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Abstract. As a part of our works on effective properties of probability distributions, we
deal with the corresponding characteristic functions. A sequence of probability distribu-
tions is computable if and only if the corresponding sequence of characteristic functions
is computable. As for the onvergence problem, the effectivized Glivenko’s theorem holds.
Effectivizations of Bochner’s theorem and de Moivre-Laplace central limit theorem are also
proved.

1. Introduction

We are concerned with mutual relationships between computability of probability distribu-
tions (Borel probability measures on the real line R) and that of the corresponding prob-
ability distribution functions as well as that of the corresponding characteristic functions.
We are also concerned with mutual relationship between effective convergence of probability
distributions and that of the corresponding probability distribution functions as well as that
of the corresponding characteristic functions.

We have no general characterization of probability distribution functions which corre-
spond to computable probability distributions. What we can do is to start with computable
(hence continuous) probability distribution functions ([7]) and examine what will happen
with wider classes of probability distribution functions. In [7], it has been proved that, for a
sequence of probability distributions with effectively bounded densities, it is computable if
and only if the corresponding sequence of probability distribution functions is computable,
and that it converges effectively to a (computable) probability distribution if and only if
the corresponding sequence of probability distribution functions behaves similarly.
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However, the Dirac probability distribution has no density function. Furthermore,
its probability distribution function is discontinuous. We have then treated a wider class
of probability distribution functions, namely Fine computable ones (cf. [8], [9]), as the
first step to deal with cases where probability distributions may not have bounded density
functions.

Here in this article, we will work on the relationship between computability of probabil-
ity distributions and that of the corresponding characteristic functions as well as between
their effective convergences. Effective versions of some classical results regarding probabil-
ity distributions and the corresponding characteristic functions such as Glivenko’s theorem
and de Moivre-Laplace central limit theorem will be proved.

Let us explain some facts on probability distributions and related objects.
Many theorems in probability theory concerning convergence of random variables, such

as central limit theorems, are formulated in terms of convergence of probability distribu-
tions, and convergence of probability distributions is proved in terms of convergence of the
corresponding characteristic functions.

For a probability distribution µ, its probability distribution function is defined by
F (x) = µ((−∞, x]), and characterized by the following properties:

(Fi) monotonically increasing,
(Fii) right continuous,
(Fiii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

On the other hand, the characteristic function of µ is defined as the Fourier transformation,
that is, ϕ(t) =

∫

R
eitxµ(dx) = µ(eit·), and characterized by the following:

(Ci) ϕ is positive definite.
(Cii) ϕ(t) is continuous at 0.
(Ciii) ϕ(0) = 1.

To obtain a probability distribution from a probability distribution function amounts to
a construction of a measure. To obtain a probability distribution from a characteristic
function corresponds to Bochner’s Theorem.

In this article, we investigate relations between computability of probability distribu-
tions and computability of the corresponding characteristic functions as well as relations
between effective convergence of probability distributions and effective convergence of the
corresponding characteristic functions.

In Section 2, we review briefly the previous results in [7] and [9].
In Section 3, we treat effective integrability on R and generalize some theorems in [4],

[5] and [8] to turn them to account for our purpose.
Section 4 contains most of our main results. We will work on some relations between

effective properties of a sequence of probability distributions {µm} and the corresponding
sequence of characteristic functions {ϕm}. We have the following results: equivalence of
computability of {µm} and that of the corresponding {ϕm} (Theorems 4.1 and 4.5); effective
Glivenko’s theorem on convergence (Theorems 4.2 and 4.3) and effective Bochner’s theorem
(Theorem 4.7).

In section 5, we apply Theorem 4.2 to prove the effective de Moivre-Laplace central
limit theorem.
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2. Preliminaries

We follow the notions of computability developed by Pour-El and Richards ([10]). Com-
putability of a sequence of functions and effective convergence of a sequence of functions
are formulated as follows.

Definition 2.1. (Computability of a sequence of functions on R [10]) A sequence of
functions {fn} on R is said to be computable if it satisfies the following two properties.

(i) Sequential computability: the double sequence {fn(xm)} is computable for any com-
putable sequence {xm}.

(ii) Effective continuity: there exists a recursive function α(n,L, k) such that |x − y| <
2−α(n,L,k) and |x|, |y| ≤ L imply |fn(x)− fn(y)| < 2−k.

Definition 2.2. (Effective convergence of a sequence of functions on R [10]) A double se-
quence of functions {fn,m} converges effectively to a sequence {fn} if there exists a recursive

function α(n,L, k) such that m ≥ α(n,L, k) and |x| ≤ L imply |fn,m(x)− fn(x)| < 2−k.

We say that a sequence of functions {fn} is computable with compact support L(n),
if {fn} is (uniformly) computable and L(n) is a recursive function which satisfies that
fn(x) = 0 for all x with |x| ≥ L(n).

A sequence of functions {fn} is said to be effectively bounded if there exists a recursive
function M(n) which satisfies |fn(x)| ≤M(n) for all x.

We denote
∫

R
f(x)µ(dx) with µ(f).

Definition 2.3. (Computability of probability distributions [7]) A sequence of probability
distributions {µm} is said to be computable, if {µm(fn)} is computable for any computable
{fn} with compact support L(n).

Definition 2.4. (Effective convergence of probability distributions [7]) A sequence of
probability distributions {µm} is said to converge effectively to a probability distribution
µ if, for any computable sequence of functions {fn} with compact support, there exists a
recursive function α(n, k) such that

|µm(fn)− µ(fn)| < 2−k if m ≥ α(n, k) (2.1)

holds.

If the condition (2.1) holds, we say that {µm(fn)} converges effectively to µ(fn) as m
tends to infinity effectively in n.

The following proposition holds.

Proposition 2.5. ([7]) If a computable sequence of probability distributions {µm} con-

verges effectively to a probability distribution µ, then µ is computable.

Lemma 2.6. (Monotone Lemma [10]) Let {xn,k} be a computable sequence of reals which

converges monotonically to {xn} as k tends to infinity for each n. Then {xn} is computable

if and only if the convergence is effective in n.

We will use the following functions wn and wc
n.
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wn(x) :=
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0 if x ≤ −n− 1
(x+ n) + 1 −n− 1 ≤ x ≤ −n
1 if − n ≤ x ≤ n

−(x− n) + 1 if n ≤ x ≤ n+ 1
0 if x ≥ n+ 1

.

wc
n(x) := 1− wn(x).
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−n− 1 −n n n+ 1
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Figure 1: wn(x)

wn and wc
n satisfy the following properties.

• wn(x) + wc
n(x) ≡ 1.

• {wn} is monotonically increasing in n and {wc
n} is monotonically decreasing.

• χ[−n,n](x) ≤ wn(x) ≤ χ[−(n+1),n+1](x).
• χ(−∞,−(n+1)](x) + χ[n+1,∞)(x) ≤ wc

n(x) ≤ χ(−∞,−n](x) + χ[n,∞)(x).

Lemma 2.7. If a sequence of probability distributions {µm} is computable, then there exists

a recursive function L(m,k) such that µm(wn) > 1 − 2−k, or equivalently µm(wc
n) < 2−k,

for all n ≥ L(m,k).

Observe that for all n ≥ L(m,k),

µm([−(n+ 1), n + 1]) > 1− 2−k and µm((−∞,−(n+ 1)]) + µm([n+ 1,∞)) < 2−k .

However, these quantities may not be computable.

Proof of Lemma 2.7. By the definition, {µm(wn)} is a computable sequence of reals and
converges monotonically to µm(R) (= 1) from below as n tends to infinity. By Lemma 2.6,
this convergence is effective.

Lemma 2.8. (Effective tightness of an effectively convergent sequence, Effectivization of
Lemma 15.4 in [11]) If a computable sequence of probability distributions {µm} effectively

converges to a probability distribution µ, then there exists a recursive function α(k) such

that µ(wc
α(k)) < 2−k and µm(wc

α(k)) < 2−k for all m. It also holds that

µm([−α(k) − 1, α(k) + 1]c) < 2−k for all m and µ([−α(k) − 1, α(k) + 1]c) < 2−k .

Proof. Let L(m,k) be the recursive function in Lemma 2.7, and let L(k) be the one for a
single µ.

By definition, {wn} is a uniformly computable sequence of functions with compact
support. So, {µm(wn)} converges effectively to {µ(wn)}, that is, there exists a recursive
function γ(n, k) such that m ≥ γ(n, k) implies |µm(wn)− µ(wn)| < 2−k.

It holds that µ(wc
n) < 2−k for all n ≥ L(k) by Lemma 2.7.

If m ≥ γ(L(k), k), then |µm(wc
L(k)) − µ(wc

L(k))| = |µm(wL(k)) − µ(wL(k))| < 2−k and

hence µm(wc
L(k)) < 2 · 2−k. For each ℓ ≤ γ(L(k), k) − 1, µℓ(w

c
L(ℓ,k)) < 2−k by Lemma 2.7.

If we put
α(k) = max{L(k + 1), L(1, k + 1), L(2, k + 1), . . . , L(γ(L(k + 1), k + 1)− 1, k + 1)},

then µ(wc
α(k)) < 2−k and µm(wc

α(k)) < 2−k holds for all m.

Proposition 2.9. ([7]) If {µm} is computable, then it is weakly sequentially computable,
that is, {µm(fn)} is a computable sequence of reals for all effectively bounded computable

sequence of functions {fn}.
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Proposition 2.10. ([7]) Let {µm} and µ be computable probability distributions. Then the

effective convergence of {µm} to µ is equivalent to the effective weak convergence of {µm}
to µ, that is, {µm(fn)} converges to µ(fn) effectively for all effectively bounded computable

sequence of functions.

For characteristic functions, the following classical Bochner’s Theorem holds.

Theorem 2.11. (Bochner’s Theorem [1]) In order for ϕ(t) to be a characteristic function,

it is necessary and sufficient that the following three conditions hold.

(i) ϕ is positive definite. (ii) ϕ(t) is continuous at 0. (iii) ϕ(0) = 1.

3. Effective Integrability

Effective integrability of Fine computable functions on [0, 1) and [0, 1)2 with respect to the
Lebesgue measure dx and dx×dy respectively has been treated in [3], [4], [5], [6]. We need to
extend some of these results to (R, dx), (R, µ) and (R2, µ(dx)dy) for computable integrands,
where µ(dx)dy is the product measure of a probability distribution µ and the Lebesgue
measure dx. This product measure is defined by assigning the measure µ((a, b]) × (d − c)
to the product set (a, b]× (c, d].

A bounded measurable function is integrable on any finite interval. A positive (non-
negative) measurable function f is called integrable if {

∫

[−n,n](f ∧m)(x)dx} converges to a

finite limit as m and n tend to infinity, where (f ∧m)(x) = min{f(x),m}. We denote this
limit with

∫

R
f(x)dx.

A measurable f is called integrable if f+ and f− are integrable, where f+(x) = f(x)∨0
and f−(x) = (−f(x)) ∨ 0.

∫

R
f(x)dx is then defined to be

∫

R
f+(x)dx−

∫

R
f−(x)dx.

If f is integrable, then
∫

R
|f(x)|wc

n(x)dx converges to zero.
∫

E
f(x)dx is defined to be

∫

R
χE(x)f(x)dx.

A continuous function on a finite closed interval is Riemann integrable, and it is also
Lebesgue integrable. The two integrals coincide.

About effective integrability of computable functions, we have the following theorem.

Theorem 3.1. ([10]) Let {fn} be a computable sequence of functions.

(i) {
∫

[am,bm] fn(x)dx} is a computable double sequence of reals for computable sequences

{am} and {bm}.
(ii) If {fn} converges effectively to f , then {

∫

[am,bm] fn(x)dx} converges effectively to

{
∫

[am,bm] f(x)dx} effectively in m.

Definition 3.2. (Effective integrability) A sequence of computable functions {fn} is said to
be effectively integrable (on R) if the sequences {

∫

[−m,m] f
+
n (x)dx} and {

∫

[−m,m] f
−
n (x)dx}

converge effectively as m tends to infinity effectively in n.
We denote these limits with

∫

R
f+n (x)dx and

∫

R
f−n (x)dx.

∫

R
fn(x)dx is defined to be

∫

R
f+n (x)dx−

∫

R
f−n (x)dx.

We can easily obtain the following proposition.

Proposition 3.3. A computable sequence of functions {fn} is effectively integrable if and

only if
∫

R
|fn(x)|wc

m(x)dx converges effectively to 0 as m tends to infinity effectively in n.

By Proposition 3.3 and Theorem 3.1, we can prove the following theorem.



6 T. MORI, Y. TSUJII, AND M. YASUGI

Theorem 3.4. (Effective dominated convergence theorem for dx) Let {gm,n} be a com-

putable sequence of functions which converges effectively to {fm}. Assume that there exists

an effectively integrable computable sequence of functions {hm} such that |gm,n(x)| ≤ hm(x).
Then {gm,n} is effectively integrable and {

∫

R
gm,n(x)dx} converges effectively to

{
∫

R
fm(x)dx} as n tends to infinity effectively in m.

For the proof of the theorems in the next section, we treat
∫

R
f(x, y)dy and

∫

R
f(x, y)µ(dy) for a computable binary function f(x, y).
We say that a sequence of binary functions {fn} is computable with compact sup-

port {L(n)}, if {fn} is (uniformly) computable and L(n) is a recursive function satisfying
fn(x, y) = 0 for all x, y with min{|x|, |y|} ≥ L(n).

Theorem 3.5. Let {fn(x, y)} be a computable sequence of binary functions and let {µm}
be a computable sequence of probability distributions.

(1) If {fn(x, y)} is effectively bounded, then, as a function of x, {
∫

R
fn(x, y)µm(dy)} is an

effectively bounded computable double sequence of functions.

(2) If there exists an effectively integrable computable function g(y)such that |fn(x, y)| ≤
g(y), then {

∫

R
fn(x, y)dy} is a computable sequence of functions on the real line.

Proof. (1) Sequential computability: Let {xℓ} be a computable sequence of reals. Then,
{fn(xℓ, y)} is a computable (double) sequence of functions of y. By the computability of
µm and Proposition 2.9, {

∫

R
fn(xℓ, y)µm(dy)} is computable.

Effective continuity: Let α(n,H, k) be a recursive modulus of continuity of {fn}, L(m,k)
be a recursive function in Lemma 2.7 and let M(n) be a recursive bound of {fn}. Then,

µm(wc
L(m,k)) < 2−k. If |x|, |z|, |y|, |w| ≤ H and |x− y|, |z −w| < 2−α(n,H,k), then |fn(x, z)−

fn(y,w)| < 2−k.

Put ℓ = ℓ(m,k,H) = max{H,L(m,k)} and assume |x− y| < 2−α(n,ℓ,k). Then,
µm(wc

ℓ) ≤ µm(wc
L(m,k)) < 2−k and

|
∫

R
fn(x, z)µm(dz) −

∫

R
fn(y, z)µm(dz)|

≤
∫

R
|fn(x, z)− fn(y, z)|wℓ(z)µm(dz) +

∫

R
|fn(x, z)− fn(y, z)|wc

ℓ(z)µm(dz)

≤
∫

R
|fn(x, z)− fn(y, z)|wℓ(z)µm(dz) + 2M(n)2−k

≤ (1 + 2M(n))2−k.

Hence {
∫

R
fn(x, z)µm(dz)} is effectively continuous with respect to

γ(m,n,H, k) = α(n, ℓ(m,k,H), k + 2M(n) + 3) .

(2) can be proved similarly by means of Theorem 3.1 and Proposition 3.3.

We explain at this point the computability of a complex-valued function. i denotes√
−1, Re(z) denotes the real part of z and Im(z) denotes the imaginary part of z.
A sequence of complex numbers {rn + isn} is called recursive if {rn} and {sn} are

recursive sequences of rationals numbers. Computability of a sequence of complex numbers
{zn} is defined in terms of recursive sequences of complex numbers and it is equivalent to
computability of {Re(zn)} and {Im(zn)}.

Computability of a complex-valued function on R is defined by viewing it as a mapping
from the metric space R to the metric space C ([2]). Computability of a sequence of complex-
valued functions {fn} is defined similarly and is equivalent to computability of {Re(fn)}
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and {Im(fn)}. {fn} is uniformly computable if and only if {Re(fn)} and {Im(fn)} are
uniformly computable.

A complex-valued function is called integrable if {Re(f)} and {Im(f)} are integrable
and

∫

R
f(x)dx is defined to be

∫

R
Re(f)(x)dx + i

∫

R
Im(f)(x)dx.

A sequence of complex-valued functions {fn} is said to be effectively integrable if each
fn is integrable and {

∫

R
Re(fn)(x)dx} and {

∫

R
Im(fn)(x)dx} are computable sequences of

reals.
Theorem 3.5 can be generalized easily to complex-valued functions.

4. Characteristic functions

Theorem 4.1. If a sequence of probability distributions {µm} is computable, then the

corresponding sequence of characteristic functions {ϕm} is uniformly computable.

Proof. Sequential computability: Let {tn} be a computable sequence of reals. Then {eitnx}
is a bounded computable sequence of functions of x. Hence the extension of Proposition 2.9
to the complex case shows that {µn(eitnx)} is a computable sequence of complex numbers.

Effective uniform continuity: It is well known that |ϕm(t+h)−ϕm(t)| ≤ µm(|eihx−1|)
and |eiz − 1| ≤ |z| for any real z.

Take a recursive function L(m,k) in Lemma 2.7. Then, we obtain

µm(|eihx − 1|) = µ(wL(m,k)|eihx − 1|) + µ(wc
L(m,k)|eihx − 1|)

≤
∫

R
wL(m,k)(x)|hx|µm(dx) + 2 · 2−k ≤ |h|(L(m,k) + 1)µm(wL(m,k)) + 2 · 2−k

≤ |h|(L(m,k) + 1) + 2 · 2−k

So, if |h| < 1
(L(m,k+2)+1)2k+2 , then |ϕm(t+ h)− ϕm(t)| < 2−k.

Theorem 4.2. (Effective Glivenko’s theorem, cf. Theorem 2.6.4 in [1]) Let {ϕm} and ϕ be

a computable sequence of characteristic functions and a characteristic function respectively,

and let {µm} and µ be the corresponding probability distributions. Then, {µm} converges

effectively to µ if {ϕm} converges effectively to ϕ.

Proof. We follow the proof of Theorem 2.6.4 in [1] and prove that {µm(f)} converges
effectively to µ(f) for any computable function f with compact support. Notice that

∫

R

(∫

R
eizxg(z)dz

)

µ(dx) =
∫∫

R×R
g(z)eizxµ(dx)dz =

∫

R
ϕ(z)g(z)dz (4.1)

holds for an integrable function g and any pair of a probability distribution µ and the
corresponding characteristic function ϕ by virtue of the classical Fubini Theorem. Assume
that g is an effectively integrable computable function. Then

∫

R
eizxg(z)dz is a bounded

uniformly computable function.
Effective convergence of {ϕm} to ϕ implies effective convergence of {

∫

R
ϕm(z)g(z)dz}

to
∫

R
ϕ(z)g(z)dz by Theorem 3.4. This proves that {µm(h)} converges effectively to µ(h)

for functions of type h(x) =
∫

R
eizxg(z)dz with effectively integrable computable g.

To complete the proof, it is sufficient to prove that any computable function f with
compact support can be approximated effectively by a sequence of functions {hn} of type
of h.

Now, define gn(z) =
1
2πe

− z2

2n

∫

R
e−izyf(y)dy and hn(x) =

∫

R
eizxgn(z)dz. Then, {gn} is

a computable sequence of functions, and since |gn(z)| ≤ 1
2πe

− z2

2n

∫

R
|f(y)|dy, it is effectively
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integrable. We have

hn(x) =
∫

R
eizx 1

2π e
− z2

2n dz
∫

R
e−izyf(y)dy = 1

2π

∫

R
f(y)dy

∫

R
eiz(x−y)e−

z2

2n dz

=
√

n
2π

∫

R
f(y)dy

∫

R
eiz(x−y) 1√

2πn
e−

z2

2n dz =
√

n
2π

∫

R
e−

n(x−y)2

2 f(y)dy

= 1√
2π

∫

R
e−

t2

2 f(x+ t√
n
)dt.

Hence, we obtain the following estimate:

|hn(x)− f(x)| = 1√
2π

∫

R
e−

t2

2 |f(x+ t√
n
)− f(x)|dt

= 1√
2π

∫

|t|≤L
e−

t2

2 |f(x+ t√
n
)− f(x)|dt+ 1√

2π

∫

|t|>L
e−

t2

2 |f(x+ t√
n
)− f(x)|dt

≤ sup|t|≤L |f(x+ t√
n
)− f(x)|+ 2√

2π
Mf

∫

|t|>L
e−

t2

2 dt,

for any L, where Mf denotes the maximum of f , which is computable. Furthermore,

∫

|t|>L
e−

t2

2 dt ≤ e−
L2

2

∫

R
e−

t2

2 dt =
√
2πe−

L2

2 .

Finally, let α(k) be a recursive modulus of continuity of f . For each k, take L = L(k)

so large that 2Mfe
−L2

2 < 1
2k+1 , and take n > L222α(k+1). Then, we have

|hn(x)− f(x)| < 1
2k
.

Theorem 4.3. Assume that a sequence of probability distributions {µm} converges ef-

fectively to a probability distribution µ. Then the corresponding sequence of characteristic

functions {ϕm} converges effectively to ϕ, which is the corresponding characteristic function

of µ.

If a sequence of probability distributions {µm} converges effectively to a probability
distribution µ, then we can replace L(m,k) with α(k) in the proof of Theorem 4.1. Hence,
we obtain the following lemma.

Lemma 4.4. Assume that a sequence of probability distributions {µm} converges effectively

to a probability distribution µ. Then the corresponding characteristic functions {ϕm} and

ϕ are effectively uniformly equi-continuous, that is, there exists a recursive function β(k)

such that |t− s| < 2−β(k) implies |ϕm(t)−ϕm(s)| < 2−k for any m and |ϕ(t)−ϕ(s)| < 2−k.

Proof of Theorem 4.3. Let {eℓ} be an effective enumaration of all dyadic rationals and
β(k) be an effective modulus of uniform equi-continuity in Lemma 4.4.

{eieℓx} is an effectively bounded computable sequence of functions. Hence, {µm(eieℓx)}
converges effectively to µ(eieℓx) by the extension of Proposition 2.10 to the complex case,
that is, there exists a recursive function γ(ℓ, k) such that m ≥ γ(ℓ, k) implies |µm(eieℓx) −
µ(eieℓx)| < 2−k.

Let us assume |t| ≤ M . Put tj = −M + j 2−β(k) (where 0 ≤ j ≤ 2M2β(k)). Then
t ∈ [tj , tj+1) for some j. We can find a recursive function ξ(j) such that tj = eξ(j). Define

η(M,k) = max{γ(ξ(0), β(k)), γ(ξ(1), β(k)), . . . , γ(ξ(2M2β(k)), β(k))}.
Suppose that |t| ≤M and m ≥ η(M,k). Then

|ϕm(t)− ϕ(t)| ≤ |ϕm(t)− ϕm(tj)|+ |ϕm(tj)− ϕ(tj)|+ |ϕ(tj)− ϕ(t)| < 3 · 2−k.

Therefore {ϕm(t)} converges effectively to ϕ(t).
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Modifying the proof of Bochner’s Theorem in [1], we can prove the following two theorems.

Theorem 4.5. Let {µm} be probability distributions, and let {ϕm} be the corresponding

characteristic functions. Then, {µm} is computable if {ϕm} is computable.

Proof. We prove the theorem for a single µ and the corresponding characteristic function
ϕ. First, we note that the following is proved in [1]: If we put

fn(x) =
1
2π

∫

R
ϕ(t)e−

t2

n e−ixtdt,

then fn(x) ≥ 0 and
∫

R
fn(x)dx = 1. By computability of ϕ and Theorem 3.5 (2), {fn} is a

computable sequence of functions.
Define νn(dx) = fn(x)dx. Then, {νn} is a computable sequence of probability distribu-

tions. ψn(z) = ϕ(z)e−
z2

n is the characteristic function of νn.
Computability of {ψn} and effective convergence of {ψn} to ϕ are obvious.
Therefore, νn converges effectively to µ by Theorem 4.2 and hence µ is computable by

Proposition 2.5.
The argument above goes through for a sequence {µm}.

Combining Theorems 4.1 and 4.5, we obtain the following theorem.

Theorem 4.6. Let {µm} be probability distributions, and let {ϕm} be the corresponding

characteristic functions.

Then, {µm} is computable if and only if {ϕm} is computable.

Theorem 4.7. (Effective Bochner’s theorem) In order for ϕ(t) to be the characteristic

function of a computable probability distribution, it is necessary and sufficient that the

following three conditions hold.

(i) ϕ is positive definite. (ii′) ϕ is computable. (iii) ϕ(0) = 1.

Proof. ϕ is a characteristic function of a probability distribution if and only if the condi-
tions (i), (ii), and (iii) of Theorem 2.11 hold. If (ii) is replaced by (ii′), the corresponding
probability distribution is computable by Theorem 4.5.

The converse is a special case of Theorem 4.1.

Example 4.8. For δ0 and µm(dx) = 2m−1χ[−2−m,2−m]dx, {µm} converges effectively to δ0.
ϕδ0(t) ≡ 1.

ϕm(t) = 2m−1
∫ 2−m

−2−m e
itxdx = 2m

∫ 2−m

0 cos txdx = sin t2−m

t2−m if t 6= 0, and ϕm(0) = 1.

{ϕm(t)} converges effectively to 1.

5. De Moivre-Laplace Central Limit Theorem

Let (Ω,B,P, {Xn}) be a realization of Coin Tossing with success probability p, that is,
(Ω,B,P) is a probability space and {Xn} is a sequence of independent {0, 1}-valued random
variables with the same probability distribution P(Xn = 1) = p and P(Xn = 0) = q = 1−p.

The probability distribution of Sm = X1 + · · ·+Xm is the binomial distribution µm =
∑m

ℓ=0

(

m
ℓ

)

pℓ(1− p)m−ℓδℓ and its characteristic function ϕm(t) is equal to (peit + q)m.

Theorem 5.1. (Effective de Moivre-Laplace central limit theorem) If p is a computable

real number, then the sequence of probability distributions of Ym = X1+···Xm−mp√
mp(1−p)

=
∑m

ℓ=1
Xℓ−p√
mpq

converges effectively to the standard Gaussian distribution.
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Lemma 5.2. (Ito [1])

(1) Put Rn(t) =
∫ t

0

∫ t1
0 · · ·

∫ tn−1

0 ineitndtn · · · dt1. Then

eit =
∑n−1

k=0
(it)k

k! +Rn(t) and |Rn(t)| ≤ |t|n
(n)! for any t ∈ R.

(2) If |z| ≤ 1
2 , then | log(1 + z)− z| ≤ |z|2.

Outline of the proof of Theorem 5.1: By virtue of Theorem 4.2, it is sufficient to prove

effective convergence of logϕm(t) to − t2

2 , since then the corresponding districution is the
standard Gaussian. We follow Ito [1] (p. 192). The following holds by definition and Lemma
5.2 (1);

ψm(t) = E(eitYm) =
∏m

ℓ=1 E(e
it

Xℓ−p√
mpq ) = (pe

it
√

q√
mp + qe

− it
√

p√
mq )m.

e
it
√

q√
mp = 1 + it

√
q√
mp

− t2 q
2mp

+R3(
it
√
q√

mp
).

e
− it

√
p√

mq = 1− it
√
p√
mq

− t2 p
2mq

+R3(− it
√
p√

mq
).

logψm(t) = m log
(

1− t2

2m +R3(
it
√
q√

mp
) +R3(− it

√
p√

mq
)
)

.

|R3(
it
√
q√

mp
)| ≤ |t|3

(

q
mp

)
3
2 .

|R3(− it
√
p√

mq
)| ≤ |t|3

(

p
mq

)
3
2 .

If t2

2m + |t|3
(

q
mp

)
3
2 + |t|3

(

p
mq

)
3
2 < 1

2 , then by Lemma 5.2 (2) and the above facts,

| logψm(t)− (− t2

2 )| ≤ |t|3
{(

q
p

)
3
2 +

(

p
q

)
3
2
}

1√
m
+
(

t2

2m + |t|3
(

q
mp

)
3
2 + |t|3

(

p
mq

)
3
2
)2
.

The last term converges to zero effectively and uniformly in |t| ≤ K as m tends to infinity.
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