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Abstract. We consider priced timed Petri nets, i.e., unbounded Petri nets where each
token carries a real-valued clock. Transition arcs are labeled with time intervals, which
specify constraints on the ages of tokens. Furthermore, our cost model assigns token
storage costs per time unit to places, and firing costs to transitions. This general model
strictly subsumes both priced timed automata and unbounded priced Petri nets.

We study the cost of computations that reach a given control-state. In general, a
computation with minimal cost may not exist, due to strict inequalities in the time con-
straints. However, we show that the infimum of the costs to reach a given control-state is
computable in the case where all place and transition costs are non-negative.

On the other hand, if negative costs are allowed, then the question whether a given
control-state is reachable with zero overall cost becomes undecidable. In fact, this negative
result holds even in the simpler case of discrete time (i.e., integer-valued clocks).

1. Introduction

Petri nets [Pet62, Pet77] are a widely used model for the study and analysis of concurrent
systems. Many different formalisms have been proposed which extend Petri nets with
clocks and real-time constraints, leading to various definitions of Timed Petri nets (TPNs).
A complete discussion of all these formalisms is beyond the scope of this paper and the
interested reader is referred to the surveys in [Srb08, Bow96, BCH+05].

An important distinction is whether the time model is discrete or continuous. In
discrete-time nets, time is interpreted as being incremented in discrete steps and thus the
ages of tokens are in a countable domain, commonly the natural numbers. Such discrete-
time nets have been studied in, e.g., [RGdFE99, dFERA00]. In continuous-time nets, time
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is interpreted as continuous, and the ages of tokens are real numbers. Some problems for
continuous-time nets have been studied in [AN01, AN02, ADMN04, AMM07].

In parallel, there have been several works on extending the model of timed automata
[AD94] with prices (weights) (see e.g., [ATP01, LBB+01, BBBR07, BFH+01, BFLM11, JT08,
BFL+08]). Weighted timed automata are suitable models for embedded systems, where one
has to take into consideration the fact that the behavior of the system may be constrained
by the consumption of different types of resources. Concretely, weighted timed automata
extend classical timed automata with a cost function Cost that maps every location and
every transition to a nonnegative integer (or rational) number. For a transition, Cost gives
the cost of performing the transition. For a location, Cost gives the cost per time unit
for staying in the location. In this manner, we can define, for each computation of the
system, the accumulated cost of staying in locations and performing transitions along the
computation.

Here we consider a very expressive model that subsumes all models mentioned above.
Priced Timed Petri Nets (PTPN) are a generalization of classic Petri nets [Pet62] with real-
valued (i.e., continuous-time) clocks, real-time constraints, and prices for computations.

Each token is equipped with a real-valued clock, representing the age of the token. The
firing conditions of a transition include the usual ones for Petri nets. Additionally, each arc
between a place and a transition is labeled with a time-interval whose bounds are natural
numbers (or possibly ∞ as upper bound). These intervals can be open, closed or half
open. Like in timed automata, this is used to encode strict or non-strict inequalities that
describe constraints on the real-valued clocks. When firing a transition, tokens which are
removed/added from/to places must have ages lying in the intervals of the corresponding
transition arcs. Furthermore, we add special read-arcs to our model. These affect the
enabledness of transitions, but, unlike normal arcs, they do not remove the token from the
input place. Read arcs preserve the exact age of the input token, unlike the scenario where
a token is first removed and then replaced. Read arcs are necessary in order to make PTPN
subsume the classic priced timed automata of [BBBR07].

We assign a cost to computations via a cost function Cost that maps transitions and
places of the Petri net to natural numbers. For a transition t, Cost(t) gives the cost of
performing the transition, while for a place p, Cost(p) gives the cost per time unit per
token in the place. The total cost of a computation is given by the sum of all costs of fired
transitions plus the storage costs for storing certain numbers of tokens on certain places
for certain times during the computation. Like in priced timed automata, having integers
as costs and time bounds is not a restriction, because the case of rational numbers can
be reduced to the integer case. In most of the paper we consider non-negative costs for
transitions and places. In the last section we show that allowing negative costs makes even
very basic questions undecidable.

Apart from the cost model, our PTPN are very close to the Timed-Arc Petri Nets of
[Srb08] (except for some extensions; see below) in the sense that time is recorded by clocks
in the individual tokens, of which there can be unboundedly many. This model differs
significantly from the Time Petri Nets (also described in [Srb08]) where time is measured
by a bounded number of clocks in the transitions. In addition to the cost model, our
PTPN also extend the models of [Srb08], [AN01, AN02, ADMN04, AMM07] and [RGdFE99,
dFERA00] in two other ways. First, our PTPN model includes read-arcs, which is necessary
to subsume (priced) timed automata. Secondly, in PTPN, newly generated tokens do not
necessarily have age zero, but instead their age is chosen nondeterministically from specified
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intervals (which can be point intervals). Our PTPN model uses a continuous-time semantics
(with real-valued clocks) like the models considered in [AN01, AN02, ADMN04, AMM07]
and unlike the simpler discrete-time semantics (with integer-valued clocks) considered in
[RGdFE99, dFERA00]. We use a non-urgent semantics where tokens can grow older even
if this disables the firing of certain transitions (sometimes for ever), like in the Timed-Arc
Petri Nets of [Srb08] and unlike in the Time Petri Nets of [Srb08].

Thus, our PTPN are a continuous-time model which subsumes the continuous-time
TPN of [AN01, AN02, ADMN04, AMM07], the Timed-Arc Petri Nets of [Srb08] and the
priced timed automata of [ATP01, LBB+01, BBBR07]. It should be noted that PTPN are
infinite-state in several different ways. First, the Petri net itself is unbounded. So the
number of tokens (and thus the number of clocks) can grow beyond any bound, i.e., the
PTPN can create and destroy arbitrarily many clocks. In that PTPN differ from the priced
timed automata of [ATP01, LBB+01, BBBR07], which have only a finite number of control-
states and only a fixed finite number of clocks. Secondly, every single clock value is a real
number of which there are uncountably many.

Our contribution. We study the cost to reach a given control-state in a PTPN. In Petri
net terminology, this is called a control-state reachability problem or a coverability problem.
The related reachability problem (i.e., reaching a particular configuration) is undecidable
for (continuous-time and discrete-time) TPN [RGdFE99], even without taking costs into
account. In general, a cost-optimal computation may not exist (e.g., even in priced timed
automata it can happen that there is no computation of cost 0, but there exist computations
of cost ≤ ǫ for every ǫ > 0).

Our main contribution is to show that the infimum of the costs to reach a given control-
state is computable, provided that all transition and place costs are non-negative.

This cost problem had been shown to be decidable for the much simpler model of
discrete-time PTPN in [AM09]. However, discrete-time PTPN do not subsume the priced
timed automata of [BBBR07]. Moreover, the techniques from [AM09] do not carry over to
the continuous-time domain (e.g., arbitrarily many delays of length 2−n for n = 1,2, . . . can
can happen in ≤ 1 time).

On the other hand, if negative costs are allowed, then even very basic questions become
undecidable. In Section 10 we show that the question whether a given control-state is
reachable with zero overall cost is undecidable if negative transition costs are allowed. This
negative result does not need real-valued clocks; it even holds in the simpler case of discrete
time (i.e., integer-valued) clocks.

Outline of Used Techniques. Since the PTPN model is very expressive, several pow-
erful new techniques are developed in this paper to analyze them. These techniques are
interesting in their own right and can be instantiated to solve other problems.

In Section 2 we define PTPN and the priced coverability problem, and describe its rela-
tionship with priced timed automata and Petri nets. Then, in Sections 3–5, we reduce the
priced coverability problem for PTPN to a coverability problem in an abstracted untimed
model called AC-PTPN. This abstraction is done by an argument similar to a construction
in [BBBR07], where parameters indicating a feasible computation are contained in a poly-
hedron, which is described by a totally unimodular matrix. However, our class of matrices
is more general than in [BBBR07], because PTPN allow the creation of new clocks with
a nonzero value. The resulting AC-PTPN are still much more expressive than Petri nets,



4 P. A. ABDULLA AND R. MAYR

because their configurations are arbitrarily long sequences of multisets (instead of a single
multiset in the case of normal Petri nets). Moreover, the transitions of AC-PTPN are not
monotone, because larger configurations cost more and might thus exceed the cost limit.

In order to solve coverability for AC-PTPN, we develop a very general method to
solve reachability/coverability problems in infinite-state transition systems which are more
general than the well-quasi-ordered/well-structured transition systems of [AČJT00, FS01].
We call this method the abstract phase construction, and it is described in abstract terms
in Section 6. In particular, it includes a generalization of the Valk-Jantzen construction
[VJ85] to arbitrary well-quasi-ordered domains.

In Section 7, we instantiate this abstract method with AC-PTPN and prove the main
result. This instantiation is nontrivial and requires several auxiliary lemmas, which ulti-
mately use the decidability of the reachability problem for Petri nets with one inhibitor arc
[Rei08, Bon11]. There exist close connections between timed Petri nets, Petri nets with one
inhibitor arc, and transfer nets. In Section 8 we establish a connection between a subclass
of transfer nets called simultaneous-disjoint-transfer nets (SD-TN) and Petri nets with one
inhibitor arc, and in Section 9 we show the decidability of a crucial property by reducing it
to a reachability problem for SD-TN. By combining all parts, we show the main result, i.e.,
the computability of the infimum of the costs for PTPN.

The undecidability result for general costs of Section 10 is shown by a direct reduction
from Minsky 2-counter machines, where a tradeoff between positive and negative costs is
used to ensure a faithful simulation.

2. Priced Timed Petri Nets

2.1. Preliminaries. We use N,R≥0,R>0 to denote the sets of natural numbers (including
0), nonnegative reals, and strictly positive reals, respectively. For a natural number k, we
use N

k and N
k
ω to denote the set of vectors of size k over N and N ∪ {ω}, respectively (ω

represents the first limit ordinal). For n ∈ N, we use [n] to denote the set {0, . . . , n}. For
x ∈ R≥0, we use frac (x) to denote the fractional part of x. We use a set Intrv of intervals.
An open interval is written as (w ∶ z) where w ∈ N and z ∈ N ∪ {∞}. Intervals can also be
closed in one or both directions, e.g. [w ∶ z] is closed in both directions and [w ∶ z) is closed
to the left and open to the right.

For a set A, we use A∗ and A⊙ to denote the set of finite words and finite multisets over
A, respectively. We view a multiset b over A as a mapping b ∶ A↦ N. Sometimes, we write
finite multisets as lists (possibly with multiple occurrences), so both [2.4,2.4,2.4,5.1,5.1]
and [2.43 , 5.12] represent a multiset b over R≥0 where b(2.4) = 3, b(5.1) = 2 and b(x) = 0
for x ≠ 2.4,5.1. For multisets b1 and b2 over A, we say that b1 ≤ b2 if b1(a) ≤ b2(a) for each
a ∈ A. We define b1 + b2 to be the multiset b where b(a) = b1(a) + b2(a), and (assuming
b1 ≤ b2) we define b2 − b1 to be the multiset b where b(a) = b2(a)− b1(a), for each a ∈ A. We
use a ∈ b to denote that b(a) > 0. We use ∅ or [] to denote the empty multiset and ε to
denote the empty word.

Let (A,≤) be a poset. We define a partial order ≤w on A∗ as follows. Let a1 . . . an ≤
w

b1 . . . bm iff there is a subsequence bj1 . . . bjn of b1 . . . bm s.t. ∀k ∈ {1, . . . , n}. ak ≤ bjk . A
subset B ⊆ A is said to be upward closed in A if a1 ∈ B,a2 ∈ A and a1 ≤ a2 implies a2 ∈ B.
If A is known from the context, then we say simply that B is upward closed. For B ⊆ A we
define the upward closure B ↑ to be the set {a ∈ A ∣ ∃a′ ∈ B ∶ a′ ≤ a}. A downward closed set
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B and the downward closure B ↓ are defined in a similar manner. We use a↑, a↓, a instead
of {a}↑, {a}↓, {a}, respectively.

Given a transition relation Ð→, we denote its transitive closure by +
Ð→ and its reflexive-

transitive closure by
∗
Ð→. Given a set of configurations C, let PreÐ→(C) = {c′ ∣∃c ∈ C. c′ Ð→

c} and Pre∗Ð→(C) = {c′ ∣∃c ∈ C. c′
∗
Ð→ c}.

2.2. Priced Timed Petri Nets. A Priced Timed Petri Net (PTPN) is a tuple N =
(Q,P,T,Cost) where Q is a finite set of control-states and P is a finite set of places.
Though control-states can in principle be encoded into extra places, it is conceptually use-
ful to distinguish them. From a modeling point of view, this distinguishes the control-flow
from the data. In technical proofs, it is useful to distinguish the finite memory of the
control from the infinite memory of the (timed) tokens in the Petri net. T is a finite set
of transitions, where each transition t ∈ T is of the form t = (q1, q2, In ,Read ,Out). We
have that q1, q2 ∈ Q are the source control-state and target control-state, respectively, and
In,Read ,Out ∈ (P × Intrv)⊙ are finite multisets over P × Intrv which define the input-arcs,
read-arcs and output-arcs of t, respectively. Cost ∶ P ∪T → N is the cost function assigning
firing costs to transitions and storage costs to places. Note that it is not a restriction to
use integers for time bounds and costs in PTPN. By the same standard technique as in
timed automata, the problem for rational numbers can be reduced to the integer case (by
multiplying all numbers with the least common multiple of the divisors). To simplify the
presentation we use a one-dimensional cost. This can be generalized to multidimensional
costs; see Section 11. We let cmax denote the maximum integer appearing on the arcs of a
given PTPN. A configuration of N is a tuple (q,M) where q ∈ Q is a control-state and M is
a marking of N . A marking is a multiset over P ×R≥0, i.e., M ∈ (P ×R≥0)⊙. The marking
M defines the numbers and ages of tokens in each place in the net. We identify a token in
a marking M by the pair (p,x) representing its place and age in M . Then, M(p,x) defines
the number of tokens with age x in place p. Abusing notation, we define, for each place p,
a multiset M(p) over R≥0, where M(p)(x) =M(p,x).

For a marking M of the form [(p1, x1) , . . . , (pn, xn)] and x ∈ R>0, we use M+x to
denote the marking [(p1, x1 + x) , . . . , (pn, xn + x)].

2.3. Computations. We define two transition relations on the set of configurations: timed
transition and discrete transition. A timed transition increases the age of each token by

the same real number. Formally, for x ∈ R>0, q ∈ Q, we have (q,M1) x
Ð→Time (q,M2) if

M2 = M+x
1 . We use (q,M1) Ð→Time (q,M2) to denote that (q,M1) x

Ð→Time (q,M2) for
some x ∈ R>0.

We define the set of discrete transitions Ð→Disc as ⋃t∈T Ð→t, where Ð→t represents
the effect of firing the discrete transition t. To define Ð→t formally, we need the auxiliary
predicate match that relates markings with the inputs/reads/outputs of transitions. Let
M ∈ (P ×R≥0)⊙ and α ∈ (P × Intrv)⊙. Then match(M,α) holds iff there exists a bijection
f ∶ M ↦ α s.t. for every (p,x) ∈ M we have f((p,x)) = (p′,I) with p′ = p and x ∈ I. Let
t = (q1, q2, In ,Read ,Out) ∈ T . Then we have a discrete transition (q1,M1) Ð→t (q2,M2) iff
there exist I,O,R,M rest

1 ∈ (P ×R≥0)⊙ s.t. the following conditions are satisfied:

● M1 = I +R +M
rest
1

● match(I, In), match(R,Read) and match(O,Out).
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● M2 = O +R +M
rest
1

We say that t is enabled in (q1,M1) if the first two conditions are satisfied. A transition
t may be fired iff for each input-arc and each read-arc, there is a token with the right age
in the corresponding input place. These tokens in I matched to the input arcs will be
removed when the transition is fired, while the tokens in R matched to the read-arcs are
kept. The newly produced tokens in O have ages which are chosen nondeterministically
from the relevant intervals on the output arcs of the transitions. This semantics is lazy, i.e.,
enabled transitions do not need to fire and can be disabled again.

We write Ð→=Ð→Time ∪ Ð→Disc to denote all transitions. For sets C,C ′ of configura-

tions, we write C
∗
Ð→ C ′ to denote that c

∗
Ð→ c′ for some c ∈ C and c′ ∈ C ′. A computation

π (from c to c′) is a sequence of transitions c0 Ð→ c1 Ð→ . . . Ð→ cn such that c0 = c and

cn = c′. We write c
π
Ð→ c′ to denote that π is a computation from c to c′. Similarly, we

write C
π
Ð→ C ′ to denote that ∃c1 ∈ C, cn ∈ C

′. c1
π
Ð→ cn.

2.4. Costs. The cost of a computation consisting of one discrete transition t ∈ T is defined
as Cost ((q1,M1)Ð→t (q2,M2)) ∶= Cost (t). The cost of a computation consisting of one

timed transition is defined by Cost ((q,M) x
Ð→ (q,M+x)) ∶= x∗∑p∈P ∣M(p)∣∗Cost (p). The

cost of a computation is the sum of all transition costs in it, i.e.,

Cost ((q1,M1)Ð→ (q2,M2)Ð→ . . . Ð→ (qn,Mn)) ∶= ∑
1≤i<n

Cost ((qi,Mi)Ð→ (qi+1,Mi+1))

We write C
v
Ð→ C ′ to denote that there is a computation π such that C

π
Ð→ C ′ and

Cost (π) ≤ v. We define OptCost (C,C ′) to be the infimum of the set {v ∣ C v
Ð→ C ′}, i.e.,

the infimum of the costs of all computations leading from C to C ′. We use the infimum,
because the minimum does not exist in general. We partition the set of places P = Pc ∪Pf

where Cost (p) > 0 for p ∈ Pc and Cost (p) = 0 for p ∈ Pf . The places in Pc are called
cost-places and the places in Pf are called free-places.

2.5. Relation of PTPN to Other Models. PTPN subsume the priced timed automata
of [ATP01, LBB+01, BBBR07] via the following simple encoding. For every one of the
finitely many clocks of the automaton we have one place in the PTPN with exactly one
token on it whose age encodes the clock value. We assign cost zero to these places. For
every control-state s of the automaton we have one place ps in the PTPN. Place ps contains
exactly one token iff the automaton is in state s, and it is empty otherwise. An automaton
transition from state s to state s′ is encoded by a PTPN transition consuming the token
from ps and creating a token on ps′ . The transition guards referring to clocks are encoded
as read-arcs to the places which encode clocks, labeled with the required time intervals.
Note that open and half-open time intervals are needed to encode the strict inequalities
used in timed automata. Clock resets are encoded by consuming the timed token (by an
input-arc) and replacing it (by an output-arc) with a new token on the same place with age
0. The cost of staying in state s is encoded by assigning a cost to place ps, and the cost of
performing a transition is encoded as the cost of the corresponding PTPN transition. Also
PTPN subsume fully general unbounded (i.e., infinite-state) Petri nets (by setting all time
intervals to [0 ∶ ∞) and thus ignoring the clock values).

Note that (just like for timed automata) the problems for continuous-time PTPN cannot
be reduced to (or approximated by) the discrete-time case. Replacing strict inequalities
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with non-strict ones might make the final control-state reachable, when it originally was
unreachable (i.e., it would cause qualitative differences, and not only quantitative ones).

2.6. The Priced Coverability Problem. We will consider two variants of the cost prob-
lem, the Cost-Threshold problem and the Cost-Optimality problem. They are both charac-
terized by an initial control state qinit and a final control state qfin .

Let cinit = (qinit , []) be the initial configuration and Cfin = {(qfin ,M) ∣M ∈ (P ×R≥0)⊙}
the set of final configurations defined by the control-state qfin . I.e., we start from a configu-
ration where the control state is qinit and where all the places are empty, and then consider
the cost of computations that takes us to qfin . (If cinit contained tokens with a non-integer
age then the optimal cost might not be an integer.)

In the Cost-Threshold problem we ask the question whether OptCost (cinit ,Cfin) ≤ v for
a given threshold v ∈ N.

In the Cost-Optimality problem, we want to compute OptCost (cinit ,Cfin).

t1

1

p22 6.5q1p1

3

3.1

3.1 2.5
q2 p3

0

0.1 0.1

t2

3

(0
, 3
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)

[0,∞
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Figure 1: A simple example of a PTPN.

2.7. A Running Example. Figure 1 shows a simple PTPN. We will use this PTPN to
give examples of some of the concepts that we introduce in this paper.

Places and Transitions. The PTPN has two control states (q1 and q2) depicted as dark-
colored circles, three places (p1, p2, p3) depicted as light-colored circles, and two transitions
(t1 and t2) depicted as rectangles. Source/target control states, input/output places are
indicated by arrows to the relevant transition. Read places are indicated by double headed
arrows. The source and target control states of t1 are q1, resp. q2. The input, read resp. out-
put arcs of t1 are given by the multisets [(p1, (0,3])], [] resp. [(p2, [1,5)) , (p3, (2,∞))]. In
a similar manner, t2 is defined by the tuple (q2, q1, [(p3, [1,4))], [(p2, [2,2])], [(p1, [0,∞))]).
The prices of t1, t2, p1, p2, p3 are 1,3,3,2,0 respectively. The value of cmax is 5.

Markings. Figure 1 shows a marking [(p1,3.1)2 , (p1,2.5) , (p2,6.5) , (p3,0.1)2].
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Computations and Prices. An example of a computation π is:

(q1, [(p1,3.1)2 , (p1,2.5) , (p2,6.5) , (p3,0.1)2])
Ð→t1

(q2, [(p1,3.1)2 , (p2,6.5) , (p2,1.3) , (p3,0.1)2 , (p3,2.2)])
0.7
Ð→Time

(q2, [(p1,3.8)2 , (p2,7.2) , (p2,2.0) , (p3,0.8)2 , (p3,2.9)])
Ð→t2

(q1, [(p1,3.8)2 , (p1,9.2) , (p2,7.2) , (p2,2.0) , (p3,0.8)2])
1.3
Ð→Time

(q1, [(p1,5.1)2 , (p1,10.5) , (p2,8.5) , (p2,3.3) , (p3,2.1)2])
The cost Cost (π) is given by

1 + 2 ∗ 3 ∗ 0.7 + 2 ∗ 2 ∗ 0.7 + 3 ∗ 0 ∗ 0.7+
3 + 3 ∗ 3 ∗ 1.3 + 2 ∗ 2 ∗ 1.3 + 1 ∗ 0 ∗ 1.3 = 27.9

The transition t2 is not enabled from any of the following configurations:

● The marking (q1, [(p1,3.8) , (p2,2.0) , (p3,2.9)]) since it does not have the correct control
state.
● The marking (q2, [(p1,3.1)2 , (p2,2.0) , (p3,0.1)2]) since it is missing input tokens with the
correct ages in p3.
● The marking (q2, [(p1,3.1)2 , (p2,1.0) , (p3,1.1)2]) since it is missing read tokens with the
correct ages in p2.

3. Computations in δ-Form

We solve the Cost-Threshold and Cost-Optimality problems for PTPN via a reduction that
goes through a series of abstraction steps. First we show that, in order to solve the cost
problems, it is sufficient to consider computations of a certain form where the ages of all
the tokens are arbitrarily close to an integer. This technique is similar to the corner-point
abstraction used in the analysis of priced timed automata [BFH+01, BFLM11, BBBR07]
where sets of possible clock valuations are described by polyhedra, and where the infimum
cost is achieved in the corner-points of these polyhedra. For PTPN, extra difficulties arise
from the unbounded growth of configurations by newly created clocks in new tokens and the
potential disappearance of old clocks in consumed tokens. Moreover, newly created clocks
in PTPN do not necessarily have value zero. This leads to a more complex structure of the
matrices that describe the polyhedra of clock valuations than in the case of priced timed
automata; see Def. 3.2. However, we show in Lemma 3.4 that these more general matrices
are still totally unimodular, which makes the corner-point abstraction possible.

We decompose PTPN markings M into submarkings such that in every submarking
the fractional parts (but not necessarily the integer parts) of the token ages are the same.
We then arrange these submarkings in a sequence M−m, . . . ,M−1,M0,M1, . . . ,Mn such that
M−m, . . . ,M−1 contain tokens with fractional parts ≥ 1/2 in increasing order, M0 contains
the tokens with fractional part zero, and M1, . . . ,Mn contain tokens with fractional parts
< 1/2 in increasing order.

For example, the marking [(p1,3.1)2 , (p1,2.5) , (p2,6.5) , (p3,0.1)2] of Figure 1 is de-

composed as M−1 = [(p1,2.5) , (p2,6.5)], M0 = [] and M1 = [(p1,3.1)2 , (p3,0.1)2].
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Formally, the decomposition of a PTPN marking M into its fractional parts

M−m, . . . ,M−1,M0,M1, . . . ,Mn

is uniquely defined by the following properties:

● M =M−m + ⋅ ⋅ ⋅ +M−1 +M0 +M1 + ⋅ ⋅ ⋅ +Mn.
● If (p,x) ∈Mi and i < 0 then frac (x) ≥ 1/2. If (p,x) ∈M0 then frac (x) = 0. If (p,x) ∈Mi

and i > 0 then frac (x) < 1/2.
● Let (pi, xi) ∈Mi and (pj, xj) ∈Mj . Then frac (xi) = frac (xj) iff i = j, and if −m ≤ i < j < 0
or 0 ≤ i < j ≤ n then frac (xi) < frac (xj).
● Mi ≠ ∅ if i ≠ 0 (M0 can be empty, but the other Mi must be non-empty in order to get a
unique representation.)

We say that a timed transition (q,M) x
Ð→ (q,M ′) is detailed iff at most one fractional part

of any token in M changes its status about reaching or exceeding the next higher integer
value. Formally, let ǫ be the fractional part of the token ages in M−1, or ǫ = 1/2 if M−1 does

not exist. Then (q,M) x
Ð→ (q,M ′) is detailed iff either 0 < x < 1 − ǫ (i.e., no tokens reach

the next integer), or M0 = ∅ and x = ǫ (no tokens had integer age, but those in M−1 reach
integer age). Every computation of a PTPN can be transformed into an equivalent one
(w.r.t. reachability and cost) where all timed transitions are detailed, by replacing some
long timed transitions with several detailed shorter ones where necessary. Thus we may
assume w.l.o.g. that timed transitions are detailed. This property is needed to obtain a
one-to-one correspondence between PTPN steps and the steps of A-PTPN, defined in the
next section.

For δ ∈ (0 ∶ 1/5] the marking [(p1, x1) , . . . , (pn, xn)] is in δ-form if, for all i ∶ 1 ≤ i ≤ n,
it is the case that either (i) frac(xi) < δ (low fractional part), or (ii) frac(xi) > 1 − δ (high
fractional part). I.e., the age of each token is close to (within < δ) an integer. We choose
δ ≤ 1/5 to ensure that the cases (i) and (ii) do not overlap, and that they still do not overlap
for a new δ′ ≤ 2/5 after a delay of ≤ 1/5 time units.

The occurrence of a discrete transition t is said to be in δ-form if its output O is in
δ-form, i.e., the ages of the newly generated tokens are close to an integer. This is not a
property of the transition t as such, but a property of its occurrence, because it depends on
the particular choice of O (which is not fixed but possibly nondeterministic within certain
constraints; see Subsection 2.3).

Let N = (Q,P,T,Cost) be a PTPN and cinit = (qinit , []) and Cfin = {(qfin ,M) ∣M ∈

(P ×R≥0)⊙} as in the last section.
For 0 < δ ≤ 1/5, the computation π is in δ-form iff

(1) Every occurrence of a discrete transition ci Ð→t ci+1 is in δ-form, and

(2) For every timed transition ci
x
Ð→ ci+1 we have either x ∈ (0 ∶ δ) or x ∈ (1 − δ ∶ 1).

We show that, in order to find the infimum of the possible costs, it suffices to consider
computations in δ-form, for arbitrarily small values of δ > 0.

Lemma 3.1. Let cinit
π
Ð→ Cfin , where π is cinit = c0 Ð→ . . . Ð→ clength ∈ Cfin . Then

for every δ > 0 there exists a computation π′ in δ-form where cinit
π′

Ð→ Cfin , where π′ is
cinit = c

′
0 Ð→ . . . Ð→ c′length ∈ Cfin s.t. Cost (π′) ≤ Cost (π), π and π′ have the same length

and ∀i ∶ 0 ≤ i ≤ length. ∣ci∣ = ∣c′i∣. Furthermore, if π is detailed then π′ is detailed.
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Proof. Outline of the proof. We construct π′ by fixing the structure of the computation
π and varying the finitely many real numbers describing the delays of timed transitions
and the ages of newly created tokens. The tuples of numbers corresponding to a possible
computation are contained in a polyhedron, which is described by inequations via a totally
unimodular matrix, and whose vertices thus have integer coordinates. Since the cost func-
tion is linear in these numbers, the infimum of the costs can be approximated arbitrarily
closely by computations π′ whose numbers are arbitrarily close to integers, i.e., computa-
tions π′ in δ-form for arbitrarily small δ > 0.

Detailed proof. The computation π with cinit
π
Ð→ Cfin consists of a sequence of discrete

transitions and timed transitions. Let n be the number of timed transitions in π and xi > 0
(for 1 ≤ i ≤ n) be the delay of the i-th timed transition in π. Let m be the number of newly
created tokens in π. We fix some arbitrary order on these tokens (it does not need to agree
with the order of token creation) and call them t1, . . . , tm. Let yi be the age of token ti
when it is created in π. (Recall that the age of new tokens is not always zero, but chosen
nondeterministically out of given intervals.)

We now consider the set of all computations π′ that have the same structure, i.e.,
the same transitions, as π, but with modified values of y1, . . . , ym and x1, . . . , xn. Such
computations π′ have the same length as π and the sizes of the visited configurations
match. Also if π is detailed then π′ is detailed.

It remains to show that one such computation π′ is in δ-form and Cost (π′) ≤ Cost (π).
The set of tuples (y1, . . . , ym, x1, . . . , xn) for which such a computation π′ is feasible

is described by a set of inequations that depend on the transition guards. (The ini-
tial configuration, and the set of final configurations do not introduce any constraints on
(y1, . . . , ym, x1, . . . , xn), because they are closed under changes to token ages.) The inequa-
tions are derived from the following conditions.

● The time always advances, i.e., xi > 0.
● When the token tj is created by an output arc with interval [a ∶ b] we have a ≤ yj ≤ b, and
similarly with strict inequalities if the interval is (half) open. Note that the bounds a and
b are integers (except where b =∞ in which case there is no upper bound constraint).
● Consider a token tj that is an input of some discrete transition t via an input arc or a
read arc labeled with interval [a ∶ b]. Note that the bounds a and b are integers (or ∞).
Let xk, xk+1, . . . , xk+l be the delays of the timed transitions that happened between the
creation of token tj and the transition t. Then we must have a ≤ yj+xk+xk+1+⋅ ⋅ ⋅+xk+l ≤ b.
(Similarly with strict inequalities if the interval is (half) open.)

These inequations describe a polyhedron PH which contains all feasible tuples of values
(y1, . . . , ym, x1, . . . , xn). By the precondition of this lemma, there exists a computation

cinit
π
Ð→ Cfin and thus the polyhedron PH is nonempty. Therefore we obtain the closure

of the polyhedron PH by replacing all strict inequalities <,> with normal inequalities ≤,≥.
Thus PH contains PH , but every point in PH is arbitrarily close to a point in PH . Now
we show that the vertices of the polyhedron PH have integer coordinates.

Let v = (y1, . . . , ym, x1, . . . , xn) be a column vector of the free variables. Then the
polyhedron PH can be described by the inequation M ⋅ v ≤ c, where c is a column vector
of integers and M is an integer matrix. Now we analyze the shape of the matrix M . Each
inequation corresponds to a row in M . If the inequality is ≤ then the elements are in {0,1},
and if the inequality is ≥ then the elements are in {0,−1}. Each of the inequations above
refers to at most one variable yj, and possibly one continuous block of several variables
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xk, xk+1, . . . , xk+l. Moreover, for each yj, this block (if it is nonempty) starts with the same
variable xk. This is because the xk, xk+1, . . . , xk+l describe the delays of the timed transitions
between the creation of token tj and the moment where tj is used. xk is always the first delay
after the creation of tj , and no delays can be left out. Note that the token tj can be used
more than once, because transitions with read arcs do not consume the token. We present
the inequalities in blocks, where the first block contains all which refer to y1, the second
block contains all which refer to y2, etc. The last block contains those inequations that do
not refer to any yj, but only to variables xi. Inside each block we sort the inequalities w.r.t.
increasing length of the xk, xk+1, . . . , xk+l block, i.e., from smaller values of l to larger ones.
(For yj we have the same k.) Thus the matrix M has the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0
1 0 0 0 0 1 1 1 1 0

. . .

0 1 0 0 0 0 0 0 0 0
0 −1 0 0 −1 −1 0 0 0 0
0 1 0 0 1 1 1 1 0 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Formally, the shape of these matrices is defined as follows.

Definition 3.2. We call a (z ×m + n)-matrix a PTPN constraint matrix, if every row has
one of the following two forms. Let j ∈ {1, . . . ,m} and k(j) ∈ {1, . . . , n} be a number that

depends only on j, and let α ∈ {−1,1}. First form: 0j−1α0m−j0k(j)−1α∗0∗. Second form:
0∗α∗0∗. Matrices that contain only rows of the second form all called 3-block matrices in
[BBBR07].

Definition 3.3. [NW88] An integer matrix is called totally unimodular iff the determinant
of all its square submatrices is equal to 0, 1 or −1.

Lemma 3.4. All PTPN constraint matrices are totally unimodular.

Proof. First, every square submatrix of a PTPN constraint matrix has the same form and
is also a PTPN constraint matrix. Thus it suffices to show the property for square PTPN
constraint matrices. We show this by induction on the size. The base case of size 1 × 1
is trivial, because the single value must be in {−1,0,1}. For the induction step consider a
square k × k PTPN constraint matrix M , with some n,m s.t. n +m = k. If M does not
contain any row of the first form then M is a 3-block matrix and thus totally unimodular
by [BBBR07] (Lemma 2). Otherwise, M contains a row i of the first form where M(i, j) ∈
{−1,1} for some 1 ≤ j ≤ m. Without restriction let i be such a row in M where the
number of nonzero entries is minimal. Consider all rows i′ in M where M(i′, j) ≠ 0. Except
for M(i′, j), they just contain (at most) one block of elements 1 (or −1) that starts at
position m+k(j). By adding/subtracting row i to all these other rows i′ where M(i′, j) ≠ 0
we obtain a new matrix M ′ where M ′(i, j) is the only nonzero entry in column j in M ′

and det(M ′) = det(M). Moreover, M ′ is also a PTPN constraint matrix, because of the
minimality of the nonzero block length in row i and because all these blocks start at m+k(j).
I.e., inM ′ these modified rows i′ have the form 0∗1∗0∗ or 0∗(−1)∗0∗. We obtainM ′′ fromM ′

by deleting column j and row i, andM ′′ is a (k−1)×(k−1) PTPN constraint matrix (because
j ≤ m). By induction hypothesis, M ′′ is totally unimodular and det(M ′′) ∈ {−1,0,1}. By
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the cofactor method, det(M ′) = (−1)i+j ∗M ′(i, j) ∗ det(M ′′) ∈ {−1,0,1}. Thus det(M) =
det(M ′) ∈ {−1,0,1} and M is totally unimodular.

Theorem 3.5. [NW88]. Consider the polyhedron {v ∈ IRk ∣ M ⋅ v ≤ c} with M a totally
unimodular (p × k) matrix and c ∈ Zp. Then the coordinates of its vertices are integers.

Since our polyhedron PH is described by a PTPN constraint matrix, which is totally
unimodular by Lemma 3.4, it follows from Theorem 3.5 that the vertices of PH have integer
coordinates.

Since the Cost function is linear in x1, . . . , xn (and does not depend on y1, . . . , ym), the

infimum of the costs on PH is obtained at a vertex of PH , which has integer coordinates
by Theorem 3.5. Therefore, one can get arbitrarily close to the infimum cost with values
y1, . . . , ym, x1, . . . , xn which are arbitrarily close to some integers. Thus, for every computa-

tion cinit
π
Ð→ Cfin there exists a modified computation π′ with values y1, . . . , ym, x1, . . . , xn

arbitrarily close to integers (i.e., π′ in δ-form for arbitrarily small δ > 0) such that cinit
π′

Ð→
Cfin and Cost (π′) ≤ Cost (π). (Note that the final configuration reached by π′ possibly
differs from the final configuration of π in the ages of some tokens. However, this does not
matter, because the set of configurations Cfin is closed under such changes.)

The following corollary follows directly from Lemma 3.1 and shows that in order to find
the infimum of the cost it suffices to consider only computations in δ-form for arbitrarily
small δ > 0.

Corollary 3.6. For every δ > 0 we have

OptCost (cinit ,Cfin) = inf{Cost (π) ∣ cinit π
Ð→ Cfin , π in δ-form}

4. Abstract PTPN

We now reduce the Cost-Optimality problem to a simpler case without explicit clocks by
defining a new class of systems called abstract PTPN (for short A-PTPN), whose compu-
tations represent PTPN computations in δ-form, for infinitesimally small values of δ > 0.
For each PTPN N = (Q,P,T,Cost), we define a corresponding A-PTPN N ′, sometimes
denoted by aptpn (N ). The A-PTPN N ′ is syntactically of the same form (Q,P,T,Cost)
as N . However, N ′ induces a different transition system, because its configurations and
operational semantics are different. Below we define the set of markings of the A-PTPN,
and then describe the transition relation. We will also explain the relation to the markings
and the transition relation induced by the original PTPN.

Markings and Configurations. Fix a δ ∶ 0 < δ ≤ 2/5. A marking M of N in δ-form
is encoded by a marking aptpn (M) of N ′ which is described by a triple (whigh , b0,w

low )
where whigh ,wlow ∈ ((P × [cmax + 1])⊙)∗ and b0 ∈ (P × [cmax + 1])⊙. The ages of the to-
kens in aptpn (M) are integers and therefore only carry the integral parts of the tokens in
the original PTPN. However, the marking aptpn (M) carries additional information about
the fractional parts of the tokens as follows. The tokens in whigh represent tokens in M

that have high fractional parts (their values are at most δ below the next integer); the
tokens in wlow represent tokens in M that have low fractional parts (their values at most δ
above the previous integer); while tokens in b0 represent tokens in M that have zero frac-
tional parts (their values are equal to an integer). Furthermore, the ordering among the
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fractional parts of tokens in whigh (resp. wlow ) is represented by the positions of the mul-
tisets to which they belong in whigh (resp. wlow ). Let M =M−m, . . . ,M−1,M0,M1, . . . ,Mn

be the decomposition of M into fractional parts, as defined in Section 3. Then we de-
fine aptpn (M) ∶= (whigh , b0,w

low ) with whigh = b−m . . . b−1, and wlow = b1 . . . bn, where
bi((p, ⌊x⌋)) =Mi((p,x)) if x ≤ cmax . (This is well defined, because Mi contains only tokens
with one particular fractional part.) Furthermore, b0((p, cmax + 1)) = ∑y>cmax M((p, y)),
i.e., all tokens whose age is > cmax are abstracted as tokens of age cmax + 1, because the
PTPN cannot distinguish between token ages > cmax . Note that whigh and wlow represent
tokens with fractional parts in increasing order. An A-PTPN configuration is a control-
state plus a marking. If we apply aptpn to a set of configurations (i.e., aptpn(Cfin)), we
implicitly restrict this set to the subset of configurations in 2/5-form.

Transition Relation. The transitions on the A-PTPN are defined as follows. For every
discrete transition t = (q1, q2, In ,Read ,Out) ∈ T we have (q1, b−m . . . b−1, b0, b1 . . . bn) Ð→t

(q2, c−m′ . . . c−1, c0, c1 . . . cn′) if the following conditions are satisfied: For every i ∶ −m ≤ i ≤ n

there exist bIi , b
R
i , b

rest
i , Ô, bO0 ∈ (P × [cmax + 1])⊙ s.t. for every 0 < ǫ < 1 we have

● bi = b
I
i + b

R
i + b

rest
i for −m ≤ i ≤ n

● match((∑i≠0 b
I
i )+ǫ + bI0, In)

● match((∑i≠0 b
R
i )+ǫ + bR0 ,Read)

● match(Ô+ǫ + bO0 ,Out)
● There is a strictly monotone injection f ∶ {−m, . . . , n}↦ {−m′, . . . , n′} where f(0) = 0 s.t.

cf(i) ≥ bi − b
I
i and c0 = b0 − b

I
0 + b

O
0 and ∑i≠0 ci = (∑i≠0 bi − b

I
i ) + Ô.

The intuition is that the A-PTPN tokens in bi for i ≠ 0 represent PTPN tokens with a
little larger, and strictly positive, fractional part. Thus their age is incremented by ǫ > 0
before it is matched to the input, read and output arcs. The fractional parts of the tokens
that are not involved in the transition stay the same. However, since all the time intervals
in the PTPN have integer bounds, the fractional parts of newly created tokens are totally
arbitrary. Thus they can be inserted at any position in the sequence, between any positions
in the sequence, or before/after the sequence of existing fractional parts. This is specified
by the last condition on the sequence c−m′ . . . c−1, c0, c1 . . . cn′ .

The following lemma shows the connection between a PTPN and its corresponding
A-PTPN for discrete transition steps.

Lemma 4.1. Let (q,M) be a PTPN configuration in δ-form for some δ ≤ 1/5. There
is an occurrence of a discrete transition in δ-form (q,M) Ð→t (q′,M ′) if and only if
aptpn((q,M)) Ð→t aptpn((q′,M ′)).
Proof. Let M = M−m + ⋅ ⋅ ⋅ +M−1 +M0 +M1 + ⋅ ⋅ ⋅ +Mn be the unique decomposition of M
into increasing fractional parts, and aptpn (M) ∶= (b−m . . . b−1, b0, b1 . . . bn), as defined in
Section 4. Let t = (q, q′, In ,Read ,Out).

Now we prove the first implication. Provided that (q,M) Ð→t (q′,M ′) there exist
I,O,R,M rest ∈ (P ×R≥0)⊙ s.t. the following conditions are satisfied:

● M = I +R +M rest

● match(I, In), match(R,Read) and match(O,Out).
● M ′ = O +R +M rest .

Thus each Mi can be decomposed into parts Mi = M I
i +M

R
i +M

rest
i , where I = ∑iM

I
i ,

R = ∑iM
R
i , M rest = ∑iM

rest
i . Let bIi = aptpn (M I

i ), bRi = aptpn (MR
i ), bresti = aptpn (M rest

i ).
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Then bi = bIi + b
R
i + b

rest
i . Since the time intervals on transitions have integer bounds, we

obtain match((∑i≠0 b
I
i )+ǫ + bI0, In) and match((∑i≠0 b

R
i )+ǫ + bR0 ,Read).

Similarly as M , the marking O can be uniquely decomposed into parts with increasing
fractional part of the ages of tokens, i.e., O = O−j + ⋅ ⋅ ⋅ + O−1 + O0 + O1 + ⋅ ⋅ ⋅ + Ok. Let

Ô = aptpn (O −O0) and bO0 = aptpn (O0). Thus we get match(Ô+ǫ + bO0 ,Out).
Since M ′ = O+R+M rest , the sequence of the remaining parts of the Mi is merged with

the sequence O−j + ⋅ ⋅ ⋅ + O−1 + O0 + O1 + ⋅ ⋅ ⋅ + Ok. Thus M ′ can be uniquely decomposed
into parts with increasing fractional part of the ages of tokens, i.e., M ′ =M ′

−m′ + ⋅ ⋅ ⋅ +M
′
−1 +

M ′
0 +M ′

1 + ⋅ ⋅ ⋅ +M
′
n′ . Let ci = aptpn (M ′

i). Thus there is a strictly monotone injection

f ∶ {−m, . . . , n} ↦ {−m′, . . . , n′} where f(0) = 0 s.t. cf(i) ≥ bi − b
I
i and c0 = b0 − b

I
0 + b

O
0 and

∑i≠0 ci = (∑i≠0 bi − b
I
i ) + Ô.

Thus aptpn ((q,M)) = (q, b−m . . . b−1, b0, b1 . . . bn) Ð→t (q′, c−m′ . . . c−1, c0, c1 . . . cn′) =
aptpn ((q′,M ′)).

Now we show the other direction. If aptpn ((q,M)) Ð→t aptpn ((q′,M ′)) then we have
aptpn ((q′,M ′)) = (q′, c−m′ . . . c−1, c0, c1 . . . cn′) s.t.
● bi = b

I
i + b

R
i + b

rest
i for −m ≤ i ≤ n

● match((∑i≠0 b
I
i )+ǫ + bI0, In)

● match((∑i≠0 b
R
i )+ǫ + bR0 ,Read)

● match(Ô+ǫ + bO0 ,Out)
● There is a strictly monotone injection f ∶ {−m, . . . , n}↦ {−m′, . . . , n′} where f(0) = 0 s.t.

cf(i) ≥ bi − b
I
i and c0 = b0 − b

I
0 + b

O
0 and ∑i≠0 ci = (∑i≠0 bi − b

I
i ) + Ô.

As before, each Mi can be decomposed into parts Mi = M I
i +M

R
i +M rest

i , where bIi =

aptpn (M I
i ), bRi = aptpn (MR

i ), and bresti = aptpn (M rest
i ). Let I = ∑iM

I
i , R = ∑iM

R
i , and

M rest = ∑iM
rest
i . So we have M = I +R+M rest . Furthermore, since the interval bounds are

integers, we have match(I, In), match(R,Read) and match(O,Out). Finally, due to the

conditions on Ô and bO0 , there exists a marking O s.t. Ô+bO0 = aptpn (O), M ′ = O+R+M rest

and aptpn ((q′,M ′)) = (q′, c−m′ . . . c−1, c0, c1 . . . cn′). Moreover, this O can be chosen to be
in δ-form, for the following reasons. The tokens in O whose fractional part is the same
as a fractional part in M are trivially in δ-form, because M is in δ-form. The tokens in
O whose fractional part is between two fractional parts in M is also trivially in δ-form,
because M is in δ-form. Now consider the tokens in O whose fractional part is larger than
any fractional part in M1 + ⋅ ⋅ ⋅ +Mn. Let δ1 be the maximal fractional part in M1 + ⋅ ⋅ ⋅ +Mn.
We have δ1 < δ, because M is in δ-form. Since δ1 < δ, the interval (δ1 ∶ δ) is nonempty
and contains uncountably many different values. Therefore there is still space for infinitely
many different fractional parts in O in the interval (δ1 ∶ δ). Finally consider the tokens
in O whose fractional part is smaller than any fractional part in M−m + ⋅ ⋅ ⋅ +M−1. Let δ2
be the minimal fractional part in M−m + ⋅ ⋅ ⋅ +M−1. We have δ2 > 1 − δ, because M is in
δ-form. Therefore there is still space for infinitely many different fractional parts in O in
the nonempty interval (1 − δ ∶ δ2).

Thus, since O is in δ-form, the transition (q,M) Ð→t (q′,M ′) is in δ-form, as required.

Now we show how to encode timed transitions into A-PTPN. We define A-PTPN tran-
sitions that encode the effect of PTPN detailed timed transitions

x
Ð→ for x ∈ (0 ∶ δ) or x ∈

(1− δ ∶ 1) for sufficiently small δ > 0. We call these abstract timed transitions. For any mul-
tiset b ∈ (P × [cmax + 1])⊙ let b+ ∈ (P × [cmax + 1])⊙ be defined by b+((p,x+1)) = b((p,x))
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for x ≤ cmax and b+((p, cmax + 1)) = b((p, cmax + 1)) + b((p, cmax )), i.e., the age cmax + 1
represents all ages > cmax . There are 4 different types of abstract timed transitions. (In
the following all bi are nonempty.)

Type 1: (q1, b−m . . . b−1, b0, b1 . . . bn)Ð→ (q1, b−m . . . b−1,∅, b0b1 . . . bn). This simulates a very
small delay δ > 0 where the tokens of integer age in b0 now have a positive fractional
part, but no tokens reach an integer age.

Type 2: (q1, b−m . . . b−1,∅, b1 . . . bn)Ð→ (q1, b−m . . . b−2, b
+
−1, b1 . . . bn). This simulates a very

small delay δ > 0 in the case where there were no tokens of integer age and the tokens in
b−1 just reach the next higher integer age.

Type 3: (q1, b−m . . . b−1, b0, b1 . . . bn) Ð→ (q1, b+−m . . . b+−2b
+
−1b0 . . . bk,∅, b

+
k+1 . . . b

+
n) for a k ∈

{0, . . . , n}. This simulates a delay in (1 − δ ∶ 1) where the tokens in b0 . . . bk do not quite
reach the next higher integer and no token gets an integer age.

Type 4: (q1, b−m . . . b−1, b0, b1 . . . bn)Ð→ (q1, b+−m . . . b+−2b
+
−1b0 . . . bk, b

+
k+1, b

+
k+2 . . . b

+
n) for some

k ∈ {0, . . . , n − 1}. This simulates a delay in (1 − δ ∶ 1) where the tokens in b0, . . . bk do
not quite reach the next higher integer and the tokens on bk+1 just reach the next higher
integer age.

The cost model for A-PTPN is defined as follows. For every transition t ∈ T we have
Cost ((q1,M1)Ð→t (q2,M2)) ∶= Cost (t), just like in PTPN. For abstract timed transitions
of types 1 and 2 we define the cost as zero. For abstract timed transitions (q,M1)Ð→ (q,M2)
of types 3 and 4, we define Cost ((q,M1)Ð→ (q,M2)) ∶= ∑p∈P ∣M1(p)∣ ∗Cost (p) (i.e., as if
the elapsed time had length 1). The intuition is that, as δ converges to zero, the cost of the
PTPN timed transitions of length in (0 ∶ δ) (types 1 and 2) or in (1 − δ ∶ 1) (types 3 and 4)
converges to the cost of the corresponding abstract timed transitions in the A-PTPN. This
will be shown formally in Lemma 4.4.

The following two lemmas show the connection between (detailed) timed transitions in
PTPN and abstract timed transitions in the corresponding A-PTPN.

Lemma 4.2. Let (q,M) be a PTPN configuration in δ-form for some δ ≤ 1/5 and x ∈ (0 ∶ δ).
There is a PTPN detailed timed transition (q,M) x

Ð→ (q,M+x) if and only if there is an
A-PTPN abstract timed transition of type 1 or 2 s.t. aptpn((q,M)) Ð→ aptpn((q,M+x)).
Proof. LetM =M−m+⋅ ⋅ ⋅+M−1+M0+M1+⋅ ⋅ ⋅+Mn be the unique decomposition of M into in-
creasing fractional parts (as defined in Section 3), and aptpn (M) ∶= (b−m . . . b−1, b0, b1 . . . bn),
as defined as above. Let ǫ be the fractional part of the ages of the tokens in M−1. Since
(q,M) is in δ-form, we have 0 < 1 − ǫ < δ. Now there are two cases.

In the first case we have x < 1 − ǫ. Then the tokens in M+x
−1 will have fractional

part ǫ + x ∈ (1 − δ ∶ 1), and the tokens in M+x
0 will have fractional part x ∈ (0 ∶ δ).

Therefore aptpn((q,M)) = (q, (b−m . . . b−1, b0, b1 . . . bn)) Ð→ (q, (b−m . . . b−1,∅, b0b1 . . . bn)) =
aptpn((q,M+x)), by an A-PTPN abstract timed transition of type 1, if and only if (q,M) x

Ð→
(q,M+x).

In the second case we must have x = 1− ǫ and M0 = ∅, because (q,M) x
Ð→ (q,M+x) is a

detailed timed transition. In this case exactly the tokens inM−1 reach the next higher integer
age, i.e., the tokens in M+x

−1 have integer age and the integer is one higher than the integer
part of the age of the tokens in M0. Thus aptpn((q,M)) = (q, (b−m . . . b−1,∅, b1 . . . bn))Ð→
(q, (b−m . . . b−2, b

+
−1, b1 . . . bn)) = aptpn((q,M+x)), by an A-PTPN abstract timed transition

of type 2, if and only if (q,M) x
Ð→ (q,M+x).
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Lemma 4.3. Let (q,M) be a PTPN configuration in δ-form for some δ ≤ 1/5 and x ∈

(1− δ ∶ 1). There is a PTPN timed transition (q,M) x
Ð→ (q,M+x) if and only if there is an

A-PTPN transition of either type 3 or 4 s.t. aptpn((q,M)) Ð→ aptpn((q,M+x)).
Proof. LetM =M−m+⋅ ⋅ ⋅+M−1+M0+M1+⋅ ⋅ ⋅+Mn be the unique decomposition of M into in-
creasing fractional parts (as defined in Section 3), and aptpn (M) ∶= (b−m . . . b−1, b0, b1 . . . bn),
as defined above. Let ǫk be the fractional part of the ages of the tokens in Mk for 0 ≤ k ≤ n.
Since (q,M) is in δ-form, we have 0 < ǫk < δ. Now there are two cases.

In the first case we have x ∈ (1− ǫk+1 ∶ 1− ǫk) ⊆ (1− δ ∶ 1) for some 0 ≤ k ≤ n. (If k = n we
have x ∈ (1 − δ ∶ 1 − ǫn), and if k = 0 we have x ∈ (1 − ǫ1 ∶ 1).) Then, in the step from Mk+1

to M+x
k+1, the token ages in Mk+1 reach and slightly exceed the next higher integer age,

while the token ages in M+x
k still stay slightly below the next higher integer. Therefore

aptpn((q,M)) = (q, (b−m . . . b−1, b0, b1 . . . bn)) Ð→ (q, (b+−m . . . b+−1b0 . . . bk,∅, b
+
k+1 . . . b

+
n)) =

aptpn((q,M+x)), by an A-PTPN abstract timed transition of type 3, if and only if (q,M) x
Ð→

(q,M+x).
The only other case is where x = 1 − ǫk+1 for some k ∈ {0, . . . , n − 1}. Here ex-

actly the tokens in Mk+1 reach the next higher integer age. Therefore aptpn((q,M)) =
(q, (b−m . . . b−1, b0, b1 . . . bn))Ð→ (q, (b+−m . . . b+−1b0 . . . bk, b

+
k+1, b

+
k+1 . . . b

+
n)) = aptpn((q,M+x)),

by an A-PTPN abstract timed transition of type 4, if and only if (q,M) x
Ð→ (q,M+x).

The following Lemma 4.4, which follows from Lemmas 4.1,4.2, and 4.3, shows the
connection between the computation costs in a PTPN and the corresponding A-PTPN.

Lemma 4.4.

(1) Let c0 be a PTPN configuration where all tokens have integer ages. For every PTPN
computation π = c0 Ð→ . . . Ð→ cn in detailed form and δ-form s.t. n ∗ δ ≤ 1/5 there
exists a corresponding A-PTPN computation π′ = aptpn(c0)Ð→ . . . Ð→ aptpn(cn) s.t.

∣Cost (π) −Cost (π′) ∣ ≤ n ∗ δ ∗ (max
0≤i≤n

∣ci∣) ∗ (max
p∈P

Cost (p))

(2) Let c′0 be an A-PTPN configuration (ǫ, b0, ǫ). For every A-PTPN computation π′ =
c′0 Ð→ . . . Ð→ c′n and every 0 < δ ≤ 1/5 there exists a PTPN computation π = c0 Ð→
. . . Ð→ cn in detailed form and δ-form s.t. c′i = aptpn(ci) for 0 ≤ i ≤ n and

∣Cost (π) −Cost (π′) ∣ ≤ n ∗ δ ∗ (max
0≤i≤n

∣c′i∣) ∗ (max
p∈P

Cost (p))

Proof. For the first part let π = c0 Ð→ . . . Ð→ cn be a PTPN computation in detailed

form and δ-form s.t. n ∗ δ ≤ 1/5. So every timed transition
x
Ð→ has either x ∈ (0 ∶ δ) or

x ∈ (1−δ ∶ 1). Furthermore, the fractional part of the age of every token in any configuration
ci is < i∗δ away from the nearest integer, because c0 only contains tokens with integer ages.
Since i ≤ n these ages are < n ∗ δ ≤ 1/5 away from the nearest integer. Moreover, π is
detailed and thus Lemmas 4.1, 4.2 and 4.3 apply. Thus there exists a corresponding A-
PTPN computation π′ = aptpn(c0) Ð→ . . . Ð→ aptpn(cn). By definition of the cost of
A-PTPN transitions, for every discrete transition ci Ð→ ci+1 we have Cost (ci Ð→ ci+1) =
Cost (aptpn(ci)Ð→ aptpn(ci+1)). Moreover, for every timed transition ci

x
Ð→ ci+1 we have

∣Cost (ci x
Ð→ ci+1)−Cost (aptpn(ci)Ð→ aptpn(ci+1)) ∣ ≤ δ ∗ ∣ci∣∗ (maxp∈P Cost (p)), because

either x ∈ (0 ∶ δ) or x ∈ (1 − δ ∶ 1). Therefore ∣Cost (π) −Cost (π′) ∣ ≤ n ∗ δ ∗ (max0≤i≤n ∣ci∣) ∗
(maxp∈P Cost (p)) as required.
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For the second part let c0 be a PTPN configuration s.t. (ǫ, b0, ǫ) = c′0 = aptpn(c0), i.e.,
all tokens in c0 have integer ages. We now use Lemmas 4.1, 4.2 and 4.3 to construct the
PTPN computation π. Let δi ∶= δ∗2

i−n for 0 ≤ i ≤ n. The construction ensures the following
invariants. (1) c′i = aptpn(ci), and (2) ci is in δi-form. Condition (1) follows directly from
Lemmas 4.1, 4.2 and 4.3. For the base case i = 0, condition (2) holds trivially, because all
tokens in c0 have integer ages. Now we consider the step from i to i + 1. Since ci is in
δi-form, we obtain from Lemmas 4.1, 4.2 and 4.3 that if the i−th transition in this sequence

is a timed transition
x
Ð→ then either x ∈ (0 ∶ δi) or x ∈ (1 − δi ∶ 1). Therefore, since ci is in

δi-form, ci+1 is in (2 ∗ δi)-form and thus in δi+1-form.
Now we consider the cost of the PTPN computation π. By definition of the cost of

A-PTPN transitions, for every discrete transition ci Ð→ ci+1 we have Cost (ci Ð→ ci+1) =
Cost (aptpn(ci)Ð→ aptpn(ci+1)). Moreover, for every timed transition ci

x
Ð→ ci+1 we have

∣Cost (ci x
Ð→ ci+1)−Cost (aptpn(ci)Ð→ aptpn(ci+1)) ∣ ≤ δi ∗ ∣c′i∣∗(maxp∈P Cost (p)), because

either x ∈ (0 ∶ δi) or x ∈ (1− δi ∶ 1). Therefore ∣Cost (π)−Cost (π′) ∣ ≤ n ∗ δ ∗ (max0≤i≤n ∣c′i∣)∗
(maxp∈P Cost (p)) as required.

The following theorem summarizes the results of this section. To compute the optimal
cost of a PTPN, it suffices to consider the corresponding A-PTPN.

Theorem 4.5. The infimum of the costs in a PTPN coincides with the infimum of the
costs in the corresponding A-PTPN.

inf{Cost (π) ∣ cinit π
Ð→ Cfin} = inf{Cost (π′) ∣aptpn(cinit) π′

Ð→ aptpn(Cfin)}
Proof. We show that neither of the two costs for PTPN and A-PTPN can be larger than
the other.

Let I ∶= inf{Cost (π) ∣ cinit π
Ð→ Cfin} and I ′ ∶= inf{Cost (π′) ∣aptpn(cinit) π′

Ð→ aptpn(Cfin)}.
First we show that I ′ /> I. By definition of I, for every λ > 0 there is a computation

cinit
πλÐ→ Cfin , s.t. Cost (πλ) − I ≤ λ. Without restriction we can assume that πλ is also

in detailed form. Let nλ ∶= ∣πλ∣ be the length of πλ and πλ = c0 Ð→ . . . Ð→ cnλ
. Let

δλ ∶=min{1/(5nλ), λ/(nλ ∗ (max0≤i≤nλ
∣ci∣) ∗ (maxp∈P Cost (p)))}.

By Lemma 3.1 there exists a computation cinit
π′′
λÐ→ Cfin in detailed form and δλ-form

where ∣π′′λ ∣ = ∣πλ∣ and π′′λ = c′′0 Ð→ . . . Ð→ c′′nλ
s.t. ∣c′′i ∣ = ∣ci∣ and Cost (π′′λ) ≤ Cost (πλ). It

follows that Cost (π′′λ) − I ≤ λ.
By part (1) of Lemma 4.4, there exists a corresponding A-PTPN computation π′λ =

aptpn(c′′0 ) Ð→ . . . Ð→ aptpn(c′′nλ
) s.t. ∣Cost (π′′λ) −Cost (π′λ) ∣ ≤ nλ ∗ δλ ∗ (max0≤i≤nλ

∣c′′i ∣) ∗
(maxp∈P Cost (p)) ≤ λ. Thus we obtain Cost (π′λ) − I ≤ 2λ. Since this holds for every λ > 0
we get I ′ /> I.

Now we show that I /> I ′. By definition of I ′, for every λ > 0 there is a A-PTPN

computation cinit
π′
λÐ→ Cfin , s.t. Cost (π′λ) − I ′ ≤ λ. Let nλ ∶= ∣π′λ∣ be the length of π′λ and

π′λ = c
′
0 Ð→ . . . Ð→ c′nλ

. Let δλ ∶=min{1/(5nλ), λ/(nλ∗(max0≤i≤nλ
∣c′i∣)∗(maxp∈P Cost (p)))}.

By Lemma 4.4 (2), there exists a corresponding PTPN computation πλ = c0 Ð→ . . . Ð→
cnλ

in detailed form and δλ-form s.t. c′i = aptpn(ci) and ∣Cost (πλ) −Cost (π′λ) ∣ ≤ nλ ∗ δλ ∗

(max0≤i≤nλ
∣c′i∣) ∗ (maxp∈P Cost (p)) ≤ λ. Thus we obtain Cost (πλ) − I ′ ≤ 2λ. Since this

holds for every λ > 0 we get I /> I ′.
By combining I ′ /> I with I /> I ′ we obtain I = I ′ as required.
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4.1. The Running Example (cont.) We consider the running example from Subsec-
tion 2.7 again.

t1

1

p22 6.5q1p1

3

3.1

3.1 2.5
q2 p3

0

0.1 0.1

t2

3

(0
, 3
]

[
1
,
5
)

(2,∞
)

[0,∞
) [2

,
2
]

[1,
4)

Figure 2: A simple example of a PTPN.

Abstract Markings. Fix δ = 0.2. Then the configuration

c = [(p1,2.1) , (p1,1.0) , (p1,2.85) , (p1,3.9) ,
(p2,1.1) , (p2,9.1) , (p2,1.0) , (p2,9.85) ,
(p3,8.1) , (p3,0.85) , (p3,2.9) , (p3,4.9) , (p3,9.0)]

is in δ-form. We have

c1 = aptpn (c) =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,6)
,

(p3,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p3,2)
,

(p3,4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,1)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Note that token ages > cmax are abstracted as cmax +1. Since here cmax = 5, all token
ages > 5 are abstracted as 6.

Below we describe four examples of abstract computation steps (not the same as in
Subsection 2.7).

(i) A type 1 transition from c1 leads to

c2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,6)
,

(p3,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p3,2)
,

(p3,4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,∅,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,1)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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(ii) A type 2 transition from c2 leads to

c3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,6)
,

(p3,0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,4)
,

(p3,3)
,

(p3,5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,1)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(iii) A type 3 transition from c3 leads to

c4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,6)
,

(p3,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,4)
,

(p3,3)
,

(p3,5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,1)
,

(p2,1)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,∅,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,2)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(iv) A type 4 transition from c3 leads to

c5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,6)
,

(p3,1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,4)
,

(p3,3)
,

(p3,5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,2)
,

(p2,2)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1,3)
,

(p2,2)
,

(p2,6)
,

(p3,6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Below, we give three concrete timed transitions that correspond to the abstract steps
(i)-(iii) described above.
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[(p1,2.1) , (p1,1.0) , (p1,2.85) , (p1,3.9) ,
(p2,1.1) , (p2,9.1) , (p2,1.0) , (p2,9.85) ,
(p3,8.1) , (p3,0.85) , (p3,2.9) , (p3,4.9) , (p3,9.0)]

0.01
Ð→Time

[(p1,2.11) , (p1,1.01) , (p1,2.86) , (p1,3.91) ,
(p2,1.11) , (p2,9.11) , (p2,1.01) , (p2,9.86) ,
(p3,8.11) , (p3,0.86) , (p3,2.91) , (p3,4.91) , (p3,9.01)]

0.09
Ð→Time

[(p1,2.2) , (p1,1.1) , (p1,2.95) , (p1,4.0) ,
(p2,1.2) , (p2,9.2) , (p2,1.1) , (p2,9.95) ,
(p3,8.2) , (p3,0.95) , (p3,3.0) , (p3,5.0) , (p3,9.1)]

0.85
Ð→Time

[(p1,3.05) , (p1,1.95) , (p1,3.8) , (p1,4.85) ,
(p2,2.05) , (p2,10.05) , (p2,1.95) , (p2,10.8) ,
(p3,9.05) , (p3,1.8) , (p3,3.85) , (p3,5.85) , (p3,9.95)]

A concrete timed transitions that correspond to the abstract step (iv) is the following

[(p1,2.2) , (p1,1.1) , (p1,2.95) , (p1,4.0) ,
(p2,1.2) , (p2,9.2) , (p2,1.1) , (p2,9.95) ,
(p3,8.2) , (p3,0.95) , (p3,3.0) , (p3,5.0) , (p3,9.1)]

0.9
Ð→Time

[(p1,3.1) , (p1,2.0) , (p1,3.85) , (p1,4.9) ,
(p2,2.1) , (p2,10.1) , (p2,2.0) , (p2,10.85) ,
(p3,9.1) , (p3,1.85) , (p3,3.9) , (p3,5.9) , (p3,10.0)]

5. Abstracting Costs in A-PTPN

Given an A-PTPN, the cost-threshold problem is whether there exists a computation

aptpn(cinit) π
Ð→ aptpn(Cfin) s.t. Cost (π) ≤ v for a given threshold v.

We now reduce this question to a question about simple coverability in a new model
called AC-PTPN. The idea is to encode the cost of the computation into a part of the
control-state. For every A-PTPN and cost threshold v ∈ N there is a corresponding AC-
PTPN that is defined as follows.

For every A-PTPN configuration (q, b−m . . . b−1, b0, b1 . . . bn) there are AC-PTPN con-
figurations ((q, y), b−m . . . b−1, b0, b1 . . . bn) for all integers y ∶ 0 ≤ y ≤ v, where y repre-
sents the remaining allowed cost of the computation. We define a finite set of functions
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acy for 0 ≤ y ≤ v that map A-PTPN configurations to AC-PTPN configurations s.t.
acy((q, b−m . . . b−1, b0, b1 . . . bn)) = ((q, y), b−m . . . b−1, b0, b1 . . . bn).

For every discrete transition t = (q1, q2, In ,Read ,Out) ∈ T with

(q1, b−m . . . b−1, b0, b1 . . . bn)Ð→t (q2, c−m′ . . . c−1, c0, c1 . . . cn′)
in the A-PTPN, we have instead

((q1, y), b−m . . . b−1, b0, b1 . . . bn)Ð→t ((q2, y −Cost (t) , c−m′ . . . c−1, c0, c1 . . . cn′)
in the AC-PTPN for all nonnegative integers y s.t. v ≥ y ≥ Cost (t). I.e., we deduct the cost
of the transition from the remaining allowed cost of the computation.

For every A-PTPN abstract timed transition of the types 1 and 2 (q1, . . . )Ð→ (q1, . . . )
we have corresponding AC-PTPN abstract timed transitions of the same types 1 and 2
where ((q1, y), . . . ) Ð→ ((q1, y), . . . ) for all 0 ≤ y ≤ v. I.e., infinitesimally small delays do
not cost anything, and thus no cost is deducted from the remaining allowed cost.

For every A-PTPN abstract timed transition of type 3 (for some k ∈ {0, . . . , n})
(q1, b−m . . . b−1, b0, b1 . . . bn)Ð→ (q1, b+−m . . . b+−2b

+
−1b0 . . . bk,∅, b

+
k+1 . . . b

+
n)

we have corresponding AC-PTPN abstract timed transitions of type 3 with

((q1, y), b−m . . . b−1, b0, b1 . . . bn)Ð→ ((q1, y − z), b+−m . . . b+−2b
+
−1b0 . . . bk,∅, b

+
k+1 . . . b

+
n)

for all nonnegative integers y s.t. v ≥ y ≥ z where z = ∑n
i=−m∑p∈P ∣bi(p)∣ ∗ Cost (p). I.e.,

we deduct the cost of the timed step (whose length is infinitesimally close to 1) from the
remaining allowed cost of the computation.
Similarly, for every A-PTPN abstract timed transition of type 4 (for some k ∈ {0, . . . , n−1})
with

(q1, b−m . . . b−1, b0, b1 . . . bn)Ð→ (q1, b+−m . . . b+−2b
+
−1b0 . . . bk, b

+
k+1, b

+
k+2 . . . b

+
n)

we have corresponding AC-PTPN abstract timed transitions of type 4 with

((q1, y), b−m . . . b−1, b0, b1 . . . bn)Ð→ ((q1, y − z), b+−m . . . b+−2b
+
−1b0 . . . bk, b

+
k+1, b

+
k+2 . . . b

+
n)

for all nonnegative integers y s.t. v ≥ y ≥ z where z = ∑n
i=−m∑p∈P ∣bi(p)∣ ∗ Cost (p). I.e.,

we deduct the cost of the timed step (whose length is infinitesimally close to 1) from the
remaining allowed cost of the computation.

The following lemma summarizes the connection between A-PTPN and AC-PTPN.

Lemma 5.1. There exists an A-PTPN computation aptpn(cinit) π
Ð→ aptpn(Cfin) with

Cost (π) ≤ v iff there exists a corresponding AC-PTPN computation acv(aptpn(cinit)) π′

Ð→
⋃0≤y≤v acy(aptpn(Cfin))
Proof. Directly from the definition of AC-PTPN.

Moreover, the connection between A-PTPN and AC-PTPN is constructive, i.e., the
cost-threshold problem for A-PTPN can be reduced to the coverability problem for AC-
PTPN described in Lemma 5.1.

Note that, unlike A-PTPN, AC-PTPN are not monotone. This is because steps of types
3 and 4 with more tokens on cost-places cost more, and thus cost-constraints might block
such transitions from larger configurations. Thus one cannot directly reduce the AC-PTPN
coverability problem to an A-PTPN coverability problem.
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6. The Abstract Coverability Problem

We describe a general construction for solving reachability/coverability problems for infinite-
state systems under some abstract conditions. In particular, we do not assume that the
behavior of these systems is fully monotone w.r.t. some well-quasi-order (unlike in many
related works [AČJT00, FS01]).

In subsequent sections we will show how this construction can be applied to solve AC-
PTPN coverability, and thus the A-PTPN and PTPN cost-threshold problems.

6.1. The Generalized Valk-Jantzen Construction.

Theorem 6.1. (Valk & Jantzen [VJ85]) Given an upward-closed set V ⊆ N
k, the finite

set Vmin of minimal elements of V is effectively computable iff for any vector u⃗ ∈ Nk
ω the

predicate u⃗↓ ∩ V ≠ ∅ is decidable.

We now show a generalization of this result.

Theorem 6.2. Let (Ω,≤) be a set with a decidable well-quasi-order (wqo) ≤, and let V ⊆ Ω
be upward-closed and recursively enumerable. Then the finite set Vmin of minimal elements
of V is effectively constructible if and only if for every finite subset X ⊆ Ω it is decidable if
V ∩X ↑ ≠ ∅ (i.e., if ∃v ∈ V. v ∉X ↑).

Proof. Vmin is finite, since ≤ is a wqo. For the only-if part, since X ↑ is upward-closed, it
suffices to check for each of the finitely many elements of Vmin if it is not in X ↑. This is
possible, because X is finite and ≤ is decidable.

For the if-part, we start with X = ∅ and keep adding elements to X until X ↑ = V . In
every step we do the (by assumption decidable) check if ∃v ∈ V. v ∉ X ↑. If no, we stop.
If yes, we enumerate V and check for every element v if v ∉ X ↑ (this is possible since X

is finite and ≤ is decidable). Eventually, we will find such a v, add it to the set X, and
do the next step. Consider the sequence of elements v1, v2, . . . which are added to X in
this way. By our construction vj /≥ vi for j > i. Thus the sequence is finite, because ≤ is a
wqo. Therefore the algorithm terminates and the final set X satisfies /∃ v ∈ V. v ∉ X ↑, i.e.,
V ⊆ X ↑. Furthermore, by our construction X ⊆ V and thus X ↑ ⊆ V ↑= V . Thus X ↑ = V .
Finally, we remove all non-minimal elements from X (this is possible since X is finite and
≤ is decidable) and obtain Vmin .

Corollary 6.3. Let Σ be a finite alphabet and V ⊆ Σ∗ a recursively enumerable set that is
upward-closed w.r.t. the substring ordering ≤. The following three properties are equivalent.

(1) The finite set Vmin of minimal elements of V is effectively constructible.
(2) For every finite subset X ⊆ Σ∗ it is decidable if ∃v ∈ V. v ∉ X ↑.
(3) For every regular language R ⊆ Σ∗ it is decidable if R ∩ V = ∅.

Proof. By Higman’s Lemma [Hig52], the substring order ≤ is a wqo on Σ∗ and thus Vmin

is finite. Therefore the equivalence of (1) and (2) follows from Theorem 6.2. Property (1)
implies that V is an effectively constructible regular language, which implies property (3).

Property (2) is equivalent to checking whether V ∩X ↑ ≠ ∅ and X ↑ is effectively regular
because X is finite. Therefore, (3) implies (2) and thus (1).
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Another interpretation of Corollary 6.3 is the following. An upward-closed set of strings
V is always regular, but this regular language is effectively constructible if and only if regular
queries to V are decidable.

Note that Theorem 6.2 (and even Corollary 6.3, via an encoding of vectors into strings)
imply Theorem 6.1.

6.2. The Abstract Phase Construction. We define some sufficient abstract conditions
on infinite-state transition systems under which a general reachability/coverability problem
is decidable. Intuitively, we have two different types of transition relations. The first
relation is monotone (w.r.t. a given quasi-order) on the whole state space, while the second
relation is only defined/enabled on an upward-closed subspace. The quasi-order is not a
well quasi-order on the entire space, but only on the subspace. In particular, this is not a
well-quasi-ordered transition system in the sense of [AČJT00, FS01], but more general.

We call the following algorithm the abstract phase construction, because we divide
sequences of transitions into phases, separated by occurrences of transitions of the second
kind.

Definition 6.4. We say that a structure (S,C,≤,→,→A,→B , init , F ) satisfies the abstract
phase construction requirements iff the following conditions hold.

1.: S is a (possibly infinite) set of states, C ⊆ S is a finite subset, init ∈ S is the initial state
and F ⊆ S is a (possibly infinite) set of final states.

2.: ≤ is a decidable quasi-order on S. Moreover, ≤ is a well-quasi-order on the subset C ↑
(where C ↑ = {s ∈ S ∣∃c ∈ C.s ≥ c}).

3.: →=→A ∪→B

4.: →A ⊆ S × S is a monotone (w.r.t. ≤) transition relation on S.
5.a.: →B ⊆ C ↑ ×C ↑ is a monotone (w.r.t. ≤) transition relation on C ↑.
5.b.: For every finite set X ⊆ C ↑ we have that the finitely many minimal elements of the

upward-closed set Pre→B
(X ↑) are effectively constructible.

6.a.: Pre∗→A
(F ) is upward-closed and decidable.

6.b.: The finitely many minimal elements of Pre∗→A
(F ) ∩C ↑ are effectively constructible.

7.a.: For any finite set U ⊆ C ↑, the set Pre∗→A
(U ↑) is decidable.

7.b.: For any finite sets U,X ⊆ C ↑, it is decidable if X ↑ ∩Pre∗→A
(U ↑) ∩C ↑ ≠ ∅. (In other

words, it is decidable if ∃z ∈ (X ↑ ∩C ↑). z →∗A U ↑.)

Note that in 7.a and 7.b the set Pre∗→A
(U ↑) is not necessarily constructible, because ≤ is

not a well-quasi-order on S. Note also that F is not necessarily upward-closed.

Theorem 6.5. If (S,C,≤,→,→A,→B , init , F ) satisfies the abstract phase construction re-
quirements of Def. 6.4, then the problem init →∗ F is decidable.

Proof. By Def. 6.4 (cond. 3), we have init →∗ F iff (1) init →∗A F , or (2) init →∗A (→B→∗A
)+F .

Condition (1) can be checked directly, by Def. 6.4 (cond. 6.a).
In order to check condition (2), we first construct a sequence of minimal finite sets

Uk ⊆ C ↑ for k = 1,2, . . . such that Uk ↑ = {s ∈ S ∣∃j ∶ 1 ≤ j ≤ k. s(→B→∗A)jF} and show that
this sequence converges.

First we construct the minimal finite set U ′1 ⊆ C ↑ s.t. U ′1 ↑ = Pre
∗
→A
(F ) ∩ C ↑. This is

possible by conditions 6.a and 6.b of Def. 6.4. Then we construct the minimal finite set
U1 ⊆ C ↑ s.t. U1 ↑ = Pre→B

(U ′1 ↑). This is possible by conditions 5.a and 5.b of Def. 6.4.
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For k = 1,2, . . . we repeat the following steps.

● Given the finite set Uk ⊆ C ↑, we construct the minimal finite set U ′k+1 ⊆ C ↑ s.t. U ′k+1 ↑ =
Pre∗→A

(Uk ↑) ∩ C ↑. This is possible because of Theorem 6.2, which we instantiate as
follows. Let Ω = C ↑ and V = Pre∗→A

(Uk ↑) ∩ C ↑. Using the conditions from Def. 6.4 we
have the following: By condition 2, ≤ is a decidable well-quasi-order on C ↑. By condition
4, V = Pre∗→A

(Uk ↑) ∩C ↑ is upward-closed, since →A is monotone. By conditions 7.a and

2, V is decidable, and by condition 7.b the question X ↑ ∩ V ≠ ∅ is decidable. Thus, by
Theorem 6.2, the finitely many minimal elements of V , i.e., the set U ′k+1, are effectively
constructible.
● Given U ′k+1, we construct the minimal finite set U ′′k+1 ⊆ C ↑ s.t. U ′′k+1 ↑ = Pre→B

(U ′k+1 ↑).
This is possible by conditions 5.a and 5.b of Def. 6.4.

Then let Uk+1 be the finite set of minimal elements of U ′′k+1 ∪Uk.

The sequence U1 ↑,U2 ↑, . . . is a monotone-increasing sequence of upward-closed subsets of
C ↑, where Uk is the finite set of minimal elements of Uk ↑. This sequence converges, because
≤ is a well-quasi-order on C ↑ by condition 2 of Def. 6.4. Therefore, we get Un ↑ = Un+1 ↑ for
some finite index n. Since ≤ is only assumed to be a quasi-order (instead of an order) the
finite sets of minimal elements Un and Un+1 representing Un ↑ and Un+1 ↑ are not necessarily
the same. However, we can still check whether Un ↑ = Un+1 ↑, and thus detect convergence,
because Un and Un+1 are finite and ≤ is decidable by condition 2 of Def. 6.4.

We obtain Un ↑ = {s ∈ S ∣s(→B→∗A)∗F}, because transition →B is only enabled in C ↑
by Def. 6.4 (cond. 5.a).

Finally, by Def. 6.4 (cond. 7.a) we can do the final check whether init ∈ Pre∗→A
(Un ↑)

and thus decide condition (2).

In the following section we use Theorem 6.5 to solve the optimal cost problem for PTPN.
However, it also has many other applications, when used with different instantiations.

Remark 1. Theorem 6.5 can be used to obtain a simple proof of decidability of the cov-
erability problem for Petri nets with one inhibitor arc. Normal Petri net transitions are
described by Ð→A, while the inhibited transition is described by Ð→B. (This uses the de-
cidability of the normal Petri net reachability problem [May84] to prove conditions 7.a and
7.b).

A different instantiation could be used to show the decidability of the reachability
problem for generalized classes of lossy FIFO-channel systems [AJ96, CFI96] where, e.g.,
an extra type of transition Ð→B is only enabled when some particular channel is empty.

7. The Main Result

In this section we state the main results on the decidability and complexity of the cost-
threshold problem.

7.1. The Lower Bound. We show that the cost-threshold problem for PTPN is compu-
tationally at least as hard as two other known problems.

(1) The reachability problem for Petri nets with one inhibitor arc.
(2) The control-state reachability problem for timed Petri nets (TPN) without any cost

model.
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The first item establishes a connection between PTPN and Petri nets with one inhibitor
arc. This is interesting in itself, but it only yields a relatively weak EXPSPACE lower
bound (via the EXPSPACE lower bound for reachability in ordinary Petri nets [Lip76]).
The second item shows that the problem is Fωωω -hard in the fast growing hierarchy, by using
a recent result from [HSS12]. In particular this means that the cost-threshold problem for
PTPN is non primitive recursive.

Definition 7.1. Petri nets with one inhibitor arc [Rei08, Bon11] are an extension of Petri
nets. They contain a special inhibitor arc that prevents a certain transition from firing if a
certain place is nonempty.

Formally, a Petri net with an inhibitor arc is described by a tuple N = (Q,P,T, (pi, ti))
where (pi, ti) describes a modified firing rule for transition ti: it can fire only if pi is empty.

● Q is a finite set of control-states
● P is a finite set of places
● T is a finite set of transitions. Every transition t ∈ T has the form t = (q1, q2, I,O) where
q1, q2 ∈ Q and I,O ∈ P⊙.

Let (q,M) ∈ Q × P⊙ be a configuration of N .

● If t ∈ T − {ti} then t = (q1, q2, I,O) ∈ T is enabled at configuration (q,M) iff q = q1 and
M ≥ I.
● If t = ti then t = (q1, q2, I,O) ∈ T is enabled at configuration (q,M) iff q = q1 and M ≥ I
and M(pi) = 0.

Firing t yields the new configuration (q2,M ′) where M ′ =M − I +O.
The reachability problem for Petri nets with one inhibitor arc is decidable [Rei08,

Bon11].

Now we describe a polynomial time reduction from the reachability problem for Petri
nets with one inhibitor arc to the cost-threshold problem for PTPN.

Lemma 7.2. Let (Q,P,T, (pi, ti)) be a Petri net with one inhibitor arc with initial config-
uration (qinit , []) and final configuration (qfin , []).

One can construct in polynomial time a PTPN (Q′, P ′, T ′,Cost) with initial configura-
tion cinit = (qinit , []) and set of final configurations Cfin = {(q′fin ,M) ∣ M ∈ (P ×R≥0)⊙} s.t.
(qinit , []) ∗

Ð→ (qfin , []) iff OptCost (cinit ,Cfin) = 0.
Proof. Let (Q,P,T, (pi, ti)) be a Petri net with one inhibitor arc with initial configura-
tion (qinit , []) and final configuration (qfin , []). We construct in polynomial time a PTPN
(Q′, P ′, T ′,Cost) with initial configuration cinit = (qinit , []) and set of final configurations

Cfin = {(q′fin ,M) ∣ M ∈ (P ×R≥0)⊙} s.t. (qinit , []) ∗
Ð→ (qfin , []) iff inf{Cost (π) ∣ cinit π

Ð→
Cfin} = 0.

Let Q′ = Q ∪ {q′fin , q1wait , q2wait}. Let P ′ = P ∪ {p1wait , p2wait}. We define Cost(p) = 1 for

every p ∈ P , Cost(p) = 0 for p ∈ P ′ − P , and Cost(t′) = 0 for t′ ∈ T ′. In order to define
the transitions, we need a function that transforms multisets of places into multisets over
P ×Intrv by annotating them with time intervals. Let [p1, . . . , pn] ∈ P⊙ and I ∈ Intrv . Then
annotate([p1, . . . , pn],I) = [(p1,I), . . . , (pn,I)] ∈ (P × Intrv)⊙.

For every transition t ∈ T − {ti} with t = (q1, q2, I,O) we have a transition t′ =

(q1, q2, I ′,O′) ∈ T ′ where I ′ = annotate(I ∩(P − {pi})⊙, [0 ∶ ∞))+annotate(I ∩{pi}⊙, [0 ∶ 0])
and O′ = annotate(O, [0 ∶ 0]). I.e., the age of the input tokens from pi must be zero
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and for the other input places the age does not matter. The transitions always output
tokens of age zero. Instead of ti = (qi1, qi2, Ii,Oi) ∈ T with the inhibitor arc (pi, ti), we
have the following transitions in T ′: (qi1, q1wait ,annotate(Ii, [0 ∶ ∞)), [(p1wait , [0 ∶ 0])]) and
(q1wait , qi2, [(p1wait , (0 ∶ 1])],annotate(O, [0 ∶ 0])). This simulates ti in two steps while enforc-
ing an arbitrarily small, but nonzero, delay. This is because the token on place p1wait needs
to age from age zero to an age > 0. If pi is empty then this yields a faithful simulation of
a step of the Petri net with one inhibitor arc. Otherwise, the tokens on pi will age to a
nonzero age and can never be consumed in the future. I.e., a token with nonzero age on pi

will always stay there and indicate an unfaithful simulation.
To reach the set of final configurations Cfin , we add the following two transitions:

(qfin , q2wait , [], [(p2wait , [0 ∶ 0])]) and (q2wait , q′fin , [(p2wait , [1 ∶ 1])], []). This enforces a delay of
exactly one time unit at the end of the computation, i.e., just before reaching Cfin .

If (qinit , []) ∗
Ð→ (qfin , []) in the Petri net with one inhibitor arc, then for every ǫ > 0

there is a computation cinit
π
Ð→ (qfin , []) in the PTPN which faithfully simulates it and has

Cost (π) < ǫ, because the enforced delays can be made arbitrarily small. The final step to
Cfin = {(q′fin ,M) ∣ M ∈ (P ×R≥0)⊙} takes one time unit, but costs nothing, because there

are no tokens on cost-places. Thus OptCost (cinit ,Cfin) = inf{Cost (π) ∣ cinit π
Ð→ Cfin} = 0.

On the other hand, if OptCost (cinit ,Cfin) = inf{Cost (π) ∣ cinit π
Ð→ Cfin} = 0 then the

last step from qfin to q′fin must have taken place with no tokens on places in P . In particular,

pi must have been empty. Therefore, the PTPN did a faithful simulation of a computation

(qinit , []) ∗
Ð→ (qfin , []) in the Petri net with one inhibitor arc, i.e., the transition ti was only

taken when pi was empty. Thus (qinit , []) ∗
Ð→ (qfin , []).

Lemma 7.2 implies that even a special case of the cost-threshold problem for PTPN,
namely the question OptCost (cinit ,Cfin) = 0, is at least as hard as the reachability problem
for Petri nets with one inhibitor arc. The exact complexity of this problem is not known, but
it is at least as hard as reachability in standard Petri nets (without any inhibitor arc). The
exact complexity of the reachability problem for standard Petri nets is not known either,
but an EXPSPACE lower bound has been shown in [Lip76].

The connection between the cost-threshold problem for PTPN and the control-state
reachability problem for TPN is very easy to show.

Lemma 7.3. The control-state reachability problem for a timed Petri net (TPN) can be
reduced in polynomial time to the question OptCost (cinit ,Cfin) = 0 for a PTPN.

Proof. We construct the PTPN by extending the TPN with a cost function that assigns cost
zero to all transitions and places. We define cinit to be the initial configuration of the TPN
and the set Cfin by the target control-state of the TPN. If the target control-state is reachable

in the TPN then OptCost (cinit ,Cfin) = 0 in the PTPN, otherwise OptCost (cinit ,Cfin) is
undefined.

It has been shown in [HSS12] (Corollary 6.) that the control-state reachability problem
for timed Petri nets (TPN) is Fωωω -hard in the fast growing hierarchy. By Lemma 7.3, we
obtain the following theorem.

Theorem 7.4. The cost-threshold problem for PTPN is Fωωω -hard in the fast growing
hierarchy, and thus non primitive recursive.
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7.2. The Upper Bound. Here we state the main computability result of the paper. Its
proof refers to several auxiliary lemmas that will be shown in the following sections.

Theorem 7.5. Consider a PTPN N = (Q,P,T,Cost) with initial configuration cinit =
(qinit , []) and set of final configurations Cfin = {(qfin ,M) ∣ M ∈ (P ×R≥0)⊙}.
Then OptCost (cinit ,Cfin) is computable.

Proof. OptCost (cinit ,Cfin) = inf{Cost (π) ∣ cinit π
Ð→ Cfin} = inf{Cost (π′) ∣aptpn(cinit) π′

Ð→

aptpn(Cfin)}, by Theorem 4.5. Thus it suffices to consider the computations aptpn(cinit) π′

Ð→
aptpn(Cfin) of the corresponding A-PTPN. In particular, OptCost (cinit ,Cfin) ∈ N, provided
that it exists.

To compute this value, it suffices to solve the cost-threshold problem for any given

threshold v ∈ N, i.e., to decide if aptpn(cinit) π
Ð→ aptpn(Cfin) for some π with Cost (π) ≤ v.

To show this, we first decide if aptpn(cinit) π
Ð→ aptpn(Cfin) for any π (i.e., reachability).

This can be reduced to the cost-threshold problem by setting all place and transition costs to
zero and solving the cost-threshold problem for v = 0. If no, then no final state is reachable

and we represent this by inf{Cost (π) ∣ cinit π
Ð→ Cfin} = ∞. If yes, then we can find the

optimal cost v by solving the cost-threshold problem for threshold v = 0,1,2,3, . . . until the
answer is yes.

Now we show how to solve the cost-threshold problem. By Lemma 5.1, this question is

equivalent to a reachability problem acv(aptpn(cinit)) ∗
Ð→ ⋃0≤y≤v acy(aptpn(Cfin)) in the

corresponding AC-PTPN. This reachability problem is decidable by Lemma 7.8.

Now we prove the remaining Lemma 7.8. For this we need some auxiliary definitions.

Definition 7.6. We define a partial order ≤f on AC-PTPN configurations. Given two such
configurations β = (qβ, (b−m . . . b−1, b0, b1 . . . bn)) and γ = (qγ , (c−m′ . . . c−1, c0, c1 . . . cn′)) we
have β ≤f γ iff qβ = qγ and there exists a strictly monotone function f ∶ {−m, . . . , n} ↦
{−m′, . . . , n′} where f(0) = 0 s.t.

(1) cf(i) − bi ∈ (Pf × [cmax + 1])⊙, for −m ≤ i ≤ n.
(2) cj ∈ (Pf × [cmax + 1])⊙, if /∃ i ∈ {−m, . . . , n}. f(i) = j.
(Intuitively, γ is obtained from β by adding tokens on free-places, while the tokens on cost-
places are unchanged.) In this case, if α = (qβ , (c−m′ −bf−1(−m′), . . . , c−1−bf−1(−1), c0 −b0, c1−
bf−1(1), . . . , cn′ − bf−1(n′))) then we write α⊕β = γ. (Note that α is not uniquely defined,
because it depends on the choice of the function f . However one such α always exists and
only contains tokens on Pf .)

The partial order ≤c on configurations of AC-PTPN is defined analogously with Pc

instead of Pf , i.e., γ is obtained from β by adding tokens on cost-places.

The partial order ≤fc on configurations of AC-PTPN is defined analogously with P

instead of Pf , i.e., γ is obtained from β by adding tokens on any places, and ≤fc=≤c ∪ ≤f .

Lemma 7.7. The relations of Def. 7.6 have the following properties.

(1) ≤f , ≤c and ≤fc are decidable quasi-orders on the set of all AC-PTPN configurations.
(2) For every AC-PTPN configuration c, ≤f is a well-quasi-order on the set {c}↑ = {s ∣ c ≤f

s} (i.e., here ↑ denotes the upward-closure w.r.t. ≤f).
(3) ≤fc is a well-quasi-order on the set of all AC-PTPN configurations.
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Proof.

(1) For the decidability we note that if

β = (qβ, (b−m . . . b−1, b0, b1 . . . bn)) and γ = (qγ , (c−m′ . . . c−1, c0, c1 . . . cn′))
then only finitely many strictly monotone functions f ∶ {−m, . . . , n} ↦ {−m′, . . . , n′}
exist with f(0) = 0, which need to be explored. Since addition/subtraction/inclusion
on finite multisets are computable, the result follows.

Moreover, ≤f , ≤c and ≤fc are quasi-orders in the set of all AC-PTPN configurations.
Reflexivity holds trivially, and transitivity can easily be shown by composing the re-
spective functions f .

(2) Now we show that ≤f is a well-quasi-order on the set {c}↑ = {s ∣ c ≤f s} for every
AC-PTPN configuration c. Consider an infinite sequence β0, β1, . . . of AC-PTPN con-
figurations where βi ∈ {c}↑ for every i. It follows that there exists an infinite sequence of
AC-PTPN configurations α0, α1, . . . s.t. αi only contains tokens on Pf and βi = c⊕αi for

all i. Since Pf × [cmax + 1] is finite, multiset-inclusion is a wqo on (Pf × [cmax + 1])⊙,
by Dickson’s Lemma [Dic13]. Any AC-PTPN configuration αi consists of 4 parts: A
control-state (out of a finite domain), a finite sequence over (Pf × [cmax + 1])⊙, an ele-

ment of (Pf × [cmax + 1])⊙, and another finite sequence over (Pf × [cmax + 1])⊙. Thus,
by applying Higman’s Lemma [Hig52] to each part, we obtain that there must exist in-
dices i < j s.t. αi ≤

f αj . Therefore βi = c⊕αi ≤
f c⊕αj = βj , and thus ≤f is a wqo on

{c}↑.
(3) Now we show that ≤fc is a well-quasi-order on the set of all AC-PTPN configura-

tions. Consider an infinite sequence β0, β1, . . . of AC-PTPN configurations. Since
P × [cmax + 1] is finite, multiset-inclusion is a wqo on (P × [cmax + 1])⊙, by Dick-
son’s Lemma [Dic13]. Any AC-PTPN configuration consists of 4 parts: A control-
state (out of a finite domain), a finite sequence over (P × [cmax + 1])⊙, an element of
(P × [cmax + 1])⊙, and another finite sequence over (P × [cmax + 1])⊙. Thus, by ap-
plying Higman’s Lemma [Hig52] to each part, we obtain that there must exist indices
i < j s.t. βi ≤

fc βj . Thus ≤
fc is a wqo.

Now we prove the required decidability of the AC-PTPN reachability/coverability problem.

Lemma 7.8. Given an instance of the PTPN cost problem and a threshold v ∈ N, the

reachability question acv(aptpn(cinit)) ∗
Ð→ ⋃0≤y≤v acy(aptpn(Cfin)) in the corresponding

AC-PTPN is decidable.

Proof. We instantiate a structure (S,C,≤,→,→A,→B , init , F ), show that it satisfies the
requirements of Def. 6.4, and then apply Theorem 6.5.
Let S be the set of all AC-PTPN configurations of the form ((q, y), b−m . . . b−1, b0, b1 . . . bn)
where y ≤ v.
Let C be the set of all AC-PTPN configurations of the form ((q, y), b−m′ . . . b−1, b0, b1 . . . bn′)
where y ≤ v, and bi ∈ (Pc × [cmax + 1])⊙ and ∑n′

j=−m′ ∣bj ∣ ≤ v. In other words, the configura-
tions in C only contain tokens on cost-places and the size of these configurations is limited
by v. C is finite, because Pc, cmax and v are finite.

Let ≤∶=≤f of Def. 7.6, i.e., in this proof ↑ denotes the upward-closure w.r.t. ≤f . By
Lemma 7.7, ≤ is decidable, ≤ is a quasi-order on S, and ≤ is a well-quasi-order on {c}↑ for
every AC-PTPN configuration c. Therefore ≤f is a well-quasi-order on C ↑, because C is
finite.
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Let init ∶= acv(aptpn(cinit)) and F ∶= ⋃0≤y≤v acy(aptpn(Cfin)). In particular, F is

upward-closed w.r.t. ≤f and w.r.t. ≤fc. Thus conditions 1 and 2 of Def. 6.4 are satisfied.
Let →A be the transition relation induced by the discrete AC-PTPN transitions and

the abstract timed AC-PTPN transitions of types 1 and 2. These are monotone w.r.t. ≤f .
Thus condition 4 of Def. 6.4 is satisfied.

Let →B be the transition relation induced by abstract timed AC-PTPN transitions of
types 3 and 4. These are monotone w.r.t. ≤f , but only enabled in C ↑, because otherwise the
cost would be too high. (Remember that every AC-PTPN configuration stores the remaining
allowed cost, which must be non-negative.) Moreover, timed AC-PTPN transitions of types
3 and 4 do not change the number or type of the tokens in a configuration, and thus
→B⊆ C ↑ × C ↑. So we have condition 5.a of Def. 6.4. Condition 5.b is satisfied, because
there are only finitely many token ages ≤ cmax and the number and type of tokens is
unchanged.

Condition 3 is satisfied, because →=→A ∪→B by the definition of AC-PTPN.
Now we show the conditions 6.a and 6.b. F is upward-closed w.r.t. ≤fc and →A

is monotone w.r.t. ≤fc (not only w.r.t ≤f ). By Lemma 7.7, ≤fc is a decidable wqo on
the set of AC-PTPN configurations. Therefore, Pre∗→A

(F ) is upward-closed w.r.t. ≤fc

and effectively constructible (i.e., its finitely many minimal elements w.r.t. ≤fc), because
the sequence Pre≤i→A

(F ) for i = 1,2, . . . converges. Let K be this finite set of minimal

(w.r.t. ≤fc) elements of Pre∗→A
(F ). We obtain condition 6.a., because K is finite and

≤fc is decidable. Moreover, Pre∗→A
(F ) is also upward-closed w.r.t. ≤f . The set C is

a finite set of AC-PTPN configurations and C ↑ is the upward-closure of C w.r.t. ≤f .
Therefore Pre∗→A

(F ) ∩ C ↑ is upward closed w.r.t. ≤f . Now we show how to construct

the finitely many minimal (w.r.t. ≤f) elements of Pre∗→A
(F ) ∩ C ↑. For every k ∈ K let

α(k) ∶= {k′ ∣ k′ ∈ C ↑, k ≤c k′}, i.e., those configurations which have the right control-state
for C ↑, but whose number of tokens on cost-places is bounded by v, and who are larger
(w.r.t. ≤c) than some base element in K. In particular, α(k) is finite and constructible,
because v is finite, and ≤c and ≤f are decidable. Note that α(k) can be empty (if k has
the wrong control-state or too many tokens on cost-places). Let K ′ ∶= ⋃k∈K α(k), which is
finite and constructible. We show that Pre∗→A

(F ) ∩C ↑ =K ′↑. Consider the first inclusion.

If x ∈ K ′↑ then ∃k′ ∈ K ′, k ∈ K.k ≤c k′ ≤f x,k′ ∈ C ↑. Therefore k ≤fc x and x ∈ Pre∗→A
(F ).

Also k′ ∈ C ↑ and k′ ≤f x and thus x ∈ C ↑. Now we consider the other inclusion. If
x ∈ Pre∗→A

(F ) ∩C ↑ then there is a k ∈ K s.t. k ≤fc x. Moreover, the number of tokens on
cost-places in x is bounded by v and the control-state is of the form required by C ↑, because
x ∈ C ↑. Since, k ≤fc x, the same holds for k and thus there is some k′ ∈ α(k) s.t. k′ ≤f x.
Therefore x ∈ K ′↑. To summarize, K ′ is the finite set of minimal (w.r.t. ≤f ) elements of
Pre∗→A

(F ) ∩C ↑ and thus condition 6.b holds.
Conditions 7.a and 7.b are satisfied by Lemma 9.3, (which will be proven in Section 9).
So we have that our instantiation satisfies the abstract phase construction requirements

of Def. 6.4. Therefore, Theorem 6.5 yields the decidability of the reachability problem

init →∗ F , i.e., acv(aptpn(cinit)) ∗
Ð→ ⋃0≤y≤v acy(aptpn(Cfin)).

The remaining Lemma 9.3 will be shown in Section 9. Its proof uses the simultaneous-
disjoint transfer nets of Section 8.
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8. Simultaneous-Disjoint-Transfer Nets

Definition 8.1. Simultaneous-disjoint-transfer nets (SD-TN) [AMM07] are a subclass of
transfer nets [Cia94]. SD-TN subsume ordinary Petri nets. A SD-TN N is described by a
tuple (Q,P,T,Trans).
● Q is a finite set of control-states
● P is a finite set of places
● T is a finite set of ordinary transitions. Every transition t ∈ T has the form t = (q1, q2, I,O)
where q1, q2 ∈ Q and I,O ∈ P⊙.
● Trans describes the set of simultaneous-disjoint transfer transitions. Although these
transitions can have different control-states and input/output places, they all share the
same transfer (thus the ‘simultaneous’). The transfer is described by the relation ST ⊆
P × P , which is global for the SD-TN N . Intuitively, for (p, p′) ∈ ST , in a transfer every
token in p is moved to p′. The transfer transitions in Trans have the form (q1, q2, I,O,ST )
where q1, q2 ∈ Q are the source and target control-state, I,O ∈ P⊙ are like in a normal Petri
net transition, and ST ⊆ P ×P is the same global transfer relation for all these transitions.
For every transfer transition (q1, q2, I,O,ST ) the following ‘disjointness’ restrictions must
be satisfied:
- Let (sr, tg), (sr′, tg′) ∈ ST . Then either (sr, tg) = (sr′, tg′) or ∣{sr, sr′, tg, tg′}∣ = 4.
Furthermore, {sr, tg} ∩ (I ∪O) = ∅.

Let (q,M) ∈ Q × P⊙ be a configuration of N . The firing of normal transitions t ∈ T is
defined just as for ordinary Petri nets. A transition t = (q1, q2, I,O) ∈ T is enabled at
configuration (q,M) iff q = q1 and M ≥ I. Firing t yields the new configuration (q2,M ′)
where M ′ =M − I +O.

A transfer transition (q1, q2, I,O,ST ) ∈ Trans is enabled at (q,M) iff q = q1 and M ≥ I.
Firing it yields the new configuration (q2,M ′) where

M ′(p) =M(p) − I(p) +O(p) if p ∈ I ∪O
M ′(p) = 0 if ∃p′. (p, p′) ∈ ST
M ′(p) =M(p) +M(p′) if (p′, p) ∈ ST
M ′(p) =M(p) otherwise

The restrictions above ensure that these cases are disjoint. Note that after firing a transfer
transition all source places of transfers are empty, since, by the restrictions defined above, a
place that is a source of a transfer can neither be the target of another transfer, nor receive
any tokens from the output of this transfer transition.

Theorem 8.2. The reachability problem for SD-TN is decidable, and has the same com-
plexity as the reachability problem for Petri nets with one inhibitor arc.

Proof. We show that the reachability problem for SD-TN is polynomial-time reducible to
the reachability problem for Petri nets with one inhibitor arc (see Def. 7.1), and vice-versa.

For the first direction consider an SD-TNN = (Q,P,T,Trans), with initial configuration
(q0,M0) and final configuration (qf ,Mf). We construct a Petri net with one inhibitor arc

N ′ = (Q′, P ′, T ′, (pi, ti)) with initial configuration (q′0,M ′
0) and final configuration (q′f ,M ′

f )
s.t. (q0,M0) ∗

Ð→ (qf ,Mf) in N iff (q′0,M ′
0)

∗
Ð→ (q′f ,M ′

f) in N ′.

Let S ∶= {sr ∣ (sr, tg) ∈ ST} be the set of source-places of transfers. We add a new
place pi to P ′ and modify the transitions to obtain the invariant that for all reachable
configurations (q,M) in N ′ we have M(pi) = ∑sr∈S M(sr). Thus for every transition
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t = (q1, q2, I,O) ∈ T in N we have a transition t′ = (q1, q2, I ′,O′) ∈ T ′ in N ′ where I ′(pi) =
∑sr∈S I(sr) and O′(pi) = ∑sr∈S O(sr). For all other places p we have I ′(p) = I(p) and
O′(p) = O(p). This suffices to ensure the invariant, because no place in S is the target of a
transfer.

To simulate a transfer transition (q1, q2, I,O,ST ) ∈ Trans , we add another control-state
qi to Q′, another place p(q2) to P ′ and a transition (q1, qi, I ′,O′ + {p(q2)}) to T ′, where
I ′,O′ are derived from I,O as above. Moreover, for every pair (sr, tg) ∈ ST we add a
transition (qi, qi,{sr, pi},{tg}). This allows to simulate the transfer by moving the tokens
from the source to the target step-by-step. The transfer is complete when all source places
are empty, i.e., when pi is empty. Finally, we add a transition ti = (qi, q2,{p(q2)},{}) and
let the inhibitor arc be (pi, ti). I.e., we can only return to q2 when pi is empty and the
transfer is complete. We return to the correct control-state q2 for this transition, because
the last step is only enabled if there is a token on p(q2).

So we have Q′ = Q ∪ {qi}, P ′ = P ∪ {pi} ∪ {p(q) ∣ q ∈ Q} and T ′ is derived from T as
described above. We let q′0 = q0, q

′
f = qf and M ′

0(pi) = ∑p∈S M0(p), M ′
f(pi) = ∑p∈S Mf(p)

and M ′
0(p) =M0(p) and M ′

f(p) =Mf(p) for all places p ∈ P and M ′
0(p(q)) =M ′

f(p(q)) = 0.
Note that, by definition of SD-TN, source-places and target-places of transfers are disjoint.
Therefore, the condition on the inhibitor arc enforces that all transfers are done completely
(i.e., until pi is empty, and thus all places in S are empty) and therefore the simulation

is faithful. Thus we obtain (q0,M0) ∗
Ð→ (qf ,Mf) in N iff (q′0,M ′

0)
∗
Ð→ (q′f ,M ′

f) in N ′, as
required. Since the reachability problem for Petri nets with one inhibitor arc is decidable
[Rei08, Bon11], we obtain the decidability of the reachability problem for SD-TN.

Now we show the reverse reduction. Consider a Petri net with one inhibitor arc N =
(Q,P,T, (pi, ti)) with initial configuration (q0,M0) and final configuration (qf ,Mf). We
construct an SD-TN N ′ = (Q′, P ′, T ′,Trans) with initial configuration (q′0,M ′

0) and final

configuration (q′f ,M ′
f) s.t. (q0,M0) ∗

Ð→ (qf ,Mf) iff (q′0,M ′
0)

∗
Ð→ (q′f ,M ′

f).
Let Q′ = Q, P ′ = P∪{px} where px is a new place, and T ′ = T−{ti}. Let ti = (q1, q2, I,O).

In N ′, instead of ti, we have the Trans = {(q1, q2, I,O,ST )} where ST = {(pi, px)}. Unlike
in N , in N ′ the inhibited transition can fire even if pi is nonempty. However, in this
case the contents of pi are moved to px where they stay forever. I.e., we can detect an
unfaithful simulation by the fact that px is nonempty. Let q′0 = q0, q

′
f = qf , M

′
0(px) = 0,

Mf(px) = 0 and M ′
0(p) = M0(p) and M ′

f(p) = Mf(p) for all other places p. Thus we get

(q0,M0) ∗
Ð→ (qf ,Mf ) in N iff (q′0,M ′

0)
∗
Ð→ (q′f ,M ′

f) in N ′, as required. Therefore, the
reachability problem for SD-TN is polynomially equally hard as the reachability problem
for Petri nets with one inhibitor arc.

The following corollary shows decidability of a slightly generalized reachability problem
for SD-TN, which we will need in the proofs of the following sections.

Corollary 8.3. Let N be an SD-TN and F a set of SD-TN configurations, which is defined
by a boolean combination of finitely many constraints of the following forms.

(1) control-state = q (for some state q ∈ Q)
(2) exactly k tokens on place p (where k ∈ N)
(3) at least k tokens on place p (where k ∈ N)

Then the generalized reachability problem (q0,M0) ∗
Ð→ F is decidable.
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Proof. First, the boolean formula can be transformed into disjunctive normal form and
solved separately for each clause. Every clause is a conjunction of constraints of the types
above. This problem can then be reduced to the basic reachability problem for a modified
SD-TN N ′ and then solved by Theorem 8.2. One introduces a new final control-state q′

and adds a construction that allows the transition from F to (q′,{}) if and only if the
constraints are satisfied. For type (2) one adds a transition that consumes exactly k tokens
from place p. For type (3) one adds a transition that consumes exactly k tokens from place
p, followed by a loop which can consume arbitrarily many tokens from place p. We obtain

(q0,M0) ∗
Ð→ F in N iff (q0,M0) ∗

Ð→ (q′,{}) in N ′. Decidability follows from Theorem 8.2.

9. Encoding AC-PTPN Computations by SD-TN

In this section, we fix an AC-PTPN N , described by the tuple (Q,P,T,Cost) and the cost-
threshold v. We use the partial order ≤∶=≤f on AC-PTPN configurations; see Def. 7.6. We
describe an encoding of the configurations of N as words over an alphabet Σ. We define
Σ ∶= (P × [cmax + 1]) ∪ (Q × {y ∣ 0 ≤ y ≤ v}) ∪ {#,$}, i.e., the members of Σ are elements
of P × [cmax + 1], the control-states of N , and the two “separator” symbols # and $. For
a multiset b = [a1, . . . , an] ∈ (P × [cmax + 1])⊙, we define the encoding enc (b) to be the

word a1⋯an ∈ (P × [cmax + 1])∗. For a word w = b1⋯bn ∈ ((P × [cmax + 1])⊙)∗, we de-
fine enc (w) ∶= enc (bn)#⋯#enc (b1), i.e., it consists of the reverse concatenation of the
encodings of the individual multisets, separated by #. For a marking M = (w1, b,w2), we
define enc (M) ∶= enc (w2)$enc (b)$enc (w1). In other words, we concatenate the encoding
of the components in reverse order: first w2 then b and finally w1, separated by $. Finally
for a configuration c = ((q, y) ,M), we define enc (c) ∶= (q, y) enc (M), i.e., we append the
pair (q, y) in front of the encoding of M . The function enc () is extended from configu-
rations to sets of configurations in the standard way. We call a finite automaton A over
Σ a configuration-automaton if whenever w ∈ L(A) then w = enc(c) for some AC-PTPN
configuration c.

Lemma 9.1. Given any finite set C of AC-PTPN configurations, one can construct a
configuration-automaton A s.t. L(A) = enc (C ↑).
Proof. For every c ∈ C we construct an automaton Ac s.t. L(Ac) = enc ({c}↑). Remember
that here the upward-closure is taken w.r.t. ≤f . Let c = ((q, y), b−m . . . b−1, b0, b1 . . . bn).
We have bi = [b1i , . . . , bj(i)i ] where bki ∈ P × [cmax + 1]. Let Σ1 = Pf × [cmax + 1], i.e.,
only tokens on free-places can be added in the upward-closure. Let L1 = (Σ+1#)∗. The
language L1 describes encodings of sets of tokens on free-places. Many such sets of tokens

can be added during the upward closure w.r.t. ≤f . Let wi = b1i . . . b
j(i)
i , i.e., wi is an

encoding of bi. Let L2 = L1w−mΣ∗1#L1w2Σ
∗
1#L1 . . . w−1Σ

∗
1(#L1)∗. So L2 encodes the

upward closure w.r.t. ≤f of the part b−m . . . b−1 of the configuration c. Let L3 = w−0Σ
∗
1 .

So L3 encodes the upward closure w.r.t. ≤f of the part b0 of the configuration c. Let
L4 = L1w1Σ

∗
1#L1w2Σ

∗
1#L1 . . . wnΣ

∗
1(#L1)∗. So L4 encodes the upward closure w.r.t. ≤f of

the part b1 . . . bn of the configuration c. Then L(Ac) = (q, y)L2$L3$L4 = enc ({c}↑).
Finally, L(A) = ⋃c∈C L(Ac) = enc (C ↑).
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Lemma 9.2. We can construct a configuration-automaton A s.t. L(A) = enc(S), where S

is the set of all configurations of a given AC-PTPN.

Proof. Let Σ1 = {(q, y) ∣ q ∈ Q,0 ≤ y ≤ v} and Σ2 = P × [cmax + 1]. Let L1 = Σ∗2 and
L2 = L1(#Σ+2)∗ and L3 = L2$L1$L2. Then the language of A is Σ1L3, which is a regular
language over Σ.

Lemma 9.3. Consider an instance of the PTPN cost problem, a given threshold v ∈ N, and
a structure (S,C,≤,→,→A,→B , init , F ), instantiated as in Lemma 7.8.

Then conditions 7.a and 7.b. of Def. 6.4 are decidable.
Proof.

7.a: Consider a configuration c. We can trivially construct a configuration-automaton A
s.t. L(A) = {enc (c)}. Thus the question c ∈ Pre∗→A

(U ↑) can be decided by applying
Lemma 9.4 to A and U .

7.b: Consider finite sets of AC-PTPN configurations U,X ⊆ C ↑. By Lemma 9.1, we
can construct configuration-automata A1,A2 with L(A1) = enc (X ↑) and L(A2) =
enc (C ↑). Furthermore, by Lemma 9.2, we can construct a configuration-automaton
A3 with L(A3) = enc (S). Therefore, by elementary operations on finite automata, we

can construct a configuration-automaton A4 with L(A4) = L(A1) ∩L(A3) ∩L(A2), and
we obtain that L(A4) = enc (X ↑ ∩C ↑). Note that the complement operation on words is
not the same as the complement operation on the set of AC-PTPN configurations. Thus
the need for intersection with A3. The question ∃z ∈ (X ↑ ∩C ↑). z →∗A U ↑ of 7.b can be
decided by applying Lemma 9.4 to A4 and U .

Lemma 9.4. Given a configuration-automaton A, C as in Lemma 7.8, and a finite set
U ⊆ C ↑, it is decidable if there exists some AC-PTPN configuration cinit ∈ enc

−1(L(A)) s.t.
cinit →∗A U ↑.

Proof. The idea is to translate the AC-PTPN into an SD-TN which simulates its computa-
tion. The automaton A is also encoded into the SD-TN and runs in parallel. A outputs an
encoding of cinit , a nondeterministically chosen initial AC-PTPN configuration from L(A).
Since the SD-TN cannot encode sequences, it cannot store the order information in the
sequences which are AC-PTPN configurations. Instead this is encoded into the behavior of
A, which outputs parts of the configuration cinit ‘just-in-time’ before they are used in the
computation (with exceptions; see below). Several abstractions are used to unify groups of
tokens with different fractional parts, whenever the PTPN is unable to distinguish them.
AC-PTPN timed transitions of types 1 and 2 are encoded as SD-TN transfer transitions,
e.g., all tokens with integer age advance to an age with a small fractional part. Since this
operation must affect all tokens, it cannot be done by ordinary Petri net transitions, but
requires the simultaneous-disjoint transfer of SD-TN. Another complication is that the com-
putation of the AC-PTPN might use tokens (with high fractional part) from cinit , which the
automaton A has not yet produced. This is handled by encoding a ‘debt’ on future outputs
of A in special SD-TN places. These debts can later be ‘paid back’ by outputs of A (but
not by tokens created during the computation). At the end, the computation must reach
an encoding of a configuration in U ↑ and all debts must be paid. This yields a reduction
to a reachability problem for the constructed SD-TN, which is decidable by Theorem 8.2.

We devote the rest of the section to give the details of the proof.
We show the lemma for the case where U is a singleton {cfin}. The result follows

from the fact that U is finite and that U ↑ = ∪c∈Uc↑. We will define an SD-TN T =



34 P. A. ABDULLA AND R. MAYR

(QT , P T , T T ,TransT ), a finite set CTinit of (initial) configurations, and a finite set of (fi-

nal) ω-configurations CTfinal such that ∃cTinit ∈ CTinit . ∃c
T
final ∈ CTfinal . c

T
init

∗
Ð→ cTfinal in T

iff there is a cinit ∈ enc−1(L(A)) s.t. cinit →∗A U ↑. The result then follows immedi-

ately from Theorem 8.2 (and Corollary 8.3). Let cfin = ((qfin , yfin) ,Mfin) where Mfin

is of the form (b−m⋯b−1, b0, b1⋯bn) and bi is of the form ((pi1, ki1) , . . . , (pini
, kini

)) for
i ∶ −m ≤ i ≤ n. Let the finite-state automaton A be of the form (QA, TA, qA0 , FA) where
QA is the set of states, TA is the transition relation, qA0 is the initial state, and FA is
the set of final states. A transition in TA is of the form (q1, a, q2) where q1, q2 ∈ Q

A and

a ∈ (P × [cmax + 1]) ∪ (Q × {y ∣ 0 ≤ v ≤ yinit}) ∪ {#,$}. We write q1
a
Ð→ q2 to denote that

(q1, a, q2) ∈ TA. During the operation of T , we will run the automaton A “in parallel” with
N . During the course of the simulation, the automaton A will generate the encoding of a
configuration cinit . We know that such an encoding consists of a control-state (qinit , yinit)
followed by the encoding of a marking Minit , say of the form (c−m′⋯c−1, c0, c1⋯cn′). Notice
that A may output the encoding of any marking in its language, and therefore the values
of m′ and n′ are not a priori known.

To simplify the presentation, we introduce a number of conventions for the description
of T . First we define a set X of variables (defined below), where each variable x ∈ X ranges
over a finite domain dom (x). A control-state q then is a mapping that assigns, to each
variable x ∈ X, a value in dom (x), i.e., q(x) ∈ dom (x). Consider a state q, variables x1, . . . ,xk
where xi ≠ xj if i ≠ j, and values v1, . . . ,vk where vi ∈ dom (xi) for all i ∶ 1 ≤ i ≤ k. We use
q[x1 ← v1, . . . ,xk ← vk] to denote that state q′ such that q′(xi) = vi for all i ∶ 1 ≤ i ≤ k, and
q′(x) = q(x) if x /∈ {x1, . . . ,xk}. Furthermore, we introduce a set of transition generators,
where each transition generator θ characterizes a (finite) set [[θ]] of transitions in T . A
transition generator θ is a tuple (PreCond(θ) ,PostCond (θ) ,In (θ) ,Out (θ)), where
● PreCond(θ) is a set {x1 = v1, . . . ,xk = vk}, where xi ∈ X and vi ∈ dom (xi) for all i ∶ 1 ≤ i ≤ k.
● PostCond(θ) is a set {x′1 ← v′1, . . . ,x

′
ℓ ← v′ℓ}, where x′i ∈ X and v′i ∈ dom (x′i) for all i ∶ 1 ≤

i ≤ ℓ.
● In (θ) ,Out (θ) ∈ (P T )⊙.
The set [[θ]] contains all transitions of the form (q1, q2, I,O) where
● q1(xi) = vi for all i ∶ 1 ≤ i ≤ k.
● q2 = q1[x′1 ← v′1, . . . ,x

′
ℓ ← v′ℓ].

● I = In (θ), and O = Out (θ).
In the constructions we will define a set Θ of transition generators and define T T ∶= ∪θ∈Θ[[θ]].

Below we will define the components QT , P T , T T , and TransT in the definition of T ,
together with the set CTinit and configuration cTfinal .

The set QT is, as mentioned above, defined in terms of a set X of variables. The set X

contains the following elements:

● Mode indicates the mode of the simulation. More precisely, a computation of T will consist
of three phases, namely an initialization, a simulation, and a final phase. Each phase is
divided into a number of sub-phases referred to as modes.
● A variable NState, with dom (NState) = Q, that stores the current control-state qN .
● A variable AState, with dom (AState) = QA, that stores the current state of A.
● A variable FState(i, j) with dom (FState (i, j)) = {true, false}, for each i ∶ −m ≤ i ≤ n

and 1 ≤ j ≤ ni. During the simulation phase, the systems tries to cover all the tokens in
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the multisets of Mfin . Intuitively, FState (i, j) is a flag that indicates whether the token
(pi,j, ki,j) has been covered.
● A variable CoverFlag that has one of the values on or off. The covering of tokens in
Mfin occurs only during certain phases of the simulation. This is controlled by the value
of the variable CoverFlag.
● A variable CoverIndex with −m ≤ CoverIndex ≤ n gives the next multiset whose tokens
are to be covered.
● For each p ∈ P and k ∶ 0 ≤ k ≤ cmax +1, we have a variable RDebt (p, k), whose use and do-
main are explained below. During the simulation, we will need to use tokens that have still
not been generated by A. To account for these tokens, we will implement a “debt scheme”
in which tokens are used first, and then “paid back” by tokens that are later generated
by A. The variable RDebt (p, k) keeps track of the number of tokens (p, k) that have
been used on read arcs (the debt on tokens consumed in input operations are managed
through specific places described later.) For a place p and a transition t, let Rmax(p, t) be
the number of read arcs between p and t. Define Rmax ∶= maxp∈P,t∈T Rmax(p, t). Then,
dom (RDebt (p, k)) = {0, . . . ,Rmax}. The definition of the domain reflects the fact the
largest amount of debt that we will generate due to tokens raveling through read arcs is
bounded by Rmax .

The set P T contains the following places:

● For each p ∈ P and k ∶ 0 ≤ k ≤ cmax + 1, the set P T contains the place ZeroPlace(p, k).
The number of tokens in ZeroPlace(p, k) ∈ P T reflects (although it may be not exactly
equal to) the number of tokens in p ∈ P whose ages have zero fractional parts.
● For each p ∈ P and k ∶ 0 ≤ k ≤ cmax + 1, the set P T contains the places LowPlace (p, k)
and HighPlace(p, k). These places play the same roles as above for tokens with ages
that have low (close to 0) resp. high (close to 1) fractional parts.
● For each p ∈ P and 0 ≤ k ≤ cmax + 1, the set P T contains the place InputDebt (p, k). The
place represents the amount of debt due to tokens (p, k) traveling through input arcs.
There is a priori no bound on the amount of debt on such tokens. Hence, this amount is
stored in places (rather than in variables as is the case for read tokens.)

The Set CTinit contains all configurations (qTinit ,MT
init) satisfying the following conditions:

● qTinit(Mode) = Init. The initial mode is Init.

● qTinit(AState) = qA0 . The automaton A is simulated starting from its initial state qA0 .

● qTinit(FState (i, j)) = false for all i ∶ −m ≤ i ≤ n and 1 ≤ j ≤ ni. Initially we have not
covered any tokens in Mfin .

● qTinit(RDebt (p, k)) = 0 for all p ∈ P and k ∶ 0 ≤ k ≤ cmax + 1. Initially, we do not have any
debts due to read tokens.
● MT

init(p) = 0 for all places p ∈ P T . Initially, all the places of T are empty.

Notice that the variables CoverFlag and CoverIndex are not restricted so CoverFlag may
be on or off and CoverIndex may have any value −m ≤ CoverIndex ≤ n. Although NState

is not restricted either, its value will be defined in the first step of the simulation (see below.)
Next, we explain how T works. In doing that, we also introduce all the members of the

set T T .
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Initialization In the initialization phase the SD-TN T reads the initial control-state and
then fills in the places according to Minit . From the definition of the encoding of a configu-
ration, we know that the automaton A outputs a pair (q, y) in its first transition. The first

move of T is to store this pair in its control-state. Thus, for each transition q1
(q,y)
Ð→ q2 in A

where q ∈ Q and 1 ≤ y ≤ yinit , the set Θ contains θ where:

● PreCond(θ) = {Mode = Init,AState = q1}.
● PostCond(θ) = {Mode← InitLow,NState← (q, y) ,AState← q2}.
● In (θ) = ∅.
● Out (θ) = {LowPlace (p, k)}.
In other words, once T has input the initial control-state, it enters a new mode InitLow.
In mode InitLow, we read the multisets c1⋯cm that represent tokens with low fractional
parts. The system starts running A one step at a time, generating the elements of cm (that
are provided by A.) When it has finished generating all the tokens in cm, it moves to the
next multiset, generating the multisets one by one in the reverse order finishing with c1.
We distinguish between two types of such tokens depending on how they will be used in
the construction. More precisely, such a token is either consumed when firing transitions
during the simulation phase or used for covering the multisets in Mfin . A token (of the form
(p, k)), used for consumption, is put in a place LowPlace(p, k). Recall that the relation
Ð→A in N is insensitive to the order of the fractional parts that are small (fractional parts
of the tokens in c1, . . . , cn′ .) Therefore, tokens in c1, . . . , cn′ that have identical places p and
identical integer parts k will all be put in the same place LowPlace(p, k). Formally, for

each transition q1
(p,k)
Ð→ q2 in A, the set Θ contains θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1}.
● PostCond(θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = {LowPlace (p, k)}.
Each time a new multiset cj is read from A, the system decides whether it may be (partially)
used for covering the next multiset bi in Mfin . This decision is made by checking the
value of the component CoverFlag. if CoverFlag = off then the tokens are only used for
consumption during the simulation phase. However, if CoverFlag = on then the tokens
generated by A can also be used to cover those in Mfin . The multiset currently covered
is given by the value of the component CoverIndex. More precisely, if CoverIndex = i for
some i ∶ 1 ≤ i ≤ n then (part of) the multiset cj that is currently being generated by A
(j ∶ 1 ≤ j ≤ n′) may be used to cover (part of) the multiset bi. At this stage, we only cover
tokens with low fractional parts (those in the multisets b1, . . . , bn.) When using tokens for
covering, the order on the fractional parts of tokens is relevant. The construction takes into
consideration different aspects of this order as follows:

● According to the definition of the ordering ≤f , the tokens in a given multiset cj may
only be used to cover those in one and the same multiset (say bi.) This also agrees with
the observation that the tokens represented in cj correspond to tokens in the original
TPN that have identical fractional parts (the same applies to bi.) In fact, if this was not
case, then we would be using tokens with identical fractional parts (in cj) to cover tokens
with different fractional parts. Analogously, the multiset bi can be covered only by the
elements of one multiset cj .
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● If i′ < i then the fractional parts of the tokens represented by bi′ are smaller than those
represented by bi. The same applies to cj′ and cj if j′ < j. Therefore, if cj is used to
cover bi and j′ < j then cj′ should be used to cover bi′ for some i′ < i. Furthermore, a
multiset cj is not necessarily used to cover any multiset, i.e., all the tokens represented
by cj may be used for consumption during the simulation (none of them being used for
covering.) Similarly, it can be the case that a given bi is not covered by any multiset cj
(all its tokens are covered by tokens that are generated during the simulation.) Also, a
multiset cj may only be partially used to cover bi, i.e., some of its tokens may be used
for covering bi while some are consumed during the simulation. Finally, bi may only be
partially covered by cj , i.e., some of its tokens are covered by cj while the rest of tokens
are covered by tokens generated during the simulation.

Formally, for each q1
(p,k)
Ð→ q2 in A, 1 ≤ i ≤ n, 1 ≤ j ≤ ni with (pi,j, ki,j) = (p, k), we add θ to

Θ, where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {AState← q2,FState (i, j)← true}.
● In (θ) = ∅.
● Out (θ) = ∅.
The transition sets the flag FState(i, j) to true indicating that the token has now been

covered. A transition q1
#
Ð→ q2 in A indicates that we have finished generating the elements

of the current multiset cj . If CoverFlag = on then we have also finished covering tokens in
the multiset bi. Therefore, we decide the next multiset i′ < i in which which to cover tokens.
Recall that not all multisets have to be covered and hence i′ need not be equal to i − 1 (in
fact the multisets bi′′ for i

′ < i′′ < i will not be covered by the multisets in Minit .) We also
decide whether to use binitj−1 to cover bi′ or not. In the former case, we set CoverFlag to on,
while in the latter case we set CoverFlag equal to off. Also, if CoverFlag = off then we
decide whether to use cj−1 for covering bi or not. We cover these four possibilities by adding
the following transition generators to Θ.

(i) For each transition q1
#
Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1,CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {AState← q2,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.
This is the case where CoverFlag is on and continues to be on. Notice that no covering takes
place if CoverIndex ≤ 0, and that the new value of CoverIndex is made strictly smaller
than the current one.

(ii) For each transition q1
#
Ð→ q2 in A, and each i, i′ ∶ 1 ≤ i′ < i ≤ n, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {AState← q2,CoverFlag← off,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.
This is the case where CoverFlag is on but it is turned off for the next step.

(iii) For each transition q1
#
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = off}.
● PostCond(θ) = {AState← q2}.
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● In (θ) = ∅.
● Out (θ) = ∅.
This is the case where CoverFlag is off and continues to be off.

(iv) For each transition q1
#
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = off}.
● PostCond(θ) = {AState← q2,CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.
This is the case where CoverFlag is off but it is turned on for the next step.

The process of generating tokens with low fractional parts continues until we encounter a

transition of the form q1
$
Ð→ q2 in A. According to the encoding of markings, this indicates

that we have finished generating the elements of the multisets c1, . . . , cn. Therefore, we
change mode from InitLow to InitZero (where we scan the multiset b0.) We have also
to consider changing the variables CoverFlag and CoverIndex in the same way as above.
Therefore, we add the following transition generators:

(i) For each transition q1
$
Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {Mode← InitZero,AState← q2,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each transition q1
$
Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {Mode← InitZero,AState← q2,CoverFlag← off,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iii) For each transition q1
$
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = off}.
● PostCond(θ) = {Mode← InitZero,AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iv) For each transition q1
$
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = InitLow,AState = q1, CoverFlag = off}.
● PostCond(θ) = {Mode← InitZero,AState← q2,CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.

In InitZero the places are filled according to c0. The construction is similar to the
previous mode. The only differences are that the tokens to be consumed will be put in
places ZeroPlace(p, k) and that no tokens are covered in Mfin .

For each transition q1
(p,k)
Ð→ q2 in A, the set Θ contains θ where:

● PreCond(θ) = {Mode = InitZero,AState = q1}.
● PostCond(θ) = {AState← q2}.
● In (θ) = ∅.
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● Out (θ) = {ZeroPlace(p, k)}.
Since the tokens are not used at this stage for covering the multisets of Mfin , no transition
generators are added for that purpose. Also, in contrast to tokens belonging to c0, . . . , cn′

we cannot generate tokens belonging to c−m′ , . . . , c−1 during the initialization phase. The
reason is that, in the former case, we only need to keep track of the order of multisets
whose tokens are used for covering (the ordering of the fractional parts in tokens used for
consumption is not relevant.) Since the number n is given a priori in the construction (the
marking Mfin is a parameter of the problem), we need only to keep track of tokens belonging
to at most n different multisets. This does not hold in the case of the latter tokens, since the
order of the multisets to which the tokens belong is relevant also in the case of tokens that
will be consumed. Since m′ is not a priori bounded, we postpone the generation of these
tokens to the simulation phase, where we generate these tokens from A “on demand”: each
time we perform a timed transition, we allow the HighPlace(p, k) tokens with the highest
fractional part to be generated. This construction is made more precise in the description
of the simulation phase.

The mode InitZero is concluded when we the next transition of A is labeled with $.
This means that we have finished inputting the last multiset b0. We now move on to the
simulation phase.

For each transition of the form q1
$
Ð→ q2 in A, we add θ to Θ where:

● PreCond(θ) = {Mode = InitZero,AState = q1}.
● PostCond(θ) = {Mode← Sim,AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.
Simulation. The simulation phase consists of simulating a sequence of transitions, each
of which is either discrete, of type 1, or of type 2. Each type 2 transition is preceded by
at least one type 1 transition. Therefore, from Sim we next perform a discrete or a type 1
transition. The (non-deterministic) choice is made using the transition generators θ1 and
θ2 where:

● PreCond(θ1) = {Mode = Sim}.
● PostCond(θ1) = {Mode← Disc}.
● In (θ1) = ∅.
● Out (θ1) = ∅.
● PreCond(θ2) = {Mode = Sim}.
● PostCond(θ2) = {Mode← Type1.1}.
● In (θ2) = ∅.
● Out (θ2) = ∅.
Discrete Transitions. A discrete transition t = (q1, q2, In ,Read ,Out) in N is simulated
by a set of transitions in T . In defining this set, we take into consideration several aspects
of the simulation procedure as follows:

● Basically, an interval I on an arc leading from an input place p ∈ In to t induces a set of
transitions in T T ; namely transitions where there are arcs from places ZeroPlace(p, k)
with k ∈ I, and from places LowPlace(p, k) and HighPlace(p, k) with (k+ǫ) ∈ I for some
ǫ ∶ 0 < ǫ < 1. An analogous construction is made for output and read places of t. Since a
read arc does not remove the token from the place, there is both an input arc and output
arc to the corresponding transition in T .
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● We recall that the tokens belonging to c−m′ , . . . , c−1 are not generated during the ini-
tial phase, and that these tokens are gradually introduced during the simulation phase.
Therefore, a transition may need to be fired before the required HighPlace(p, k)-tokens
have been produced by A. Such tokens are needed for performing both input and read
operations. In order to cover for tokens that are needed for input arcs, we use the set of
places InputDebt (p, k) for p ∈ P and 0 ≤ k ≤ cmax + 1. Then, consuming a token from
a place HighPlace(p, k) may be replaced by putting a token in InputDebt (p, k). The
“debt” can be paid back using tokens that are later generated by A. When T terminates,
we require all the debt places to be empty (all the debt has been paid back.) Also, we
need an analogous (but different) scheme for the read arcs. The difference is due to the
fact that the same token may be read several times (without being consumed.) Hence,
once the debt has been introduced by the first read operation, it will not be increased
by the subsequent read operations. Furthermore, several read operations may be covered
by a (single) input operation (a token in a place may be read several times before it is
finally consumed through an input operations.) To implement this, we use the variables
RDebt (p, k). Each time a number r of tokens (p, k) are “borrowed” for a read operation,
we increase the value of RDebt (p, k) to r (unless it already has a higher value.) Further-
more, each debt taken on a token (p, k) in an input operation subsumes a debt performed
on the same token (p, k) in a read operation. Therefore, the value of an old read debt
is decreased by the amount of the input debt taken during the current transition. In a
similar manner to input debts, the read debt is later paid back. When T terminates, we
require all RDebt (p, k) variables to be equal to 0 (all the read debts have been paid back.)
● The transition also changes the control-state of N .

To formally define the set of transitions in T induced by discrete transitions, we use a

number of definitions. We define x
●
− y ∶= max(y − x,0). For k ∈ N and an interval I, we

write k ⊫ I to denote that (k + ǫ) ∈ I for some (equivalently all) ǫ ∶ 0 < ǫ < 1. During the
simulation phase, there are two mechanisms for simulating the effect of a token traveling
through an (input, read, or output) arc in N , namely, (i) by letting a token travel from
(or to) a corresponding place; and (ii) by “taking debt”. Therefore, we define a number of
“transformers” that translate tokens in N to corresponding ones in T as follows:

● ZeroPlaceTransf (p,I) ∶= {ZeroPlace(p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ∈ I)}. The N -token
is simulated by a T -token in a place that represent tokens with zero fractional parts.
● LowPlaceTransf (p,I) ∶= {LowPlace(p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}. The N -token
is simulated by a T -token in a place that represent tokens with low fractional parts.
Notice that we use the relation ⊫ since the fractional part of the token is not zero.
● HighPlaceTransf (p,I) ∶= {HighPlace(p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}. The N -to-
ken is simulated by a T -token in a place that represent tokens with high fractional parts.
● InputDebtTransf (p,I) ∶= {InputDebt (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}. TheN -token
is simulated by taking debt on an input token.
● ReadDebtTransf (p,I) ∶= {ReadDebt (p, k) ∣ (0 ≤ k ≤ cmax + 1) ∧ (k ⊫ I)}. The N -token
is simulated by taking debt on a read token.

We extend the transformers to multisets, so for a multiset b = [(p1,I1) , . . . , (pℓ,Iℓ)], let
ZeroPlaceTransf (b) ∶={[(p1, k1) , . . . , (pℓ, kℓ)]∣∀i ∶1≤i ≤ ℓ ∶(pi, ki)∈ZeroPlaceTransf (pi,Ii)}.
We extend the other definitions to multisets analogously.
An RDebt-mapping α is a function that maps each RDebt (p, k) to a value in {0, . . . ,Rmax}.
In other words, the function describes the state of the debt on read tokens.
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Now, we are ready to define the transitions in T that are induced by discrete transitions
in N . Each such a transition is induced by a number of objects, namely:

● A transition t = (q1, q2, In ,Read ,Out) ∈ T . This is the transition in N that is to be
simulated in T .
● The current remaining cost y ∶ Cost (t) ≤ y ≤ yinit . The remaining cost has to be at least
as large as the cost of the transition to be fired.
● An RDebt-mapping α describing the current debt on read tokens.
● Multisets InZero , InLow , InHigh , InDebt where

In = InZero
+ InLow

+ InHigh
+ InDebt .

Intuitively, the tokens traveling through arcs of t are covered by four types of tokens:
− InZero : N -tokens that will be transformed into T -tokens in places encoding ages with

zero fractions parts.
− InLow : N -tokens that will be transformed into T -tokens in places encoding ages with

low fractions parts.
− InHigh : N -tokens that will be transformed into T -tokens in places encoding ages with

high fractions parts.
− InDebt : N -tokens that will be covered by taking debt.
● Multisets ReadZero ,ReadLow ,ReadHigh ,ReadDebt where

Read = ReadZero
+ReadLow

+ReadHigh
+ReadDebt .

The roles of these multisets are similar to the above.
● Multisets OutZero ,OutLow ,OutHigh where

Out = OutZero +OutLow +OutHigh .

The roles of the multisets OutZero ,OutLow ,OutHigh are similar to their counter-parts
above.

For each such collection of objects (i.e., for each t, 0≤y≤yinit , α, In
Zero , InLow , InHigh , InDebt ,

ReadZero ,ReadLow ,ReadHigh ,ReadDebt , OutZero ,OutLow ,OutHigh), we add the transition
generator θ where:

● PreCond(θ) = {Mode = Disc,NState = (q1, y)} ∪ α, i.e., the current mode is Disc, the
current state of N is (q1, y), and the current debt on read tokens is given by α.
● PostCond(θ) =
{Mode← Sim,NState← (q2, y −Cost (t))}∪
{RDebt (p, k)←max(α ●− InDebt ′,ReadDebt ′)(p, k) ∣ (p ∈ P ) ∧ (0≤k≤cmax+1)}, where
− InDebt ′ = InputDebtTransf (InDebt).
− ReadDebt ′ = ReadDebtTransf (ReadDebt).
In other words, we change the mode back to Sim, and change the control-state of N to
(q2, y −Cost (t)). The new read debts are defined as follows: We reduce the current debt

α using the new debt on input tokens InDebt ′ , then we update the amount again using

the new debt ReadDebt ′.
● In (θ) = InZero′

+ InLow ′
+ InHigh′

+ReadZero′
+ReadLow ′

+ReadHigh′ , where

− InZero′ = ZeroPlaceTransf (InZero).
− InLow ′ = LowPlaceTransf (InLow).
− InHigh′ = HighPlaceTransf (InHigh).
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− ReadZero′ = ZeroPlaceTransf (ReadZero).
− ReadLow ′ = LowPlaceTransf (ReadLow).
− ReadHigh′ = HighPlaceTransf (ReadHigh).
The multisets InZero , InLow , InHigh represent tokens that will be consumed due to input
arcs. These tokens are distributed among places according to whether their fractional
parts are zero, low, or high. A similar reasoning holds for the multisets ReadZero , ReadLow ,
ReadHigh .
● Out (θ) = OutZero

′

+OutLow
′

+OutHigh′
+OutDebt ′

+ReadZero′
+ReadLow ′

+ReadHigh′ , where

− OutZero
′

= ZeroPlaceTransf (OutZero).
− OutLow

′

= LowPlaceTransf (OutLow).
− OutHigh′ = HighPlaceTransf (OutHigh).
− OutDebt ′ = HighPlaceTransf (InDebt).
− ReadZero′ = ZeroPlaceTransf (ReadZero).
− ReadLow ′ = LowPlaceTransf (ReadLow).
− ReadHigh′ = HighPlaceTransf (ReadHigh).
The read multisets are defined as in the previous item. The multisets OutZero , OutLow ,
and OutHigh play the same roles as their input and read counterparts. The multiset

OutDebt ′ represents the increase in the debt on read tokens.

Transitions of Type 1. The simulation of a type 1 transition is started when the mode
is Type1.1. We recall that a type 1 transition encodes that time passes so that all tokens
of integer age in b0 will now have a positive fractional part, but no tokens reach an integer
age. This phase is performed in two steps. First, in Type1.1 (that is repeated an arbitrary
number of times), some of these tokens are used for covering the multisets of Mfin in a
similar manner to the previous phases. In the second step we change mode to Type1.2, at
the same time switching on or off the component CoverFlag in a similar manner to the
initialization phase. In Type1.2, the (only set) of transfer transitions encodes the effect of
passing time. More precisely all tokens in a place ZeroPlace(p, k) will be moved to the
place LowPlace(p, k), for k ∶ 1 ≤ k ≤ cmax + 1. From Type1.2 the mode will be changed to
Type2.1.

To describe Type1.1 formally we add, for each i ∶ 1 ≤ i ≤ n, j ∶ 1 ≤ j ≤ ni, p ∈ P ,
k ∶ 0 ≤ k ≤ cmax + 1 with (p, k) = (pi,j, ki,j), a transition generator θ where:

● PreCond(θ) = {Mode = Type1.1,CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {FState (i, j)← true}.
● In (θ) = {ZeroPlace(p, k)}.
● Out (θ) = ∅.

On switching to Type1.2, we change the variables CoverFlag and CoverIndex in a sim-
ilar manner to the previous phases. Therefore, we add the following transition generators:

(i) For each i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:

● PreCond(θ) = {Mode = Type1.1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {Mode← Type1.2,CoverFlag← off,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where
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● PreCond(θ) = {Mode = Type1.1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {Mode← Type1.2, CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iii) We add θ where:

● PreCond(θ) = {Mode = Type1.1, CoverFlag = off}.
● PostCond(θ) = {Mode← Type1.2}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iv) We add θ where:

● PreCond(θ) = {Mode = Type1.1, CoverFlag = off}.
● PostCond(θ) = {Mode← Type1.2, CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.

The set of transfer transitions is defined by the transfer transition generator θ

● PreCond(θ) = {Mode = Type1.2}.
● PostCond(θ) = {Mode← Type2.1}.
● In (θ) = ∅.
● Out (θ) = ∅.
● ST (θ) = {(ZeroPlace(p, k) ,LowPlace (p, k)) ∣ (p ∈ P ) ∧ (0 ≤ k ≤ cmax + 1)}.
Transitions of Type 2. Recall that transitions of type 2 encode what happens to tokens
with the largest fractional parts when an amount of time passes sufficient for making these
ages equal to the next integer (but not larger.) There are two sources of such tokens. The
generation of tokens according to these two sources divides the phase into two steps. The
first source are tokens that are currently in places of the form HighPlace(p, k). In Type2.1,
(some of) these tokens reach the next integer, and are therefore moved to the corresponding
places encoding tokens with zero fractional parts. As mentioned above, only some (but not
all) of these tokens reach the next integer. The reason is that they are generated during
the computation (not by A), and hence they have arbitrary fractional parts.

The second source are tokens that are provided by the automaton A (recall that these
tokens are not generated during the initialization phase.) In Type2.2, we run the automaton
A one step at a time. At each step we generate the next token by taking a transition

q1
(p,k)
Ð→ q2. In fact, such a token (p, k) is used in two ways: either it moves to the place

ZeroPlace(p, k), or it is used to pay the debt we have taken on tokens. The debt is paid
back either (i) by removing a token from InputDebt (p, k); or (ii) by decrementing the value

of the variable RDebt (p, k). A transition q1
#
Ð→ q2 means that we have read the last element

of the current multiset. This finishes simulating the transitions of type 1 and 2 and the
mode is moved back to Sim starting another iteration of the simulation phase.

Formally, we describe the movement of tokens in Type2.1 by adding, for each p ∈ P and
k ∶ 0 ≤ k ≤ cmax + 1, a transition generator θ where:

● PreCond(θ) = {Mode = Type2.1}.
● PostCond(θ) = ∅.
● In (θ) = {HighPlace(p, k)}.
● Out (θ) = {ZeroPlace(p,max(k + 1, cmax + 1))}.
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At any time, we can change mode from Type2.1 to Type2.2:

● PreCond(θ) = {Mode = Type2.1}.
● PostCond(θ) = {Mode← Type2.2}.
● In (θ) = ∅.
● Out (θ) = ∅.
We can also move back from Type2.1 to Sim without letting the automaton generate any
tokens:

● PreCond(θ) = {Mode = Type2.1}.
● PostCond(θ) = {Mode← Sim}.
● In (θ) = ∅.
● Out (θ) = ∅.
We simulate Type2.2 as follows. To describe the movement of tokens places representing

tokens with zero fractional parts we add, for each transition q1
(p,k)
Ð→ q2 in A, a transition

generator θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1}.
● PostCond(θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = {ZeroPlace(p, k)}.
To describe the payment of debts on input tokens we add, for each transition q1

(p,k)
Ð→ q2 in

A, a transition generator θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1}.
● PostCond(θ) = {AState← q2}.
● In (θ) = {InputDebt (p, k)}.
● Out (θ) = ∅.
To describe the payment of debts on read tokens we add, for each transition q1

(p,k)
Ð→ q2 in

A, and r ∶ 1 ≤ r ≤ Rmax , a transition generator θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1,RDebt (p, k) = r}.
● PostCond(θ) = {AState← q2,RDebt (p, k)← r − 1}.
● In (θ) = ∅.
● Out (θ) = ∅.

As usual, transition q1
#
Ð→ q2 in A indicates means that we have read the last element

of the current multiset. We can now move back to the mode Sim, changing the variables
CoverFlag and CoverIndex in a similar manner to the previous phases.

(i) For each transition of the form q1
#
Ð→ q2 in A , i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we

add θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {Mode← Sim,AState← q2, CoverFlag← off,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each transition q1
#
Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {Mode← Sim,AState← q2, CoverFlag← on,CoverIndex← i′}.
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● In (θ) = ∅.
● Out (θ) = ∅.

(iii) For each transition q1
#
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1, CoverFlag = off}.
● PostCond(θ) = {Mode← Sim,AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iv) For each transition q1
#
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = Type2.2,AState = q1, CoverFlag = off}.
● PostCond(θ) = {Mode← Sim,AState← q2, CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.
The Final Phase. From the simulation mode we can at any time enter the final mode.

● PreCond(θ) = {Mode = Sim}.
● PostCond(θ) = {Mode← Final1}.
● In (θ) = ∅.
● Out (θ) = ∅.
The main tasks of the final phase are (i) to cover the multisets in Mfin ; and (ii) to continue
paying back the debt tokens (recall that the debt was partially paid back in the simulation
of type 2 transitions.) At the end of the final phase, we expect all tokens in Mfin to have
been covered and all debt to have been paid back. The final phase consists of two modes. In
Final1 we cover the multisets in Mfin using the tokens that have already been generated.
In Final2, we resume running A one step at a time. The tokens generated from A are
used both (i) for paying back debt; and (ii) for covering the multisets b−1, . . . , b−m (in that
order.)

Formally, we add the following transition generators. First, we continue covering the
multisets b1, . . . , bn. For each p ∈ P , 1 ≤ i ≤ n, and 1 ≤ j ≤ ni with (pi,j, ki,j) = (p, k), we add
θ where:

● PreCond(θ) = {Mode = Final1}.
● PostCond(θ) = {FState (i, j)← true}.
● In (θ) = LowPlace (p, k).
● Out (θ) = ∅.
We cover the multiset b0 by moving tokens from places of the form ZeroPlace(p, k). For
each p ∈ P and 1 ≤ j ≤ n0 with (p0,j, k0,j) = (p, k), we add θ where:

● PreCond(θ) = {Mode = Final1}.
● PostCond(θ) = {FState (0, j)← true}.
● In (θ) = ZeroPlace(p, k).
● Out (θ) = ∅.
We cover the multisets b−1, . . . , b−m by moving tokens from places of type HighPlace(p, k).
For each p ∈ P , −m ≤ i ≤ −1, 1 ≤ j ≤ ni with (pi,j, ki,j) = (p, k), we add θ where:

● PreCond(θ) = {Mode = Final1}.
● PostCond(θ) = {FState (i, j)← true}.
● In (θ) = HighPlace(p, k).
● Out (θ) = ∅.
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We can change mode to Final2:

● PreCond(θ) = {Mode = Final1}.
● PostCond(θ) = {Mode← Final2}.
● In (θ) = ∅.
● Out (θ) = ∅.

In Final2, we start running A. The tokens can be used for paying input debts. For

each transition q1
(p,k)
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = Final2,AState = q1}.
● PostCond(θ) = {AState← q2}.
● In (θ) = {InputDebt (p, k)}.
● Out (θ) = ∅.
The tokens can also be used for paying read debts. For each transition q1

(p,k)
Ð→ q2 in A, and

k ∶ 1 ≤ r ≤ Rmax , we add θ where:

● PreCond(θ) = {Mode = Final2,AState = q1,RDebt (p, k) = r}.
● PostCond(θ) = {AState← q2,RDebt (p, k)← r − 1}.
● In (θ) = ∅.
● Out (θ) = ∅.
Finally, the tokens can be used for covering. For each transition q1

(p,k)
Ð→ q2 in A, i ∶ −m ≤ i ≤

−1, j ∶ 1 ≤ j ≤ ni, p ∈ P , k ∶ 0 ≤ k ≤ cmax + 1 with (p, k) = (pi,j, ki,j), we have θ where:

● PreCond(θ) = {Mode = Final2,CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {FState (i, j)← true}.
● In (θ) = ∅.
● Out (θ) = ∅.
A transition q1

#
Ð→ q2 in A indicates that we have read the last element of the current

multiset. We now let A generate the next multiset. We change the variables CoverFlag

and CoverIndex in a similar manner to the previous phases.

(i) For each transition of the form q1
#
Ð→ q2 in A , i ∶ −m ≤ i ≤ −1, and i′ ∶ −m ≤ i′ < i,

we add θ where:

● PreCond(θ) = {Mode = Final2,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {AState← q2, CoverFlag← off,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(ii) For each transition q1
#
Ð→ q2 in A, i ∶ 1 ≤ i ≤ n, and i′ ∶ −m ≤ i′ < i, we add θ where:

● PreCond(θ) = {Mode = Final2,AState = q1, CoverFlag = on,CoverIndex = i}.
● PostCond(θ) = {AState← q2,CoverIndex← i′}.
● In (θ) = ∅.
● Out (θ) = ∅.

(iii) For each transition q1
$
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = Final2,AState = q1, CoverFlag = off}.
● PostCond(θ) = {AState← q2}.
● In (θ) = ∅.
● Out (θ) = ∅.
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(iv) For each transition q1
$
Ð→ q2 in A, we add θ where:

● PreCond(θ) = {Mode = Final2,AState = q1, CoverFlag = off}.
● PostCond(θ) = {AState← q2,CoverFlag← on}.
● In (θ) = ∅.
● Out (θ) = ∅.
The Set CTfinal contains all configurations (qTfin ,MT

fin) satisfying the following conditions:

● qTfin(NState) = qfin . The AC-PTPN is in its final control-state.

● qTfin(FState (i, j)) = true for all i ∶ −m ≤ i ≤ n and 1 ≤ j ≤ ni. We have covered all tokens
in Mfin .

● qTfin(RDebt (p, k)) = 0 for all p ∈ P and k ∶ 0 ≤ k ≤ cmax + 1. We have paid back all debts
on read tokens.
● Mfin(InputDebt (p, k)) = 0 for all p ∈ P and 0 ≤ k ≤ cmax +1. We have paid back all debts
on input tokens.

10. Undecidability for Negative Costs

The cost threshold coverability problem for PTPN is undecidable if negative transition costs
are allowed.

In fact, as we see from the proof of Theorem 10.1 below, the undecidability proof
holds even if the costs of places are restricted to be non-negative integers, and the costs of
transitions are restricted to be non-positive. Moreover, the undecidability proof does not
require real-valued clocks, but works even if clock values are natural numbers, i.e., in the
discrete-time case.

Theorem 10.1. The cost threshold problem for PTPN N = (Q,P,T,Cost) is undecidable.

Proof. We prove that it is undecidable whether a given control-state can be reached with
cost ≤ 0, through a reduction from the control-state reachability problem for Minsky 2-
counter machines [Min67].

We recall that a 2-counter machine M , operating on two counters x0 and x1, is a triple
(Q,δ, qinit ), where Q is a finite set of control states, δ is a finite set of transitions, and
qinit ∈ Q is the initial control state. A transition r ∈ δ is a triple (q1,op, q2), where op is
of one of the three forms (for i = 0,1): (i) xi++ which increments the value of xi by one;
(ii) xi−− which decrements the value of xi by one; or (iii) xi = 0? which checks whether
the value of xi is equal to zero. A configuration c of M is a triple (q, y0, y1), where q ∈ Q
and y0, y1 ∈ N. The configuration gives the control-state together with the values of the
counters x0 and x1. The initial configuration cinit is (qinit ,0,0). The operational semantics
of M is defined in the standard manner. In the control-state reachability problem, we are
given a counter machine M and a (final) control-state qfin , and check whether we can reach
a configuration of the form (qfin , y0, y1) (for arbitrary y0 and y1) from cinit .

Given an instance of the control-state reachability problem for 2-counter machines,
with M = (Q,δ, qinit ) and qfin ∈ Q, we derive an instance of the cost threshold coverability
problem for a PTPN where we have only non-negative costs on places and only non-positive
costs on transitions; and where the threshold vector is given by 0.

We define the PTPN N = (Q′, P,T,Cost) as follows. Each control state q ∈ Q has a
copy in Q′. For each counter xi we have a place xi ∈ P with C(xi) = 1. The number of
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Figure 3: Simulating zero testing in a TPTN. Timed transitions are filled. The cost of a
place or transition is shown only if it is different from 0.

tokens in place xi gives the value of the corresponding counter. To simplify the notation,
we adopt the convention that, unless otherwise stated, the time intervals on transitions in
our PTPN are [0 ∶ ∞).

Increment and decrement transitions (on a counter xi) are simulated straightforwardly
by changing control state and adding/removing a token from the corresponding place.
More precisely, for a transition r = (q1, xi++, q2) ∈ δ, there is a transition r ∈ T such
that In(r) = {q1} Out(r) = {q2, xi}, and C(r) = 0. For a transition r = (q1, xi−−, q2) ∈ δ
there is a transition r ∈ T such that In(r) = {q1, xi}, Out(r) = {q2}, and C(r) = 0. The
details of simulating a zero testing transition r = (q1, xi = 0?, q2) ∈ δ are shown in Figure 3.
The main idea is to put a positive cost on the counter places xi and x1−i. If the system
‘cheats’ and takes the transition from a configuration where the counter value xi is positive
(the corresponding place is not empty), then the transition will impose a cost which cannot
be compensated in the remainder of the computation. On the other hand, since the other
counter x1−i also has a positive cost, we will also pay an extra (unjustified) price corre-
sponding to the number of tokens in x1−i. Therefore, we use a number of auxiliary places
and transitions which make it possible to reimburse unjustified cost for tokens on counter
x1−i. The reimbursement is carried out (at most completely, but possibly just partially)
by cycling around the tokens in x1−i. For technical reasons (see below), the construction
ensures that the only parts of a computation in which time elapses are those that simulate
the zero testing of counters (the other parts have zero duration). Concretely, we have seven
transitions tr1, . . . , t

r
7 ∈ T . Furthermore, we have four extra control states qr1, . . . , q

r
4, and

two extra places pr, z. The place z is shared among all transitions in T used to simulate
transitions in δ that zero-test the value of a counter. The operation of N starts by putting
a single token of age zero in z. The costs are given by C(tr3) = −2, C(pr) = 2, C(x1−i) = 1;
while the cost of the other places and transitions are all equal to 0. Intuitively, N simulates
the transition r = (q1, xi = 0?, q2) by first firing the transition tr1 moving to control state
qr1 which signals the start of the simulation procedure. The transition checks whether the
token inside z has still age zero (by removing and putting back a token of age zero). The
computation stays in qr1 and transition tr2 will be fired after exactly one time unit (this is
ensured by checking that age of the token in z is exactly equal to one). Furthermore, the
age of the token in z is reset to zero, and the new control state will be qr2. The delay will
add a cost which is equal to the number of tokens in xi and x1−i. More precisely, if n is
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the number of tokens in place x1−i, then the mentioned unit time delay will add a cost of
n. We observe also that tr2 will move the computation to qr2. This enables the next phase
which will make it possible to reclaim the (unjustified) cost we have for the tokens in the
place x1−i. We can now fire the transition tr3 m times, where m ≤ n, thus moving m tokens
from x1−i to pr and gaining 2m (i.e., paying −2m). Eventually, tr7 will fire, moving control
to qr3. From qr3, transition tr4 can fire k times (where k ≤ m) moving k tokens back to x1−i.
The places pr and x1−i will now contain m− k resp. n+ k−m tokens. Eventually, transition
tr5 will fire, moving control to qr4 and ensuring that no time has elapsed since the firing of
tr2 (and hence no extra costs added due to delays). Finally, transition tr6 will fire, ensuring
a delay of one time unit (thus costing 2(m − k) + (n + k −m) = n +m − k), moving control
to q2, and resuming the “normal” simulation of M . The total cost ℓ for the whole sequence
of transitions is ℓ = n − 2m + n +m − k = 2n −m − k. This means 0 ≤ ℓ and that ℓ = 0 only if
k =m = n, i.e., all the tokens of x1−i are moved to pr and back to x1−i. In other words, we
can reimburse all the unjustified cost (but not more than that).

This implies correctness of the construction as follows. Suppose that the given instance
of the control-state reachability problem has a positive answer. Then, there is a faithful
simulation in N (which will eventually put a token in the place qF ). In particular, each time
we perform a transition which tests the value of counter xi, the corresponding place is indeed
empty and hence we pay no cost for it. We can also choose to reimburse all the unjustified
cost paid for counter x1−i. Notice that, letting time pass in the parts of the computation
that are not part of the simulation of a zero-testing transition, may only contribute with
non-negative costs, and that we can always choose not to have any delays in those parts.
It follows that the computation has an accumulated cost equal to 0. On the other hand,
suppose that the given instance of the control-state reachability problem has a negative
answer. Then the only way for N to put a token in qF is to ‘cheat’ during the simulation
of a zero testing transition (as described above). However, in such a case the accumulated
cost for simulating the transition is positive. Since simulations of increment and decrement
transitions have zero costs, and simulations of zero testing transitions have non-negative
costs, the extra cost paid for cheating cannot be recovered later in the computation. This
means that the accumulated cost for the whole computation will be strictly positive, and
thus we have a negative instance of the cost threshold coverability problem (with our chosen
threshold of 0).

11. Conclusion and Extensions

We have shown that the infimum of the costs to reach a given control-state is computable in
priced timed Petri nets with continuous time. This subsumes the corresponding results for
less expressive models such as priced timed automata [BBBR07] and priced discrete-timed
Petri nets [AM09].

For simplicity of presentation, we have used a one-dimensional cost model, i.e., with a
cost ∈ R≥0, but our result on decidability of the Cost-Threshold problem can trivially be
generalized to a multidimensional cost model (provided that the cost is linear in the elapsed
time). However, in a multidimensional cost model, the Cost-Optimality problem is not
defined, because the infimum of the costs does not exist, due to trade-offs between different
components. E.g., one can construct a PTPN (and even a priced timed automaton) with
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a 2-dimensional cost where the feasible costs are {(x,1 − x) ∣x ∈ R≥0,0 < x ≤ 1}, i.e., with
uncountably many incomparable values.

Another simple generalization is to make token storage costs on places dependent on
the current control-state, e.g., storing one token on place p for one time unit costs 2 if in
control-state q1, but 3 if in control-state q2. Our constructions can trivially be extended to
handle this.

Other extensions are much harder. If the token storage costs are not linear in the
elapsed time then the infimum of the costs is not necessarily an integer. In particular, the
corner-point abstraction of Section 4 and our translation to an A-PTPN problem would not
work. It is an open question how to compute optimal costs in such cases.

Finally, some extensions make the cost-problems undecidable. As shown in Section 10,
reachability of a given control-state with cost zero becomes undecidable if general integer
costs (including negative costs, i.e., rewards) are allowed. This negative result holds even
for the simpler case of discrete-time PTPN, i.e., when clocks values are natural numbers.

If one considers the reachability problem (instead of our control-state reachability prob-
lem) then the question is undecidable for TPN [RGdFE99], even without considering costs.
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[CFI96] G. Cécé, A. Finkel, and S.P. Iyer. Unreliable channels are easier to verify than perfect channels.
Information and Computation, 124(1):20–31, 1996.

[Cia94] G. Ciardo. Petri nets with marking-dependent arc cardinality: Properties and analysis. In Proc.
15th Int. Conf. Applications and Theory of Petri Nets, volume 815 of LNCS, pages 179–198.
Springer-Verlag, 1994.

[dFERA00] D. de Frutos Escrig, V. Valero Ruiz, and O. Marroqúın Alonso. Decidability of properties of
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