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Abstract. A notable feature of the TTE approach to computability is the representa-
tion of the argument values and the corresponding function values by means of infinitistic
names. Although convenient for the development of the theory, using such objects as data
deviates from the computational practice and has a drawback from a logico-philosophical
point of view. Two ways to eliminate the using of such names in certain cases are in-
dicated in the paper. The first one is intended for the case of topological spaces with
selected indexed denumerable bases. Suppose a partial function is given from one such
space into another one whose selected base has a recursively enumerable index set, and
suppose that the intersection of base open sets in the first space is computable in the
sense of Weihrauch-Grubba. Then the ordinary TTE computability of the function is
characterized by the existence of an appropriate recursively enumerable relation between
indices of base sets containing the argument value and indices of base sets containing the
corresponding function value. This result can be regarded as an improvement of a result
of Korovina and Kudinov. The second way is applicable to metric spaces with selected
indexed denumerable dense subsets. If a partial function is given from one such space
into another one, then, under a semi-computability assumption concerning these spaces,
the ordinary TTE computability of the function is characterized by the existence of an
appropriate recursively enumerable set of quadruples. Any of them consists of an index
of element from the selected dense subset in the first space, a natural number encoding a
rational bound for the distance between this element and the argument value, an index of
element from the selected dense subset in the second space and a natural number encoding
a rational bound for the distance between this element and the function value (in general,
this set of quadruples is different from the one which straightforwardly arises from the
relation used in the first way of elimination). One of the examples in the paper indicates
that the computability of real functions can be characterized in a simple way by using the
first way of elimination of the infinitistic names.
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1. Introduction

The TTE approach to computability unifies the study of many important cases concern-
ing functions with non-denumerable domains. A notable feature of this approach is the
representation of the argument values and the corresponding function values by means of
infinitistic names – e.g. infinite sequences of natural numbers or of other constructive ob-
jects. Although convenient for the development of the theory, using such infinitistic objects
as data deviates from the computational practice, where the data one processes are com-
monly constructive objects themselves. There is also a drawback of the approach from a
logico-philosophical point of view, namely the necessity to use quantifiers over the infinitary
names, which are usually an additional sort of objects different from the main sorts we are
interested in. The present paper concerns some cases when the TTE computability notion
can be characterized without using infinitistic names of the argument and function values,
but using instead only the sort of constructive objects which can be components of the
infinitistic names.

In the topological case, one usually considers two T0-spaces with selected indexed bases
in them. Given a partial function from the first space to the second one, the TTE com-
putability of this function can be considered in the case when the two bases are indexed by
natural numbers or possibly other constructive objects. For that purpose, the representa-
tion (called standard representation) of each of the spaces is used, at which the names of
any point of the space are the enumerations of the set of all indices of base sets containing
the point (cf., for instance, [We0, Definition 3.2.2], [Br, Proposition 3.3]).1 A possibility to
avoid using infinitistic names in this situation is rather obvious, at least for the ordinary
TTE computability notion concerning the transformation of the names only of the points
which are in the domain of the function. Since the computability in question means the ex-
istence of an effective procedure transforming all names of the argument values into names
of the corresponding function values, it is equivalent to uniform enumeration reducibility of
the set of indices which corresponds to the function value to the one which corresponds to
the argument value, i.e. to the existence of an enumeration operator which accomplishes
the considered reduction for all points from the function domain.2

Clearly, the above-mentioned characterization of the ordinary TTE computability by
means of uniform enumeration reducibility can be stated as the requirement about the
existence of a certain recursively enumerable relation between finite subsets of the set cor-
responding to the argument value and elements of the set corresponding to the function
value.3 Under some natural additional assumptions, this requirement can be replaced by a

1If some of the two spaces is not a T0 one then the TTE definition cannot be used in its original form,
but a multi-valued version of this definition is still usable (cf. e.g. [We0, Exercise 3.1.7] or [We8, Section 6]
for such one). Although the admission of non-T0 spaces does not add a generality to our considerations,
we do not impose the T0 requirement, because its absence causes no problems for them and imposing this
requirement would create a complication in Remarks 2.5 and 2.8.

2The equivalence proof can be done by carrying out certain reasonings from [Ro, §9.7] in a more formal
way (revealing also the uniformity). Let us note that computability of functions in topological spaces is
actually introduced by a definition using enumeration operators in the paper [KoKu] (the definition is for a
stronger computability notion which considers also the points in the complement of the function domain).
Unfortunately, no comment is given there about the relation of the computability introduced by this definition
to the one introduced by the TTE definition.

3Theorem 3.2.14 in [We0] (attributed to P. Hertling) can be interpreted in this way.
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simpler one, where the relation is already between elements of the first set and elements of
the second one. Theorem 3.3 of [KoKu] can be regarded as a result of this kind.4

The simpler binary relations mentioned above will be called approximation systems
in the present paper. We give a definition of this notion encompassing also the case of
bases indexed by objects different from the natural numbers. An approximation system for
the function f acting from a topological space X with selected indexed base {Ui}i∈I to a
topological space Y with selected indexed base {Vj}j∈J can be described as a subset R of
I × J such that all statements

∀x ∈ dom(f)
(

x ∈ Ui ⇒ f(x) ∈ Vj

)

, (1.1)

where (i, j) ∈ R, are correct, and the set of these statements is complete in the following
sense: whenever x ∈ dom(f), j ∈ J and f(x) ∈ Vj , some i exists satisfying the conditions
(i, j) ∈ R and x ∈ Ui. In Section 2, we prove that the existence of an approximation system
for the function f is always equivalent to its continuity, and, in the case when the indices
from I and J are natural numbers, the existence of a recursively enumerable approximation
system for f implies its computability (defined via enumeration operators). The converse
implication is proved under the assumption that the index set J is recursively enumerable
and, roughly speaking, the intersection of sets from {Ui}i∈I is computable in the sense from
the definition of computable T0-space given in [GrWe] and the definition of computable
topological space in [WeGr]. Theorem 3.3 of [KoKu], corrected as indicated in footnote 4,
can be obtained as a corollary from this result. An example given in Subsection 2.3 shows
that the converse implication in question is not generally true.

The rest of the paper concerns the case, when the topologies in X and Y are generated
by metrics and certain selected indexed dense subsets of the metric spaces are used in the
formation of the bases. If d and {α(k)}k∈K are the metric and the selected indexed dense
subset in X, and e and {β(l)}l∈L are the ones in Y, then the indices from I and J encode
elements of K × N and L× N, respectively, and the statements (1.1) have the form

∀x ∈ dom(f)
(

d(α(k), x) < rm ⇒ e(β(l), f(x)) < rn
)

,

where r0, r1, r2, . . . is a chosen computable sequence of positive rational numbers having 0
as its accumulation point. The counter-example from Subsection 2.3 is adapted in Subsec-
tion 3.2 to show that the above-mentioned converse implication is not generally true also in
this case. For the sufficient condition from Section 2 ensuring the validity of this implica-
tion, a more usable assumption assuring it is given. The assumption in question is that L
is a recursively enumerable subset of N and, roughly speaking, (X, d, rng(α), α), where X
is the carrier of X, is a semi-computable metric space in the sense introduced on page 239
of [We0]. More precisely, it would be required that (X, d, α) is a semi-computable metric
space in the sense of the following definition: a semi-computable metric space is any triple
(Z, r, γ) such that (Z, r) is a metric space, γ is a partial mapping of N into Z, the set rng(γ)

4Unfortunately, the formulation of that theorem needs a correction. Indeed, it may happen that
F−1(βj) = ∅ for some j and some total computable function F : X → Y , where (X, τ, α) and (Y, λ, β) satisfy
the assumptions of the theorem. Then F cannot satisfy condition (ii) in the conclusion of the theorem if all
sets αi are non-empty. Here is an example of such a situation: X = Y = {0, 1}, τ = λ = {∅, {0}, {0, 1}},
α0 = β0 = {0}, αk = βk = {0, 1} for any non-zero k, F (0) = F (1) = 1, j = 0. A possible way to correct the
formulation is to additionally require that αi = ∅ for some i (this requirement would follow from the other
assumptions in the case when X has at least two different points and the topology τ is Hausdorff).
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is dense in the metric space (Z, r) and the set
{

(l, l′, p, q)

∣

∣

∣

∣

l, l′ ∈ dom(γ), p, q ∈ N \ {0}, r(γ(l), γ(l′)) <
p

q

}

is recursively enumerable.5 Subsection 3.2 ends with an example which gives a simple
characterization of the computability of real functions.

Another kind of approximation systems, which makes sense only in the case of metric
spaces, is introduced and studied in Subsections 3.3 and 3.4, namely a different kind of
completeness of the considered set of statements is required. This notion can be regarded
as a slight generalization of a notion introduced in [Sk]. We think its idea is considerably
closer to the computational practice than the idea of the above-mentioned notion.6 Results
similar to the ones from the previous sections are proved for it, but the TTE computability
referred to corresponds now to the representation of the spaces as metric ones (i.e. the points
are named by certain sequences of indices of approximating elements from the corresponding
dense subsets).

It is a known fact that the topological computability in metric spaces, which is consid-
ered in Subsection 3.2, and the metric one considered in Subsection 3.4 are equivalent under
certain not very restrictive assumptions (cf., for instance, [We0, Theorem 8.1.4]). For the
sake of completeness, this subject is investigated in some detail in Subsection 3.5. It begins
with two examples showing that none of these two computabilities implies the other one in
the most general case, and then the two notions are shown to be equivalent in the case of
semi-computable metric spaces.7

Subsection 3.6 is devoted to two constructions which transform one kind of approx-
imation systems for functions in metric spaces into the other kind. The first of these
constructions transforms approximation systems of the kind from Subsection 3.1 into ones
of the kind from Subsection 3.3, and the second one works in the opposite direction. It
is indicated that recursive enumerability is preserved by these constructions under certain
natural assumptions.

2. Approximation systems for functions in topological spaces

In this section, we suppose that X and Y are topological spaces with carriers X and Y ,
respectively, U = {Ui}i∈I is an indexed base of X, V = {Vj}j∈J is an indexed base of Y,

and f is a function from E to Y , where E ⊆ X.

5This definition of the notion will be taken for granted throughout the paper. In [We13, Definition 6.1],
the term “upper semi-computable metric space” is used for a similar, but slightly different notion. Up to
inessential details, the difference is that one requires there dom(γ) to be recursive, whereas only the recursive
enumerability of dom(γ) is implied by the definition we accept here. The effective metric spaces in the sense
of [He] are surely semi-computable metric spaces in the sense accepted here.

6Examples showing the relation of this other kind of approximation systems to approximate computation
of real functions can be found in [Sk].

7The lemma used for proving this equivalence statement is present, in essence, also in the paper [We13],
but the last one appeared when the revised version of the present paper was already submitted to the
referees.
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2.1. Definition of the notion; its connection to continuity.

Definition 2.1. A (U ,V)-approximation system for f is a subset R of the Cartesian product
I × J such that

∀x ∈ E ∀j ∈ J
(

f(x) ∈ Vj ⇔ ∃i
(

(i, j) ∈ R & x ∈ Ui

)

. (2.1)

Remark 2.2. The condition (2.1) is equivalent to

∀j ∈ J
(

f−1(Vj) =
⋃

{Ui ∩ E | (i, j) ∈ R}
)

. (2.2)

If E = X then the above condition reduces to the simpler one

∀j ∈ J
(

f−1(Vj) =
⋃

{Ui | (i, j) ∈ R}
)

. (2.3)

The condition (2.1) is equivalent also to one formulated in terms of composition of relations.
Let U−1 = {(x, i)|i ∈ I &x ∈ Ui}, V

−1 = {(y, j)|j ∈ J & y ∈ Vj}. If we identify the functions
f and idE with the sets {(x, f(x))|x ∈ E} and {(x, x)|x ∈ E}, respectively, then (2.1) is
equivalent to the equality f ◦V−1 = idE ◦U−1 ◦R, where ◦ denotes left-to-right composition.
This equality reduces to f ◦ V−1 = U−1 ◦R in the case of E = X.

Proposition 2.3. A (U ,V)-approximation system for f exists iff f is continuous.

Proof.
(⇒) Let R be a U ,V-approximation system for f . To prove that f is continuous, suppose

j ∈ J , x ∈ f−1(Vj). Then, by (2.2), there exists some i in I such that x ∈ Ui∩E ⊆ f−1(Vj).
(⇐) Let f be continuous. We set R =

{

(i, j) ∈ I × J
∣

∣Ui ∩ E ⊆ f−1(Vj)
}

. To show
that R is a U ,V-approximation system for f , suppose x ∈ E and j ∈ J . If f(x) ∈ Vj then
x ∈ f−1(Vj), hence (thanks to the continuity of f) x ∈ Ui and Ui ∩ E ⊆ f−1(Vj) for some
i ∈ I, and clearly (i, j) ∈ R for this i. Conversely, if (i, j) ∈ R and x ∈ Ui for some i, then
x ∈ Ui ∩E and therefore x ∈ f−1(Vj), hence f(x) ∈ Vj.

Remark 2.4. If f is continuous then the set
{

(i, j) ∈ I × J
∣

∣Ui ∩ E ⊆ f−1(Vj)
}

considered
in the above proof is the maximal (U ,V)-approximation system for f in the sense that it
contains as subsets all other ones.

Remark 2.5. Let us set U ↾ E = {Ui ∩ E}i∈I , f
−1(V) =

{

f−1(Vj)
}

j∈J
. Then U ↾ E and

f−1(V) are indexed bases for two topologies on E. Let X′ and Y′ be the corresponding two
topological spaces with carrier E. The mapping idE can be regarded as a function from X′

to Y′. It is immediately seen that a subset of I × J is a (U ,V)-approximation system for f
iff this subset is a (U ↾ E, f−1(V))-approximation system for idE .

2.2. Approximation systems and computability in topological spaces. In this sub-
section, we additionally suppose that I ⊆ N and J ⊆ N.

Definition 2.6. For any x ∈ X and any y ∈ Y , we set

[x]U = {i ∈ I|x ∈ Ui}, [y]V = {j ∈ J |y ∈ Vj},

respectively.8 The function f will be called (U ,V)-computable, if an enumeration operator F
exists such that [f(x)]V = F ([x]U ) for any x ∈ E.

8Since we do not assume that X and Y are necessarily T0-spaces, the mappings x 7→ [x]U and y 7→ [y]V
are not necessarily injective.
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Remark 2.7. As indicated in Section 1, the above definition is equivalent to a TTE-
style one which uses the enumerations of [x]U and of [f(x)]V as names of x and of f(x),
respectively.

Remark 2.8. Let U ↾ E, f−1(V), X′ and Y′ be defined as in Remark 2.5. Since [x]U = [x]U↾E

and [f(x)]V = [x]f−1(V) for any x in E, the (U ,V)-computability of f turns equivalent to

the (U ↾ E, f−1(V))-computability of idE .

Theorem 2.9. If there exists a recursively enumerable (U ,V)-approximation system for f
then f is (U ,V)-computable.

Proof. Let R be a recursively enumerable (U ,V)-approximation system for f . The mapping
F : P(N) → P(N) defined by

F (M) =
{

j
∣

∣ ∃i ∈ M
(

(i, j) ∈ R
)}

is an enumeration operator. If x is an arbitrary element of E then [f(x)]V = F ([x]U ), since
for any j the following equivalences hold:

j ∈ [f(x)]V ⇔ j ∈ J & f(x) ∈ Vj ⇔ ∃i
(

(i, j) ∈ R & x ∈ Ui) ⇔

⇔ ∃i ∈ [x]U
(

(i, j) ∈ R) ⇔ j ∈ F ([x]U ).

The converse theorem is not generally true (a counter-example to it will be given in the
next section). However, it is true if the set J is recursively enumerable and the indexed
base U satisfies a certain additional requirement, which essentially coincides with the main
requirement in the definition of computable T0-space given in [GrWe] and the definition of
computable topological space in [WeGr] (cf. [GrWe, (2) on page 349] and [WeGr, (10) on
page 1387]).9

Theorem 2.10. Let the set J be recursively enumerable, and let a recursively enumerable
subset H of I3 exists such that

∀i1, i2 ∈ I
(

Ui1 ∩ Ui2 =
⋃

{

Ui | (i1, i2, i) ∈ H
}

)

. (2.4)

If f is (U ,V)-computable then there exists a recursively enumerable (U ,V)-approximation
system for f .

Proof. For k=2, 3, 4, . . ., we define a set Hk by means of the equalities

H2 = H, Hk+1 =
{

(i1, . . . , ik, ik+1, i)
∣

∣ ∃i′
(

(i1, . . . , ik, i
′) ∈ Hk & (i′, ik+1, i) ∈ H

)}

.

One proves by induction that, for any integer greater k than 1, the set Hk is a subset of Ik+1

such that
∀i1, . . . , ik ∈ I

(

Ui1 ∩ . . . ∩ Uik =
⋃

{Ui | (i1, . . . , ik, i) ∈ Hk}
)

.

Besides,
⋃∞

k=2Hk is a recursively enumerable subset of the set of all finite sequences of
natural numbers. We additionally set I0 =

{

i
∣

∣ ∃i′
(

(i′, i′, i) ∈ H
)}

. Then I0 ⊆ I, I0 is
recursively enumerable, and, by applying (2.4) with i1 = i2 = i′, we see that

∀i′ ∈ I ∀x ∈ Ui′ ∃i ∈ I0
(

x ∈ Ui ⊆ Ui′
)

,

9This requirement is surely satisfied in the case when the topological space X considered together with
the indexed base U is effectively enumerable in the sense of [KoKu].
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hence each element of X belongs to some Ui with i ∈ I0.
10 Let F be an enumeration

operator with the property from Definition 2.6, and R be the set of all (i, j) such that i ∈ I0
and j ∈ F (∅)∩J , or (i1, . . . , ik, i) ∈ Hk and j ∈ F ({i1, . . . , ik})∩J for some natural number
k greater than 1 and some i1, . . . , ik. Clearly, R is recursively enumerable. We will show
that R is a (U ,V)-approximation system for f . Of course, R ⊆ I×J . Now let x ∈ E, j ∈ J .

Suppose first that f(x) ∈ Vj. Then j ∈ [f(x)]V , therefore j ∈ F ([x]U ), hence j ∈ F (M)
for some finite subset M of [x]U . If M = ∅, then we can satisfy the conditions (i, j) ∈ R
and x ∈ Ui by taking an arbitrary i ∈ I0 such that x ∈ Ui. Let now M = {i1, . . . , ik}, where
k > 0 and i1, . . . , ik ∈ [x]U , hence x ∈ Ui1 ∩ . . . ∩ Uik . Without loss of generality (since
i1, . . . , ik need not necessarily be pairwise different), we may assume that k ≥ 2. Then
x ∈ Ui for some i satisfying the condition (i1, . . . , ik, i) ∈ Hk. We will have again (i, j) ∈ R
and x ∈ Ui for this i.

Suppose now that (i, j)∈R and x∈Ui for some i. If j ∈ F (∅) then j ∈ F ([x]U ) = [f(x)]V ,
thus f(x) ∈ Vj. And if (i1, . . . , ik, i) ∈ Hk, j ∈ F ({i1, . . . , ik}), where k > 1, then
i1, . . . , ik ∈ I and Ui⊆Ui1∩. . .∩Uik , hence x ∈ Ui1∩. . .∩Uik , and therefore {i1, . . . , ik}⊆ [x]U .
Thus again j ∈ F ([x]U ) = [f(x)]V , and f(x) ∈ Vj.

Corollary 2.11. Under the assumptions of Theorem 2.10, the function f is (U ,V)-com-
putable iff there exists a recursively enumerable (U ,V)-approximation system for f .

Corollary 2.12. Let E = X, the set J be recursively enumerable, and let a recursively
enumerable subset H of I3 exist which satisfies the condition (2.4). Then f is (U ,V)-com-
putable iff a recursively enumerable subset R of N2 exists which satisfies the condition (2.3).

Theorem 3.3 of [KoKu] (corrected as indicated in footnote 4) can be derived from the
particular instance of the above corollary when I = J = N and Ui = ∅ for some i ∈ I.
Indeed, let (X, τ, α) and (Y, λ, β) be effectively enumerable topological spaces in the sense
of that paper, αi be empty for some i, f : X → Y be a total function. Let us set I = J = N,
Ui = αi, Vj = βj. Then the computability of f in the sense of [KoKu] will be equivalent to
its (U ,V)-computability. By [KoKu, condition (ii) in Definition 2.1], a recursive function g
exists such that

Ui1 ∩ Ui2 =
⋃

n∈N

Ug(i1,i2,n)

for all i1, i2 ∈ N. If we set

H = {(i1, i1, g(i1, i2, n)) | i1, i2, n ∈ N},

then (2.4) holds. Therefore, by Corollary 2.12, the computability of f in the sense of [KoKu]
will be equivalent to the existence of a recursively enumerable subset R of N2 which satisfies
the condition (2.3), i.e.

∀j ∈ N

(

f−1(βj) =
⋃

{αi | (i, j) ∈ R}
)

. (2.5)

We will now show that the existence of such a set R is equivalent to condition (ii) of
Theorem 3.3 in [KoKu] for the function f , i.e. to the existence of two-argument recursive
function h satisfying

∀j ∈ N

(

f−1(βj) =
⋃

t∈N

αh(t, j)

)

. (2.6)

10Another way to construct a recursively enumerable subset I0 of I with this property is by setting
I0 =

{

i
∣

∣ ∃i′
(

(i, i, i′) ∈ H
)}

.
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Suppose R is a recursively enumerable subset of N2 satisfying (2.5). Let i0 be a natural
number such that αi0 = ∅, χ be a 3-argument primitive recursive function such that

∀i, j ∈ N
(

(i, j) ∈ R ⇔ ∃s ∈ N
(

χ(i, j, s) = 0
))

,

and π1, π2 be unary primitive recursive functions such that {(π1(t), π2(t)) | t ∈ N} = N2. If
we set

h(t, j) =

{

π1(t) if χ(π1(t), j, π2(t)) = 0,
i0 otherwise,

then h is a primitive recursive function satisfying (2.6). Conversely, if h is a two-argument
recursive function satisfying (2.6), and we set R = {(h(t, j), j) | t ∈ N}, then R is a recur-
sively enumerable set satisfying (2.5).

2.3. A counter-example to the converse theorem of Theorem 2.9. To construct the
counter-example in question, we will partition N into disjoint two-elements sets P0, P1, P2,
. . . such that:

(a) for any x ∈ N, the two numbers in Px differ by x+ 1;
(b) no recursive function exists whose value belongs to Px for any x ∈ N.

Let k0, k1, k2, . . . be a sequence of natural numbers which is dominated by no recursive
function, and, in addition, let kl+1 > kl + 2l + 1 for any l ∈ N. We construct subsets
C0, C1, C2, . . . of N

2 in such a way that C0 = {(kl, kl + 2l + 1) | l ∈ N} and, for any r ∈ N,
we have Cr+1 = Cr ∪ {(mr, nr)}, where:

(i) mr and nr are natural numbers occurring in no pair from Cr;
(ii) mr < nr, and nr −mr 6= n−m, whenever (m,n) ∈ Cr;
(iii) if r is even then mr is the least of the natural numbers occurring in no pair from Cr;
(iv) if r is odd then nr − mr is the least positive integer which is different from n − m,

whenever (m,n) ∈ Cr.

Then, for any x ∈ N, there exists exactly one pair (m,n) in
⋃∞

r=0 Cr with n −m = x + 1.
We take as Px the set of the members of this pair.

Let X = Y = I = J = N. For any x ∈ N, let Ui = {x} for i ∈ Px, Vx = {x} (thus
both X and Y are the discrete topological space with carrier N). Then the function idN
is (U ,V)-computable, since [idN(x)]V = {x}=F (Px) = F ([x]U ), where F : P(N) → P(N)
is defined by means of the equality F (M) = {i′ − i − 1 | i, i′ ∈ M, i′ > i}. Suppose R is a
recursively enumerable (U ,V)-approximation system for idN. Then

∀x, j ∈ N
(

x = j ⇔ ∃i ∈ Px

(

(i, j) ∈ R
))

. (2.7)

It follows from here that ∀j ∈ N ∃i
(

(i, j) ∈ R
)

. By the recursive enumerability of R, this
implies the existence of a recursive function ι such that (ι(j), j) ∈ R for any j ∈ N. Let
j be an arbitrary natural number. Since any number from N belongs to some of the sets
P0, P1, P2, . . ., there exists some x ∈ N such that ι(j) ∈ Px. By (2.7), we conclude from
here that x = j and consequently ι(j) ∈ Pj . Since this will hold for any j ∈ N, we get a
contradiction. Hence no recursively enumerable (U ,V)-approximation system for idN exists.

The above counter-example shows that, even in the case when I = J = N and E = X,
one cannot omit the assumption in Theorem 2.10 about the existence of a recursively enu-
merable set H with the property (2.4). Thus it is not generally true in this case that a
recursively enumerable subset R of N2 with the property (2.3) exists, whenever f is (U ,V)-
computable.
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3. Approximation systems for functions in metric spaces

In this section, in addition to the assumptions made in the beginning of Section 2, we will
suppose that the topologies of X and Y are generated by a metric d in X and a metric e in
Y , respectively. As to the indexed bases U and V, they will be supposed to be defined in the
following way. Some index sets K, L and mappings α : K → X, β : L → Y are supposed to
be given such that rng(α) is dense in X and rng(β) is dense in Y , as well as some bijections
κ : K × N → I, λ : L× N → J and a computable sequence r0, r1, r2, . . . of positive rational
numbers such that 0 is an accumulation point of it.11 Then we set Uκ(k,m) = Bd(α(k), rm)
for all (k,m) ∈ K × N, Vλ(l,n) = Be(β(l), rn) for all (l, n) ∈ L × N, where, for any positive
real number r, Bd(x, r) = {x̄ ∈ X| d(x, x̄) < r} and Be(y, r) = {ȳ ∈ Y | e(y, ȳ) < r} for any
x ∈ X and for any y ∈ Y , respectively.

3.1. Topological approximation systems for functions in metric spaces. Defini-
tion 2.1 yields the following statement: a subset R of I × J is a (U ,V)-approximation
system for f iff

∀x ∈ E ∀(l, n) ∈ L×N
(

e(β(l), f(x)) < rn ⇔

∃(k,m) ∈ K × N
(

(κ(k,m), λ(l, n)) ∈ R & d(α(k), x) < rm
))

.

If R ⊆ I × J , and we set S = {(k,m, l, n) ∈ K × N × L × N | (κ(k,m), λ(l, n)) ∈ R}, then
the above condition is equivalent to the following one:

∀x ∈ E ∀(l, n) ∈ L×N
(

e(β(l), f(x)) < rn ⇔

∃k,m
(

(k,m, l, n) ∈ S & d(α(k), x) < rm
))

. (3.1)

Evidently, there is a one-to-one correspondence between the (U ,V)-approximation systems
for f and the sets S ⊆ K×N×L×N which satisfy (3.1). Using such sets has the advantage
of eliminating the mappings κ and λ. Therefore we give the next definition.

Definition 3.1. A topological (α, β)-approximation system for f is any subset S of the
Cartesian product K × N× L× N such that (3.1) holds.

Proposition 2.3 yields the next statement.

Corollary 3.2. A topological (α, β)-approximation system for f exists iff f is continuous.

Of course, the notion of a topological (α, β)-approximation system for f depends (except
for some specific cases) also on the choice of the sequence r0, r1, r2, . . . However, the existence
of such a system does not depend on this choice, as seen from Corollary 3.2.

Remark 3.3. Taking into account Remark 2.4, it is easy to see that the set
{

(k, l,m, n) ∈ K × N× L× N
∣

∣∀x ∈ E
(

d(α(k), x) < rm ⇒ e(β(l), f(x)) < rn
)}

(3.2)

is the maximal topological (α, β)-approximation system for f .

11Certain typical choices for the sequence r0, r1, r2, . . . are 1, 1

2
, 1

22
, 1

23
, . . . and 1, 1

2
, 1

3
, 1

4
, . . . or, say, the

sequence 1

1
, 1

2
, 2

1
, 1

3
, 2

2
, 3

1
, 1

4
, 2

3
, 3

2
, 4

1
, . . . enumerating all positive rational numbers.
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3.2. The interconnection between (U ,V)-computability and topological (α, β)-ap-
proximation systems. In this subsection, we additionally suppose that I, J , K, L are
subsets of N, and that κ and λ are restrictions of some computable bijection from N2 to N,
whose value at the pair (s, t) will be denoted by 〈s, t〉.

Theorem 3.4. If there exists a recursively enumerable topological (α, β)-approximation
system for f then f is (U ,V)-computable.

Proof. Let S be a recursively enumerable topological (α, β)-approximation system for f .
Then Theorem 2.9 can be applied, since the set R = {〈k,m〉, 〈l, n〉|(k,m, l, n) ∈ S} is a
recursively enumerable (U ,V)-approximation system for f .

The converse of Theorem 3.4 is not generally true.

Example 3.5. LetX,Y, I, J and the two-elements sets Px be the same as in Subsection 2.3.
The considered topology can be generated by the usual metric in N, namely the absolute
value of the distance. We take each of the metrics d and e to be this one. Let K = L = N,
α(k) = x for any x ∈ N and each k ∈ Px, β(l) = l for any l ∈ N. Let none of the numbers
r0, r1, r2, . . . be greater than 1. Then, whenever x ∈ N and k ∈ Px, U〈k,m〉 = {x} for all
m ∈ N, and V〈l,n〉 = {l} for all l, n ∈ N. Therefore [x]U = {〈k,m〉|k ∈ Px & m ∈ N},
[x]V = {〈x, n〉|n ∈ N} for all x ∈ N. Let us define F : P(N) → P(N) by the equality

F (M) = {〈k′ − k − 1, n〉| k, k′, n ∈ N & 〈k, 0〉, 〈k′, 0〉 ∈ M & k′ > k}.

Then F is an enumeration operator, and [x]V = F ([x]U ) for any x ∈ N, hence the function
idN is (U ,V)-computable. Suppose there exists a recursively enumerable topological (α, β)-
approximation system S for idN. Then, by (3.1),

∀x, l ∈ N
(

l = x ⇔ ∃(k,m) ∈ N2
(

(k,m, l, 0) ∈ S & α(k) = x
))

.

Hence,
∀x, l ∈ N

(

x = l ⇔ ∃k ∈ Px

(

(k, l) ∈ R
))

,

where R =
{

(k, l)
∣

∣∃m
(

(k,m, l, 0) ∈ S
)}

. Since R is recursively enumerable, we get a con-
tradiction from here in the same way as we got one from (2.7).

Theorem 2.10 yields the following sufficient condition for the validity of the implication
from the (U ,V)-computability of f to the existence of a recursively enumerable topological
(α, β)-approximation system for f .

Theorem 3.6. Let the set L be recursively enumerable, and let a recursively enumerable
subset H of K × N×K × N×K × N exists such that

∀k1, k2 ∈ K ∀m1,m2 ∈ N

(

U〈k1,m1〉 ∩ U〈k2,m2〉 =
⋃

{

U〈k,m〉 | (k1,m1, k2,m2, k,m) ∈ H
}

)

.

If f is (U ,V)-computable then there exists a recursively enumerable topological (α, β)-ap-
proximation system for f .

To prove a more usable sufficient condition, we now introduce a strict partial ordering<d

in X×N as follows: if (x,m), (x′,m′) ∈ X×N then (x,m) <d (x
′,m′) iff d(x′, x) < rm′ −rm

(the irreflexivity of this relation is evident, and its transitivity is easily verifiable). The state-
ment (a) of the lemma below suggests an interpretation of the interrelation (x,m) <d (x′,m′)
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as a certain intensional kind of inclusion of the closed ball Bd(x, rm) = {x̄ ∈ X|d(x, x̄) ≤ rm}
in the open ball Bd(x

′, rm′).12

Lemma 3.7.

(a) ∀(x,m), (x′,m′)∈X×N
(

(x,m)<d (x
′,m′) ⇒Bd(x, rm) ⊆ Bd(x

′, rm′)
)

.

(b) If (x′,m′) ∈ X ×N and x̄ ∈ Bd(x
′, rm′) then ∀x ∈ Bd(x̄, rm)

(

(x,m) <d (x
′,m′)

)

for all
m ∈ N such that rm is sufficiently close to 0.

Proof. If (x,m), (x′,m′) ∈ X × N, (x,m) <d (x
′,m′), x̄ ∈ X, d(x, x̄)≤rm then

d(x′, x̄) ≤ d(x′, x) + d(x, x̄) < (rm′ − rm) + rm = rm′ .

If (x′,m′) ∈ X × N, x̄ ∈ X, d(x′, x̄) < rm′ , and the natural number m is chosen so that
2rm < rm′ − d(x′, x̄), then, whenever x ∈ X and d(x̄, x) < rm, we will have

d(x′, x) ≤ d(x′, x̄) + d(x̄, x) < d(x′, x̄) + rm < rm′ − rm,

thus (x,m) <d (x′,m′).

Theorem 3.8. Let (X, d, α) be a semi-computable metric space and the set L be recursively
enumerable. If f is (U ,V)-computable then there exists a recursively enumerable topological
(α, β)-approximation system for f .

Proof. The semi-computability of (X, d, α) implies the recursive enumerability of the set

{ (k,m, k′,m′) ∈ K × N×K × N | (α(k),m) <d (α(k′),m′) }.

To satisfy the assumptions of Theorem 3.6, we set H to consist of all (k1,m1, k2,m2, k,m)
in K × N×K ×N×K × N such that

(α(k),m) <d (α(k1),m1), (α(k),m) <d (α(k2),m2).

The recursive enumerability of H is clear. Now let k1, k2 ∈ K and m1,m2 ∈ N. If
(k1,m1, k2,m2, k,m) ∈ H, then, by the statement (a) of Lemma 3.7, the set U〈k,m〉 is a
subset of each of the sets U〈k1,m1〉 and U〈k2,m2〉, hence it is a subset of U〈k1,m1〉 ∩ U〈k2,m2〉.
Therefore

⋃

{

U〈k,m〉 | (k1,m1, k2,m2, k,m) ∈ H
}

⊆ U〈k1,m1〉 ∩ U〈k2,m2〉.

For the proof of the converse inclusion, suppose x̄ ∈ U〈k1,m1〉 ∩ U〈k2,m2〉. Then, by the
statement (b) of Lemma 3.7, there exists some m ∈ N such that

∀x ∈ Bd(x̄, rm)
(

(x,m) <d (α(k1),m1) & (x,m) <d (α(k2),m2))
)

.

If we take a number k ∈ K so that α(k) ∈ Bd(x̄, rm), then we will have x̄ ∈ U〈k,m〉 and
(k1,m1, k2,m2, k,m) ∈ H.

12The mentioned kind of inclusion becomes an extensional one if X is an Euclidean space, because then
(x,m) <d (x′,m′) holds iff Bd(x, rm) ⊆ Bd(x

′, rm′). The interrelation (α(k),m) <d (α(k′),m′) coincides (in
the case when rm = 2−m for any m ∈ N) with the formal inclusion introduced in [We93, Section 2].
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Corollary 3.9. Under the assumptions of Theorem 3.8, the function f is (U ,V)-computable
iff there exists a recursively enumerable topological (α, β)-approximation system for f .

The next example gives a simple characterization of the computability of real functions
(similar applications can be done for computability of functions with domains and ranges
in other mathematically significant spaces).13

Example 3.10. Let p, q be positive integers, X = Rp, Y = Rq. Let d, e be the Euclidean
metrics in X and Y , respectively, or the metrics defined by

d((x1, . . . , xp), (x
′
1, . . . , x

′
p)) = max(|x1 − x′1|, . . . , |xp − x′p|),

e((y1, . . . , yq), (y
′
1, . . . , y

′
q)) = max(|y1 − y′1|, . . . , |yq − y′q|).

LetK and L be recursively enumerable, rng(α) = Qp, rng(β) = Qq, and α, β be computable.
Then f is (U ,V)-computable iff a recursively enumerable subset T of Qp×N×Qq×N exists
such that

∀x ∈ E ∀b ∈ Qq ∀n ∈ N
(

e(b, f(x)) < rn ⇔ ∃a,m
(

(a,m, b, n) ∈ T & d(a, x) < rm
))

. (3.3)

This can be proved as follows. By Corollary 3.9, the function f is (U ,V)-computable iff
there exists a recursively enumerable topological (α, β)-approximation system for f , i.e. iff
there exists a recursively enumerable subset S of K × N× L× N such that

∀x∈E ∀l∈L ∀n∈N
(

e(β(l), f(x))<rn ⇔∃k,m
(

(k,m, l, n)∈S & d(α(k), x)<rm
))

. (3.4)

It is easy to see that such a set S exists iff a recursively enumerable subset T of Qp×N×Qq×N

exists with the property (3.3). Indeed, if S is a recursively enumerable subset ofK×N×L×N

satisfying (3.4), and we set

T = {(α(k),m, β(l), n) | (k,m, l, n) ∈ S},

then T is a recursively enumerable subset of Qp×N×Qq ×N with the property (3.3), and,
whenever T is a recursively enumerable subset of Qp ×N×Qq ×N satisfying (3.3), the set

S = {(k,m, l, n) ∈ K × N× L× N | (α(k),m, β(l), n) ∈ T}

is recursively enumerable and satisfies (3.4).

3.3. Metric approximation systems. Another kind of approximation systems will be
introduced now.

Definition 3.11. A metric (α, β)-approximation system for the function f is any subset S
of K × N× L× N satisfying the following two conditions for any x ∈ E:

(a) ∀(k,m, l, n) ∈ S (d(α(k), x) < rm ⇒ e(β(l), f(x)) < rn).
(b) ∀n ∈ N ∃m ∈ N ∀k ∈ K

(

d(α(k), x) < rm ⇒ ∃l
(

(k,m, l, n) ∈ S
))

.

The notion introduced in the above definition can be regarded as a slight generalization
of a notion introduced in [Sk]. If K ⊆ X, α = idK , L ⊆ Y , β = idL then the metric
(α, β)-approximation systems for f are exactly the K,L-approximation systems for f in
the sense of [Sk]. The next example and certain considerations going after it concern the
relation of the arbitrary metric (α, β)-approximation systems to this particular instance.

13Computability of real functions is usually defined via the Cauchy representation of the real numbers,
but this representation is computably equivalent to the topological one (cf. [We0, Theorem 8.1.4]; see also
Subsection 3.5 of this paper).
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Example 3.12. Let S0 ⊆ A× N×B × N, where A = rng(α), B = rng(β), and let

S = {(k,m, l, n) ∈ K × N× L×N | (α(k),m, β(l), n) ∈ S0}. (3.5)

Then S is a metric (α, β)-approximation system for f iff S0 is an A,B-approximation system
for f in the sense of [Sk].

Definition 3.13. A subset S of K × N× L× N will be called saturated if

∀(k,m, l, n) ∈ S ∀k̄ ∈ K ∀l̄ ∈ L
(

α(k̄) = α(k) & β(l̄) = β(l) ⇒ (k̄,m, l̄, n) ∈ S
)

.

Example 3.14. A set S defined in the way from Example 3.12 is always saturated, and if
the mappings α and β are injective then all subsets of K ×N× L× N are saturated.

Example 3.15. Let S be a saturated subset of K × N× L×N, and let

S0 = {α(k),m, β(l), n) | (k,m, l, n) ∈ S}. (3.6)

The assumption that S is saturated and the equality (3.6) imply the equality (3.5). There-
fore S is a metric (α, β)-approximation system for f iff S0 is a A,B-approximation system
for f in the sense of [Sk] with A = rng(α), B = rng(β).

Remark 3.16. The assumption that S is saturated cannot be omitted in Example 3.15.
For instance, let both X and Y be the set of the non-negative real numbers with the usual
metric, K = L = Q, α = β, α(k) = |k| for any k ∈ K, and f(x) = x for all x ∈ X.
Let S = {(k,m, l, n) ∈ K × N × L × N | k = l ≥ 0,m = n}, and S0 be defined by means
of (3.6). Then S0 = S, and S0 is a rng(α), rng(β)-approximation system for f in the sense
of [Sk]. However, S is not a metric (α, β)-approximation system for f , since condition (b)
of Definition 3.11 is violated for S.

A metric (α, β)-approximation system for f could happen to be not saturated. Here is
an example.

Example 3.17. Let again both X and Y be the set of the non-negative real numbers with
the usual metric, but now both K and L be the set N2, and let α(p, q) = β(p, q) = p

q+1 for

any (p, q) ∈ N2. Let E be the set of the positive irrational numbers, and let f(x) = x/2
for any x ∈ E. Then the set S = {((p, q),m, (⌊p/2⌋, q), n) | (p, q) ∈ N2, q ≥ n, m ≥ n}
is a metric (α, β)-approximation system for f . This set is not saturated. For instance,
((1, 0), 0, (0, 0), 0) ∈ S, but ((2, 1), 0, (0, 0), 0) 6∈ S, although α(1, 0) = α(2, 1).

Remark 3.18. If S is a metric (α, β).-approximation system for f then
{

(k,m, l, n)
∣

∣ k ∈ K & l ∈ L & ∃k′, l′
(

(k′,m, l′, n) ∈ S & α(k) = α(k′) & β(l) = β(l′)
)}

is a saturated (α, β)-approximation system for f .

Proposition 3.19. A metric (α, β)-approximation system for f exists iff f is continuous.
If f is continuous then the set of all (k,m, l, n) in K × N×K ×N satisfying the condition
3.2 is a saturated metric (α, β)-approximation system for f .

Proof. To prove that the existence of a metric (α, β)-approximation system for the func-
tion f implies its continuity, suppose S is a metric (α, β)-approximation system for f . Let
x ∈ E, and ε be a positive number. We choose a natural number n satisfying the in-
equality 2rn < ε. By condition (b) of Definition 3.11, a natural number m exists such
that, whenever k ∈ K and d(α(k), x) < rm, the quadruple (k,m, l, n) belongs to S for
some l. Let m be such a natural number, and let x′ be any element of E satisfying the
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inequality d(x′, x) < rm/2. After choosing an element k of K, satisfying the inequality
d(α(k), x′) < rm/2, we will have both inequalities d(α(k), x′) < rm and d(α(k), x) < rm.
By the second of them, (k,m, l, n) ∈ S for some l. The two inequalities and condition (a)
of Definition 3.11 imply the inequalities e(β(l), f(x′)) < rn and e(β(l), f(x)) < rn, hence
e(f(x′), f(x)) < 2rn < ε. Thus the continuity of f is established. For proving the rest
of the statement of the theorem, suppose now f is continuous. Let S be the set of all
(k,m, l, n) ∈ K × N× L× N which satisfy the condition (3.2). This set is obviously sat-
urated. We will prove that S is a metric (α, β)-approximation system for f . Let x be
an arbitrary element of E. Condition (a) of Definition 3.11 follows immediately from the
definition of S. To check condition (b), suppose n is a natural number. By the continuity
of f , a positive number δ exists such that e(f(x′), f(x)) < rn/2 for all x′ in E satisfying
the inequality d(x′, x) < δ. We choose a natural number m with 2rm < δ and an element
l of L such that e(β(l), f(x)) < rn/2. Consider now any k in K satisfying the inequality
d(α(k), x) < rm. We will show that (k,m, l, n) ∈ S. To do this, suppose x′ is any element
of E satisfying the inequality d(α(k), x′) < rm. Then

d(x′, x) ≤ d(x′, α(k)) + d(α(k), x) < 2rm < δ

and consequently e(f(x′), f(x)) < rn/2. Since

e(β(l), f(x′)) ≤ e(β(l), f(x)) + e(f(x), f(x′)),

we see that e(β(l), f(x′)) < rn.

Remark 3.20. If f is continuous then the set of all (k,m, l, n) ∈ K ×N×L×N satisfying
the condition (3.2) is obviously the maximal metric (α, β)-approximation system for f . Let
us note that, as seen from the above proof, condition (b) of Definition 3.11 is satisfied for
this set in a stronger form, namely l does not depend on the choice of k. By Remark 3.3,
the set in question is also the maximal topological (α, β)-approximation system for f .

3.4. Metric approximation systems and TTE computability. In this subsection, the
sets K and L will be supposed to be subsets of N (hence the metric (α, β)-approximation
systems for f will be subsets of N4). Any element x ofX will be named (in the sense of TTE)
by the functions u : N → K such that ∀t ∈ N

(

d(α(u(t)), x) < rt
)

, and, similarly, any element

y of Y will be named by the functions v : N → L such that ∀t ∈ N
(

e(β(v(t)), y) < rt
)

. The
functions u and v in question will be called α-names of x and β-names of y, respectively.
The function f will be called (α, β)-computable if a recursive operator F exists such that
F (u) is a β-name of f(x), whenever x ∈ E and u is an α-name of x.

Remark 3.21. As it is easy to see, the (α, β)-computability of f does not depend on
the choice of the sequence r0, r1, r2, . . . Indeed, suppose r

′
0, r

′
1, r

′
2, . . . is another computable

sequence of positive rational numbers, and 0 is an accumulation point also of this sequence.
Then there exists a recursive operator transforming all names of the elements of X based on
r0, r1, r2, . . . into their names based on r′0, r

′
1, r

′
2, . . ., as well as a recursive operator acting

in the opposite direction, and similarly for the names of the elements of Y . For instance,
the first of these operators will transform each function u : N → K into the function
λt.u(µs[rs ≤ r′t]).

Remark 3.22. In the case of an often adopted version of the definition for computability
in metric spaces, we have rt = 2−t for any t ∈ N, any element x of X is named by the
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functions u : N → K such that ∀t, h ∈ N
(

d(α(u(t)), α(u(t+h))) < rt
)

and limt→∞ u(t) = x,
similarly for the elements of Y . The TTE computability of f corresponding to this sort of
naming of the elements of X and Y is equivalent to (α, β)-computability of f . The same
holds if r0, r1, r2, . . . is any other computable monotonically decreasing sequence of rational
numbers converging to 0.

Theorem 3.23. If there exists a recursively enumerable metric (α, β)-approximation system
for the function f then f is (α, β)-computable.

Proof. Let S be a recursively enumerable metric (α, β)-approximation system for f . By the
recursive enumerability of S, a 5-argument primitive recursive function χ can be found such
that, for all k,m, l, n ∈ N, the equivalence

(k,m, l, n) ∈ S ⇔ ∃s ∈ N
(

χ(k,m, l, n, s) = 0
)

holds. Let π1, π2, π3 be unary primitive recursive functions such that

{(π1(t), π2(t), π3(t)) | t ∈ N} = N3.

Let us define recursive operators T and F as follows:

T (u)(n) = µt[χ(u(π1(t)), π1(t), π2(t), n, π3(t)) = 0 ], F (u)(n) = π2(T (u)(n)).

We will prove the (α, β)-computability of f by showing that, whenever x ∈ E and u is an
α-name of x, the function F (u) is a β-name of f(x). Let u be an α-name of an element x
of E, and let n ∈ N. Making use of condition (b) of Definition 3.11, we choose a natural
number m such that, whenever k ∈ K and d(α(k), x) < rm, the quadruple (k,m, l, n)
belongs to S for some l ∈ L. Since u(m) ∈ K and d(α(u(m)), x) < rm, there exists l ∈ L
such that (u(m),m, l, n) ∈ S, hence χ(u(m),m, l, n, s) = 0 for some s ∈ N. It follows from
here that n belongs to dom(T (u)), and consequently n belongs also to dom(F (u)). After
setting T (u)(n) = i0, π1(i0) = t0, we will have the equality

χ(u(t0), t0, F (u)(n), n, π3(i0)) = 0,

and it shows that (u(t0), t0, F (u)(n), n) ∈ S. From here, making use of the inequality
d(α(u(t0)), x) < rt0 and condition (a) of Definition 3.11, we conclude that

e(β(F (u)(n)), f(x)) < rn.

Since this reasoning was done for an arbitrary natural number n, we thus proved that F (u)
is really a β-name of f(x).

Remark 3.24. Making use of Examples 3.12, 3.14 and 3.15, we see that the theorem in
[Sk] corresponding to Theorem 3.23 is actually its particular instance, when rt =

1
t+1 for

all t ∈ N and there exists a saturated recursively enumerable metric (α, β)-approximation
system for f .

Example 3.25. It is possible that a recursively enumerable metric (α, β)-approximation
system for f exists, but there exists no saturated such one. Let

X = Y = {0, 1}, d(0, 1) = e(0, 1) = 1, K = L = N,

let α(0) = 0, α(k) = 1 for any k ∈ N \ {0}, β−1(0) be not recursively enumerable, f(0) = 0,
f(1) = 1, and let rt ≤ 1 for any t ∈ N. If the natural numbers l0 and l1 are such that
β(l0) = 0 and β(l1) = 1 then the union of the sets {0}×N×{l0}×N and (N\{0})×N×{l1}×N

is a recursively enumerable metric (α, β)-approximation system for f . However, no satu-
rated recursively enumerable metric (α, β)-approximation system for f exists. Indeed, let



16 D. SKORDEV

S be a saturated metric (α, β)-approximation system for f . Then it is easy to prove that
β−1(0) = {l | (0, 0, l, 0) ∈ S}, and therefore S cannot be recursively enumerable.

Under an additional assumption, a converse of Theorem 3.23 also holds.

Theorem 3.26. Let (X, d, α) and (Y, e, β) be semi-computable metric spaces. If the function
f is (α, β)-computable then there exists a saturated recursively enumerable metric (α, β)-
approximation system for f .

Proof. The semi-computability of (X, d, α) and (Y, e, β) implies the recursive enumerability
of the sets K, L and of the sets

{

(k, k′, t) ∈ K2 × N
∣

∣ d(α(k), α(k′)) < rt/2
}

, (3.7)
{

(l, l′, t) ∈ L2 ×N
∣

∣ e(β(l), β(l′)) < rt/2
}

(3.8)

Let F be a recursive operator such that F transforms unary partial functions in N into unary
partial functions in N and, whenever u is an α-name of an element x of E, the function
F (u) is a β-name of f(x). Let S be the set of all quadruples (k,m, l, n) ∈ K × N× L× N

such that, for some s, p ∈ N satisfying the inequalities min{r0, r1, . . . rs} ≥ 2rm, rp ≤ rn/2
and some function u◦ : {0, 1, . . . , s} → K the following holds:

d(α(u◦(t)), α(k)) < rt/2, t = 0, 1, . . . , s, (3.9)

p ∈ dom(F (u◦)), (3.10)

F (u◦)(p) ∈ L, e(β(F (u◦)(p)), β(l)) < rn/2. (3.11)

The set S is obviously saturated. It is recursively enumerable due to the recursiveness of
the operator F and the recursive enumerability of the sets K, L and the sets (3.7) and (3.8).
We will show that S is a metric (α, β)-approximation system for f . Let x ∈ E. To verify
condition (a) of Definition 3.11, suppose that (k,m, l, n) ∈ S and d(α(k), x) < rm. Let s, p
and u◦ be two natural numbers and a function with the properties from the above definition
of the set S. For any t ∈ {0, 1, . . . , s}, we have

d(α(u◦(t)), x) ≤ d(α(u◦(t)), α(k)) + d(α(k), x) < rt/2 + rm ≤ rt.

It follows from here that u◦ can be extended to an α-name u of x, and then F (u) will be a
β-name of f(x). By condition (3.10) and the continuity of the operator F , the equality

F (u)(p) = F (u◦)(p) (3.12)

holds. Therefore, making use also of condition (3.11), we have

e(β(l), f(x)) ≤ e(β(l), β(F (u◦)(p))) + e(β(F (u)(p)), f(x)) < rn/2 + rp ≤ rn.

To verify condition (b), suppose a natural number n is given. Let u : N → K be such that
d(α(u(t), x) < rt/4 for any t ∈ N. Clearly u is an α-name of x, hence the function F (u) is a
β-name of f(x), and therefore F (u) is total and all its values belong to L. Let l = F (u)(p),
where p is some natural number satisfying the inequality rp ≤ rn/2. By the continuity
of the operator F , a natural number s exists such that u◦ = u ↾ {0, 1, . . . , s} satisfies
condition (3.10) and the equality (3.12), hence l = F (u◦)(p). Let m be a natural number
such that rm ≤ rt/4 for t = 0, 1, . . . , s, and let k be an arbitrary element of K satisfying
the inequality d(α(k), x) < rm. Then the inequalities (3.9) hold, because

d(α(u◦(t)), α(k)) ≤ d(α(u◦(t)), x) + d(x, α(k)) < rt/4 + rm ≤ rt/2

for any t ∈ {0, 1, . . . , s}. Since condition (3.11) is trivially satisfied, we see that (k,m, l, n)
belongs to S.
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Corollary 3.27. Under the assumptions of Theorem 3.26, the function f is (α, β)-com-
putable iff there exists a recursively enumerable metric (α, β)-approximation system for f .

Remark 3.28. In effect, the proof of Theorem 3.26 shows the truth of the following state-
ment: if the sets (3.7) and (3.8) are recursively enumerable, and the function f is (α, β)-com-
putable, then there exists a saturated recursively enumerable metric (α, β)-approximation
system for f (note that the recursive enumerability of the sets (3.7) and (3.8) implies the one
of K and L). The theorem in [Sk] corresponding to Theorem 3.26 is actually the instance
of this statement with rt =

1
t+1 for all t ∈ N.

Remark 3.29. The set S constructed in the proof of Theorem 3.26 satisfies condition (b)
of Definition 3.11 in the stronger form mentioned in Remark 3.20 (the number l does not
depend on the choice of k). However, this set is not necessarily the maximal metric (α, β)-
approximation system for f . Moreover, as seen from the next example, the assumptions of
Theorem 3.26 do not imply that the maximal metric (α, β)-approximation system for f is
necessarily recursively enumerable.

Example 3.30. Let X = K = Y = L = N, the metrics d and e coincide with the usual
metric in N (i.e. the absolute value of the difference), and α = β = idN. Let E be such that
N \ E is not recursively enumerable, f be the restriction of the constant 0 to E, and S be
the maximal metric (α, β)-approximation system for f . Let m and n be natural numbers
such that rm ≤ 1 and rn ≤ 1. Then, for any k, l ∈ N, the condition (3.2) is equivalent to
the implication k ∈ E ⇒ l = 0. Therefore (k,m, 1, n) ∈ S ⇔ k 6∈ E for any k ∈ N, hence S
is not recursively enumerable.

3.5. The interrelation between (α, β)- and (U ,V)-computability in metric spaces.

In this subsection, the situation from Subsection 3.2 will be supposed to be present again,
thus the question about (U ,V)-computability of f can be considered as well. In general, the
(α, β)-computability of the function f and its (U ,V)-computability can be non-equivalent.
Here are two examples.

Example 3.31. Let f be the function from Example 3.25. Although this function is (α, β)-
computable, it is not (U ,V)-computable. Indeed, we have the equalities

[0]U = {〈k,m〉 | k,m ∈ N & α(k) < rm}, [f(0)]V = {〈l, n〉 | l, n ∈ N & β(l) < rn}.

By the first of them and the recursiveness of α, the set [0]U is recursively enumerable. On
the other hand, the set [f(0)]V is not recursively enumerable, since if c is a natural number
such that rc ≤ 1 then {l ∈ N | 〈l, c〉 ∈ [f(0)]V} = β−1(0). Hence there is no enumeration
operator transforming [0]U into [f(0)]V .

Example 3.32. In the situation from Example 3.5, the function idN is not (α, β)-com-
putable, although it is (U ,V)-computable. Indeed, suppose idN is (α, β)-computable in this
situation. Then there exists a recursive operator F such that, for any x in N, the opera-
tor F transforms each α-name of x into some β-name of x. For any natural number k, let
k̂ be the total constant function with value k in N. Clearly this function is an α-name of

α(k), therefore F (k̂) is a β-name of α(k). Then α(k) = F (k̂)(0) for all k in N, hence α is
a recursive function. Since µk[α(k) = x] ∈ Px for any x in N, we get a recursive function
whose value belongs to Px for any x in N, and this is a contradiction.
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However, it is a known fact that the topological computability in metric spaces, which is
considered in Subsection 3.1, and the metric one considered in Subsection 3.4 are equivalent
under certain not very restrictive assumptions (cf., for instance, [We0, Theorem 8.1.4]). For
the sake of completeness, we will briefly consider this question.14 Let us call U-names of an
element x of X the total enumerations of the set [x]U , and let the V-names of an element
of Y be defined similarly. The (U ,V)-computability of f is equivalent to the existence of
a recursive operator which transforms any U -name of any element of E into some V-name
of the corresponding value of f . For the equivalence of the (α, β)-computability of f and
its (U ,V)-computability, it is thus sufficient that recursive operators ΓU ,α and Γα,U exist
which transform, respectively, the U -names of the elements of X into their α-names and
the α-names of the elements of X into their U -names, and similar recursive operators ΓV ,β

and Γβ,V exist for the V-names of the elements of Y and their β-names.
Recursive operators ΓU ,α and ΓV ,β with the above-mentioned properties always exist.

For instance, we may define the operator ΓU ,α by means the equality

ΓU ,α(u)(m) = π1(µi[π2(u(i)) = m]),

where π1(〈s, t〉) = s and π2(〈s, t〉) = t for all s, t ∈ N. A sufficient condition for the existence
of operators Γα,U and Γβ,V is given by the next lemma, where the relation <e on (Y × N)2

is the (Y, e)-analog of the partial ordering <d on (X × N)2 introduced in Subsection 3.2,
namely (y, n) <e (y

′, n′) iff e(y′, y) < rn′ − rn.

Lemma 3.33. Let (X, d, α) and (Y, e, β) be semi-computable metric spaces. Then there
exist recursive operators Γα,U and Γβ,V which transform, respectively, the α-names of the
elements of X into their U-names and the β-names of the elements of Y into their V-names.

Proof. We will describe the construction of the operator Γβ,V (the construction of Γα,U is
similar). By the recursive enumerability of the set

{ (l, n, l′, n′) ∈ L× N× L× N | (β(l), n) <e (β(l
′), n′) },

a 5-argument primitive recursive function χ exists such that a quadruple (l, n, l′, n′) of
natural numbers belongs to this set iff χ(l, n, l′, n′, s) = 0 for some s in N. Let π1, π2, π3, π4
be unary primitive recursive functions such that {(π1(t), π2(t), π3(t), π4(t)) | t ∈ N} = N4.
We set

Λ(v)(t) = χ(v(π1(t)), π1(t), π2(t), π3(t), π4(t)), ∆(v)(p) = µq

[

q
∑

t=0

sg Λ(v)(t) > p

]

,

Γβ,V(v)(p) = 〈π2(∆(v)(p)), π3(∆(v)(p))〉.

The recursiveness of Γβ,V is clear. Suppose now v is a β-name of an element y of Y , and
v′ = Γβ,V(v). We will show that v′ is a V-name of y, i.e. dom(v′) = N and rng(v′) = [y]V .
To do this, we note that, evidently, for any p and q in N, the equality ∆(v)(p) = q holds iff
Λ(v)(q) = 0 and there are exactly p natural numbers t less than q such that Λ(v)(t) = 0.
We note also that

[y]V = {〈π2(t), π3(t)〉 | t ∈ N, Λ(v)(t) = 0}. (3.13)

14The proof of the above-mentioned theorem in the book [We0] is left there as an exercise to the reader. In
the paper [KoKu], a theorem of a similar type (namely Theorem 3.7 of that paper) is accompanied by a proof,
but, in our opinion, it needs adding some explanation. In [We13, Statement (2) of Theorem 6.2], essentially
the same result is given as in Lemma 3.33 below (with the superfluous requirement about recursiveness of
the domains of the enumerations). Unfortunately, it was already late to make substantial changes in the
present paper when the paper [We13] appeared.
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Indeed, let j ∈ [y]V . Then j ∈ J and y ∈ Vj . We have j = 〈l′, n′) for some l′ ∈ L, n′ ∈ N such
that Vj = Be(β(l

′), rn′). By the (Y, e)-analog of statement (b) in Lemma 3.7, we may choose
a natural number n such that (ỹ, n) <e (β(l

′), n′) for any ỹ ∈ Be(y, rn). Since v(n) ∈ L and
e(β(v(n)), y) < rn, we get that (β(v(n)), n) <e (β(l′), n′), hence χ(v(n), n, l′, n′, s) = 0 for
some s in N. If t is a natural number such that (π1(t), π2(t), π3(t), π4(t)) = (n, l′, n′, s) then
Λ(v)(t) = 0 and j = 〈π2(t), π3(t)〉. Conversely, suppose t is a natural number such that
Λ(v)(t) = 0. Let us set n = π1(t), l

′ = π2(t), n
′ = π3(t). Then χ(v(n), n, l′, n′, π4(t)) = 0,

hence v(n), l′ ∈ L and (β(v(n)), n) <e (β(l′), n′). Since y ∈ Be(β(v(n)), rn), the (Y, e)-
analog of statement (a) in Lemma 3.7 yields that y ∈ Be(β(l

′), rn′) = U〈l′,n′〉, and therefore
〈π2(t), π3(t)〉 = 〈l′, n′〉 ∈ [y]V . Thus the equality (3.13) is established. Obviously dom(∆(v))
is an initial segment of N, and rng(∆(v)) = {t ∈ N |Λ(v)(t) = 0}. Due to the fact that [y]V
is an infinite set and to the equality (3.13), there exist infinitely many t with Λ(v)(t) = 0.
Hence dom(∆(v)) = N, and therefore dom(v′) = N too. Making use of the equality (3.13)
again, we see that rng(v′) = [y]V .

Corollary 3.34. If (X, d, α) and (Y, e, β) are semi-computable metric spaces then the (α, β)-
computability of the function f and its (U ,V)-computability are equivalent.

By applying Corollaries 3.9, 3.27 and 3.34 we get the following result.

Corollary 3.35. If (X, d, α) and (Y, e, β) are semi-computable metric spaces then the fol-
lowing conditions are equivalent:

(a) The function f is U ,V-computable.
(b) The function f is (α, β)-computable.
(c) There exists a recursively enumerable topological (α, β)-approximation system for f .
(d) There exists a recursively enumerable metric (α, β)-approximation system for f .

3.6. Transformation of metric approximation systems into topological ones and

vice versa. Corollary 3.2 and Proposition 3.19 imply the next statement.

Corollary 3.36. A topological (α, β)-approximation system for f exists iff there exists a
metric (α, β)-approximation system for f .

The above corollary suggests the problem about constructions for the direct trans-
formation of metric approximation systems into topological ones and vice versa. Such
constructions will be given in the next two theorems.

Theorem 3.37. Let S be a metric (α, β)-approximation system for f , and let

S′ =
{

(k,m, l′, n′) ∈ N4
∣

∣ l′ ∈ L & ∃l, n
(

(k,m, l, n) ∈ S & (β(l), n) <e (β(l
′), n′)

)}

.

Then S′ is a topological (α, β)-approximation system for f .

Proof. We have to prove that

∀x ∈ E ∀(l′, n′) ∈ L× N
(

e(β(l′), f(x)) < rn′ ⇔

∃k,m
(

(k,m, l′, n′) ∈ S′ & d(α(k), x) < rm
))

.

Let x ∈ E, l′ ∈ L, n′ ∈ N. Suppose first that e(β(l′), f(x)) < rn′ . Then f(x) ∈ Be(β(l
′), rn′).

By the Y, d-analog of statement (b) in Lemma 3.7, there exists a natural number n such
that (y, n) <e (β(l′), n′) for any y ∈ Be(f(x), rn). By consecutively using the proper-
ties (b) and (a) from Definition 3.11 (making use also of the fact that rng(α) is dense
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in X) we may choose m ∈ N, k ∈ K, l ∈ L such that d(α(k), x) < rm, (k,m, l, n) ∈ S
and e(β(l), f(x)) < rn. Then β(l) ∈ Be(f(x), rn) and therefore (β(l), n) <e (β(l′), n′).
Hence (k,m, l′, n′) ∈ S′ & d(α(k), x) < rm. Conversely, suppose this conjunction holds for
some k and m. Then there exist natural numbers l and n such that (k,m, l, n) ∈ S
and (β(l), n) <e (β(l

′), n′). By the property (a) from Definition 3.11 and the inequality
d(α(k), x) < rm, the inequality e(β(l), f(x)) < rn holds, hence f(x) ∈ Be(β(l), n). Since,
by the (Y, e)-analog of statement (a) in Lemma 3.7, Be(β(l), n) is a subset of Be(β(l

′), n′),
it follows that f(x) ∈ Be(β(l

′), n′) and therefore e(β(l′), f(x)) < rn′ .

Theorem 3.38. Let S be a topological (α, β)-approximation system for f , and let

S′ =
{

(k′,m′, l, n) ∈ N4
∣

∣ k′ ∈ K & ∃k,m
(

(k,m, l, n) ∈ S & (α(k′),m′) <d (α(k),m)
)}

.

Then S′ is a metric (α, β)-approximation system for f .

Proof. Let x ∈ E. We have to prove that

∀(k′,m′, l, n) ∈ S′
(

d(α(k′), x) < rm′ ⇒ e(β(l), f(x)) < rn
)

, (3.14)

∀n ∈ N ∃m′ ∈ N ∀k′ ∈ K
(

d(α(k′), x) < rm′ ⇒ ∃l
(

(k′,m′, l, n) ∈ S′
))

. (3.15)

For proving (3.14), suppose (k′,m′, l, n) ∈ S′ and d(α(k′), x) < rm′ . Then x ∈ Bd(α(k
′), rm′)

and there exist k and m such that (k,m, l, n) ∈ S and (α(k′),m′) <d (α(k),m). By the
statement (a) in Lemma 3.7, Bd(α(k

′), rm′) ⊆ Bd(α(k), rm), hence x ∈ Bd(α(k), rm). Thus
d(α(k), x) < rm, therefore e(β(l), f(x)) < rn. For the proof of (3.15), let a natural number n
be given. Making use of the fact that rng(β) is dense in Y , we choose some l in N satisfying
the inequality e(β(l), f(x)) < rn. Then there exist k and m such that (k,m, l, n) ∈ S
and d(α(k), x) < rm. Since x ∈ Bd(α(k), rm), the statement (b) in Lemma 3.7 implies the
existence of a natural numberm′ such that ∀x̄ ∈ Bd(x,m

′)
(

(x̄,m′) <d (α(k),m)
)

. Now let k′

be any number from K satisfying the inequality d(α(k′), x) < rm′ . Then α(k′) ∈ Bd(x,m
′),

hence (α(k′),m′) <d (α(k),m), and therefore (k′,m′, l, n) ∈ S′.

Remark 3.39. As seen from Corollary 3.35, the existence of a recursively enumerable
topological (α, β)-approximation system for f is equivalent to the existence of a recursively
enumerable metric (α, β)-approximation system for f under the assumptions made in the
beginning of Subsection 3.2 and the assumption that (X, d, α) and (Y, e, β) are semi-com-
putable metric spaces. Theorems 3.37 and 3.38 can be used to give a more direct proof
of this equivalence, because then, both in the situation from Theorem 3.37 and in the one
from Theorem 3.38, the recursive enumerability of S implies the recursive enumerability
of S′. This allows the using of Corollary 3.27 to be avoided in the proof of Corollary 3.35.
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