
Logical Methods in Computer Science
Vol. 7 (2:20) 2011, pp. 1–8
www.lmcs-online.org

Submitted Nov. 9, 2010
Published Jun. 29, 2011

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF

BOUNDED DEGREE

WOJCIECH KAZANA a AND LUC SEGOUFIN b

a INRIA and ENS Cachan
e-mail address: kazana@lsv.ens-cachan.fr

b INRIA and ENS Cachan
e-mail address: see http://www-rocq.inria.fr/~segoufin

Abstract. We consider the enumeration problem of first-order queries over structures of
bounded degree. Durand and Grandjean have shown that this problem is in Constant-

Delaylin. An enumeration problem belongs to Constant-Delaylin if for an input of
size n it can be solved by (i) an O(n) precomputation phase building an index structure,
followed by (ii) a phase enumerating the answers with no repetition and a constant delay
between two consecutive outputs. In this article we give a different proof of this result
based on Gaifman’s locality theorem for first-order logic. Moreover, the constants we
obtain yield a total evaluation time that is triply exponential in the size of the input
formula, matching the complexity of the best known evaluation algorithms.

1. Introduction.

Model checking is the problem of testing whether a given sentence is true in a given model.
It’s a classical problem in many areas of computer science, in particular in verification. If
the formula is no longer a sentence but has free variables then we are faced with the query
evaluation problem. In this case the goal is to compute all the answers of a given query on
a given database.

As for model checking, query evaluation is a problem often requiring a time at least
exponential in the size of the query. Even worse, the evaluation often requires a time of the
form nO(k), where n is the size of the database and k the size of the query. This is dramatic,
even for small k, when the database is huge.

1998 ACM Subject Classification: F.4.1,F.1.3.
Key words and phrases: First-order, query evaluation, enumeration, constant delay.

a This work has been partially funded by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) / ERC grant Webdam, agreement 226513.
http://webdam.inria.fr/.
b We acknowledge the financial support of the Future and Emerging Technologies (FET) programme within

the Seventh Framework Programme for Research of the European Commission, under the FET-Open grant
agreement FOX, number FP7-ICT-233599.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (2:20) 2011

c© W. Kazana and L. Segoufin
CC© Creative Commons

http://www-rocq.inria.fr/~segoufin
http://webdam.inria.fr/
http://creativecommons.org/about/licenses

2 W. KAZANA AND L. SEGOUFIN

However there are restrictions on the structures that make things easier. For instance
MSO sentences can be tested in time linear in n over structures of bounded tree-width [2]
and MSO queries can be evaluated in time linear in n+m, where m is the size of the output
of the query (note that m could be exponential in the number of free variables of the query,
and hence in k) [4].

In this paper we are concerned with first-order logic (FO) and structures of bounded
degree. In this case the model checking problem for FO sentences is known to be linear
in n [9]. Moreover, the constant factor is at most triply exponential in the size k of the
formula [5]. This last algorithm easily extends to query evaluation obtaining an algorithm
working in time f(k)(n+m) where f is a triply exponential function.

As we already mentioned, the sizem of the output may be exponential in the arity of the
formula and therefore may still be large. In many applications enumerating all the answers
may already consume too many of the allowed resources. In this case it may be appropriate
to first output a small subset of the answers and then, on demand, output a subsequent
small number of answers and so on until all possible answers have been exhausted. To
make this even more attractive it is preferable to be able to minimize the time necessary to
output the first answers and, from a given set of answers, also minimize the time necessary
to output the next set of answers - this second time interval is known as the delay.

We say that a query can be evaluated in linear time and constant delay if there exists an
algorithm consisting of a preprocessing phase taking time linear in n which is then followed
by an output phase printing the answers one by one, with no repetition and with a constant
delay between each output. Notice that if a linear time and constant delay algorithm exists
then the time needed for the total query evaluation problem is bounded by f(k)(n + m)
for some function f . Hence this is indeed a restriction of the linear time query evaluation
algorithms mentioned above. From the best of our knowledge it is not yet known whether a
bound f(k)(n+m) for some function f on a query evaluation problem implies the existence
of a linear time and constant delay enumeration algorithm. We conjecture this is not the
case.

It was shown in [3] that linear time constant delay query evaluation algorithms could
be obtained for FO queries over structures of bounded degree, hence improving the results
of [9] and [5].

The proof of [3] is based on an intricate quantifier elimination method. In this paper
we provide a different proof of this result based on Gaifman Locality of FO queries. Our
algorithm can be seen as an extension of the algorithm of [5] to queries. However the index
structure built during the preprocessing phase is more complicated than the one of [5] in
order to obtain the constant delay enumeration. Moreover, our constant factor is triply
exponential in the size of the formula, while it is not clear whether the constant factor
obtained in [3] is elementary. Note that the triply exponential constant factor cannot be
significantly improved: it is shown in [5] that a constant factor only doubly exponential
in the size of the formula is not possible unless the parametrized complexity class AW[∗]
collapses to the parametrized class FPT.

2. Definitions.

2.1. Gaifman locality and first-order logic. A relational signature is a tuple σ =
(R1, . . . , Rl), each Ri being a relation symbol of arity ri. A relational structure over σ

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED DEGREE 3

is a tuple A =
(

A,RA
1 , . . . , R

A
l

)

, where A = {a1, . . . , am} is the set of elements of A and

RA
i is a subset of Ari . We fix a reasonable encoding of structures by words over some finite

alphabet. The size of A is denoted by ||A|| and is the length of the encoding of A.
The Gaifman graph of a relational structure A, denoted by G(A), is defined as follows:

the set of vertices of G(A) is A and there is an edge (a, b) in G(A) iff there exists a relation
Ri and a tuple t ∈ Ri such that both a and b occur in t. Given a, b ∈ A, the distance

between a and b, denoted δ(a, b), is the length of a shortest path between a and b in G(A)
or ∞ if a and b are not connected. The distance between two tuples ā = (a1, . . . , ak) and
b̄ = (b1, . . . , bl) of A, denoted δ(ā, b̄), is the min{δ(ai, bj) : 1 ≤ i ≤ k, 1 ≤ j ≤ l}. For a given
r ∈ N and a given tuple of elements ā of some structure A, we denote by Nr(ā) the set of
all elements in A such that their distance from ā is less or equal to r. The r-neighborhood
of ā, denoted as Nr(ā), is the substructure of A induced by Nr(ā) and expanded with one
constant for each element of ā. Given two tuples of elements ā and b̄ we say that they have
the same r-neighborhood type, written Nr(ā) ≃ Nr(b̄), if there is an isomorphism between
Nr(ā) and Nr(b̄).

We consider first-order logic (FO) built from atomic formulas of the form x = y or
Ri(x1, . . . , xri) for some relation Ri and closed under the usual Boolean connectives (¬,∨,∧)
and existential and universal quantifications (∃,∀). When writing φ(x̄) we always mean that
x̄ are exactly the free variables of φ. Given a structure A and a tuple ā of elements of A,
we write A |= φ(ā) if the formula φ is true in A after replacing its free variables with ā. As
usual |φ| denotes the size of φ.

We are now ready to state Gaifman locality for FO.

Theorem 2.1 (Gaifman Locality Theorem [7]). For any first-order formula φ(x̄), for every
structure A and tuples ā, b̄, we have Nr(ā) ≃ Nr(b̄) implies A |= φ(ā) iff A |= φ(b̄), where

r = 2|φ|.

Given d ∈ N, a structure is said to be d-degree-bounded, if the degree of the Gaif-
man graph is bounded by d. The following nice algorithmic property of d-degree-bounded
structures can be proved using Theorem 2.1.

Theorem 2.2 ([9, 5]). Fix d ∈ N. The problem of whether a given d-degree-bounded

structure A satisfies a given first-order sentence φ is decidable in time 22
2O(|φ|)

||A||.

2.2. Model of computation and Constant-Delaylin class. We use Random Access
Machines (RAM) with addition and uniform cost measure as a model of computation. For
further details on this model and its use in logic see [3].

An enumeration problem is a binary relation. Given an enumeration problem R and
an input x, a solution for x is a y such that (x, y) ∈ R. An enumeration problem R

induces a computational problem as follows: Given an input x, output all its solutions. An
enumeration problem is in the class Constant-Delaylin if on input x it can be decomposed
into two steps:

• a precomputation phase that is performed in time O(|x|),
• an enumeration phase that outputs all the solutions for x with no repetition and a
constant delay between two consecutive outputs. The enumeration phase has full
access to the output of the precomputation phase but can use only a constant total
amount of extra memory.

4 W. KAZANA AND L. SEGOUFIN

In particular if R is in Constant-Delaylin then the enumeration problem R can be solved
in time O(|x| + |{y : R(x, y)}|). From the best of our knowledge it is not known whether
the converse is true or not. We conjecture that it is not. More details about Constant-

Delaylin can be found in [3].
We are interested in the following enumeration problem for φ(x̄) ∈ FO and d ∈ N:

Enumd(φ) = {(x, y) : x is a d-degree-bounded structure A, y is a tuple ā of elements of A

and A |= φ(ā)}

We further denote by φ(A) the set {ā : A |= φ(ā)} and by |φ(A)| the cardinality of
this set. We show that Enumd(φ) is in Constant-Delaylin.

Theorem 2.3 ([3]). There is an algorithm that for all d ∈ N, all φ ∈ FO and all d-

degree-bounded structures A enumerates φ(A) with a precomputation phase taking time

22
2O(|φ|)

· ||A|| and a delay during the enumeration phase that is triply exponential in |φ|.
In particular, for all d ∈ N and all φ ∈ FO the enumeration problem Enumd(φ) is in

Constant-Delaylin. Moreover, if the domain of A is linearly ordered, the algorithm

enumerates φ(A) in increasing order relative to the induced lexicographical order on tuples.

Hence the total query evaluation induced by the enumeration procedure of Theorem 2.3

is in time 22
2O(|φ|)

(||A|| + |φ(A)|) thus matching the model checking complexity of Theo-
rem 2.2. Our proof of Theorem 2.3 is based on Gaifman Locality Theorem while the proof
of [3] uses a quantifier elimination procedure (see also [8] for a similar argument). Note that
it is not clear from the proof of [3] that their algorithm is triply exponential in the size of
the formula.

3. FO query evaluation.

In this section we assume d ∈ N to be fixed and all our structures are d-degree bounded.
A formula φ(x̄) with k free variables x̄ = x1 . . . xk is said to be connected around x1 if

φ(x̄) logically implies that x2, . . . , xk are in the (rk)-neighborhood of x1 for r = 2|φ|.
Let Trk be the set of all isomorphism types of (rk)-neighborhoods of single elements, i.e.

the isomorphism types of structures of the form Nrk(a) for some element a of some structure
A. By (rk)-neighborhood-type of an element a we mean the isomorphism type of its (rk)-
neighborhood. Because our structures are d-degree-bounded each (rk)-neighborhood has at
most drk elements. For each τ ∈ Trk we denote by µτ (x) the fact that the (rk)-neighborhood-
type of x is τ . For each type in Trk we fix a representative for the corresponding (rk)-
neighborhood and fix a linear order among its elements. This way, we can speak of the
first, second,. . . , element of an (rk)-neighborhood. For technical reasons, we actually fix
a linear order for each l-neighborhood for l ≤ rk such that (i) it is compatible with the
distance from the center of the neighborhood: the center is first, then come all the elements
at distance 1, then all elements at distance 2 and so on. . . and (ii) the order of a (l+1)-type
is consistent with the order on the induced l-type.

For some sequence F = {α2, . . . , αm} of (m − 1) elements from [1, . . . , drk], we write
x̄ = F (x1) for the fact that, for j ∈ {2, . . . ,m}, xj is the αj-th element of the (rk)-
neighborhood of x1. Let F

m
rk be the set of all possible such F . Let Frk =

⋃

1≤m≤k F
m
rk.

For a given x̄ = x1 . . . xk a r-partition of x̄ is a set of pairs {(C1, F1), . . . , (Cm, Fm)}

such that ∅ 6= Ci ⊆ x̄,
⋃

1≤i≤mCi = {x1, . . . , xk}, Ci ∩Cj = ∅ for i 6= j, and Fi ∈ F
|Ci|
rk . For

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED DEGREE 5

a given r-partition C of x̄ and (Ci, Fi) ∈ C we write x̄i to represent variables from Ci, x
i
1

to represent the first variable from Ci, x
i
2 to represent second variable and so on.

For a given r-partition C = {(C1, F1), . . . , (Cm, Fm)} of x̄ by DivCr (x̄) we mean a
conjunction of formulas saying that Nr(x̄

i)∩Nr(x̄
j) = ∅ for all 1 ≤ i 6= j ≤ m and formulas

∧

(Ci,Fi)∈C
x̄i = Fi(x

i
1). Note that the latter part implies that x̄i is connected around xi1.

The following is an immediate consequence of Theorem 2.1.

Lemma 3.1. Fix a structure A. Then any formula φ(x̄) with k free variables is equivalent

over A to a formula of the form

∨

C∈Cr(x̄)

DivCr (x̄) ∧
∨

(τ1,...,τ|C|)∈SC

∧

i≤|C|

µτi(x
i
1)

 (3.1)

where r = 2|φ|, Cr(x̄) is the set of all r-partitions of x̄, and SC ⊆ (Trk)
|C| is finite.

Proof. Let φ(x̄) be a formula with k free variables and r = 2|φ|. As in the statement of this
lemma, we denote by Cr(x̄) the set of all partitions C = {(C1, F1), . . . , (Cm, Fm)} of x̄ with

Ci =
{

xi1, . . . , x
i
|Ci|

}

.

By taking all possible r-partitions over x̄ we see that φ(x̄) is equivalent to:
∨

C∈Cr(x̄)

(

DivCr (x̄) ∧ φ(x̄)
)

Let ā be a tuple of A such that A |= φ(ā). Thus for exactly one C ∈ Cr(x̄), A |=
DivCr (ā) ∧ φ(ā). As DivCr induces that variables from each Ci for some (Ci, Fi) ∈ C are
connected, the r-neighborhood of each āi is completely included into the (rk)-neighborhood
of ai1. Let m = |C|. For 1 ≤ i ≤ m let τi be the rk-neighborhood-type of ai1. We now take
SC as the set of all such tuples (τ1, . . . , τm) for all tuples ā such that A |= DivCr (ā)∧φ(ā). By
construction we have φ(x̄) implies (3.1). The reverse inclusion is an immediate consequence
of Gaifman Locality Theorem: When DivCr (ā) holds, Nr(ā

i) is induced by Nrk(a
i
1) = τi

and Fi. Moreover, Nr(ā) is the disjoint union of Nr(ā
i) and is therefore induced by C.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Fix a formula φ(x̄) with k free variables. Let A be a structure. Let

r = 2|φ|. By Lemma 3.1, φ(x̄) is equivalent over A to a formula of the form given by (3.1).
We assume that A comes with a linear order over its elements. If not, we use the linear
order induced by the encoding of A.

Intuitively the precomputation phase determines the disjunction given by (3.1) and
precomputes the (rk)-neighborhoods of each element of A. The fact that this can be done
in time linear in ||A|| and triply exponential in |φ| will make use of Theorem 2.2.

In a first step, for each i ≤ rk we precompute the pairs of nodes at distance i. In other
words, for each a in A, we compute the set of elements b such that δ(a, b) = i. This can
easily be done in time linear in rk · ||A|| by induction on i: during the base case we compute
the Gaifman graph of A and then we perform the classical computation of the transitive
closure of this graph up to depth rk.

In a second step, the precomputation phase computes for each element a of A its (rk)-
neighborhood: for each element a of A, we compute its (rk)-neighborhood-type and for all

6 W. KAZANA AND L. SEGOUFIN

i ≤ drk a pointer from a to the i-th element of its (rk)-neighborhood. We use an induction
on the radius of the neighborhood to achieve this goal within the desired time constraints.

As 0-neighborhoods all share the same isomorphism type and have just one pointer to
their centers, the induction base is obvious. So let’s assume that in linear time in the size
of A we have computed all l-neighborhoods for all nodes. With one more linear pass we
now compute the (l + 1)-neighborhoods. Fix a ∈ A. From the first step, we have all the
elements of A at distance l + 1 from a. As we already have computed the l-neighborhood,
it remains to try all possible orders among those elements and test isomorphism with the
ordered types we have initially fixed.

There are at most dl+1 nodes at distance l + 1 and l < rk. Hence the number of
orders we need to test is bounded by (drk)!. Once the order is fixed we try all possible
(rk)-neighborhood-types that we have initially fixed (there are |Trk| possibilities) and then
test that the two orders induce an isomorphism (each test simply requires going through all
tuples of the neighborhood). Let s(r, k, d) be the maximal size of a (rk)-neighborhood. Thus
this step is altogether achieved in time O((drk)! · |Trk| · s(r, k, d)) which is triply exponential

in |φ| because r = 2|φ|, |Trk| = O(2s(r,k,d)) and s(r, k, d) = O(drk|σ|).
During the third step of the precomputation we determine the (rk)-neighborhood-types

that are relevant for φ over A. Fix a r-partition C = {(C1, F1), . . . , (Cm, Fm)} of Cr(x̄) and a

sequence τ1, . . . , τm ∈ Trk. This sequence is relevant for C ifA |= ∃x̄
[

DivCr (x̄) ∧
∧

j µτj(x
j
1)
]

∧

φ(x̄). Notice that the tests of the form µτj (x
j
1) have been precomputed during the second

step and can therefore now be treated as unary symbols. Similarly the tests DivCr (x̄) can
be expressed using the graph computed during the first phase. Altogether, the first and

second phase has replaced
[

DivCr (x̄) ∧
∧

j µτj (x
j
1)
]

with a formula of size linear in k. Hence

we can apply Theorem 2.2 in order to test whether the sequence is relevant for C in time
linear in ||A|| and triply exponential in the size of the formula. We do this for all possible

C, investigating at most (|Trk|)
k = 22

2O(|φ|)

cases. The number of possible C is the number
of possible splits of k variables into disjoint and nonempty subsets multiplied by (|Frk|)

k,

which altogether is again 22
2O(|φ|)

. For each C we store a list of all sequences relevant for
it. We call a r-partition C relevant if that list is nonempty.

The last step of the precomputation phase orders, for each τ ∈ Trk, the elements of A
having that particular (rk)-neighborhood-type and stores a pointer from one element to the
next one according to the linear order on the elements of A. To do that, we just need to
enumerate through all the elements in A, in the order provided by the linear order on its
elements, and, using information obtained in the second step, add each of them to a proper
list. In order to do this we need to be able to sort a set of elements in linear time and this
can be done in our RAM model as explained in [6].

Altogether we have a precomputation phase of the desired properties: it works in time
linear in |A| and triply exponential in |φ|. We now turn to the enumeration phase.

Fix relevant r-partition C = {(C1, F1), . . . , (Cm, Fm)} in Cr(x̄). We show how to enu-
merate in lexicographical order, with no repetition, constant memory and constant delay,

all the tuples ā such that A, ā |= DivCr (x̄)∧
∨

i

∧

j µτij (x
ij
1). The result will then follow from

the following simple lemma, whose proof consist in merging two ordered lists.

Lemma 3.2 ([1]). If there is a linear order < such that R,R′ are in Constant-Delaylin

and both output their answers in increasing order relative to <, then R ∪ R′ is also in

FIRST-ORDER QUERY EVALUATION ON STRUCTURES OF BOUNDED DEGREE 7

Constant-Delaylin and the answers can be enumerated in increasing order relative to <.

The proof is by induction on the number m of classes in the r-partition C. The base
case being a particular case of the inductive step, we only do the inductive step.

Without loss of generality we assume that the most significant variable of x̄ is in the
first variable of x̄1, that the most significant variable of x̄ \ x̄1 is the first variable of x̄2 and
so on. We simultaneously do the following for each sequence τ1, . . . , τm relevant for C and
use Lemma 3.2 to avoid duplicate answers.

Fix τ1, . . . , τm relevant for C. Using the precomputed pointers we can enumerate one by
one all elements a1 of A whose (rk)-neighborhood-type is τ1. For each such element let ā1 =

F1(a1) and we enumerate, by induction, the solutions for ψ = DivC
′

r (x̄) ∧
∨

i

∧

j µτij (x
ij
1),

where C ′ is C with (C1, F1) removed. For each solution b̄ obtained by induction, we check
whether Nrk(a1) intersects with Nr(b̄) or not (recall that this information has been precom-
puted during the first phase and therefore requires only constant time). If it does not, we
have a solution ā1, b̄ for φ because of (3.1). If it does then we move to the next solution
to ψ. Notice that the size of Nrk(a1) is bounded by drk hence the length of false hits is

bounded by drk
2
. As we consider only relevant sequences of pairs, for each ā1 we are certain

to find at least one matching b̄ that gives us a solution ā1, b̄ to φ. Altogether we get the
desired constant delay for the enumeration process.

The enumeration phase needs to process all possible r-partitions C and all relevant
sequences of Trk, i.e. a number of cases triply exponential in |φ|. Note that each such choice
yields disjoint solution sets and can therefore be considered sequentially. Altogether this
yields a procedure linear in the size of the output and triply exponential in |φ|.

4. Conclusion

We have given a new proof of the linear time and constant delay enumeration problem of
first-order queries over structures of bounded degree. Our procedure is based on Gaifman’s
locality theorem for first-order logic and our constants are triply exponential in the size of
the query, and therefore induces the known complexity of the associated model checking
problem.

Acknowledgement

The authors wish to thank Dietrich Kuske and the anonymous referees for their constructive
comments on earlier versions of this paper.

References

[1] Guillaume Bagan. Algorithmes et complexité des problèmes d’énumération pour l’évaluation de requêtes
logiques. PhD thesis, Université de Caen, 2009.

[2] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 193–242. 1990.

[3] Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree are com-
putable with constant delay. ACM Trans. Comput. Log., 8(4), 2007.

[4] Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J. ACM,
49(6):716–752, 2002.

8 W. KAZANA AND L. SEGOUFIN

[5] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic revisited.
Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.

[6] Etienne Grandjean. Sorting, linear time and the satisfiability problem. Ann. Math. Artif. Intell., 16:183–
236, 1996.

[7] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
[8] Steven Lindell. A normal form for first-order logic over doubly-linked data structures. Int. J. Found.

Comput. Sci., 19(1):205–217, 2008.
[9] Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical Structures in

Computer Science, 6(6):505–526, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction.
	2. Definitions.
	2.1. Gaifman locality and first-order logic.
	2.2. Model of computation and Constant-Delaylin class.

	3. FO query evaluation.
	4. Conclusion
	Acknowledgement
	References

