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Abstract. We obtain a non-implication result in the Medvedev degrees by studying
sequences that are close to Martin-Löf random in asymptotic Hamming distance. Our
result is that the class of stochastically bi-immune sets is not Medvedev reducible to the
class of sets having complex packing dimension 1.

1. Introduction

We are interested in the extent to which an infinite binary sequence X, or equivalently
a set X ⊆ ω, that is algorithmically random (Martin-Löf random) remains useful as a
randomness source after modifying some of the bits. Usefulness here means that some
algorithm (extractor) can produce a Martin-Löf random sequence from the result Y of
modifying X. For further motivation see Subsection 1.2 and Section 3.

A set that lies within a small Hamming distance of a random set may be viewed as
produced by an adaptive adversary corrupting or fixing some bits after looking at the
original random set. Similar problems in the finite setting have been studied going back to
Ben-Or and Linial [1].

If A is a finite set and σ, τ ∈ {0, 1}A, then the Hamming distance d(σ, τ) is given by

d(σ, τ) = |{n : σ(n) 6= τ(n)}| .
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Let the collection of all infinite computable subsets of ω be denoted by C. Let p : ω → ω.
For X,Y ∈ 2ω and N ⊆ ω we define a notion of proximity, or similarity, by

X ∼p,N Y ⇐⇒ (∃n0)(∀n ∈ N, n ≥ n0)(d(X ↾ n, Y ↾ n) ≤ p(n)).

We will study the effective dimension of sequences that are ∼p,N to certain algorithmi-
cally random reals for suitably slow-growing functions p.

We use the following notation for a kind of neighborhood around X.

[X]p,N = {Y : Y ∼p,N X}.
Moreover, for a collection A of subsets of ω,

[A]p,N =
⋃

{[X]p,N : X ∈ A} .

Turing functionals as random variables. Since a random variable must be defined for all
elements of the sample space, we consider a Turing functional Φ to be a map into

Ω := 2<ω ∪ 2ω.

Setting the domain of Φ to also be Ω allows for composing maps. Let

ΛX(n) = X(n).

Thus Λ : 2ω → 2ω is the identity Turing functional.
We define a probability measure λ on Ω called Lebesgue (fair-coin) measure, whose

σ-algebra of λ-measurable sets is

F = {S ⊆ Ω : S ∩ 2ω is Lebesgue measurable},
by letting λ(S) equal the fair-coin measure of S ∩ 2ω. Thus λ(2ω) = 1 and λ(2<ω) = 0, that
is, λ is concentrated on the functions that are actually total.

The distribution of Φ is the measure S 7→ λ{X : ΦX ∈ S}, defined on F. Thus the
distribution of Λ is λ.

If X ∈ 2ω then X is called a real, a set, or a sequence depending on context. If
I ⊆ ω then X ↾ I denotes X, viewed as a function, restricted to the set I. We denote the
cardinality of a finite set A by |A|. Regarding X,Y as subsets of ω and letting + denote
sum mod two, note that (X + Y ) ∩ n = {k < n : X(k) 6= Y (k)} and generally for a set
I ⊆ ω, (X + Y ) ∩ I = {k ∈ I : X(k) 6= Y (k)}.

For an introduction to algorithmic randomness the reader may consult the recent books
by Nies [10] and Downey and Hirschfeldt [4]. Let MLR denote the set of Martin-Löf random
elements of 2ω. For a binary relation R we use a set-theoretic notation for image,

RJAK = {y : (∃x ∈ A)(〈x, y〉 ∈ R)}.
Let the use ϕX(n) be the largest number used in the computation of ΦX(n). We write

ΦX(n) ↓ @s

if ΦX(n) halts by stage s, with use at most s; if this statement is false, we write ΦX(n) ↑ @s.
We may assume that the running time of a Turing reduction is the same as the use, because
any X-computable upper bound on the use is a reasonable notion of use.

For a set A ⊆ 2ω, let

Interiorp,N (A) = {X : (∀Y ∼p,N X)(Y ∈ A)}
⊆ Interior∗(A) = {X : (∀Y =∗ X)(Y ∈ A)} ⊆ A
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where =∗ denotes almost equality for all but finitely many inputs. It is easy to see that

Interiorp,N (MLR) = ∅

whenever N ⊆ ω and p is unbounded.

Definition 1.1 (Effective convergence). Let {an}n∈ω be a sequence of real numbers.

• {an}n∈ω converges to ∞ effectively if there is a computable function N such that for all
k and all n ≥ N(k), an ≥ k.

• {an}n∈ω converges to 0 effectively if the sequence {a−1
n }n∈ω converges to ∞ effectively.

Definition 1.2. For a sequence of real numbers {an}n∈ω, lim*
n→∞ an is the real number

to which an converges effectively, if any; and is undefined if no such number exists.

As a kind of effective big-O notation, pn = ω∗(qn) means lim*
n→∞ qn/pn = 0, i.e., qn/pn

goes to zero effectively.

Central Limit Theorem. Let N be the cumulative distribution function for a standard nor-
mal random variable; so

N (x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

Let P denote fair-coin probability on Ω. We may write

P(Event) = P({X : X ∈ Event}) = λ{X : X ∈ Event}.
We will make use of the following quantitative version of the central limit theorem.

Theorem 1.3 (Berry-Esséen1). Let {Xn}n≥1 be independent and identically distributed
real-valued random variables with the expectations E(Xn) = 0, E(X2

n) = σ2, and E(|Xn|3) =
ρ < ∞. Then there is a constant d (with .41 ≤ d ≤ .71) such that for all x and n,

∣∣∣∣P
(∑n

i=1Xi

σ
√
n

≤ x

)
−N (x)

∣∣∣∣ ≤
dρ

σ3
√
n
.

We are mostly interested in the case Xn = X(n)− 1
2 , X(n) ∈ {0, 1}, for X ∈ 2ω under

λ, in which case σ = 1/2.

1.1. New Medvedev degrees. Let ≤s denote Medvedev (strong) reducibility and let ≤w

denote Muchnik (weak) reducibility. A recent survey of the theory behind these reducibili-
ties is Hinman [8].

Definition 1.4 (see, e.g., [9]). A set X is immune if for each N ∈ C, N 6⊆ X. If ω \X is
immune then X is co-immune. If X is both immune and co-immune then X is bi-immune.

Definition 1.5. A set X is stochastically bi-immune if for each set N ∈ C, X ↾ N satisfies
the strong law of large numbers, i.e.,

lim
n→∞

|X ∩N ∩ n|
|N ∩ n| =

1

2
.

1See for example Durrett [5].
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Definition 1.6. Let 0 ≤ p < 1. A sequence X ∈ 2ω is p-stochastically dominated if for
each L ∈ C,

lim sup
n→∞

|L ∩ n|
n

> 0 =⇒ (∃M ∈ C) M ⊆ L and lim sup
n→∞

|X ∩M ∩ n|
|M ∩ n| ≤ p.

The class of stochastically dominated sequences is denoted SD = SDp. If ω \X ∈ SDp then
we write X ∈ SDp and say that X is stochastically dominating.

Let IM denote the set of immune sets, CIM the set of co-immune sets, and W3R the
set of weakly 3-random sets. Let K denote prefix-free Kolmogorov complexity.

Definition 1.7 (see, e.g., [4, Ch. 13]). The effective Hausdorff dimension of A ∈ 2ω is

dimH(A) = lim inf
n∈ω

K(A ↾ n)

n
.

The complex packing dimension of A ∈ 2ω is

dimcp(A) = sup
N∈C

inf
n∈N

K(A ↾ n)

n
.

The effective packing dimension of A ∈ 2ω is

dimp(A) = lim sup
n∈ω

K(A ↾ n)

n
.

Proposition 1.8. For all A ∈ 2ω,

0 ≤ dimH(A) ≤ dimcp(A) ≤ dimp(A) ≤ 1.

Proof. The inequality dimH(A) ≤ dimcp(A) uses the fact that each cofinite set N ⊆ ω is in
C. The inequality dimcp(A) ≤ dimp(A) uses the fact that each N ∈ C is an infinite subset
of ω.

By examining the complex packing dimension of reals that are ∼p,N to a Martin-Löf
random real for p growing more slowly than n/(log n), we will derive our main result, which
states the existence, for each Turing reduction Φ, of a set Y of complex packing dimension
1 for which ΦY is not stochastically bi-immune.

1.2. Relation of our results to other recent results. Jockusch and Lewis [9] prove that
the class of bi-immune sets is Medvedev reducible to the class of almost diagonally non-
computable functions DNC∗, i.e., functions f such that f(x) = ϕx(x) for at most finitely
many x. Downey, Greenberg, Jockusch, and Milans [3] show that DNC3 (the class of DNC
functions taking values in {0, 1, 2}) and hence also its superset DNC∗, is not Medvedev
above the class of Kurtz random sets. We do not know whether the class of stochastically
bi-immune sets is Medvedev reducible to the class of DNC∗ functions. We show in Theorem
4.3 below that from a set of complex packing dimension 1 one cannot uniformly compute
a stochastically bi-immune set; on the other hand, to compute a DNC∗ function from a set
of complex packing dimension 1 one would apparently also need to know the witnessing set
N ∈ C.

Definition 1.9 (see, e.g., [10, Def. 7.6.4]). A sequence X ∈ 2ω is Mises-Wald-Church
(MWC) stochastic if no partial computable monotonic selection rule can select a biased
subsequence of X, i.e., a subsequence where the relative frequencies of 0s and 1s do not
converge to 1/2.
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Figure 1: Some Medvedev degrees. The fact that (cp, 1) is not Medvedev above SBI is
Theorem 4.3.

// Included in

///o/o/o Not Medvedev above

+3 Medvedev above

Figure 2: Meaning of arrows.

Definition 1.10. A sequence X ∈ 2ω is BI 2 (bi-immune for sets of size two) if there is no
computable collection of disjoint finite sets of size 2 on which the set omits a certain pattern
such as 01. More precisely, X is BI 2 if for each computable disjoint collection {Tn : n ∈ ω}
where each Tn has cardinality two, say Tn = {sn, tn} where sn < tn, and each P ⊆ {0, 1},
there is an n such X(sn) = P (0) and X(tn) = P (1).

Each von Mises-Wald-Church stochastic (MWC-stochastic) set is stochastically bi-
immune. Our main theorem implies that a set of complex packing dimension 1 does not
necessarily uniformly compute a MWC-stochastic set. This consequence is not really new
with the present paper, however, because the fact that DNC3 is not Medvedev above BI2 is
implicit in Downey, Greenberg, Jockusch, and Milans [3] as pointed out to us by Joe Miller.
The situation is diagrammatically illustrated in Figure 1, with notation defined in Figures
2 and 3. In the future we could hope to replace complex packing dimension by effective
Hausdorff dimension in Theorem 4.3.
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Abbreviation Unabbreviation Definition
DNCn Diagonally non-computable function in nω

MLR Martin-Löf random
KR Kurtz random (weakly 1-random)

MWC Mises-Wald-Church stochastic 1.9
SBI Stochastically bi-immune 1.5
BI bi-immune 1.4
BI2 bi-immune for sets of size two 1.10

(H, 1) effective Hausdorff dimension 1 1.7
(cp, 1) complex packing dimension 1 1.7

Figure 3: Abbreviations used in Figure 1.

2. Hamming space

The Hamming distance between a point and a set of points is defined by d(y,A) :=
mina∈A d(y, a). The r-neighborhood of a set A ⊆ {0, 1}n is

Γr(A) = {y ∈ {0, 1}n : d(y,A) ≤ r}.
In particular,

Γr({c}) = {y ∈ {0, 1}n : d(y, c) ≤ r},
and

Γr(A) =
⋃

a∈A
Γr({a}).

A Hamming-sphere2 with center c ∈ {0, 1}n is a set S ⊆ {0, 1}n such that for some k,

Γk({c}) ⊆ S ⊆ Γk+1({c}).
Theorem 2.1 (Harper [7]; see also Frankl and Füredi [6]). For each n, r ≥ 1 and each set
A ⊆ {0, 1}n, there is a Hamming-sphere S ⊆ {0, 1}n such that

|A| = |S| , and |Γr(A)| ≥ |Γr(S)| .
Following Buhrman et al. [2], we write

b(n, k) :=

(
n

0

)
+ · · ·+

(
n

k

)
.

Note that for all c ∈ {0, 1}n, |Γk({c})| = b(n, k)
If the domain of σ is an interval I in ω rather than an initial segment of ω, we may

emphasize I by writing

BI
r (σ) = Γr({σ}) = {τ ∈ {0, 1}I : d(σ, τ) ≤ r}.

P denotes the uniform distribution on {0, 1}I , so by definition

P(E) =
|E|
2|I|

.

Recall that Dm is the mth canonical finite set. The intuitive content of Lemma 2.2
below is that a medium size set is unlikely to contain a random large ball. (Note that we
do not assume the sets Im are disjoint.)

2A Hamming-sphere is more like a ball than a sphere, but the terminology is entrenched.
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Lemma 2.2. Let χ ∈ ωω. Suppose

lim*

n→∞
χ(n)/

√
n = ∞. (2.1)

Let f ∈ ωω be a computable function. Let Im = Df(m) and nm = |Im|. Suppose

lim*

m→∞
nm = ∞. (2.2)

For each m ∈ ω let Em ⊆ {0, 1}Im . Suppose lim supm→∞ P(Em) ≤ p where 0 < p < 1
is computable. Writing

Bχ(n)(X) for BIm
χ(nm)(X ↾ Im),

we have
lim*

m→∞
P({X : Bχ(n)(X) ⊆ Em}) = 0. (2.3)

Moreover, for each m0 ∈ ω and computable q ∈ (p, 1) there is a modulus of effective con-
vergence in (2.3) that works for all sets {Em}m∈ω such that for all m ≥ m0, P(Em) ≤ q.

Proof. Let X ∈ 2ω be a random variable with X =d Λ, and

S(m) =
∑

i∈Im
X(i).

Let

fm(x) = P

(
S(m) − n/2√

n/2
≤ x

)

We have3

|fm(x)−N (x)| ≤ d√
nm

.

Since lim*
m→∞ nm = ∞, lim* d√

nm
= 0. So

lim*

m→∞
sup
x

|fm(x)−N (x)| = 0. (2.4)

Let r = rm be such that
b(n, r) ≤ |Em| < b(n, r + 1).

Let

am =
rm − n

2√
n/2

,

and let

bm = am +
1√
n/2

− χ(n)√
n/2

.

By (2.4),

lim*

m→∞
|fm(bm)−N (bm)| = 0. (2.5)

3Indeed, let Yi = Xi − E(Xi) where E(Xi) = 1

2
is the expected value of Xi, so E(Yi) = 0. By the

Berry-Esséen Theorem 1.3, for all x
∣

∣

∣

∣

P

(

∑

i∈Im
Yi

σ
√
n

≤ x

)

−N (x)

∣

∣

∣

∣

≤ dρ

σ3
√
n

=
d√
n
,

where ρ = 1/8 = E(|Yi|3), and σ = 1/2 is the standard deviation of Xi (and Yi).
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We have

lim sup
m→∞

fm(am) = lim sup
m→∞

P

(
S(m) − n/2√

n/2
≤ rm − n

2√
n/2

)

= lim sup
m→∞

P(S(m) ≤ rm) = lim sup
m→∞

b(n, r)

2n
≤ lim sup

m→∞
P(Em) ≤ p.

Since fm → N uniformly, it follows that

lim sup
m→∞

N (am) ≤ p,

and so as N is strictly increasing,

lim sup
m→∞

am ≤ N−1(p) (= 0 if p = 1/2).

Let m0 be such that for all m ≥ m0,

am +
1√
nm/2

≤ N−1(p) + 1.

Since by assumption lim*
n→∞ χ(n)/

√
n = ∞, we have that bm is the sum of a term that

goes effectively to −∞, and a term that after m0 never goes above N−1(p)+ 1 again. Thus

lim*

m→∞
bm = −∞.

It is this rate of convergence that is transformed in the rest of the proof. Now

lim*

m→∞
N (bm) = 0.

Hence by (2.5), lim*
m→∞ fm(bm) = 0.

Let us write
Bt(X) := BIm

t (X ↾ Im),

considering X ↾ Im as a string of length n. By Harper’s Theorem 2.1, we have a Hamming
sphere H with

|H| = |¬Em| and
∣∣Γχ(n)(¬Em)

∣∣ ≥
∣∣Γχ(n)(H)

∣∣ .
Then

P({X : X ∈ Γχ(n)(¬Em)}) ≥ P({X : X ∈ Γχ(n)(H)}).
Therefore

P({X : X 6∈ Γχ(n)(¬Em)}) ≤ P({X : X 6∈ Γχ(n)H)}).
Let Ĥ be the complement of H. If the Hamming sphere H is centered at c ∈ {0, 1}n then

clearly Ĥ is a Hamming sphere centered at c, where c(k) = 1− c(k). Since
∣∣∣Ĥ
∣∣∣ = |Em| < b(n, r + 1),

we have Ĥ ⊂ Γr+1({c}). So we have:

P({X : Bχ(n)(X) ⊆ Em}) ≤ P({X : Bχ(n)(X) ⊆ Ĥ})

< P({X : Bχ(n)(X) ⊆ Γr+1({c})}) =
b(n, r + 1− χ(n))

2n

= P[S(m) ≤ r + 1− χ(n)] = P

[
S(m) − n

2√
n/2

≤ r + 1− n
2 − χ(n)√
n/2

]
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= fm

(
am +

1√
n/2

− χ(n)√
n/2

)
= fm(bm).

Since we showed that lim*
m→∞ fm(bm) = 0, and since by assumption lim*

m→∞ nm = ∞,

lim*

m→∞
P({X : Bχ(n)(X) ⊆ Em}) = 0.

3. Turing reductions that preserve randomness

The way we will obtain our main result Theorem 4.3 is by proving essentially that for any
“randomness extractor” Turing reduction, and any random input oracle, a small number
of changes to the oracle will cause the extractor to fail to produce a random output. This
would be much easier if we restricted attention to Turing reductions having disjoint uses
on distinct inputs, since we would be working with independent random variables. Indeed,
one can give an easy proof in that case, which we do not include here. The main technical
achievement of the present paper is to be able to work with overlapping use sets; key in that
respect is Lemma 3.3 below. The number of changes to the random oracle that we need to
make is small enough that the modified oracle has complex packing dimension 1. We were
not able to set up the construction so as to guarantee effective Hausdorff dimension 1 (or
even greater than 0); this may be an avenue for future work.

For a set of pairs E, we have the projections Ex = {y : (x, y) ∈ E} and Ey = {x :
(x, y) ∈ E}.
Lemma 3.1. Let µ1 and µ2 be probability measures on sample spaces Ω1 and Ω2 and let E
be a measurable subset of Ω1 ×Ω2. Suppose that η, α, and δ are positive real numbers such
that

µ1Ey > η (∀y ∈ Ω2), and (3.1)

µ1{x : µ2E
x ≤ α} ≥ 1− δ. (3.2)

Then η < α+ δ.

Proof. By Fubini’s theorem,

η <

∫

Ω2

µ1(Ey)dµ2(y) =

∫∫

Ω1×Ω2

E(x, y)dµ1(x)dµ2(y) =

∫

Ω1

µ2(E
x)dµ1(x)

≤ α · µ1{x : µ2(E
x) ≤ α} + 1 · µ1{x : µ2(E

x) ≥ α} ≤ α · 1 + 1 · δ.
Definition 3.2. For a real X and a string σ of length n,

(σ ց X)(n) =

{
σ(n) if n < |σ|,
X(n) otherwise,

and

(σ⌢X)(n) =

{
σ(n) if n < |σ|,
X(n− |σ|) otherwise.

Thinking of σ and X as functions we may write

σ ց X = σ ∪ (X ↾ ω\|σ|)
and thinking in terms of concatenation we may write

σ⌢X = σ X.
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Lemma 3.3. Let Φ be a Turing reduction such that

λ(Φ−1JSDpK) = 1 (3.3)

and let ΦX
σ = ΦσցX . Then for any finite set Σ ⊆ 2<ω,

(∀ε > 0)(∀i0)(∃i > i0)(∀σ ∈ Σ)

P({X | ΦX
σ (i) = 1}) ≤ p+ ε.

Proof. First note that for all σ ∈ 2<ω, λ(Φ−1
σ JSDpK = 1 as well.

Suppose otherwise, and fix ε, i0 and Σ such that

(∀i > i0)(∃σ ∈ Σ) P(Φσ(i) = 1) > p+ ε.

By density of the rationals in the reals we may assume ε is rational and hence computable.
Since there are infinitely many i but only finitely many σ, it follows that there is some σ
such that

(∃∞k > i0) P(Φσ(k) = 1) > p+ ε (3.4)

and in fact
lim sup |{k < n : P(Φσ(k) = 1) > p+ ε}| /n > 0.

Fix such a σ and let Ψ = Φσ. Let {ℓn}n∈ω be infinitely many values of k in (3.4) listed in
increasing order; note that L = {ℓn}n∈ω may be chosen as a computable sequence.

For an as yet unspecified subsequence K = {kn}n∈ω, K ⊆ L, let

E = {(X,n) : ΨX(kn) = 1}. (3.5)

We obtain then also projections En = {X : ΨX(kn) = 1}, EX = {n : ΨX(kn) = 1}. By
(3.4) we have for all n ∈ ω,

λEn > p+ ε. (3.6)

The fraction of events En that occur in N = {0, . . . , N − 1} for X is denoted

eXN =

∣∣EX ∩N
∣∣

N

By assumption (3.3),

λ
{
X : (∃K ⊆ L)(∃M)(∀N ≥ M)

(
eXN ≤ p+

ε

2

)}
= 1.

Thus there is an M and a K (using that C is countable) such that

λ
{
X : eXM ≤ p+

ε

2

}
≥ λ

{
X : (∀N ≥ M)eXN ≤ p+

ε

2

}
≥ 1− ε

3
. (3.7)

Let Ω1 be the unit interval [0, 1]. Let Ω2 = M = {0, 1, . . . ,M − 1}. Let µ1 = λ. Let
µ2 = card be the counting measure on the finite set M = {0, 1, . . . ,M − 1}, so that for a
finite set A ⊂ M , card(A) is the cardinality of A.4 Let η = p+ ε, α = p+ ε/2, and δ = ε/3,
and note that η > α+ δ. By (3.6), (3.7) and Lemma 3.1, η < α+ δ, a contradiction.

4In this case,
∫

µ1(Ey)dµ2(y) =
∫

µ1(En)dµ2(n) =
∫

λ(En)d card(n) =
∑

n∈Ω2
λ(En) card({n}) =

∑M−1

n=0
λ(En) · 1.
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4. Extraction and Hamming distance

Theorem 4.1. Let p < 1 be computable. Let p : ω → ω be any computable function such
that p(n) = ω∗(

√
n). Let Φ be a Turing reduction. There exists an N ∈ C and an almost

sure event A such that
A∩ Interiorp,N(Φ−1JAK) = ∅

Proof. Let
A := W3R ⊂ MLR ⊂ CIM∩ IM∩(SDp ∪ SDp).

We show

(1) If λ(Φ−1JSDKp) = 1, or λ(Φ−1JSDpK) = 1, then

MLR∩Interiorp,N (Φ−1JCIMK) = ∅, or

MLR∩Interiorp,N(Φ−1JIMK) = ∅, respectively.

(2) Otherwise; then
W3R∩Interior∗(Φ−1JSDpK) = ∅

and
W3R∩Interior∗(Φ−1JSDpK) = ∅

Proof of (2): If we are not in case (1) then λ{X | ΦX ∈ SDp} < 1, so by the 0-1 Law,
λ{X | (∀Y =∗ X)(ΦY ∈ SDp)} = 0. This is (contained in) a Π0

3 null class, so if X ∈ W3R
then (∃Y =∗ X)(ΦY 6∈ SDp) hence we are done.
Proof of (1): By Lemma 3.3,

(∃p < 1)(∀ε > 0)(∀n)(∀i)(∃i′ > i)(∀σ ∈ 2=n)

P({Z : ΦσցZ(i′) = 1}) ≤ p+ ε; (4.1)

Since Φ is total for almost all oracles, it is clear that i′ is a computable function f(k, n) of
ε = 1/k and n. Let g : ω → ω be the computable function with limn→∞ g(n) = ∞ given by
g(s) = 2s. Let n0 = 0 and i0 = 0. Assuming s ≥ 0 and ns and is have been defined, let

is+1 = f(g(s), ns),

and let ns+1 be large enough that

(∀σ ∈ 2=ns) λ{Z | ΦσցZ(is+1) ↑ @ns+1} ≤ 1

2s
, (4.2)

lim*

s→∞
p(ns+1 − ns)√

ns+1 − ns
= ∞, and

s∑

k=0

p(nk+1 − nk) ≤ p(ns+1).

Note that since i′ > i in (4.1), we have is+1 > is and hence R := {i0, i1, . . .} is a computable
infinite set. We now have

(∀s)(∀σ ∈ 2=ns) P({Z : ΦσցZ(is+1) = 1}) ≤ p+
1

2s
(4.3)

so

P({Z : ΦσցZ(is+1) ↓= 1@ns+1}) ≤ p+
1

2s
. (4.4)

Note [a, b) = b\a.
Let X ∈ MLR. We aim to define Y ∼p X such that ΦY 6∈ MLR. We will in fact make

Y ≤T X, so we define a reduction Ξ and let Y = ΞX . Since we are defining Y by modifying
bits of X, the use of Ξ will be the identity function: ξX(n) = n.
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Since n0 = 0, Y ↾ n0 is the empty string. Suppose s ≥ 0 and Y↾ns
has already been

defined. The set of “good” strings now is

G = {τ ≻ Y↾ns
| Φτ↾ns+1(is+1) = 0}.

Define the “cost” of τ to be the additional Hamming distance to X, i.e.,

d(τ) = |(X + τ) ∩ [ns, ns+1)| .
Case 1: G 6= ∅. Then let Y↾ns+1

be any τ0 ∈ G of length ns+1 and of minimal cost, i.e.,
such that d(τ0) = min{d(τ) | τ ∈ G}. That is, let

Y↾ns+1
∈ argmin

τ∈G
d(τ).

Case 2: Otherwise. Then make no further changes toX up to length ns+1, i.e., let Y↾ns+1
=

Y↾ns
ց X↾ns+1

.

This completes the definition of Ξ and hence of Y . It remains to show that ΦY 6∈ MLR.
For any string σ of length ns let

Eσ
s+1 =

{
Z ∈ {0, 1}[ns ,ns+1) : ¬

(
ΦσցZ(is+1) ↓= 0@ns+1

)}

=
{
Z : ΦσցZ(is+1) ↓= 1@ns+1

}

∪
{
Z : ΦσցZ(is+1) ↑ @ns+1

}

Since (4.2) and (4.4) hold for all strings of length ns, in particular they hold for σ = ΞX ↾ ns,
so

(∀s) P(Eσ
s+1) ≤ p+

1

2s
+

1

2s
= p+

1

s
, hence lim sup

s→∞
P(EX↾ns

s+1 ) ≤ p. (4.5)

Let
UX↾ns
s = {Z ∈ {0, 1}[ns ,ns+1) : B

[ns,ns+1)
p(ns+1−ns)

(Z) ⊆ EX↾ns

s+1 }.
Since

p(ns+1 − ns)√
ns+1 − ns

→∗ ∞.

we can apply Lemma 2.2 and there is h(s) with lim*
s→∞ h(s) = 0 and

P(UX↾ns
s ) ≤ h(s)

that only depends on an upper bound for an s0 such that for all s ≥ s0, P(Es+1) ≤ q (where
p < q < 1 and q is just some fixed computable number). Since by (4.5) such an upper
bound can be given that works for all X, actually h(s) may be chosen to not depend on X.
Let

Vs = {Z : Z ∈ UZ↾ns
s },

then Vs is uniformly ∆0
1. To find the probability of Vs we note that for each of the 2ns

possible beginnings of Z, there are at most (h(s) ·2ns+1−ns) continuations of Z on [ns, ns+1)
that make Z ∈ Vs; so we compute

P(Vs) = |{Z ∈ {0, 1}ns+1 : Z ↾ [ns, ns+1) ∈ UZ↾ns}|2−ns+1

≤ 2ns(h(s) · 2ns+1−ns)2−ns+1 = h(s)

so since lim*
s→∞ h(s) = 0, {Vs}s∈ω is a Kurtz randomness test. Let {ms}s∈ω be a com-

putable sequence such that
∑

s≥t h(ms) ≤ 2−t. Let Wt =
⋃

s≥t Vms . Then P(Wt) ≤ 2−t

and Wt is uniformly Σ0
1 and hence it is a Martin-Löf randomness test. Since X ∈ MLR,
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X 6∈ Wt for some t and hence X 6∈ Vms for all but finitely many s. So ΦY (ms) = 0 for all
but finitely many s, hence ΦY 6∈ CIM.

By construction, we have

|(X + Y ) ∩ [ns, ns+1)| ≤ p(ns+1 − ns)

for all but finitely many n. Therefore

|(X + Y ) ∩ [0, ns+1)| ≤
s∑

k=0

p(nk+1 − nk) ≤ p(ns+1)

so X ∼p,N Y where N = {ns : s ∈ ω}.

4.1. Main result.

Lemma 4.2. Let p(n) = o( n
logn) and let N ∈ C. If X ∈ MLR and X ∼p,N Y then

dimcp(Y ) = 1.

Proof. Suppose there are at most p(n) many bits changed to go from X ↾ n to Y ↾ n,
in positions a1, . . . , ap(n). (In case there are fewer than p(n) changed bits, we can repeat
ai representing the bit 0 which we may assume is changed.) Let (Y ↾ n)∗ be a shortest
description of Y ↾ n. From the code

0|K(Y ↾n)|⌢1⌢K(Y ↾ n)⌢(Y ↾ n)∗⌢a1 · · · ap(n)
we can effectively recover X ↾ n. Thus

n− c1 ≤ K(X ↾ n) ≤ 2 log[K(Y ↾ n)] + 1 +K(Y ↾ n) + p(n) log n+ c2

≤ 2 log[n+ 2 log n+ c3] + 1 +K(Y ↾ n) + p(n) log n+ c2.

Hence
n ≤+ 3 log n+K(Y ↾ n) + p(n) log n, and

n− (p(n) + 3) log n ≤+ K(Y ↾ n).

Theorem 4.3. For each Turing reduction procedure Φ there is a set Y with dimcp(Y ) = 1
such that ΦY is not stochastically bi-immune.

Proof. Let p(n) = n2/3, so that p(n) = o(n/ log n) and p(n) = ω∗(
√
n). By the proof of

Theorem 4.1 and since the sequence of numbers ns is computable, for each weakly 3-random
set X there is a set Y ∼p,N X (for some N ∈ C) such that ΦY is not both co-immune and in

SD1/2, in particular ΦY 6∈ SBI. By Lemma 4.2, each such Y has complex packing dimension
1.
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