
Logical Methods in Computer Science
Vol. 7 (4:06) 2011, pp. 1–19
www.lmcs-online.org

Submitted Nov. 16, 2010
Published Nov. 24, 2011

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS

MANUEL BODIRSKY a AND JENS K. MUELLER b

a CNRS/LIX, École Polytechnique, Palaiseau, France
e-mail address: bodirsky@lix.polytechnique.fr

a Friedrich-Schiller-University, Jena, Germany
e-mail address: jkm@informatik.uni-jena.de

Abstract. Several computational problems in phylogenetic reconstruction can be for-
mulated as restrictions of the following general problem: given a formula in conjunctive
normal form where the literals are rooted triples, is there a rooted binary tree that satisfies
the formula? If the formulas do not contain disjunctions, the problem becomes the famous
rooted triple consistency problem, which can be solved in polynomial time by an algorithm
of Aho, Sagiv, Szymanski, and Ullman. If the clauses in the formulas are restricted to dis-
junctions of negated triples, Ng, Steel, and Wormald showed that the problem remains
NP-complete. We systematically study the computational complexity of the problem for
all such restrictions of the clauses in the input formula. For certain restricted disjunctions
of triples we present an algorithm that has sub-quadratic running time and is asymptot-
ically as fast as the fastest known algorithm for the rooted triple consistency problem.
We also show that any restriction of the general rooted phylogeny problem that does not
fall into our tractable class is NP-complete, using known results about the complexity of
Boolean constraint satisfaction problems. Finally, we present a pebble game argument
that shows that the rooted triple consistency problem (and also all generalizations studied
in this paper) cannot be solved by Datalog.

1. Introduction

Rooted phylogeny problems are fundamental computational problems for phylogenetic re-
construction in computational biology, and more generally in areas dealing with large a-
mounts of data about rooted trees. Given a collection of partial information about a rooted
tree, we would like to know whether there exists a single rooted tree that explains the data.
A concrete example of a computational problem in this context is the rooted triple consis-
tency problem. We are given a set V of variables, and a set of triples ab|c with a, b, c ∈ V ,

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Constraint Satisfaction Problems, Phylogenetic Reconstruction, Computational

Complexity, Datalog, ω-categorical structures.
A preliminary version of this work appeared in the Proceedings of the 13th International Conference on

Database Theory (ICDT), 2010.
a The first author has received funding from the European Research Council under the European Commu-

nity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 257039).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (4:06) 2011
c© M. Bodirsky and J. K. Mueller
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BODIRSKY AND J. K. MUELLER

and we would like to know whether there exists a rooted tree T with leaf set V such that for
each of the given triples ab|c the youngest common ancestor of a and b in this tree is below
the youngest common ancestor of a and c (if such a tree exists, we say that the instance is
satisfiable).

The rooted triple consistency problem has an interesting history. The first polyno-
mial time algorithm for the problem was discovered by Aho, Sagiv, Szymanski, and Ull-
man [ASSU81], motivated by problems in database theory. This algorithm was later redis-
covered for phylogenetic analysis [Ste92]. Henzinger, King, and Warnow [HKW96] showed
how to use decremental graph connectivity algorithms to improve the quadratic runtime
O(mn) of the algorithm by Aho et al. to a deterministic algorithm with runtime O(m

√
n).

Dekker [Dek86] asked the question whether there is a finite set of ‘rules’ that allows
to infer a triple ab|c from another given set of triples Φ if all trees satisfying Φ also satisfy
ab|c. This question was answered negatively by Bryant and Steel [BS95]. Dekker’s ‘rules’
have a very natural interpretation in terms of Datalog programs. Datalog as an algorithmic
tool for rooted phylogeny problems is more powerful than Dekker’s rules. We say that a
Datalog program solves the rooted triple consistency problem if it derives a distinguished
0-ary predicate false on a given set of triples if and only if the instance of the rooted triple
consistency problem is not satisfiable. One of the results of this paper is the proof that
there is no Datalog program that solves the rooted triple consistency problem.

Datalog inexpressibility results are known to be very difficult to obtain, and the few
existing results often exhibit interesting combinatorics [KV95, ASY91, FV99, Gro94, BK10].
The tool we apply to show our result, the existential pebble game, originates in finite model
theory, and was successfully applied to finite domain constraint satisfaction [KV98]. A
recent generalization of the intimate connection between Datalog and the existential pebble
game to a broad class of infinite domain constraint satisfaction problems [BD08] allows us
to apply the game to study the expressive power of Datalog for the rooted triple consistency
problem.

There are several other important rooted phylogeny problems One is the subtree avoid-
ance problem, introduced by [NSW00], or the forbidden triple problem [Bry97]; both are
NP-hard. It turns out that all of those problems and many other rooted phylogeny prob-
lems can be conveniently put into a common framework, which we introduce in this paper.

A rooted triple formula is a formula Φ in conjunctive normal form where all literals are
of the form ab|c. It turns out that the problems mentioned above and many other rooted
phylogeny problems (we provide more examples in Section 2) can be formalized as the
satisfiability problem for a given rooted triple formula Φ where the set of clauses that might
be used in Φ is (syntactically) restricted. If C is a class of clauses, and the input is confined
to rooted triple formulas with clauses from C, we call the corresponding computational
problem the rooted phylogeny problem for clauses from C.

In this paper, we determine for all classes of clauses C the computational complexity of
the rooted phylogeny problem for clauses from C. In all cases, the corresponding computa-
tional problem is either in P or NP-complete. In our proof of the complexity classification
we apply known results from Boolean constraint satisfaction. The rooted phylogeny prob-
lem is closely related to a corresponding split problem (defined in Section 4), which is a
Boolean constraint satisfaction problem where we are looking for a surjective solution, i.e.,
a solution where at least one variable is set to true and at least one variable is set to false.
The complexity of Boolean split problems has been classified in [CKS01]. If C is such that
the corresponding split problem can be solved efficiently, our algorithmic results in Section 4

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 3

show that the rooted phylogeny problem for clauses from C can be solved in polynomial
time. Conversely, we present a general reduction that shows that if the split problem is
NP-hard, then the rooted phylogeny problem for C is NP-hard as well.

2. Phylogeny Problems

We fix some standard terminology concerning rooted trees. Let T be a tree (i.e., an undi-
rected, acyclic, and connected graph) with a distinguished vertex r, the root of T . The
vertices with exactly one neighbor in T are called leaves. The vertices of T are denoted by
V (T), and the leaves of T by L(T) ⊆ V (T). For u, v ∈ V (T), we say that u lies below v if
the path from u to r passes through v. We say that u lies strictly below v if u lies below
v and u 6= v. The youngest common ancestor (yca) of two vertices u, v ∈ V (T) is the node
w such that both u and v lie below w and w has maximal distance from r. Note that the
yca, viewed as a binary operation, is commutative and associative, and hence there is a
canonical definition of the yca of a set of elements u1, . . . , uk. The tree T is called binary
if the root has two neighbors, and every other vertex has either three neighbors or one
neighbor. A neighbor u of a vertex v is called a child of v (and v is called the parent of u)
in T if the distance of u from the root is strictly larger than the distance of v from the root.
We write uv|w (or say that uv|w holds in T) if u, v, w are distinct leaves of T and yca(u, v)
lies strictly below yca(u,w) in T . Note that for distinct leaves u, v, w of any binary tree T ,
exactly one of the triples uv|w, uw|v, and vw|u holds in T .

Definition 2.1. A rooted triple formula is a (quantifier-free) conjunction of clauses (also
called triple clauses) where each clause is a disjunction of literals of the form xy|z.
Example 2.2. An example of a triple clause is xz|y∨yz|x; it will also be denoted by xy - z.
Another example of a triple clause is xy|z1 ∨ xy|z2.

The following notion is used frequently in later sections. If Φ is a formula, and S is
a subset of the variables of Φ, then Φ[S] denotes the conjunction of all those clauses in Φ
that only contain variables from S.

Definition 2.3. A rooted triple formula Φ is satisfiable if there exists a rooted binary tree
T and a mapping α from the variables of Φ to the leaves of T such that in every clause
at least one literal is satisfied. A literal xy|z is satisfied by (T, α) if α(x), α(y), α(z) are
distinct and if yca(α(x), α(y)) lies strictly below yca(α(x), α(z)) in T . The pair (T, α) is
then called a solution to Φ.

We would like to remark that a rooted triple formula Φ is satisfiable if and only if there
exists a rooted binary tree T and an injective mapping α from the variables of Φ to the
leaves of T such that the formula evaluates under α to true.

Example 2.4. Let Φ = xz|y ∨ yz|x ∧ xy|w be a rooted triple formula with variables
V = {w, x, z, y}. Then the tree T

x z y
w

together with the identity mapping on V is a solution to Φ.

A fundamental problem in phylogenetic reconstruction is the rooted triple consistency
problem [HKW96, BS95, Ste92, ASSU81]. This problem can be stated conveniently in terms
of rooted triple formulas.

4 M. BODIRSKY AND J. K. MUELLER

Problem 2.5 (Rooted-Triple-Consistency).

INSTANCE : A rooted triple formula Φ without disjunction.
QUESTION: Is Φ satisfiable?

The following NP-complete problem was introduced and studied in an equivalent for-
mulation by Ng, Steel, and Wormald [NSW00].

Problem 2.6 (Subtree-Avoidance-Problem).

INSTANCE : A rooted triple formula Φ where each clause is of the form x1y1 - z1 ∨ · · · ∨
xkyk - zk. (As in Example 2.2, xy - z stands for xz|y ∨ yz|x.)

QUESTION: Is Φ satisfiable?

Also the following problem is NP-hard; it has been studied in [Bry97].

Problem 2.7 (Forbidden-Triple-Consistency).

INSTANCE : A rooted triple formula Φ where each clause is of the form xy - z.
QUESTION: Is Φ satisfiable?

More generally, if C is a class of triple clauses, the rooted phylogeny problem for clauses
from C is the following computational problem.

Problem 2.8 (Rooted-Phylogeny for clauses from C).
INSTANCE : A rooted triple formula Φ where each clause can be obtained from clauses in

C by substitution of variables.
QUESTION: Is Φ satisfiable?

All of these problems belong to NP. A given solution (T, α) can be verified in polynomial
time using the following deterministic algorithm. For each literal of each clause of Φ check
whether the literal is satisfied. If there is at least one literal per clause satisfied by (T, α),
then the given solution is valid else it is invalid. A literal ab|c is satisfied if α(a), α(b),
and α(c) are distinct and if v1 = yca(α(a), α(b)) lies strictly below v2 = yca(α(a), α(c))
(recalling definition 2.3). Determining the youngest common ancestor of two vertices is
straightforward using a bottom-up search for each vertex. Another search is then used to
check if v1 lies strictly below v2.

Note that the rooted triple consistency problem, the subtree avoidance problem, and
the forbidden triple consistency problem are examples of rooted phylogeny problems, by
appropriately choosing the class C. For example, for the rooted triple consistency problem
we choose C = {xy|z}. The subtree avoidance problem is the rooted phylogeny problem for
the class C that contains for each k the clause x1y1 - z1 ∨ · · · ∨ xkyk - zk.

Finally, note that when C contains clauses with literals of the form xx|y, xy|x, or xy|y,
then these literals can be removed from the clause since they are unsatisfiable. If all literals
in a triple clause are of this form, then the clause is unsatisfiable. It is clear that in instances
of the rooted phylogeny problem for clauses from a fixed class C one can efficiently decide
whether the input contains such clauses (in which case the input is unsatisfiable). Thus,
removing such clauses from C does not affect the complexity of the rooted phylogeny for
clauses from C. To prevent dealing with degenerate cases, we therefore make the convention
that all clauses in C do not contain literals of the form xx|y, xy|x, or xy|y.

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 5

Constraint Satisfaction Problems. Many phylogeny problems can be viewed as infinite
domain constraint satisfaction problems (CSPs), which are defined as follows. Let Γ be
a structure1 with a finite relational signature τ . A first-order formula over τ is called
primitive positive if it is of the form ∃x1, . . . , xn. ψ1 ∧ · · · ∧ψm where ψ1, . . . , ψm are atomic
formulas over τ , i.e., of the form x = y or R(x1, . . . , xk) for a k-ary R ∈ τ . Then the
constraint satisfaction problem for Γ, denoted by CSP(Γ), is the computational problem
to decide whether a given primitive positive sentence (i.e., a primitive positive formula
without free variables) is true in Γ. The sentence Φ is also called an instance of CSP(Γ),
and the clauses of Φ are also called the constraints of Φ. We cannot give a full introduction
to constraint satisfaction and to constraint satisfaction on infinite domains, but point the
reader to [BJK05, Bod08]. Here, we only specify an infinite structure ∆ that can be used
to describe the rooted triple consistency problem as a constraint satisfaction problem. It
will then be straightforward to see that all rooted phylogeny problems for clauses from a
finite class C can be formulated as infinite domain CSPs as well.

The signature of ∆ is {|} where | is a ternary relation symbol. The domain of ∆ is
N→ {0, 1}, i.e., the set of all infinite binary strings (hence, the domain of ∆ is uncountable).
For two elements f, g of ∆, let lcp(f, g) be the set {1, . . . , n} where n is the largest natural
number i such that f(j) = g(j) for all j ∈ {1, . . . , i}; if no such i exists, we set lcp(f, g) := ∅,
and if f = g, we set lcp(f, g) := N. The ternary relation fg|h in ∆ holds on elements f, g, h
of ∆ if they are pairwise distinct and | lcp(f, g)| > | lcp(f, h)|.

The following lemma shows that instances of the rooted triple consistency problem can
be viewed as primitive positive formulas over the signature {|}.

Proposition 2.9. A rooted triple formula Φ(x1, . . . , xn) is satisfiable if and only if the
sentence ∃x1, . . . , xn. Φ(x1, . . . , xn) is true in ∆.

Proof. Suppose that ∃x1, . . . , xn. Φ(x1, . . . , xn) is true in ∆, and let f1, . . . , fn : N→ {0, 1}
be witnesses for x1, . . . , xn that satisfy Φ in ∆. We define a finite rooted tree T as follows.
The vertex set of T consists of the restrictions of fi to lcp(fi, fj) for all 1 ≤ i, j ≤ n (we
do not require i and j to be distinct). Vertex g is above vertex g′ in T if g′ extends g; it is
clear that this describes T uniquely. Note that f1, . . . , fn are exactly the leaves of T , and
that T is binary. Let α be the map that sends xi to fi. Then (T, α) satisfies Φ.

Conversely, let (T, α) be a solution to Φ. For each vertex v of T that is not a leaf, let
l(v) and r(v) be the two neighbors of v in T that have larger distance from the root than v.
Let h be the length of the path r = p1, . . . , ph = α(xi) from the root r to α(xi) in T . Define
fi : N → {0, 1} by setting fi(j) = 0 if pj+1 = l(pj), 1 ≤ j < h, and fi(j) = 1 otherwise.
Clearly, the elements f1, . . . , fn of ∆ show that ∃x1, . . . , xn.Φ(x1, . . . , xn) is true in ∆.

This shows that the rooted triple consistency problem is indeed a constraint satisfaction
problem. A refined version of this observation will be useful in Section 3 to apply known
techniques for proving Datalog inexpressibility of the rooted triple consistency problem.

A triple clause is called trivial if the clause is satisfied by any injective mapping from the
variables into the leaves of any rooted tree. The following lemma (Lemma 2.10) shows that
the rooted triple consistency problem is among the simplest rooted phylogeny problems,
that is, for every class C that contains a non-trivial triple clause the rooted phylogeny
problem for C can simulate the rooted triple consistency problem in a simple way.

1We follow standard terminology in logic, see e.g. [Hod93].

6 M. BODIRSKY AND J. K. MUELLER

Lemma 2.10. Let φ(x1, . . . , xk) be a non-trivial triple clause. Then there are variables
y1

1, . . . , y
1
k, . . . , yl1, . . . , ylk ∈ {a, b, c} such that

∧
i=1..l φ(yi1, . . . , y

i
k) is logically equivalent to

ab|c.
Proof. First observe that if k = 3 and if φ(x1, x2, x3) contains only one literal then renaming
its variables is trivial. Second, if φ(x1, x2, x3) = x1x3|x2∨x2x3|x1, then φ(a, c, b)∧φ(b, c, a)
is logically equivalent to ab|c. If φ(x1, x2, x3) contains three or more literals, then due to its
non-triviality there can only be at most two distinct literals. Thus, we fall back to one of
the already shown cases and the claim follows for all clauses with exactly three variables.

If k > 3, then non-triviality of φ implies that φ(x1, . . . , xk) can be written as xi1xi2 |xi3∨
φ′(x1, . . . , xk) for distinct variables xi1 , xi2 , xi3 such that φ′ does not imply xi1xi2 -xi3 , or
as xi1xi2 -xi3 ∨ φ′(x1, . . . , xk) for distinct variables xi1 , xi2 , xi3 such that φ′ does not imply
xi1xi2 |xi3 . In both cases we can falsify all literals in φ′ that contain a variable xi4 distinct
from xi1 , xi2 , xi3 by making xi4 equal to some other variable in this literal. The claim then
follows from the case k = 3.

This implies that the Datalog inexpressibility result for the rooted triple consistency
problem we present in the next section applies to all the rooted phylogeny problems for
clauses from C that contain a non-trivial clause.

3. Datalog

Datalog is an important algorithmic concept originating both in logic programming and in
database theory [AHV95, EF99, Imm98]. Feder and Vardi [FV99] observed that Datalog
programs can be used to formalize efficient constraint propagation algorithms used in Ar-
tificial Intelligence [All83, Mon74, Dec92, Mac77]. Such algorithms have also been studied
for the phylogenetic reconstruction problem. Dekker [Dek86] studied rules that infer rooted
triples from given sets of rooted triples, and asked whether there exists a set of rules such
that a rooted triple can be derived by these rules from a set of rooted triples Φ if and
only if it is logically implied by Φ. This question was answered negatively by Bryant and
Steel [BS95].

In this section, we show the stronger result that the rooted triple consistency problem
cannot be solved by Datalog. This is a considerable strengthening of this previous result by
Bryant and Steel, since we can use Datalog programs not only to infer rooted triples that
are implied by other rooted triples, but rather might use Datalog rules to infer an arbitrary
number of relations (aka IDBs) of arbitrary arity to solve the problem. Moreover, we only
require that the Datalog program derives false if and only if the instance is unsatisfiable.
In particular, we do not require that the Datalog program derives every rooted triple that
is logically implied by the instance (which is required for the question posed by Dekker).
Finally, as already announced in the conference version of this paper, we show that the
proof technique extends to other constraint formalisms for reasoning about trees.

In our proof, we use a pebble-game that was introduced to describe the expressive power
of Datalog [KV95] and which was later used to study Datalog as a tool for finite domain
constraint satisfaction problems [FV99]. The correspondence between Datalog and pebble
games extends to infinite domain constraint satisfaction problems for countably infinite
ω-categorical structures. A countably infinite structure is called ω-categorical if its first-
order theory2 has exactly one countable model up to isomorphism. It can be seen (e.g.

2The first-order theory of a structure is the set of first-order sentences that are true in the structure.

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 7

using the theorem of Ryll-Nardzewski, see [Hod93]) that the structure ∆ introduced in
Section 2 is, unfortunately, not ω-categorical. However, there are several ways of defining
an ω-categorical structure Λ (described also in [Cam90]) which has the same constraint
satisfaction problem.

We exactly follow the axiomatic approach to define such a structure Λ given in [AN98].
A ternary relation C is said to be a C-relation on a set L if for all a, b, c, d ∈ L the following
conditions hold:

(C1) C(a; b, c)→ C(a; c, b);
(C2) C(a; b, c)→ ¬C(b; a, c);
(C3) C(a; b, c)→ C(a; d, c) ∨ C(d; b, c);
(C4) a 6= b→ C(a; b, b).

A C-relation is called dense if it satisfies

(C7) C(a; b, c)→ ∃e. (C(e; b, c) ∧ C(a; b, e)).

The structure (L;C) is also called a C-set.
A structure Γ is called k-transitive if for any two k-tuples (a1, . . . , ak) and (b1, . . . , bk)

of distinct elements of Γ there is an automorphism3 of Γ that maps ai to bi for all i ≤ k. A
structure Γ is said to be relatively k-transitive if for every partial isomorphism f between
induced substructures of Γ of size k there exists an automorphism of Γ that extends f . Note
that a relatively 3-transitive C-set is necessarily 2-transitive.

Theorem 3.1 (Theorem 14.7 in [AN98]). Let (L;C) be a relatively 3-transitive C-set. Then
(L;C) is ω-categorical.

Theorem 11.2 and 11.3 in [AN98] show how to construct such a C-relation from a semi-
linear order4 that is dense, normal, and branches everywhere (all these concepts are defined
in [AN98]). Such a semi-linear order is explicitly constructed in Section 5 of [AN98].

In fact, there is, up to isomorphism, a unique relatively 3-transitive countable C-set
which

• is uniform with branching number 2, that is, if for all a, b, c ∈ L we have C(a; b, c) ∨
C(b; c, a) ∨ C(c; a, b),
• is dense, and
• satisfies ¬C(a; a, a) for all a ∈ L.

(See the comments in [AN98] after the statement of Theorem 14.7; the condition that
¬C(a; a, a) for all (equivalently, for some) a ∈ L has been forgotten there, but is necessary
to obtain uniqueness.)

In the following, let Λ be the structure whose domain is the domain of the dense C-set
that is uniform with branching number 2; the signature of Λ is not the C-relation, but the
relation xy|z defined from the C-relation by

xy|z ⇔ C(z;x, y) ∧ x 6= y ∧ y 6= z ∧ x 6= z .

Structures that are first-order definable in ω-categorical structures are ω-categorical (The-
orem 7.3.8 in [Hod93]), so in particular Λ is ω-categorical. Note that the relation | of Λ
satisfies (C1), (C2), (C3), but not (C4).

3An automorphism of a structure Γ is an isomorphism between Γ and itself.
4 A poset is connected if for any two a, b there exists a c such that a ≤ c and b ≤ c, or a ≥ c and b ≥ c.

A connected poset is called semi-linear if for every point, the set of all points above it is linearly ordered.

8 M. BODIRSKY AND J. K. MUELLER

The following observation has already been made in [Bod08], but without proof, so we
provide a proof here.

Proposition 3.2. A rooted triple formula Φ(x1, . . . , xn) is satisfiable if and only if the
sentence ∃x1, . . . , xn. Φ(x1, . . . , xn) is true in Λ.

Proof. Suppose that there are a1, . . . , an such that Φ(a1, . . . , an) is true in Λ. We first define
a binary relation � on the set of all pairs (a, b) with a, b ∈ {a1, . . . , an}. We set (a, b) � (c, d)
if ¬cd|a ∧ ¬cd|b, and define R := {(u, v) | u � v ∧ v � u}.

Lemma 3.3 (Lemma 12.1 in [AN98]). The relation � is a preorder, and hence R is an
equivalence relation.

Also the following is taken from [AN98]; but to avoid extensive references into the
proofs there, we give a self-contained presentation here. We claim that the poset � /R
that is induced by � in the natural way on the equivalence classes of R is semi-linear. To
see this, let (a1, a2), (b1, b2), (c1, c2) be such that (a1, a2) � (b1, b2) and (a1, a2) � (c1, c2).
We have to show that (b1, b2) and (c1, c2) are comparable in �. If (b1, b2) 6� (c1, c2), then
c1c2|b1 or c1c2|b2. Suppose in the following that c1c2|b1; the case c1c2|b2 is analogous. Since
(a1, a2) � (c1, c2) we have in particular ¬c1c2|a1 in Λ. Recall that the relation | satisfies
(C3), which can be equivalently written as ∀a, b, c. (C(a; b, c) ∧ ¬C(d; b, c))→ C(a; d, c), so
we find that a1c1|b1. By (C2) we have ¬a1b1|c1. Since (a1, a2) � (b1, b2) we have ¬b1b2|a1.
Axiom (C3) can also be written as ∀a, b, c. (¬C(a; d, c)∧¬C(d; b, c))→ ¬C(a; b, c), and thus
¬b1b2|c1. Similarly, ¬b1b2|c2. Therefore, (c1, c2) � (b1, b2), which is what we had to show.

Next, note that when (d1, d2) and (e1, e2) are incomparable with respect to �, then
(d1, e1) is an upper bound for (d1, d2) and (e1, e2), that is, (d1, d2) � (d1, e1) and (e1, e2) �
(d1, e1). It follows that � /R is indeed a semi-linear order with a smallest element r, and
there exists a tree T on the equivalence classes of R such that p lies below q in T if for all
(equivalently, for some) (a, b) ∈ p and (c, d) ∈ q we have (c, d) � (a, b). Let α be the map
that sends xi to the equivalence class of (ai, ai); it is straightforward to verify that (T, α)
satisfies Φ.

Conversely, let (T, α) be a solution to Φ. We now determine elements a1, . . . , an from
Λ, and prove by induction on i that α(xr)α(xs)|α(xt) in T if and only if aras|at in Λ, for all
r, s, t ≤ i. This is trivial for n = i = 1, and for n = i = 2 we can choose arbitrary distinct
elements a1 and a2 from Λ. Now suppose we have already found elements a1, . . . , ai of Λ,
for 2 ≤ i < n, that satisfy the inductive hypothesis. Let v be the vertex in T that has
the maximal distance from the root of T such that there is an j ≤ i where both α(xj) and
α(xi+1) lie strictly below v.

First consider the case that v is the root of T . Then we can choose k, l ∈ {1, . . . , i}
such that v = yca(α(xk), α(xl)). Let a be an element of Λ that is distinct from ak and al,
and by the properties of Λ (xy|z is uniform with branching number 2) we have that akal|a,
aka|al or aak|al holds. In the first case, we set ai+1 to a. In the second case, by relative
3-transitivity of Λ there exists an automorphism β of Λ that maps ak to al and that fixes
a. In this case we set ai+1 to β(al). In the third case we proceed similar to the second. In
all three cases we have apaq|ai+1 for all p, q ≤ i, which proves the inductive step.

Next, consider the case that v is not the root of T . In this case, there must be an
m ≤ i such that α(xj)α(xi+1)|α(xm); choose m such that the distance between the root
and yca(α(xj), α(xm)) is maximal. When j is the only index of size at most i such that
α(xj) lies below v in T , then density of Λ (axiom (C7) in the special case that b = c)

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 9

implies that there is an a such that aja|am. We can then set ai+1 to a. Otherwise, there
are j′, j′′ ≤ i such that α(xj′)α(xj′′)|α(xi+1); choose j′, j′′ such that the distance between v
and yca(α(xj ′), α(xj ′′)) is minimal. Again we apply density (axiom (C7)) and conclude that
there is an a such that aj′aj′′ |a and aj′a|am. We can then set ai+1 to a.

The Existential Pebble Game. The fact that Λ is ω-categorical allows us to use the exis-
tential k-pebble game to establish the Datalog lower bound for the rooted triple consistency
problem [BD08].

The existential k-pebble game (for a structure Γ) is played by the players Spoiler and
Duplicator on an instance Φ of CSP(Γ) and Γ. Each player has k pebbles, p1, . . . , pk for
Spoiler and q1, . . . , qk for Duplicator; we say that that qi corresponds to pi. Spoiler places
his pebbles on the variables of Φ, Duplicator her pebbles on elements of Γ. Initially, none
of the pebbles is placed. In each round of the game Spoiler picks some of his pebbles. If
some of these pebbles are already placed on Φ, then Spoiler removes them from Φ, and
Duplicator responds by removing the corresponding pebbles from Γ. Duplicator looses if at
some point of the game

• there is a clause R(x1, . . . , xk) in Φ such that x1, . . . , xk are pebbled by pj1 , . . . , pjk , and
• the corresponding pebbles qj1 , . . . , qjk of Duplicator are placed on elements b1, . . . , bk in

Γ such that R(b1, . . . , bk) does not hold in Γ.

Duplicator wins if the game continues forever. We will make use of the following theorem
from [BD08].

Theorem 3.4 (Theorem 5 in [BD08]). Let Γ be an ω-categorical (or finite) structure. Then
there is no Datalog program that solves CSP(Γ) if and only if for every k there exists an
unsatisfiable instance Φk of CSP(Γ) such that Duplicator wins the existential k-pebble game
on Φk and Γ.

Our Method. The incidence graph G(Φ) of an instance Φ of CSP(Γ) is the (undirected,
simple) bipartite graph whose vertex set is the disjoint union of the variables of Φ and the
clauses of Φ. An edge joins a variable a and a clause φ of Φ when a appears in φ. A leaf of
Φ is a variable that has degree one in G(Φ). An instance has girth k if the shortest cycle of
its incidence graph has 2k edges5.

Lemma 3.5. Let Γ be an l-transitive (for l ≥ 1) ω-categorical (or finite) structure with
relations of arity at most l + 1. Suppose that for every k there exists an unsatisfiable
instance Φk of girth at least k where every constraint has an injective satisfying assignment.
Then CSP(Γ) cannot be solved by Datalog.

We will see examples for l = 1 and for l = 2 in this paper. Note that by 1-transitivity,
every unary relation in Γ either denotes the empty set or the full domain of Γ. Since Φk only
contains satisfiable constraints, all unary constraints in Φk are satisfied by every mapping to
Γ. So we make in the following the assumption that Φk does not contain unary constraints.

In the proof we use the following concept, inspired by a Datalog inexpressibility result
that was established for temporal reasoning [BK10].

5If we view instances in the obvious way as structures rather than formulas, our definition of girth
corresponds to the standard definition of girth in graph theory.

10 M. BODIRSKY AND J. K. MUELLER

a
T1 T2

r2
r1

S1 S2

Figure 1: A situation in the proof of Lemma 3.5: Spoiler just pebbled a, Duplicator is next.

Definition 3.6. Let Φ be an instance of girth at least k+ 1. Then a subset S of at least 2
and at most k variables of Φ is called dominated if GS := G(Φ[S]) is connected (and hence
a tree), and if all but at most one of the leaves of GS are pebbled.

The notion of dominated sets allows us to specify a winning strategy for Duplicator for
the existential k-pebble game.

Proof of Lemma 3.5. To apply Theorem 3.4, we have to prove that Duplicator wins the
existential k-pebble game on Φk and Γ.

Suppose that in the course of the game, u is an unpebbled leaf of a dominated set S
with pebbled leaves a1, . . . , al, and let b1, . . . , bl be the corresponding responses of Dupli-
cator. Duplicator will play in such a way that b1, . . . , bl are pairwise distinct. Moreover,
Duplicator always maintains the following invariant. Whenever Spoiler places a pebble on
al+1, Duplicator can play a value bl+1 from Γ such that the mapping that assigns ai to bi for
1 ≤ i ≤ l+ 1 can be extended to all of S such that this extension is a satisfying assignment
for Φk[S].

The invariant is satisfied at the beginning of the game: when spoiler places a pebble
on a1, Duplicator can play any value b1, which is a legal move by our assumption that Φk

does not contain unary constraints.
Suppose that during the game Spoiler pebbles a variable a. Let S1, . . . , Sp be the

dominated sets where a is the unpebbled leaf before Spoiler puts his pebble on a. (If there
is no such dominated set, then p = 0.) Let T1, . . . , Tq be the newly created dominated sets
after Spoiler put his pebble on a. Note that since each Ti has not been a dominated set
before Spoiler put his pebble on a, it must contain one unpebbled leaf distinct from a, which
we denote by ri. For an illustration, see Figure 1.

We have to show that under the assumption that Duplicator in her previous moves
has always maintained the invariant, she will be able to make a move that again fulfills the
invariant. If p > 0, then the union S of the sets S1, . . . , Sp was itself a dominated set already
before Spoiler played on a, since GS is clearly connected (all the Si share the vertex a) and
no unpebbled leaves can be created by taking a union of dominated sets. The next move
of Duplicator is the value b from the invariant applied to S. This preserves the invariant,
since for every i ≤ q, the set Ti ∪ S has been a dominated set already before Spoiler played
on a: because Ti and S share the vertex a, the graph GS∪Ti is connected, and since a is not

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 11

a

Ti ri

v

φ

C

Figure 2: A situation in the proof of Lemma 3.5: extending α to all of Ti.

a leaf in GS∪Ti , the only unpebbled leaf of GS∪Ti is ri. Therefore, α can be extended to all
of Ti.

If p = 0, Duplicator plays an arbitrary element b in Γ. We prove by induction on the
size of Ti that α can be extended to Ti such that α(a) = b. We can assume that only leaves
in GTi are pebbled (otherwise, since GTi is a tree, the task reduces to proving the statement
for proper subsets of Ti). Consider a clause φ of Φk[Ti] that contains a, and let V be the
variables of φ. This clause must be unique: otherwise, the graph obtained from G(Φk) by
removing the vertex a has at least two components. Only one of those components can
contain ri; the other component must then be a dominated set where all leaves are pebbled,
a contradiction to the assumption that p = 0. Now consider the graph H obtained from
GTi by removing the vertex that corresponds to φ. See Figure 2.

If one of the connected components of H, say C, forms a dominated set, then the unique
variable v in C ∩V (uniqueness again follows from the fact that GTi is a tree) is the unique
unpebbled leaf of C, and by the invariant of Duplicator’s strategy α can be extended to α′

that is defined on all of C such that it satisfies Φk[C]. Hence, by removing the pebbles from
C and adding a pebble on v, with α′(v) the corresponding response of Duplicator, we can
apply the inductive assumption to Ti \C ∪{v} to find an extension of α that is a satisfying
assignment for Φk[Ti] and maps a to b.

Otherwise, all variables in V except for the variable that lies in the connected component
of ri in H are pebbled. By our assumption on the signature, the clause φ contains at most
l pebbled variables (including a). Also by assumption there exists an injective mapping
β : V → Γ that satisfies φ. Since Γ is l-transitive, there is an automorphism γ of Γ that
maps β(a) to b and that sends β(w) to α(w), for w ∈ Ti \ {v}. Then we extend α to v by
α(v) := γ(β(v)); the extension clearly satisfies φ. Now we repeat the argument with v in
place of a, and α(v) in place of b, and are done by inductive assumption.

Application to the Rooted Phylogeny Problem. We now turn back to the rooted
triple consistency problem, CSP(Λ). The structure Λ is 2-transitive and the only relation
has arity three, and hence we can apply Lemma 3.5 to prove that CSP(Λ) cannot be solved
by Datalog.

12 M. BODIRSKY AND J. K. MUELLER

To construct an unsatisfiable girth k instance Φk for CSP(Λ), let G be a cubic graph
of girth at least k that has a Hamiltonian cycle. Such a graph exists; see e.g. the comments
after the proof of Theorem 3.2 in [Big98]. Note that G must have an even number of
vertices. Let H = (v1, v2, . . . , vn) be the Hamilton cycle of G. For any vertex a of G, let
r(a) be the vertex that precedes a on H, s(a) the vertex that follows a on H, and t(a) the
third remaining neighbor of a in G.

We now define Φk. The vertices of G will be the variables of Φk. Then

Φk :=
∧

a∈V (G)

r(a)s(a)|t(a) .

Consider the graph on the variables of Φk that has an edge ab when Φk contains a triple
clause ab|c for some variable c of Φk. This graph is connected, since it actually equals the
Hamilton cycle H of G. Hence, a condition due to Aho et al. [ASSU81] implies that Φk is
unsatisfiable for all k ≥ 1. This can also be seen by Lemma 4.3 in Section 4. It is clear
that every triple clause of Φk has an injective satisfying assignment. So the only remaining
condition to apply Lemma 3.5 is the verification that G(Φk) has girth k. But this is obvious
since any cycle of length 2l < 2k in the incidence graph G(Φk) would give rise to a cycle of
length l < k in G, in contradiction to G having girth k.

Corollary 3.7. There is no Datalog program that solves the rooted triple consistency prob-
lem.

Other Applications of the Technique. Our technique to show Datalog inexpressibility
can be adapted to show that the following (closely related) problems cannot be solved by
Datalog as well.

• Satisfiability of branching time constraints [BJ03];
• The network consistency problem of the left-linear-point algebra [Due05, Hir97];
• Cornell’s tree description logic [Cor94, BK07];

All these three problems contain the following computational problem as a special case.

Problem 3.8 (Tree-Description-Consistency).

INSTANCE : A finite structure (V ;<, ||) where < and || are binary relations.
QUESTION: Is there a rooted tree T and α : V → V (T) such that if x < y then α(y) lies

strictly below α(x) in T , and if x||y then neither α(x) lies below α(y) nor
α(y) lies below α(x) in T?

To again apply Lemma 3.5, we first have to show that Tree-Description-Consistency can
be formulated as a CSP for a transitive ω-categorical structure Ω = (D;<, ||); this has
already been observed in [BN06]. This time, it is more convenient to directly construct Ω.
The domain D consists of the set of all non-empty finite sequences of rational numbers.
For a = (q1, q2, . . . , qn), b = (q′1, q

′
2, . . . , q

′
m), n ≤ m, we write a < b if one of the following

conditions holds:

• a is a proper initial subsequence of b, i.e., n < m and qi = q′i for 1 ≤ i ≤ n;
• qi = q′i for 1 ≤ i < n, and qn < q′n.

The relation || is the set of all unordered pairs of distinct elements that are incomparable
with respect to <. A proof that Ω is indeed 1-transitive and ω-categorical can be found

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 13

in [AN98] (Section 5). Since the signature is binary, we can again apply Lemma 3.5, and
have to find unsatisfiable instances of arbitrarily high girth.

Here we use the fact that Tree-Description-Consistency can simulate the rooted triple
consistency problem by a simple reduction [BK07]. We construct Ψk from Φk by replacing
each triple clause of Φk of the form xy|z by the three conjuncts uxyz||z, uxyz < x, and
uxyz < y, where uxyz is a newly introduced variable. It can be shown (see [BK07]) that this
transformation preserves (un-)satisfiability, and thus Ψk is unsatisfiable as well. Moreover,
the transformation is such that the girth of Ψk is not smaller than the girth of Φk. Finally, it
is clear that every conjunct in Ψk has an injective satisfying assignment. Hence, Lemma 3.5
applies, and CSP(Ω) cannot be solved by Datalog.

4. The Algorithm

In this section we show that the rooted phylogeny problem can be solved in polynomial
time if all clauses come from the following class T , defined as follows.

Definition 4.1. A disjunction ψ := x1y1|z1 ∨ · · · ∨ xpyp|zp is called tame if it is trivial or
if {xi, yi} = {xj , yj} for all 1 ≤ i, j ≤ p. The set of all tame clauses is denoted by T .

The algorithm we present in this section builds on previous algorithmic results about
the rooted triple consistency problem, most notably [ASSU81, HKW96]. One of the cen-
tral ideas for the polynomial-time algorithm for the rooted triple consistency problem
in [ASSU81] is to associate a certain undirected graph to an instance of the rooted triple
consistency problem. We generalize this idea to tame clauses as follows.

Definition 4.2. Let Φ be an instance of the rooted triple consistency problem with tame
clauses. Then FΦ := (V,E) is the graph where the vertex set V is the set of variables of Φ,
and where E contains an edge {x, y} iff Φ contains a clause xy|z1 ∨ · · · ∨ xy|zp for p ≥ 1.

The following provides a sufficient (but not a necessary) condition for unsatisfiability
of rooted triple formulas with tame clauses.

Lemma 4.3. Let Φ be an instance of the rooted phylogeny problem with tame clauses. If
FΦ is connected then Φ is unsatisfiable.

Proof. Let V be the set of variables in Φ. Suppose that there is a solution (T, α) for Φ. Let
r be the yca of α(V) in T (where α(V) is the set of all leaves in the image of V under α).
It cannot be that all vertices in α(V) lie below the same child of r in T , since otherwise
the child would have been above r = yca(α(V)), which is impossible. Since the graph
FΦ is connected, there is an edge {x, y} in FΦ such that α(x) and α(y) lie below different
children of r in T . Hence, there are z1, . . . , zp ∈ V and a clause xy|z1 ∨ · · · ∨ xy|zp in Φ. By
assumption, the yca of α(x) and α(y), which is r, lies strictly below the yca of α(x) and
α(zi) for some 1 ≤ i ≤ p, a contradiction to the choice of r.

To see that the condition is not necessary consider the following example.

Example 4.4. The rooted triple formula Φ = (ab|c ∧ bc|a ∧ ab|d) is unsatisfiable since the
first two literals cannot simultaneously be satisfied. But the graph FΦ is disconnected; it
has the two components {a, b, c} and {d}.

14 M. BODIRSKY AND J. K. MUELLER

Solve(Φ)
Input: A rooted triple formula Φ with variables V and clauses from T .
Output: ‘yes’ if Φ is satisfiable, ‘no’ otherwise.

If Φ is the empty conjunction then return ‘yes’
If FΦ is connected

return ‘no’
else

Let S be the vertices of a connected component of FΦ

If Solve(Φ[S]) is false or Solve(Φ[V \ S]) is false return ‘no’
else return ‘yes’
end if

end if

Figure 3: The algorithm for the rooted phylogeny problem for tame clauses.

Theorem 4.5. The algorithm Solve in Figure 3 determines whether a given instance Φ of
the rooted phylogeny problem for tame clauses is satisfiable. When m is the number of triples
in all clauses, and n is the number of variables of Φ, then the algorithm can be implemented
to run in time O(m log2 n).

Proof. If Φ is the empty conjunction, then Φ is clearly satisfiable, and so the answer of the
algorithm is correct in this case. The algorithm first computes a connected component S of
FΦ (we discuss details of this step in the paragraph about the running time of the algorithm);
if S = V , i.e., if FΦ is connected, then Lemma 4.3 implies that Φ is unsatisfiable.

Otherwise, we execute the algorithm recursively on Φ[S] and on Φ[V \ S]. If any of
these recursive calls reports an inconsistency, then Φ is clearly unsatisfiable as well: since if
there was a solution (T, α) to Φ, then (T, α|V) would be a solution to Φ[V]. Otherwise, we
inductively assume that the algorithm correctly asserts the existence of a solution (T1, α1)
of Φ[S] and of a solution (T2, α2) of Φ[V \ S].

Let T be the tree obtained by creating a new vertex r, linking the roots of T1 and
T2 below r, and making r the root of T . Let α be the mapping that maps x to αi(x) if
x ∈ L(Ti), for i ∈ {1, 2}. We claim that (T, α) is a solution to Φ, i.e., we have to show that
in every clause ψ of Φ at least one literal is satisfied. If ψ = (xy|z1 ∨ · · · ∨ xy|zp), then x
and y are in the same subtree Ti of T , since they are connected by an edge in FΦ. If all
variables of ψ lie completely inside S or completely inside V \ S, we are done by inductive
assumption, because (T1, α1) is a solution for Φ[S] and (T2, α2) is a solution for Φ[V \ S].
Otherwise, there must be a j, 1 ≤ j ≤ p, such that zj lies in a different component than
x and y. But in this case the yca of α(x) and α(y) lies strictly below r, which is the yca
of α(x) and α(zj). Hence, the literal xy|zj in ψ is satisfied. This concludes the correctness
proof of the algorithm shown in Figure 3.

We still have to show how this procedure can be implemented such that the running
time is in O(m log2 n). There are amortized sub linear algorithms for testing connectivity
in undirected graphs while removing the edges of the graph. This was used to speed-
up the algorithm for the rooted triple consistency problem [HKW96]. At present, the
fastest known algorithm for this purpose appears to be the deterministic decremental graph
connectivity algorithm of Holm, de Lichtenberg, and Thorup [THdL98], which has a query

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 15

time in O(log n/ log log n), and an update time in O(log2 n). We can use the same approach
as in [HKW96] and obtain an O(m log2 n) bound for the worst-case running time of our
algorithm.

5. Complexity Classification

This section is devoted to the proof of the following result.

Theorem 5.1. Let C be a set of rooted triple clauses that contains clauses that are not tame
(Definition 4.1). Then the rooted phylogeny problem for clauses from C is NP-complete.

Our proof of Theorem 5.1 consists of two parts. In the first part, we show that if C is
not a subset of T , then a certain Boolean split problem associated to C (defined below) is
NP-hard. In the second part we show that this Boolean split problem reduces to the rooted
phylogeny problem for C.

Definition 5.2 (split formula for Φ). Let Φ be a rooted triple formula. Then the split
formula for Φ is the Boolean formula obtained from Φ by replacing each literal xy|z by
(x↔ y) ∧ (z ∨ ¬z).

The purpose of the tautological second conjunct z ∨ z is to introduce the variable z,
which would otherwise not appear in the formula; this becomes relevant in the following.
If C is a class of triple clauses, we define B(C) to be the set of split formulas for the clauses
from C.

A solution to a propositional formula is called surjective if at least one variable is set to
true and at least one variable is set to false. The split problem for a set of Boolean formulas
B is the problem to decide whether a given conjunction of formulas obtained from formulas
in B by variable substitution has a surjective solution.

We will show that if C is a class of triple clauses that is not a subclass of T , then
there exists a finite subset C′ of C such that the split problem for B(C′) is NP-complete. In
the proof of this statement we use the following result, which follows from Theorem 6.12
in [CKS01], and is due to [CH97]. The notion of Horn, dual Horn, affine, and bijunctive
Boolean formulas are standard and introduced in detail in [CKS01]. Bijunctive formulas
are also known as 2-CNF formulas.

Theorem 5.3 (of [CH97]). Let B be a set of Boolean formulas. Then the split problem for
B is in P if all formulas in B are from one of the following types: Horn, dual Horn, affine,
bijunctive. In all other cases, B contains a finite subset B′ such that the split problem for
B′ is NP-complete.

We say that a Boolean formula ψ is preserved by an operation f : {0, 1}k → {0, 1} if for
all satisfying assignments α1, . . . , αk of ψ the mapping defined by x 7→ f(α1(x), . . . , αk(x))
is also a satisfying assignment for ψ.

Proposition 5.4. If C is not a subclass of T , then B(C) is neither Horn, dual Horn, affine,
nor bijunctive.

Proof. Let φ be a clause from C \ T . By construction the split formula ψ for φ is preserved
by x 7→ ¬x and is also preserved by constant operations. Moreover, it is known (and follows
from [Pos41]) that every Boolean formula that is preserved by ¬, contains the constants,
and is either Horn, dual Horn, affine, or bijunctive must also be preserved by the operation

16 M. BODIRSKY AND J. K. MUELLER

xor defined as (x, y) 7→ (x + y mod 2). So it suffices to show that ψ cannot be preserved
by xor.

Because φ is not from T and in particular non-trivial, there is a tree T and an injective
mapping from the variables V of φ to the leaves of T such that (T, α) is not a solution to
φ. Moreover, since the clause φ is not tame, it must contain triples ab|c and uv|z where
{a, b} 6= {u, v}. Consider the assignment β that maps x ∈ V to 0 if α(x) is below the first
child of the yca of α(V) in T , and that maps x to 1 otherwise (which child is selected as the
first child is not important in the proof). By construction, the assignment β does not satisfy
the split formula for ψ, since φ is not satisfied by (T, α). Observe that the assignment β1

that is obtained from β by negating the value assigned to a is a satisfying assignment for ψ,
since it satisfies the disjunct ((a↔ b) ∧ (c ∨ ¬c)) of ψ. The assignment β2 that is constant
0 except for the variable a which is assigned 1 is also a satisfying assignment for ψ, because
ψ satisfies ((u↔ v)∧ (w ∨¬w)). But since xor(β1(x), β2(x)) equals β(x) for all x ∈ V , this
shows that ψ is not preserved by xor, which is what we wanted to show.

We now turn to the second part of the proof of Theorem 5.1. The idea to reduce the
split problem for B(C) to the rooted phylogeny problem for clauses from C is to construct
instances Φ of the phylogeny problem for C in such a way that Φ is satisfiable if and only
if B(Φ) has a surjective solution. To implement this idea, we construct an instance of
the phylogeny problem Φ that fragments into simple and satisfiable pieces if B(Φ) has a
surjective solution.

Proposition 5.5. Let C be a finite class of triple clauses. Then the split problem for B(C)
can be reduced in polynomial time to the rooted phylogeny problem for clauses from C.

Proof. Note that the split formula for a trivial clause is a tautological Boolean formula.
Hence, if all clauses in C are trivial, then the split problem for B(C) is clearly in P and there
is nothing to show. Otherwise, we can assume that C contains the clause that just consists
of ab|c since this clause can be simulated by non-trivial clauses from C by appropriately
equating variables (Lemma 2.10).

Suppose we are given an instance of the split problem for B(C) with clauses ψ1, . . . , ψm

and variables V = {x0, . . . , xn−1}. We create an instance Φ of the rooted phylogeny problem
for C as follows. The variables U of Φ are triples (x, i, j) where x ∈ V , i ∈ {0, . . . ,m− 1},
and j ∈ {1, . . . , n − 1}. In the following, all indices of variables from V are modulo n.
Moreover, if m > 1 we will also write (x, i, n) for (x, i+ 1, 1) for all i ∈ {0, . . . ,m− 2}. The
clauses of Φ consist of two groups, Φ1 and Φ2.

• To define the first group Φ1 of clauses, suppose that ψi has variables y1, . . . , yq. Let
φi(y1, . . . , yq) be the triple clause that defines the Boolean relation from B(C) used in
ψi(y1, . . . , yq). By the assumption that C and B(C) are finite it is clear that φi can be
computed efficiently (in constant time). We then add the clause φi((y1, i, 1), . . . , (yq, i, 1))
to Φ1.
• The second group Φ2 of clauses has for all xs ∈ V , i ∈ {0, . . . ,m−2} (if m = 1 the second

group of clauses is empty), and j ∈ {1, . . . , n− 1} the clause

(xs, i, j)(xs, i, j + 1)|(xs+j , i, 1) .

Note that Φ2 only consists of rooted triples, and therefore FΦ2 is defined, and consists of
exactly n paths of length (n− 1)(m− 1).

We claim that Φ is satisfiable if and only if ψ1∧· · ·∧ψm has a surjective solution. First
suppose that Φ has a solution (T, α). Then the variables U of Φ can be partitioned into the

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 17

variables that are mapped via α below the left child of yca(α(U)), and the ones mapped
below the right child. Note that both parts of the partition are non-empty. Variables (x, i, j)
of U that share the first coordinate are in the same part of the partition due to the clauses
in Φ in the second group. Hence, the mapping that sends x ∈ V to 0 if (x, i, j) is mapped to
the first part, and that sends x to 1 otherwise is well-defined, and a surjective assignment.
It also satisfies all clauses ψ1, . . . , ψm, because of the first group of clauses in Φ.

Conversely, suppose that there is a surjective solution s for ψ1 ∧ · · · ∧ψm. Let S be the
subset of the variables V of Φ assigned to 0 by s, and consider the instances Φl := Φ[S]
and Φr := Φ[V \ S]. Since the assignment is surjective, there is a variable xp ∈ V that is
mapped to 1 and a variable xq ∈ V that is mapped to 0. Hence, for all i ∈ {0, . . . ,m− 1}
the clauses (xp, i, q − p)(xp, i, q − p + 1)|(xq, i, 1) from the second group are neither in Φl

nor in Φr, because they contain variables from both parts of the partition. Therefore, any
clause from the first group in Φl will be disconnected in the incidence graph G(Φl) from any
other clause in the first group in Φl. Since each clause from the first group is satisfiable, it
is easy to see that Φl has a solution (Tl, αl). The same statements holds for Φr; let (Tr, αr)
be a solution for Φr. Let T be the rooted tree obtained from Tl and Tr by creating a new
vertex t, linking the roots of Tl and Tr below t, and making t the root of T . Let α be the
common extension of αl and αr to all of U . Then (T, α) is clearly a solution to Φ.

Both groups of clauses together consist of m+ n(n− 1)(m− 1) many clauses, and it is
easy to see that the reduction can be implemented in polynomial time.

We conclude this section with a combination of the results above.

Proof of Theorem 5.1. As mentioned, the rooted phylogeny problem for C is clearly in NP.
Let C be a class of triple clauses that is not a subset of T . We prove NP-hardness as follows.
By Proposition 5.4, B(C) is neither Horn, dual Horn, affine, nor bijunctive. Theorem 5.3
asserts that there exists a finite subset B of B(C) such that the split problem for B is NP-
hard. This means that there is a subset C′ of C such that the split problem for B(C′) is
NP-hard. Proposition 5.5 shows that the rooted phylogeny problem for clauses from C′ (and
hence also for clauses from C) is NP-hard as well.

6. Concluding Remarks

We have shown that consistency of rooted phylogeny data can be decided in polynomial
time when the data consists of tame disjunctions of rooted triples. Our algorithm extends
previous algorithmic results about the rooted triple consistency problem, without sacrificing
worst-case efficiency. The class T of tame triple clauses that can be handled efficiently is
also motivated by another result of this paper, which states that any set of triple clauses
that is not contained in T has an NP-complete rooted phylogeny problem. Here we use
known results about the complexity of surjective Boolean constraint satisfaction problems.

We also show that no Datalog program can solve the rooted triple consistency problem,
using a pebble game that captures the expressive power of Datalog for constraint satis-
faction problems with infinite ω-categorical structures. In fact, our result follows from a
more general result that also applies to many constraint satisfaction problems outside of
phylogenetic reconstruction. We show that a constraint satisfaction problem for a structure
with a large automorphism group cannot be solved by Datalog if, roughly, for all k there
exists a unsatisfiable instance of girth at least k.

18 M. BODIRSKY AND J. K. MUELLER

The class of phylogeny problems studied in this paper has a natural generalization to
a larger class of computational problems, namely problems of the form CSP(Γ) where Γ
has a first-order definition in Λ, the ω-categorical relatively 3-transitive C-set introduced
in Section 3. This class contains several additional problems that have been studied in
phylogenetic reconstruction, for instance the quartet consistency problem [Ste92]. The
larger class also contains new problems that can be solved in polynomial time, and where
the split problem consists in finding surjective solutions to Boolean linear equation systems.
A complexity classification for this larger class of computational problems remains open and
is left for future research.

Acknowledgement

We would like to thank the reviewers for their helpful comments.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
[All83] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983.
[AN98] Samson Adepoju Adeleke and Peter M. Neumann. Relations related to betweenness: their structure

and automorphisms, volume 623 of Memoirs of the AMS 131. American Mathematical Society,
1998.

[ASSU81] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest common
ancestors with an application to the optimization of relational expressions. SIAM Journal on
Computing, 10(3):405–421, 1981.

[ASY91] F. Afrati, S.S.Comadakis, and M. Yannakakis. On Datalog vs. polynomial time. In 21st ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 113–126, 1991.

[BD08] Manuel Bodirsky and Vı́ctor Dalmau. Datalog and constraint satisfaction with infinite templates.
An extended abstract appeared in the proceedings of STACS’06. The full version is available online
at arXiv:0809.2386 [cs.LO], 2008.

[Big98] Norman Biggs. Constructions for cubic graphs with large girth. Electronic Journal of Combina-
torics, 5, 1998.

[BJ03] Mathias Broxvall and Peter Jonsson. Point algebras for temporal reasoning: Algorithms and
complexity. Artificial Intelligence, 149(2):179–220, 2003.

[BJK05] A. Bulatov, P. Jeavons, and A. Krokhin. The complexity of constraint satisfaction: An algebraic
approach (a survey paper). In: Structural Theory of Automata, Semigroups and Universal Algebra
(Montreal, 2003), NATO Science Series II: Mathematics, Physics, Chemistry, 207:181–213, 2005.

[BK07] Manuel Bodirsky and Martin Kutz. Determining the consistency of partial tree descriptions.
Artificial Intelligence, 171:185–196, 2007.

[BK10] Manuel Bodirsky and Jan Kára. A fast algorithm and Datalog inexpressibility for temporal rea-
soning. ACM Transactions on Computational Logic, 11(3), 2010.

[BN06] Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogeneous tem-
plates. Journal of Logic and Computation, 16(3):359–373, 2006.

[Bod08] Manuel Bodirsky. Constraint satisfaction problems with infinite templates. In Heribert Vollmer,
editor, Complexity of Constraints (a collection of survey articles), pages 196–228. Springer, LNCS
5250, 2008.

[Bry97] David Bryant. Building trees, hunting for trees, and comparing trees. PhD-thesis at the University
of Canterbury, 1997.

[BS95] D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Advances in Applied
Mathematics, 16:425–453, 1995.

[Cam90] Peter J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press, Cambridge,
1990.

THE COMPLEXITY OF ROOTED PHYLOGENY PROBLEMS 19

[CH97] Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of generalized satisfiability
problems. Informatique Thèorique et Applications, 31(6):499–511, 1997.

[CKS01] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications 7,
2001.

[Cor94] Thomas Cornell. On determining the consistency of partial descriptions of trees. In Proceedings
of the ACL, pages 163–170, 1994.

[Dec92] Rina Dechter. From local to global consistency. Artificial Intelligence, 55(1):87–108, 1992.
[Dek86] M. C. H. Dekker. Reconstruction methods for derivation trees. Masters thesis, Vrije Universiteit,

Amsterdam, 1986.
[Due05] Ivo Duentsch. Relation algebras and their application in temporal and spatial reasoning. Artificial

Intelligence Review, 23:315–357, 2005.
[EF99] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, Berlin, Heidelberg, New York,

1999. 2nd edition.
[FV99] Tomás Feder and Moshe Vardi. The computational structure of monotone monadic SNP and

constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing,
28:57–104, 1999.

[Gro94] Martin Grohe. The structure of fixed-point logics. PhD-thesis at the Albert-Ludwigs Universität,
Freiburg i. Br., 1994.

[Hir97] R. Hirsch. Expressive power and complexity in algebraic logic. Journal of Logic and Computation,
7(3):309 – 351, 1997.

[HKW96] Monika Henzinger, Valerie King, and Tandy Warnow. Constructing a tree from homeomorphic
subtrees, with applications to computational evolutionary biology. In Proceedings of the 7th Sym-
posium on Discrete Algorithms (SODA’96), pages 333–340, 1996.

[Hod93] Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
[Imm98] N. Immerman. Descriptive Complexity. Graduate Texts in Computer Science, Springer, 1998.
[KV95] Phokion G. Kolaitis and Moshe Y. Vardi. On the expressive power of Datalog: Tools and a case

study. Journal of Computer and System Sciences, 51(1):110–134, 1995.
[KV98] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint satis-

faction. In Proceedings of PODS, pages 205–213, 1998.
[Mac77] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.
[Mon74] Ugo Montanari. Networks of constraints: Fundamental properties and applications to picture

processing. Information Sciences, 7:95–132, 1974.
[NSW00] Meei Pyng Ng, Mike Steel, and Nicholas C. Wormald. The difficulty of constructing a leaf-labelled

tree including or avoiding given subtrees. Discrete Applied Mathematics, 98:227–235, 2000.
[Pos41] Emil L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematics

studies, 5, 1941.
[Ste92] Michael Steel. The complexity of reconstructing trees from qualitative charaters and subtrees.

Journal of Classification, 9:91–116, 1992.
[THdL98] Mikkel Thorup, Jacob Holm, and Kristian de Lichtenberg. Poly-logarithmic deterministic fully-

dynamic graph algorithms I: connectivity and minimum spanning tree. Technical report, Depart-
ment of Computer Science, University of Copenhagen, 1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Phylogeny Problems
	3. Datalog
	4. The Algorithm
	5. Complexity Classification
	6. Concluding Remarks
	Acknowledgement
	References

