
Logical Methods in Computer Science
Vol. 10(2:4)2014, pp. 1–29
www.lmcs-online.org

Submitted Jan. 21, 2011
Published May 23, 2014

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM

TREES ∗

JÖRG ENDRULLIS, DIMITRI HENDRIKS, JAN WILLEM KLOP, AND ANDREW POLONSKY

VU University Amsterdam, Dept. of Computer Science, De Boelelaan 1081A, 1081 HV Amsterdam
e-mail address: {j.endrullis,r.d.a.hendriks,j.w.klop,a.polonsky}@vu.nl

Abstract. As observed by Intrigila [16], there are hardly techniques available in the
λ-calculus to prove that two λ-terms are not β-convertible. Techniques employing the
usual Böhm Trees are inadequate when we deal with terms having the same Böhm Tree
(BT). This is the case in particular for fixed point combinators, as they all have the
same BT. Another interesting equation, whose consideration was suggested by Scott [24],
is BY = BYS, an equation valid in the classical model Pω of λ-calculus, and hence valid
with respect to BT-equality =BT, but nevertheless the terms are β-inconvertible.

To prove such β-inconvertibilities, we employ ‘clocked’ BT’s, with annotations that
convey information of the tempo in which the data in the BT are produced. Böhm Trees
are thus enriched with an intrinsic clock behaviour, leading to a refined discrimination
method for λ-terms. The corresponding equality is strictly intermediate between =β and
=BT, the equality in the model Pω. An analogous approach pertains to Lévy–Longo and
Berarducci Trees.

Our refined Böhm Trees find in particular an application in β-discriminating fixed point
combinators (fpc’s). It turns out that Scott’s equation BY = BYS is the key to unlocking
a plethora of fpc’s, generated by a variety of production schemes of which the simplest
was found by Böhm, stating that new fpc’s are obtained by postfixing the term SI, also
known as Smullyan’s Owl. We prove that all these newly generated fpc’s are indeed new,
by considering their clocked BT’s. Even so, not all pairs of new fpc’s can be discriminated
this way. For that purpose we increase the discrimination power by a precision of the clock
notion that we call ‘atomic clock’.

1. Introduction

Böhm Trees constitute a well-known method to discriminate λ-terms M , N : if BT(M) and
BT(N) are not identical, then M and N are β-inconvertible, M 6=β N . But how do we
prove β-inconvertibility of λ-terms with the same Böhm Tree? This question was raised in
Scott [24] for the interesting equation BY = BYS between terms that as Scott noted are
presumably β-inconvertible, yet BT-equal (=BT). Scott used his Induction Rule to prove

2012 ACM CCS: [Theory of computation]: Models of computation—Computability—Lambda
calculus.

Key words and phrases: λ-calculus, Böhm Trees, β-inconvertibility, fixed point combinators.
∗ This is a modified and extended version of [13] which appeared in the proceedings of LICS 2010. The

research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under
grant numbers 612.000.934, 639.021.020, and 612.001.002.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(2:4)2014

© J. Endrullis, D. Hendriks, J. W. Klop, and A. Polonsky
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

that BY = BYS; instead we will employ below the infinitary λ-calculus with the same effect,
but with more convenience for calculations as a direct generalization of finitary λ-calculus.
Often one can solve such a β-discrimination problem by finding a suitable invariant for
all the β-reducts of M , N. Below we will do this by way of preparatory example for the
fixed point combinators (fpc’s) in the Böhm sequence. But a systematic method for this
discrimination problem has been lacking, and such a method is one of the two contributions
of this paper.

BT

BT

BT
LLT

LLT

LLT
BeT

BeT

BeT

=β

Figure 1: Comparison of (atomic) clock semantics and unclocked semantics. Higher means more
identifications.

Actually, the need for such a strategic method was forced upon us, by the other contri-
bution, because Scott’s equation BY = BYS turned out to be the key unlocking a plethora
of new fpc’s. The new generation schemes are of the form: if Y is an fpc, then Y P1 . . . Pn

is an fpc, abbreviated as Y ⇒ Y P1 . . . Pn. So 2P1 . . . Pn is an ‘fpc-generating’ vector, and
can be considered as a building block to make new fpc’s. But are they indeed new? A
well-known example of a (singleton)-fpc-generating vector is 2δ, where δ = SI, giving rise
when starting from Curry’s fpc to the Böhm sequence of fpc’s. Here another interesting
equation is turning up, namely Y = Y δ, for an arbitrary fpc Y , considered by Statman and
Intrigila [16]. In fact, it is implied by Scott’s equation, for an arbitrary fpc Y :

BY = BY S =⇒ BY I = BY SI ⇐⇒ Y = Y δ

The first equation BY = BY S will yield many new fpc’s, built in a modular way; the last
equation Y = Y δ addresses the question whether they are indeed new. Finding ad hoc
invariant proofs for their novelty is too cumbersome. But fortunately, it turns out that
although the new fpc’s all have the same BT, namely λf.fω, they differ in the way this BT
is formed, in the ‘tempo of formation’, where the ticks of the clock are head reduction steps.
We can thus discern a clock-like behaviour of BT’s, and we refine BT’s to ‘clocked’ BT’s by
annotating them with this information. These then enable us to discriminate the terms in
question.

This refined discrimination method works best for what we call ‘simple’ terms (or, for
terms that reduce to simple terms). A term is ‘simple’ if its reduction to the Böhm Tree
does not duplicate redexes. The class of simple terms is still fairly extensive; it includes all
fpc’s that are constructed in the modular way that we present, thereby solving our novelty
problem. In fact, we gain some more ground: though our discrimination method works

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 3

best for pairs of simple terms, it can also fruitfully be applied to compare a simple term
with a non-simple term, and with some more effort, we can even compare and discriminate
non-simple terms; see Section 5 for an example.

Even so, many pairs of fpc’s cannot yet be discriminated, because they not only have
the same BT, they also have the same clocked BT. Therefore, in a final grading up of the
precision, we introduce ‘atomic clocks’, where the actual position of a head reduction step
is administrated. All this pertains not only to the BT-semantics, but also to Lévy–Longo
Trees (LLT) (or lazy trees), and Berarducci Trees (BeT) (or syntactic trees). Many problems
stay open, in particular problems generalizing the equation of Statman and Intrigila, when
arbitrary fpc’s are considered.

Overview. After defining preliminary notions in Section 2, in Section 3 we are concerned
with constructing new fpc’s from old, by some generating schemes. In Section 4 we define
clocked Böhm Trees. The main results here are Theorems 4.6 and 4.11. The first states
that if no reduct of M has a clock that is at least as fast as the clock of N , then M
and N are inconvertible, whereas Theorem 4.11 states that if M is a simple term then it
suffices that the clock M is not eventually faster than the clock of N . In the paper we
are mainly concerned with λ-terms which have simple reducts. An exception is Section 5,
where we answer a question of Plotkin (see Related Work below) which involves arbitrary
(not necessarily simple) fpc’s. Another elaborate example is given in Section 6, where we
compute the clocks of three enumerators for Combinatory Logic. In Section 7, we give a
refinement of the clock method by not only recording the number of head reduction steps but
also their positions. As an application we show that every combination of the fixed point
generating vectors 2(SS)S∼nI introduced in Section 3 give rise to new fpc’s. We briefly
mention how the theory can be extended to the other well-known semantics of λ-calculus,
namely Lévy–Longo and Berarducci Trees, in Section 8. We conclude in Section 9 with
directions for future research.

Related Work. The present paper is an extension and elaboration of [13]. In particular,
as an example application of the main theorems (Theorem 4.6), we now answer the following
question of Plotkin [22]:

Is there a fixed point combinator Y such that Y (λz.fzz) =β Y (λx.Y (λy.fxy)) ?

An idea similar to clocked Böhm Trees is employed in the excellent paper [2], pointed
out to us by Tarmo Uustalu at the 2010 LICS conference in Edinburgh. In [2], Aehlig
and Joachimski study continuous normalization of the coinductive λ-calculus (see [19, 17])
extended with a void ‘wait’ constructor R. This extra constructor is returned whenever
the head constructor of a term cannot immediately be read off from the argument. If
the head constructor of an application rs is to be found, it depends on a recursive call
to investigate whether r is a variable, an abstraction or an application again; in this case
an R is returned. Thus it is guaranteed that the procedure of building a non-wellfounded
term over the extended grammar is productive by making the recursion guarded. Every
R is matched either by a β-step necessary to reach the normal form (as represented by
the Böhm Tree) or by an application node in the Böhm Tree. When r = λx.r′ then R
matches a β-step and so s is used in the substitution r′[x := s]. Or we find that r is a
variable and so R matches an application node in the Böhm Tree. So the number of R’s
in the normal form of a term t is precisely related to the number of reduction steps and

4 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

the ‘size’ of the resulting Böhm Tree. Summarizing, similar to the clocked Böhm Trees that
we introduce in Section 4, in [2] Böhm Trees are enriched with information about how the
tree is constructed. However, in [2] the refinement is used for proving their normalization
function to be continuous, and not for discriminating λ-terms, the goal we pursue here.

In [15] a heuristic procedure in finitary λ-calculus is given to construct fpc’s in a uniform
way.

2. Preliminaries

To make this paper moderately self-contained, and to fix notations, we lay out some ingre-
dients. For λ-calculus we refer to [3] and [7]. For an introduction to Böhm, Berarducci and
Lévy–Longo Trees, we refer to [3, 1, 8, 5].

Definition 2.1. Let X be an countably infinite set of variables. The set Ter(λ) of finite
λ-terms is defined inductively by the following grammar:

M ::= x | λx.M |M ·M (x ∈ X)

We use x, y, z, . . . for variables, and M,N, . . . to range over the elements of Ter(λ).

Thus λ-terms are variables, abstractions or applications. Usually we suppress the appli-
cation symbol in a term M ·N and just write (MN). We also adopt the usual conventions
for omitting brackets, i.e., we let application associate to the left, so that N1N2 . . . Nk de-
notes (. . . (N1N2) . . . Nk), and we let abstraction associate to the right: λx1 . . . xn.M stands
for (λx1.(. . . (λxn.(M)))).

Definition 2.2. The set Ter∞(λ) of (finite and) infinite λ-terms is defined by interpreting
the grammar from Definition 2.1 coinductively, that is, Ter∞(λ) is the largest set X such
that every element M ∈ X is either a variable x, an abstraction λx.M ′ or an application
M1M2 with M ′,M1,M2 ∈ X. (See further [23] for a precise treatment of coinductive
definition and proof principles.)

Böhm, Lévy–Longo and Berarducci Trees are infinite λ-terms with an additional clause
for ⊥ in the grammar, where ⊥ stands for the different notions of ‘undefined’ in these
semantics, see Definitions 4.1, 8.1 and 8.2.

Definition 2.3. The relation →β on Ter(λ) or Ter∞(λ), called β-reduction, is the compat-
ible closure (i.e., closure under term formation) of the β-rule:

(λx.M)N →M [x :=N] (β)

where M [x :=N] denotes the result of substituting N for all free occurrences of x in M .
Furthermore, we write →n

β for the n-fold composition of →β, defined by M →0
β M , and

M →n+1
β N if M →β P and P →n

β N for some P ∈ Ter(λ). We use ։β to denote the

reflexive-transitive closure of→β , M ։β N iff ∃n.M →n
β N ; we let→=

β denote the reflexive

closure of →β, →
=
β =→0

β ∪→
1
β. We write M =β N to denote that M is β-convertible with

N , i.e., =β is the equivalence closure of →β. For syntactic equality (modulo renaming of
bound variables), we use ≡.

Apart from the ‘many-steps’ relation ։β, we introduce ‘multi-steps’ ◦−→β [30, 3], which
arise from complete developments.

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 5

Definition 2.4. We write ◦−→β for multi-steps, that is, complete developments of a set
of redex occurrences in a term. A development of a set of redex occurrences U in a term
contracts exclusively descendants (residuals) of U , and it is called complete if there are no
residuals of U left.

A complete development of U can alternatively be viewed as contracting all redex
occurrences in U in an inside-out fashion.

We will often omit the subscript β in →β, ։β and ◦−→β.

Definition 2.5. A λ-term M is called a normal form if there exists no N with M → N .
We say that a term M has a normal form if it reduces to one. For λ-terms M having a
normal form we write M for the unique normal form N with M ։ N (uniqueness follows
from confluence of the λ-calculus).

Some commonly used combinators are:

I = λx.x K = λxy.x S = λxyz.xz(yz) B = λxyz.x(yz)

Definition 2.6. A position is a sequence over {0, 1, 2}. For a finite or infinite λ-term M ,
the subterm M |p of M at position p is defined by:

M |ǫ = M (MN)|1p = M |p

(λx.M)|0p = M |p (MN)|2p = N |p

Pos(M) is the set of positions p such that M |p is defined.

Definition 2.7.

(1) A term Y is an fpc if Y x =β x(Y x).

(2) An fpc Y is k-reducing if Y x→k x(Y x).
(3) An fpc Y is reducing if Y is k-reducing for some k ∈ N.
(4) A term Z is a weak fpc (wfpc) if Zx =β x(Z ′x) where Z ′ is again a wfpc.

The definition of weak fpc’s in (4) is essentially coinductive [23], that is, implicitly employing
a ‘largest set’ semantics. In long form, the definition means the following: the set of weak
fpc’s is the largest set W ⊆ Ter(λ) such that for every Z ∈ W we have Zx =β x(Z ′x) for
some Z ′ ∈W .

A wfpc is alternatively defined as a term having the same Böhm Tree as an fpc, namely
λx.xω ≡ λx.x(x(x(. . .))). Weak fpc’s are known in foundational studies of type systems as
looping combinators; see, e.g., [10] and [14].

Example 2.8. Define by double recursion, Z and Z ′ such that Zx = x(Z ′x) and Z ′x =
x(Zx). Then Z,Z ′ are both wfpc’s, and Zx = x(x(Zx)). So Z delivers its output twice as
fast as an ordinary fpc, but the generator flipflops.

As to ‘double recursion’, [20] collects several proofs of the double fixed point theorem,
including some in [3, 28].

Definition 2.9.

(1) A head reduction step →h is a β-reduction step of the form:
λx1 . . . xn.(λy.M)NN1 . . . Nm → λx1 . . . xn.(M [y :=N])N1 . . . Nm with n,m ≥ 0.

(2) Accordingly, a head normal form (hnf) is a λ-term of the form:
λx1. . . . λxn.yN1 . . . Nm with n,m ≥ 0.

6 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(3) A weak head normal form (whnf) is an hnf or an abstraction, that is, a whnf is a term
of the form xM1 . . .Mm or λx.M .

(4) A term has a (weak) hnf if it reduces to one.
(5) We call a term root-stable if it does not reduce to a redex: (λx.M)N . A term is called

root-active if it does not reduce to a root-stable term.

Infinitary λ-calculus λ∞β. We will only use the infinitary λ-calculus λ∞β for some
simple calculations such as (λab.(ab)ω)I =λ∞β λb.(Ib)ω =λ∞β λb.bω. Here Mω denotes the
infinite λ-term M(M(M(. . .))) obtained as the solution of Mω = M Mω. For a proper
setup of λ∞β we refer to [6, 19, 18, 5]. In a nutshell, λ∞β extends finitary λ-calculus
by admitting infinite λ-terms, the set of which is called Ter∞(λ), and infinite reductions
(in [18, 5] possibly transfinitely long, in [6] of length ≤ ω). Limits of infinite reduction
sequences are obtained by a strengthening of Cauchy-convergence, stipulating that the depth
of contracted redexes must tend to infinity. The λ∞β-calculus is not infinitary confluent
(CR∞), but still has unique infinite normal forms (UN∞). Böhm Trees (BT’s) without ⊥ are
infinite normal forms in λ∞β. But beware, the reverse does not hold, e.g. λx.(λx.(λx. . . .))
is an infinite normal form, but not a BT; it is in fact an LLT (Lévy–Longo Tree, and also a
BeT (Berarducci Tree). The notions BT, LLT, BeT are defined e.g. in [5], and in [8]. These
notions are also defined in Sections 4 and 8, via their clocked versions.

Definition 2.10. For terms A,B we define AB∼n and AnB:

AB∼0 = A A0B = B

AB∼n+1 = ABB∼n An+1B = A(AnB)

A context of the form 2B∼n is called a vector. For the vector notation, it is to be understood
that term formation gets highest priority, i.e., ABC∼n = (AB)C∼n.

3. Fixed Point Combinators

The theory of sage birds (technically called fixed point combinators) is a
fascinating and basic part of combinatory logic; we have only scratched the
surface.

R. Smullyan [28].

3.1. The Böhm Sequence. There are several ways to make fpc’s. For heuristics behind
the construction of Curry’s fpc Y0 = λf.ωfωf , with ωf = λx.f(xx), and Turing’s fpc Y1 = ηη
with η = λxf.f(xxf), see [3, 20].

It is well-known, as observed by C. Böhm [9, 3], that the class of fpc’s coincides exactly
with the class of fixed points of the peculiar term δ = λab.b(ab), convertible with SI. The
notation δ is convenient for calculations and stems from [16]. This term also attracted the
attention of R. Smullyan, in his beautiful fable about fpc’s figuring as birds in an enchanted
forest: “An extremely interesting bird is the owl O defined by the following condition:
Oxy = y(xy).” [28]. We will return to the Owl in Remark 3.4 below.

Thus the term Y δ is an fpc whenever Y is. It follows that starting with Y0, Curry’s
fpc, we have an infinite sequence of fpc’s Y0,Y0δ,Y0δδ, . . . ,Y0δ

∼n, . . .; we call this sequence
the ‘Böhm sequence’. Note that Y0δ =β ηη, justifying the overloaded notation Y1. Now

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 7

the question is whether all these ‘derived’ fpc’s are really new, in other words, whether the
sequence is free of duplicates. This is *Exercise 6.8.9 in [3].

Note that we could also have started the sequence from another fpc than Curry’s. Now
for the sequence starting from an arbitrary fpc Y , it is actually an open problem whether
that sequence of fpc’s Y, Y δ, Y δδ, . . . , Y δ∼n, . . . is free of repetitions. All we know, applying
Intrigila’s theorem, Theorem 3.3 below, is that no two consecutive fpc’s in this sequence
are convertible. But let us first consider the Böhm sequence.

Definition 3.1. The Böhm sequence is the sequence (Yn)n≥0 where Yn is defined by

Y0 = λf.ωfωf Yn = ηηδ∼(n−1) (n > 0)

We show that the Böhm sequence contains no duplicates by determining the set of
reducts of every Yn. For Y3

1 the head reduction is displayed in Figure 2, but this is by no
means the whole reduction graph. For future reference we note that the head reduction
diagram suggests a ‘clock behaviour’.

ηηδδx x(ηηδδx)
h

6

Figure 2: Head reduction of Y3x.

Theorem 3.2. The Böhm sequence (Yn)n≥0 contains no duplicates.

Proof. We define languages Ln ⊆ Ter(λ) as follows:

L0 ::= λf.fk(ωfωf) (k ≥ 0)

L1 ::= ηη | λf.fk(L1f) (k > 0)

Ln ::= Ln−1δ | λb.b
k(Lnb) | δLn (n > 1, k > 0)

We show that:

(1) Yn ∈ Ln;
(2) Ln is closed under β-reduction; and
(3) Ln and Lm are disjoint, for n 6= m.

Then it follows that Ln contains the set of ։β-reducts of Yn, and using (iii) this implies
that Yn 6=β Ym for all n 6= m.

For (i) note that Y0 ∈ L0, and Yn = ηηδ∼(n−1) which is in Ln by induction on n > 0.
We show (ii): if M ∈ Ln and M → N , then N ∈ Ln. Using induction, we do not need

to consider cases where the rewrite step is inside a variable of the grammar. We write Ln
in terms as shorthand for a term M ∈ Ln.

(L0) We have λf.fk(ωfωf)→ λf.fk+1(ωfωf) ∈ L0.
(L1) We have ηη → λf.f(ηηf) ∈ L1,

and λf.fk(λf.f ℓ(L1f)f)→ λf.fk+ℓ(L1f) ∈ L1.

1Actually Figure 2 displays Y3x. We will frequently consider Y x instead of Y as then the repetition is
immediate, and because we have that if Mx 6=β M ′x then also M 6=β M ′.

8 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(Ln) Case 1: λf.fk(L1f)δ → δk(L1δ) ∈ Ln for n = 2, and (λb.bk(Ln−1b))δ → δk(Ln−1δ)
∈ Ln for n > 2.
Case 2: λb.bk(λc.cℓ(Lnc)b)→ λb.bk+ℓ(Lnb) ∈ Ln.
Case 3: δLn → λb.b(Lnb) ∈ Ln.

For n 6= m, n > 1, (iii) follows by counting the number of passive δ’s, that is, the number
of occurrences of the form Pδ for some P . To see that L0 ∩ L1 = ∅, note that if M ∈ L1
is an abstraction, then M ≡ λf.fk(Pf) containing a subterm Pf which is never the case
in L0.

A very interesting theorem involving δ was proved by B. Intrigila, affirming a conjecture
by R. Statman.

Theorem 3.3 (Intrigila [16]). There is no ‘double’ fixed point combinator. That is, for no
fpc Y we have Y δ =β Y .

Remark 3.4 (Smullyan’s Owl SI =β δ = λab.b(ab)).
We collect some salient facts and questions.

(1) If Z is a wfpc, both δZ and Zδ are wfpc’s [28].
(2) Call an applicative combination of δ’s a δ-term , that is, a term solely built from δ and

application. In spite of δ’s simplicity, not all δ-terms are strongly normalizing (SN).
An example of a δ-term with infinite reduction is δδ(δδ) (Johannes Waldman, Hans
Zantema, personal communication, 2007).

(3) Let M be a non-trivial δ-term, i.e., not a single δ. Then M is SN iff M contains exactly
one occurrence of δδ. Furthermore, if δ-terms M,M ′ are SN, then they are convertible if
and only if M,M ′ have the same length [20]. Here the length of a δ-term is the number
δ’s in the term.

(4) Convertibility is decidable for δ-terms [29].
(5) We define ∆ = δω, so ∆ ≡ δ∆. Then, the infinite λ-term ∆ is an fpc: ∆x ≡ δ∆x ։

x(∆x). The term ∆ can be normalized: ∆→ω λf.fω. There are many more infinitary
fpc’s, e.g., for every n, the infinite term (SS)ωS∼nI is one, as will be clear from the
sequel.

(6) The term δδ(δδ) has no hnf, and hence its Böhm Tree is trivial, BT(δδ(δδ)) ≡ ⊥.
However, its Berarducci Tree is not trivial. Zantema remarked that δ-terms, even
infinite ones, such as ∆∆, are “top-terminating” (Zantema considered the applicative
rule for δ only — we expect that his observation remains valid for the λβ-version).

(7) Is Intrigila’s theorem also valid for wfpc’s: for no wfpc Z we have Zδ =β Z?

3.2. The Scott Sequence. In [24, p. 360] the equation BY0 = BY0S is mentioned as an
interesting example of an equation not provable in λβ2, while easily provable with Scott’s
Induction Rule. Scott mentions that he expects that using ‘methods of Böhm’ the non-
convertibility in λβ can be established, but that he did not attempt a proof. On the other
hand, with the induction rule the equality is easily established. We will not consider Scott’s
Induction Rule, but we will be working in the infinitary lambda calculus, λ∞β. It is readily
verified that in λ∞β we have:

BY0 =λ∞β BY0S =λ∞β λab.(ab)ω

2This equation is also discussed in [11].

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 9

Proposition 3.5. BY0 6=β BY0S

Proof. Postfixing the combinator I yields BY0I and BY0SI. Now BY0I =β Y0 and BY0SI =β

Y0(SI) = Y1. Because Y0 6=β Y1 (Theorem 3.2), the result follows.

In the same way we can strengthen this non-equation to all fpc’s Y , using Theorem 3.3.

Remark 3.6.

(1) The idea of postfixing an I is suggested by the Böhm Tree λab.(ab)ω of BY and BY S.
Namely, in λ∞β we calculate: (λab.(ab)ω)I = λb.(Ib)ω = λb.bω which is the Böhm Tree
of any fpc.

(2) Interestingly, Scott’s equation BY = BY S implies the equation of Statman and Intrigila,
Y = Y δ as one readily verifies, as in the proof of Proposition 3.5.

Actually, the comparison between the terms BY and BY S has more in store for us than
just providing an example that the extension from finitary lambda calculus λβ to infinitary
lambda calculus λ∞β is not conservative. The BT-equality of BY and BY S suggests looking
at the whole sequence BY,BY S,BY SS, . . . ,BY S∼n, All these terms have the Böhm Tree
λab.(ab)ω , and hence they are not fpc’s. But postfixing an I turns them into fpc’s.

Definition 3.7. The Scott sequence is defined by:

BY0I, BY0SI, BY0SSI, . . . , BY0S
∼n

I, . . .

We write Un = BY0S
∼nI for the n-th term in this sequence.

The Scott sequence concurs with the Böhm sequence of fpc’s only for the first two
elements, and then splits off with different fpc’s. But there is a second surprise. In showing
that Un is an fpc, we find as a bonus the fpc-generating vector 2(SS)S∼nI (which does
preserve the property of fpc’s to be reducing).

Theorem 3.8. Let Y be a k-reducing fpc and n ≥ 0. Then:

(1) BY S∼nI is a (non-reducing) fpc;
(2) Y (SS)S∼nI is a (k + 3n + 7)-reducing fpc.

The proof of Theorem 3.8 is easy: see the next example.

Example 3.9. Let Y be a k-reducing fpc. Then:

BY SSSIx ։h Y (SS)SIx→k
h SS(Y (SS))SIx

→3
h SS(Y (SS)S)Ix→3

h SI(Y (SS)SI)x

→3
h Ix(Y (SS)SIx)→1

h x(Y (SS)SIx)

This shows that BY S∼3I is a non-reducing fpc, and at the same time that Y (SS)SIx is
reducing.

3.3. Generalized Generation Schemes. The schemes mentioned in Theorem 3.8 for
generating new fixed points from old, are by no means the only ones. There are in fact
infinitely many of such schemes. They can be obtained analogously to the ones that we
extracted above from the equation BY = BY S = λab.(ab)ω, or the equationMab = ab(Mab).
We only treat the case for n = 3: consider the equation Nabc = abc(Nabc). Then every
solution N is again a ‘pre-fpc’, namely N II is an fpc: N IIx =β IIx(N IIx) =β x(N IIx).

10 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(1) Nabc = Y (abc), which yields N = (λyabc.y(abc)))Y = (λyabc.BBByabc)Y . We obtain
N = BBBY .

(2) N = Y ξ with ξ = λnabc.abc(nabc), yielding the fpc-generating vector 2ξII.
(3) Nabc = abc(Nabc) = S(ab)(Nab)c. So we take Nab = S(ab)(Nab), which yields Nab =

Y (S(ab)) = BBBY (BS)ab. So N = BBBY (BS), and thus we find the equation BBBY =
BBBY (BS), in analogy with the equation BY = BY S above.

Also this equation spawns lots of fpc’s as well as fpc-generating vectors. Let’s abbreviate
BS by A. First one forms the sequence

BBBY, BBBY A, BBBY AA, BBBY AAA, . . .

These terms all have the BT λabc.abc(abc)ω . They are not yet fpc’s , but only ‘pre-fpc’s’.
But after postfixing this time . . . II we do again obtain a sequence of fpc’s:

BBBY II, BBBY AII, BBBY AAII, . . .

Again the first two coincide with Y0,Y1, but the series deviates not only from the Böhm
sequence but also from the Scott sequence above. As above, the proof that a term in this
sequence is indeed an fpc, yields an fpc-generating vector. In this way we find as a new
fpc-generating scheme

Y ⇒ Y (AAA)A∼n
II

We can derive many more of these schemes by proceeding with solving the general equation
Na1a2...an = a1a2...an(Na1a2...an), bearing in mind the following proposition.

Proposition 3.10. If N is a term satisfying Na1a2 . . . an = a1a2 . . . an(Na1a2 . . . an), then

N I∼(n−1) is an fpc.

We finally mention an fpc-generating scheme with ‘dummy parameters’:

Y ⇒ Y QP1 . . . Pn

where P1, . . . , Pn are arbitrary (dummy) terms, and Q = λyp1...pnx.x(yp1 . . . pnx).

4. Clock Behaviour of Lambda Terms

As we have seen, there is vast space of fpc’s and there are many ways to derive new fpc’s.
The question is whether all these fpc’s are indeed new. So we have to prove that they are
not β-convertible.

For the Böhm sequence we did this by an ad hoc argument based on a syntactic invariant;
and this method works fine to establish lots of non-equations between the alleged ‘new’ fpc’s
that we constructed above. Still, the question remains whether there are not more ‘strategic’
ways of proving such inequalities.

In this section we propose a more strategic way to discriminate terms with respect to
β-conversion. The idea is to extract from a λ-term more than just its BT, but also how the
BT was formed; one could say, in what tempo, or in what rhythm. A BT is formed from
static pieces of information, but these are rendered in a clock-wise fashion, where the ticks
of the internal clock are head reduction steps.

In the sequel we write [k]M for the term M where the root is annotated with k ∈ N.
Here, term formation binds stronger than annotation [k]. For example [k]MN stands for
the term [k](MN) (that is, annotating the (non-displayed) application symbol in-between
M and N , in contrast to ([k]M)N). Moreover, for an annotated term M we use ⌊M⌋ to

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 11

denote the term obtained from M by dropping all annotations (including annotations of
subterms).

Definition 4.1 (Clocked Böhm Trees). The clocked Böhm Tree BT (M) of a λ-termM is an
annotated (potentially infinite) term coinductively defined as follows. If M has no hnf, then
define BT (M) as ⊥. Otherwise, there is a head reduction M →k

h λx1. . . . λxn.yM1 . . .Mm

to hnf. Then we define BT (M) as the term [k]λx1. . . . λxn.yBT (M1) . . .BT (Mm).

The notions of subterms and positions (see Definition 2.6) carry over to annotated terms,
in particular clocked Böhm Trees, in a straightforward way. The (non-clocked) Böhm Tree
of a λ-term M can be obtained by dropping the annotations: BT(M) = ⌊BT (M)⌋.

·
[2]

f ·
[1]

f ·
[1]

f . . .

[1]

·
[2]

f ·
[2]

f ·
[2]

f . . .

[2]

Figure 3: Clocked Böhm Trees of Y0f and Y1f .

Let us consider the fpc’s Y0 of Curry and Y1 of Turing. We have Y0 ≡ λf.ωfωf where
ωf ≡ λx.f(xx), and

ωfωf →
1
h f(ωfωf)

Therefore we obtain BT (Y0f) = [2]fBT (ωfωf), and BT (ωfωf) = [1]fBT (ωfωf).
For Y1 ≡ ηη where η ≡ λx.λf.f(xxf) we get:

Y1f ≡ ηηf →2
h f(ηηf)

Hence, BT (Y1f) = [2]fBT (Y1f). Figure 3 displays the clocked Böhm Trees of Y0f (left)
and Y1f (right).

The following definition captures the well-known Böhm equality of λ-terms.

Definition 4.2. λ-terms M and N are BT-equal, denoted by M =BT N , if BT(M) ≡
BT(N).

If M and N are not BT-equal, then M 6=β N . Consequently, if for some λ-term F , we
have BT(MF) 6≡ BT(NF), then M 6=β N .

Below, we refine this approach by comparing the clocked Böhm Trees BT (M) and
BT (N) instead of the ordinary (non-clocked) Böhm Trees. In general, BT (M) 6≡ BT (N)
does not always imply that M 6=β N . Nevertheless, for a large class of λ-terms, called
‘simple’ below, this implication will turn out to be true.

In the following definition, we lift relations over natural numbers to relations over
clocked Böhm Trees.

Definition 4.3. Let T1 and T2 be clocked Böhm Trees, and R ⊆ N × N. We define the
following notations:

12 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(1) For p ∈ Pos(T1) ∩ Pos(T2) we let T1 Rp T2 denote that either both T1|p and T2|p are
not annotated, or both are annotated and then T1|p ≡ [k1]T

′
1 and T2|p ≡ [k2]T

′
2 with

k1 R k2.
(2) We write T1 R T2 if ⌊T1⌋ ≡ ⌊T2⌋ and T1 Rp T2 for every p ∈ Pos(T1).
(3) We write T1 R∃ T2, and say that R holds eventually, if ⌊T1⌋ ≡ ⌊T2⌋ and there exists a

depth level ℓ ∈ N such that T1 Rp T2 for all positions p ∈ Pos(T1) with |p| ≥ ℓ.

Definition 4.4. For λ-terms M and N we say:

(1) M improves N globally if BT (M) ≤ BT (N);
(2) M improves N eventually if BT (M) ≤∃ BT (N);
(3) M matches N eventually if BT (M) =∃ BT (N).

The following proposition states that the ordering > on λ-terms defined by M > N
if and only if BT (M) ≥ BT (N) is a ‘semi-model’ of β-reduction [21]. We leave this for
future research.

Proposition 4.5. Clocks are accelerated under reduction, that is, if M։N , then the reduct
N improves M globally (BT (M) ≥ BT (N)). Dually, clocks slow down under expansion
(the reverse of reduction).

Proof. We proceed by an elementary diagram construction. Whenever we have co-initial
steps M →h M1 and M ◦−→M2, then by orthogonal projection [30] there exist joining steps
M1 ◦−→M ′ and M2 →

=
h M ′. Note that the head step M →h M1 cannot be duplicated, only

erased in case of an overlap. This leads to the elementary diagram displayed in Figure 4.

M M1

M2 M ′

h

h

=

Figure 4: Elementary diagram.

We have ։ ⊆ ◦−→∗. By induction on the length of the rewrite sequence ◦−→∗ it
suffices to show that M ◦−→ N implies BT (M) ≥ BT (N). Let M ◦−→ N . If M has
no hnf, then the same holds for N , and hence BT (M) = ⊥ = BT (N). Assume that

there exists a head rewrite sequence M →k
h H ≡ λx1. . . . λxn.yM1 . . .Mm to hnf. We have

BT (M) ≡ [k]λx1. . . . λxn.yBT (M1) . . .BT (Mm).

Using the elementary diagram above (k times), we can project M ◦−→ N over M →k
h H,

and obtain H ◦−→ H ′, N →ℓ
h H ′ ≡ λx1. . . . λxn.yM

′
1 . . .M

′
m with ℓ ≤ k. Then BT (N) ≡

[ℓ]λx1. . . . λxn.yBT (M ′
1) . . .BT (M ′

m) and ℓ ≤ k. Since H ◦−→ H ′ and H is in hnf, we get
Mi ◦−→ M ′

i for every i = 1, . . . ,m. We then can apply the same argument to Mi ◦−→ M ′
i

and by coinduction (or induction on the depth), we obtain BT (M) ≥ BT (N).

While BT (M) 6≡ BT (N) does not imply M 6=β N , the following theorem allows us
to use clocked Böhm Trees for discriminating λ-terms:

Theorem 4.6. Let M and N be λ-terms. If N cannot be improved globally by any reduct
of M , then M 6=β N .

Proof. If M =β N , then M ։ M ′
և N for some M ′ by confluence. Hence BT (M ′) ≤

BT (N) by Proposition 4.5.

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 13

Note that for distinguishing M and N we can always consider β-equivalent terms M ′ =β M
and N ′ =β N instead. For Theorem 4.6 we have to show ¬(BT (M ′) ≤ BT (N)) for all
reducts M ′ of M . This condition is in general difficult to prove. However, the theorem is
of use if one of the terms has a manageable set of reducts, and this term happens to have
slower clocks. A striking example will be given below in solving a question of Plotkin in
Section 5.

For a large class of λ-terms it turns out that clocks are invariant under reduction. We
call these terms ‘simple’.

Definition 4.7. A redex (λx.M)N is called:

(1) linear if x has at most one occurrence in M ;
(2) call-by-value if N is a normal form; and
(3) simple if it is linear or call-by-value.

The definition of simple redexes generalizes the well-known notions of call-by-value and
linear redexes. Next, we define simple terms. Intuitively, we call a term M ‘simple’ if every
reduction admitted by M only contracts simple redexes. The following definition further
generalizes this intuition by considering only reductions computing the Böhm Tree.

Definition 4.8 (Simple terms). A λ-term M is simple if either M has no hnf, or the
head reduction to hnf M ։h λx1. . . . λxn.yM1 . . .Mm contracts only simple redexes, and
M1, . . . ,Mm are simple terms.

Note that this definition is essentially coinductive: the set of simple terms is the largest
set X such that if M ∈ X then either M has no hnf or the reduction to hnf M ։h

λx1. . . . λxn.yM1 . . .Mm contracts only simple redexes and M1, . . . ,Mn ∈ X again.
All the fpc’s in this paper are either simple or have simple reducts. The clock of simple

λ-terms is invariant under reduction, that is, reduction of a simple term affects only finitely
many annotations in the clocked Böhm Tree. For example, by reducing a term we can
always make the clock values in a finite prefix equal to 0.

Proposition 4.9. Let N be a reduct of a simple term M . Then N matches M eventually
(BT (M) =∃ BT (N)).

Proof. The proof is a straightforward extension of the proof of Proposition 4.5 with the
observation that for simple terms M , rewriting M →k

h H ≡ λx1. . . . λxn.yM1 . . .Mm to hnf
does not duplicate redexes. For simple terms M , the elementary diagrams are of the form

displayed in Figure 5. We use s
∅
−→ t to denote empty steps, that is, s ≡ t.

M M1

M2 M ′

h

∅

∅

M M1

M2 M ′

h

h

=

Figure 5: Elementary diagrams for simple M .

We briefly explain the two elementary diagrams. They depict the possible scenarios
for joining co-initial steps M →h M1 and M → M2, that is, a head reduction step set out
against an arbitrary reduction step. If M is a simple term, then either

14 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(1) both are the same step, and can be joined with empty steps
∅
−→, or

(2) they can be joined by M2 →h M ′ ←= M1 since a head step in a simple term with hnf
cannot duplicate a redex (but deletion is possible).

We show the following implication by induction on n ∈ N (employing the diagrams in
Figure 5):

M1 ←h M →n N =⇒ M1 →
≤n O ←h N ∨ M1 →

<n N (4.1)

For n = 0, there is nothing to be shown. Let n > 0, and consider M1 ←h M →M2 →
n−1 N .

Then either (1) M1 ≡M2 and consequently M1 →
n−1 N , or (2) M1 →

= M ′ ←h M2 and by
induction hypothesis M ′ →≤n−1 O ←h M2 or M ′ →<n−1 N , yielding M1 →

≤n O ←h M2

or M1 →
<n N , respectively.

For λ-terms M and integers n ∈ N, we define finite approximations BT ,n(M) of the

clocked Böhm Tree BT (M) of M . We let BT ,0(M) = M , and for n > 0 define

BT ,n(M) = [k]λx1. . . . λxn.yBT ,n− 1(M1) . . .BT ,n− 1(Mm)

if M →k
h λx1. . . . λxn.yM1 . . .Mm to hnf, and BT ,n(M) = ⊥ if M has no hnf. Note that

BT (M) = limn→∞ BT ,n(M).
Let M,N be terms, M simple and M →n N . Then we claim

⌊BT ,1(M)⌋ →≤n′

⌊BT ,1(N)⌋ (∗)

where n′ = n if BT ,1(M) and BT ,1(N) have the same annotation, and n′ = n−1 otherwise.

If M has no hnf, then N has no hnf, and BT ,1(M) = BT ,1(N) = ⊥. Thus assume that M

admits a head reduction M →k
h M ′ ≡ λx1. . . . λxn.yM1 . . .Mm to hnf for some k ∈ N. Then

by induction using (4.1) we obtain that either

(a) N →k
h N ′ ←≤n M ′ or (b) N →<k

h N ′ ←<n M ′

for some N ′ ≡ λx1. . . . λxn.yN1 . . . Nm. This proves the claim.
Note that every reduction BT ,m(M)→≤n BT ,m(N) is contained within the subterms

M ′ of BT ,m(M) that are left unreduced by the clause BT ,0(M
′) = M ′; everything outside

these subterms is in normal form. Using the previous observation and (∗), we obtain by
induction that for allm ∈ N: ⌊BT ,m(M)⌋ →≤n−dm ⌊BT ,m(N)⌋ where dm is the number of

positions p where the annotation of BT ,m(M)|p differs from the annotation of BT ,m(N)|p.

As a consequence, the annotations of BT (M) and BT (N) differ at most at n positions.
Hence BT (M) =∃ BT (N).

Reduction accelerates clocks, and for simple terms the clock is invariant under reduction,
see Proposition 4.9. Hence if a term M has a simple reduct N , then N has the fastest clock
reachable from M modulo a finite prefix. This justifies the following convention.

Convention 4.10. The (minimal) clock of a λ-term M with a simple reduct N is BT (N),
the clocked BT of N .

For simple terms we obtain the following theorem:

Theorem 4.11. Let M and N be λ-terms such that M is simple. If M does not improve
eventually on N , then M 6=β N .

Proof. Assume M =β N . Then M ։ M ′
և N for some M ′. We have BT (M) =∃

BT (M ′) by Proposition 4.9, and BT (M ′) ≤ BT (N) by Proposition 4.5. Hence we obtain
BT (M) ≤∃ BT (N).

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 15

Theorem 4.11 significantly reduces the proof obligation in comparison to Theorem 4.6.
We only consider the clocked BT’s of M and N , instead of all reducts M ′ of M .

Note that Theorem 4.11 can also be employed for discriminating non-simple λ-terms if
one of the terms has a simple reduct. For the case that both M and N are simple, there
is no need to look for reducts since the eventual clocks are invariant under reduction, see
Proposition 4.9:

Corollary 4.12. If simple terms M , N do not match eventually, then they are not β-
convertible, that is, M 6=β N .

Proof. Assume M = N , then M ։ O և N for a common reduct O. Then BT (M) =∃

BT (O) =∃ BT (N) by Proposition 4.9. Hence BT (M) =∃ BT (N), that is, M and N
match eventually.

Remark 4.13. The reason for the qualifier ‘eventually’ in the notions above, in other
words, working modulo a finite prefix of the BT, is that by some preliminary reduction
we can always make the clock values in any finite prefix equal to 0. So we are interested
exclusively in the ‘tail behaviour’, or the behaviour ‘at infinity’, and not in the initial
behaviour of the development to the BT.

To give a concrete example: Y0 and Y1, the fpc’s of Curry and Turing, can be reduced
to reducts M0, M1 respectively, that have an initial segment of arbitrary length n of their
BT’s with clock labels 0 (just reduce first to λf.fn(. . .)). However, the infinite remainders
of their BT’s, their tails as it were, will reveal the difference in clock values, witnessing the
fact that Y0 eventually improves Y1. And this situation is stable under reduction; indeed,
for any two reducts M0, M1 as above, the first eventually improves the second.

Remark 4.14. Take λ-terms M , N with finite BT’s. Then the clock comparison of M
and N amounts to the comparison of their non-clocked BT’s. In case their BT’s are equal
and ⊥-free, then M =β N . If their BT’s coincide but are not ⊥-free, then we can fine-tune
the analysis by comparing their clocked Lévy–Longo or Berarducci Trees (a ⊥ in a BT may
give rise to an infinite Berarducci Tree), see Section 8.

Example 4.15. We compute the clocks of Ynx with Yn the n-th term of the Böhm sequence.
The clocks of Y0x and Y1x have been computed before, see Figure 3. We now compute the
clock of Ynx for n ≥ 2:

Yn ≡ ηηδ∼n−1x

→2
h δ(ηηδ)δ∼n−2x

→
2(n−2)
h δ(ηηδ∼n−1)x

→2
h x(ηηδ∼n−1x)

Notice that none of these steps duplicate a redex, hence Yn is a simple term. We find
BT (Ynx) = [2n](xBT (Ynx)). Hence, for n ≥ 2 the clock of Yn is 2n. Consequently, all
terms in the Böhm sequence have distinct clocks. Thus we have an alternative proof of
Theorem 3.2: the Böhm sequence contains no duplicates.

16 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

Example 4.16. Let n ≥ 2. We compute the clocks of the fpc’s Un = BY0S
∼nI of the Scott

sequence. We first reduce Unx to a simple term:

Unx ։ Y0(SS)S
∼(n−2)

Ix

→ ωSS ωSSS
∼(n−2)

Ix

։ ωSS ωSSS
∼(n−2)

Ix

where ωSS ≡ λabc.bc(aabc). We abbreviate θ = ωSS. Then we compute the clocks for n = 2,
n = 3, and n > 3:

θθIx→3
h Ix(θθIx)→1

h x(θθIx)

θθSIx→3
h SI(θθSI)x→4

h x(θθSIx)

θθS∼(n−2)
Ix→3

h SS(θθSS)S∼(n−4)
Ix

→
3(n−4)
h

SS(θθSSS∼(n−4))Ix

→3
h SI(θθS∼(n−2)

I)x

→4
h x(θθS∼(n−2)

Ix)

respectively. For all three cases, we find:
BT (θθS∼(n−2)Ix) = [3n − 2](xBT (θθS∼(n−2)Ix)).

Using Theorem 4.11 we infer from Example 4.16 and Figure 3 (recall that U0 =β Y0 and
U1 =β Y1):

Corollary 4.17. The Scott sequence contains no duplicates.

5. An Answer to a Question of Plotkin

Plotkin [22] asked: Is there a fixed point combinator Y such that

AY ≡ Y (λz.fzz) =β Y (λx.Y (λy.fxy)) ≡ BY (5.1)

or in other notation:

µz.fzz =β µx.µy.fxy ,

with the usual definition µx.M(x) = Y (λx.M(x)). The terms AY and BY have the same
Böhm Trees, namely the solution of T = fTT .

Plotkin’s question is pertinent to the question whether absolutely unorderable models
of the λ-calculus exist, see Selinger’s work [25, 26, 27]. The negative solution of Plotkin’s
question blocks an appeal to Lemma 3.6 in [27] to show that the generalized Mal’cev equa-
tions for all n are inconsistent with the λβ-calculus. (For n = 0, 1 this is established, but
the general case is a difficult open problem.)

We show that there is no fpc Y satisfying (5.1). We begin with an example.

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 17

Example 5.1. We consider Turing’s fpc Y1, and compute the clocked BT’s of AY1 and BY1 .
Recall that Y1 ≡ ηη with η ≡ λxf.f(xxf).

AY1 ≡ ηη(λz.fzz)→2
h (λz.fzz)AY1 →

1
h fAY1AY1

BY1 ≡ ηη(λx.ηη(λy.fxy)) →2
h (λx.ηη(λy.fxy))BY1

→1
h ηη(λy.fBY1y)→

2
h (λy.fBY1y)(ηη(λy.fBY1y))

→1
h fBY1(ηη(λy.fBY1y))

Note that for BY1 developing the left branch takes six steps, whereas the right branch only
needs three. We remark that this is not sufficient to conclude that AY1 6=β BY1 since AY

and BY are non-simple even for simple fpc’s Y . The clocked BT’s for AY1 and BY1 are
depicted in Figure 6 using hnf-notation, see [3] or [5].

f
[3]

f
[3]

f
[3]

.

f
[3]

.

f
[3]

f
[3]

.

f
[3]

.

f
[6]

f
[6]

f
[6]

.

f
[3]

.

f
[3]

f
[6]

.

f
[3]

.

Figure 6: Clocked BT’s for AY1 and BY1 , in hnf-notation.

To prove AY 6=β BY for every fpc Y , we construct a term B′
Y convertible with BY such

that no reduct of AY improves globally on B′
Y . Then by Theorem 4.6 we have AY 6=β B′

Y ,
and thus AY 6=β BY . We have BY =β B′

Y where B′
Y is defined by:

B′
Y ≡ Y (λx.fx(fx(Y (λy.fxy))))

While the annotations of the clocked Böhm Tree BT (B′
Y) of B′

Y of course depend on Y ,
we can derive partial knowledge as follows. We have B′

Y ≡ (Y x)[x :=M], where M ≡
λx.fx(fx(Y (λy.fxy))). Then we have for every Y ′ =β Y x:

Y ′[x :=M]→∗
h (xY ′′)[x :=M] ≡M(Y ′′[x :=M])

→h f (Y ′′[x :=M]) (f (Y ′′[x :=M]) (Y (λy.f (Y ′′[x :=M]) y)))

for some Y ′′ =β Y x. The underlined term in head normal form is obtained without reducing,
and hence will be annotated with [0] in the clocked Böhm tree of Y ′[x :=M]. The same
argument applies for Y ′′[x :=M], and so on. Hence the second argument of every f on
the leftmost spine of BT (Y ′[x :=M]) has annotation [0], as in Figure 7, which depicts the
clocked Böhm tree BT (B′

Y) of B
′
Y . Therefore we obtain:

Lemma 5.2. Every annotation at a position of the form (12)∗2 in BT (B′
Y) is [0].

Note that in the statement of the above lemma, the positions (12)n2 refer to trees in
applicative notation, which is equivalent to 1n2 in the hnf-notation, as seen in Figure 7.

We continue by proving that no reduct of AY improves globally on B′
Y . More precisely,

we show that for every reduct A′
Y of AY there exists a position p of the form (12)∗2 such

that the annotation of BT (A′
Y) at p is nonzero.

18 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

f
[?]

f
[?]

f
[?]

f
[?]

.

f
[0]

.

f
[0]

f
[?]

.

f
[?]

.

f
[0]

f
[?]

f
[?]

.

f
[?]

.

f
[?]

f
[?]

.

f
[?]

.

Figure 7: Clocked Böhm Tree for B′

Y
in hnf-notation.

Definition 5.3. A reduct M of AY ≡ Y (λz.fzz) is called balanced if s ≡ t for every
subterm f s t in M where f is a descendant of the displayed f (see also Equation (5.1)).

Note that, in case Y is not closed, the term may contain occurrences f . In the definition
of ‘balanced’ we are not interested in those occurrences of f , but only the residuals of f
displayed in Y (λz.fzz), that is, the f in λz.fzz. Let us label this f as f⋆, i.e. Y (λz.f⋆zz),
such that f⋆ does not occur in Y . Then by ‘residuals of the displayed f ’ we mean the free
occurrences of f⋆ in all reducts of Y (λz.f⋆zz).

The following lemma states that every reduct of AY can be balanced:

Lemma 5.4. Let AY ≡ Y (λz.fzz) ։ M . There exists a balanced N such that M ։ N .

Proof. Let •−→ denote complete developments of the set of all redex occurrences (also known
as Gross–Knuth steps). We consider the sequence AY ≡ N1 •−→ N2 •−→ By cofinality
of •−→ [3, 30] there exists i ∈ N such that M ։ Ni. We define N ≡ Ni.

It remains to be shown that the term N is balanced. This follows from the fact that
AY is balanced, and that balancedness is preserved under •−→. The latter can be seen as
follows: consider a term C[f s s]. Obviously both displayed occurrences of s contain the
same redexes, and the same variables bound from above f s s in C. Hence all descendants
of both occurrences of s after •−→ will again be identical.

Lemma 5.5. Let AY ։ A′
Y . There exists a position p of the form (12)∗2 such that BT (A′

Y)
has a nonzero annotation at position p.

Proof. Let A′′
Y be a reduct of A′

Y such that A′′
Y is in hnf. By Lemma 5.4 there exists a

balanced reduct A′′′
Y of A′′

Y . Note that also A′′′
Y is in hnf and its head symbol is f .

Let q be the shortest position of the form (12)∗ such that A′′′
Y |q12 is not in hnf. Then

A′′′
Y |q is in hnf, and thus A′′′

Y (q11) = f . Because A′′′
Y is balanced we have that A′′′

Y |q12 ≡ A′′′
Y |q2,

and so A′′′
Y |q2 is not in hnf, too. Hence the annotation of BT (A′′′

Y) at the position p = q2
is nonzero. The claim follows since BT (A′′′

Y) ≤ BT (A′
Y).

The combination of Lemmas 5.2 and 5.5 implies that there exists no reduct of AY that
improves globally on B′

Y . Therefore by Theorem 4.6 we obtain:

Proposition 5.6. There exists no fpc Y such that Y (λz.fzz) =β Y (λx.Y (λy.fxy)).

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 19

6. Clocked Böhm Trees and Periodic Terms

In the last two sections we saw that the concept of clocked Böhm Trees can be successfully
used to discriminate between λ-terms with equal Böhm Trees or to analyze the existence
of terms satisfying certain equations. In this section we will address the following question:
to which classes of λ-terms is the clocks method most readily applicable?

A common feature of terms studied in Sections 4 and 5 is that their Böhm Trees are
‘periodic’: they have inherent cyclical content that allows us to analyze how their clocks are
developed towards infinity. For example, Y is an fpc if the term Yx ≡ Y x satisfies

Yx = x(Yx) (6.1)

That is, the subterm of Yx occurring at position 2 is equal to the term Yx itself. If we use
Böhm Tree equality instead of β-equality then the equation (6.1) would say that Y is a
wfpc, or a looping combinator:

BT(Yx) = BT(x(Yx))

The next definition attempts to capture such situations in a general fashion.
In what follows, Mσ denotes the term at position σ in the Böhm Tree of M , with

Mσ = Ω = Y0I in the event that σ /∈ Pos(BT(M)). By a Böhm Tree context C21 · · ·2n

we mean a finite Böhm Tree in which the leaves, in addition to being variables or ⊥, are
allowed to be either of the holes 2i. (Equivalently, it is a λ⊥-context which is redex-free.)

Definition 6.1. Let M ∈ Ter(λ), and ǫ 6= σ ∈ Pos(BT(M)).

(1) M is periodic at σ if M =β Mσ.
(2) M is weakly periodic at σ if M =BT Mσ.
(3) M is (weakly) locally periodic if for every infinite path x = 〈x0, x1, . . .〉 through the

Böhm Tree of M we have that M is (weakly) periodic at xn for some n.
(4) M is (weakly) globally periodic if there is a Böhm Tree context C21 · · ·2n such that

M ≡ C[M1] · · · [Mn] and M =β Mi (M =BT Mi).

Example 6.2.

(1) If Y is an fpc, then Y x is periodic at 2.
(2) If Y is a weak fpc, then Y x is weakly periodic at 2.
(3) Using the fixed point theorem, letM be such thatM = λz.zMM . ThenM is periodic at

02, 012. Since any infinite path through BT(M) passes through one of these positions, M
is locally periodic. In fact, M is globally periodic with the context C2122 ≡ λz.z2122.

Generally, any term which is defined by an application of the fixed point theorem is periodic
by construction. If a looping combinator is used instead of an fpc, then the resulting term
will be weakly periodic. This suggests that (w)fpc’s play a central role in the study of
general periodic terms.

We prove the following elementary fact:

Proposition 6.3. Let M ∈ Ter (λ). Then

M is (weakly) locally periodic ⇐⇒ M is (weakly) globally periodic

Proof. The statement is proved simultaneously for weak and strong periodicity. For the
latter case, the equality should be read as β-convertibility. For the former, it should be
read as Böhm Tree equality.

20 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(⇒) Suppose that M = C[M1] · · · [Mn], with C21 · · ·2n a Böhm Tree context. Let x
be an infinite path through BT(M). Since C21 · · ·2n is finite, x must pass through one
of the holes 2i. Since M = Mi is periodic at this position, x passes through a periodic
position. Since x was arbitrary, M is locally periodic.

(⇐) Suppose that M is locally periodic, and let X denote the set of infinite paths
through the Böhm Tree of M (X could be called the Böhm space of M). Since BT(M) is a
finitely branching tree, the space X is compact, when given the topology generated by the
cylinders

Xσ = {θ | σ ⊑ θ}

For x ∈ X , let σx be a periodic position that x passes through (by local periodicity).
Then the collection Σ = {σx}x∈X is an open cover of X . By compactness, there exists a
subcollection σ1, . . . , σn ∈ Σ which covers X . Let C ≡ C21 · · ·2n be obtained from M by
unfolding its Böhm Tree up to depth max{|σ1|, . . . , |σn|} and placing holes 2i at positions
σi. We claim that C is the desired Böhm Tree context.

By construction, C is a Böhm Tree context with M = C[Mσ1
] · · · [Mσn]. We also have

that M is periodic at σi, hence M = Mσi
. Furthermore, if x ∈ X , then x passes through σi

for some i. Therefore, outside the holes 2i the Böhm Tree of C is finite.
Indeed, M is globally periodic.

In light of the proposition above, when M is either locally or globally periodic, we
simply say that M is periodic.

The resulting notion of periodicity is somewhat restrictive, because it does not account
for terms in which repetition begins later in the Böhm Tree. For example if Y is an fpc,
then Y x is periodic, but Y itself is not, because the first node of its Böhm Tree has the
abstraction λf.f , which is never repeated in the infinite sequence of f ’s that follows.

This situation motivates the following definition.

Definition 6.4. Suppose that σ ∈ Pos(BT(M)) and θ ⊑ σ. Let π be such that θπ = σ.

(1) M is periodic at σ with offset θ if Mθ is periodic at π. In this case, we say that σ is
cyclic in BT(M), and call π the period and θ the phase of the cycle at σ.

(2) M is weakly periodic at σ with offset θ if Mθ is weakly periodic at π. We say that σ is
weakly cyclic, and call π the period and θ the phase of the weak cycle at σ.

(3) M is (weakly) fully periodic if every infinite path through BT(M) passes through a
(weak) cycle (θ, π) (that is, eventually comes into a periodic subterm of M).

As before, it is easy to see that M is fully periodic if and only if there are finitely many
positions σ1, . . . , σn ∈ Pos(BT(M)), σi = θiπi such that M is periodic at σi with offset θi
and period πi, and outside these positions the Böhm Tree is finite.

Periodic and fully periodic terms are the perfect targets for exercising the clocks method.
We will now illustrate this with an example, where, instead of fpc’s, we consider enumerators,
also called evaluators, for Combinatory Logic. There are many possibilities for such an
enumerator E, depending on how one does the coding. However, in most schemes E is a
periodic term.

Example 6.5. Let p·q : CL→ Ter(λ) be defined as follows:

pKq = λz.zKKI

pSq = λz.zKSI

pMNq = λz.z(KI)pMqpNq

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 21

Let 〈M〉 = λz.zM , with z /∈ FV(M) and ω = λx.xx. Then some possible evaluators for p·q

include:

E1 ≡ ω(λw.〈λabc.ab((wwb)(wwc))〉) = 〈λabc.ab((E1b)(E1c))〉 (6.2)

E2 ≡ ω(λw.〈λabc.ab(S〈b〉〈c〉(ww))〉) = 〈λabc.ab(S〈b〉〈c〉E2)〉 (6.3)

E3 ≡ 〈ω(λwabc.ab(Sbc(ww)))〉 = 〈E
′〉, where E

′ = λabc.ab(SbcE′) (6.4)

It is straightforward to verify that, for i ∈ {1, 2, 3} we have Ei
pMq = M for any {K,S}-

term M . The evaluators look similar, and their Böhm Trees are indeed the same. However,
it is not immediate whether the terms are β-convertible or if they are distinct.

Fortunately, since these terms are periodic, their clocked Böhm Trees can be computed
easily:

(1) For N ∈ Ter(λ), let VN ≡ λabc.ab((NNb)(NNc)), and W = λw.〈Vw〉. Then we have

E1 →h WW →h λz.zVW

≡ λz.z(λabc.ab((WWb)(WWc)))

→h λz.z(λabc.ab((λz′.z′VW)b(WWc)))

→h λz.z(λabc.ab(bVW (WWc)))

→ λz.z(λabc.ab(bVW ((λz′.z′VW)c)))

→ λz.z(λabc.ab(bVW (cVW)))

→ · · ·

Hence E1 is periodic at positions 02000212 and 02000222 (in hnf-notation 010 and 0110
respectively) with offset 02 and periods 000212 and 000222, which allows us to construct
the clocked Böhm Tree of E1.

(2) For N ∈ Ter(λ), let VN ≡ λabc.ab(S〈b〉〈c〉(ww)), W = λw.〈Vw〉, S
′
N = λyz.Nz(yz), and

S′′N,M = λz.Nz(Mz). Then we have

E2 →h WW →h λz.zVW

≡ λz.z(λabc.ab(S〈b〉〈c〉(WW)))

→h λz.z(λabc.ab(S′〈b〉〈c〉(WW)))

→h λz.z(λabc.ab(S′′〈b〉,〈c〉(WW)))

→h λz.z(λabc.ab(〈b〉(WW)(〈c〉(WW))))

→h λz.z(λabc.ab(WWb(WWc)))

→2 λz.z(λabc.ab((λz′.z′VW)b((λz′.z′VW)c)))

→2 λz.z(λabc.ab((bVW)(cVW)))

→ · · ·

Again, we are at a point where every position lies on a cycle, giving us a full description
of the clocked Böhm Tree of E2.

22 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(3) Let VN = λabc.ab(Sbc(NN)), and W , S′N , S′′N,M as before. Then

E3 ≡ 〈ωW 〉 →h 〈WW 〉 →h λz.zVW

≡ λz.z(λabc.ab(Sbc(WW)))

→h λz.z(λabc.ab(S′bc(WW)))

→h λz.z(λabc.ab(S′′b,c(WW)))

→h λz.z(λabc.ab(b(WW)(c(WW))))

λz.z
[2]

λabc.a
[0]

b
[0]

b
[2]

c
[2]

λz.z
[2]

λabc.a
[0]

b
[0]

b
[6]

c
[2]

Figure 8: Clocked BT’s for E1 and E2, in hnf-notation.

λz.z
[0]

λabc.a
[2]

b
[0]

b
[3]

λabc.a
[1]

b
[0]

b
[3]

c
[0]

c
[0]

Figure 9: Clocked BT for E3, in hnf-notation.

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 23

The Böhm Trees of Ei are displayed in Figures 8 and 9. This information, together with
Theorem 4.11, allows us to discriminate between the terms. Note that E1 does not eventually
improve on E3: the occurrences of the variable c in the clocked Böhm Tree of E3 are
annotated by a 0, while the corresponding subterms of E1 take two head steps to converge.
Furthermore, the head redexes contracted in this reduction WW and 〈VW 〉c are both call-
by-value. By Theorem 4.11 we conclude that E3 6=β E1. In contrast, E2 is improved by
E1. In fact, E1 and E2 can be reduced so that their clocked Böhm Trees match eventually.
Upon further inspection, we see that the two terms are indeed convertible.

Remark 6.6. We note that (fully) periodic terms are the λ-calculus analogue of the usual
‘circular’ terms defined by mutually recursive definitions. The let binder in Haskell is an
example of such a construct — one difference being that, because the semantics of Haskell
is graph rewriting, such terms actually denote possibly cyclic graphs rather than their
unfoldings as infinite trees. For example, the following is an example of a ‘periodic Haskell
term’:

streamSys =

let x = f 0 y

where f n (b:ys) = n : f (b n) ys

y = f id z

where f g (c:cs) = g : f (\n -> g c + n) cs

z = zz 0

where zz n = n : zz (n+1)

in x

*Main> take 20 streamSys

[0,0,0,1,4,10,20,35,56,84,120,165,220,286,364,455,560,680,816,969]

In discussion of such recursive systems, a well-known topic is the distinction between ‘strong
equality’ and ‘weak equality’; the former being syntactic convertibility between two such
systems, and the latter being bisimulation or ‘behavioral equivalence’. For this reason, the
complexity of strong equality is usually Σ1, since one only needs to check the existence of
a proof object (the conversion sequence) for the equality between two terms, while weak
equality is Π2, since it asks whether for every number n, there is a conversion that makes
the terms coincide up to depth n.

This discussion applies to our notions of fpc’s and wfpc’s, and also periodic and weakly
periodic terms. From this point of view, the clocked Böhm Trees offer a refinement of these
two types of equality, replacing dichotomy with a spectrum, or hierarchy, of equality, by
augmenting the syntactic shape of the terms with the information of how quickly the com-
putation they define is performed. For the case of λ-calculus, this spectrum was displayed
in Figure 1.

Concluding this elaboration on cyclic terms, we note that also for the fragment of
λ-calculus consisting of µ-terms, with the definition of the corresponding µ-rule µx.A(x)→
A(µx.A(x)), the notion of clocked Böhm Trees may be interesting, as it yields an equality
strictly in between weak and strong equality, as it is called in [12, 4]. There µ-terms are
treated extensively, for their application as a representation of recursive types.

24 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

7. Atomic Clocks

We have introduced clocked Böhm Trees for discriminating λ-terms. In this section, we refine
the clocks to measure not only the number of head steps, but, in addition, the position of
each of these steps. We call these clocks ‘atomic’. We write →h,p for the head reduction
step at position p.

Before we give the formal definition (Definition 7.1), we consider a motivating example.
We discriminate Y2 from U2. First, we reduce both terms to simple reducts:

Y2x ≡ Y0δδx ։ ηηδx where η = λab.b(aab)

U2x ≡ Y0(SS)Ix ։ θθIx where θ = λabc.bc(aabc)

Second, we compute the atomic clocks of these simple reducts, that is, the positions of the
head steps, as follows:

ηηδx→h,11 (λb.b(ηηb))δx →h,1 δ(ηηδ)x

→h,1 (λb.b(ηηδb))x →h,ǫ x(ηηδx)

θθIx→h,11 (λbc.bc(θθbc))Ix→h,1 (λc.Ic(θθIc))x

→h,ǫ Ix(θθIx)→h,1 x(θθIx)

Thus the atomic clocks of these terms are:

BT (ηηδx) = [11, 1, 1, ǫ](xBT (ηηδx))

BT (θθIx) = [11, 1, ǫ, 1](xBT (θθIx))

Note that both terms have the (non-atomic) clocked Böhm Tree T ≡ [4](xT). Hence the
method from the previous section is not applicable. However, the atomic clocks do allow
us to discriminate the terms. Hence Y2 6=β U2 (by Corollary 4.12 which generalises to the
setting of atomic BT’s). Note that the (non-atomic) clocked BT’s can be obtained by taking
the length of the lists of positions.

For lists ~p, ~q of positions, we write ~p · ~q for concatenating ~p to ~q. We write →h,〈p1,...,pn〉

for the rewrite sequence →h,p1 · · · →h,pn consisting of steps at position p1,. . . ,pn.

Definition 7.1 (Atomic clock Böhm Trees). Let M ∈ Ter(λ). The atomic clock Böhm
Tree BT (M) of M is an annotated infinite term defined as follows. If M has no hnf, then
define BT (M) as ⊥. Otherwise, there is a head reduction

M →h,p1 · · · →h,pk λx1. . . . λxn.yM1 . . .Mm

of length k to hnf. Then we define BT (M) as the term:

BT (M) = [〈p1, . . . , pk〉]λx1. . . . λxn.yBT (M1) . . .BT (Mm)

The theory developed for (non-atomic) BT’s in Section 4 generalises to atomic trees, as
follows.

Theorem 7.2. For lists of positions ~p, ~q we define ~p ≥ ~q whenever ~q is a subsequence of ~p,
and ~p > ~q if additionally ~p 6= ~q. Here 〈a1, . . . , an〉 is a subsequence of 〈b1, . . . , bm〉 if there
exist indexes i1 < i2 < . . . < in such that 〈a1, . . . , an〉 = 〈bi1 , . . . , bin〉.

Using this notation for comparing the atomic annotations (lists of positions), Proposi-
tion 4.5, Theorem 4.6, Proposition 4.9, Theorem 4.11, and Corollary 4.12 remain valid.

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 25

As an application of using atomic clocks to discriminate λ-terms, we show that every
combination of the fpc-generating vectors 2(SS)S∼nI from Theorem 3.8 applied to Curry’s
fpc Y0 gives rise to inconvertible fpc’s. We note that this cannot be proved using non-atomic
clocks, as for example we have BT (Y0(SS)S

∼nI(SS)S∼mI) = BT (Y0(SS)S
∼mI(SS)S∼nI).

Proposition 7.3. Let Gn = 2(SS)S∼nI the fpc-generating vectors from Theorem 3.8. For
n1, . . . , nk ∈ N we define

Y
〈n1,...,nk〉 = Gnk

[. . .Gn1
[Y0] . . .]

All these fpc’s are inconvertible, that is, ~n 6= ~m implies Y~n 6=β Y ~m.

Proof. In this proof we abbreviate context filling by simply concatenating the contexts, so
that for Y〈n1,...,nk〉 defined above we have Y〈n1,...,nk〉 = Y0Gn1

. . .Gnk
.

For ~p = 〈1m1 , . . . , 1mk〉 a list of positions we define ~p× n as follows:

~p× 0 = 〈〉

~p× n = ~p · (〈1m1−1, . . . , 1mk−1〉 × (n − 1)) (n > 0)

For example, we have 〈15〉 × 3 = 〈15, 14, 13〉.
We also use the following abbreviations, for n ∈ N:

G
′
n = 2S

∼n
I θ = λabc.bc(aabc)

Gn = 2ζS∼n
I ζ = SS = λabc.bc(abc)

(Note that ωζ →β θ.) For n1, . . . , nk ∈ N we define an fpc Y by

Y = θθG′
n1
Gn2

. . .Gnk

so that we have the following reduction:

Y
〈n1,...,nk〉x ≡ Y0Gn1

. . .Gnk
։ Yx (k ≥ 1)

and we observe that Yx is a simple term (as can be inferred from the reductions below).
Let Vm = 2N1 . . . Nm be a vector of length m. Then we have, for every n ≥ 0:

θθG′
nVm ≡ θθS∼n

IVm

→h,(〈1n+m+1〉×3)×n SI(θθS∼n
I)Vm (†)n,m

→h,〈1m+1〉×2 (λc.Ic(θθS
∼n

Ic))Vm

For M an arbitrary term, we have the following reductions (∗)n,m (n,m ≥ 0):

(λc.Ic(Mc))GnVm ≡ (λc.Ic(Mc))ζS∼n
IVm

→h,〈1n+m+1〉 Iζ(Mζ)S∼n
IVm

→h,〈1n+m+2〉 ζ(Mζ)S∼n
IVm (∗)n,m

→h,(〈1n+m+1〉×3)×n SI(MGn)Vm

→h,〈1m+1〉×2 (λc.Ic(MGnc))Vm

Moreover, let (‡) denote the following rewrite sequence:

(λc.Ic(Yc))x →h,〈10,11〉 x(Yx) (‡)

The rewrite sequence Yx ։h x(Yx) is composed of k subsequences as follows:

(†)n1,m1
, (∗)n2,m2

, (∗)n3,m3
, . . . , (∗)nk ,mk

, (‡) (∗)

26 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

where mi is defined by mk = 1 and mi = mi+1 + ni+1 + 2 (1 ≤ i < k). For a rewrite
sequence σ, let 〈σ〉 denote the sequence of positions of the steps in σ. Note that the atomic
clock Böhm Tree of Y~nx is of the form BT (Y~nx) = [〈(∗)〉] x([〈(∗)〉] x(. . .)).

As the goal is to prove inconvertibility, we may without loss of generality assume that
nk 6= 0 since the fact MN 6=β M ′N =⇒ M 6=β M ′ allows us to append Gn with arbitrary
n > 0. We argue that the starting positions of the subsequences 〈(∗)ni,mi

〉 in 〈(∗)〉 coincide

with the occurrences of subsequences of the form (♪) 1l, 1l+1, 1l, 1l−1, 1l−2 (for some
l ∈ N), that is, an increment followed by four decrements. (In particular, we find exactly
the patterns for l = ni+mi+1.) This suffices to derive k, n1, . . . , nk since then the number
of occurrences (♪) is k − 1, and the ni’s are a function of the length of the blocks; see also
Example 7.4 below. This shows that ~n 6= ~m implies that ¬(BT (Y~n) =∃ BT (Y ~m)), and

hence we conclude Y~n 6=β Y ~m by atomic version of Corollary 4.12, see Theorem 7.2.
For the sequences 〈(∗)ni,mi

〉 where ni > 0, notice that 〈(∗)ni,mi
〉 starts with the positions

1ni+mi+1, 1ni+mi+2, 1ni+mi+1, 1ni+mi , 1ni+mi−1, a subsequence of the form (♪); this is the
only occurrence of four consecutive decrements in 〈(∗)ni,mi

〉. For sequences 〈(∗)ni,mi
〉 with

ni = 0, we have i < k (since nk 6= 0), and 〈(∗)ni,mi
〉 is of the form 1mi+1, 1mi+2, 1mi+1, 1mi .

This combined with the first element mi − 1 = mi+1 + ni+1 + 1 of 〈(∗)ni+1,mi+1
〉 is an

occurrence of the form (♪). Finally, we need to check that there are no other occurrences of
(♪) in 〈(∗)〉. Note that other occurrences of four consecutive decrements can only occur as
overlaps between 〈(∗)ni,mi

〉 and 〈(∗)ni+1,mi+1
〉. Each of the sequences 〈(∗)ni+1,mi+1

〉 starts

with an increment 1ni+1+mi+1+1, 1ni+1+mi+1+2, thus only the first element can overlap. For
ni = 0, we have already analyzed the overlap, and for ni > 1, only the last three elements
of 〈(∗)ni,mi

〉 are not decreasing. This concludes the proof.

Example 7.4. Let Y = θθG′
2G0G1 so that Y〈2,0,1〉x ։ Yx as in the above proof. According

to the calculations in the proof, the atomic clock of the simple term Yx is

〈19, 18, 17, 18, 17, 16, 17, 16, 1 5 , 1 6 , 1 5 , 1 4 ,
︸ ︷︷ ︸

(♪)

(♪)
︷ ︸︸ ︷

13, 14, 13, 12, 11, 12, 11, 1 0 , 1 1 〉

where we have indicated the occurrences of (♪), and have alternatingly used italics to
separate the blocks (†)2,6, (∗)0 ,4 , (∗)1,1, and (‡).

8. Clocked Lévy–Longo and Berarducci Trees

In fact, there are three main semantics for the λ-calculus: BT, LLT, and BeT; see [1, 6, 8,
18, 5]. In the Böhm Tree semantics, a term is meaningful only if it has a hnf. The Lévy–
Longo semantics weakens this condition to whnf’s, and thereby allows more terms to be
distinguished. The Berarducci Tree semantics is a further weakening where only root-active
terms are discarded as meaningless.

The notions from the Sections 4 and 7 generalize directly to LLT and BeT semantics.
We only treat the non-atomic versions here.

Definition 8.1 (Clocked Lévy–Longo Trees). Let M be a λ-term. The clocked Lévy–
Longo Tree LLT (M) of M is an annotated potentially infinite term defined as follows.
If M has no whnf, then define LLT (M) as ⊥. Otherwise, there exists a head rewrite

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 27

sequence M →k
h λx.N or M →k

h xM1 . . .Mm to whnf. In this case, we define LLT (M) as
[k]λx.LLT (N) or [k]xLLT (M1) . . . LLT (Mm), respectively.

Definition 8.2 (Clocked Berarducci Trees). Let M be a λ-term. The clocked Berarducci
Tree BeT (M) of M is an annotated potentially infinite term defined as follows. IfM is root-

active, let BeT (M) ≡ ⊥. If M →k
h N rewrites to a root-stable term N ≡ x, N ≡ λx.P or

N ≡ PQ, then define BeT (M) as [k]x, [k]λx.BeT (P) or [k]BeT (P)BeT (Q), respectively.

Example 8.3. Consider the terms M = PP with P = λx.λy.xx and N = QQ with
Q = λx.λy.λz.xx. Then we find

LLT (M) ≡ [1]λy.LLT (M)

LLT (N) ≡ [1]λy.[0]λz.LLT (N)

Thus, in LLT (M) every λ requires one head reduction step whereas in LLT (N) every
second λ is obtained for ‘free’ (that is, in 0 steps).

We remark that M and N cannot be distinguished in the Böhm Tree semantics since
BT (M) ≡ BT (N) ≡ ⊥.

9. Concluding Remarks

We conclude with an encompassing conjecture, and some further research questions.

Conjecture. Building fpc’s with fpc-generating vectors is a free construction, that is, there
are no non-trivial identifications.

A first step is found in Intrigila’s theorem Y δ 6=β Y , for any fpc Y . A second step is that the
Böhm sequence is duplicate-free. A third step is found in our proof that the Scott sequence
is duplicate-free, and Proposition 7.3, which states that there are no identifications when
starting the construction with Y0.

Other parts of the conjecture are as follows. Let Y, Y ′ be fpc’s and B1 . . . Bn, C1 . . . Ck

be fpc-generating vectors.

(1) Y δ =β Y ′δ iff Y =β Y ′.
(2) Y B1 . . . Bn =β Y ′B1 . . . Bn iff Y = Y ′.
(3) Y B1 . . . Bn 6=β Y C1 . . . Ck if B1 . . . Bn 6≡ C1 . . . Ck.

For general fpc’s Y , Y ′ these conjectures may be beyond current techniques, but for the well-
known fpc’s of Curry and Turing, and the fpc-generating vectors introduced here, including
their versions for n > 3, these problems are tractable.

Other directions of research could be

(1) For atomic clock Böhm Trees (Section 7) we have recorded the positions of head re-
duction steps building up the head normal form. What about a generalization to other
spine reduction strategies [3]? Would this give rise to a stronger discrimination method?

(2) The notion of simple terms could be refined by focusing on an infinite path in the
clocked Böhm Trees. Then duplication of redexes may be allowed along other paths,
thereby making the method applicable to a larger class of terms.

(3) What general condition on a given term’s head reduction is sufficient to ensure that it
possesses a ‘minimal clock’?

(4) Is it possible to characterize fully cyclic terms using a coinductive version of simple type
theory?

28 J. ENDRULLIS, D. HENDRIKS, J. W. KLOP, AND A. POLONSKY

(5) Can the notion of a clock itself be given a type-theoretic interpretation?
(6) Can the clocks method be used to give a quantitative measure for optimization of

functional programs?
(7) Is it possible, using the clocks method, to extend Intrigila’s result [16], and prove that

there is no fixed point combinator Y and no n ∈ N such that Y =β Y δ∼n? This is an
instance of the conjecture above.

(8) Also interesting is to systematically study all solutions of equations M~x = ~x(M~x) (we
might call them vector-fpc’s) where it is understood that ~x = x1 . . . xn associates to
the right when it occurs at an active position ~xM = x1(x2(. . . (xnM) . . .)), and to
the left if it occurs in a passive position M~x = Mx1x2 . . . xn. Can these solutions M
be discriminated by the methods presented here? Notice that the terms M lead to

fpc’s; for example M I∼n−1 is an fpc (see Section 3.3), or more generally, M ~N with
~N = N1 . . . Nn−1 is an fpc when ~Nx ։β x.

(9) Another interesting notion is that of prime fpc’s, that is, fpc’s Y not of the form

Y = Y ′ ~P where Y ′ is an fpc. In λ-calculus no prime fpc’s exist, due to Y =β Y (KY),
but in the λI-calculus the notion is non-trivial.

Acknowledgements. We thank Raymond Smullyan for raising our awareness of the mys-
tery and magic surrounding fixed point combinators, Hans Zantema and Johannes Wald-
mann for communicating some facts about Smullyan’s Owl (SI), Henk Barendregt for in-
tensive discussions which led us to simple terms, Rick Statman for his stimulating interest
in this work and suggesting some future elaboration, and Gordon Plotkin for his question
and subsequent communication pertinent to Selinger’s work concerning the existence of
unorderable models of the λ-calculus.

References

[1] S. Abramsky and C.-H.L. Ong. Full Abstraction in the Lazy Lambda Calculus. Information and Com-
putation, 105(2):159–267, 1993.

[2] K. Aehlig and F. Joachimski. On Continuous Normalization. In Proc. Workshop on Computer Science
Logic (CSL 2002), volume 2471 of LNCS, pages 59–73. Springer, 2002.

[3] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of Studies in Logic and
The Foundations of Mathematics. North-Holland, revised edition, 1984.

[4] H.P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspectives in Logic.
Cambridge University Press, 2011.

[5] H.P. Barendregt and J.W. Klop. Applications of Infinitary Lambda Calculus. Information and Compu-
tation, 207(5):559–582, 2009.

[6] A. Berarducci and B. Intrigila. Church–Rosser λ-theories, Infinite λ-calculus and Consistency Problems.
Logic: From Foundations to Applications, pages 33–58, 1996.

[7] I. Bethke. Lambda Calculus. Chapter 10 in [30].
[8] I. Bethke, J.W. Klop, and R.C. de Vrijer. Descendants and Origins in Term Rewriting. Information and

Computation, 159(1–2):59–124, 2000.
[9] C. Böhm. The CUCH as a Formal and Description Language. Annual Review in Automatic Programming,

3:179–197, 1963.
[10] Th. Coquand and H. Herbelin. A-Translation and Looping Combinators in Pure Type Systems. Journal

of Functional Programming, 4(1):77–88, 1994.
[11] M. Dezani-Ciancaglini, P. Severi, and F. J. de Vries. Infinitary Lambda Calculus and Discrimination of

Berarducci Trees. Theoretical Computer Science, 2(298):275–302, 2003.
[12] J. Endrullis, C. Grabmayer, J.W. Klop, and V. van Oostrom. On Equal µ-Terms. Theoretical Computer

Science, 412(28):3175–3202, 2011.

DISCRIMINATING LAMBDA-TERMS USING CLOCKED BÖHM TREES 29

[13] J. Endrullis, D. Hendriks, and J.W. Klop. Modular Construction of Fixed Point Combinators and
Clocked Böhm Trees. In Proc. Symp. on Logic in Computer Science (LICS 2010), pages 111–119, 2010.

[14] H. Geuvers and B. Werner. On the Church–Rosser Property for Expressive Type Systems and its
Consequences for their Metatheoretic Study. In Proc. Symp. on Logic in Computer Science (LICS 1994),
pages 320–329, 1994.

[15] M. Goldberg. Constructing Fixed-Point Combinators Using Application Survival. Technical Report
BRICS RS-95-35, Dept. of Computer Science, University of Aarhus, 1995.

[16] B. Intrigila. Non-Existent Statman’s Double Fixed Point Combinator Does Not Exist, Indeed. Informa-
tion and Computation, 137(1):35–40, 1997.

[17] F. Joachimski. Confluence of the Coinductive λ-Calculus. Theoretical Computer Science, 311(1-3):105–
119, 2004.

[18] R. Kennaway and F.-J. de Vries. Infinitary Rewriting. Chapter 12 in [30].
[19] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary Lambda Calculus. Theoretic Com-

pututer Science, 175(1):93–125, 1997.
[20] J.W. Klop. New Fixed Point Combinators from Old. In Reflections on Type Theory, λ-Calculus, and

the Mind. Essays Dedicated to Henk Barendregt on the Occasion of his 60th Birthday, pages 197–210.
2007. Online version: http://www.cs.ru.nl/barendregt60.

[21] G.D. Plotkin. A Semantics for Type Checking. In Proc. Conf. on Theoretical Aspects of Computer
Software (TACS 1991), volume 526 of LNCS, pages 1–17. Springer, 1991.

[22] G.D. Plotkin, 2007. Personal communication at the symposium for H. Barendregt’s 60th birthday.
[23] D. Sangiorgi and J.J.M.M. Rutten. Advanced Topics in Bisimulation and Coinduction, volume 52 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2012.
[24] D.S. Scott. Some Philosophical Issues Concerning Theories of Combinators. In C. Böhm, editor, Lambda

Calculus and Computer Science Theory, volume 37 of LNCS, pages 346–366, 1975.
[25] P. Selinger. Order-Incompleteness and Finite Lambda Models. In Proc. Symp. on Logic in Computer

Science (LICS 1996), pages 432–439, 1996.
[26] P. Selinger. Functionality, Polymorphism, and Concurrency: a Mathematical Investigation of Program-

ming Paradigms. PhD thesis, University of Pennsylvania, 1997.
[27] P. Selinger. Order-Incompleteness and Finite Lambda Reduction Models. Theorical Computer Science,

309(1–3):43–63, 2003.
[28] R. Smullyan. To Mock a Mockingbird, and Other Logic Puzzles: Including an Amazing Adventure in

Combinatory Logic. Alfred A. Knopf, New York, 1985.
[29] R. Statman. The Word problem for Smullyan’s Lark Combinator is Decidable. Journal of Symbolic

Computation, 7:103–112, 1989.
[30] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2003.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Overview
	Related Work

	2. Preliminaries
	Infinitary lambda-calculus lambda infinity beta

	3. Fixed Point Combinators
	3.1. The Böhm Sequence
	3.2. The Scott Sequence
	3.3. Generalized Generation Schemes

	4. Clock Behaviour of Lambda Terms
	5. An Answer to a Question of Plotkin
	6. Clocked Böhm Trees and Periodic Terms
	7. Atomic Clocks
	8. Clocked Lévy–Longo and Berarducci Trees
	9. Concluding Remarks
	Acknowledgements

	References

