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Abstract. In this paper, for a given sequentially Yoneda-complete T1 quasi-metric space
(X, d), the domain theoretic models of the hyperspace K0(X) of nonempty compact subsets
of (X, d) are studied. To this end, the ω-Plotkin domain of the space of formal balls BX,
denoted by CBX is considered. This domain is given as the chain completion of the
set of all finite subsets of BX with respect to the Egli-Milner relation. Further, a map
φ : K0(X) → CBX is established and proved that it is an embedding whenever K0(X)
is equipped with the Vietoris topology and respectively CBX with the Scott topology.
Moreover, if any compact subset of (X, d) is d−1-precompact, φ is an embedding with
respect to the topology of Hausdorff quasi-metric Hd on K0(X). Therefore, it is concluded
that (CBX,⊑, φ) is an ω-computational model for the hyperspace K0(X) endowed with
the Vietoris and respectively the Hausdorff topology.

Next, an algebraic sequentially Yoneda-complete quasi-metric D on CBX is introduced
in such a way that the specialization order ⊑D is equivalent to the usual partial order of
CBX and, furthermore, φ : (K0(X),Hd) → (CBX,D) is an isometry. This shows that
(CBX,⊑, φ,D) is a quantitative ω-computational model for (K0(X),Hd).

Introduction

In this paper, we further continue a project carried out to investigate connections between
domain theory and quasi-metric spaces [AHPR09]. Here, we provide some domain theoretic
(computational) models for the hyperspace of nonempty compact subsets of quasi-metric
spaces. On one hand, the recent applications of quasi-metric spaces in different subjects
of computer science, e.g. denotational semantics of programming languages, complexity
and dual-complexity spaces and complexity distances between algorithms ([RV08, RSV09,
GRS08, RSV03, RS99, RRV08]) and, on the other hand, a new insight of the domain
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theoretic point of view into the theory of hyperspaces and its new applications within
mathematics, e.g. discrete dynamical systems, measure and integration theory ([Eda95a,
Eda97, Eda95b]), motivate establishing computational models of these structures.

Finding a domain theoretic (computational) model for a topological space (X, τ) amounts
to providing a suitable partially ordered set (P,⊑) together with a topological embedding
φ from (X, τ) to (P,⊑) endowed with the Scott topology, denoted by σ. This is a variant of
a fundamental problem in domain theory, called the maximal point space problem, which
demands a homeomorphism between (X, τ) and the space of maximal point of (P,⊑). The
study of computational models for various type of topological spaces goes back to the works
of Edalat and respectively Blanck [Eda95a, Bla00, Bla97]. Later, the maximal point space
problem was explicitly formulated and became a subject of intensive investigations by many
authors [Law97, BL08, Mar98, Rut98]. Some special cases of this problem have satisfactory
solutions [AHP09, KKW04].

The domain theoretic construction BX of the space of formal balls, introduced by
Edalat and Heckmann, provides a concrete (computational) model for a metric space (X, d)
[EH98]. The importance of this construction is that, first of all, it connects some metric
properties of (X, d) to the order theoretic properties of BX. Secondly, it ties the above
notion of computational model to the notion of computability for metric space (X, d) [ES99,
Law98]. The notion of formal balls is also defined in the same way for a quasi-metric space
(X, d) and the order theoretic properties of BX are tightly connected to the topological
properties of (X, d) [AHPR09, RV09, RV10]. In particular, for a T1 quasi-metric space
(X, d) is sequentially Yoneda-complete if and only if BX is a directed complete partially
ordered set.

Edalat and Heckmann also constructed the Plotkin powerdomain PBX of the space of
formal balls of a metric space (X, d) and showed that there is a one-to-one correspondence
between the nonempty compact subsets of (X, d) and the maximal elements of the Plotkin
powerdomain of BX. As an application, a domain theoretic proof was given for a classical
result of Hutchinson ([Hut85]) which states that if (X, d) is complete, then any hyperbolic
iterated function system has a unique non-empty compact attractor. It can be shown that
this construction is a computational model for the hyperspace of nonempty compact subsets
of X, denoted by K0(X), with the Vietoris or equivalently the Hausdorff topology. This
fact was also proved in a different way by Martin in [Mar04]. His interesting idea is based
on the existence of a certain measurement, called Lebesgue measurement, on any domain D
which models the metric space (X, d). Subsequently, Liang and Kou in [LK04] generalized
these results to continuous dcpo’s which have the Lawson condition, i.e. the Lawson and
Scott topologies coincide on the space of maximal points. Indeed, under the Lawson condi-
tion, it is proved that there is a homeomorphism between the space of nonempty compact
subsets of maximal points of a continuous dcpo D endowed with the Vietoris topology and
the space of maximal points of Plotkin powerdomain D equipped with the induced Scott
topology. More recently, in another line of research, Berger et al. ([Ber10]) showed that
for any T1 topological space which is represented by an ω-domain D, the hyperspace of its
nonempty compact subsets can be represented by the Plotkin powerdomain PD of domain
D. This result was made possible by a theorem of Smyth ([Smy83]) which states that for
any ω-continuous dcpo D the space (PD,σ) is homeomorphic to the space of D-lenses,
i.e. nonempty compact subsets of domain D which are intersection of a closed set and a
saturated set, endowed with the Vietoris topology.
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In the present work, we study computational models of the hyperspace K0(X) of a
T1 quasi-metric space (X, d) equipped with the Vietoris and respectively the Hausdorff
topology, proving that whenever (X, d) satisfies certain completeness properties, e.g. Yoneda
and respectively Smyth completeness, this space has a computational model. It is worth
mentioning that the space of formal balls of a quasi-metric space does not generally satisfy
the Lawson nor countable based conditions. Therefore, the results of Liang and Kou [LK04]
and Berger et al. [Ber10] do not apply to the present context. Also, unlike the metric case,
there is no natural candidate for a measurement on the space of formal balls of a quasi-
metric space and hence the method used by Martin in [Mar04] cannot be applied here
either.

Edalat and Heckmann used the Plotkin powerdomain PBX given as the ideal comple-
tion of the abstract basis of finite subset of BX, PfinBX, with respect to the Egli-milner
relation, ≺EM , to present a computational model of K0(X), for every metric space (X, d).
To this end, they employed the symmetry axiom of metric d, to get a key fact that any
maximal ideal has a cofinal ω-chain. In the case of quasi-metric spaces, the Plotkin power-
domain PBX can also be defined, though, the lack of symmetry for the quasi-metric (X, d)
prevents us from finding cofinal ω-chains in maximal ideals. That is why we prefer to work
directly with the ω-chains and this leads us to the chain-completion construction instead.

So, for a T1 quasi-metric space (X, d), we consider the space BX of formal balls and let
CBX be the chain completion of (PfinBX,≺EM ). This construction is called the ω-Plotkin
domain. By the general construction of chain completion, CBX is a continuous ω-dcpo, i.e.
a continuous poset in which every ω-chain has a least upper bound. Now, to achieve our
purpose in finding a computational model, we define a one-to-one map φ : K0(X) → CBX,
which is an embedding if we consider the Vietoris topology on K0(X) and assume that (X, d)
is a sequentially Yoneda-complete T1 quasi-metric space. Moreover, φ is an embedding with
respect to the topology of the Hausdorff quasi-metric Hd on K0(X) if any compact subset
of X is d−1-precompact. Therefore, (CBX,φ) serves as an ω-computational model for
K0(X) endowed with the mentioned topologies. Although it is not known whether CBX
is a dcpo and therefore a computational model of K0(X), nevertheless, thanks to Fact 1.1
and Theorem 2.5, the ideal completion of CBX gives a computational model for K0(X).

In section 5, we take another well-known notion of computational model, called the
quantitative ω-computational model. This is an ω-computational model (P,⊑, φ) carrying
an additional quasi-metric D such that φ is an isometry from (X, d) into (P,D) together
with some extra conditions which capture the order structure of (P,⊑) (Definition 4.1). A
modified version of this notion can be found in [RV09, Rut98, Sch03, Was06]. We prove that
in fact CBX is a quantitative ω-computational model for (K0(X),Hd), by constructing a
quasi-metric D on CBX. To this end, we consider a quasi-metric q defined by Romaguera
and Valero ([RV09]) on BX. The primary reason to choose this quasi-metric on BX is that
(BX, q) is a quantitative computational model for (X, d). Therefore, its specialization order
⊑q is equivalent to the partial order of BX. Consequently, one could naturally extend q to
the Hausdorff quasi-metric Hq on PfinBX of the finite subsets of BX, whose main property
is that it induces the Egli-Milner relation on PfinBX. Subsequently, the quasi-metric Hq

can be lifted up to a quasi-metric D on CBX in such a way that the ordered structures
(CBX,⊑D) and (CBX,⊑) coincide. Once D is established one can show that (CBX,D)
is a Yoneda-complete space and in fact Yoneda-completion of (PfinBX,Hq). This makes
(CBX,⊑, φ,D) a quantitative ω-computational model for (K0(X),Hd).
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We, finally, conclude this paper by comparing the Plotkin powerdomain and the ω-
Plotkin domain constructions. We prove that if (X, d) is either, Smyth-complete and all
of its compact subsets are d−1-precompact, or an ω-algebraic Yoneda-complete space, then
the Plotkin Powerdomain PBX is order-isomorphic to CBX.

1. Preliminaries

We assume the reader is familiar with the basic definitions and facts about domain theory
which can be found in ([AJ94, GHK+03]), though, we briefly explain some of the definitions
and facts which are more crucial in this note.

Let (P,⊑) be a partially ordered set (abbr. by poset). The binary relation ≺ is called
an auxiliary relation on the poset (P,⊑) if (1) p ≺ p implies p ⊑ p, (2) p ⊑ s ≺ r ⊑ q
implies p ≺ q and (3) satisfies the interpolation property, i.e. for any finite subset M of P
and p ∈ P , if for every m ∈ M , m ≺ p then there exists some q ∈ P such that m ≺ q ≺ p,
for every m ∈ M . The pair (P,≺) is called an abstract basis, if ≺ is a transitive relation
which also satisfies the interpolation property. A nonempty directed lower subset I of P is
called a round ideal if for any x ∈ I there is y ∈ I such that x ≺ y. The set of all round
ideals of P partially ordered by ⊆ is called the ideal completion of P , denoted by Idl(P ).
Let ↑↑p = {q : p ≺ q} and ↓↓p = {q : q ≺ p}. An auxiliary relation is called approximating if
↓↓p ⊆ ↓↓q implies p ⊑ q. One can see that the set {↑↑p : p ∈ P} forms a basis for a topology
called the pseudoScott topology on P , denoted by Pσ. The following fact is needed for the
proof of Theorem 3.12.

Fact 1.1. Let (P,⊑) be a poset with an auxiliary relation ≺. Then

(1) (Idl(P ),⊆) is a continuous dcpo.
(2) If ≺ is approximating on P , then the map j : P → Idl(P ) defined by j(p) = ↓↓p is an

embedding of (P,Pσ) into (Idl(P ), σ) where σ denotes the Scott topology.
(3) If ≺ is approximating and all ≺-directed sets of P have upper bounds, then j(maxP ) =

max Idl(P ).

Proof. See [KKW04], Theorem 2.3.

Below, we fix the key notion of a computational model for a T0 topological space.
Before that, recall any T0 topology τ on a space X induces a partial order ⊑τ , called the
specialization order, which is defined by

x ⊑τ y ⇔ x ∈ clτy,

for all x, y ∈ X. clτy stands for the closure of y with respect to τ . Also, a partially ordered
set (P,⊑) is an ω-dcpo if every ⊑-ascending sequence has a least upper bound (see [Kni91]).

Definition 1.2. A triple (P,⊑, φ) is a (ω-)computational model for (X, τ) whenever

(1) (P,⊑) is a continuous (ω-)dcpo.
(2) φ is a topological embedding from (X, τ) into (P,⊑) endowed with the Scott topology.
(3) φ(Max(X,⊑τ )) =Max(P,⊑).

Blanck in [Bla00] considered this definition as a domain representation for (X, τ) with-
out mentioning the third condition. If we restrict ourselves to T1 topological spaces, then
the above definition coincides with the usual definition of computational model in which
φ defines a homeomorphism from (X, τ) onto the space of maximal elements of (P,⊑)
[KKW04, MMR02].
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Next, we define the notion of a quasi-metric space. For more details the reader may
consult the references [FL82, Kel63, Kün95, Kü02, KS02]. A quasi-metric d on a set X is
a function d : X ×X → [0,∞) such that for any x, y, z ∈ X:

(1) x = y iff d(x, y) = d(y, x) = 0,
(2) d(x, z) ≤ d(x, y) + d(y, z).

If we drop the if part of condition (1), d is called a quasi-pseudometric. The pair (X, d) is
called quasi-(pseudo)metric space. Each quasi-metric d on the set X induces a T0 topology
on X, denoted by τd, whose base is the set of all balls of the form Nǫ(x) = {y ∈ X :
d(x, y) < ǫ}, for any x ∈ X and ǫ > 0. The topology τd is T1 if and only if the condition
(1) can be replaced by: x = y ⇔ d(x, y) = 0. The quasi-metric d generates another quasi-
metric d−1 on the set X, called the conjugate of d, defined by d−1(x, y) = d(y, x). Also, the
function d∗ can be defined on X×X by d∗(x, y) = max{d(x, y), d−1(x, y)} which is a metric
on X. The quasi-metric space (X, d) is point symmetric if τd ⊆ τd−1 . For example, any
compact T1 quasi-metric space (X, d) is point symmetric ([Wes57], Lemma 2). A sequence
(xn)n>0 is called Cauchy (biCauchy) sequence if for every ǫ > 0 there is N > 0 such that
d(xn, xm) < ǫ whenever m ≥ n ≥ N (m,n ≥ N). An element x ∈ X is called a Yoneda
limit of the sequence (xn)n>0, if for any y ∈ X,

d(x, y) = inf
n

sup
m≥n

d(xm, y).

The quasi-metric space (X, d) is sequentially Yoneda-complete if every Cauchy sequence has
a Yoneda limit. It is easy to see that the Yoneda limit is unique if it exists. A point e ∈ X
is called finite if for any Cauchy sequence (xn)n>0 in X with the Yoneda limit x,

d(e, x) = sup
n

inf
m≥n

d(e, xm).

The quasi-metric space (X, d) is called algebraic if each element of X is the Yoneda limit
of a Cauchy sequence of finite elements. The quasi-metric space (X, d) is Smyth-complete
if any Cauchy sequence (xn)n>0 converges strongly in X, i.e. there is a point x ∈ X such
that (xn)n>0 converges to x in the topology of the metric d∗.

Finally, we review some basic definitions from the hyperspace theory [CR06, RR02]. Let
(X, d) be a bounded quasi-metric space and K0(X) denote the set of all nonempty compact
subsets of X. The upper Hausdorff quasi-pseudometric H+

d and the lower Hausdorff quasi-

pseudometric H−
d on K0(X) are defined as follows:

H+
d (A,B) = sup

b∈B

d(A, b) , H−
d (A,B) = sup

a∈A

d(a,B)

for all A,B ∈ K0(X), where d(A, x) = infa∈A d(a, x) and d(x,A) = infa∈A d(x, a). The
Hausdorff quasi-pseudometric Hd is defined as H+

d ∨H−
d or equivalently

Hd(A,B) = max{sup
b∈B

d(A, b), sup
a∈A

d(a,B)}

for all A,B ∈ K0(X). It is known that H+
d , H−

d and Hd are quasi-pseudometrics on
K0(X). For a T1 quasi-metric space (X, d), Hd is a quasi-metric. Furthermore, for any
A,B ∈ K0(X),

Hd(A,B) = 0 if and only if B ⊆ A ⊆ clτdB. (∗)

In [AP10], the authors present an example which shows that (K0(X),Hd) may not be a
T1 space, even though (X, d) is a T1 quasi-metric space. However, one can infer from (∗)
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that (K0(X),Hd) is T1 if (X, d) is Hausdorff (more generally KC-space in which all compact
subsets are closed).

Recall that a subset K of a quasi-metric space (X, d) is d-precompact if for any ǫ > 0,
there is a finite subset F of K such that for any k ∈ K, d(x, k) < ǫ, for some x ∈ F . Unlike
the metric spaces, a compact subset of a quasi-metric space (X, d) is not necessarily d−1-
precompact. The following theorem shows that if we impose this extra condition to (X, d),
then the Smyth-completeness of (X, d) can be lifted up to (K0(X),Hd). This theorem is
used in section 5, Lemma 4.14.

Theorem 1.3. Let (X, d) be a Smyth-complete quasi-metric space such that any compact
subset of X is d−1-precompact. Then (K0(X),Hd) is Smyth-complete.

Proof. See [AP10], Theorem 3.7.

There are other topologies on the hyperspace K0(X). The most famous of these topolo-
gies is the Vietoris topology τV which is the supremum of lower Vietoris topology and
upper Vietoris topology. The lower Vietoris topology τ−V is generated by all sets of the form

♦V = {K ∈ K0(X) : K ∩ V 6= ∅} whereas the upper Vietoris topology τ+V is generated by
all sets of the form �V = {K ∈ K0(X) : K ⊆ V } for open V . In general, this topology is
coarser than the topology of Hausdorff quasi-pseudometric Hd on the hyperspace K0(X).
However, whenever any compact subset of X is d−1-precompact, these topologies coincide
[RR02].

2. The space of formal balls and its ω-Plotkin domain

The space of formal balls of a metric space (X, d), denoted by BX, was defined by Edalat
and Heckmann in [EH98]. This construction gives a concrete computational model for
metric spaces in which the order-theoretic properties of BX are closely connected with the
metric properties of (X, d).

In [Rut98], Rutten was probably the first who studied the space of formal balls for quasi-
metric spaces via co-Yoneda embedding. More recently, Ali-Akbari et al. in [AHPR09] and
Romaguera and Valero in [RV09, RV10] studied the set of formal balls for quasi-metric
spaces in the spirit of Edalat and Heckmann’s work.

Definition 2.1. For a quasi-metric space (X, d), the space of formal balls is the pair (BX,⊑)
where

BX = {(x, r) : x ∈ X and r ≥ 0},

and
(x, r) ⊑ (y, s) if and only if d(x, y) ≤ r − s,

for any (x, r), (y, s) ∈ BX. It is easy to see that (BX,⊑) is a poset. An element (x, r) of
BX is called a formal ball. One can define an auxiliary relation ≺ on BX as follows:

(x, r) ≺ (y, s) if and only if d(x, y) < r − s.

It can be shown that the relation ≺ satisfies the interpolation property and therefore
(BX,≺) forms an abstract basis.

The following theorem shows some interesting properties of the poset of formal balls.

Theorem 2.2. Let (X, d) be a quasi-metric space.

(1) The function ι : (X, τd) → (BX,Pσ) defined by ι(x) = (x, 0) is an embedding.
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(2) If (X, d) is T1 and sequentially Yoneda-complete, then (BX,⊑) is a dcpo. In addition,
if (X, d) is also algebraic, (BX,⊑) is a domain (continuous dcpo).

(3) If (X, d) is Smyth-complete, then (BX,⊑) is a domain. Moreover, the auxiliary relation
≺ coincides with the way-below relation of BX.

Proof. See Theorem 3.12, Corollary 3.13 and Theorem 3.17 in [AHPR09].

In the light of the first part of the above Theorem, to ease our notations, we identify
the set X with the set ι(X) = {(x, 0) : x ∈ X}. In particular, any compact subset of X is
identified with a compact subset of the set ι(X).

Now, we review the definition of chain completion of an abstract basis (P,≺). The set
of all ω-chains, i.e. ≺-ascending sequences, of P is denoted by CP .

Definition 2.3. For two ω-chains (xn)n>0 and (ym)m>0 in CP define

(xn)n>0 ⊑ (ym)m>0 ⇔ ∀n∃m xn ≺ ym,

(xn)n>0 ∼ (ym)m>0 ⇔ (xn)n>0 ⊑ (ym)m>0 & (ym)m>0 ⊑ (xn)n>0.

The chain completion of the abstract basis (P,≺) is defined to be the partially ordered set
(CP,⊑) where CP = CP/∼ and

[(xn)n>0] ⊑ [(ym)m>0] ⇔ (xn)n>0 ⊑ (ym)m>0,

for any [(xn)n>0] and [(ym)m>0] in CP . It is a well-known fact that (CP,⊑) is a continuous
ω-dcpo [Kni91]. The way-below relation is given by:

[(xn)n>0] ≪ [(ym)m>0] ⇔ ∃m∀n xn ≺ ym.

(xn)n>0 is called a representation of [(xn)n>0] ∈ CP . By abuse of notation, for any equiva-
lence class I of CP , we write x ∈ I if x is an element of one of the sequences representing
I.

Definition 2.4. For subsets A and B of the abstract basis (P,≺), define

(1) A ≺U B ⇔ ∀ b ∈ B ∃ a ∈ A a ≺ b,
(2) A ≺L B ⇔ ∀ a ∈ A ∃ b ∈ B a ≺ b,
(3) A ≺EM B if and only if A ≺U B and A ≺L B.

The relation ≺EM stands for Egli-Milner relation. Let PfinP be the set of all non-empty
finite subsets of P . It is easy to see that (PfinP,≺EM ) is an abstract basis. Since there is
no danger of confusion, for brevity, we drop the subscript EM . The chain completion of
(PfinP,≺) is called ω-Plotkin domain of P which is denoted by CP .

In particular, for a quasi-metric space (X, d), we consider the ω-Plotkin domain CBX
of the abstract basis (BX,≺). For F ∈ PfinBX and I ∈ CBX, define

rF = max{r : (x, r) ∈ F} and rI = inf{rF : F belongs to a representation of I}.

Note that I ⊑ J implies that rI ≥ rJ . Also from F ≺ G, rF > rG follows. Therefore, if
I ≪ J then rI > rJ .

Below, an important property of this structure is highlighted.

Theorem 2.5. Let (X, d) be a quasi-metric space. Then ω-Plotkin domain (CBX,⊑) is a
continuous ω-dcpo and moreover, any ≪-directed subset of it has a least upper bound.
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Proof. As we mentioned earlier, the first part is known. For the second part, let � be the
partial order relation generated by ≪, i.e.

I � J if and only if I = J or I ≪ J ,

for every I,J ∈ CBX.
We first verify that (CBX,�) is a dcpo. By a well-known fact from [Mark78] it suffices

to examine that every �-chain of CBX has a least upper bound. Let A = (Iα)α∈I be
a �-chain in CBX. Without loss of generality, we may assume that A has no maximum
element. Then (rIα)α∈I is a strictly decreasing chain in the set of nonnegative real numbers
and therefore has an infimum, say r. Fix I1 and inductively for any n ≥ 2, choose In−1 ≪ In
such that r < rIn < r + 1

n
. We claim that (In)n>0 is a cofinal subsequence of A in CBX.

Let Iα be an arbitrary element of A. Then choose In in such a way that rIn < rIα. Now
since any two elements of A are comparable and rIn < rIα, it follows that Iα ≪ In. But
(CBX,⊑) is an ω-dcpo. Therefore, (In)n>0 has the least upper bound I in (CBX,⊑),
which is also the least upper bound for A.

Now, let D be a ≪-directed subset of CBX. Then it is easy to see that D is also
�-directed. Therefore, it has the �-least upper bound I. It is, then, straightforward to
show that I is also the ≪-least upper bound of D.

Although we are not able to show that CBX is a dcpo, the above Theorem gives a
crucial feature of CBX which will help us in obtaining Theorem 3.12.

We introduce the following abbreviations which will be useful for a number of later
proofs.

Note 2.6. Let F,G ∈ PfinBX and ǫ > 0 be given.

(1) F + ǫ = {(x, r + ǫ) : (x, r) ∈ F}.
(2) If F ≺ G, then put δ(F,G) = min{(r − s)− d(x, y) : (x, r) ∈ F , (y, s) ∈ G , (x, r) ≺

(y, s)}.

Remark 2.7. The following properties of the above notations are straightforward.

(1) For 0 < ǫ′ < ǫ, F + ǫ ≺ F + ǫ′ ≺ F .
(2) For any ǫ < δ(F,G), (x, r) ∈ F and (y, s) ∈ G, with (x, r) ≺ (y, s), we have (x, r) ≺

(y, s+ ǫ). Hence F ≺ G+ ǫ.

3. Embedding of K0(X) into CBX

In this section, we apply the techniques used by Edalat and Heckmann in [EH98] to the
ω-Plotkin domain of the space of formal balls, leading us to find a computational model for
the space K0(X) of the nonempty compact subsets of a quasi-metric space (X, d). More
precisely, for a sequentially Yoneda-complete T1 quasi-metric space (X, d), we construct
the ω-Plotkin domain of the abstract basis (BX,≺), as introduced in Definition 2.1, and
show that the hyperspace K0(X) equipped with the Vietoris topology τV can be embedded
in CBX equipped with the Scott topology. Moreover, this embedding serves as an ω-
computational model of (K0(X), τV ).

From now on, we assume that (X, d) is a sequentially Yoneda-complete T1 bounded
quasi-metric space.
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Definition 3.1. Let K be a nonempty compact subset of X. Since K is compact, it is
d-precompact. So, for any n > 0, one can choose xn1 , . . . , x

n
mn

of K such that for any x ∈ K,

d(xni , x) <
1

2n2 for some xni . Put

Fn = {(x11,
1

n
), . . . , (x1m1

,
1

n
), . . . , (xn1 ,

1

n
), . . . , (xnmn

,
1

n
)}.

It can be easily checked that (Fn)n>0 is an ω-chain in (Pfin(BX),≺). Call (Fn)n>0 a
standard representation of K.

Although a compact subset K of X might have several standard representations, we
show that all standard representations of K are ∼-equivalent. The following auxiliary
lemmas will be useful in several proofs.

Lemma 3.2. For any x ∈ K and any standard representation (Fn)n>0 of K, there is a
sequence ((xn, rn))n>0 such that (xn, rn) ∈ Fn and d∗(xn, x) → 0.

Proof. First note that for any n > 0, Fn ≺ K. Hence for any n > 0, there is (xn, rn) ∈ Fn

such that (xn, rn) ≺ (x, 0). As rFn → 0, it implies d(xn, x) → 0. Now, since K is compact
and therefore d is point symmetric on K, it follows d(x, xn) → 0. Therefore d∗(xn, x) → 0.

Let I be an element of CBX. We can obtain a nonempty compact saturated subset of
BX, denoted by I+, as

I+ =
⋂

n>0

↑ Fn,

where (Fn)n>0 is a representation of I. In fact, since I+ is a filtered intersection of nonempty
compact saturated subsets of (BX,Pσ) and BX is a dcpo, similar to Theorem 7.2.27 in
[AJ94], it can be proved that the pseudoScott topology Pσ is sober. So I+ is a nonempty
compact saturated subset of BX. Also, I+ is independent of the choice of its representa-
tions. One can easily show that for any representations (Fn)n>0 and (Em)m>0 of I,

⋂

n

↑ Fn =
⋂

m

↑ Em.

Lemma 3.3. Let I be in CBX with rI = 0. Then for any standard representation (Fn)n>0

of ι−1(I+) and any G,H ∈ PfinBX with G ≺ H ≺ I+, G ⊑ Fn for some n > 0.

Proof. Let (y, s) ∈ G. Since G ≺ I+, there is (x, 0) ∈ I+ such that (y, s) ≺ (x, 0).
Now as (x, 0) ∈

⋂
n>0 ↑ Fn, by Lemma 3.2, there is a sequence ((xn, rn))n>0 such that

(xn, rn) ∈ Fn and d∗(xn, x) → 0. For ǫ = s − d(y, x), take n > 0 such that d(x, xn) < ǫ/2
and rn < ǫ/2. One can readily see that (y, s) ≺ (xn, rn). So, for any (y, s) ∈ G, there is Fn

and (xn, rn) ∈ Fn such that (y, s) ≺ (xn, rn). Assume that F in (Fn)n>0 is an upper bound
for all Fn, arisen in this way. Now, G ⊑L F is straightforward.

Next, put δ = δ(G,H), as defined in Notation 2.6. Choose Fn such that rFn < δ and
F ≺ Fn. Take (x, r) ∈ Fn. Then (x, 0) ∈ I+. Therefore, there exists (z, t) ∈ H such that
(z, t) ≺ (x, 0). Also, G ≺U H implies that there exists (y, s) ∈ G such that (y, s) ≺ (z, t).
It follows that

d(y, x) ≤ d(y, z) + d(z, x)
≤ (s − t)− δ + t
< s− r.

Hence G ≺U Fn. Now from G ⊑L F and F ≺ Fn, it follows that G ⊑L Fn and consequently
G ⊑ Fn.
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Proposition 3.4. For any K ∈ K0(X), all standard representations of K are ∼-equivalent.

Proof. Let (Fn)n>0 and (Em)m>0 be two standard representations of K. For any m > 0,
since Em ≺ Em+1 ≺ K, it follows from Lemma 3.3 that there is n > 0 such that Em ≺ Fn.
Therefore (Em)m>0 ⊑ (Fn)n>0. Similarly, it can be proved that (Fn)n>0 ⊑ (Em)m>0 and
therefore (Em)m>0 and (Fn)n>0 are in an equivalence class.

In the light of the above proposition, the following definition is established.

Definition 3.5. Denote the equivalence class of a standard representation (Fn)n>0 of a
nonempty compact subset K by K∗ and let φ : K0(X) → CBX be φ(K) = K∗.

We prove some properties of this map.

Proposition 3.6. Let K,L ∈ K0(X) and I ∈ CBX with rI = 0. Then

(1) K = (K∗)+.
(2) For any representation (Fn)n>0 of I;

I+ = {
⊔

n

an : an ∈ Fn , (an)n>0 is an ascending sequence}.

(3) K∗ ⊑ L∗ implies L ⊆ K ⊆ clτdL, where clτdL is the closure of L in τd.

Proof. (1) It is routine to check that K ⊆ (K∗)+. For the opposite inclusion, suppose that
there is (x, 0) ∈ (K∗)+ \K. For any (y, 0) ∈ K, put sy = 1

2d(y, x). Using compactness of

K, choose a finite subset G0 of {(y, 12sy) : (y, 0) ∈ K} such that G0 ≺ K. Select F ∈ K∗

with rF < min{1
2sy : (y, 12sy) ∈ G0}. We claim that G ≺U F , where G = {(y, sy) :

(y, 12sy) ∈ G0}. To prove the claim, let (z, t) ∈ F . So (z, 0) ∈ K and therefore there is

(y, 12sy) ∈ G0 such that (y, 12sy) ≺ (z, 0). Since t < 1
2sy, it follows (y, sy) ≺ (z, t) and

consequently G ≺U F .
Now, by definition of (K∗)+, it is clear that F ≺U (K∗)+. So there is (a, u) ∈ F

with (a, u) ≺ (x, 0). Since G ≺U F , there is (y, sy) in G such that (y, sy) ≺ (a, u). Hence
(y, sy) ≺ (x, 0) or equivalently d(y, x) < sy, which is a contradiction.

(2) Clearly the supremum of any ascending sequence (an)n>0, where an ∈ Fn, belongs
to I+. Let (a, 0) ∈ I+. Put Gn = {(x, r) ∈ Fn : (x, r) ≺ (a, 0)}. For any (x, r) and (y, s)
in

⋃
nGn, define (x, r)R(y, s) if and only if for some n > 0, (x, r) ∈ Gn, (y, s) ∈ Gn+1 and

(x, r) ≺ (y, s). The binary relation R defines a locally finite directed graph on the infinite
set G =

⋃
nGn with at most |F1|-connected components. So G has an infinite connected

component and therefore, in the light of König’s Lemma, there is an ascending sequence
((xn, rn))n>0 such that

⊔
n(xn, rn) = (b, 0) ⊑ (a, 0). Since d is T1, b = a follows and the

proof is complete.

(3) The assumption implies (L∗)+ ⊆ (K∗)+. So in the light of the first part, L ⊆ K.
For K ⊆ clτdL, let x ∈ K. Suppose that (Fn)n>0 and (Gn)n>0 are standard representations
of K and L, respectively. By the second part, there is an ascending sequence ((xn, rn))n>0,
(xn, rn) ∈ Fn, such that

⊔
n(xn, rn) = (x, 0). So d(xn, x) → 0. Since K is compact and

therefore d is point symmetric on K, d(x, xn) → 0. From K∗ ⊑ L∗, it follows that for any
Fn, there is Gmn and (ymn , smn) ∈ Gmn such that Fn ⊑ Gmn and (xn, rn) ≺ (ymn , smn).
Thus d(x, ymn) → 0, which means x ∈ clτdL.
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From the first part of the above proposition, it follows that the map φ : K0(X) → CBX
is one-to-one. Moreover, in the following we prove that the map φ gives a one-to-one
correspondence between the maximal element of K0(X) with respect to the specialization
order ⊑Hd

and the maximal element of the partially ordered set CBX. Before proving this,
we need the following lemma.

Lemma 3.7. For any maximal element I of CBX, I = I∗ where I = ι−1(I+).

Proof. Note that I+ is a nonempty compact subset of BX. Since ι : (X, τd) → (BX,Pσ)
is an embedding (Theorem 2.2), I = ι−1(I+) is a compact set in (X, τd). Thus I∗ is
well-defined.

Now, by maximality of I, it suffices to prove that I ⊑ I∗. Let (Fn)n>0 be a represen-
tations of I and (Gm)m>0 be a standard representation of I. Take Fn in (Fn)n>0. Since
Fn ≺ Fn+1 ≺ I+, according to Lemma 3.3, Fn ⊑ Gm for some m > 0. This shows I ⊑ I∗.

Proposition 3.8. For any maximal element K of K0(X) with respect to the specialization
order ⊑Hd

, K∗ is maximal in (CBX,⊑). Conversely, any maximal element I of CBX is
of the form K∗ for some maximal element K of (K0(X),⊑Hd

).

Proof. Let K be a maximal element of (K0(X),⊑Hd
) and K∗ ⊑ I. Without loss of gener-

ality, we assume that I is maximal. So I = I∗, where I = ι−1(I+). We have K∗ ⊑ I∗ and
therefore by the third part of Proposition 3.6, I ⊆ K ⊆ clτdI. Hence Hd(K, I) = 0. By
maximality of K, we conclude that K = I and K∗ = I.

Now, let I be a maximal element of CBX. Lemma 3.7 implies that for any maximal
element I of CBX, I = I∗, where I = ι−1(I+) is a nonempty compact subset of (X, d).
To complete the proof, we have to show that I is maximal in (K0(X),⊑Hd

). Let I ⊑Hd
J

for some J ∈ K0(X). Thus Hd(I, J) = 0 and consequently J ⊆ I ⊆ clτdJ . We show
that I∗ ⊑ J∗. Suppose (Fn)n>0 and (Gm)m>0 are standard representations of I and J ,
respectively. Since J ⊆ I ⊆ clτdJ , it follows that Fn ≺ Fn+1 ≺ J , for any n > 0. By Lemma
3.3, Fn ⊑ Gm for some m > 0. So I∗ ⊑ J∗ and by maximality of I∗ it follows that I = J .
Therefore I is maximal in (K0(X),⊑Hd

).

Below we examine different topologies on K0(X) for which the map φ becomes an
embedding.

Theorem 3.9. The map φ is an embedding from the hyperspace K0(X) equipped with the
Vietoris topology into CBX with the Scott topology.

Proof. Let ⇑I = {J ∈ CBX : I ≪ J} be a basic open set of CBX in the Scott
topology and K ∈ φ−1(⇑I). So K∗ ∈ ⇑I or equivalently I ≪ K∗. Let (Fn)n>0 be a
standard representation of K∗. By definition of the way-below relation, there is N > 0
such that for any element G ∈ I, G ≺ FN−1. Define an open subset V of (K0(X), τV )
as V = (

⋂
(x,r)∈FN

♦Vx) ∩ �V , where Vx = N 1

N
(x) and V =

⋃
(x,r)∈FN

N 1

N
(x). Clearly

K ∈ V. We show that V ⊆ φ−1(⇑I). Let B ∈ V. First, we prove that FN ≺ B. Take
(x, 1

N
) ∈ FN . From B ∈ ♦Vx, it follows that there is b ∈ B ∩ Vx. Thus d(x, b) < 1

N

or equivalently (x, 1
N
) ≺ (b, 0) and therefore FN ≺L B. Finally FN ≺U B follows from

B ∈ �V . Now, by Lemma 3.3, for any standard representation of B, there is an element
H in this representation such that FN−1 ≺ H. So for any element G ∈ I, G ≺ H. That
means I ≪ B∗.

On the other hand, we prove that the image of any upper (resp. lower) Vietoris open
subset under the map φ is open in the relative Scott topology on φ(K0(X)). Let �V
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be an upper Vietoris open subset of K0(X) and K∗ ∈ φ(�V ). Take ǫ > 0 such that⋃
x∈K Nǫ(x) ⊆ V . Assume that (Fn)n>0 is a standard representation of K. Choose N > 0

such that rFN < ǫ and put IK = [(En)n>0], where En = FN + 1
n

(See Notation 2.6.).
Remark 2.7(1), indicates that the sequence (En)n>0 is ≺-ascending and therefore (En)n>0

is an ω-chain. Clearly IK ≪ K∗. We prove

⇑IK∩φ(K0(X)) ⊆ φ(�V ). (∗)

Let B∗ ∈ ⇑IK . We show that B∗ ∈ φ(�V ) or equivalently B ⊆ V . Let b ∈ B. Because
of IK ≪ B∗, there is an element H ∈ B∗ such that En ≺ H, for any n > 0. So there are
(z, t) ∈ H and (xn, rn + 1/n) ∈ En, for any n > 0, with (xn, rn + 1/n) ≺ (z, t) ≺ (b, 0).
Since the set {(xn, rn) : (xn, rn + 1/n) ≺ (b, 0)} ⊆ FN is finite, it follows that there is
(x, r) ∈ FN such that d(x, b) ≤ r < ǫ. Thus from x ∈ K, b ∈ V follows and consequently
B∗ ∈ φ(�V ).

Now, let ♦V be a lower Vietoris open subset of K0(X). Suppose K∗ ∈ φ(♦V ) and
(Fn)n>0 is a standard representation of K∗. Select x ∈ K∩V and put F ′

n = Fn∪{(x, 1/n)}.
One can readily see that (F ′

n)n>0 is equivalent to (Fn)n>0 and therefore belongs to K∗.
Choose N > 0 such that N 1

N
(x) ⊆ V . Define IK = [(En)n>0], where En = F ′

N + 1
n
. For

any n > 0, En ≺ F ′
N . Thus K∗ ∈ ⇑IK . We prove

⇑IK∩φ(K0(X)) ⊆ φ(♦V ). (∗∗)

Assume that IK ≪ B∗. There is H ∈ B∗ such that for any n > 0, En ≺ H ≺ B. Hence,
one can find (b, 0) ∈ B with (x, 1

N
) ≺ (b, 0). Thus b ∈ N 1

N
(x) and b ∈ V . That implies

B∗ ∈ φ(♦V ).

It is known that for any quasi-metric space (X, d) whose compact subsets are d−1-
precompact, the Vietoris topology on K0(X) coincides with the topology of the Hausdorff
quasi-pseudometric Hd ([RR02], Theorem 5). So in the light of Theorem 3.9, under this
assumption, the map φ : (K0(X),Hd) → (CBX,σ) is an embedding. In the following, we
present an alternative proof which avoids this well-known result.

Theorem 3.10. Let (X, d) be a sequentially Yoneda-complete T1 quasi-metric space such
that any compact subset of (X, d) is d−1-precompact. Then the map φ : (K0(X),Hd) →
(CBX,σ) is an embedding.

Proof. Let ⇑I be a basic open set of CBX in the Scott topology. Let K∗
0 ∈ ⇑I and (Fn)n>0

be a representation of K∗
0 . By definition of the way-below relation, there is a natural number

N > 0 such that for any G ∈ I, G ≺ FN . Put ǫ = 1
2δ(FN , FN+1). To complete the proof of

continuity of φ, it suffices to show that

Nǫ(K0) ⊆ φ−1(⇑I).

Let K ∈ Nǫ(K0). Define F ′ = FN+1 + ǫ. By Remark 2.7(2), FN ≺ F ′.
We prove that F ′ ≺ K. For this, take (y, s + ǫ) ∈ F ′. Hence (y, s) ∈ FN+1 and by

FN+1 ≺ K0, there is an element x ∈ K0 such that (y, s) ≺ (x, 0). Since Hd(K0,K) < ǫ,
there is an x∗ ∈ K such that d(x, x∗) < ǫ. Thus

d(y, x∗) ≤ d(y, x) + d(x, x∗) < s+ ǫ.

Consequently (y, s + ǫ) ≺ (x∗, 0) and F ′ ≺L K. A similar argument shows that F ′ ≺U K
and therefore F ′ ≺ K is established. Now, by Lemma 3.3, since FN ≺ F ′ ≺ K, there is
H ∈ K∗ such that FN ⊑ H. Thus for any G ∈ I, G ≺ H and I ≪ K∗, as required.
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Next, in order to show that the map φ is an embedding, we prove that φ(Nǫ(K)) is a
relative Scott open, for any basic open set Nǫ(K). By the assumption, K is d−1-precompact.
Hence there is a finite subset {k1, . . . , km} of K such that for any k ∈ K, d(k, ki) < ǫ/4,
for some 1 ≤ i ≤ m. Assume that (Fn)n>0 is a standard representation of K∗. Choose
sufficiently large N > 0 such that rFN < ǫ/4 and at the same time for any ki ∈ {k1, . . . , km}
there is (xi, ri) ∈ FN so that d∗(ki, xi) < ǫ/4. The latter property can be achieved by Lemma
3.2. Set I = [(En)n>0], where En = FN + 1

n
. Clearly K∗ ∈ ⇑I. Now, for proving

⇑I ∩ φ(K0(X)) ⊆ φ(Nǫ(K)),

take B∗ ∈ ⇑I and show that Hd(K,B) < ǫ. Let k ∈ K. Select ki, (xi, ri) ∈ FN and
(similar to the proof of (∗∗) in the preceding theorem) (b, 0) ∈ B such that d(k, ki) < ǫ/4,
d(ki, xi) < ǫ/4 and (xi, ri) ⊑ (b, 0). Therefore

d(k, b) ≤ d(k, ki) + d(ki, xi) + d(xi, b)
< ǫ

4 + ǫ
4 +

ǫ
4 = 3ǫ

4 .

In other words, H−
d (K,B) < ǫ. Next, for H+

d (K,B) < ǫ, we pick up b ∈ B. One can use
the same argument used in the proof of (∗) in the preceding theorem to find (x, r) ∈ FN

such that d(x, b) ≤ r < ǫ/3. Since x ∈ K, H+
d (K,B) < ǫ follows.

Roughly speaking, the above theorems state that under certain conditions on (X, d) the
hyperspace K0(X) with respect to the Vietoris or Hausdorff topologies can be embedded in
a suitable continuous ω-dcpo. Hence, in the light of Definition 1.2, the following theorem
is obtained.

Theorem 3.11. Let (X, d) be a sequentially Yoneda-complete T1 quasi-metric space. Then

(1) The pair (CBX,φ) gives an ω-computational model for (K0(X), τV ).
(2) If, in addition, any compact subset of (X, d) is d−1-precompact, then the pair (CBX,φ)

gives an ω-computational model for (K0(X),Hd).

Also, in the light of Fact 1.1 and Theorem 2.5, since the way-below relation of any continuous
poset is approximating, the ideal completion of (CBX,⊑) with the auxiliary relation ≪
gives a computational model of K0(X). So the following theorem is established.

Theorem 3.12. Let (X, d) be a sequentially Yoneda-complete T1 quasi-metric space. Then

(1) (K0(X), τV ) has a computational model.
(2) If, in addition, any compact subset of (X, d) is d−1-precompact, (K0(X),Hd) has a

computational model.

The following corollary is a trivial consequence of the above Theorems. See also [EH98,
LK04, Mar04].

Corollary 3.13. Let (X, d) be a complete metric space. Then the hyperspace (K0(X),Hd)
has a computational model.

It could be readily seen that the Vietoris and respectively Hausdorff topologies are T1 if
and only if the φ-image of K0(X) is a subset of the maximal elements of CBX. It is known
that both these topologies are not necessarily T1. Therefore the φ-image of K0(X) may not
lie in the maximal elements of CBX. As it was noted before, if (X, d) is Hausdorff (more
generally KC), these topologies are T1.

The following examples give an application of Theorem 3.12.
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Example 3.14.

(1) Let R be the set of real numbers and let d be a T1 quasi-metric defined on R by
d(x, y) = y−x if x ≤ y and d(x, y) = 1 if x > y. Then the topology τd is the Sorgenfrey
topology on R and Rl = (R, d) called the Sorgenfrey line. It is easy to see that (R, d)
is a Hausdorff (sequentially) Yoneda-complete space. It is a well-known fact that any
compact subset of Sorgenfrey line is compact with respect to the usual topology of R
and hence it is d−1-precompact.

(2) Let Σ be a non-empty set and Σ∞ be the set of finite and infinite sequences over Σ.
Define the relation � on Σ∞ as

x � y ↔ x is a prefix of y.

For x, y ∈ Σ∞, we denote the longest common prefix of x and y by x⊓y. Also the length
of an element x ∈ Σ∞, is denoted by l(x) ∈ N ∪ {∞}. Define qb : Σ

∞ × Σ∞ → [0, 1],
given as:

qb(x, y) = 2−l(x) − 2−l(y) if x � y,

qb(x, y) = 1 otherwise.

We adopt the convention 1
∞

= 0.

It is proved in [RRV08] that (Σ∞, qb) is Hausdorff and (qb)
−1-right K-sequentially

complete. Furthermore, it is quite straightforward to complete the argument in [RRV08]
to prove this space is in fact sequentially Yoneda-complete.

(3) Let d be the restriction of the Sorgenfrey metric defined in Example 1, to [0, 1]. Put
X = [0, 1][0,1] as the set of all continuous functions f : [0, 1] → [0, 1] with respect to the
quasi-metric space ([0, 1], d). For f, g ∈ X, let

D(f, g) = sup
x∈[0,1]

d(f(x), g(x)).

Note that D(f, g) < 1 forces f ≤ g. Hence any Cauchy sequence (fn)n>0 should be
eventually increasing. Now, for such a sequence take f = supn≥n0

fn, where n0 is the
index from which the sequence is increasing. Then, f is the Yoneda-limit of (fn)n>0

and hence (X,D) is a T1 sequentially Yoneda-complete space. In fact, it can be readily
seen that (X,D) is a Hausdorff space.

(4) Let C = [0, 1]ω . For p ∈ [1,∞) the function qp : C → [0, 1] is defined by

qp(f) =
( ∞∑

n=0

(2−nf(n))p
) 1

p .

Then using an argument in [RSV03], Theorem 1, one can show that the function fqp :
C × C → [0, 1] given by

fqp(f, g) = qp(f − g) if f ≥ g,

fqp(f, g) = 1 otherwise,

defines a Hausdorff quasi-metric on C. Furthermore, by adopting the proofs of Theorems
3 and 4 in [RSV03], one can also show that (C, fqp) is sequentially Yoneda-complete.
(This quasi-metric is in fact the conjugate of the quasi-metric edp given in [RSV03].)

Corollary 3.15. Let (X, d) be one of the examples given in 3.14. Then the space (K0(X), τV )
is T1 and has a computational model. Furthermore in the case of Sorgenfrey line Rl, the
space (K0(Rl),Hd) is T1 and has a computational model.
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4. A quantitative ω-computational model of K0(X)

So far we have shown that, under certain circumstances, (K0(X),Hd) can be embedded in
CBX and therefore (CBX,φ) provides an ω-computational model for (K0(X),Hd). In this
section, we take the well-known quantitative (ω-)computational model approach, proving
that CBX is also a quantitative ω-computational model for (K0(X),Hd) and so the results
of the preceding section are strengthened. Our definition of quantitative (ω-)computational
model follows Rutten ([Rut98], Section 7).

Definition 4.1. A quantitative (ω-)computational model of a quasi-metric space (Y, d) is a
quadruple (L,⊑,D, φ) where (L,⊑) is a continuous (ω-)dcpo, D is an algebraic sequentially
Yoneda-complete quasi-metric on L and φ : Y → L is a map such that:

(1) The specialization partial order ⊑D is equivalent to the partial order of L.
(2) φ is an isometry from (Y, d) into (L,D).
(3) φ(Max(Y,⊑d)) =Max(L,⊑).

It is worth mentioning that the above definition is weaker than the definition of Ro-
maguera and Valero (Definition 1 in [RV09]) in which (L,D) is considered to be Smyth-
complete and the topology τD coincides with the Scott topology σL. We prefer to take
Rutten’s notion of quantitative ω-computational model and then study a special case where
(L,D) satisfies the extra conditions of Definition 1 in [RV09] (Theorems 4.16).

In [RV09], Romaguera and Valero followed the work of Heckmann [Hec99] for a complete
weighted quasi-metric space (X, d) and defined a complete partial quasi-metric Q on the
space of formal balls. A quasi-metric q on BX is then derived from Q which induces the
same topology as Q on BX and moreover, (BX, q) is Smyth-complete. It is useful to note
that the quasi-metric q can be defined directly on BX for any quasi-metric space without
the existence of a partial metric.

Definition 4.2. Let (X, d) be a quasi-metric space. For (x, r), (y, s) ∈ BX, define

q((x, r), (y, s)) = max{d(x, y), |r − s|}+ (s − r).

It is easy to see that q defines a quasi-metric on BX. The next lemma shows that
(BX, q) inherits Smyth-completeness and sequentially Yoneda-completeness from (X, d).
The proof is more or less the same as the proof of Theorem 4.1 of [RV09].

Lemma 4.3. Let (X, d) be a sequentially Yoneda-complete (respectively Smyth-complete)
quasi-metric space. Then (BX, q) is also sequentially Yoneda-complete (respectively Smyth-
complete).

The following theorem generalizes Theorem 5.1 of [RV09].

Theorem 4.4. Each algebraic sequentially Yoneda-complete T1 quasi-metric space has a
quantitative computational model.

Proof. Let (X, d) be an algebraic sequentially Yoneda-complete T1 quasi-metric space and q
be the quasi-metric defined in Definition 4.2 on BX. By Theorem 2.2, BX is a continuous
dcpo. Also, by the above lemma (BX, q) is sequentially Yoneda-complete. A straightfor-
ward computation shows that for any finite element x ∈ X, (x, r) is finite in (BX, q) and
moreover the set of such elements forms a base for (BX, q). Therefore (BX, q) is algebraic.
The other parts follow easily from the proof of Theorem 4.1 of [RV09].
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Now, we turn to the main topic of this section. We wish to define a quasi-metric D
on CBX and show that (CBX,D) together with the map φ : K0(X) → CBX which is
defined as φ(K) = K∗, form a quantitative computational model for (K0(X),Hd).

To emphasize, we fix (X, d) to be a sequentially Yoneda-complete T1 quasi-metric space,
though (X, d) need not be algebraic.

Definition 4.5. Let q be the quasi-metric defined in Definition 4.2 on BX. Recall that Hq

on PfinBX is defined by

Hq(F,G) = max{ sup
(x,r)∈F

inf
(y,s)∈G

q((x, r), (y, s)), sup
(y,s)∈G

inf
(x,r)∈F

q((x, r), (y, s))},

for any F,G ∈ PfinBX. Put D on CBX as follows:

D(I,J ) = sup
Fn

inf
Gm

Hd(Fn, Gm),

for all I,J ∈ CBX and representations (Fn)n>0, (Gm)m>0 of I and J , respectively.

Next, we show that D is independent from any particular choice of representations.

Lemma 4.6. D is well-defined on CBX.

Proof. Let (Fn)n>0 and (F ′
k)k>0 be two different representations for I. Since (Fn)n>0 ∼

(F ′
k)k>0, for any Fn there is F ′

k such that Fn ≺ F ′
k. So Hq(Fn, F

′
k) = 0 and therefore

Hq(Fn, Gm) ≤ Hq(F
′
k, Gm).

So by taking infimum on Gm, we have

inf
Gm

Hq(Fn, Gm) ≤ inf
Gm

Hq(F
′
k, Gm).

Thus
inf
Gm

Hq(Fn, Gm) ≤ sup
F ′
k

inf
Gm

Hq(F
′
k, Gm),

sup
Fn

inf
Gm

Hq(Fn, Gm) ≤ sup
F ′
k

inf
Gm

Hq(F
′
k, Gm).

Similarly, we can prove that

sup
F ′
k

inf
Gm

Hq(F
′
k, Gm) ≤ sup

Fn

inf
Gm

Hq(Fn, Gm).

Proposition 4.7. D is a quasi-metric on CBX. In addition, the specialization order ⊑D

is equivalent to the partial order ⊑ defined on CBX.

Proof. The triangular inequality is straightforward. So we only check that D(I,J ) =
D(J ,I) = 0 implies I = J . Let D(I,J ) = 0 and (Fn)n>0 and (Gm)m>0 be representations
for I and J , respectively. Fix n > 0 and put δ = δ(Fn, Fn+1). From the definition of D,
there is m > 0 such that Hq(Fn+1, Gm) < δ. We prove Fn ≺ Gm. Let (x, r) ∈ Fn. There is
(x′, r′) ∈ Fn+1 with (x, r) ≺ (x′, r′). Also, by Hq(Fn+1, Gm) < δ, there is (y, s) ∈ Gm such
that q((x′, r′), (y, s)) < δ. This means that d(x′, y) < r′ − s+ δ and consequently

d(x, y) ≤ d(x, x′) + d(x′, y)
< (r − r′)− δ + (r′ − s) + δ
= r − s.
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Thus (x, r) ≺ (y, s) and therefore F ≺L G. F ≺U G can be shown in a similar fashion.
Hence F ≺ G is established and therefore I ⊑ J . Now D(J ,I) = 0 also implies that
J ⊑ I.

For the second part, clearly by the above argument, D(I,J ) = 0 implies I ⊑ J .
Conversely, let I ⊑ J . So for any F ∈ I, there is G ∈ J with F ≺ G. Thus Hq(F,G) = 0
which implies D(I,J ) = 0.

Proposition 4.8. The domain CBX equipped with the quasi-metric D is sequentially
Yoneda-complete.

Proof. Let (In)n>0 be a Cauchy sequence in (CBX,D) and for any n > 0, (Fn
m)m>0 be

a representation for In. For any n > 0, there is a natural number Nn > n such that
Nn > Nn−1 for n > 1 and for any l ≥ k ≥ Nn, D(Ik,Il) <

1
2n+1 , i.e.

∀F k
r ∈ Ik ∃F l

s ∈ Il Hq(F
k
r , F

l
s) <

1

2n+1
.

Define (Gij)i,j>0 as follows:

Fix FN1

1 ∈ IN1
and put G11 = FN1

1 . Inductively for any k ≥ 2, choose G1k ∈ (FNk
m )m>0

such that

Hq(G1k−1, G1k) <
1

2k
.

In a similar way, for any i ≥ 2, put Gi1 = FN1

i and inductively find (Gik)k>0 such that for
any i < j, Gik ≺ Gjk and

Hq(Gik−1, Gik) <
1

2k
.

Let Lk = Gkk +
1

2k−1 . The following two claims complete the proof.

Claim 1. I = [(Lk)k>0] ∈ CBX, i.e. (Lk)k>0 is an ascending sequence in PfinBX.

Let k > 0 and (x, r + 1
2k−1 ) ∈ Lk. Hence (x, r) ∈ Gkk. Since

Hq(Gkk, Gk+1k+1) ≤ Hq(Gkk, Gk+1k) +Hq(Gk+1k, Gk+1k+1)
< 0 + 1

2k+1

there is a (y, s) ∈ Gk+1k+1 such that q((x, r), (y, s)) < 1
2k+1 . Hence d(x, y) < r − s + 1

2k+1 .
By a simple calculation,

d(x, y) < (r +
1

2k−1
)− (s+

1

2k
).

Therefore (x, r+ 1
2k−1 ) ≺ (y, s+ 1

2k
), where (y, s+ 1

2k
) ∈ Lk+1. This means that Lk ≺L Lk+1.

Similarly, we can prove Lk ≺U Lk+1 and consequently Lk ≺ Lk+1.

Claim 2. I is the Yoneda limit of (In)n>0.
First, we prove that D(In,I) → 0. Let ǫ > 0. Since (In)n>0 is a Cauchy sequence, there is
N > 0 such that for any r ≥ s ≥ N , D(Is,Ir) <

ǫ
3 . Fix n > N and F ∈ In = [(Fn

m)m>0].

Choose Nk > n from the cofinal sequence (Nn)n>0 constructed above such that 1
2k−1 <

ǫ
3 .

Since D(In,INk
) < ǫ

3 , there is FNk
m0

∈ INk
such that Hq(F,F

Nk
m0

) < ǫ
3 . Choose Glk ∈ INk

with FNk
m0

≺ Glk and l > k. Now, Hq(Glk, Gll) <
1

2k+1 + · · ·+ 1
2l
< 1

2k
< ǫ

3 implies that

Hq(F,Ll) ≤ Hq(F,F
Nk
m0

) +Hq(F
Nk
m0
, Glk) +Hq(Glk, Gll) +Hq(Gll, Ll)

< ǫ
3 + 0 + ǫ

3 +
ǫ
3

= ǫ.
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Now, we show that I is the Yoneda limit of (In)n>0. Because of D(In,I) → 0, it suffices to
prove thatD(I,J ) ≤ infn supk>nD(Ik,J ), for any J ∈ CBX. Put infn supk>nD(Ik,J ) =
s. We prove that for any ǫ > 0, D(I,J ) ≤ s+ǫ. Let L ∈ I. Since infn supk>nD(Ik,J ) = s,
there is N > 0 such that for any n > N , D(In,J ) ≤ s+ ǫ/2. Take k > 0 such that L ≺ Lk,

1
2k−1 < ǫ/2 and Nk > N . So, for any representation (Gm)m>0 of J , there is m > 0 such
that

Hq(L,Gm) ≤ Hq(L,Lk) +Hq(Lk, Gkk) +Hq(Gkk, Gm)
< 0 + 1

2k−1 + s+ ǫ/2
< s+ ǫ.

This complete the proof.

Below, we show that the quasi-metric space (CBX,D) is in fact the sequential Yoneda
completion of (PfinBX,Hd). First, we recall the definition of sequential Yoneda completion
[KS02].

Definition 4.9. Let (Y, d) be a quasi-metric space and

Ŷ = {(xn)n>0 : (xn)n>0 is a Cauchy sequence}.

Define the quasi-pseudometric d̂ and the equivalence relation ≈ as follows:

d̂((xn)n>0, (ym)m>0) = inf
n

sup
k≥n

sup
m

inf
p≥m

d(xk, yp),

(xn)n>0 ≈ (ym)m>0 ⇔ d̂((xn)n>0, (ym)m>0) = d̂((ym)m>0, (xn)n>0) = 0.

Put Y = Ŷ / ≈ and define the quasi-metric d by

d([(xn)n>0], [(ym)m>0]) = d̂((xn)n>0, (ym)m>0).

The pair (Y , d) is called the sequential Yoneda completion of (Y, d).

Proposition 4.10. (CBX,D) is the sequential Yoneda completion of (PfinBX,Hd).

Proof. Let (Fn)n>0 be a Cauchy sequence in PfinBX andHd be the quasi-metric completion
of Hd (Definition 4.9). Without loss of generality, we can assume that for any 0 < n ≤ m,
Hd(Fn, Fm) < 1

2n+1 , since there is an Hd-equivalent subsequence of (Fn)n>0, satisfying this
property. Now, we show that there is an ascending chain (Lk)k>0 in PfinBX which is

Hd-equivalent. For any n > 0, define In = [(En
m)m>0] where E

n
m = Fn + 1

m
. One can

readily check that (In)n>0 is a Cauchy sequence. For k > 0, put Lk = Ek
k +

1
2k−1 . A similar

argument as used in Claim 1 of Proposition 4.8, shows that [(Lk)k>0] is a ≺-ascending chain.
In order to show

Hd((Fn)n>0, (Lm)m>0) = 0,

we have to verify the following:

∀ǫ > 0 ∃n ∀k ≥ n ∀m ∃p ≥ m Hd(Fk, Lp) < ǫ.

Let ǫ > 0 be given. Find n > 0 so that 1
2n+1 < ǫ

2 . Next, for any k ≥ n and m > 0,

take p ≥ k,m such that 1
p
+ 1

2p−1 <
ǫ
2 . Since Lp = Fp + (1

p
+ 1

2p−1 ), it easily follows that

Hd(Fk, Lp) < ǫ. The equality Hd((Lm)m>0, (Fn)n>0) = 0 can be proved in a similar way.
So, the map

ψ : (PfinBX,Hd) −→ (CBX,D)
[(Fn)n>0] 7−→ [(Lk)k>0].

defines a bijective isometry, as required.
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Corollary 4.11. The domain CBX equipped with the quasi-metric D is algebraic.

Proof. By Corollary 23 of [KS02], any Yoneda completion is algebraic. Hence, according to
Proposition 4.10, (CBX,D) is algebraic.

Proposition 4.12. The map φ is an isometry between (K0(X),Hd) and (CBX,D).

Proof. Let K1,K2 ∈ K0(X) and (Fn)n>0 and (Gm)m>0 be standard representations for K1

and K2, respectively.
Assume that Hd(K1,K2) = d and ǫ > 0. We show that D(K∗

1 ,K
∗
2 ) ≤ d+ ǫ. Fix n > 0

and let δ = δ(Fn, Fn+1). We wish to find m > 0 such that

Hq(Fn, GM ) < d+ ǫ.

Let (x, r) ∈ Fn. Since Fn ≺ Fn+1 ≺ K1, there are (x′, r′) ∈ Fn+1 and (z, 0) ∈ K1 such
that d(x, x′) < (r − r′) − δ and d(x′, z) < r′. Because of Hd(K1,K2) = d, there is y ∈ K2

such that d(z, y) ≤ d + ǫ. By Lemma 3.2, there is a sequence ((ym, sm))m>0 such that
(ym, sm) ∈ Gm and d∗(ym, y) → 0. Select ym such that d(y, ym) < δ

2 and sm < δ
2 . Then

d(x, ym) ≤ d(x, x′) + d(x′, z) + d(z, y) + d(y, ym)

< (r − r′)− δ + r′ + d+ ǫ+ δ
2

= r + d+ ǫ− δ
2

Thus for any (x, r) ∈ Fn, there is (ymx , smx) ∈ Gmx such that d(x, ymx) < r − smx + d+ ǫ.
Take M ≥ max{mx : (x, r) ∈ Fn} with rGM < δ

2 . Hence, by the above calculation, for
any (x, r) ∈ Fn there exists (y, s) ∈ GM such that q((x, r), (y, s)) < d+ ǫ. Similarly, for any
(y, s) ∈ GM one can find (x, r) ∈ Fn with

q((x, r), (y, s)) < d+ ǫ.

So Hq(Fn, GM ) < d+ ǫ and therefore D(K∗
1 ,K

∗
2 ) ≤ Hd(K1,K2).

On the other hand, we show that Hd(K1,K2) ≤ D(K∗
1 ,K

∗
2 ). Let D(K∗

1 ,K
∗
2 ) = d and

x ∈ K1. Again, Lemma 3.2 implies the existence of a sequence ((xn, rn))n>0 such that
(xn, rn) ∈ Fn and d∗(xn, x) → 0. For ǫ > 0, choose (xN , rN ) such that d(x, xN ) < ǫ

3
and rN < ǫ

3 . Since D(K∗
1 ,K

∗
2 ) = d, there is GmN

and (ymN
, smN

) ∈ GmN
such that

d(xN , ymN
) < rN − smN

+ d+ ǫ
3 . The following inequalities

d(x, ymN
) ≤ d(x, xN ) + d(xN , ymN

)
< ǫ

3 + rN − smN
+ d+ ǫ

3
< d+ ǫ,

imply infy∈K2
d(x, y) ≤ d and therefore

sup
x∈K1

inf
y∈K2

d(x, y) ≤ d.

Now, in a similar way, supy∈K2
infx∈K1

d(x, y) ≤ d. HenceHd(K1,K2) ≤ d and consequently
Hd(K1,K2) ≤ D(K∗

1 ,K
∗
2 ).
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Now, the main theorem of this section is stated.

Theorem 4.13. (CBX,D) together with the map φ : K0(X) → CBX form a quantitative
ω-computational model for (K0(X),Hd).

Proof. By the above propositions, (CBX,D) is an algebraic sequentially Yoneda-complete
quasi-metric space, the specialization partial order ⊑D is equivalent to the partial order of
CBX and the map φ is an isometry between (K0(X),Hd) and (CBX,D). The condition
φ(Max(K0(X),⊑Hd

)) =Max(CBX,⊑) follows from propositions 3.8 and 4.7.

Next, we impose some extra conditions on (X, d) under which this space has a quanti-
tative ω-computational model in the sense of Romaguera and Valero [RV09]. We, hereby,
suppose that (X, d) is Smyth-complete and any compact subset of (X, d) is d−1-precompact.
These conditions guarantee that any Cauchy sequence in (PfinBX,Hq) is biCauchy.

Lemma 4.14. Let (X, d) be a Smyth-complete quasi-metric space of which all of its compact
subsets are d−1-precompact. Then any ω-chain in PfinBX is biCauchy.

Proof. First note, one can easily show that any compact subset of (BX, q) is q−1-precompact.
Now, let (Fn)n>0 be an ω-chain in PfinBX. For any n < m, Fn ≺ Fm. Hence Hq(Fn, Fm) =
0 and (Fn)n>0 is a Cauchy sequence. According to Lemma 4.3, (BX, q) is Smyth-complete.
So by Theorem 1.3, (K0(BX),Hq) is Smyth-complete. Therefore PfinBX as a subspace of
K0(BX) is Smyth-completable and so any Cauchy sequence in (PfinBX,Hq) is biCauchy.
Hence (Fn)n>0 is a biCauchy sequence.

The following auxiliary lemma will be useful in several proofs.

Lemma 4.15. Let G ≺ H ⊑M and Hq(M,L) < δ(G,H). Then G ≺ L.

Proof. Let (x, r) ∈ G and δ = δ(G,H). Then there are (y, s) ∈ H, (z, t) ∈M and (a, u) ∈ L
such that

(x, r) ≺ (y, s) ⊑ (z, t) and q((z, t), (a, u)) < δ.

Then the following inequalities follow:

d(x, a) ≤ d(x, y) + d(y, z) + d(z, a)
< (r − s)− δ + (s− t) + (t− u) + δ
= r − u.

Hence (x, r) ≺ (a, u) and consequently G ≺L L. A similar calculation shows that G ≺U L
and therefore G ≺ L as required.

Theorem 4.16. Under the assumptions of Lemma 4.14,

(1) (CBX,D) is Smyth-complete.
(2) The topology τD induced by D coincides with the Scott topology of the domain CBX.

Proof. (1) Let (In)n>0 be a Cauchy sequence in (CBX,D) and for any n > 0, (Fn
m)m>0

be a representation for In. Now, fix the natural sequence (Nn)n>0, the double sequence
(Gij)i,j>0 and I = [(Lk)k>0] which are constructed in the proof of Proposition 4.8. We
show that (In)n>0 converges strongly to I. Because of D(In,I) → 0, it suffices to verify
D(I,In) → 0. Let ǫ > 0. Since (Lk)k>0 is a Cauchy ω-chain in (PfinBX,Hq), so, by

Lemma 4.14, it is a biCauchy sequence. Choose k > 0 such that 1
2k−1 < ǫ/4 and for any

r, s ≥ k, Hq(Ls, Lr) < ǫ/4. We show that for any n > Nk, D(I,In) < ǫ.
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Take n > Nk and Li ∈ I. Recall that the sequence (Nj)j>0 has the following properties:

∀r ≥ s ≥ Nj, D(Is,Ir) <
1

2j+1
.

ParticularlyD(INk
,In) <

1
2k+1 . So, there is F

n
m ∈ In such that forGkk ∈ INk

, Hq(Gkk, F
n
m) <

ǫ/4. Now, if i ≤ k, then Hq(Li, Lk) = 0. Otherwise, since (Lk)k>0 is a biCauchy sequence,
Hq(Li, Lk) <

ǫ
4 . Thus

Hq(Li, F
n
m) ≤ Hq(Li, Lk) +Hq(Lk, Gkk) +Hq(Gkk, F

n
m)

< ǫ
4 + 1

2k−1 + ǫ
4

< 3ǫ
4 .

(2) Suppose that ⇑I is a basic open subset of CBX and J ∈ ⇑I. Let (Gn)n>0 be
a representation of J . So, there is n > 0 such that F ≺ Gn, for any F ∈ I. Set δ =
δ(Gn, Gn+1). We prove that

Nδ(J ) = {L : D(J ,L) < δ} ⊆ ⇑I

Let L ∈ Nδ(J ) and (Lm)m>0 be one of its representations. From D(J ,L) < δ, there is Lm

such that Hq(Gn+1, Lm) < δ. Also, according to the Lemma 4.15, Gn ≺ Gn+1 ⊑ Gn+1 and
Hq(Gn+1, Lm) < δ implies that Gn ≺ Lm. Finally, since for every F ∈ I, F ≺ Gn it follows

that for any F ∈ I, F ≺ Lm. Therefore L ∈ ⇑I.
Now, let Nδ(I) be a basic open subset in τD. Assume that (Fn)n>0 is a representation

of I. According to Lemma 4.14, (Fn)n>0 is a biCauchy sequence. So there is N > 0 such
that

∀n,m ≥ N Hq(Fn, Fm) <
δ

2
.

Put J = (Gn)n>0, where Gn = FN + 1
n
. Clearly J ≪ I. We prove that

⇑J ⊆ Nδ(I).

Let L ∈ ⇑J and (Lm)m>0 be a representation for L. Since J ≪ L, there is Lm such that
for any n > 0, Gn ≺ Lm. For any Fn ∈ I, if n < N then Hq(Fn, FN ) = 0. Otherwise

Hq(Fn, FN ) < δ
2 . Take k > 0 with 1

k
< δ

4 . Then we have

Hq(Fn, Lm) ≤ Hq(Fn, FN ) +Hq(FN , Gk) +Hq(Gk, Lm)

< δ
2 +

1
k
+ 0

< 3δ
4 .

Thus D(I,L) < δ or equivalently L ∈ Nδ(I).

Remark 4.17. The isometry of φ (Proposition 4.12) and the above Theorem, imply that
for any Smyth-complete T1 quasi-metric space whose compact subsets are d−1-precompact,
the map φ is an embedding. This result was already proved in Theorem 3.10.

5. Plotkin powerdomain vs. ω-Plotkin domain

In this section, we compare the Plotkin Powerdomain and ω-Plokin constructions of BX.
The Plotkin powerdomain of BX, denoted by PBX, is the ideal completion of the abstract
basis (PfinBX,≺EM ). In the following, we show that for any T1 quasi-metric space (X, d)
if (X, d) is either Smyth-complete and all of its compact subsets are d−1-precompact, or
ω-algebraic Yoneda-complete, then PBX and CBX are order-isomorphic.
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Theorem 5.1. Let (X, d) be a T1 quasi-metric space. Assume also that either of the
following conditions hold.

(1) (X, d) is a Smyth-complete space all of whose compact subsets are d−1-precompact.
(2) (X, d) is an ω-algebraic Yoneda-complete space.

Then PBX and CBX are order-isomorphic.

Proof. (1) Assume first that (X, d) satisfies condition 1 above. Let I be a round ideal
in PfinBX. We claim that I has a cofinal ≺EM -ascending subsequence (Fn)n>0. Note
that I can be considered as a Cauchy net in (PfinBX,Hq), since if G ≺EM H ∈ I, then
Hq(G,H) = 0. Under the above assumptions, similar to the argument used in Lemma 4.14,
(PfinBX,Hq) is Smyth-completable. Hence I is biCauchy and has a biCauchy subsequence
(Fn)n>0, satisfying the following property:

∀H,G ∈ I, Fn ≺EM H,G ⇒ Hq(H,G) <
1

n
. (∗)

Without loss of generality, we may assume that (Fn)n>0 is ≺EM -ascending. Now, we show
that this sequence is ≺EM -cofinal in I. Let G ∈ I. N > 0 must be found such that
G ≺EM FN . Choose H ∈ I with G ≺EM H and put δ = δ(G,H). Take N > 1 such that

1
N−1 < δ and letM ∈ I with FN ,H ≺EM M . Therefore by FN−1 ≺EM FN ≺EM M and (∗),

we have Hq(M,FN ) < 1
N−1 < δ. Finally, according to the Lemma 4.15, G ≺EM H ≺EM M

and Hq(M,FN ) < δ implies G ≺EM FN .
Now, it is easy to check that the mapping

ψ : PBX −→ CBX
I 7−→ [(Fn)n>0]

defines an order isomorphism.
(2) Now consider that (X, d) is an ω-algebraic Yoneda-complete space. Let X0 be

a countable algebraic subset of X. Then the set BQX0 = X0 × Q+ and respectively
the set PfinBQX0 of all finite subsets of BQX0 form a countable basis for BX and for
PfinBX respectively. Now, in the light of Theorem 6.2.3 of [AJ94], PBX is given by the
ideal completion of (PfinBQX0,≺EM ). Furthermore, since the set PfinBQX0 is count-
able, by Proposition 2.2.3 in [AJ94], every round ideal in PfinBQX0 has a cofinal ≺EM -
ascending subsequence and hence following the same proof as in (1), one can prove that
(PBQX0,≺EM ) is order-isomorphic to (CBQX0,≺EM ). On the other hand, one can eas-
ily show that any ≺EM -ascending subsequence (Fn)n>0 in PfinBX is ∼EM -equivalent to
a ≺EM -ascending subsequence (Gn)n>0 in PfinBQX0 . Hence (CBQX0,≺EM ) is order-
isomorphic to (CBX,≺EM ). Therefore, the proof is established.

Corollary 5.2. Let (X, d) be a complete metric space. Then the Plotkin powerdomain
PBX and ω-Plotkin CBX are isomorphic.

6. Future Work

In this paper, various computational models of the hyperspace K0(X) of the non-empty
compact subsets of a quasi-metric space (X, d) were studied. It was shown how to use
a special computational model BX of (X, d) to get the corresponding ω-computational
model CBX of K0(X). The above construction would have been more satisfactory if a
computational model for the K0(X) could have been defined, starting from an arbitrary



COMPUTATIONAL MODELS OF CERTAIN HYPERSPACES OF QUASI-METRIC SPACES 23

computational model of (X, d). This idea is already developed for the case of metric spaces
by Martin [Mar04], by appealing to the notion of a measurement, and for the spaces with
countable based models by Berger et. al. in [Ber10]. Therefore, an interesting subject
of research is to find a fairly general framework under which the ideas from [Mar04] and
[Ber10] can be generalized to the present context. Another topic of research is to study the
effectiveness of K0(X). So one could ask whether CBX supports an effective base whenever
(X, d) is an effective quasi-metric.

Section 5 involves a generalization of the results obtained earlier, showing that K0(X)
has a quantitative ω-computational model. One would desire to have a quantitative compu-
tational model for K0(X). This, for example, requires to generate another computational
model from (CBX,⊑,D, φ), similar to what we obtained in Theorem 3.12. One way to
achieve this is to employ the Yoneda-completion of (CBX,D), which serves as a natural
generalization of the ideal completion.

In section 6, the Plotkin powerdomain and ω-Plotkin domain of BX were compared and
the situations in which both constructions are order-isomorphic were observed. Now, the
question of finding an example for which these constructions are not isomorphic is imposed.
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