax).

Remark 4.7. All axioms of FZ are in the language of Z0 plus the language of Kirchner’s
classes.

FZ can be seen as the first-order core of higher-order arithmetic, whereas HOi puts
everything related to higher orders on.

18 G. BUREL

A proof π of P in the schematic system for Zi can be translated into a proof of P in
natural deduction modulo HOi using assumptions in FZ whose length is linear compared
to the length of π.

Proposition 4.8. It is possible to translate a proof of length n in the schematic system for
Zi into a proof of length O(n) in the natural deduction modulo HOi using assumptions in
FZ.

Zi
S
k P ; FZ N

O(k) HOi
P

Proof. Inference rules for classical first-order logic are translated as in Proposition 3.1.
Instances of axiom schemata in the proof in Zi are replaced by the proofs in Figure 3. The
important point is that the length of these proofs does not depend on the particular instance
that is considered.

This result can also be stated entirely in natural deduction

Theorem 4.9. For all i ≥ 0, there exists a finite confluent rewrite system with polynomi-

ally bounded derivational complexity HOi such that for all propositions P , if Zi
N
k P then

FZ N
O(k) HOi

P .

Proof. We replace the instance of the axiom schemata (Leibniz), (Ind) and (Compj) by
proofs using the axioms (Leibnizax) and (Indax) as indicated in Figure 3. Here again, their
length does not depend on the instance.

4.2. Higher-order arithmetic as purely computational theory. In this section, we
define higher-order arithmetic entirely as a rewrite system, modulo which inference rules are
applied, without resorting to any axiom. This is in line with the work of Dowek and Werner
(2005) who express first-order arithmetic as a theory modulo. The idea is to combine their
work with the rewrite system of the previous section, to get a characterization of higher-
order arithmetic. Notwithstanding, we will look carefully at the length of proofs in the
translations.

Dowek and Werner (2005) use the following method to introduce the induction schema
for first-order arithmetic: they add a new predicate N of arity [0] which essentially states
that an element is a natural number, and thus can be used in the induction schema. N(n)
can therefore be rewritten to ∀p. 0 ∈ p ⇒ (∀y. N(y)⇒ y ∈ p⇒ s(y) ∈ p) ⇒ n ∈ p. Then,
function symbols fx,y1,...,yn

P for each proposition P of first-order arithmetic with free vari-
ables x, y1, . . . , yn are added, as well as rewrite rules x ∈ fx,y1,...,yn

P (y1, . . . , yn) → P . To
prove a proposition using induction, we need to know that the variables used in the proof
are natural numbers, hence quantifiers are relativized with the predicate N (i.e. ∀x. P
becomes ∀x. N(x) ⇒ P , and ∃x. P becomes ∃x. N(x) ∧ P). Using this, it is proved
(Dowek and Werner, 2005, Proposition 13) that we obtain a conservative extension of first-
order arithmetic. Nevertheless, the length of the proofs is not preserved by the relativization.
Indeed, to translate a proof whose last step is

π
∀x. P

∀-e
{t/x}P

we have to transform it into a proof

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 19

̟
N(t)

|π|

∀x. N(x)⇒ P
∀-e

N(t)⇒ {t/x}P
⇒-e

{t/x}P

The problem is that the length of the proof ̟ depends on the size of t. In fact, it can be
proved that there is an arbitrary proof-length speed-up between the axiomatic presentation
of first-order arithmetic and the presentation of Dowek and Werner: ∃α0. α0 = n can be
proved in at most 7 steps in first-order arithmetic, whereas it needs a proof whose length is
linear in n in the system of Dowek and Werner.

Hence, we use a different approach. Starting from FZ moduloHOi, it remains to orient
the axioms of FZ into rewrite rules. Axioms (+0) to (×s) can be easily oriented. To orient
(Refl) and (Leibnizax), we use the axiom

∀α0 β0. α0 = β0 ⇔ (∀γc. 〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc) (=def)

which is equivalent to their conjunction. (Ontos) is redundant if the induction principle is
present, so it can be dropped. To encode (0 6= s) and (Injs), we use the same technique as
Dowek and Werner (2005): we introduce a new function symbol pred : [0] → 0 and a new
predicate Null : [0], as well as new axioms defining them:

pred(0) = 0 (pred0)

∀α0. pred(s(α0)) = α0 (preds)

Null(0) (Null0)

∀α0. ¬Null(s(α0)) (Nulls)

which can be easily oriented. It remains to orient the induction principle (Indax). The
most problematic part is that this axiom is the universal closure of an implication, whereas
proposition rewrite rules are compatible with universal closures of logical equivalences where
one of the side of the equivalence is an atomic proposition. We use the fact that B ⇒ A is
intuitionistically equivalent to A⇔ A ∨B, so that (Indax) is equivalent to

∀α0 γc. 〈α0〉 ǫ γc ⇔
(
〈α0〉 ǫ γc ∨

(
〈0〉 ǫ γc ∧ (∀β0. 〈β0〉 ǫ γc ⇒ 〈s(β0)〉 ǫ γc)

))
(Indmod)

If we do not use (TND) as axiom (i.e. if we work in intuitionistic logic), we therefore ob-
tain a formulation of higher-order Heyting arithmetic through the rewrite system HHAmod

i

defined in Figure 4. With this rewrite system, we can linearly simulate higher-order arith-
metic in deduction modulo:

Theorem 4.10. For all i there exists a finite rewrite system HHAmod
i such that for all

propositions P in the language of Zi, if Zi
N
k steps P then N

O(k) steps HHAmod

i

P .

Proof. It is sufficient to prove that all instances of the axiom schemata of Zi can be proved
in a bounded number of steps that does not depend on the particular instance.

(Refl) can be proved by

〈α0〉 ǫ pc (i)
⇒-i (i)

〈α0〉 ǫ pc ⇒ 〈α0〉 ǫ pc
∀-i
∀pc. 〈α0〉 ǫ pc ⇒ 〈α0〉 ǫ pc

∀-i α0 = α0 −→∀pc. 〈α0〉 ǫ pc ⇒ 〈α0〉 ǫ pc

∀α0. α0 = α0

20 G. BUREL

Arithmetic rules:

pred(0) → 0
pred(s(x)) → x

0 + y → y
s(x) + y → s(x+ y)

0× y → y
s(x)× y → x× y + y
Null(0) → ⊤

Null(s(x)) → ⊥

Axiom schemata:

x = y→ ∀zc. 〈x〉 ǫ z ⇒ 〈y〉 ǫ z x ∈j compj+1(y)→ x ::j nil ǫ y

x ::0 nil ǫ p→ 〈x〉 ǫ p ∨ (〈0〉 ǫ p ∧ ∀y. 〈y〉 ǫ p⇒ 〈s(y)〉 ǫ p)

Substitutions and classes: WSi +

pred(n)[l]0 → pred(n[l]0) ℓ ǫ
˙Null(t) → Null(t[ℓ]0)

Figure 4: Rewrite rules of HHAmod
i

(Leibnizax) can be proved by

〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc (i)
⇒-i (i), α0 = β0 −→〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc

α0 = β0 ⇒ 〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc
∀-i 3×
∀γc. ∀α0β0. α0 = β0 ⇒ 〈α0〉 ǫ γc ⇒ 〈β0〉 ǫ γc

(0 6= s) is proved using x = y → ∀zc. 〈x〉 ǫ z ⇒ 〈y〉 ǫ z:

0 = s(α0) (i)
∀-e
〈0〉 ǫ ˙Null(10)⇒ 〈s(α0)〉 ǫ ˙Null(10)

⊤-i
Null(0)

⇒-e

〈0〉 ǫ
˙Null(1

0
)

∗

−→Null(0)

−→⊤

〈s(α0)〉 ǫ
˙Null(10)

∗

−→Null(s(α0))

−→⊥

⊥
⇒-i (i)

0 = s(α0)⇒ ⊥
∀-i
∀α0. ¬ 0 = s(α0)

Let EInjs be
.
= (S0(α0), pred(10)), (Injs) is proved by

s(α0) = s(β0) (i)
∀-e
〈s(α0)〉 ǫ EInjs ⇒ 〈s(β

0)〉 ǫ EInjs

〈α0〉 ǫ pc (i)
⇒-i (i)

〈α0〉 ǫ pc ⇒ 〈α0〉 ǫ pc
∀-i

α0 = α0

⇒-e
α0 = β0

⇒-i (i)
s(α0) = s(β0)⇒ α0 = β0

∀-i 2×
∀α0β0. s(α0) = s(β0)⇒ α0 = β0

Let EOntos
def
= (

.
= (10, S0(0)) ⊃ ∅) ⊃ P0(

.
= (S0(10), s(10))). (Ontos) is proved by

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 21

〈0〉 ǫ pc (ii)
⇒-i (ii)

〈0〉 ǫ pc ⇒ 〈0〉 ǫ pc
∀-i

0 = 0 0 = 0⇒ ⊥ (i)
⇒-e

⊥
⊥-e

∃β0. α0 = s(β0)
⇒-i (i)

¬0 = 0⇒ ∃β0. α0 = s(β0)

〈s(y)〉 ǫ pc (iii)
⇒-i (iii)

〈s(y)〉 ǫ pc ⇒ 〈s(y)〉 ǫ pc
∀-i

s(y) = s(y)
∃-i
∃β0. s(y) = s(β0)

⇒-i
s(y) ǫ EOntos

⇒-i
y ǫ EOntos ⇒ s(y) ǫ EOntos

∀-i
∀y. y ǫ EOntos ⇒ s(y) ǫ EOntos

∧-i
〈0〉 ǫ EOntos ∧ ∀y. 〈y〉 ǫ EOntos ⇒ 〈s(y)〉 ǫ EOntos

∨-i
α0

ǫ EOntos
∀-i
∀α0. (¬ α0 = 0)⇒ ∃β0. α0 = s(β0)

(+0) to (×s) are easy to prove using the arithmetical rules and the rule for =.
(Ind) has the following proof:

P (0) (i) ∀β0. P (β0)⇒ P (s(β0)) (ii)
∧-i
〈0〉 ǫ Ex

P ∧ ∀β
0. 〈β0〉 ǫ Ex

P ⇒ 〈s(β
0)〉 ǫ Ex

P
∨-i 〈α0〉 ǫ Ex

P
−→〈α0〉 ǫ Ex

P
∨ . . .

〈α0〉 ǫ Ex
P

∀-i
∀α0. P (α0)

⇒-i 2×: (i), (ii)
P (0)⇒ (∀β0. P (β0)⇒ P (s(β0)))⇒ ∀α0. P (α0)

(Compj) has the following proof:

βj ∈j compj+1(Ex
A) (i)

⇒-i (i)
βj ∈j compj+1(Ex

A)⇒ 〈β
j〉 ǫ Ex

A

〈βj〉 ǫ Ex
A (ii)

⇒-i (ii)
βj

ǫ Ex
A ⇒ 〈β

j〉 ∈j compj+1(Ex
A)

∧-i
βj ∈j compj+1(Ex

A)⇔ 〈β
j〉 ǫ Ex

A
∀-i
∀βj . βj ∈j compj+1(Ex

A)⇔ A(βj)
∃-i

∃αj+1. ∀βj. βj ∈j αj+1 ⇔ A(βj)

What we obtain is a conservative extension:

Theorem 4.11. For all proposition P in the language of Zi, if
N
HHAmod

i
P then Zi

N P .

Proof. First, we can show, as Dowek and Werner do (2005), that adding pred, Null and the
axioms (pred0) to (Nulls) gives a conservative extension. This can be done by Skolemizing
the proposition ∀α0. ∃β0. (α0 = 0 ⇒ β0 = 0) ∧ (∀γ0. α0 = s(γ0) ⇒ β0 = γ0), which holds
in first-order arithmetic, and by interpreting Null(x) as x = 0.

Then, we apply the method of Kirchner (2007), which gives a conservative extension.
Finally we skolemize the axioms corresponding to the comprehension schemata, and thus
we obtain a conservative extension (see van Dalen, 1989). Then, we have to prove the
equivalence of (Refl) and (Leibnizax) with (=def), which is easy. Finally, we prove that
(Indax) and (Indmod) are equivalent.

It can be remarked that the presentation obtained is compatible with HHAmod
i , hence

the conclusion of the theorem.

22 G. BUREL

Compared to HOi, the main issue is that the derivational complexity of HHAmod
i is not

polynomially bounded—actually, it does not even terminate. The non-termination is due
to the rule encoding the induction principle, since it can be proved that the complexity of
HHAmod

i without this rule is polynomially bounded. It is not too surprising, since the real
power of arithmetic lies in this principle. Note that Dowek and Werner (2005, Remark 1)
propose a terminating rule to encode the induction principle, but, as stated before, proof
length is not kept.

Poincaré (1902) advocates that everything in first-order arithmetic but the induction
principle should be presented as computation, because the induction principle represents
the only real deductive axiom of the theory. Following this idea, we want to keep all rewrite
rules of HHAmod

i excluding the rule for the induction principle, and present this latter rule
in another way. Instead of using it as an axiom, we can apply the ideas within supernatural
deduction (Wack, 2005) on it. Supernatural deduction consists in transforming proposition
rewrite rules into new inference rules. It cannot be applied in our case, since ∨ cannot be
handled by supernatural deduction. However, it instigates the new inference rule

〈0〉 ǫ σc

[〈β0〉 ǫ σc]

〈s(β0)〉 ǫ σc

Ind-i
β0 not free in 〈τ0〉 ǫ σc

nor in the assumptions above〈τ0〉 ǫ σc

Proving with this new inference rules is equivalent to proving using the axiom (Indmod).
We obtain a first-order proof system for higher-order arithmetic which is axiom-free, whose
proofs can be checked in polynomial time, and whose proof lengths are the same as in the
axiomatic presentations of higher-order arithmetic.

Remark 4.12. With the rule that we use for arithmetic, we cannot extend the proof of
strong normalization through reducibility candidates as done by Dowek and Werner (2005),
or through super consistency by Dowek (2007). This still remains an open question whether
proofs of the natural deduction modulo HHAmod

i normalizes or not.

5. Applications to proof-length speed-ups

Because of Theorem 4.9 and Theorem 4.10, there is obviously no proof-length speed-up
between Zi, FZ modulo HOi and ∅ moduloHHAmod

i . Furthermore, there exists a speed-up
between all these and Zi−1, which can be decomposed as follows.

5.1. Speed-up over compatible theories. In this section, we prove that there exists a
speed-up between (FZ modulo HOi) and (FZ and any finite theory compatible with HOi).
Theorem 2.5 makes it not surprising that, if we consider FZ plus a finite theory compatible
with HOi, we get a speed-up with Zi (or with FZ modulo HOi). That shows the interest
of using deduction modulo.

Proposition 5.1. For all i, there is an infinite family F such that such that for all finite
presentations Γi compatible with HOi,

(1) for all P ∈ F , we have FZ,Γi
N P

(2) there is a fixed k ∈ N such that for all P ∈ F , we have FZ N
k steps HOi

P

(3) there is no fixed k ∈ N such that for all P ∈ F , we have FZ,Γi
N
k steps P

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 23

1st order . . . (i+ 1)th order

proof-length

decreases

��

FZ,Γi ⊢
speed-up

ttiiiiiiiiiiiiiiiiii

FZ ⊢HOi Zi ⊢
linear

(Theo. 4.9)

oo

Proof. As in the proof of Theorem 2.5, we first consider the standard finite presentation

HOi compatible with HOi, that is, axioms from (WSnil) to (WS∀j) and axioms (Compjsk).
Consider the set of propositions corresponding to all instantiations of the comprehension
schema (Compi−1). In FZ modulo HOi, these propositions can be proved in five steps as
done in Fig. 3. Obviously, Zi−1 is not enough to prove all of them, so that (Compi−1sk) has
to be used in the proofs in FZ,HOi. Nevertheless, the term of sort c instantiated in it
cannot have a bounded size. Then, the decomposition of this term using HOi cannot be
done in a bounded number of steps. We then use Proposition 2.3 to extend this to any
finite presentation compatible with HOi.

5.2. Speed-up due to higher orders. It is also possible to get a speed-up between FZ
plus any presentation compatible with HOi and Zi−1.

Proposition 5.2. For all i > 0, there is an infinite family F such that for all presentations
Γi compatible with HOi,

(1) for all P ∈ F , we have Zi−1
N P

(2) there is a fixed k ∈ N such that for all P ∈ F , we have FZ,Γi
N
k steps P

(3) there is no fixed k ∈ N such that for all P ∈ F , we have Zi−1
N
k steps P

ith order (i+ 1)th order

proof-length

decreases

��

Zi−1 ⊢
speed-up

''P
P

P
P

P
P

P
P

P
P

P
P

FZ,Γi ⊢

Proof. If we look at Buss’ proof of Theorem 1.1, the infinite family of propositions he use are
of the form P (n) where ∀n. P (n) can be proved in Zi whereas in Zi−1, P (n) can be proved,
but not with less than n steps. So to get a speed-up it is sufficient to prove that ∀n. P (n)
can be proved in FZ plus Γi, which is the case because of Theorem 4.9 and (Dowek et al.,
2003, Proposition 1.8). We also need Proposition 3.2 to show that if the length of the

proofs in Zi−1
N was bounded, it would be the same in Zi−1

S , hence a contradiction with
Theorem 1.1.

24 G. BUREL

The links between the different systems for higher-order arithmetic presented in this
paper are summarized in Figure 5.

6. Conclusion and discussion

In this paper, we have proposed a rigorous framework to study proof lengths in de-
duction modulo, by imposing that proofs must be checkable in polynomial time. We have
shown that even with this strict condition, proofs in deduction modulo can be arbitrarily
shorter than proofs using axiomatizations. We have applied these ideas to study the length
of proofs in higher-order arithmetic. We have encoded higher orders as a first-order rewrite
system, and proved that proofs have the same length in higher-order arithmetic and in
first-order arithmetic modulo this system. We have also defined a system for higher-order
arithmetic without resorting to any axiom, where proofs can be checked in polynomial time
and have the same length as in the higher-order axiomatization. All these results open
interesting issues that we discuss below.

The first question that arises from this work is the definition of what should be con-
sidered as a proof. Until recently, automated theorem provers only answered yes or no (or
maybe), and if the prover was correct, this could be considered as a proof. Of course, the

0th order 1st order . . . ith order (i+ 1)th order

Z0 ⊢

speed-up (Buss)

��9
9

9
9

9
9

9
9

9
9

9
9

9
9

9

proof-length

decreases

��

. . .

speed-up (Buss)

��8
8

8
8

8
8

8
8

8
8

8
8

8
8

Zi−1 ⊢ speed-up

(Prop. 5.2)

''P
P

P
P

P
P

P
P

P
P

P
P

speed-up (Buss)

 @
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

FZ,Γi ⊢

speed-up

(Prop. 5.1)
��

⊢HHAmod
i

FZ ⊢HOi Zi ⊢

linear

(Theo. 4.10)

ll

linear

(Theo. 4.9)
oo

Figure 5: Speed-ups in higher-order arithmetic and deduction modulo

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 25

correction of such provers, often implemented using low-level tricks to increase the efficiency,
is hard to prove. Therefore, many provers now generate certificates that can be checked in
more trustworthy provers (such as proof assistants like Coq or Isabelle). These certificates
can therefore be considered as proofs, although they may not contain all the steps that
would be included in a usual formal proof, but only the hints that make it possible to build
the formal proof. This idea is also important for proof-carrying codes (Necula, 1997): in this
setting, the code of an application is distributed with a certificate proving its correctness.
The user of the code can therefore check the correctness using the code and its certificate.
It is crucial to have certificates that are small enough, because they are distributed with
the code, but that can be checked efficiently, because such codes are often distributed to
low-resource systems such as mobile phones. Here again, a tradeoff has to be found between
the details present in the certificates and the complexity of their checking. Such a tradeoff
could be determined in deduction modulo by choosing what should be part of the congru-
ence and what should be expressed as axioms. In this paper, we have advocated that the
natural criterion to define what a proof is, is that it can be feasibly checked. Of course,
depending on the context, this criterion could be relaxed or strengthened.

Another question concerns the role of computation in the speed-ups in higher-order
arithmetic. We have proved, at least to some extend, that part of these speed-ups originates
from the computation (Proposition 5.1). However, it seems that what really makes proofs
shorter is the fact to be able to reason about higher-order objects, even if they are encoded
by first-order ones (Proposition 5.2). The real point of our results is that it is possible to
use a finite first-order encoding while preserving the length of proofs, at the condition to
work modulo some computation. In general, first-order theorem provers such as Vampire or
SPASS only handle finitely presented theories. Note that we have shown in (Burel, 2010)
how to integrate deduction modulo into such a prover.

It could be found inappropriate that rewrite steps are not counted into the length of the
proofs. Indeed, these steps have to be performed when searching for the proofs. First, note
that it is also possible to obtain proof-length speed-ups even when counting the rewrite steps
in the length of the proofs, as can be shown by transposing a result of Bruscoli and Guglielmi
(2009) where an exponential proof-length speed-up is achieved by applying deduction steps
deeply inside propositions (see Burel, 2009, Section 5.2.2). Second, we think that the speed-
ups we obtained should not be considered as cheating, by hiding part of the proofs in the
congruence. This must be thought of as a way to separate what is deduced and what is
computed. To find a proof, both parts need to be built. To check the proof however,
only the deductive part is necessary, because the rest can be effectively computed during
the verification (hence the need to have a decidable congruence, even better if it can be
decided in polynomial time). Third, it can also be argued that when the rewrite system is
confluent and polynomially bounded, the rewrite steps are fully deterministic, so that they
do not increase the proof-search space. Therefore, presenting a theory by means of a rewrite
system instead of a set of axioms can be seen as a way to make proof search in that theory
more deterministic. There are other attempts to make proof search more deterministic,
e.g. Andreoli’s focusing (1992) in the sequent calculus or Kahramanoğulları’s strategies for
the calculus of structures (2006), but they are related to the proof system and not to the
theory. Deduction modulo should be used as a complement to those techniques, when
working in a specific theory. In particular, combining focusing with deduction modulo leads
to what is called superdeduction (Brauner, Houtmann, and Kirchner, 2007), as remarked
by Houtmann (2008).

26 G. BUREL

These results are encouraging indicators that it is as good to work directly in higher-
order logics, as is done in the current interactive theorem provers, such as Coq (http://
coq.inria.fr/) and Isabelle/HOL (Nipkow, Paulson, and Wenzel, 2002), or using a first-
order implementation of these logics, as could be done in a proof assistant based on deduc-
tion modulo (or on its sequel named superdeduction developed by Brauner et al., 2007). It
must also be proved that our results extend to the higher-order systems basing the interac-
tive provers. This was partly achieved by proving that functional pure type systems can be
encoded in superdeduction in a manner such that typing inferences in the pure type system
are translated into proofs in superdeduction of the same length (Burel, 2008). It should
also be noticed that in the expression of HOL in the sequent calculus modulo (Dowek et al.,
2001), the length of proofs are preserved too, although it was not highlighted by the authors.

Acknowledgement

The author wishes to thank G. Dowek, T. Hardin and C. Kirchner for many discussions
and comments about earlier versions of this work, as well as the anonymous referees for
their pertinent remarks.

References

Andreoli, J.-M. 1992. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2, 3, 297–347.

Baader, F. and Nipkow, T. 1998. Term Rewriting and all That. Cambridge University
Press.

Brauner, P., Houtmann, C., and Kirchner, C. 2007. Principle of superdeduction. In
Proceedings of LICS, L. Ong, Ed. IEEE Computer Society, 41–50.

Brünnler, K. 2003. Deep inference and symmetry in classical proofs. Ph.D. thesis, Tech-
nische Universität Dresden.

Bruscoli, P. and Guglielmi, A. 2009. On the proof complexity of deep inference. ACM
Transactions on Computational Logic 10, 2, 1–34.

Burel, G. 2007. Unbounded proof-length speed-up in deduction modulo. In CSL, J. Du-
parc and T. Henziger, Eds. Lecture Notes in Computer Science, vol. 4646. Springer,
496–511.

Burel, G. 2008. A first-order representation of pure type systems using superdeduction.
In LICS, F. Pfenning, Ed. IEEE Computer Society, 253–263.

Burel, G. 2009. Bonnes démonstrations en déduction modulo. Ph.D. thesis, Université
Henri Poincaré (Nancy 1).

Burel, G. 2010. Embedding deduction modulo into a prover. In CSL, A. Dawar and
H. Veith, Eds. Lecture Notes in Computer Science, vol. 6247. Springer, 155–169.

Buss, S. R. 1987. Polynomial size proofs of the propositional pigeonhole principle. The
Journal of Symbolic Logic 52, 4, 916–927.

Buss, S. R. 1994. On Gödel’s theorems on lengths of proofs I: Number of lines and speedup
for arithmetics. The Journal of Symbolic Logic 59, 3, 737–756.

Cook, S. A. and Reckhow, R. A. 1974. On the lengths of proofs in the propositional
calculus (preliminary version). In STOC ’74: Proceedings of the sixth annual ACM sym-
posium on Theory of computing. ACM, 135–148.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 27

Cook, S. A. and Reckhow, R. A. 1979. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic 44, 1, 36–50.

Cousineau, D. and Dowek, G. 2007. Embedding pure type systems in the lambda-
pi-calculus modulo. In TLCA, S. Ronchi Della Rocca, Ed. Lecture Notes in Computer
Science, vol. 4583. Springer, 102–117.

Curry, H. B., Feys, R., and Craig, W. 1958. Combinatory Logic. Vol. 1. Elsevier
Science Publishers B. V. (North-Holland), Amsterdam.

Dowek, G. 2007. Truth values algebras and proof normalization. In TYPES, T. Altenkirch
and C. McBride, Eds. Lecture Notes in Computer Science, vol. 4502. Springer, 110–124.

Dowek, G., Hardin, T., and Kirchner, C. 2001. HOL-λσ an intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science 11, 1,
1–25.

Dowek, G., Hardin, T., and Kirchner, C. 2003. Theorem proving modulo. Journal of
Automated Reasoning 31, 1, 33–72.

Dowek, G. and Miquel, A. 2006. Cut elimination for Zermelo’s set theory. Available on
authors’ web page.

Dowek, G. and Werner, B. 2003. Proof normalization modulo. The Journal of Symbolic
Logic 68, 4, 1289–1316.

Dowek, G. and Werner, B. 2005. Arithmetic as a theory modulo. In RTA, J. Giesl,
Ed. LNCS, vol. 3467. Springer, 423–437.

Gallier, J. H. 1986. Logic for Computer Science: Foundations of Automatic Theorem
Proving. Computer Science and Technology Series, vol. 5. Harper & Row, New York. Re-
vised On-Line Version (2003), http://www.cis.upenn.edu/~jean/gbooks/logic.html.

Gentzen, G. 1934. Untersuchungen über das logische Schliessen. Mathematische
Zeitschrift 39, 176–210, 405–431.

Gödel, K. 1936. Über die Länge von Beweisen. Ergebnisse eines Mathematischen Kollo-
quiums 7, 23–24. English translation in Gödel (1986).

Gödel, K. 1986. On the length of proofs. In Kurt Gödel: Collected Works, S. Feferman
et al., Eds. Vol. 1. Oxford University Press, Oxford, 396–399.

Houtmann, C. 2008. Axiom directed focusing. In Types for Proofs and Programs, S. Be-
rardi, F. Damiani, and U. de’Liguoro, Eds. Lecture Notes in Computer Science, vol. 5497.
Springer, 169–185.

Kahramanoğulları, O. 2006. Reducing nondeterminism in the calculus of structures.
In LPAR, M. Hermann and A. Voronkov, Eds. Lecture Notes in Computer Science, vol.
4246. Springer, 272–286.

Kirchner, F. 2007. A finite first-order theory of classes. In TYPES, T. Altenkirch and
C. McBride, Eds. Lecture Notes in Computer Science, vol. 4502. Springer, 188–202.

Kleene, S. C. 1952. Finite axiomatizability of theories in the predicate calculus using
additional predicate symbols. In Two papers on the predicate calculus. Memoirs of the
american mathematical society, vol. 10. American Mathematical Society, Providence,
USA, 27–68.

Kraj́ıček, J. 1989. On the number of steps in proofs. Annals of Pure and Applied
Logic 41, 2, 153–178.

Mostowski, A., Robinson, R. M., and Tarski, A. 1953. Undecidable Theories. Studies
in Logic and the Foundations of Mathematics. North-Holland, Amsterdam.

Necula, G. C. 1997. Proof-carrying code. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages. ACM.

http://www.cis.upenn.edu/~jean/gbooks/logic.html

28 G. BUREL

Nipkow, T., Paulson, L. C., and Wenzel, M. 2002. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer.

Parikh, R. J. 1973. Some results on the length of proofs. Transactions of the ACM 177,
29–36.

Poincaré, H. 1902. La Science et l’Hypothèse. Flammarion.
van Dalen, D. 1989. Logic and Structure, Second ed. Universitext. Springer.
Wack, B. 2005. Typage et déduction dans le calcul de réécriture. Ph.D. thesis, Université

H. Poincaré (Nancy 1).

Appendix A. Translation from Zi
N

to Zi
S

T





[A]
π{

B
⇒-i

A⇒ B





def
= TA

(

[A]
π{

B

)

T





π1

A

π2

A⇒ B⇒-e
B





def
=

T (π1)

A

T (π2)

A⇒ B
(MP)

B

T





π1

A

π2

B
∧-i

A ∧ B





def
= T (π1)

A

T (π2)

B B ⇒ A⇒ B (K)
(MP)

A⇒ B

A⇒ A (I) · · · (Pair)
(MP)

(A⇒ B)⇒ A⇒ (A ∧ B)
(MP)

A⇒ (A ∧ B)
(MP)

A ∧ B

T

(π

A ∧ B
∧-e

A

)

def
=

T (π)

A ∧ B A ∧B ⇒ A (Projl)
(MP)

A
and similarly with (Projr) for the other side.

T

(π

A
∨-i

A ∨ B

)

def
=

T (π)

A A⇒ (A ∨ B) (Injl)
(MP)

A ∨ B
and similarly with (Injr) for the other side.

T





π1

A ∨ B

[A]
π2{

C

[B]
π3{

C
∨-e

C





def
= T (π1)

A ∨B

TB (π3)

B ⇒ C

TA (π2)

A⇒ C · · · (Case)
(MP)

(B ⇒ C)⇒ (A ∨ B)⇒ C
(MP)

(A ∨ B)⇒ C
(MP)

C

T





π

{y/x}A
∀-i

∀x. A





def
=

T (π)

{y/x}A

{y/x}A⇒ {y/x}A (I)
(Gen)

{y/x}A⇒ ∀x. A
(MP)

∀x. A
Note that the side conditions are satisfied.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 29

T

(π

∀x. A
∀-e

{t/x}A

)

def
=

T (π)

∀x. A ∀x. A⇒ {t/x}A (UI)
(MP)

{t/x}A

T





π

{t/x}A
∃-i

∃x. A





def
=

T (π)

{t/x}A {t/x}A⇒ ∃x. A (EI)
(MP)

∃x. A

T





π1

∃x. A

[{y/x}A]
π2{

B
∃-e

B





def
=

T (π1)

∃x. A

TA (π2)

{y/x}A⇒ B
(Part)

(∃x. A)⇒ B
(MP)

B
Note that the side conditions are satisfied.

T
(

classical
A ∨ (A⇒ ⊥)

)

def
= A ∨ (A⇒ ⊥) (TND)

T

(π

⊥
⊥-e

A

)

def
=

A⇒ A (I)

T (π)

⊥ ⊥ ⇒ (A⇒ A)⇒ ⊥ (K)
(MP)

(A⇒ A)⇒ ⊥ · · · (EFSQ)
(MP)

(A⇒ A)⇒ A
(MP)

A

T (A)
def
= A

TA





[B]
π{

C
⇒-i

B ⇒ C





def
= TA

(

TB (π)

B ⇒ C

)

TA





[A]
π1{

B

[A]
π2{

B ⇒ C⇒-e
C





def
=

TA (π2)

A⇒ B ⇒ C · · · (C)
(MP)

B ⇒ A⇒ C

TA (π1)

A⇒ B · · · (B)
(MP)

(B ⇒ A⇒ C)⇒ A⇒ A⇒ C
(MP)

A⇒ A⇒ C · · · (W)
(MP)

A⇒ C

TA





[A]
π1{

B

[A]
π2{

C
∧-i

B ∧C





def
=

TA (π2)

A⇒ C

TA (π1)

A⇒ B (A⇒ B)⇒ (A⇒ C)⇒ A⇒ (B ∧ C) (Pair)
(MP)

(A⇒ C)⇒ A⇒ (B ∧C)
(MP)

A⇒ (B ∧ C)

TA





[A]
π{

B ∧ C
∧-e

B





def
=

(B ∧ C)⇒ B (Projl)

TA (π)

A⇒ (B ∧ C) · · · (B)
(MP)

((B ∧ C)⇒ B)⇒ A⇒ B
(MP)

A⇒ B
and similarly with (Projr) for the other side.

30 G. BUREL

TA





[A]
π{

B
∨-i

B ∨ C





def
=

B ⇒ (B ∨C) (Injl)

TA (π)

A⇒ B · · · (B)
(MP)

(B ⇒ (B ∨C))⇒ A⇒ (B ∨ C)
(MP)

A⇒ (B ∨ C)
and similarly with (Injr) for the other side.

TA





[A]
π1{

B ∨ C

[A,B]
π2{

D

[A,C]
π3{

D
∨-e

D





def
=

TC





TA (π3)

A⇒ D





C ⇒ A⇒ D

TB





TA (π2)

A⇒ D





B ⇒ A⇒ D · · · (Case)
(MP)

(C ⇒ A⇒ D)⇒ (B ∨ C)⇒ A⇒ D
(MP)

(B ∨ C)⇒ A⇒ D

TA (π1)

A⇒ (B ∨ C) · · · (B)
(MP)

((B ∨ C)⇒ A⇒ D)⇒ A⇒ A⇒ D
(MP)

A⇒ A⇒ D
..
. · · · (W)

(MP)
A⇒ D

TA







[A]
π{
{y/x}B

∀-i
∀x. B







def
=

TA (π)

A⇒ {y/x}B
(Gen)

A⇒ ∀x. B
Note that the side conditions are satisfied.

TA





[A]
π{
∀x. B

∀-e
{t/x}B





def
=

(∀x. B)⇒ {t/x}B (UI)

TA (π)

A⇒ ∀x. B · · · (B)
(MP)

((∀x. B)⇒ {t/x}B) ⇒ A⇒ {t/x}B
(MP)

A⇒ {t/x}B

TA







[A]
π{
{t/x}B

∃-i
∃x. B







def
=

{t/x}B ⇒ ∃x. B (EI)

TA (π)

A⇒ {t/x}B · · · (B)
(MP)

({t/x}B ⇒ ∃x. B)⇒ A⇒ ∃x. B
(MP)

A⇒ ∃x. B

TA





[A]
π1{

∃x. B

[A,{y/x}B]
π2{

C
∃-e

C





def
=

TB

(

TA (π2)
A⇒ C

)

{y/x}B ⇒ A⇒ C
(Part)

∃x. B ⇒ A⇒ C

TA (π1)

A⇒ ∃x. B . . . (B)
(MP)

(∃x. B ⇒ A⇒ C)⇒ A⇒ A⇒ C
(MP)

A⇒ A⇒ C · · · (W)
(MP)

A⇒ C
Note that the side conditions are satisfied.

TA





[A]
π{

⊥
⊥-e

B





def
=

TA (π)

A⇒ ⊥ (A⇒ ⊥)⇒ A⇒ B (EFSQ)
(MP)

A⇒ B

TA (A)
def
= A⇒ A (I)

TA

(π

B

)

def
=

T (π)

B B ⇒ A⇒ B (K)
(MP)

A⇒ B

if the assumption A is not actually

used in π.

EFFICIENTLY SIMULATING HIGHER-ORDER ARITHMETIC BY A 1st-ORDER THEORY MODULO 31

The definition of TA for ⇒-i is not looping, because they are no longer ⇒-i in TB (π).
Nevertheless, this case impose use to define what TA means for a proof using the inference
rules (Gen) and (Part). (The translation of (MP) is already defined because (MP) is equal
to ⇒-e.)

TA







[A]
π{

B ⇒ C(τ)
(Gen)

B ⇒ ∀α. C(α)







def
=

TA (π)

A⇒ B ⇒ C(τ)

̟1

(A⇒ B ⇒ C(τ))⇒ (A ∧ B)⇒ C(τ)
(MP)

(A ∧ B)⇒ C(τ)
(Gen)

(A ∧ B)⇒ ∀α. C(α)
̟2

· · ·
(MP)

A⇒ B ⇒ ∀α. C(α)

where ̟1 is any proof of (A⇒ B ⇒ C)⇒ (A∧B)⇒ C, and ̟2 of ((A∧B)⇒ C)⇒ A⇒
B ⇒ C, using the axiom schemata (I) to (Pair) and the inference rule (MP). (Indeed, they
are valid propositions of the intuitionistic propositional logic.)

TA







[A]
π{

B(τ)⇒ C
(Part)

(∃α. B(α)) ⇒ C







def
=

TA (π)

A⇒ B(τ)⇒ C (A⇒ B(τ)⇒ C)⇒ B(τ)⇒ A⇒ C (C)
(MP)

B(τ)⇒ A⇒ C
(Part)

∃α. B(α)⇒ A⇒ C · · · (C)
(MP)

A⇒ ∃α. B(α)⇒ C

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Proof Speed-ups in Deduction Modulo
	2.1. Rewriting propositions
	2.2. Natural deduction modulo
	2.3. A Simple Proof-Length Speed-up

	3. Proof systems for ith-order arithmetic
	3.1. Schematic systems
	3.2. ith-order arithmetic
	3.3. Translations between schematic systems and natural deduction

	4. Higher-order arithmetic as a first-order theory modulo
	4.1. Encoding higher orders using classes
	4.2. Higher-order arithmetic as purely computational theory

	5. Applications to proof-length speed-ups
	5.1. Speed-up over compatible theories
	5.2. Speed-up due to higher orders

	6. Conclusion and discussion
	Acknowledgement
	References
	Appendix A. Translation from natural deduction to schematic systems

