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Asstract. We develop the mathematical theory of epistemic updatéstive tools of duality theory.
We focus on the Logic of Epistemic Actions and Knowledge (BAittroduced by Baltag-Moss-
Solecki, without the common knowledge operator. We dudtigracterize the product update con-
struction of EAK as a certain construction transforming teenplex algebras associated with the
given model into the complex algebra associated with thetgatmodel. This dual characterization
naturally generalizes to much wider classes of algebraghaihclude, but are not limited to, arbi-
trary BAOs and arbitrary modal expansions of Heyting algesifHAOS). As an application of this
dual characterization, we axiomatize ihéuitionistic analogue of the logic of epistemic knowledge
and actions, which we refer to as IEAK, prove soundness amppleieness of IEAK w.r.t. both alge-
braic and relational models, and illustrate how IEAK enetle reasoning of agents in a concrete
epistemic scenario.

1. INTRODUCTION

Duality theory is an established methodology in the mathiealatheory of modal logic, and has
been the driving engine of some of its core results (e.g.hbery of canonicity), as well as of its
generalizations (e.g. coalgebraic logics), and of exterssiof techniques and results from modal
logic to other nonclassical logics (e.g. Sahlqvist coroesfence for substructural logics). Together
with [18], the present paper is concerned with applying itha&theory to a close cognate of modal
logic, namelyDynamic Epistemic Logj@nd starting to take stock of the results of this applicatio
The dynamic epistemic logic considered in the present piapbe Logic of Epistemic Actions and
Knowledge due to Baltag-Moss-Solecki [2], and we refer siEAK.

The main feature of the relational semantics of EAK is theaked product updateconstruc-
tion, which is grounded on a Kripke-style encoding of episteactions. Epistemic actions in this
setting are formalized amction structures finite pointed relational structures, each state of which
is endowed with a formula (itpreconditior). Epistemic updates are transformations of the model

2012 ACM CCS:[Theory of computation]: Logic—Modal and temporal logicsJomputing methodologie$. Ar-
tificial intelligence—Knowledge representation and remsg—Reasoning about belief and knowledge.

2010 Mathematics Subject Classificatiob3B42, 06D20, 06D50, 06E15.

Key words and phrasesDynamic Epistemic Logic, duality, intuitionistic modaldiz, algebraic models, pointfree
semantics, Intuitionistic Dynamic Epistemic Logic.

|EE|LOGICAL METHODS © A. Kurz and A. Palmigiano
IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(4:17)2013 © [Creative Commons.


http://creativecommons.org/about/licenses

2 A. KURZ AND A. PALMIGIANO

encoding the current epistemic setup of the given agentspdans of which the current model is
replaced with itproduct updatevith the action structure.

In the present paper, the product update constructiondated in [2] is dually characterized
as a certain construction transforming the complex algabsmciated with any given model into
the complex algebra associated with the model updated bypsr@an given action structure. As is
well known (see e.gl[8, Chapter 5]), these complex algerasomplete atomic BAOs (Boolean
algebras with operators). The dual characterization gealin the present paper naturally general-
izes to much wider classes of algebras, which include, ibhat limited to, arbitrary BAOs and
modal expansions of arbitrary Heyting algebras (HAOSs). fikisato this construction, the benefits
and the wider scope of applications given by a point-fre@ctassical theory of epistemic updates
are made available: for instance, this construction pewithe tools to answer the question of how
to define product updates on topological spaces.

As an application of this dual characterization, we axiorgathe intuitionistic analogue of
the logic of epistemic actions and knowledge, which we réfeas IEAK, prove soundness and
completeness of IEAK w.r.t. both algebraic and relationatiels, and illustrate how IEAK encodes
the reasoning of agents in a concrete epistemic scenario.

Let us informally expand on (a) how general principles inlifydheory are applied to the
Stone duality setting for the relational models of EAK, aneld analgebraic characterizatiorof
epistemic updates (this is the approach introduced in [h8]egplied there to epistemic actions of
public-announcement type), and on (b) how the results _dfdts extended from public announce-
ments to general epistemic updates in the style of BaltagshMBplecki. In[[2], given a relational
model M and an action structure, the product update M is defined as a certaisubmodebf a
certainintermediate model Nk «, the domain of which is the cartesian product of the domains o
M and ofa. In the present paper, we preliminarily observe that thermediate modeM x a can
be actually identified with an appropriate (pseudoproduct]|], M of M, indexed by the states
of a. Hence, the original product update construction can benstaod as the concatenation of a
certain coproduct-type construction, followed by a subobjype construction, as illustrated by the
following diagram:

Mo [ [Me M
%

As is very well known (cf. e.g/[10]) in duality theory, comhacts can be dually characterized as
products, and subobjects as quotients; an aspect of thiglklai@acterization—which we use to our
advantage and which is worth stressing at this point—is fbathese dual characterizations to be
defined, ara priori specification of the fully fledged category-theoretic eomiment in which these
constructions are taken is actually not needed; ratherapipeopriate category-theoretic environ-
ment can be specifiea posteriori as long as these constructions can be recognized as mpduct
subobjects, etc. For instance, the ‘subobject-type’ congon on Kripke models mentioned above
defines a proper subobject in the category of Kripke modelgalation-preserving maps (the latter
being dually characterized asntinuous morphismsee e.g/[14]) and not in the standard category
of Kripke models and p-morphisms. We do not expand on thegoagetheoretic account of these
constructions further on. In the light of this understagdaf dual characterizations, the construc-
tion of product updatecan be viewed as a “subobject after coproduct” concatemadiod is dually
characterized on algebras by means of a “quotient afterygtbdoncatenation, as illustrated in the
following diagram:

Aw[]a»an

a



EPISTEMIC UPDATES ON ALGEBRAS 3

resulting in the following two-step process. First, theroojuct] [, M is dually characterized as a
certainproduct[], A, indexed as well by the states @f and such thah is the algebraic dual of
M; second, an appropriatgiotientof [], A is then taken, as an instance of the general construction
introduced in[[18] to account for public announcements.eNbat again these constructions can be
interpreted in any category of algebras that supports theogpate notions of product and quotient.
This two-step process, taken as a whole, modularly gemesathe dual characterization of [18]:
indeed, public announcements can be encoded as certaistaireaction structures, in such a
way that, for any given mode\l, its corresponding intermediate modiélx « can be identified with
M. Hence, when instantiated to action structures encodifgigpannouncements, the two-step
construction introduced in the present paper can be ideshfiith its second step, discussed in it
full generality in [18].

As mentioned early on, the advantage brought about by theotha@acterization of product
updates (which defines thepistemic updates on algebjas that its definition naturally holds in
muchmore generatlasses of algebras than the ones given by the algebray disatciated with
the Kripke models. These more general classes include —réuta limited to — arbitrary BAOSs,
and modal expansions of arbitrary Heyting algebras (HAOS).

Exactly in the same way in which dynamic formulas in the laaggi of EAK can be inter-
preted on relational models using the product update agetiin, thealgebraiccounterpart of this
construction can be used to interpret the same formuladgabraic modelsi.e., tuples 4, V) con-
sisting of algebras and assignments, such that the algeleesion of epistemic update is defined
OonA.

For instance, based on Definitibn 4.2, it is easy to see tleatldss of algebraic models based
onarbitrary BAOs (which class properly extends the class of completeatmbic BAOS) provides
sound and completpointfree semantics for EAK; moreover, as a straightforward consecgie
of this fact, epistemic updates can be defined ondegcriptive general framega the classical
StongJénsson-Tarski duality (we do not provide an explicit dééin in the present paper).

But more generallygachclass of algebraic models gives risestamdogic of epistemic actions
and knowledge via the interpretation defined in DefinifioB. 4In particular, the set of axioms
describing the behaviour of the intuitionistic dynamic neatives (cf. Section 4.1) naturally arises
from the class of algebraic models basedH®yting algebras with operatorf@HAOs) (which, for
the sake of the present paper, are understood as Heytingrasgexpanded with one normal
operator and one normél operator). The axiomatization of HAOs does not imply thestxice
of any interaction between the static (epistemic) box amandnd operations, and of course, for
the purpose of describing the epistemic setup of each agentlesirable to have at least as strong
an axiomatization as one which forces the pairs of epistenudal operators associated with each
agent to be interpreted by meansonie and the sameelation. The intuitionistic basic modal logic
IK [L2] 20] is the weakest axiomatization which implies tresiled connection between the modal
operations; its canonically associated class of algelsrasdubclass of HAO which we refer to
as Fischer-Servi algebras, B6-algebrag(cf. Definition[2.5). The logic IEAK introduced in the
present paper arises as the logic of epistemic actions andl&dge associated with the class of
algebraic models based on FS-algebras.

In fact, along with the mentioned definition, a second way éfirgt IEAK is proposed in
the present paper, which reflects the idea that the episteatiop of agents might be encoded
by equivalencerelations. To account for this possibility, Prior's MIPC9]1lcan be alternatively
adopted instead of IK as the underlying static logic of IEAKdmonadic Heyting algebrasan be
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taken in place of the more general FS-algebras; the reg@ls&epted in what follows develop these
two options side by side in a modular way.

The structure of the paper goes as follows: Section 2 cellded needed preliminaries on
classical EAK and intuitionistic modal logic. In Section tBe dual, algebraic characterization
of epistemic updates is introduced. In Section 4, the igisgtic logic of epistemic actions and
knowledge IEAK is axiomatically defined, as well as its ipr@tation on models based on Heyting
algebras. Moreover, the relational semantics for intnistc modal logi¢lEAK is described in
detail. Finally, the soundness of IEAK is proved w.r.t. &igec (hence relational) models, as well
as the completeness of IEAK w.r.t. relational (hence algiehpmodels. In Section 5, it is shown
how IEAK can be used to describe and reason about a concristera scenario. Details of all
the proofs in the mentioned sections are collected in Seétiche appendix.

2. PRELIMINARIES

2.1. The logic of epistemic actions and knowledgeln the present subsection, the relevant prelim-
inaries on the syntax and semantics of the logic of epistactions and knowledge (EAK)[2] will
be given, which are flierent but equivalent to the original version appearing |ntf# aspects in
which the account given here departs from the original werare intended to make the dualization
construction more transparent, which will be introducethimfollowing section.

Let AtProp be a countable set of proposition letters. The Seif formulas¢ of (the single-
agerﬁ version of) the logic of epistemic actions and knowledge KEAnd the sefAct(L) of the
action structuresy over £ are built simultaneously as follows:

¢ =peAProp| =g |V | Cp|{a)p (€ Act(L)).

An action structure over is a tupleax = (K, k, «, Pre,), such thaK is a finite nonempty sek € K,
a € Kx K andPre, : K —» L. Notice thate denotedoththe action structurandthe accessibility
relation of the action structure. Unless explicitly spedfiotherwise, occurrences of this symbol
are to be interpreted contextually: for instancejdk, the symbolk denotes the relation; iM?, the
symbola denotes the action structure. Of course, in the multi-agetting, each action structure
comes equipped wita collectionof accessibility relations indexed in the set of agents,thad the
abuse of notation disappears.

Sometimes we will writéPre(a) for Pre, (k). Leta; = (K, i, a, Pre,) for every action structure
a = (K, Kk a,Pre,) and everyi € K. The standard stipulations hold for the defined connectives
1, A, —ande.

Models for EAK are relational structurdd = (W, R, V) such thawV is a nonempty seR € Wx
W andV : AtProp — P(W). The evaluation of the static fragment of the languageasddrd. For
every Kripke framef = (W, R) and everyx C K x K, let the Kripke framg [, ¥ = (] [k W.RXx @)
be defineld as follows: LIk W is the|K|-fold coproduct ofw (which is set-isomorphic taV x K),
andR x « is the binary relation ofi]x W defined as

w,N(Rxa)u,j) iff wRuandiaj.

IThe multi-agent generalization of this simpler versiontiaightforward, and consists in taking the indexed version
of the modal operators, axioms and interpreting relatitnagh(in the models and in the action structures) over a set of
agents.

2We will of course apply this definition to relatiomswhich are part of the specification of some action structime;
these cases, the symholn [], # will be understood as the action structure. This is why thesatof notation turns out
to be useful.
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For every modeM = (W, R, V) and every action structuke = (K, k, a, Pre,), let
]_[ M = (UW,Rxa,UV)
a K K

be such that its underlying frame is defined as detailed alzone( [« V)(p) := [ 1k V(p) for every
p € AtProp. Finally, theupdateof M with the action structure is the submodeM? ;= (W“, R*, V%)
of | [, M the domain of which is the subset

W= () € | W1 Mwi Prey(j)).
K

Given the preliminary definition above, formulas of the fofum¢g are evaluated as follows:
M,w i {a)p iff M,wi Pre,(k) andM?, (w,K) I .

Proposition 2.1 (]2, Theorem 3.5]) EAK is axiomatized completely by the axioms and rules for
the modal logic SBK plus the following axioms:

(1) (@)p & (Pre(e) A p);
(2) (@)~¢ < (Pre(a) A ~(@)¢);
(3) ()¢ V ¥) & (a)p V(aW);
(4) (YO & (Pre(a) A V{O(aig | kai}).
whereq; = (K, i, @, Pre,) for every action structure = (K, k, «, Pre,) and everyi € K.

Remark 2.2. The intuitive understanding of action structures and ofteeluct update construction
has been extensively discussed(ih [2], by way of plenty otoete examples; here we only limit
ourselves to briefly report on some general pointers, anulabele introduce a concrete scenario
which will be then expanded on in Section 5. An action strietencodes not only thiactual
information on a given action, but also gpistemicreflections on agents. Indeed, the designated
action-statek of a encodes the factual information; the other stateK iencode all its alternative
appearances from the agents’ viewpoint; in particutat, is to mean that the agent considers it
possible that the action-stateencodes the action which has been actually executed, thsfda
Correspondinglyg; is the action structure which encodes this shift in the paioe of the action
actually executed, and public announcements are encodastias structures with only the actual
statek which a-accesses itself (since the agent entertains no doubts anisvlictually happening).
The product update construction builds on this intuitioopies ofM are created in as many colors
as there are appearances of the action taking place; a capgioén state oM accesses a copy of
one of its original successors (in the same or in another)coldy if also the color of the copy of
the successor is anrsuccessor of the color of the copy of the given state. Thieth@lcopies of a
given original state oM are eliminated if the original state does not satisfy theqnéitions of the
execution of their respective color-appearance (whichnad#aat that particular transition could not
have been executed in the first place under that particldse of dfairs).

Example 2.3. The following example is based on a scenario that will be ya®al in detail in
Sectiorb. There is a sétof three agentsa, b, ¢, and three cards, two of which are white, and are
each held by andc, and one is green, and is held dyInitially, each agent only knows the color
of its own card, and it is common knowledge among the threataghat there are two white cards
and one green one. Tharshows its card only tb, but in the presence af Thenb announces that

a knows what the actual distribution of cards is. Then, afteimg witnesse@ showing its card to

b, and after the ensuing public announcement,@gentc knows what the actual distribution is.
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For the sake of this scenario, we can restrict the set of gitipo letters to{W,,G; | i € |}.

The intended meaning &% andG; is ‘agenti holds a white card’, and ‘agentolds a green card’
respectively.

The action structurex encoding the action performed by agentan be assimilated to the
atomic propositiorG, being announced to the subgrofapb}.

a,b,c

a,b,c
m C 6
G ()

Formally, a = (K, Kk, ag, ap, ac, Pre,) is specified as follows:K = {k,I}; moreover,Pre(a) =
Pre,(K) = G5, andPre(ay) = Pre, (1) = W;; finally, @y = ap = Ak anda. = K x K.
To illustrate the update mechanism assume that the mddglspecified by

C

a
©)

where we omitted the self-loops corresponding to episteméertainty being reflexive. Thdi, M

is depicted by
><
QS
Ib

b

and the product-updaté® is
/
:

)

where the two states mark&y, G; in the left-hand column get deleted because our scenancesl
the assumption&, A G5 = L = G A G,. Similarly, the state marke@, in the right-hand column
disappears because®f A W, = L.

The action structurg encoding the public announcement performed by algean be specified
as a one-state structure such tlaat Ak for eachi € I, and the precondition of which is the formula
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Pre(B) = Aic| (Gi = 05G;). Accordingly, updatingM® with g yields the model

according to which all agents know the distribution of thedsa(since there is only one state and,
thus, no epistemic uncertainty). In Sectidn 5, we will shbattthe reasoning in this scenario can
be syntactically formalized on an intuitionistic base bye(ppropriate multi-agent version of) the
logic IEAK introduced in Section 4.1.

2.2. The intuitionistic modal logics MIPC and IK. Respectively introduced by Prior with the
name MIPQ[[19], and by Fischer-SerVi |12], the two intuiisiit modal logics the present sub-
section focuses on are largely considered the intuitienégtalogues of S5 and of K, respectively.
These logics have been studied by many authors, iz [6,]7ar&Dthe references therein. In the
present subsection, the notions and facts needed for thesas of the present paper will be briefly
reviewed. The reader is referred to[[6| 7] 20] for their btttion. The formulas for both logics are
built by the following inductive rule (and lef,x denote the resulting set of formulas):

pi=L|peAProp|pAY|dVY|d— Y| Cp|Te.
Let T be defined as. — 1 and, for all formulag andy, let —¢ be defined ag — 1L and¢ < ¢ be
defined asd — ¢) A (y — ¢). The logic IK is the smallest set of formulas in the languabeve
which contains all the axioms of intuitionistic propositad logic, the following modal axioms
O(p— ) — (Bp — B0),
O(pva) = (Opv<OQ), =OL,
FS1.O(p— qg) — (Op — <0),
FS2. ©p— 0Oqg) — O(p — Q),
and is closed under substitution, modus ponens and netessi¢ ¢/ - Op). The logic MIPC is
the smallest set of formulas in the language above whichagmnill the axioms of intuitionistic
propositional logic, the following modal axioms
Op—p, p—<p,
O(p—0) —» (Ep— 00a), &(pVva) — (OpV <a),
Op— OCp, COp — Op,
B(p— 0) = (Op — <0),
and is closed under substitution, modus ponens and nextassif ¢ / -FO¢).
The relational structures for IK (resp. MIPC), callédframes(resp.MIPC-frame$, are triples
F = (W <, R) such that\V, <) is a nonempty poset aitlis a binary (equivalence) relation such that

(Ro>)c(=0R), (£oR c(Rox), R=(>oR)N(Rox).

whereo denotes composition written in the usual relational ortletice that, in the case of MIPC-
frames, R being symmetric implies that the second condition is edeitato the first one, and
the third condition is equivalent tB = (Ro <). IK-models(resp.MIPC-model} are structures
M = (F,V) such thatF is an IK-frame (resp. an MIPC-frame) and : AtProp — PY{W) is

a function mapping proposition letters to downward-closalisets oWV, where, for every poset
(W, <), a subsetr of W is downward-closedf for every x,y € W, if x < yandy € Y thenx € Y.
For any such model, its associated extension mpg [ Lik — PY(W) is defined recursively as
follows:
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[plm = V(p)
[1lm = @
[evylm = [olmVlvlm
[eAylm = [olwnlvlm
[¢—vIm = elm NIyl
[Colm = R_l[|[ ¢l wm]

[O¢lm = (zoR™MIgIy)°
where ()¢ is the complement operation. For any mobiebnd any formulap, we write:
M, Wi ¢ if we [é]m;

Migif[g]lm =W
F ¢ if[ ] = W for any modelM based ory .

Proposition 2.4. IK (resp. MIPC) is sound and complete with respect to thesctasIK-frames
(resp. MIPC-frames).

The algebraic semantics for IK (MIPC) is given by a varietyHedyting algebras with operators
(HAOs) which are called Fischer-Servi algebras (monadigtidg algebras):

Definition 2.5. The algebra\ = (A, A, v, —, 1, <, O) is aFischer-Servi algebrdSA) if (A, A, vV, —
, L) is a Heyting algebra and the following inequalities hold:

O(x—y) <Ox— 0y,

O(XVY) £ (OxXVOY), oL <L,

O(Xx—y) < Ox— Oy,

OX— 0Oy<O(X—-Yy).
The algebraA is amonadic Heyting algebr@HA) if (A, A, v, —, 1) is a Heyting algebra and the
following inequalities hold:

OX < X X< OX;

O(x—y) <Ox— 3y, O(xVy) < (OxV Oy);

Ox < OOx, OOx < Ox;

OX—y) <OxX— Oy.

It is well known and can be readily verified that every monddeyting algebra is an FS-algebra.
The inequalities above can be equivalently written as éigglthanks to the fact that, in any Heyt-
ing algebrax < yiff x - y = T. Clearly, any formula in the languagg of IK (MIPC) can be
regarded as a term in the algebraic language of FSAs (MHA®refore, given an algebra and
an interpretatiorV : AtProp — A, anL-formula¢ is truein A under the interpretatiod (notation:
(A,V) E ¢) if the uniqgue homomorphic extension Wf denoted by [y : £ — A, maps¢ to T.
An L-formula isvalid in A (notation: A E ¢), if (A, V) E ¢ for every interpretatiorV.

IK-frames give rise to complex algebras, just as Kripke feando: for any IK-framefF, the
complex algebraf F is

F* = (PYW),N,U,=,2,(R),[>oR]),

where for allX, Y € PY(W),

(RX=RYX], [2oRX=(EoR™XIE, X=Y=(XnY)EC

Clearly, given a modeM = (F, V), the extension map]y : £ — F 7 is the unique homomorphic
extension oV : AtProp — F .

Proposition 2.6. For every IK-model €, V) and everyL-formula ¢,
1) F,V) r¢iff (F*,V) E ¢.
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(2) " is an FS-algebra.
(3) If Ris an equivalence relation, thén" is a monadic Heyting algebra.

3. EPISTEMIC UPDATES ON ALGEBRAS

In Section 2.1, for every modéll and every actiomr over £, the updated mode¥* was defined
as a submodel of the intermediate structpkgeM. In the present section, this construction is dually
characterized on algebras in two steps: first dualizing ¢timstcuction procedure gf , M, and then
taking an appropriate quotient of it.

We preliminarily disregard the logic, and define, for evelgearaA, anaction structure over
A as a tuplea = (K, k, a, Prey) such thatK is a finite nonempty sek € K, « € K x K and
Pre, : K — A. The lettersb, c will typically denote elements of the algebras and we will
reserve the lettea for action structures over algebras. Clearly, for every EfskdelM, each action
structurea = (K, k, @, Pre,) over £ induces a corresponding action structarever the complex
algebraA of the underlying frame oM, via the valuatiorV : £ — A of M (here identified with its
unigue homomorphic extension): namedys defined as = (K, k, @, Prey), with Pre; = V o Pre,.
Moreover, for every Kripke fram& = (W R), and every action structue = (K, k, a, Prey) over
the complex algebra of , the intermediate structure can be definedlfasF := (][« W, Rx @), and
the updated frame structue® can be defined as the subframe] §f ¥ the domain of which is the
subset

WA= ((w, j) € | [WIwe Pre(j))
K

3.1. Dually characterizing the intermediate structure. For every algebra\ and every action
structurea = (K, k, @, Prey) over A, let []5 A be the|K|-fold product ofA, which is set-isomorphic
to the collectionAX of the set mapg : K — A. The setAK can be canonically endowed with the
same algebraic structure Ady pointwise lifting the operations ofy; as such, it satisfies the same
equations ag\; however, in the cases in whichis the complex algebra of some fraie= (W, R),
the lifted modal operators oAX would not adequately serve as the algebraic counterpattseof
accessibility relationR x «) of the frame] [, ¥, because they would only depend &nand not on

a. Therefore, alternative definitions are called for, whick jprovided at the end of the following
discussion.
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The picture below showg], ¥ if a has two states.

v (v,i)
? R / Ha‘f =Wx K

As mentioned early on, the accessibility relation][dg ¥ = W x K is the relation R x @) defined
as follows:

W, D(Rx a)(v,i) iff jai andwRv
Hence, as usual, the operationon the complex algebrg([ [, F) = P(W x K) is to be defined by
taking R x a)-inverse images; that is, for arfyc W x K,

(w, j) € &f iff wRvand jai for some ¢,i) € f. (3.2)
Via the following chain of isomorphisms,
PW x K) = 23K = WK _ K (3.2)

the subsetf can be equivalently represented as a niap K — #(W), and consequently, the
operation® on P(W x K) can be equivalently represented as an operatioon P(W)X. Hence,
condition [3.1) can be equivalently reformulated as foow

we (Of)(j) iff we oPM(f(i)) for somei such thatjai,
which is equivalent to the following identity holding #(W)X:

(©NH0) = U{<>7’(W)(f(i)) | jeri}. (3.3)
The argument above consists of a series of equivalent ieggibf one initial condition involving
the membership relation, and pivots on the natural isomsempk3.2). These rewritings are aimed at
expressing the initial condition (3.1) in a point-free wayt mvolving membership. The advantage
of (3.3) over [(3.1) is thaf (313) applies much more genertdgn to powerset algebras: namely,
it applies to any join-semilatticé. expanded with a unary operatigh*. For any suchA, and
any action structur@ = (K, k, a, Prey) over A, corresponding operations!la# and 0fla® can
be defined on the produgf, A as follows: for everyf : K — A, let olla#f : K — A and
olla4f : K — A be given, for evenyj € K, by

(OTa28)(j) = \/{O* 1) | jeri} (3.4)
@TA0)() = A\1B*F0) | jei). (3.5)
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The series of equivalent rewritings given above is an exanopldual characterization; another
such example appears in_[18, Section 3], and one more willn@ngn Sectiori 4.2, which will
serve to define the interpretation of dynamic epistemic tdas on algebraic models. The dual
characterization above proves the following proposition:

Proposition 3.1. Let A be the complex algebra of some classical frafme- (W, R), and leta =
(K, k, @, Prey) be an action structure ovér. Then the modal algebrg, A, ¢11a%) is isomorphic
to the complex algebra of the intermediate struciurer.

The next proposition immediately follows from clauses J&dd [3.5):

Proposition 3.2. For every lattice expansioii(<, 0), and every action structugeover A,

(1) if © andO are normal modal operators, thénla# andolla# are normal modal operators.
(2) If Bis a BA andd := ==, thenOlla® = —Ollad,

The discussion above justifies the following notation: iatbmainder of the present paper, for
every lattice expansioA = (B, <, d) and every action structur@over A, the symbol[ T, A will
denote the algebrg, B, ¢la# Olla’),

Remark 3.3. As discussed in Section 2.1, public announcements can lbesesgied as those ac-
tion structures K, k, a, Pre,) over £ such thatk is a one-element set, armd= Ax. Thus, each
such action structure can be identified with the (publiclyhw@amced) formulaPre,(x). Public
announcement-type action structugesver algebras\ can be defined in an analogous way, and
again identified with elements @f. Then it is straightforward to see that the algepfaA can be
identified with the original algebra whena is a public announcement-type action structure. The
same observation also holds in the more meaningful muéirgetting.

3.2. Intermediate structures of FSAs, MHAs and of tense HAOs.An HA B expanded with
normal modal operation8(<, O, ¢, m) is atenseHAO if both & andm, ande andO areadjoint
pairs, i.e. for allb,c € A,

Ob<c if b<mc and eb<c iff bx<Oc

We denote these adjunction relations by writitg+ m ande 4 0. For any such tense HAO, the
algebra [, B, Olla4 Olla4 ¢lla4 mlla%)is defined as followsola4 ando!a# are defined as in
the previous subsection, whereas, for everyK — A, let#lle4f : K —» A andmlle4f : K - A
are respectively defined as follows: for evgry K,

(oTl2)(j) = \/1*5() iaj),
(il 26)(j) = /\ (™ £G0) lierj).
Proposition 3.4. For every algebra = (B, <, 0) and every action structurg = (K, k, a, Prey)

overA,

(1) if Ais an MHA anda is an equivalence relation, thgf, A is an MHA.
(2) If Aisan FSA, therf], A is an FSA.
(3) If (B, <, 0, ¢, m) is atense HAO, then[{, B, ¢lla#, Olla4 ¢llat mllatyjs a tense HAO.

Proof. 1. Since by assumptioB is a HA, [[;B is a HA, so we only need to show the validity of
the modal axioms. Throughout the proof, fixc € [],B. For the sake of readabilityy andO will
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both denote the operationsdnand in[], A and are to be understood contextually: for instance, for
everyj € K, the symbol {b)(j) is to be understood ag(<!a4(b)), where

nj:l_[A—xA (3.6)

is the projection on thg-indexed coordinate; the symbob(j) is to be understood acsA(zrj(b)).
To prove thab < ©b, we need to show th&i(j) < (Cb)(j) for everyj € K, i.e. thath(j) < \V/{Ob(i) |
jai}. Becauser is reflexive andA is a MHA, we have:

b(j) < V{b(i) | jei} < V{Ob(i) | jai}.

The proof thatdb < b is order dual to the argument above.
To prove thatob < OOb, we need to show thatip)(j) < (OCh)(j) for everyj € K, i.e. that

VAOR() | jait < AB(V{Cb(h) [iah)) | jai}.

It is enough to show that for eaghi € K such thatjai, $b(i) < O(\/{<Cb(h) | ieh)). Becauser is
reflexive, we have:

Ob()) < OOb(j) < O(\V{<Cb(h) | iah}).
To prove that>Ob < Ob, we need to show thaty(@b)(j) < (Ob)(j) for everyj € K, i.e. that

VAO(ALBR() [ieh}) | jei} < A{BB() | jai).

It is enough to show that for eadhi, i’ € K such thatjai and jai’, O(A{Ob(h) | i'ah}) < Ob(i).
Becauser is symmetric and transitive, we haifei, hence:

O(A{Bb(h) [ "ah}) < COb(i) < Ob().

The remaining verifications are left to the reader.
2. Similar to 1.
3. Forallb,c e [],B,

ollaBph < ¢ iff \/{Ob(i) | jei} < c(j) for everyj e K
iff Ob(i) < c(j) for everyj € K and everyi € K such thatjai
iff Db(i) < mc(j) for everyi € K and everyj € K such thatjai
iff b(i) < A{mc(j) | jai} for everyi e K
iff b(i) < (mllaBc)(i) for everyi € K
iff b<mllaBc

The remaining adjunction relation is shown analogously. L]

3.3. Quotient of the intermediate structure. Throughout the present subsection, and unless spec-
ified otherwise, letA be aA-semilattice and led = (K, k, a, Pre;) be an action structure ove.
Define the following equivalence relatian, on [, A: for every f,g e AK,

f=50iff fAPre;=gAaPre,.
Let [f]a be the equivalence class bfe AK. Usually, the subscript will be dropped when there is
no risk of confusion. Let the quotient s&f /=, be denoted by2.
The properties of this quotient are well known, and a dedadlecount of them can be found in
[18, Section 3.1], in a setting in whidf 4 A andPre, respectively generalize to an arbitrary algebra
and to an arbitrary element of that algebra. In the remaind@iénis subsection, we will report on
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the relevant facts and properties, specialized to the presmtext, referring the reader {0 [18] for
proofs.
Clearly, A? is an ordered set by puttind][ < [c] iff b" <, ¢’ for someb’ € [b] and some
¢ €]c]. Let
7T=7Ta:1_[A—>Aa (3.7)
a

be the canonical projection, given by— [b].

A patrticularly relevant feature is that, is a congruence if\ is a Boolean algebra, a Heyt-
ing algebra, a bounded distributive lattice or a frame (atedtin FacE 317 below). Hencé? is
canonically endowed with the same algebraic structur& of each of these cases. The following
properties ofs, are as crucial for the development as they are straightfokwa

Fact 3.5. Let A be an-semilattice and led be an action structure ové.

(1) [bAPrey] = [b] for everyb € [T, A. Hence, for everp € [, A, there exists a uniquee []5 A
such that € [b]; andc < Pre;.

(2) Forallb,ce [1,A, we have thatlf] < [c]iff b A Prey < c A Pre,.

(3) If A is a Heyting algebra, them |- b] = [b] for everyb € [, A.

Item 1 of the fact above implies that eagh-equivalence class has a canonical representant,
namely the only element in the given class which is less tmagoal toPre,. Hence, the map

=i et ]a (3.8)
a

given by b] — b A Pre, is well defined. Clearlyxg o i’ is the identity map om\2.

As was the case in_[18], the mapwill be a critical ingredient for the definition of the inter-
pretation of IEAK-formulas on algebraic models (cf. Defimit[4.2). Indeed, whenevekx = ¥+
for some (classical) Kripke framg, by Propositiori 311, the algebid, A can be identified with
the complex algebra]{, #)*, and then, by[[18, Fact 9.3k2 can be identified witl¥2"; then,
by [18, Propositiori_3]6], the maip can be identified with the direct image map of the injection
i 1 F2 — [],F modulo the isomorphism? = 2%, Hence we get the following

Proposition 3.6. If A = #* andais an action structure ove, theni’(c) = i[u(c)] for everyc € A?,
whereu : A% — F2* is the BAO-isomorphism identifying the two algebras. Demmatically:

(F)° (7o)

\ i[]
HaF™
It immediately follows that[c] = i’(v(c)) for everyc € ¥2*, wherey : F2* — A?is the inverse of
M.

The following compatibility properties ct, immediately follow from[18, Fact 7] and the general
properties of theK|-fold product algebra construction.

7

Fact 3.7. For everya-semilatticeA and every action structuigeover A,

(1) the relatiorne, is a congruence df]; A.

(2) If A is a distributive lattice, ther, is a congruence df], A.
(3) If Ais aframe, ther:, is a congruence df[; A.

(4) If Ais a Boolean algebra, thex, is a congruence df], A.
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(5) If Ais a Heyting algebra, then, is a congruence df]; A.

3.4. Modal operations on the quotient algebra. As discussed iri [18, Example 8], the equivalence
relation defined in the previous subsection is not in germradpatible with the modal operators of
the algebra on the domain of which it is defined. When speedlito the present setting, this
implies thatA? does not canonically inherit the structure of modal expangiom [T, A. In [18],
modalities have been defined on the algelfaunderstood in the general setting, in such a way
that, whenA = #* for some Kripke frameF, it holds thatA? =gao F2*. In what follows, we
specialize those definitions to the present setting.

For every Heyting algebra, every action structura over A, and evenb € [], A, let

Qb := [OTTa%(b A Prey) A Prey] = [Ola%(b A Prey)],
08[b] := [Pre, — Dlla%(Prey — b)] = [O!1a4(Pre, — b)].
The right-hand equality in the topmost displayed clause étitely follows from definition, and
the one in the displayed clause right above has been jusitifik8, Section 3.2.2] in the general

setting. The following facts are immediate consequenceBropositiong 3J2 and 3.4, and 6f [18,
Facts 9, 10, 11].

Fact 3.8. For every HAO A, ©) and every action structugeover A,

(1) ©2is a normal modal operator. Hencg¥( ¢2) is a HAO.
(2) If A = F+ for some Kripke frameF, thenA? =gpo F2°.

Fact 3.9. For every HAO @, O) and every action structumeover A,

(1) 0%is a normal modal operator.

(2) If (A,O)is aBAO andd = =0—, thend? = =O2—,

(3) If A = F* for some Kripke frameF, thenO? = [R?], henceA? ~gao F2*.

Fact 3.10. For every HAO A, <, 0) and every action structue= (K, k, a, Pre,) overA,
(1) if (A, ©,0)is a MHA anda is an equivalence relationAg, <2, 0%) is a MHA.

(2) If (A, <©,0O)is a FSA, the algebrat@, ¢2,02) is a FSA.

(3) For every tense HAQ4, ¢, O, ¢, m), the algebra4?, <2, 02, ¢2, m?) is a tense HAO.

Definition 3.11. For every FSAMHA (A, &, 0) and every action structuie= (K, k, «, Pre,) over
A, let A% = (AK/ =,, ©2 03), defined as above, be topdateof A with a.

4. INturtionistic EAK

4.1. Axiomatization. Let AtProp be a countable set of proposition letters. The formulas ef th
(single-agent)intuitionistic logic of epistemic actions and knowled@®AK are built up by the
following syntax rule (and lef;gax denote the resulting set of formulas):

pu=pPEAPOP| LIGVPIdAG|P— ¢ O T¢ ()¢ |[alp (@€ Act(L)).
The same stipulations hold for the defined connectives and« as introduced early on. IEAK is
axiomatically defined by the axioms and rules of IK (MIPC)gtbe following axioms:
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Interaction with logical constants Preservation of facts

(@)L & 1, {(a)T « Pre(a) (a)yp < Pre(fa) A p

[a] T & T, [a]L & —Pre(a) [a]p < Pre(a) — p
Interaction with disjunction Interaction with conjunctio n
(@)@ Vy) & () V(@ (@)@ AY) & ()¢ Ala)y

[al(¢ vV ¢) © Pre(a) — (adp V<)) [al(¢p Ay) < [ald Ala]y

Interaction with implication

(@)(¢ — ) o Pre(e) A (@) — (@)

[al(¢ — ¥) & ()¢ — ()

Interaction with diamond Interaction with box

(@)C¢ « Pre(a) A V{O(ae | kaj) (@)0¢ « Pre(a) A A{O[aj]é | kaj}

[a]C¢ & Pre(a) — V{O(aj¢ | kej}  [e]O¢ « Pre(a) — Af{O[ejlé | kaj}
where, for every action structure = (K, k, a, Pre,), and everyj € K, the action structure;j is
defined asyj = (K, j, a, Pre,).

4.2. Models.

Definition 4.1. An algebraic models a tupleM = (A, V) such thatA is an FSA (resp. an MHA)
(cf. Definition[2.5) and/ : AtProp — A. For every algebraic mod®l and every action structure

over L, let
]_[ M = (]_[ A, ]—[ V)

where[], A = []2 A, anda is the action structure ovex induced bya via V (cf. introduction of
SectiorB); moreover][{, V)(p) := [1a V(p) for everyp € AtProp. Likewise, we can define

M® = (A%, VY)
whereA® := A2 (cf. Definition[3:11), and/* := 7o [], V (cf. (3:1)).
Given an algebraic moddl = (A, V), we want to define its associated extension m [:

Lieak — A so that, whemd = F* for some Kripke framefr, we recover the familiar extension
map associated with the moddl = (¥, V). To this end, we introduce the notation

M—% [, M <— M@ (4.1)
where the map: M* — [], M is the submodel embedding, and M — [], M is the embedding
of M into its k-colored copy, which, by convention, is the copy corresjromdo the distinguished
point of a.

Notice that — wherM is a relational model — the satisfaction condition fey-formulas
M,wi-(a)p if M,wi Pre(a) andM?, (w,K) I ¢
can be equivalently written as follows:
we [{oy¢]m iff  Ixe W?* such thatx € [¢] m- and i(x) = w(w) € [Pre(a)] ], m»

Becausd is injective, we get thak € [¢] me iff (W) = i(X) € i[[ ¢l me], iff W € LEl[i[I[(b]l mell-
Hence,
we [a)glu iff  we [Pre@)]m 0y Till¢lwell,
from which we get that
[(@¢lm = [Pre@Iw N g T ¢l mell- (4.2)
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Likewise, equivalently rewriting the following satisfamt condition for p]-formulas
M,wi [a]¢ iff  M,wi Pre(a) implies M?, (w,K) I ¢

yields:

(¢l = [Pre(@Im = 4 lI gl mell, (4.3)
whereX = Y = (W \ X) U Y for everyX, Y € W. To see thaf (413) is ‘in algebraic form’, recall that
the dual of [4.11) is written as

’
N
A< [leA—F— A (4.4)

whererny is the projection onto thk-th coordinate and andi’ are as in[(317) and (3.8), withbeing
left-adjoint tosr. To say that[{44) is the dual df (4.1) means precisely th#héncase of\ = F**

we havery = i,* andz = it andi’ = i[-], see Proposition 3.6. So we can adopt equatibns (4.2)
and [4.3)—maodified by replacinf] and with i’ andry—in anyalgebraic model4, V):

Definition 4.2. For every algebraic modé!l = (A, V), theextension mafi-Jm : Lieak — Ais
defined recursively as follows:

[plm = V(p)
[1lm = 1%

[ovvlm = [¢Im V™ [¥lm
[oAvIn = [¢1m A" [¥lm
[¢—vim = [slm—" [¥]m
[Colm = <“[¢lm
[Odlw = D*M¢lm

[@dlm = [Pre(@)lm A* mco i ([¢lme)
[aldlm = [Pre@lm =" o i’ ([4]me).

Notice that, by Propositidn 2.6, the above definition sgieia to those algebraic modeks, (V)
such thatA = F* is the complex algebra of some IK-frame (MIPC-frane) and from those, to
their relational counterpartsF( V). Hence, as a special case of the definition above we get an
interpretation of IEAK on relational IK-models (MIPC-mddg More details about these models
are reported in the next subsection.

4.3. Relational semantics for IEAK. In order to recover the relational semantics of IEAK from
its more general semantics given by the algebraic modelsthfion[4.2, we need to dually char-
acterize back the FSAs (MHAs) and the update constructiom i to A2, As is well known (cf.
e.g. [6/7]), dually characterizing the FSAs (MHAS) is pbssiin full generality, and the resulting
construction involves the intuitionistic counterpartsdekcriptive general frames in classical modal
logic, i.e. relational structures endowed with topologiewever, obtaining the purely relational
IK-frames (MIPC-frames) is possible for certain speciaRB$MHAS), which we calbperfectFSAs
(MHAS). This dual characterization has been reported omeiaitin [18, Section 4.3], where the up-
date construction on intuitionistic relational models baen also spelled out in the special case of
public announcements. In what follows, we provide the @hwefinitions and facts to perform the
dual characterization in the case of updates by means ofaeamion structures, omitting proofs
whenever they already appearlini[18], and including prodiemwever they do not appear anywhere
to the authors’ knowledge.
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For every poseP = (X, <), a non-bottom element € X is completely join-primef, for every
S C X such thatx < \/ S, there exists some € S such thatx < s; a non-top elemeny € X is
completely meet-primé, for every S C X such thatA\ S <y, there exists some € S such that
s<vy. Let J*(P) andM>(P) respectively denote the set of the completely join-priteenents and
the set of the completely meet-prime elementPR.irA posetP is acomplete latticaf the joins and
meets of arbitrary subsets Bfexist, in which caseP is completely distributivef arbitrary meets
distribute over arbitrary joinsP is completely join-generateffesp.completely meet-generajeboly
agivenS C Pifforeveryxe P, x=\/ S’ (resp.x= A S’) for someS’ C S.

Definition 4.3. An HA A is perfectif it is a complete and completely distributive lattice w.r.
its natural ordering, and is also completely join-genetdig J*(A) (or equivalently, completely
meet-generated byl*(A)). An HAO (A, ¢, 0) is perfectif A is a perfect HA, and moreovet;
distributes over arbitrary joins arid distributes over arbitrary meets. gerfectFSA (MHA) is an
FSA (MHA) which is also a perfect HAO.

Clearly, any finite HA(O) is perfect. It is well known that a yteg algebraA is perfect it it
is isomorphic toP!(P), whereP = (J*(A), <) and< is the restriction of the natural ordering &f
to J*(A). The Boolean self-duality — —u generalizes, in the HA setting, to the mapsA — A,
given byx— V{X | X £ x},andd: A — A, givenbyy —» A{Y |y £ ¥Y'}. These maps induce order
isomorphismsc : J*(A) —» M®(A) andA : M®(A) — J*®(A) (seen as subposets &j. Clearly,
X £ k(X) (resp.A(y) £ y) for everyx € J*(A) (resp.y € M®(A)); moreover, for every € A and
everyx € J*(A),

j<u it u«()).

By the theory of adjunction on posets, it is well known thataiperfect HAOA, the properties of
complete distributivity enjoyed by the modal operationplyrthat they are parts of adjoint pairs:
unary operation® andm are defined o so that for allx,y € A,

Ox<y iff x<my and ox<y iff x<0Oy.

We denote these adjunction relations by writihgi m and e 4 0. One member of the adjunction
relation completely determines the other. The choice ddtimt is a reminder of the fact that, by the
general theorye distributes over arbitrary joins (i.e., it enjoys exactig tharacterizing property of
a ‘diamond’ operator on perfect algebras), andistributes over arbitrary meets (i.e., it enjoys the
characterizing property of a ‘box’ operator on perfect hlgs). In particular, they are both order-
preserving. Well known pairs of adjoint modal operatorsunde temporal logic: its axiomatization
essentially states that, when interpreted on algebragoihard-looking diamond i¢eft adjointto
the backward-looking box, and the backward-looking diachisrieft adjoint to the forward-looking
box. This is actually an essential feature: ind&dd the accessibility relation for one operatidh i
R!is the accessibility relation for the other.

Let us now introduce the intuitionistic counterpart of thiena structures for complete atomic
BAOs:

Definition 4.4. For every perfect FSA (MHAN, let us defindR € J*(A) x J*(A) by setting
xRy iff x<<Oy andy< ex
Theprime structureassociated witlh is the relational structurd, := (J*(A), <, R).
Notice thaty < ex iff exg£«(y) iff x£ Ok(y).

Fact 4.5. For every perfect HAQ\,
(1) if Ais an FSA, therd, is an IK-frame;
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(2) if Aisan MHA, thenA, is an MIPC-frame.
Proposition 4.6. For every perfect FSA, and every IK-frameF,

The bijective correspondence above, between perfect Fsidaframes, specializes to MHAs
and MIPC-frames, and also extends to homomorphisms andrphisms; in short, it is a duality,
but treating it in detail is out of the aims of the present pape

Definition 4.7. For every IK-frameF = (W, <, R) and every action structuee= (K, k, «, Pre,) over
the complex algebr& * , let 72 = (W?, <2 R?) be defined in the usual way, i.e., as the subframe of
the intermediate structufd, ¥ := (W x K, R x @) determined by the subset

W2 = {(w, j) € Wx K | we Pres(j)).

BecausePre,()) is a down-set for every € K, it is easy to see thaf being an IK-frame
implies that72 is an IK-frame, and that the analogous result holds w.r.RPG@Hrames ife is an
equivalence relation. The remainder of the present subgefticuses on showing that, for every
perfect FSAA and every action structuigeover A,

(A%), = (AL

Fact 4.8. For every HAA and every action structuee= (K, k, a, Pre,) overA,

(1) the setl*(J14A) bijectively corresponds tp], J*(A) = J*(A) x K.

(2) The accessibility relatioiR!la of the prime structure[(,A). bijectively corresponds to the
product relatiorRx a (whereRis the relation of the prime structure,) under the identification
of item 1 above.

Q) ([TaA)+ = oA+

Proof. 1. It is enough to show thdi : K — A € J*(]],4) iff there exists a uniqug € K such

thatb(j) € J*(A), andb(i) = L fori € K\ {j}. The direction from right to left is clear. Conversely,

if b e J°([TaA) andj € K such thath(j) # L, thenb(j) € J*(A); indeed, for even C A such
thatb(j) < \/ S, consider the collectio®’ € []; A whose elements are the mapsK — A such
thatc(j) € S andc(i) = T fori # j. To finish the proof, itb(i) # L for more than oné € K, then

b < Vjek Cj, where for everyj € K, the mapc; : K — A sends;j to b(j) and every other element of

K to L, butb £ cj foranyj € K.

2. Fixb,c € J*([1,A). By the statement proved in item 1 aboveandc can be respectively

identified with (i), i), (c(j), j) € J*(A) x K for some uniqué, j € K, so that for every € K,

(oTate)(i) = \ /(0% ofi) | o) = {OAC(” tia]

1 otherwise,
and for everyj € K,
o4b(i) ifiaj
1 otherwise.

(o11ab)(j) = \/(#4b(i) | aj) = {

Hence, we have:

bRIlac iff b< ¢llacandc < ¢llap
iff  b(i) < (Olla2c)(i) andc(j) < (#!la®b)(j)
iff iaj andb(i) < O%c(j), andiaj andc(j) < ¢“b(i)
iff iajandb(i)Rdj)
iff - (b(i), )(Rx a)(c(j), })-
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3. From the previous items it immediately follows that badtie universes and the accessibility
relations of the structure§|; A)+ and]], A, can be identified. It remains to be shown that their
ordering relations can be identified too. Indeedp,i€ : K —» A € J*([],A) are respectively
identified with ©(i), 1), (c(j), j) € IJ*(A) x K for some unique, j € K, thenb <1, ), Cciff b(i") <
c(i’) for everyi’ € K, iff i = j andb(i) < c(j), iff (b(i), i) <y,4. (c(j), )- ]

Fact 19 in [18] (and the discussion below it), when spea@alifo the present setting, states
that the prime structure of the quotient[df, A by means ok, is identifiable with the subframe of
[1a A, determined by the subsfix, j) € J*(A) x K | x € Prey(j)}. This, together with the fact
above, readily imply thatA?), = (A,)2

The identification between these two relational structimgdies that the mechanism of epis-
temic update remains completely unchanged when genaliom the Boolean to the intuitionis-
tic setting.

4.4, Soundness and completeness for IEAK.

Proposition 4.9. IEAK is sound with respect to algebraic IK-models (MIPC-rets), hence with
respect to relational IK- models (MIPC-models).

Proof. The soundness of the preservation of facts and logical antssfollows from Lemma 714.
The soundness of the remaining axioms is proved in Lerhm&&B57.7[ 7.8, 7.10 of the appendix.
L]

Theorem 4.10.1EAK is complete with respect to relational IK-models (MIf@bdels).

Proof. The proof is analogous to the proof of completeness of dakEAK [2, Theorem 3.5], and
follows from the reducibility of IEAK to IK (MIPC) via the regction axioms. Let be a valid
IEAK formula. Let us consider some innermost occurrenceayfreamic modality inp. Hence, the
subformulay: having that occurrence labeling the root of its generatiee ts either of the form
[a]y’ or of the form{a)y’, for some formula)’ in the static language. The distribution axioms
make it possible to equivalently transfogrby pushing the dynamic modality down the generation
tree, through the static connectives, until it attaches poogosition letter or to a constant symbol.
Here, the dynamic modality disappears, thanks to an apigicaf the appropriate ‘preservation
of facts’ or ‘interaction with logical constant’ axiom. Thprocess is repeated for all the dynamic
modalities ofg, so as to obtain a formul® which is provably equivalent t¢. Since¢ is valid by
assumption, and since the process preserves provableaknge, by soundness we can conclude
that ¢’ is valid. By Propositiori 2}4, we can conclude tlpatis provable in IK (MIPC), hence in
IEAK. This, together with the provable equivalencegadnd¢’, concludes the proof. L]

5. AN ILLUSTRATION

Let us recall from Example 2.3 the following scenario. Thisra setl of three agentsa, b, ¢, and
three cards, two of which are white, and are each helld Bgdc, and one is green, and is held by
a. Initially, each agent only knows the color of its own carddat is common knowledge among
the three agents that there are two white cards and one greenTtiena shows its card only to

b, but in the presence @f Thenb announces tha knows what the actual distribution of cards is.
Then, after having witnessedshowing its card td, and after the ensuing public announcement of
b, agentc knows what the actual distribution is.
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This scenario is less of a puzzle than the Muddy Children,itbiliustrates an action more
complicated than a public announcement. In both scenasiagyen subgroup of agents draws
conclusions on factual states dfairs purely based, besides the initial information, onrimfation
about other agents’ epistemic states.

The purpose of this section is to illustrate that reasonirghsas this can be supported on an
intuitionistic base by IEAK. Of course, we will need the apgpriate multi-agent version of it, which
we denote IEAK, whose language, if the set of agents is taken tb bda, b, c}, is defined as one
expects by considering indexed epistemic modalitieand<; for i € |, and whose axiomatization
is given by correspondingly indexed copies of the IEAK axipnfor the sake of this scenario, we
can restrict the set of proposition letters{¥,G; | i € 1}. The intended meaning &/ andG; is
agenti holds a white card’, and ‘agenholds a green card’ respectively.

Derived modalities can be defined in the language of IEAthich will act as finitary approx-
imations of common knowledge: for every IEAormula ¢, let E¢p = A Oi¢. The intended
meaning ofE is ‘Everybody knows'. It is easy to see tHal -k, T andE(¢ A ¢) -1k, E¢ A Ey.
SoE is a box-type normal modality.

The action structurex encoding the action performed by agentan be assimilated to the
atomic propositiorG, being announced to the subgrofgpb}. Hence.a = (K, K, @5, ap, ac, Pre,)
can be specified as follow& = {k, I}; moreoverPre(a) = Pre,(k) = G;, andPre(a)) = Pre,(l) =
W,; finally, @y = @y = Ak anda. = K x K.

The action structurg encoding the public announcement performed by algean be specified
as a one-state structure, the precondition of which is thad@ Pre(8) = A (Gi — 0,Gj).

Let us introduce the following abbreviations:

e aut := Aig[(Wi - L) & Gj] expresses the fact that holding a white or a green card afre bo
mutually incompatiblendexhaustiveconditions;

e one = i (Gi A Ansi Wh) expresses the fact there are two white cards and one green on

e other? = Aict (Wi = Ansi <iGh) expresses the fact that any agent holding a white card dues n
know who of the other two agents holds the green card.

The aim of this section is proving the following

Proposition 5.1. Let £ be an extension of IEAKwith aut andone. Then,
E(other?) ¢ [2][B] OcGa.
Proof. The following chain of provable equivalences holds in IEAK

[a][B]B:Ga
dhieak,  [@](Pre(B) — Oc(Pre(B) — Ga))
drieak,  {(@)Pre(B) — (@)Oc(Pre(B) — Gj)
Hhieak,  (@)Pre(B) — (Pre(a) A (Oc[a](Pre(B) — Ga) A Oc[an](PreB) — Ga)))
dheak,  (@)Pre(B) — (Pre(a) A (Oc((a)PreB) — (a@)Ga) A Oc({a)Pre(B) — (@1)Ga)))
dreak,  [Ka)Pre(B) — Pre(a)] A [(a)Pre(B) — (Cc({a)PreB) — (@)Ga)]
A KayPre(B) — Oc({a)Pre(B) — (1)Ga)l.

Hence, by the Deduction Theorem, it is enough to show that

3For the remainder of this section, lifis one of the logics introduced so far, will denote its indexed version. For
any logicL, the relation of provable equivalence relativeLtwill be denoted byt .
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()Pre(B) rieak, Pre(a) 1)
()Pre(B) vy Oc({a)Pre(B) — (a)Ga) 2
E(other?) g, Oc({a)Pre(B) — (a1)Gy). )

The entailment (1) straightforwardly follows from the IEAKwriting axioms, and this verification
is left to the reader. As to the remaining ones, notice piiekmly that, because odut andone,
it holds that G, A G,) 4+, L for eachh € | \ {a}, which justifies the step marked with)(in the
following chain of provable equivalences:

(@)PreB)  Hrieak,  Pre@) A Aie ((@)Gi — (@)0aG))
dhieak,  Pre(@) A Aiel((Gi A Ga) — (@)8aGj)
(x) kg Pre(a) A (Ga — (@)0,G,)
drieak,  Pre(a) A (Ga — (Pre(a) A O[] Ga))
dreak,  Pre(a) A (Ga — Pre(a)) A (Ga — Uala]Ga)
dreak,  Ga A (Ga — Da(Ga — Ga))
drgak,  Ga.

Hence, proving the entailment (2) is equivalent to showimat G, +, O.(Ga — Gg), which is
immediate. As to the entailment (3), by the axiom FS2 and tbdudtion Theorem, it is enough to
show that

E(other?), Oca)Pre(B) +r Ola))Ga. (4)

Notice preliminarily thataut andone imply that W, A G;) 4+, L for eachi € | (which justifies
the equivalence marked with)(below), and also thag; A An.i Wh) -+, G for eachi € | (which
justifies the equivalence marked with:] below). Hence:

(a)Pre(B) Hrieak, Pre(an) A Aie (a)Gi — (@)0aGi)
(%) Hrg Wa A [((Wa A Gp) = (@1)0aGp) A (Wa A Ge) = (a1)BaGe)]
AFieak, Wa A [((Wa A Gp) = Da[a1]Gp) A (Wa A Ge) — Oafan]Ge)]
(xx) Arg Wa A [(Gp — Ba(Wa — Gp)) A (Ge — Ta(Wa — Ge))]

Therefore, sinc&(other?) Fieak, Oc(Wa — (CaGp A <$aGe)), to prove (4) it is enough to show that

Oc(Wa = ($aGp A $aGe)), Oc[Wa A [(Gp — Ba(Wa — Gp)) A (Ge = Ta(Wa — Ge))ll +r L.
To this aim, observe preliminarily that
Ge A(Wa = Gp) Fr (Wa AWH) A (Wa — Gp)
Fr Wy A Gy
Froo L,
and likewiseGy A (W, — G¢) +p L (which together justify the entailment marked with) pelow);

by FS1 and Fa¢t 7.2, the entailments marked wi)rhgld in the following chain, andut andone
imply thatW, -+, (Gp Vv G¢) (which justifies the entailment marked with«} below); hence:
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Oc(Wa = (©aGp A ©aGe)) A Oc[Wa A [(Gp — Ha(Wa — Gp)) A (Ge — Ha(Wa — Ge))ll
(*) FIEAK <>C[Wa A (Wa - (<>aGb A <>aGc)) A [(Gb - Da(VVa - Gb)) A (Gc - Da(VVa - Gc))]]
(#x) kg Oel(Gp V Ge) A (CaGp A CaGe) A [(Gp — Ha(Wa — Gp)) A (G — Ta(Wa — Ge))l
FIEAK, <>C[Gb A <>aGc A (Gb - Da(Wa — Gb))] \Y% <>C[GC A <>aGb A (GC — Da(Wa — Gc))]
Fieak,  <c[€CaGe A Ja(Wa — Gp)] V Oc[CaGp A Oa(Wa — G)]
(*) FEAK  $cCalGe A (Wa = Gp)) V Ocal(Gp A (Wa — Ge))
(~) rEAK  OcCal VOcOal
FlEAak, L.

O

Remark 5.2. It may be helpful to compare the proof above both with thermfal argument and
with a semantic proof.

(1) The informal proof goes as follows. After the actiepagentc knows that either
—a knows who has the green card, this being the cigehiolds the green card herself, or
—a doesn't know who has the green card, this being the ¢haalbesn’t hold the green card.
After the public announcemeptof a knowing who has the green card, ageman discard the
second alternative and conclude from the first onedhailds the green card.

(2) Comparing the formal and the informal proof, we see thatformal proof roughly follows the
same structure. In the formal proof, although tedious,haigteps discharging (1) and (2) are
routine. Proving (3), however, corresponds to agergasoning that after announcemenisof
the second alternative of the item above cannot hold. Anedddour formal proof proceeds by
deriving a contradiction from the assumption that, afteagentc thinks it is possible to be in a
state whera does not know who has the green card.

(3) The use of contradiction in our formal proof does not &ielthe laws of intuitionistic logic
(ex-falso-quodlibet is intuitionistically valid). But wese that, according taut andone, the
atomic proposition§V,, G; behave as the Boolean negations of one another, for eachiagen

(4) A semantic proof would typically start from a Kripke maddé capturing the situation described
at the beginning of the section. For examgié,could have three states corresponding to the
three possibilities of who holds the green card (see Exa@@dor pictures); moreover, the
two states in whicls, and respectivelys. holds would be indistinguishable far with similar
indistinguishability relations holding for agerntsandc. Next, we can comput®&® which is
asM but with ab-edge deleted, as nowknows who has the green card. Finally, we compute
(M) and check that it consists of a single state in wi@gholds, proving that now everybody
knows thata holds the green card.

(5) Comparing our formal proof with the semantic argumeme, proof theoretic argument has the
advantage that it establishes the result not only for oneambdt for all models satisfyingut,
one, andE(other?). It is thus revealed, for example, that the argument doésequire that
knowledge is encoded by an equivalence relation or thatisfies introspectiomip — p.

6. CoNCLUSION

The application of duality theory to dynamic epistemic togiegun in[[18] for the logic of pub-
lic announcements and, generalized here to Baltag-Mokes:i88 logic of Epistemic Actions and
Knowledge, opens new directions of research which we plgnuisue in the future.

First, as mentioned in the introduction, the generalirattbmodal logic to coalgebraic logic
can be cast in the framework of duality theory; hence, theltesf the present paper naturally link
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up with a line of research in the coalgebraic theory of episteupdates which has its precursor in
[13] and further explored in_[4, 9]. We plan to further ex@dhis link, both to export the technique
of dynamic updates from Kripke frames to coalgebras, andakencoalgebraic techniques bear on
variations of the Kripke semantics of [2, 3] to a variety afretic scenarios based on, for example,
probabilistic or neighborhood semantics. Moreover, thatflriness of the coalgebraic point of
view on epistemic actions is also emphasized by the factrédin aspects of dynamic (epistemic)
logics are most easily understood by considering their séinganot in general models but in the
final coalgebra, as discussed|in([4, 9].

Second, we plan to explore the generalization of dynamistemiic logics from classical to
nonclassical logic. On the one hand, general observatiaisate that ‘dynamic phenomena’ are
in many important contexts best analyzed using an apptepnianclassical logic; for instance, in
all those contexts (such as scientific experiments, adopunsof legal evidence, verification of pro-
grams, etc.) where the notion of truthpimcedural In these contexts fildrming ¢ means demonstrat-
ing thatsomeappropriateinstanceof the procedure applies o refuting ¢ means demonstrating
that someappropriatanstanceof the procedure applies teg; however, neither instance might be
available in some cases, hence the law of excluded middée faithese situations, intuitionistic or
weaker logics provide viable alternatives.

On the other hand, computer sciendBers a considerable number of intuitionistic modal log-
ics which might be extended to dynamic versions. For exanthke lax logic of Fairtlough and
Mendler [11] has been proposed for hardware verificatiohsimce then resurfaced in quitefiir-
ent scenarios. Furthermore, logics for access controlttehd intuitionistic [1] 17] as well as logics
used for agreeing contracts in web services as in propoalticontract logicl[b]. Other interesting
instances deserving study are dynamic updates on a lingangitional base, (e.g. taking quantales
as underlying algebras) or on a quantum base (taking ortolaolattices as underlying algebras).

Closely connected to the previous point is the third digettio be pursued, concernimgoof
systemdor dynamic logics. In collaboration with Giuseppe Grece, are developing sound, com-
plete and cut-free display-style sequent calculi for theiiionistic and the classical versions of
PAL and EAK (seel[15], _16]). The choice of the display calcolinfiat allows for a great degree
of modularity. We expect that these calculi will lend theiaee very well to provide a uniform
account of the further developments outlined in the previvection.

7. APPENDIX

7.1. HA- and FSA-identities and inequalities. In a Heyting algebran and — are residuated
namely, for allx,y,z € A,

XAy<z iff x<y->z (7.2)
Hence, by the general theory of residuation,
y—>Z=\/{X|X/\ySZ}. (7.2)

Using (7.1) and[(7]2) above, it is nofficult to prove the following

Fact 7.1. For every Heyting algebra and allx,y,z€ A,
1) xA(x—>y) <y.

) x> YADd=XX->Y)A(X—> 2.

(3) XAy x—-y.

4) x>y=x— (XAY).

B) XAYy) > z=x—> (y— 2.
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(6) XA(Yy—2 =xA((XAY) — 2.

Fact 7.2. The following are provably equivalent in IK:
(1) ¢(p—0g) <Op— Oq;

(2) BpACq<O(pAQ);

(3) B(p— ) <Op—<q.

7.2. Properties of the mapi’. The following fact is a straightforward specialization @B| Fact
28].

Fact 7.3. Let A be an F§SMIPC-algebraa be an action structure ovéy, and leti’ : A2 — [[,A
given by b] — b A Pre,. Then, for evenb, c € A?,

1) "(bvc)=i(b)vi'(c)

(2 "(bAc)=i(b) Ai'(c);

(3) i"(b > ¢) = Preg A (i'(b) — i’(C));

(4) i"(¢3b) = Ollad(i’(b) A Prey) A Prey;

(5) I’(02b) = Pre, — Dlla%(Pre, — i7(b)).

7.3. Soundness Lemmasin the present subsection, the lemmas are collected whieh seprove
Propositior 4.9.

Lemma 7.4. Let M = (A, V) be an algebraic model and letbe an action structure ovef. For
every formulag such that p] me = 7([ 6] 7, m).

(1) Kayglm = [Pre(@)lm A [¢lm-

(2) [[elglm = [Pre(@)]m — [¢]w-

Proof.

(1)

[{x)dlm

[Pre(@)]m A ko V([ o] me)
[Pre(a)lm A o V" (a([ ] 1, m))
[Pre(a)lm A mk([ ] 1, m A Pres)
[Pre(a)Im A (mk([ @l g, m) A 7k(Prey))
[Pre(@)]m A ([glm A Prey (k)
[Pre(a)lm A ([glm A [Pre(@)]m)
[Pre(a)lm A [l m.

[[alelm

[Pre(@)]m — 7k o V([ o] me)

[Pre(a)lm — ko V" (a([ ] 1, m))

[Pre(a)Im — m([ ], m A Pres)

[Pre(a)Im — (mk([ @11y, m) A 7k(Prey))

[Pre(a)lm — ([glm A Preq(K)

[Pre(a)lm — ([¢lm A [Pre(e)]m)

[Pre(a)lm — [¢lm (FactZ.1.4) ]

(2)
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Lemma 7.5. Let M = (A, V) be an algebraic model. For every action struciurever £ and all
formulas¢ andy,

(1) KaXe Vv i)lm = [Kayglm v [Ka)y]m-

() [lel(g v )lm = [Pre(@)]m — ([{)¢lm V [{<a)y] m)-

Proof.

1)

[{a)(@ VvV V)M

[Pre(@)]m A ko i’([¢ V ¥l me)

[Pre(@)Im A (ko i"([#] me) V w0 1 ([¥] me)) (Fact7.3.1)
([Pre(@)Im A mk o i'([¢]me)) Vv ([Pre(@)Im A 7k o 17 ([¥] me)))

[Kayglm v [{a)y]m-

2

[[e)(4 vV )lm

[Pre(e)]w — ko i’([¢ vV ¢l me)

[Pre(@)lm — (ko i’ ([plme) V 7k o 1 ([] me)) (Fact7.3.1)
[Pre(e)]m — ([Pre(@)lm A (mk o 1 ([#] me) V ik o 1 ([¥] me))) (Fact7.1.4)
[Pre(@)]m — ([Pre(@)lm A 7o '([¢lme)) v ([Pre(@)]m A 7k o 1 ([¥] me))

[Pre(@)lm — ([{)glm V [{a)W]m)- ]

Lemma 7.6. Let M = (A, V) be an algebraic model. For every action strucivrever £ and all
formulas¢ andy,

(1) KXo A)lm = [{a)plm A [yl m.
) [al(¢ A¥)Im = [aldlm A llelydm-

Proof.
1)
[{a)(® A ¥)]m
= [Pre(a)Im A nkoi’'([¢ A Yl me)
= [Pre(@)lm A (a0 1" ([#] me) A 7k 0 1 ([¥/] we)) (Fact?7.8.2)
= ([Pre(@)]me Amko i’ ([glme)) A ([TPre(@)]m A 7k o V([ me))
= [{a)glm A [y .
2)

[[al(o A )M

[Pre(@)]m — ko V([ A ¥]me)

[Pre(@)]m — mx o " ([dl me A [¥/] me)

[Pre(a)lm — (ko V([ @] me) A 7k o 1 ([¥] me)) (FactZ.8.2)
([Pre(@)]m — mk o i’ ([glme)) A ([adm — ko i'([¥lwme)) (FactZl.2)
[[alelm A llaly]m. u
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Lemma 7.7. Let M = (A, V) be an algebraic model. For every action struciirever £ and all
formulas¢ andy,

(1) [[el(¢ = ¥)Im = [Kayglm — KKyl m.
2) K¢ = ¥)Im = [Pre(@)]m A ([{)glm — [yl wm).

Proof. We preliminarily observe that

([Pre(@)lm A mko V([ ¢l me)) — 7 o 1" ([¥] me)
([Pre(@)lm A mko i’ ([¢lme)) = ([Pre(e)Im A ko i'([dlme)) A ko i’ ([¥l me)) (FactZ.1.4)
[{a)¢lm — ([{a)elm A [{ayw]m)

[Kay¢lm — K] w- (Fact7.1.4)
Hence:
1)
[[e)(¢ — ¥)Im
= [Pre(@)lm — ko i’'([¢ — ¥lme)
= [Pre(a)lm — mk(Pre, A (i'([¢] me) — 1 ([¥] me))) (Fact7.8.3)
= [Pre(a@)lm — (Pre.(K) A (ko i ([l me) — 7k o V' ([¥] we)))
= [Pre(a@)lm — ([Pre(@)m A (mk 0 i"([¢] me) — ko i ([¥] me)))
= [Pre@)]m — (rk o i’ ([¢]me) = 7k o i ([¥] me)) (Fact?7.1.4)
= ([Pre(@)lm A ko 1" ([ ¢l me)) — 7k o i ([¥] me) (Fact7.1.5)
= [Ka)glm — K] m.
2)
[{a)(¢ — ¥)Im
[Pre(a)lm Ao i’ ([¢ — ¢v]me)
[Pre(@)]m A mk(Prey A (" ([g]me) — 1V ([¥]me))) (Fact7.3.3)

[Pre(@)]m A (Prea(k) A (mk o 1" ([l me) — mc o ' ([¥d me)))
[Pre(@)]m A ([Pre(@)lm A (mk o V' ([¢l me) — 7o ' ([¥d me)))

[Pre(@)]m A (m o I'([¢] me) — 7k o 1([¥] me)) (FactZ.1.4)
[Pre(a)lm A ([Pre(@)lm A w0 " ([¢]me)) = ko ' ([¥]me))  (FactZ.1.6)
[Pre(e)]w A ([{aYglm — KXyl m)- []

Fact 7.8. Let M = (A, V) be an algebraic model, and let= (K, k, a, Pre,) be an action structure
over L. For everyj € K,

M® = M%i,
Proof. Recall thatej := (K, j, @, Pre,). The statement immediately follows from the observation

that no component of the definition of the updated maddeél(cf. Definition[4.1) depends on the
designated element in the action structuare ]

Lemma 7.9. Let M = (A, V) be an algebraic model. For every action structu@ver £ and every
formulag,

(1) Ka)Odlm = [Pre(@)lm A VIOA([e el m) | kaj).

() [[2]Odlm = [Pre@)]m — VIO ([{a))dlm) | kaj).
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Proof. We preliminarily observe that

g o i ([l me)

m(Pre, A Oled(Pre, AT ([¢] we))) (Fac7.3.4)
Pre, (k) A V{O4(Pre, AT ([¢] me))(i) | ke j} E.4)
[Pre(@)lm A VIOA(Pre, (i) AT ([¢l me)(i)) | K j)

[Pre(@)lm A VIOA(IPre(@)lm A xtj o i’ ([ ¢l we)) | ke j}

[Pre(@)lm A V{OA([Pre(a)Im A mj o i'([¢lme1)) | kaj}  (FaclZ.B)
[Pre(@)lv A VIOA([{aj)glm) | Kaj}.

Hence:
(1)
[{a)Oplm
= [Pre(@)]m A nk o i ([ O] )
= [Pre(@)lm A ([Pre(@)]m A VIOA([{aj)dlm) | kaj})
= [Pre(@)]wm A VICA([{ajelm) | kaj}.
(2)

[[a]Celm

[Pre(@)]m — V([ Col me)

[Pre(@)]v — ([Pre(@)m A VIC4([{aj)dlm) | kaj})

[Pre(@)lm — VIOA([{a)elm) | kaj}. (Fact7.1.4) O

Lemma 7.10.Let M = (A, V) be an algebraic model. For every action structumver £ and every
formulag,

(1) Ke)Oglm = [Pre@lm A A(O*(ILejlelm) | ke j).
(2) [[e]Oglu = [Pre(@)lv — MO*(lejl¢lv) | ke

Proof. We preliminarily observe that

n o 1" ([ O] )

nk(Pre, — DHnA(Pre(, = i'([olme)) (FactZ.B.5)
Pre, (k) — A(O4(Pre, — i"([¢lme))(J) | kaj) @B35)
[Pre(@)lm — AOA(Pre,(j) = i"([elme) (i) | ke j}

[Pre(e)m — MOA([Pre(aj)lm — 71j o i"([¢]me)) | kerj}

[Pre(@)lm — AMOA([Pre(e))Im — 7jo i’ ({8l i) | kaj}  (FaclZ.B)
[Pre(@)lm — NMOA([[ejl¢lm) | ke j}.

Hence:
1)
[{2)Oglm
= [Pre(@)]m A mc o i ([EO¢] me)
= [Pre(a)lw A ([Pre(@)lm = AMO*([ajl¢lm) | jak))
= [Pre(@)Im A MOl ejl¢lm) | jaks.
(2)

[[a]O¢] m

[alm — 7o 1"([E¢] me)

[alm — ([Pre(@)lv = AMO*([lajlglm) | jak))

[alm = MOl ejl¢lm) | jak). (Facf7.1.4) 0
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