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Abstract. We develop the mathematical theory of epistemic updates with the tools of duality theory.
We focus on the Logic of Epistemic Actions and Knowledge (EAK), introduced by Baltag-Moss-
Solecki, without the common knowledge operator. We dually characterize the product update con-
struction of EAK as a certain construction transforming thecomplex algebras associated with the
given model into the complex algebra associated with the updated model. This dual characterization
naturally generalizes to much wider classes of algebras, which include, but are not limited to, arbi-
trary BAOs and arbitrary modal expansions of Heyting algebras (HAOs). As an application of this
dual characterization, we axiomatize theintuitionistic analogue of the logic of epistemic knowledge
and actions, which we refer to as IEAK, prove soundness and completeness of IEAK w.r.t. both alge-
braic and relational models, and illustrate how IEAK encodes the reasoning of agents in a concrete
epistemic scenario.

1. Introduction

Duality theory is an established methodology in the mathematical theory of modal logic, and has
been the driving engine of some of its core results (e.g. the theory of canonicity), as well as of its
generalizations (e.g. coalgebraic logics), and of extensions of techniques and results from modal
logic to other nonclassical logics (e.g. Sahlqvist correspondence for substructural logics). Together
with [18], the present paper is concerned with applying duality theory to a close cognate of modal
logic, namelyDynamic Epistemic Logic, and starting to take stock of the results of this application.
The dynamic epistemic logic considered in the present paperis the Logic of Epistemic Actions and
Knowledge due to Baltag-Moss-Solecki [2], and we refer to itas EAK.

The main feature of the relational semantics of EAK is the so-calledproduct updateconstruc-
tion, which is grounded on a Kripke-style encoding of epistemic actions. Epistemic actions in this
setting are formalized asaction structures: finite pointed relational structures, each state of which
is endowed with a formula (itsprecondition). Epistemic updates are transformations of the model
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encoding the current epistemic setup of the given agents, bymeans of which the current model is
replaced with itsproduct updatewith the action structure.

In the present paper, the product update construction introduced in [2] is dually characterized
as a certain construction transforming the complex algebraassociated with any given model into
the complex algebra associated with the model updated by means of a given action structure. As is
well known (see e.g. [8, Chapter 5]), these complex algebrasare complete atomic BAOs (Boolean
algebras with operators). The dual characterization provided in the present paper naturally general-
izes to much wider classes of algebras, which include, but are not limited to, arbitrary BAOs and
modal expansions of arbitrary Heyting algebras (HAOs). Thanks to this construction, the benefits
and the wider scope of applications given by a point-free, nonclassical theory of epistemic updates
are made available: for instance, this construction provides the tools to answer the question of how
to define product updates on topological spaces.

As an application of this dual characterization, we axiomatize the intuitionistic analogue of
the logic of epistemic actions and knowledge, which we referto as IEAK, prove soundness and
completeness of IEAK w.r.t. both algebraic and relational models, and illustrate how IEAK encodes
the reasoning of agents in a concrete epistemic scenario.

Let us informally expand on (a) how general principles in duality theory are applied to the
Stone duality setting for the relational models of EAK, and yield analgebraic characterizationof
epistemic updates (this is the approach introduced in [18] and applied there to epistemic actions of
public-announcement type), and on (b) how the results of [18] are extended from public announce-
ments to general epistemic updates in the style of Baltag-Moss-Solecki. In [2], given a relational
model M and an action structureα, theproduct update Mα is defined as a certainsubmodelof a
certainintermediate model M× α, the domain of which is the cartesian product of the domains of
M and ofα. In the present paper, we preliminarily observe that the intermediate modelM × α can
be actually identified with an appropriate (pseudo)coproduct

∐

α M of M, indexed by the states
of α. Hence, the original product update construction can be understood as the concatenation of a
certain coproduct-type construction, followed by a subobject-type construction, as illustrated by the
following diagram:

M ֒→
∐

α

M ←֓ Mα.

As is very well known (cf. e.g. [10]) in duality theory, coproducts can be dually characterized as
products, and subobjects as quotients; an aspect of this dual characterization—which we use to our
advantage and which is worth stressing at this point—is that, for these dual characterizations to be
defined, ana priori specification of the fully fledged category-theoretic environment in which these
constructions are taken is actually not needed; rather, theappropriate category-theoretic environ-
ment can be specifieda posteriori, as long as these constructions can be recognized as products,
subobjects, etc. For instance, the ‘subobject-type’ construction on Kripke models mentioned above
defines a proper subobject in the category of Kripke models and relation-preserving maps (the latter
being dually characterized ascontinuous morphisms, see e.g. [14]) and not in the standard category
of Kripke models and p-morphisms. We do not expand on the category-theoretic account of these
constructions further on. In the light of this understanding of dual characterizations, the construc-
tion of product updatecan be viewed as a “subobject after coproduct” concatenation, and is dually
characterized on algebras by means of a “quotient after product” concatenation, as illustrated in the
following diagram:

Aև
∏

α

A։ Aα,
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resulting in the following two-step process. First, the coproduct
∐

α M is dually characterized as a
certainproduct

∏

αA, indexed as well by the states ofα, and such thatA is the algebraic dual of
M; second, an appropriatequotientof

∏

αA is then taken, as an instance of the general construction
introduced in [18] to account for public announcements. Note that again these constructions can be
interpreted in any category of algebras that supports the appropriate notions of product and quotient.
This two-step process, taken as a whole, modularly generalizes the dual characterization of [18]:
indeed, public announcements can be encoded as certain one-state action structuresα, in such a
way that, for any given modelM, its corresponding intermediate modelM×α can be identified with
M. Hence, when instantiated to action structures encoding public announcements, the two-step
construction introduced in the present paper can be identified with its second step, discussed in it
full generality in [18].

As mentioned early on, the advantage brought about by the dual characterization of product
updates (which defines theepistemic updates on algebras) is that its definition naturally holds in
muchmore generalclasses of algebras than the ones given by the algebras dually associated with
the Kripke models. These more general classes include – but are not limited to – arbitrary BAOs,
and modal expansions of arbitrary Heyting algebras (HAOs).

Exactly in the same way in which dynamic formulas in the language of EAK can be inter-
preted on relational models using the product update construction, thealgebraiccounterpart of this
construction can be used to interpret the same formulas onalgebraic models, i.e., tuples (A,V) con-
sisting of algebras and assignments, such that the algebraic version of epistemic update is defined
onA.

For instance, based on Definition 4.2, it is easy to see that the class of algebraic models based
onarbitrary BAOs (which class properly extends the class of complete andatomic BAOs) provides
sound and completepointfree semantics for EAK; moreover, as a straightforward consequence
of this fact, epistemic updates can be defined on e.g.descriptive general framesvia the classical
Stone/Jónsson-Tarski duality (we do not provide an explicit definition in the present paper).

But more generally,eachclass of algebraic models gives rise tosomelogic of epistemic actions
and knowledge via the interpretation defined in Definition 4.2. In particular, the set of axioms
describing the behaviour of the intuitionistic dynamic connectives (cf. Section 4.1) naturally arises
from the class of algebraic models based onHeyting algebras with operators(HAOs) (which, for
the sake of the present paper, are understood as Heyting algebras expanded with one normal✷
operator and one normal✸ operator). The axiomatization of HAOs does not imply the existence
of any interaction between the static (epistemic) box and diamond operations, and of course, for
the purpose of describing the epistemic setup of each agent,it is desirable to have at least as strong
an axiomatization as one which forces the pairs of epistemicmodal operators associated with each
agent to be interpreted by means ofone and the samerelation. The intuitionistic basic modal logic
IK [12, 20] is the weakest axiomatization which implies the desired connection between the modal
operations; its canonically associated class of algebras is a subclass of HAO which we refer to
as Fischer-Servi algebras, orFS-algebras(cf. Definition 2.5). The logic IEAK introduced in the
present paper arises as the logic of epistemic actions and knowledge associated with the class of
algebraic models based on FS-algebras.

In fact, along with the mentioned definition, a second way to define IEAK is proposed in
the present paper, which reflects the idea that the epistemicset-up of agents might be encoded
by equivalencerelations. To account for this possibility, Prior’s MIPC [19] can be alternatively
adopted instead of IK as the underlying static logic of IEAK,andmonadic Heyting algebrascan be
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taken in place of the more general FS-algebras; the results presented in what follows develop these
two options side by side in a modular way.

The structure of the paper goes as follows: Section 2 collects the needed preliminaries on
classical EAK and intuitionistic modal logic. In Section 3,the dual, algebraic characterization
of epistemic updates is introduced. In Section 4, the intuitionistic logic of epistemic actions and
knowledge IEAK is axiomatically defined, as well as its interpretation on models based on Heyting
algebras. Moreover, the relational semantics for intuitionistic modal logic/IEAK is described in
detail. Finally, the soundness of IEAK is proved w.r.t. algebraic (hence relational) models, as well
as the completeness of IEAK w.r.t. relational (hence algebraic) models. In Section 5, it is shown
how IEAK can be used to describe and reason about a concrete epistemic scenario. Details of all
the proofs in the mentioned sections are collected in Section 6, the appendix.

2. Preliminaries

2.1. The logic of epistemic actions and knowledge.In the present subsection, the relevant prelim-
inaries on the syntax and semantics of the logic of epistemicactions and knowledge (EAK) [2] will
be given, which are different but equivalent to the original version appearing in [2]; the aspects in
which the account given here departs from the original version are intended to make the dualization
construction more transparent, which will be introduced inthe following section.

Let AtProp be a countable set of proposition letters. The setL of formulasφ of (the single-
agent1 version of) the logic of epistemic actions and knowledge (EAK) and the setAct(L) of the
action structuresα overL are built simultaneously as follows:

φ ::= p ∈ AtProp | ¬φ | φ ∨ φ | ✸φ | 〈α〉φ (α ∈ Act(L)).

An action structure overL is a tupleα = (K, k, α,Preα), such thatK is a finite nonempty set,k ∈ K,
α ⊆ K × K andPreα : K → L. Notice thatα denotesboth the action structureand the accessibility
relation of the action structure. Unless explicitly specified otherwise, occurrences of this symbol
are to be interpreted contextually: for instance, injαk, the symbolα denotes the relation; inMα, the
symbolα denotes the action structure. Of course, in the multi-agentsetting, each action structure
comes equipped witha collectionof accessibility relations indexed in the set of agents, andthen the
abuse of notation disappears.

Sometimes we will writePre(α) for Preα(k). Letαi = (K, i, α,Preα) for every action structure
α = (K, k, α,Preα) and everyi ∈ K. The standard stipulations hold for the defined connectives⊤,
⊥, ∧,→ and↔.

Models for EAK are relational structuresM = (W,R,V) such thatW is a nonempty set,R⊆W×
W andV : AtProp → P(W). The evaluation of the static fragment of the language is standard. For
every Kripke frameF = (W,R) and everyα ⊆ K × K, let the Kripke frame

∐

α F := (
∐

K W,R× α)
be defined2 as follows:

∐

K W is the |K|-fold coproduct ofW (which is set-isomorphic toW × K),
andR× α is the binary relation on

∐

K W defined as

(w, i)(R× α)(u, j) iff wRu and iα j.

1The multi-agent generalization of this simpler version is straightforward, and consists in taking the indexed version
of the modal operators, axioms and interpreting relations (both in the models and in the action structures) over a set of
agents.

2We will of course apply this definition to relationsα which are part of the specification of some action structure;in
these cases, the symbolα in

∐

α F will be understood as the action structure. This is why the abuse of notation turns out
to be useful.
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For every modelM = (W,R,V) and every action structureα = (K, k, α,Preα), let
∐

α

M := (
∐

K

W,R× α,
∐

K

V)

be such that its underlying frame is defined as detailed above, and (
∐

K V)(p) :=
∐

K V(p) for every
p ∈ AtProp. Finally, theupdateof M with the action structureα is the submodelMα := (Wα,Rα,Vα)
of
∐

α M the domain of which is the subset

Wα := {(w, j) ∈
∐

K

W | M,w 
 Preα( j)}.

Given the preliminary definition above, formulas of the form〈α〉φ are evaluated as follows:

M,w 
 〈α〉φ iff M,w 
 Preα(k) andMα, (w, k) 
 φ.

Proposition 2.1 ([2, Theorem 3.5]). EAK is axiomatized completely by the axioms and rules for
the modal logic S5/IK plus the following axioms:
(1) 〈α〉p↔ (Pre(α) ∧ p);
(2) 〈α〉¬φ↔ (Pre(α) ∧ ¬〈α〉φ);
(3) 〈α〉(φ ∨ ψ)↔ (〈α〉φ ∨ 〈α〉ψ);
(4) 〈α〉✸φ↔ (Pre(α) ∧

∨

{✸〈αi〉φ | kαi}).

whereαi = (K, i, α,Preα) for every action structureα = (K, k, α,Preα) and everyi ∈ K.

Remark 2.2. The intuitive understanding of action structures and of theproduct update construction
has been extensively discussed in [2], by way of plenty of concrete examples; here we only limit
ourselves to briefly report on some general pointers, and below we introduce a concrete scenario
which will be then expanded on in Section 5. An action structure encodes not only thefactual
information on a given action, but also itsepistemicreflections on agents. Indeed, the designated
action-statek of α encodes the factual information; the other states inK encode all its alternative
appearances from the agents’ viewpoint; in particular,kαi is to mean that the agent considers it
possible that the action-statei encodes the action which has been actually executed, instead of k.
Correspondingly,αi is the action structure which encodes this shift in the perception of the action
actually executed, and public announcements are encoded asaction structures with only the actual
statek whichα-accesses itself (since the agent entertains no doubts on what is actually happening).
The product update construction builds on this intuition; copies ofM are created in as many colors
as there are appearances of the action taking place; a copy ofa given state ofM accesses a copy of
one of its original successors (in the same or in another color) only if also the color of the copy of
the successor is anα-successor of the color of the copy of the given state. Then all the copies of a
given original state ofM are eliminated if the original state does not satisfy the preconditions of the
execution of their respective color-appearance (which means that that particular transition could not
have been executed in the first place under that particular state of affairs).

Example 2.3. The following example is based on a scenario that will be analysed in detail in
Section 5. There is a setI of three agents,a, b, c, and three cards, two of which are white, and are
each held byb andc, and one is green, and is held bya. Initially, each agent only knows the color
of its own card, and it is common knowledge among the three agents that there are two white cards
and one green one. Thena shows its card only tob, but in the presence ofc. Thenb announces that
a knows what the actual distribution of cards is. Then, after having witnesseda showing its card to
b, and after the ensuing public announcement ofb, agentc knows what the actual distribution is.
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For the sake of this scenario, we can restrict the set of proposition letters to{Wi,Gi | i ∈ I }.
The intended meaning ofWi andGi is ‘agenti holds a white card’, and ‘agenti holds a green card’
respectively.

The action structureα encoding the action performed by agenta can be assimilated to the
atomic propositionGa being announced to the subgroup{a, b}.

GFED@ABCGa

a,b,c

��
ss c ++ ONMLHIJKWa

a,b,c

��

Formally, α = (K, k, αa, αb, αc,Preα) is specified as follows:K = {k, l}; moreover,Pre(α) =
Preα(k) = Ga, andPre(αl ) = Preα(l) =Wa; finally, αa = αb = ∆K andαc = K × K.

To illustrate the update mechanism assume that the modelM is specified by

GFED@ABCGb ZZ

a

��

GFED@ABCGa

��
c

JJ

JJ

b
��GFED@ABCGc

where we omitted the self-loops corresponding to epistemicuncertainty being reflexive. Then
∐

α M
is depicted by

GFED@ABCGb>>

a

��

ZZ

c &&

GFED@ABCGb ZZ

a

��

GFED@ABCGa

��
c

JJ

��

c
88

JJ

b
��

GFED@ABCGa

��
c

JJ

JJ

b
��GFED@ABCGc

GFED@ABCGc

and the product-updateMα is
GFED@ABCGb ZZ

a

��

GFED@ABCGa

��

c
88

GFED@ABCGc

where the two states markedGb,Gc in the left-hand column get deleted because our scenario induces
the assumptionsGb ∧Ga = ⊥ = Gc ∧Ga. Similarly, the state markedGa in the right-hand column
disappears because ofGa ∧Wa = ⊥.

The action structureβ encoding the public announcement performed by agentb can be specified
as a one-state structure such thatαi = ∆K for eachi ∈ I , and the precondition of which is the formula
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Pre(β) =
∧

i∈I (Gi → ✷aGi). Accordingly, updatingMα with β yields the model

GFED@ABCGa

according to which all agents know the distribution of the cards (since there is only one state and,
thus, no epistemic uncertainty). In Section 5, we will show that the reasoning in this scenario can
be syntactically formalized on an intuitionistic base by (the appropriate multi-agent version of) the
logic IEAK introduced in Section 4.1.

2.2. The intuitionistic modal logics MIPC and IK. Respectively introduced by Prior with the
name MIPQ [19], and by Fischer-Servi [12], the two intuitionistic modal logics the present sub-
section focuses on are largely considered the intuitionistic analogues of S5 and of K, respectively.
These logics have been studied by many authors, viz. [6, 7, 20] and the references therein. In the
present subsection, the notions and facts needed for the purposes of the present paper will be briefly
reviewed. The reader is referred to [6, 7, 20] for their attribution. The formulas for both logics are
built by the following inductive rule (and letLIK denote the resulting set of formulas):

φ ::= ⊥ | p ∈ AtProp | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ✸φ | ✷φ.

Let⊤ be defined as⊥ → ⊥ and, for all formulasφ andψ, let¬φ be defined asφ→ ⊥ andφ↔ ψ be
defined as (φ → ψ) ∧ (ψ → φ). The logic IK is the smallest set of formulas in the languageabove
which contains all the axioms of intuitionistic propositional logic, the following modal axioms

✷(p→ q)→ (✷p→ ✷q),
✸(p∨ q)→ (✸p∨✸q), ¬✸⊥,

FS1. ✸(p→ q)→ (✷p→ ✸q),
FS2. (✸p→ ✷q)→ ✷(p→ q),

and is closed under substitution, modus ponens and necessitation (⊢ ϕ/ ⊢ ✷ϕ). The logic MIPC is
the smallest set of formulas in the language above which contains all the axioms of intuitionistic
propositional logic, the following modal axioms

✷p→ p, p→ ✸p,
✷(p→ q)→ (✷p→ ✷q), ✸(p∨ q)→ (✸p∨✸q),
✸p→ ✷✸p, ✸✷p→ ✷p,
✷(p→ q)→ (✸p→ ✸q),

and is closed under substitution, modus ponens and necessitation (⊢ ϕ / ⊢✷ϕ).
The relational structures for IK (resp. MIPC), calledIK-frames(resp.MIPC-frames), are triples

F = (W,≤,R) such that (W,≤) is a nonempty poset andR is a binary (equivalence) relation such that

(R◦ ≥) ⊆ (≥ ◦ R), (≤ ◦ R) ⊆ (R◦ ≤), R= (≥ ◦ R) ∩ (R◦ ≤).

where◦ denotes composition written in the usual relational order.Notice that, in the case of MIPC-
frames,R being symmetric implies that the second condition is equivalent to the first one, and
the third condition is equivalent toR = (R ◦ ≤). IK-models(resp.MIPC-models) are structures
M = (F ,V) such thatF is an IK-frame (resp. an MIPC-frame) andV : AtProp → P↓(W) is
a function mapping proposition letters to downward-closedsubsets ofW, where, for every poset
(W,≤), a subsetY of W is downward-closedif for every x, y ∈ W, if x ≤ y andy ∈ Y then x ∈ Y.
For any such model, its associated extension map [[·]] M : LIK → P

↓(W) is defined recursively as
follows:
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[[ p]] M = V(p)
[[⊥]] M = ∅

[[φ ∨ ψ]] M = [[φ]] M ∪ [[ψ]] M
[[φ ∧ ψ]] M = [[φ]] M ∩ [[ψ]] M

[[φ→ ψ]] M = ([[φ]] M ∩ [[ψ]]c
M)↑c

[[✸φ]] M = R−1[[[ φ]] M ]
[[✷φ]] M = ((≥ ◦ R)−1[[[φ]] c

M])c

where (.)c is the complement operation. For any modelM and any formulaφ, we write:

M,w 
 φ if w ∈ [[φ]] M;
M 
 φ if [[ φ]] M =W;
F 
 φ if [[ φ]] M =W for any modelM based onF .

Proposition 2.4. IK (resp. MIPC) is sound and complete with respect to the class of IK-frames
(resp. MIPC-frames).

The algebraic semantics for IK (MIPC) is given by a variety ofHeyting algebras with operators
(HAOs) which are called Fischer-Servi algebras (monadic Heyting algebras):

Definition 2.5. The algebraA = (A,∧,∨,→,⊥,✸,✷) is aFischer-Servi algebra(FSA) if (A,∧,∨,→
,⊥) is a Heyting algebra and the following inequalities hold:

✷(x→ y) ≤ ✷x→ ✷y,
✸(x∨ y) ≤ (✸x∨✸y), ✸⊥ ≤ ⊥,
✸(x→ y) ≤ ✷x→ ✸y,
✸x→ ✷y ≤ ✷(x→ y).

The algebraA is amonadic Heyting algebra(MHA) if ( A,∧,∨,→,⊥) is a Heyting algebra and the
following inequalities hold:

✷x ≤ x, x ≤ ✸x;
✷(x→ y) ≤ ✷x→ ✷y, ✸(x∨ y) ≤ (✸x∨✸y);
✸x ≤ ✷✸x, ✸✷x ≤ ✷x;
✷(x→ y) ≤ ✸x→ ✸y.

It is well known and can be readily verified that every monadicHeyting algebra is an FS-algebra.
The inequalities above can be equivalently written as equalities, thanks to the fact that, in any Heyt-
ing algebra,x ≤ y iff x → y = ⊤. Clearly, any formula in the languageL of IK (MIPC) can be
regarded as a term in the algebraic language of FSAs (MHAs). Therefore, given an algebraA and
an interpretationV : AtProp→ A, anL-formulaφ is true in A under the interpretationV (notation:
(A,V) |= φ) if the unique homomorphic extension ofV, denoted by [[·]]V : L → A, mapsφ to ⊤A.
An L-formula isvalid in A (notation:A |= φ), if (A,V) |= φ for every interpretationV.

IK-frames give rise to complex algebras, just as Kripke frames do: for any IK-frameF , the
complex algebraof F is

F + = (P↓(W),∩,∪,⇒,∅, 〈R〉, [≥ ◦ R]),

where for allX,Y ∈ P↓(W),

〈R〉X = R−1[X], [≥ ◦ R]X = ((≥ ◦ R)−1[Xc])c, X⇒ Y = (X ∩ Yc)↑c.

Clearly, given a modelM = (F ,V), the extension map [[·]] M : L → F + is the unique homomorphic
extension ofV : AtProp→ F +.

Proposition 2.6. For every IK-model (F ,V) and everyL-formulaφ,

(1) (F ,V) 
 φ iff (F +,V) |= φ.



EPISTEMIC UPDATES ON ALGEBRAS 9

(2) F + is an FS-algebra.
(3) If R is an equivalence relation, thenF + is a monadic Heyting algebra.

3. Epistemic updates on algebras

In Section 2.1, for every modelM and every actionα overL, the updated modelMα was defined
as a submodel of the intermediate structure

∐

α M. In the present section, this construction is dually
characterized on algebras in two steps: first dualizing the construction procedure of

∐

α M, and then
taking an appropriate quotient of it.

We preliminarily disregard the logic, and define, for every algebraA, anaction structure over
A as a tuplea = (K, k, α,Prea) such thatK is a finite nonempty set,k ∈ K, α ⊆ K × K and
Prea : K → A. The lettersb, c will typically denote elements of the algebrasA, and we will
reserve the lettera for action structures over algebras. Clearly, for every EAK-modelM, each action
structureα = (K, k, α,Preα) overL induces a corresponding action structurea over the complex
algebraA of the underlying frame ofM, via the valuationV : L → A of M (here identified with its
unique homomorphic extension): namely,a is defined asa = (K, k, α,Prea), with Prea = V ◦ Preα.
Moreover, for every Kripke frameF = (W,R), and every action structurea = (K, k, α,Prea) over
the complex algebra ofF , the intermediate structure can be defined as

∐

aF := (
∐

K W,R×α), and
the updated frame structureF a can be defined as the subframe of

∐

aF the domain of which is the
subset

Wa := {(w, j) ∈
∐

K

W | w ∈ Prea( j)}.

3.1. Dually characterizing the intermediate structure. For every algebraA and every action
structurea = (K, k, α,Prea) overA, let

∏

aA be the|K|-fold product ofA, which is set-isomorphic
to the collectionAK of the set mapsf : K → A. The setAK can be canonically endowed with the
same algebraic structure asA by pointwise lifting the operations onA; as such, it satisfies the same
equations asA; however, in the cases in whichA is the complex algebra of some frameF = (W,R),
the lifted modal operators onAK would not adequately serve as the algebraic counterparts ofthe
accessibility relation (R× α) of the frame

∐

aF , because they would only depend onA, and not on
a. Therefore, alternative definitions are called for, which are provided at the end of the following
discussion.
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The picture below shows
∐

aF if a has two states.

v (v, i)

F
∐

aF �W× K

w

R

OO

(w, j)

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

j
α // i

As mentioned early on, the accessibility relation on
∐

aF � W × K is the relation (R× α) defined
as follows:

(w, j)(R× α)(v, i) iff jαi andwRv.

Hence, as usual, the operation✸ on the complex algebraP(
∐

α F ) � P(W× K) is to be defined by
taking (R× α)-inverse images; that is, for anyf ⊆W× K,

(w, j) ∈ ✸ f iff wRvand jαi for some (v, i) ∈ f . (3.1)

Via the following chain of isomorphisms,

P(W× K) = 2W×K
� 2WK

= P(W)K (3.2)

the subsetf can be equivalently represented as a mapf : K → P(W), and consequently, the
operation✸ on P(W × K) can be equivalently represented as an operation✸ on P(W)K . Hence,
condition (3.1) can be equivalently reformulated as follows:

w ∈ (✸ f )( j) iff w ∈ ✸P(W)( f (i)) for somei such thatjαi,

which is equivalent to the following identity holding inP(W)K :

(✸ f )( j) =
⋃

{✸P(W)( f (i)) | jαi}. (3.3)

The argument above consists of a series of equivalent rewritings of one initial condition involving
the membership relation, and pivots on the natural isomorphism (3.2). These rewritings are aimed at
expressing the initial condition (3.1) in a point-free way not involving membership. The advantage
of (3.3) over (3.1) is that (3.3) applies much more generallythan to powerset algebras: namely,
it applies to any join-semilatticeA expanded with a unary operation✸A. For any suchA, and
any action structurea = (K, k, α,Prea) overA, corresponding operations✸

∏

aA and✷

∏

aA can
be defined on the product

∏

aA as follows: for everyf : K → A, let ✸
∏

aA f : K → A and
✷

∏

aA f : K → A be given, for everyj ∈ K, by

(✸
∏

aA f )( j) =
∨

{✸A f (i) | jαi} (3.4)

(✷
∏

aA f )( j) =
∧

{✷A f (i) | jαi}. (3.5)
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The series of equivalent rewritings given above is an example of dual characterization; another
such example appears in [18, Section 3], and one more will be given in Section 4.2, which will
serve to define the interpretation of dynamic epistemic formulas on algebraic models. The dual
characterization above proves the following proposition:

Proposition 3.1. Let A be the complex algebra of some classical frameF = (W,R), and leta =
(K, k, α,Prea) be an action structure overA. Then the modal algebra (

∏

aA,✸
∏

aA) is isomorphic
to the complex algebra of the intermediate structure

∐

aF .

The next proposition immediately follows from clauses (3.4) and (3.5):

Proposition 3.2. For every lattice expansion (B,✸,✷), and every action structurea overA,

(1) if ✸ and✷ are normal modal operators, then✸
∏

aA and✷
∏

aA are normal modal operators.
(2) If B is a BA and✷ := ¬✸¬, then✷

∏

aA = ¬✸
∏

aA¬.

The discussion above justifies the following notation: in the remainder of the present paper, for
every lattice expansionA = (B,✸,✷) and every action structurea overA, the symbol

∏

aA will
denote the algebra (

∏

aB,✸
∏

aA,✷
∏

aA).

Remark 3.3. As discussed in Section 2.1, public announcements can be represented as those ac-
tion structures (K, k, α,Preα) overL such thatK is a one-element set, andα = ∆K . Thus, each
such action structure can be identified with the (publicly announced) formulaPreα(∗). Public
announcement-type action structuresa over algebrasA can be defined in an analogous way, and
again identified with elements ofA. Then it is straightforward to see that the algebra

∏

aA can be
identified with the original algebraA whena is a public announcement-type action structure. The
same observation also holds in the more meaningful multi-agent setting.

3.2. Intermediate structures of FSAs, MHAs and of tense HAOs.An HA B expanded with
normal modal operations (B,✸,✷,_,�) is a tenseHAO if both ✸ and�, and_ and✷ areadjoint
pairs, i.e. for allb, c ∈ A,

✸b ≤ c iff b ≤ �c and _b ≤ c iff b ≤ ✷c.

We denote these adjunction relations by writing✸ ⊣ � and_ ⊣ ✷. For any such tense HAO, the
algebra (

∏

aB,✸
∏

aA,✷
∏

aA,_
∏

aA,�
∏

aA) is defined as follows:✸
∏

aA and✷
∏

aA are defined as in
the previous subsection, whereas, for everyf : K → A, let_

∏

α A f : K → A and�
∏

α A f : K → A
are respectively defined as follows: for everyj ∈ K,

(_
∏

α A f )( j) =
∨

{_A f (i) | iα j},

(�
∏

α A f )( j) =
∧

{�A f (i) | iα j}.

Proposition 3.4. For every algebraA = (B,✸,✷) and every action structurea = (K, k, α,Prea)
overA,

(1) if A is an MHA andα is an equivalence relation, then
∏

aA is an MHA.
(2) If A is an FSA, then

∏

aA is an FSA.
(3) If (B,✸,✷,_,�) is a tense HAO, then (

∏

aB,✸
∏

aA,✷
∏

aA,_
∏

aA,�
∏

aA) is a tense HAO.

Proof. 1. Since by assumptionB is a HA,
∏

aB is a HA, so we only need to show the validity of
the modal axioms. Throughout the proof, fixb, c ∈

∏

aB. For the sake of readability,✸ and✷ will
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both denote the operations inA and in
∏

aA and are to be understood contextually: for instance, for
every j ∈ K, the symbol (✸b)( j) is to be understood asπ j(✸

∏

aA(b)), where

π j :
∏

a

A→ A (3.6)

is the projection on thej-indexed coordinate; the symbol✸b( j) is to be understood as✸A(π j(b)).
To prove thatb ≤ ✸b, we need to show thatb( j) ≤ (✸b)( j) for every j ∈ K, i.e. thatb( j) ≤

∨

{✸b(i) |
jαi}. Becauseα is reflexive andA is a MHA, we have:

b( j) ≤
∨

{b(i) | jαi} ≤
∨

{✸b(i) | jαi}.

The proof that✷b ≤ b is order dual to the argument above.
To prove that✸b ≤ ✷✸b, we need to show that (✸b)( j) ≤ (✷✸b)( j) for every j ∈ K, i.e. that

∨

{✸b(i) | jαi} ≤
∧

{✷(
∨

{✸b(h) | iαh}) | jαi}.

It is enough to show that for eachj, i ∈ K such thatjαi, ✸b(i) ≤ ✷(
∨

{✸b(h) | iαh}). Becauseα is
reflexive, we have:

✸b( j) ≤ ✷✸b( j) ≤ ✷(
∨

{✸b(h) | iαh}).

To prove that✸✷b ≤ ✷b, we need to show that (✸✷b)( j) ≤ (✷b)( j) for every j ∈ K, i.e. that
∨

{✸(
∧

{✷b(h) | iαh}) | jαi} ≤
∧

{✷b(i) | jαi}.

It is enough to show that for eachj, i, i′ ∈ K such thatjαi and jαi′, ✸(
∧

{✷b(h) | i′αh}) ≤ ✷b(i).
Becauseα is symmetric and transitive, we havei′αi, hence:

✸(
∧

{✷b(h) | i′αh}) ≤ ✸✷b(i) ≤ ✷b(i).

The remaining verifications are left to the reader.
2. Similar to 1.
3. For allb, c ∈

∏

aB,

✸

∏

a Bb ≤ c iff
∨

{✸b(i) | jαi} ≤ c( j) for every j ∈ K
iff ✸b(i) ≤ c( j) for every j ∈ K and everyi ∈ K such thatjαi
iff b(i) ≤ �c( j) for everyi ∈ K and everyj ∈ K such thatjαi
iff b(i) ≤

∧

{�c( j) | jαi} for everyi ∈ K
iff b(i) ≤ (�

∏

aBc)(i) for everyi ∈ K
iff b ≤ �

∏

aBc.

The remaining adjunction relation is shown analogously.

3.3. Quotient of the intermediate structure. Throughout the present subsection, and unless spec-
ified otherwise, letA be a∧-semilattice and leta = (K, k, α,Prea) be an action structure overA.
Define the following equivalence relation≡a on

∏

aA: for every f , g ∈ AK ,

f ≡a g iff f ∧ Prea = g∧ Prea.

Let [ f ]a be the equivalence class off ∈ AK. Usually, the subscript will be dropped when there is
no risk of confusion. Let the quotient setAK/≡a be denoted byAa.

The properties of this quotient are well known, and a detailed account of them can be found in
[18, Section 3.1], in a setting in which

∏

aA andPrea respectively generalize to an arbitrary algebra
and to an arbitrary element of that algebra. In the remainderof this subsection, we will report on
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the relevant facts and properties, specialized to the present context, referring the reader to [18] for
proofs.

Clearly,Aa is an ordered set by putting [b] ≤ [c] iff b′ ≤A c′ for someb′ ∈ [b] and some
c′ ∈ [c]. Let

π = πa :
∏

a

A→ Aa (3.7)

be the canonical projection, given byb 7→ [b].
A particularly relevant feature is that≡a is a congruence ifA is a Boolean algebra, a Heyt-

ing algebra, a bounded distributive lattice or a frame (as stated in Fact 3.7 below). Hence,Aa is
canonically endowed with the same algebraic structure ofA in each of these cases. The following
properties of≡a are as crucial for the development as they are straightforward:

Fact 3.5. LetA be a∧-semilattice and leta be an action structure overA.

(1) [b∧Prea] = [b] for everyb ∈
∏

aA. Hence, for everyb ∈
∏

aA, there exists a uniquec ∈
∏

aA

such thatc ∈ [b]a andc ≤ Prea.
(2) For allb, c ∈

∏

aA, we have that [b] ≤ [c] iff b∧ Prea ≤ c∧ Prea.
(3) If A is a Heyting algebra, then [a→ b] = [b] for everyb ∈

∏

aA.

Item 1 of the fact above implies that each≡a-equivalence class has a canonical representant,
namely the only element in the given class which is less than or equal toPrea. Hence, the map

i′ = i′a : Aa→
∏

a

A (3.8)

given by [b] 7→ b∧ Prea is well defined. Clearly,π ◦ i′ is the identity map onAa.
As was the case in [18], the mapi′ will be a critical ingredient for the definition of the inter-

pretation of IEAK-formulas on algebraic models (cf. Definition 4.2). Indeed, wheneverA = F +

for some (classical) Kripke frameF , by Proposition 3.1, the algebra
∏

aA can be identified with
the complex algebra (

∐

aF )+, and then, by [18, Fact 9.3],Aa can be identified withF a+; then,
by [18, Proposition 3.6], the mapi′ can be identified with the direct image map of the injection
i : F a→

∐

aF modulo the isomorphismAa
� F a+. Hence we get the following

Proposition 3.6. If A = F + anda is an action structure overA, theni′(c) = i[µ(c)] for everyc ∈ Aa,
whereµ : Aa→ F a+ is the BAO-isomorphism identifying the two algebras. Diagrammatically:

(F +)a µ //

i′
""❉

❉❉
❉❉

❉❉
❉❉

❉
(F a)+

i[·]
||③③
③③
③③
③③
③③

∐

aF
+

It immediately follows thati[c] = i′(ν(c)) for everyc ∈ F a+, whereν : F a+ → Aa is the inverse of
µ.

The following compatibility properties of≡a immediately follow from [18, Fact 7] and the general
properties of the|K|-fold product algebra construction.

Fact 3.7. For every∧-semilatticeA and every action structurea overA,

(1) the relation≡a is a congruence of
∏

aA.
(2) If A is a distributive lattice, then≡a is a congruence of

∏

aA.
(3) If A is a frame, then≡a is a congruence of

∏

aA.
(4) If A is a Boolean algebra, then≡a is a congruence of

∏

aA.
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(5) If A is a Heyting algebra, then≡a is a congruence of
∏

aA.

3.4. Modal operations on the quotient algebra. As discussed in [18, Example 8], the equivalence
relation defined in the previous subsection is not in generalcompatible with the modal operators of
the algebra on the domain of which it is defined. When specialized to the present setting, this
implies thatAa does not canonically inherit the structure of modal expansion from

∏

aA. In [18],
modalities have been defined on the algebraAa, understood in the general setting, in such a way
that, whenA = F + for some Kripke frameF , it holds thatAa

�BAO F
a+. In what follows, we

specialize those definitions to the present setting.
For every Heyting algebraA, every action structurea overA, and everyb ∈

∏

aA, let

✸
a[b] := [✸

∏

aA(b∧ Prea) ∧ Prea] = [✸
∏

aA(b∧ Prea)],

✷
a[b] := [Prea→ ✷

∏

aA(Prea → b)] = [✷
∏

aA(Prea → b)].

The right-hand equality in the topmost displayed clause immediately follows from definition, and
the one in the displayed clause right above has been justifiedin [18, Section 3.2.2] in the general
setting. The following facts are immediate consequences ofPropositions 3.2 and 3.4, and of [18,
Facts 9, 10, 11].

Fact 3.8. For every HAO (A,✸) and every action structurea overA,

(1) ✸
a is a normal modal operator. Hence (Aa,✸a) is a HAO.

(2) If A = F + for some Kripke frameF , thenAa
�BAOF

a+.

Fact 3.9. For every HAO (A,✷) and every action structurea overA,

(1) ✷
a is a normal modal operator.

(2) If (A,✷) is a BAO and✷ = ¬✸¬, then✷a = ¬✸a¬.
(3) If A = F + for some Kripke frameF , then✷a = [Ra], henceAa

�BAOF
a+.

Fact 3.10. For every HAO (A,✸,✷) and every action structurea = (K, k, α,Prea) overA,

(1) if (A,✸,✷) is a MHA andα is an equivalence relation, (Aa,✸a,✷a) is a MHA.
(2) If (A,✸,✷) is a FSA, the algebra (Aa,✸a,✷a) is a FSA.
(3) For every tense HAO (A,✸,✷,_,�), the algebra (Aa,✸a,✷a,_a,�a) is a tense HAO.

Definition 3.11. For every FSA/MHA (A,✸,✷) and every action structurea = (K, k, α,Prea) over
A, letAa = (AK/ ≡a,✸

a,✷a), defined as above, be theupdateof A with a.

4. Intuitionistic EAK

4.1. Axiomatization. Let AtProp be a countable set of proposition letters. The formulas of the
(single-agent)intuitionistic logic of epistemic actions and knowledgeIEAK are built up by the
following syntax rule (and letLIEAK denote the resulting set of formulas):

φ ::= p ∈ AtProp | ⊥ | φ ∨ φ | φ ∧ φ | φ→ φ | ✸φ | ✷φ | 〈α〉φ | [α]φ (α ∈ Act(L)).
The same stipulations hold for the defined connectives⊤, ¬ and↔ as introduced early on. IEAK is
axiomatically defined by the axioms and rules of IK (MIPC) plus the following axioms:
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Interaction with logical constants Preservation of facts
〈α〉⊥ ↔ ⊥, 〈α〉⊤ ↔ Pre(α) 〈α〉p↔ Pre(α) ∧ p
[α]⊤ ↔ ⊤, [α]⊥ ↔ ¬Pre(α) [α]p↔ Pre(α)→ p
Interaction with disjunction Interaction with conjunctio n
〈α〉(φ ∨ ψ)↔ 〈α〉φ ∨ 〈α〉ψ 〈α〉(φ ∧ ψ)↔ 〈α〉φ ∧ 〈α〉ψ
[α](φ ∨ ψ)↔ Pre(α)→ (〈α〉φ ∨ 〈α〉ψ) [α](φ ∧ ψ)↔ [α]φ ∧ [α]ψ
Interaction with implication
〈α〉(φ→ ψ)↔ Pre(α) ∧ (〈α〉φ→ 〈α〉ψ)
[α](φ→ ψ)↔ 〈α〉φ→ 〈α〉ψ
Interaction with diamond Interaction with box
〈α〉✸φ↔ Pre(α) ∧

∨

{✸〈α j〉φ | kα j} 〈α〉✷φ↔ Pre(α) ∧
∧

{✷[α j]φ | kα j}
[α]✸φ↔ Pre(α) →

∨

{✸〈α j〉φ | kα j} [α]✷φ↔ Pre(α)→
∧

{✷[α j ]φ | kα j}
where, for every action structureα = (K, k, α,Preα), and everyj ∈ K, the action structureα j is
defined asα j = (K, j, α,Preα).

4.2. Models.

Definition 4.1. An algebraic modelis a tupleM = (A,V) such thatA is an FSA (resp. an MHA)
(cf. Definition 2.5) andV : AtProp→ A. For every algebraic modelM and every action structureα
overL, let

∏

α

M := (
∏

α

A,
∏

α

V)

where
∏

αA :=
∏

aA, anda is the action structure overA induced byα via V (cf. introduction of
Section 3); moreover, (

∏

α V)(p) :=
∏

a V(p) for everyp ∈ AtProp. Likewise, we can define

Mα := (Aα,Vα)

whereAα := Aa (cf. Definition 3.11), andVα := π ◦
∏

α V (cf. (3.7)).

Given an algebraic modelM = (A,V), we want to define its associated extension map [[·]] M :
LIEAK → A so that, whenA = F + for some Kripke frameF , we recover the familiar extension
map associated with the modelM = (F ,V). To this end, we introduce the notation

M
ιk // ∐

α M Mαioo (4.1)

where the mapi : Mα →
∐

α M is the submodel embedding, andιk : M →
∐

α M is the embedding
of M into its k-colored copy, which, by convention, is the copy corresponding to the distinguished
point ofα.

Notice that – whenM is a relational model – the satisfaction condition for〈α〉-formulas

M,w 
 〈α〉φ iff M,w 
 Pre(α) andMα, (w, k) 
 φ

can be equivalently written as follows:

w ∈ [[〈α〉φ]] M iff ∃x ∈Wα such thatx ∈ [[φ]] Mα and i(x) = ιk(w) ∈ [[ Pre(α)]]∐
α M,

Becausei is injective, we get thatx ∈ [[φ]] Mα iff ιk(w) = i(x) ∈ i[[[ φ]] Mα ], iff w ∈ ι−1
k [i[[[ φ]] Mα ]].

Hence,
w ∈ [[〈α〉φ]] M iff w ∈ [[ Pre(α)]] M ∩ ι

−1
k [i[[[ φ]] Mα ]] ,

from which we get that
[[ 〈α〉φ]] M = [[Pre(α)]] M ∩ ι

−1
k [i[[[ φ]] Mα ]] . (4.2)
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Likewise, equivalently rewriting the following satisfaction condition for [α]-formulas

M,w 
 [α]φ iff M,w 
 Pre(α) implies Mα, (w, k) 
 φ

yields:
[[[α]φ]] M = [[Pre(α)]] M ⇒ ι−1

k [i[[[ φ]] Mα ]] , (4.3)

whereX⇒ Y = (W \ X) ∪ Y for everyX,Y ⊆W. To see that (4.3) is ‘in algebraic form’, recall that
the dual of (4.1) is written as

A
∏

αAπk
oo

π
// Aα

i′

||
(4.4)

whereπk is the projection onto thek-th coordinate andπ andi′ are as in (3.7) and (3.8), withi′ being
left-adjoint toπ. To say that (4.4) is the dual of (4.1) means precisely that inthe case ofA = F α+

we haveπk = i−1
k andπ = i−1 and i′ = i[−], see Proposition 3.6. So we can adopt equations (4.2)

and (4.3)—modified by replacingi[·] and ιk with i′ andπk—in anyalgebraic model (A,V):

Definition 4.2. For every algebraic modelM = (A,V), theextension map[[ ·]] M : LIEAK → A is
defined recursively as follows:

[[ p]] M = V(p)
[[⊥]] M = ⊥A

[[φ ∨ ψ]] M = [[φ]] M ∨
A [[ψ]] M

[[φ ∧ ψ]] M = [[φ]] M ∧
A [[ψ]] M

[[φ→ ψ]] M = [[φ]] M →
A [[ψ]] M

[[✸φ]] M = ✸
A[[φ]] M

[[✷φ]] M = ✷
A[[φ]] M

[[〈α〉φ]] M = [[Pre(α)]] M ∧
A πk ◦ i′([[φ]] Mα)

[[[α]φ]] M = [[Pre(α)]] M →
A πk ◦ i′([[φ]] Mα).

Notice that, by Proposition 2.6, the above definition specializes to those algebraic models (A,V)
such thatA = F + is the complex algebra of some IK-frame (MIPC-frame)F , and from those, to
their relational counterparts (F ,V). Hence, as a special case of the definition above we get an
interpretation of IEAK on relational IK-models (MIPC-models). More details about these models
are reported in the next subsection.

4.3. Relational semantics for IEAK. In order to recover the relational semantics of IEAK from
its more general semantics given by the algebraic models of Definition 4.2, we need to dually char-
acterize back the FSAs (MHAs) and the update construction fromA to Aa. As is well known (cf.
e.g. [6, 7]), dually characterizing the FSAs (MHAs) is possible in full generality, and the resulting
construction involves the intuitionistic counterparts ofdescriptive general frames in classical modal
logic, i.e. relational structures endowed with topologies. However, obtaining the purely relational
IK-frames (MIPC-frames) is possible for certain special FSAs (MHAs), which we callperfectFSAs
(MHAs). This dual characterization has been reported on in detail in [18, Section 4.3], where the up-
date construction on intuitionistic relational models hasbeen also spelled out in the special case of
public announcements. In what follows, we provide the relevant definitions and facts to perform the
dual characterization in the case of updates by means of general action structures, omitting proofs
whenever they already appear in [18], and including proofs whenever they do not appear anywhere
to the authors’ knowledge.
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For every posetP = (X,≤), a non-bottom elementx ∈ X is completely join-primeif, for every
S ⊆ X such thatx ≤

∨

S, there exists somes ∈ S such thatx ≤ s; a non-top elementy ∈ X is
completely meet-primeif, for every S ⊆ X such that

∧

S ≤ y, there exists somes ∈ S such that
s≤ y. Let J∞(P) andM∞(P) respectively denote the set of the completely join-prime elements and
the set of the completely meet-prime elements inP. A posetP is acomplete latticeif the joins and
meets of arbitrary subsets ofP exist, in which case,P is completely distributiveif arbitrary meets
distribute over arbitrary joins.P is completely join-generated(resp.completely meet-generated) by
a givenS ⊆ P if for every x ∈ P, x =

∨

S′ (resp.x =
∧

S′) for someS′ ⊆ S.

Definition 4.3. An HA A is perfect if it is a complete and completely distributive lattice w.r.t.
its natural ordering, and is also completely join-generated by J∞(A) (or equivalently, completely
meet-generated byM∞(A)). An HAO (A,✸,✷) is perfectif A is a perfect HA, and moreover,✸
distributes over arbitrary joins and✷ distributes over arbitrary meets. AperfectFSA (MHA) is an
FSA (MHA) which is also a perfect HAO.

Clearly, any finite HA(O) is perfect. It is well known that a Heyting algebraA is perfect iff it
is isomorphic toP↓(P), whereP = (J∞(A),≤) and≤ is the restriction of the natural ordering ofA
to J∞(A). The Boolean self-dualityu 7→ ¬u generalizes, in the HA setting, to the mapsκ : A → A,
given byx 7→

∨

{x′ | x′ � x}, andλ : A→ A, given byy 7→
∧

{y′ | y � y′}. These maps induce order
isomorphismsκ : J∞(A) → M∞(A) andλ : M∞(A) → J∞(A) (seen as subposets ofA). Clearly,
x � κ(x) (resp.λ(y) � y) for everyx ∈ J∞(A) (resp.y ∈ M∞(A)); moreover, for everyu ∈ A and
everyx ∈ J∞(A),

j ≤ u iff u � κ( j).

By the theory of adjunction on posets, it is well known that, in a perfect HAOA, the properties of
complete distributivity enjoyed by the modal operations imply that they are parts of adjoint pairs:
unary operations_ and� are defined onA so that for allx, y ∈ A,

✸x ≤ y iff x ≤ �y and _x ≤ y iff x ≤ ✷y.

We denote these adjunction relations by writing✸ ⊣ � and_ ⊣ ✷. One member of the adjunction
relation completely determines the other. The choice of notation is a reminder of the fact that, by the
general theory,_ distributes over arbitrary joins (i.e., it enjoys exactly the characterizing property of
a ‘diamond’ operator on perfect algebras), and� distributes over arbitrary meets (i.e., it enjoys the
characterizing property of a ‘box’ operator on perfect algebras). In particular, they are both order-
preserving. Well known pairs of adjoint modal operators occur in temporal logic: its axiomatization
essentially states that, when interpreted on algebras, theforward-looking diamond isleft adjoint to
the backward-looking box, and the backward-looking diamond is left adjoint to the forward-looking
box. This is actually an essential feature: indeedR is the accessibility relation for one operation iff
R−1 is the accessibility relation for the other.

Let us now introduce the intuitionistic counterpart of the atom structures for complete atomic
BAOs:

Definition 4.4. For every perfect FSA (MHA)A, let us defineR⊆ J∞(A) × J∞(A) by setting

xRy iff x ≤ ✸y and y ≤ _x.

Theprime structureassociated withA is the relational structureA+ := (J∞(A),≤,R).

Notice thaty ≤ _x iff _x � κ(y) iff x � ✷κ(y).

Fact 4.5. For every perfect HAOA,

(1) if A is an FSA, thenA+ is an IK-frame;
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(2) if A is an MHA, thenA+ is an MIPC-frame.

Proposition 4.6. For every perfect FSAA, and every IK-frameF ,

A �HAO (A+)
+ and F � (F +)+.

The bijective correspondence above, between perfect FSAs and IK-frames, specializes to MHAs
and MIPC-frames, and also extends to homomorphisms and p-morphisms; in short, it is a duality,
but treating it in detail is out of the aims of the present paper.

Definition 4.7. For every IK-frameF = (W,≤,R) and every action structurea = (K, k, α,Prea) over
the complex algebraF + , letF a = (Wa,≤a,Ra) be defined in the usual way, i.e., as the subframe of
the intermediate structure

∐

aF := (W× K,R× α) determined by the subset

Wa := {(w, j) ∈W× K | w ∈ Prea( j)}.

BecausePrea( j) is a down-set for everyj ∈ K, it is easy to see thatF being an IK-frame
implies thatF a is an IK-frame, and that the analogous result holds w.r.t. MIPC-frames ifα is an
equivalence relation. The remainder of the present subsection focuses on showing that, for every
perfect FSAA and every action structurea overA,

(Aa)+ � (A+)
a.

Fact 4.8. For every HAA and every action structurea = (K, k, α,Prea) overA,

(1) the setJ∞(
∏

aA) bijectively corresponds to
∐

a J∞(A) � J∞(A) × K.
(2) The accessibility relationR

∏

a of the prime structure (
∏

aA)+ bijectively corresponds to the
product relationR×α (whereR is the relation of the prime structureA+) under the identification
of item 1 above.

(3) (
∏

aA)+ �
∐

aA+.

Proof. 1. It is enough to show thatb : K → A ∈ J∞(
∏

aA) iff there exists a uniquej ∈ K such
thatb( j) ∈ J∞(A), andb(i) = ⊥ for i ∈ K \ { j}. The direction from right to left is clear. Conversely,
if b ∈ J∞(

∏

aA) and j ∈ K such thatb( j) , ⊥, thenb( j) ∈ J∞(A); indeed, for everyS ⊆ A such
thatb( j) ≤

∨

S, consider the collectionS′ ∈
∏

aA whose elements are the mapsc : K → A such
thatc( j) ∈ S andc(i) = ⊤ for i , j. To finish the proof, ifb(i) , ⊥ for more than onei ∈ K, then
b ≤
∨

j∈K c j , where for everyj ∈ K, the mapc j : K → A sendsj to b( j) and every other element of
K to⊥, butb � c j for any j ∈ K.
2. Fix b, c ∈ J∞(

∏

aA). By the statement proved in item 1 above,b andc can be respectively
identified with (b(i), i), (c( j), j) ∈ J∞(A) × K for some uniquei, j ∈ K, so that for everyi ∈ K,

(✸
∏

aAc)(i) =
∨

{✸Ac(i′) | iαi′} =















✸
Ac( j) if iα j

⊥ otherwise,

and for everyj ∈ K,

(_
∏

aAb)( j) =
∨

{_Ab(i′) | i′α j} =















_
Ab(i) if iα j

⊥ otherwise.

Hence, we have:

bR
∏

ac iff b ≤ ✸

∏

aAc andc ≤ _
∏

aAb
iff b(i) ≤ (✸

∏

aAc)(i) andc( j) ≤ (_
∏

aAb)( j)
iff iα j andb(i) ≤ ✸

Ac( j), andiα j andc( j) ≤ _Ab(i)
iff iα j andb(i)Rc( j)
iff (b(i), i)(R× α)(c( j), j).
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3. From the previous items it immediately follows that both the universes and the accessibility
relations of the structures (

∏

aA)+ and
∐

aA+ can be identified. It remains to be shown that their
ordering relations can be identified too. Indeed, ifb, c : K → A ∈ J∞(

∏

aA) are respectively
identified with (b(i), i), (c( j), j) ∈ J∞(A) × K for some uniquei, j ∈ K, thenb ≤(

∏

aA)+ c iff b(i′) ≤
c(i′) for everyi′ ∈ K, iff i = j andb(i) ≤ c( j), iff (b(i), i) ≤∐

aA+
(c( j), j).

Fact 19 in [18] (and the discussion below it), when specialized to the present setting, states
that the prime structure of the quotient of

∏

aA by means of≡a is identifiable with the subframe of
∐

aA+ determined by the subset{(x, j) ∈ J∞(A) × K | x ∈ Prea( j)}. This, together with the fact
above, readily imply that (Aa)+ � (A+)a.

The identification between these two relational structuresimplies that the mechanism of epis-
temic update remains completely unchanged when generalizing from the Boolean to the intuitionis-
tic setting.

4.4. Soundness and completeness for IEAK.

Proposition 4.9. IEAK is sound with respect to algebraic IK-models (MIPC-models), hence with
respect to relational IK- models (MIPC-models).

Proof. The soundness of the preservation of facts and logical constants follows from Lemma 7.4.
The soundness of the remaining axioms is proved in Lemmas 7.5, 7.6, 7.7, 7.9, 7.10 of the appendix.

Theorem 4.10. IEAK is complete with respect to relational IK-models (MIPC-models).

Proof. The proof is analogous to the proof of completeness of classical EAK [2, Theorem 3.5], and
follows from the reducibility of IEAK to IK (MIPC) via the reduction axioms. Letφ be a valid
IEAK formula. Let us consider some innermost occurrence of adynamic modality inφ. Hence, the
subformulaψ having that occurrence labeling the root of its generation tree is either of the form
[α]ψ′ or of the form〈α〉ψ′, for some formulaψ′ in the static language. The distribution axioms
make it possible to equivalently transformψ by pushing the dynamic modality down the generation
tree, through the static connectives, until it attaches to aproposition letter or to a constant symbol.
Here, the dynamic modality disappears, thanks to an application of the appropriate ‘preservation
of facts’ or ‘interaction with logical constant’ axiom. This process is repeated for all the dynamic
modalities ofφ, so as to obtain a formulaφ′ which is provably equivalent toφ. Sinceφ is valid by
assumption, and since the process preserves provable equivalence, by soundness we can conclude
that φ′ is valid. By Proposition 2.4, we can conclude thatφ′ is provable in IK (MIPC), hence in
IEAK. This, together with the provable equivalence ofφ andφ′, concludes the proof.

5. An illustration

Let us recall from Example 2.3 the following scenario. Thereis a setI of three agents,a, b, c, and
three cards, two of which are white, and are each held byb andc, and one is green, and is held by
a. Initially, each agent only knows the color of its own card, and it is common knowledge among
the three agents that there are two white cards and one green one. Thena shows its card only to
b, but in the presence ofc. Thenb announces thata knows what the actual distribution of cards is.
Then, after having witnesseda showing its card tob, and after the ensuing public announcement of
b, agentc knows what the actual distribution is.
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This scenario is less of a puzzle than the Muddy Children, butit illustrates an action more
complicated than a public announcement. In both scenarios,a given subgroup of agents draws
conclusions on factual states of affairs purely based, besides the initial information, on information
about other agents’ epistemic states.

The purpose of this section is to illustrate that reasoning such as this can be supported on an
intuitionistic base by IEAK. Of course, we will need the appropriate multi-agent version of it, which
we denote IEAKI , whose language, if the set of agents is taken to beI = {a, b, c}, is defined as one
expects by considering indexed epistemic modalities✷i and✸i for i ∈ I , and whose axiomatization
is given by correspondingly indexed copies of the IEAK axioms3. For the sake of this scenario, we
can restrict the set of proposition letters to{Wi,Gi | i ∈ I }. The intended meaning ofWi andGi is
‘agenti holds a white card’, and ‘agenti holds a green card’ respectively.

Derived modalities can be defined in the language of IEAKI , which will act as finitary approx-
imations of common knowledge: for every IEAKI -formula φ, let Eφ =

∧

i∈I ✷iφ. The intended
meaning ofE is ‘Everybody knows’. It is easy to see thatE⊤ ⊣⊢IK I ⊤ andE(φ ∧ ψ) ⊣⊢IK I Eφ ∧ Eψ.
SoE is a box-type normal modality.

The action structureα encoding the action performed by agenta can be assimilated to the
atomic propositionGa being announced to the subgroup{a, b}. Hence,α = (K, k, αa, αb, αc,Preα)
can be specified as follows:K = {k, l}; moreover,Pre(α) = Preα(k) = Ga, andPre(αl) = Preα(l) =
Wa; finally, αa = αb = ∆K andαc = K × K.

The action structureβ encoding the public announcement performed by agentb can be specified
as a one-state structure, the precondition of which is the formulaPre(β) =

∧

i∈I (Gi → ✷aGi).
Let us introduce the following abbreviations:

• aut :=
∧

i∈I [(Wi → ⊥) ↔ Gi] expresses the fact that holding a white or a green card are both
mutually incompatibleandexhaustiveconditions;
• one :=

∨

i∈I (Gi ∧
∧

h,i Wh) expresses the fact there are two white cards and one green one;
• other? :=

∧

i∈I (Wi →
∧

h,i ✸iGh) expresses the fact that any agent holding a white card does not
know who of the other two agents holds the green card.

The aim of this section is proving the following

Proposition 5.1. LetL be an extension of IEAKI with aut andone. Then,

E(other?) ⊢L [α][β]✷cGa.

Proof. The following chain of provable equivalences holds in IEAKI :

[α][β]✷cGa

⊣⊢IEAKI [α](Pre(β) → ✷c(Pre(β) → Ga))
⊣⊢IEAKI 〈α〉Pre(β) → 〈α〉✷c(Pre(β) → Ga)
⊣⊢IEAKI 〈α〉Pre(β) → (Pre(α) ∧ (✷c[α](Pre(β) → Ga) ∧✷c[αl ](Pre(β) → Ga)))
⊣⊢IEAKI 〈α〉Pre(β) → (Pre(α) ∧ (✷c(〈α〉Pre(β) → 〈α〉Ga) ∧ ✷c(〈αl〉Pre(β) → 〈αl〉Ga)))
⊣⊢IEAKI [〈α〉Pre(β) → Pre(α)] ∧ [〈α〉Pre(β) → (✷c(〈α〉Pre(β) → 〈α〉Ga)]

∧ [〈α〉Pre(β) → ✷c(〈αl〉Pre(β) → 〈αl〉Ga)].

Hence, by the Deduction Theorem, it is enough to show that

3For the remainder of this section, ifL is one of the logics introduced so far,LI will denote its indexed version. For
any logicL, the relation of provable equivalence relative toL will be denoted by⊣⊢L.
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〈α〉Pre(β) ⊢IEAKI Pre(α) (1)

〈α〉Pre(β) ⊢L ✷c(〈α〉Pre(β) → 〈α〉Ga) (2)

E(other?) ⊢L ✷c(〈αl〉Pre(β)→ 〈αl〉Ga). (3)

The entailment (1) straightforwardly follows from the IEAKrewriting axioms, and this verification
is left to the reader. As to the remaining ones, notice preliminarily that, because ofaut andone,
it holds that (Gh ∧ Ga) ⊣⊢L ⊥ for eachh ∈ I \ {a}, which justifies the step marked with (∗) in the
following chain of provable equivalences:

〈α〉Pre(β) ⊣⊢IEAKI Pre(α) ∧
∧

i∈I (〈α〉Gi → 〈α〉✷aGi)
⊣⊢IEAKI Pre(α) ∧

∧

i∈I ((Gi ∧Ga)→ 〈α〉✷aGi)
(∗) ⊣⊢L Pre(α) ∧ (Ga → 〈α〉✷aGa)

⊣⊢IEAKI Pre(α) ∧ (Ga → (Pre(α) ∧ ✷a[α]Ga))
⊣⊢IEAKI Pre(α) ∧ (Ga → Pre(α)) ∧ (Ga → ✷a[α]Ga)
⊣⊢IEAKI Ga ∧ (Ga → ✷a(Ga → Ga))
⊣⊢IEAKI Ga.

Hence, proving the entailment (2) is equivalent to showing that Ga ⊢L ✷c(Ga → Ga), which is
immediate. As to the entailment (3), by the axiom FS2 and the Deduction Theorem, it is enough to
show that

E(other?),✸c〈αl〉Pre(β) ⊢L ✷c〈αl〉Ga. (4)

Notice preliminarily thataut andone imply that (Wi ∧ Gi) ⊣⊢L ⊥ for eachi ∈ I (which justifies
the equivalence marked with (∗) below), and also that (Gi ∧

∧

h,i Wh) ⊣⊢L Gi for eachi ∈ I (which
justifies the equivalence marked with (∗∗) below). Hence:

〈αl〉Pre(β) ⊣⊢IEAKI Pre(αl) ∧
∧

i∈I (〈αl〉Gi → 〈αl〉✷aGi)
(∗) ⊣⊢L Wa ∧ [((Wa ∧Gb)→ 〈αl〉✷aGb) ∧ ((Wa ∧Gc)→ 〈αl〉✷aGc)]

⊣⊢IEAKI Wa ∧ [((Wa ∧Gb)→ ✷a[αl ]Gb) ∧ ((Wa ∧Gc)→ ✷a[αl ]Gc)]
(∗∗) ⊣⊢L Wa ∧ [(Gb → ✷a(Wa → Gb)) ∧ (Gc → ✷a(Wa → Gc))]

Therefore, sinceE(other?) ⊢IEAKI ✷c(Wa → (✸aGb∧✸aGc)), to prove (4) it is enough to show that

✷c(Wa → (✸aGb ∧✸aGc)),✸c[Wa ∧ [(Gb → ✷a(Wa → Gb)) ∧ (Gc → ✷a(Wa → Gc))]] ⊢L ⊥.

To this aim, observe preliminarily that

Gc ∧ (Wa → Gb) ⊢L (Wa ∧Wb) ∧ (Wa → Gb)
⊢L Wb ∧Gb

⊢L ⊥,

and likewiseGb ∧ (Wa → Gc) ⊢L ⊥ (which together justify the entailment marked with (∼) below);
by FS1 and Fact 7.2, the entailments marked with (∗) hold in the following chain, andaut andone
imply thatWa ⊣⊢L (Gb ∨Gc) (which justifies the entailment marked with (∗∗) below); hence:
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✷c(Wa → (✸aGb ∧✸aGc)) ∧✸c[Wa ∧ [(Gb → ✷a(Wa → Gb)) ∧ (Gc → ✷a(Wa → Gc))]]
(∗) ⊢IEAKI ✸c[Wa ∧ (Wa → (✸aGb ∧✸aGc)) ∧ [(Gb → ✷a(Wa → Gb)) ∧ (Gc → ✷a(Wa → Gc))]]

(∗∗) ⊢L ✸c[(Gb ∨Gc) ∧ (✸aGb ∧✸aGc) ∧ [(Gb → ✷a(Wa → Gb)) ∧ (Gc → ✷a(Wa → Gc))]]
⊢IEAKI ✸c[Gb ∧✸aGc ∧ (Gb → ✷a(Wa → Gb))] ∨✸c[Gc ∧✸aGb ∧ (Gc → ✷a(Wa → Gc))]
⊢IEAKI ✸c[✸aGc ∧ ✷a(Wa → Gb)] ∨✸c[✸aGb ∧ ✷a(Wa → Gc)]

(∗) ⊢IEAKI ✸c✸a(Gc ∧ (Wa → Gb)) ∨✸c✸a(Gb ∧ (Wa → Gc))
(∼) ⊢IEAKI ✸c✸a⊥ ∨✸c✸a⊥

⊢IEAKI ⊥.

Remark 5.2. It may be helpful to compare the proof above both with the informal argument and
with a semantic proof.

(1) The informal proof goes as follows. After the actionα, agentc knows that either
– a knows who has the green card, this being the case iff a holds the green card herself, or
– a doesn’t know who has the green card, this being the case iff a doesn’t hold the green card.
After the public announcementβ of a knowing who has the green card, agentc can discard the
second alternative and conclude from the first one thata holds the green card.

(2) Comparing the formal and the informal proof, we see that the formal proof roughly follows the
same structure. In the formal proof, although tedious, all the steps discharging (1) and (2) are
routine. Proving (3), however, corresponds to agentc reasoning that after announcement ofβ

the second alternative of the item above cannot hold. And indeed, our formal proof proceeds by
deriving a contradiction from the assumption that, afterα, agentc thinks it is possible to be in a
state wherea does not know who has the green card.

(3) The use of contradiction in our formal proof does not violate the laws of intuitionistic logic
(ex-falso-quodlibet is intuitionistically valid). But weuse that, according toaut andone, the
atomic propositionsWi,Gi behave as the Boolean negations of one another, for each agent i.

(4) A semantic proof would typically start from a Kripke model M capturing the situation described
at the beginning of the section. For example,M could have three states corresponding to the
three possibilities of who holds the green card (see Example2.3 for pictures); moreover, the
two states in whichGb and respectivelyGc holds would be indistinguishable fora, with similar
indistinguishability relations holding for agentsb andc. Next, we can computeMα which is
asM but with ab-edge deleted, as nowb knows who has the green card. Finally, we compute
(Mα)β and check that it consists of a single state in whichGa holds, proving that now everybody
knows thata holds the green card.

(5) Comparing our formal proof with the semantic argument, the proof theoretic argument has the
advantage that it establishes the result not only for one model, but for all models satisfyingaut,
one, andE(other?). It is thus revealed, for example, that the argument does not require that
knowledge is encoded by an equivalence relation or that is satisfies introspection✷p→ p.

6. Conclusion

The application of duality theory to dynamic epistemic logic begun in [18] for the logic of pub-
lic announcements and, generalized here to Baltag-Moss-Solecki’s logic of Epistemic Actions and
Knowledge, opens new directions of research which we plan topursue in the future.

First, as mentioned in the introduction, the generalization of modal logic to coalgebraic logic
can be cast in the framework of duality theory; hence, the results of the present paper naturally link
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up with a line of research in the coalgebraic theory of epistemic updates which has its precursor in
[13] and further explored in [4, 9]. We plan to further explore this link, both to export the technique
of dynamic updates from Kripke frames to coalgebras, and to make coalgebraic techniques bear on
variations of the Kripke semantics of [2, 3] to a variety of semantic scenarios based on, for example,
probabilistic or neighborhood semantics. Moreover, the fruitfulness of the coalgebraic point of
view on epistemic actions is also emphasized by the fact thatcertain aspects of dynamic (epistemic)
logics are most easily understood by considering their semantics not in general models but in the
final coalgebra, as discussed in [4, 9].

Second, we plan to explore the generalization of dynamic epistemic logics from classical to
nonclassical logic. On the one hand, general observations indicate that ‘dynamic phenomena’ are
in many important contexts best analyzed using an appropriate nonclassical logic; for instance, in
all those contexts (such as scientific experiments, acquisition of legal evidence, verification of pro-
grams, etc.) where the notion of truth isprocedural. In these contexts, affirmingφmeans demonstrat-
ing thatsomeappropriateinstanceof the procedure applies toφ; refuting φ means demonstrating
thatsomeappropriateinstanceof the procedure applies to¬φ; however, neither instance might be
available in some cases, hence the law of excluded middle fails. In these situations, intuitionistic or
weaker logics provide viable alternatives.

On the other hand, computer science offers a considerable number of intuitionistic modal log-
ics which might be extended to dynamic versions. For example, the lax logic of Fairtlough and
Mendler [11] has been proposed for hardware verification, but since then resurfaced in quite differ-
ent scenarios. Furthermore, logics for access control tendto be intuitionistic [1, 17] as well as logics
used for agreeing contracts in web services as in propositional contract logic [5]. Other interesting
instances deserving study are dynamic updates on a linear propositional base, (e.g. taking quantales
as underlying algebras) or on a quantum base (taking orthomodular lattices as underlying algebras).

Closely connected to the previous point is the third direction to be pursued, concerningproof
systemsfor dynamic logics. In collaboration with Giuseppe Greco, we are developing sound, com-
plete and cut-free display-style sequent calculi for the intuitionistic and the classical versions of
PAL and EAK (see [15, 16]). The choice of the display calculi format allows for a great degree
of modularity. We expect that these calculi will lend themselves very well to provide a uniform
account of the further developments outlined in the previous direction.

7. Appendix

7.1. HA- and FSA-identities and inequalities. In a Heyting algebra∧ and→ are residuated,
namely, for allx, y, z∈ A,

x∧ y ≤ z iff x ≤ y→ z. (7.1)

Hence, by the general theory of residuation,

y→ z=
∨

{x | x∧ y ≤ z}. (7.2)

Using (7.1) and (7.2) above, it is not difficult to prove the following

Fact 7.1. For every Heyting algebraA and allx, y, z ∈ A,

(1) x∧ (x→ y) ≤ y.
(2) x→ (y∧ z) = (x→ y) ∧ (x→ z).
(3) x∧ y ≤ x→ y.
(4) x→ y = x→ (x∧ y).
(5) (x∧ y)→ z= x→ (y→ z).
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(6) x∧ (y→ z) = x∧ ((x∧ y)→ z).

Fact 7.2. The following are provably equivalent in IK:

(1) ✸(p→ q) ≤ ✷p→ ✸q;
(2) ✷p∧✸q ≤ ✸(p∧ q);
(3) ✷(p→ q) ≤ ✸p→ ✸q.

7.2. Properties of the map i′. The following fact is a straightforward specialization of [18, Fact
28].

Fact 7.3. LetA be an FS-/MIPC-algebra,a be an action structure overA, and leti′ : Aa →
∏

aA

given by [b] 7→ b∧ Prea. Then, for everyb, c ∈ Aa,

(1) i′(b∨ c) = i′(b) ∨ i′(c);
(2) i′(b∧ c) = i′(b) ∧ i′(c);
(3) i′(b→ c) = Prea ∧ (i′(b) → i′(c));
(4) i′(✸ab) = ✸

∏

aA(i′(b) ∧ Prea) ∧ Prea;
(5) i′(✷ab) = Prea→ ✷

∏

aA(Prea→ i′(b)).

7.3. Soundness Lemmas.In the present subsection, the lemmas are collected which serve to prove
Proposition 4.9.

Lemma 7.4. Let M = (A,V) be an algebraic model and letα be an action structure overL. For
every formulaφ such that [[φ]] Mα = π([[φ]]∏

α M),

(1) [[〈α〉φ]] M = [[Pre(α)]] M ∧ [[φ]] M.

(2) [[[α]φ]] M = [[Pre(α)]] M → [[φ]] M.

Proof.

(1)
[[〈α〉φ]] M

= [[Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα)
= [[Pre(α)]] M ∧ πk ◦ i′(π([[φ]]∏

α M))
= [[Pre(α)]] M ∧ πk([[φ]]∏

α M ∧ Preα)
= [[Pre(α)]] M ∧ (πk([[φ]]∏

α M) ∧ πk(Preα))
= [[Pre(α)]] M ∧ ([[φ]] M ∧ Preα(k))
= [[Pre(α)]] M ∧ ([[φ]] M ∧ [[ Pre(α)]] M)
= [[Pre(α)]] M ∧ [[φ]] M.

(2)
[[[α]φ]] M

= [[Pre(α)]] M → πk ◦ i′([[φ]] Mα)
= [[Pre(α)]] M → πk ◦ i′(π([[φ]]∏

α M))
= [[Pre(α)]] M → πk([[φ]]∏

α M ∧ Preα)
= [[Pre(α)]] M → (πk([[φ]]∏

α M) ∧ πk(Preα))
= [[Pre(α)]] M → ([[φ]] M ∧ Preα(k))
= [[Pre(α)]] M → ([[φ]] M ∧ [[Pre(α)]] M)
= [[Pre(α)]] M → [[φ]] M (Fact 7.1.4).
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Lemma 7.5. Let M = (A,V) be an algebraic model. For every action structureα overL and all
formulasφ andψ,

(1) [[〈α〉(φ ∨ ψ)]] M = [[ 〈α〉φ]] M ∨ [[ 〈α〉ψ]] M .
(2) [[[α](φ ∨ ψ)]] M = [[Pre(α)]] M → ([[ 〈α〉φ]] M ∨ [[〈α〉ψ]] M).

Proof.

(1)

[[ 〈α〉(φ ∨ ψ)]] M
= [[ Pre(α)]] M ∧ πk ◦ i′([[φ ∨ ψ]] Mα)
= [[ Pre(α)]] M ∧ (πk ◦ i′([[φ]] Mα ) ∨ πk ◦ i′([[ψ]] Mα )) (Fact 7.3.1)
= ([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα )) ∨ ([[ Pre(α)]] M ∧ πk ◦ i′([[ψ]] Mα)))
= [[ 〈α〉φ]] M ∨ [[〈α〉ψ]] M .

(2)

[[[α](φ ∨ ψ)]] M
= [[ Pre(α)]] M → πk ◦ i′([[φ ∨ ψ]] Mα)
= [[ Pre(α)]] M → (πk ◦ i′([[φ]] Mα) ∨ πk ◦ i′([[ψ]] Mα)) (Fact 7.3.1)
= [[ Pre(α)]] M → ([[ Pre(α)]] M ∧ (πk ◦ i′([[φ]] Mα) ∨ πk ◦ i′([[ψ]] Mα))) (Fact 7.1.4)
= [[ Pre(α)]] M → (([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα)) ∨ ([[Pre(α)]] M ∧ πk ◦ i′([[ψ]] Mα)))
= [[ Pre(α)]] M → ([[ 〈α〉φ]] M ∨ [[ 〈α〉ψ]] M).

Lemma 7.6. Let M = (A,V) be an algebraic model. For every action structureα overL and all
formulasφ andψ,

(1) [[〈α〉(φ ∧ ψ)]] M = [[ 〈α〉φ]] M ∧ [[ 〈α〉ψ]] M .
(2) [[[α](φ ∧ ψ)]] M = [[[α]φ]] M ∧ [[[α]ψ]] M.

Proof.

(1)

[[〈α〉(φ ∧ ψ)]] M
= [[Pre(α)]] M ∧ πk ◦ i′([[φ ∧ ψ]] Mα )
= [[Pre(α)]] M ∧ (πk ◦ i′([[φ]] Mα) ∧ πk ◦ i′([[ψ]] Mα)) (Fact 7.3.2)
= ([[Pre(α)]] Mα ∧ πk ◦ i′([[φ]] Mα )) ∧ ([[ Pre(α)]] M ∧ πk ◦ i′([[ψ]] Mα))
= [[〈α〉φ]] M ∧ [[〈α〉ψ]] M.

(2)

[[[α](φ ∧ ψ)]] M
= [[ Pre(α)]] M → πk ◦ i′([[φ ∧ ψ]] Mα )
= [[ Pre(α)]] M → πk ◦ i′([[φ]] Mα ∧ [[ψ]] Mα)
= [[ Pre(α)]] M → (πk ◦ i′([[φ]] Mα) ∧ πk ◦ i′([[ψ]] Mα)) (Fact 7.3.2)
= ([[ Pre(α)]] M → πk ◦ i′([[φ]] Mα)) ∧ ([[α]] M → πk ◦ i′([[ψ]] Mα )) (Fact 7.1.2)
= [[[α]φ]] M ∧ [[[α]ψ]] M .
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Lemma 7.7. Let M = (A,V) be an algebraic model. For every action structureα overL and all
formulasφ andψ,

(1) [[[α](φ→ ψ)]] M = [[ 〈α〉φ]] M → [[〈α〉ψ]] M .
(2) [[〈α〉(φ→ ψ)]] M = [[Pre(α)]] M ∧ ([[ 〈α〉φ]] M → [[〈α〉ψ]] M).

Proof. We preliminarily observe that

([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα ))→ πk ◦ i′([[ψ]] Mα)
= ([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα ))→ (([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα )) ∧ πk ◦ i′([[ψ]] Mα)) (Fact 7.1.4)
= [[ 〈α〉φ]] M → ([[〈α〉φ]] M ∧ [[〈α〉ψ]] M)
= [[ 〈α〉φ]] M → [[〈α〉ψ]] M . (Fact 7.1.4)

Hence:

(1)

[[[α](φ→ ψ)]] M
= [[ Pre(α)]] M → πk ◦ i′([[φ→ ψ]] Mα)
= [[ Pre(α)]] M → πk(Preα ∧ (i′([[φ]] Mα)→ i′([[ψ]] Mα))) (Fact 7.3.3)
= [[ Pre(α)]] M → (Preα(k) ∧ (πk ◦ i′([[φ]] Mα )→ πk ◦ i′([[ψ]] Mα)))
= [[ Pre(α)]] M → ([[Pre(α)]] M ∧ (πk ◦ i′([[φ]] Mα)→ πk ◦ i′([[ψ]] Mα)))
= [[ Pre(α)]] M → (πk ◦ i′([[φ]] Mα)→ πk ◦ i′([[ψ]] Mα)) (Fact 7.1.4)
= ([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα))→ πk ◦ i′([[ψ]] Mα) (Fact 7.1.5)
= [[ 〈α〉φ]] M → [[〈α〉ψ]] M .

(2)

[[ 〈α〉(φ→ ψ)]] M
= [[ Pre(α)]] M ∧ πk ◦ i′([[φ→ ψ]] Mα )
= [[ Pre(α)]] M ∧ πk(Preα ∧ (i′([[φ]] Mα)→ i′([[ψ]] Mα ))) (Fact 7.3.3)
= [[ Pre(α)]] M ∧ (Preα(k) ∧ (πk ◦ i′([[φ]] Mα)→ πk ◦ i′([[ψ]] Mα )))
= [[ Pre(α)]] M ∧ ([[Pre(α)]] M ∧ (πk ◦ i′([[φ]] Mα)→ πk ◦ i′([[ψ]] Mα)))
= [[ Pre(α)]] M ∧ (πk ◦ i′([[φ]] Mα )→ πk ◦ i′([[ψ]] Mα)) (Fact 7.1.4)
= [[ Pre(α)]] M ∧ (([[ Pre(α)]] M ∧ πk ◦ i′([[φ]] Mα))→ πk ◦ i′([[ψ]] Mα )) (Fact 7.1.6)
= [[ Pre(α)]] M ∧ ([[〈α〉φ]] M → [[ 〈α〉ψ]] M).

Fact 7.8. Let M = (A,V) be an algebraic model, and letα = (K, k, α,Preα) be an action structure
overL. For everyj ∈ K,

Mα = Mα j .

Proof. Recall thatα j := (K, j, α,Preα). The statement immediately follows from the observation
that no component of the definition of the updated modelMα (cf. Definition 4.1) depends on the
designated element in the action structureα.

Lemma 7.9. Let M = (A,V) be an algebraic model. For every action structureα overL and every
formulaφ,

(1) [[〈α〉✸φ]] M = [[Pre(α)]] M ∧
∨

{✸A([[〈α j〉φ]] M) | kα j}.
(2) [[[α]✸φ]] M = [[Pre(α)]] M →

∨

{✸A([[ 〈α j〉φ]] M) | kα j}.
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Proof. We preliminarily observe that

πk ◦ i′([[✸φ]] Mα)
= πk(Preα ∧✸

∏

α A(Preα ∧ i′([[φ]] Mα))) (Fact 7.3.4)
= Preα(k) ∧

∨

{✸A(Preα ∧ i′([[φ]] Mα))( j) | kα j} (3.4)
= [[Pre(α)]] M ∧

∨

{✸A(Preα( j) ∧ i′([[φ]] Mα)( j)) | kα j}
= [[Pre(α)]] M ∧

∨

{✸A([[Pre(α j )]] M ∧ π j ◦ i′([[φ]] Mα)) | kα j}
= [[Pre(α)]] M ∧

∨

{✸A([[Pre(α j )]] M ∧ π j ◦ i′([[φ]] Mα j )) | kα j} (Fact 7.8)
= [[Pre(α)]] M ∧

∨

{✸A([[〈α j〉φ]] M) | kα j}.

Hence:
(1)

[[〈α〉✸φ]] M
= [[Pre(α)]] M ∧ πk ◦ i′([[✸φ]] Mα)
= [[Pre(α)]] M ∧ ([[ Pre(α)]] M ∧

∨

{✸A([[ 〈α j〉φ]] M) | kα j})
= [[Pre(α)]] M ∧

∨

{✸A([[〈α j〉φ]] M) | kα j}.
(2)

[[[α]✸φ]] M
= [[Pre(α)]] M → i′([[✸φ]] Mα)
= [[Pre(α)]] M → ([[ Pre(α)]] M ∧

∨

{✸A([[ 〈α j〉φ]] M) | kα j})
= [[Pre(α)]] M →

∨

{✸A([[〈α j〉φ]] M) | kα j}. (Fact 7.1.4)

Lemma 7.10. Let M = (A,V) be an algebraic model. For every action structureα overL and every
formulaφ,

(1) [[〈α〉✷φ]] M = [[Pre(α)]] M ∧
∧

{✷A([[[α j ]φ]] M) | kα j}.
(2) [[[α]✷φ]] M = [[ Pre(α)]] M →

∧

{✷A([[[α j ]φ]] M) | kα j}.

Proof. We preliminarily observe that

πk ◦ i′([[✷φ]] Mα)
= πk(Preα → ✷

∏

α A(Preα → i′([[φ]] Mα ))) (Fact 7.3.5)
= Preα(k)→

∧

{✷A(Preα → i′([[φ]] Mα))( j) | kα j} (3.5)
= [[Pre(α)]] M →

∧

{✷A(Preα( j)→ i′([[φ]] Mα)( j)) | kα j}
= [[Pre(α)]] M →

∧

{✷A([[Pre(α j )]] M → π j ◦ i′([[φ]] Mα)) | kα j}
= [[Pre(α)]] M →

∧

{✷A([[Pre(α j )]] M → π j ◦ i′([[φ]] Mα j )) | kα j} (Fact 7.8)
= [[Pre(α)]] M →

∧

{✷A([[[α j ]φ]] M) | kα j}.

Hence:

(1)
[[〈α〉✷φ]] M

= [[Pre(α)]] M ∧ πk ◦ i′([[✷φ]] Mα)
= [[Pre(α)]] M ∧ ([[Pre(α)]] M →

∧

{✷A([[[α j]φ]] M) | jαk})
= [[Pre(α)]] M ∧

∧

{✷A([[[α j ]φ]] M) | jαk}.
(2)

[[[α]✷φ]] M
= [[α]] M → πk ◦ i′([[✷φ]] Mα)
= [[α]] M → ([[Pre(α)]] M →

∧

{✷A([[[α j]φ]] M) | jαk})
= [[α]] M →

∧

{✷A([[[α j ]φ]] M) | jαk}. (Fact 7.1.4)
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