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ABSTRACT. A construction of fully abstract typed models for PCF and PCF+ (i.e., PCF
+ “parallel conditional function”), respectively, is presented. It is based on general notions
of sequential computational strategies and wittingly consistent non-deterministic strate-
gies introduced by the author in the seventies. Although these notions of strategies are
old, the definition of the fully abstract models is new, in that it is given level-by-level in
the finite type hierarchy. To prove full abstraction and non-dcpo domain theoretic prop-
erties of these models, a theory of computational strategies is developed. This is also an
alternative and, in a sense, an analogue to the later game strategy semantics approaches
of Abramsky, Jagadeesan, and Malacaria; Hyland and Ong; and Nickau. In both cases
of PCF and PCF+ there are definable universal (surjective) functionals from numerical
functions to any given type, respectively, which also makes each of these models unique
up to isomorphism. Although such models are non-omega-complete and therefore not con-
tinuous in the traditional terminology, they are also proved to be sequentially complete (a
weakened form of omega-completeness), “naturally” continuous (with respect to existing
directed “pointwise”, or “natural” lubs) and also “naturally” omega-algebraic and “nat-
urally” bounded complete—appropriate generalisation of the ordinary notions of domain
theory to the case of non-dcpos.

1. INTRODUCTION

LCF, a Logic for Computable Functions, was introduced in 1969 by Scott in a seminal
paper [31] (published only in 1993). Its term language PCF—a typed version of the
lambda calculus over integers and booleans with the least fixed point operator Y—was
further considered in the middle of the seventies by Plotkin [25], Milner [21], and the au-
thor [27, 28, 29, [30]. In particular, the expressive power of PCF in the framework of a
standard continuous model {D, } for PCF was described in terms of (sequential) computa-
tional strategies as the Theorem: “definable in PCF = sequentially computable” [28]. Also,
a precise correspondence between operational and denotational semantics in various formu-
lations (and even an untyped version) was obtained in [29] (and independently, in somewhat
different terms, by Hyland 1976, Plotkin 1977 and Wadsworth 1976). The full abstraction
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property of the standard continuous model for PCFt = “PCF + parallel OR (or paral-
lel if)” (by definability of all finite continuous functionals) was stated, as well as the fact
that PCFTT = “PCF + parallel OR + 37 defines all computable continuous functionals
(Plotkin [25] and, without publishing proofs, the author [27, 28]). Degrees of parallelism for
continuous finite type functionals with various examples were introduced in [27] (see also
e.g. [0, 34]).

A first, essentially syntactic, construction of a continuous fully abstract model for PCF
was given in 1977 by Milner [21]. The characteristic property of fully abstract models is as
follows:

V ground type program contexts C ([C[M]] C [C[N]]) = [M] C [N]

which says (for ‘=" in place of ‘C’) that, if two program fragments behave equivalently in all
computational contexts, then they should have the same denotational semantics. The main
reason for focusing particular attention on this definition and on Milner’s model is that for
the standard continuous model {D,} and PCF this natural property of the denotational
semantics does mot hold. As mentioned above, PCF defines (exactly) all sequentially
computable functionals, whereas the standard model contains some ‘extra’ elements, such
as ‘parallel’ disjunction OR € Dy ., and ‘parallel’ existential quantification 3 € D(,_,)_,-
This is essentially the reason for the violation of full abstraction. But although Milner’s fully
abstract model satisfies desirable properties of continuity, it is not a satisfactory domain
theoretic characterization of sequentiality due to the existence in it of non-sequential limit
functionals (Normann [23]).

Also, having a syntactic nature, the definition of this model was considered as not very
satisfactory in comparison with the standard model of all continuous functionals. Non-
syntactic game semantic approaches to defining fully abstract models were developed by
Abramsky, Jagadeesan, Malacaria [1]; Hyland, Ong [11] and Nickau [22]. Various approaches
to sequentiality and full abstraction were considered also by Kahn and Plotkin [13], Berry
and Curien [4], Bucciarelli and Ehrhard [6, [7]; Curien [9]; Jung and Stoughton [12]; O’Hearn
and Riecke [24]; Marz, Rohr and Streicher [19, 20]; Sieber [32], Cartwright and Felleisen [§]
and others. Unlike this paper some of them consider more general sequentiality concepts
going outside PCF and even outside the class of monotonic functionals such as sequentially
realizable functionals (equivalent to some other approaches implicitly mentioned above); a
unifying approach is presented by Longley [17].

Hyland and Ong [I1] identified a very close analogy between the old approach to se-
quentiality of functionals via computational strategies in [28] and their game theoretic
framework. One of the goals of this paper is to demonstrate how computational sequential
strategies could define a fully abstract model {Q4} for PCF inductively, level-by-level in the
finite type hierarchy in a direct computational way corresponding to the original definition
and characterization of higher type sequentiality in [29, 28]. (The latter was applied only
to the standard, non-fully-abstract continuous model {D,} containing not only sequential
functionals.) It is important to stress the straightforward, inductive character of the def-
inition of {Q,} which may be compared, at least partly, with the inductive definition of
the continuous model {D,}. Assuming, by induction, that we have the class of sequential
functionals of types up to level [, we define what are sequential functionals of the level [+ 1
as those computable by sequential strategies. In this respect our approach differs from the
game-semantic one based on a quotient construction for all types simultaneously. However,
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proving the essential properties of the inductively defined model {Q,} of hereditarily se-
quential functionals is not so direct and requires the quite involved theory of computational
strategies and a quotient construction Q~Q giving an alternative, non-inductive definition
of the same model. Reference in the inductive step of the definition of Q to all sequential
functionals of the previous levels also reflects the complicated character of this inductive
definition. A finitary version referring only to the immediate subtypes of the given type
should not be possible due to the undecidability result of Loader [16].

However, the definition of Q is sufficiently straightforward, although involving some
technical complications to make it mathematically correct and, additionally, to crucially
simplify the correctness proof of the induction step.

As in [I], “we want to capture just those sequential computations in which the dif-
ferent parts or modules interact with each other in purely functional fashion” and, as in
[11], “without recourse to the syntax or operational semantics of the language” (PCF).
More precisely, we will use computability by sequential strategies to define (hereditarily)
sequential functionals. Although PCF is a partial case of the general concept of a system
of strategies, our definitions will not be reduced simply to doing things in PCF. We will
work in the quite general terms of abstract computability in higher types in a “functional
fashion”, by using “interpreted computations” (involving applicative terms) in the style
of denotational semantics, to define a fully abstract model for PCF. Also note that the
very term “sequential” primarily assumes “sequentially computable”. That is why involving
some kind of computability approach at the level of denotational semantics is quite natural.
In fact, we will also provide an alternative, generalized operational semantics of strategies—
not only for ground types—and demonstrate that it is coherent with the denotational one
(the approach originally presented in [29] but not in the “fully abstract framework” as in
the present paper.) This distinction together with the interplay between operational (((-)))
and denotational ([-]) semantics ([{(A))] = [A] for arbitrary finite type combinations of
strategies) is one of the crucial points of this paper.

On the other hand, we read in [I1] that: “we do not have a proper definition of higher-
type sequentiality from first principles”. There could probably be various philosophical
views concerning what are these “first principles”. However, for the simpler case of non-
higher-type sequentiality, we see that its definition (say, for the conditional function if-
then-else), reduces to the existence of a sequential strategy of computation of a function
by asking of an Oracle the values of the arguments—here of a basic type. For higher
types, we just extend this idea by allowing more general queries to the Oracle—applicative
combinations (of a basic type) of the arguments and strategies. This approach recalls and
generalizes that of Kleene [14, [15] for Turing computability of finite type functionals and is
essentially an extensional one, despite its somewhat intensional-computational features, and
can be also considered as a natural generalisation both of combinators and the conditional
operation if-then-else having an evidently functional/extensional character. Moreover,
this allows us to characterise, in abstract computational terms, the expressive power of
PCF both in the standard model {D,} of all continuous finite type functionals [28] and
in the fully abstract model {Q,} considered in this paper where all functionals prove to
be definable in PCF + “all (one place numeric) functions of the type ¢+ — 7. By the
way, the ordinary concept of continuous functions over dcpo domains, usually considered as
non-intensional, is nothing more than a very abstract version of the idea of computability:
fx = |, fan for ¢ = ||, x, with fz of a basic type means that the value of fz can
be “computed” by extracting “finite” information x,, from the argument x; we abstract all
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other details of a computation process. That is, it has some hidden intensional features. We
should have just a natural balance, or interplay, between “intensional” and “extensional”.
For computational strategies the former aspect corresponds to the operational semantics of
strategies, and the latter is represented by the concept of interpreted computations leading
to denotational semantics of strategies and to the extensional inductive definition of the
fully abstract model of sequentially computable functionals.

Let us stress again, as this is an important point: denotational semantics of strategies,
and thus the corresponding inductive definition of the fully abstract model, is based on
interpreted computations in terms of “real” (applications of) finite type functionals. There-
fore it has, despite computations involved, rather an extensional character, whereas the
operational semantics of (combinations of) strategies is based on purely “syntactical”, non-
interpreted computations in terms of strategies only (like in terms of the language PCF
only) and without invoking “real” finite type functionals.

The main drawback of our approach, in comparison with game-theoretical ones, is the
lack of a construction for a general category (not referring to finite types) like that of games
with arrows representing suitable game strategies. However, this more concrete view allows
us to construct, inductively, a monotonic order extensional fully abstract model for PCF, in
a straightforward and natural way. Unfortunately, this inductive definition contrasts with
the proof of the main domain-theoretic properties of QQ which involves a significant amount
of machinery of computational strategies, including an isomorphic quotient construction
{Qa} = {Q4} (reflected by the tilde symbol). In comparison, the game theoretic approach
is based on a quotient construction in the very definition of the fully abstract model. In
this respect, it looks more intensional.

It turns out that this model consists only of continuous functionals with respect to
existing “pointwise”, or “natural” lubs. We need to consider this generalized and novel
version of continuity, called natural continuity, because the poset of sequential functionals
of a given type (starting with the level 3) is not w-complete, as was recently shown by
Normann [23], and therefore this model is not isomorphic to the ‘limit-term’ model in [21].
Note that the model {Q,} satisfies the corresponding uniqueness property (the property
formally different from, but similar to, that of the continuous fully abstract model of Milner)
and is therefore isomorphic to the game models defined in [T, [11]. This leads to a generalized
concept of natural non-depo domains most appropriate for describing the properties of
the models of finite type functionals considered in this paper which will be shown to be
sequentially complete (a weakened form of w-completeness), naturally continuous and also
naturally w-algebraic and naturally bounded complete. This domain theoretic framework
plays a crucial role in this paper and can serve as a kind of substitute for the categories of
games mentioned above.

The more general concept of wittingly consistent non-deterministic computational stra-
tegies defined in [30] (Part II, §4) is also successfully used in the current paper to construct
the fully abstract model {W,} = {W,} for PCF* satisfying definability properties such
as the fully abstract model {Qg} = {Q4} for PCF discussed above. This gives a positive
answer to the question stated in [I8] (before Proposition 6):

“It is worth remarking that there is no corresponding definability result for
PCF™. It may well be that there can be none; it is not at all clear, however,
how to even formulate a precise statement to that effect”.
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Although this question was seemingly related to the possibility of extending the game
semantics results for PCF to PCF™, our approach via computational strategies is a natural
and quite general alternative with some analogy to the game approach and might probably
lead also to a corresponding extended game semantics solution. Note also that the fully
abstract model {W,} for PCF™ is also not w-complete (even at the level 2)—this is clear
from the known result that 3 is not definable in PCF*. But it is wittingly-w-complete
and satisfies all the above mentioned generalized, “natural” versions of (non-dcpo) domain
theoretic properties.

Organization. We start with the generalized, “natural” version of non-dcpo (finite type)
domain theory in Section 2l We define computational sequential strategies in Section [l
and their denotational semantics on the base of interpreted computations in Section [l
Then hereditarily sequential functionals are defined inductively (level-by-level) in Section [5l
Sections [(l and [7l are devoted to demonstrating the full abstraction property of the resulting
model Q = @ for PCF. The definability of a universal functional U, : (¢ — ¢) — «a for each
type «a is also stated, but not proved (see the details in [28]). Finitary ranked and other
finite versions of strategies are introduced computing exactly all “naturally” finite sequential
functionals to demonstrate the “natural” continuity of Q (implying other “natural” domain
theoretic properties of @) which is actually used in the proof of the full abstraction property
of this model. The class of finitary strategies is also shown to be effectively closed under
application (on the base of a kind of normalizability property). Section 8 is devoted to a
sketchy definition (by a very close analogy to the case of Q = Q and PCF) of a fully abstract
model W 22 W for PCFT based on the concept of wittingly consistent non-deterministic
strategies. Unlike the case of PCF, some details are given (but still with a reference to the
old approach for PCF [28]) of a construction in PCF™ of a universal (surjective) functional
Ul :(t— 1) — afor each type W,. It is also demonstrated in Section [8.2] that the model W
is not w-complete at level 2. Section [0 contains some concluding remarks and directions for
further research. Finally, Appendix[Al presents an explicit construction of the typed version
of a universal system of sequential strategies (@, Q) from [30] which is used in previous
sections for constructing Q

2. DOMAINS AND TYPES—A GENERALISATION

2.1. Basic Definitions. Let us recall and generalize several well-known notions from do-
main theory (see, for example, [2, 20]), emphasizing some more subtle points related with
their usage in this paper. Importantly, some of the known terms here have a meaning
different from the traditional one. The goal is to find a version of domain theory most
appropriate for the case of sequential (and other kinds of) functionals.

The term poset means a set D partially ordered by an approzimation relation Cp. Any
poset D with the least (bottom, or undefined) element L will be called a domain. If A is any
set, then A;| = AU{L} is the corresponding flat domain where z C y < (x = L)V (x = y).
A nonempty set X C D is called directed if, for any z,y € X, we have £ C z and y C z for
some z € X. The least upper bound (lub) of a set X is denoted by | | X. If all directed sets
have a lub in D then it is called a directed complete poset, or briefly, dcpo. However, the
domains we will consider are typically not assumed to be dcpos. An element a of a domain
(not necessarily a dcpo) is called finite (or compact) if a C | | X implies 3z € X.a C x for
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any directed set X for which | | X exists. All elements of a flat domain are evidently finite.
A domain D in which there are only countably many finite elements and each element z € D
is a directed lub of all its finite approximations is called w-algebraic. A monotonic mapping
f between domains is called continuous if it preserves existing lubs | | X of directed sets:
Ff(LUX) =] f(X) (that is, if | | X exists then | | f(X) is required to exist and satisfy this
equality). Let (D — E) or D ™% E denote the set of all monotonic mappings ordered
pointwise: f C g <= Vz € D(fzx C gx). For dcpos, let [D — E] denote the set of
continuous mappings also ordered pointwise. (We can suitably extend this denotation also
for some special kinds of non-dcpo domains, called natural domains, by taking [D — E] to
be the set of all naturally continuous mappings; see Section 2:21) If any two upper bounded
elements ¢, d have least upper bound cld in D then D is called bounded complete. A domain
is called finitely bounded complete if, in the above, only finite ¢, d, and therefore ¢ Ll d, are
considered. If D is an algebraic dcpo then it is bounded complete if, and only if, it is finitely
bounded complete. In fact, for dcpos bounded completeness is equivalent to existence of a
lub for any bounded set, not necessarily finite. Algebraic and bounded complete dcpos are
also known as Scott domains or as complete fy-spaces of Ershov [10].

The above definitions are well-known and quite natural in the context of dcpos. We
extended them to non-dcpos rather as a formal intermediate step before introducing in Sec-
tion so called “natural” versions of these notions. The general idea is that nonexistence
of lubs of some directed sets is an indication that even existing lubs might be non-natural
(existing “by a wrong reason”), and therefore the definitions of continuity, finite elements,
etc. should be relativized to “natural” lubs only.

Types (or functional types) are defined as formal expressions built inductively from some
basic types, in our case ¢ and o (with the generic name Basic-type), by the arrow construct:
if « and 3 are types then (o« — f3) is a type. We usually write oy — a9 — +-+ — a, — 3 or
a1,Q,...,a, — (3 instead of (g — (ag — (+-+ — (ay, — B)-++))). The level of any type
a=(ai,...,q, — Basic-type) is defined as

level(a) = max{1l + level(e;) | 1 <i < n}
and, in particular, level(Basic-type) = 0. The arity (or the number of arguments) of « is
the number n above.

For any type o we define inductively, as usual, the corresponding (standard) domain D,
of all continuous functionals of type o with D, = B, D, = N, and D,_g = [Dq — Dg],

where B = {true,false} and N = {0,1,2,...}. All these D, are w-algebraic, bounded
complete dcpos. More general,

Definition 2.1. A (typed monotonic order extensional applicative) structure {E,} is a
system of domains (with the least element L, in each) such that for any types a and [
there is a monotonic mapping App,g : Ea—p X Eo — Eg (with App(f,z) abbreviated as
fxand ((--- (fx1)z2) - - z,,) abbreviated as fxj - --x,) satisfying

(i) Lampar = 1Lgforall z € E,, and

(ii) the extensionality condition: for all v, 8 and f, f' € E,_.3,

fCf < Voe E,(fzC fx).

Elements of E, are called functionals of type . An extensional structure {E,} is called a
A-model if it is sufficiently rich to contain all A-definable functionals.
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For the closure under A-definability we can equivalently require that {E,} contains
combinators Sopy : (@ = (8 — 7)) — (0« = ) = (@ = 7)) and Ko : o — (8 — «) for
all types a, 3,7 satisfying identities Szyz = x2(yz) and Kuv = u for all z,y, z,u,v with
S, K, z,y, z,u,v of appropriate types, omitted for brevity. We will also always assume that
E, =D, =N, and FE, =D, = B, . To simplify the exposition, let us take that B, C N |
with 1, = 1,, true = 1 and false = 0 and, hence, avoid using the Boolean type o at all
in the “official” exposition. (However, we will use o in some examples for the convenience.)
Then Basic-type will mean just ¢. Although in general the sets E,_,, and (E, — E;) may
even not intersect, there is the natural embedding E,_,, — (E, — E;) induced by the
application operation. Moreover, without restricting generality we may also consider that
the set

Eo = E(a,,...an—1) C (Bay X -+ X By, — E,) (2.1)
consists of some monotonic mappings of the type shown, ordered pointwise,

fE < Va(fzC, f'2),
and for all f € £, and 1 € E,,

fx1 = Axg, ..., xpn. f(T1,22,...,Zp) € Egy X -+ X By, — E, (2.2)

is the “residual” map. Indeed, any {E,} satisfying (2.1)) and (2.2 and containing constant
undefined functions 1 4_,, = AT%.L, is a monotonic, order extensional applicative structure.
It is clear that such an {E,} is a restricted class of monotonic finite-type functionals.

Definition 2.2. A structure {E,} (with E, not necessarily a dcpo) is called continuous if
for each type a = (a1, a9, ..., — ¢) and variables f : a and T : &, the full application map
ME.fT: By X Eqy X Eqy X -+ X By, — E, is continuous. Equivalently, we can require the
continuity of the application maps of two arguments Afz1.fz1: By X Eoy — Ea,,.ap—-

2.2. Natural Non-dcpo Domains. More generally,

Definition 2.3. In any monotonic, order extensional applicative structure a pointwise lub
[#), fi of an arbitrary (not necessarily directed) family of functionals (of the same type) is
the ordinary lub | |, f;, in the case of the basic type, and, for higher types, it is the ordinary
lub which is also required to satisfy, inductively, the pointwise identity (I, fi)z = #;(fiz)
(with [#),(fiz) also pointwise) for all x of appropriate type.

Thus, f =4, fi; implies f = | |, fi, but, in general, not vice versa. That is, 4 is a restricted
version of | |. (See an example below.) Equivalently, we may require from | |, f; the identity
(L, fi)x = LJ;(fiz) in the basic type. In fact,

=7 iff fz=| |(fz) for all 7, (2.3)
(2 (]
assuming fZ is of the basic type. The concept of pointwise lub is quite natural and could
also be called just union, or natural lub. This is even the ordinary set theoretic union if
to identify monotonic functionals of the type o = (a1, a2, ..., ar — ¢) with corresponding
graph subsets of F, X Ey, X - - X E,, xN. In this case C also coincides with the set theoretic
notion of inclusion C. Respectively, non-pointwise lubs are considered as non-natural in this
sense. (However note that neither finite nor also “naturally” finite functionals considered

below are necessarily represented as finite graph sets in the above sense.)
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Example 2.4. To illustrate the above definition, consider a simple example in {Q,} (the
monotonic, order extensional A-model of sequential functionals to be defined later) of a
finite non-natural lub of two elements. Define two first order sequential functions O;(z1, z2),
i = 1,2, as 0 if the corresponding z; = 0, and L otherwise. Then Oy U Oy = Ax1,29.0 is
the constant zero function in Q, and this is not a natural lub. The natural lub, if it would
exist in @Q, should satisfy (O1HO2)(x1,22) =0 if 21 = 0 or 9 = 0, and = L otherwise.
But this is not a sequential function, that is, it lies outside of Q.

Definition 2.5. A structure {E,} is called naturally continuous if for all types « =7 — o
and f € FE, the map Ax.fz : E, — E; preserves directed natural lubs of the arguments
whenever they exist: f(l, x;) = |, fa;. That is, if the directed natural lub to the left exists
then the natural lub to the right exists too, and the equality holds.

We can require, equivalently, for each type @ = (a1, a9,...,a; — ¢) and f € E,, that the
map AZ : @.fZ : Eq, X Eq, X -+ X E,, — E, is naturally continuous (preserves natural lubs)
in each argument. Evidently, natural continuity of fx or fZ in f is automatically satisfied
by the definition of natural lub as the pointwise one. Also, in a continuous structure (that
is, with continuous full application maps) all existing directed lubs are natural (pointwise),
and therefore any continuous structure is naturally continuous. Further,

Definition 2.6. Naturally finite functionals are defined like the ordinary finite ones, but
by using the natural lubs.

Each finite functional is also naturally finite (but probably not vice versa; see the discussion
below).

Definition 2.7.

(a) A structure {E,} is called naturally w-algebraic if each of its elements is a directed
natural lub of naturally finite elements, and there are only countably many naturally
finite elements in the structure.

(b) It is called naturally bounded complete if any two upper bounded naturally finite el-
ements have a lub (not necessarily a natural lub, but evidently also naturally finite
element).

For any naturally algebraic and naturally bounded complete structure {E,} the sets of the
form a = {x € E, | a C z}, for a naturally finite, constitute a base of a (Ty-) topology
in each F, which makes F, satisfying this definition a (non-necessarily complete) fy-space
of Ershov [I0]. Note that open sets in this topology are exactly those naturally Scott open
(defined as usual, but with respect to the natural directed lubs).

By using Lemma 2111 presented below, we will prove in Theorem [.13] the natural
continuity and the last two properties (a) and (b) defined above for the special case of
the model of sequential functionals {Q,}. That Q is not a dcpo was actually shown by
Normann [23].

Hypotheses 2.8. It seems quite plausible that in {Qy} there exist

(1) a directed non-natural lub,

(2) a naturally finite, but not a finite functional (being a proper directed lub),

(3) a non-continuous (but naturally continuous) functional, and

(4) a naturally finite (and naturally continuous), but not a continuous functional.

We could also expect that
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(5) a continuous (and therefore naturally continuous) lambda model exists whose higher type
domains are not dcpos.

Note 2.9.

(a) We see that these hypotheses reveal a terminological problem (“naturally finite, but not
finite”, etc.). Properly speaking, these are naturally finite functionals which are most
naturally considered as full-fledged finite objects in the framework of Q. Moreover,
together with naturally continuous functionals, these concepts give rise to an appropri-
ate non-dcpo generalisation of continuous, w-algebraic and bounded complete A-models
(originally considered over dcpos). This will be seen from the following considerations
and Lemma 211l The more traditional definitions of continuous and finite functionals
in terms of the ordinary directed lubs prove to be not very adequate in the framework
of non-dcpos.

(b) Another important point is that, being based on types, the natural lub (4 as well as
other related “natural” concepts are not purely order-theoretic ones. However, one can
give an abstract definition of natural (non-dcpo) domains with a primitive partially
defined operator [ : 2” -+ D in each domain which is a restricted version of | | and
has appropriate postulated properties. Then the special case of these natural domains
satisfying the conditions (a) and (b) of Definition 2.7 corresponds exactly to the fy-spaces
of Ershov [10]. More detailed and general discussion on this generalized theory of non-
dcpo domains and the mentioned correspondence requires a separate consideration to
be presented elsewhere. It is also worth noticing that these domains appear in our
presentation as natural non-dcpo domains rather than fy-spaces. They prove to be
fy-spaces only a posteriori by using quite involved technical theory of computational
strategies and applying Lemma [2.17] below.

2.3. Finitely Restricted Functionals.

Conditions on {E,}. For the rest of Section [ let {E,} be any monotonic, order ex-
tensional A-model which contains the first order equality predicate x = y (monotonic
and strict in = and y) and the ordinary (monotonic and sequential) conditional function
if x then y else z for the basic type (and hence for all types by A-definablity).

Recall that a monotonic function ¥ : £ — FE is called a projection if Yo C x for all
r € E, and VoW = W¥. We say also that V¥ is a projection from E onto its range C E
which is also the set of all fixed points of W. For any two projections, ¥ C ¥’ iff range(¥)
C range(¥’). Note that Uz is the largest C-approximation to x from the range of W.

Now, we will follow Milner [21], slightly simplifying and generalizing to the “natural” non-
dcpo case.

Definition 2.10. Define projections \I/[o]f I E, — E, for all types and any k > 0 by letting
ol g, 2 g B = (1.0,1,...,k},
il = o fould,
EF — Range(Wl*),

Denote zfl = \IJ([f }a:. Elements z!*! in E([xw} = Uk Egﬂ C FE, are called finitely restricted.
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These all are monotonic sequences on k. That \Ifgk] and hence all other \I/([f}_w are (repre-

sentable by) elements of the A-model (we write ol e E,_.,) follows from existence in it of

both = and if. By induction on types, each E([xk} is a finite set since zFly = (a:y[k})[k] at all
types. Also, the application of k-restricted functionals to any argument is k-restricted. In
particular, each finitely restricted functional ¢ has a tabular representation

aQ,---,an—1

or = [bo""’b"*l} T = |_| b; where @a; = b; and a;, b; are finitely restricted.  (2.4)

a;Cx
%)

In each model {E, } (over E, = N ) satisfying the above conditions there are only countably
many finitely restricted elements. This is another approach to the finiteness of higher type

functionals. Without assuming any further conditions on {E,}, each \ng ] considered as a

map \I’[O{C } : B, — E, is naturally continuous and, moreover, preserves all existing natural
lubs (not necessarily directed). This follows by induction on the types:

(o (g £:) o vl = wB((Y £ (ela) = el (fi(ela)) =
L Wl (i) = (@ o fi 0 wz) = (4@ o fi 0 W)z,

(2 3 3

It also follows that each finitely restricted element z¥! is naturally finite: ¥l C |¢) Z for a
directed set Z implies z!*! T 4{zl¥] | z € Z} = 2[¥] C 2 for some z by natural continuity of
Uk and because E([xk} is finite.

Moreover, if the model is naturally continuous then x = 4, z¥ holds for all z. Indeed,
assuming by induction on types that § = W4, 5%, we have zg = | |, (zg!*) = | |, (zgF)¥!
L, (z!¥1g). Thus 7 = ¥, zl¥ by @3), as required.

Finally we note that, without any further assumptions on the model, any two upper
bounded finitely restricted elements d, e have a (not necessarily natural) lub dlle which is also
finitely restricted. Indeed, it can be obtained as the greatest lower bound M{z* | z 3 d, e}

for any fixed k such that d,e € E([xk} because the glb of any finite nonempty set is definable
from if and =.

The following Lemma is a generalisation of the Algebraicity Lemma of Milner in [21]
to the case of non-dcpos and to the “natural” case, but formulated for simplicity only for
the models with the numerical basic values E, = NN . It clearly demonstrates that the
generalisations introduced are quite adequate and natural.

Lemma 2.11. Let {E,} be any monotonic, order extensional A-model, with E, = N,
which contains first order equality and the conditional. Then

(a) this model is naturally continuous if, and only if,

(*) for any type o = an, ..., — ¢ and elements f € Ey and T € E5, fT = fd holds
for some finitely restricted d C Z;

(b) if the model is naturally continuous then (i) the naturally finite elements of each E,
are exactly the finitely restricted ones, (ii) {Eq} is naturally w-algebraic, and (iii) it is
naturally bounded complete;

(c) repeats (b), but with “naturally” omitted.

Proof.
(b) follows easily from the above considerations on projections W,
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(c) It suffices to recall that continuous structures are also naturally continuous, and the
concepts of directed lubs, and hence of finite functionals in these models, are equivalent
to their “natural” versions. Note that we do not assume here that the F, are dcpos.

(a) “If” follows from natural finiteness of all ¥, “Only if” follows from (b). O

The clause (a) of this Lemma (not considered in [21I]) is used in Section [7.2.1] below to
show that the model of sequential functionals {Q, } is naturally continuous and satisfies the
conditions (i)—(iii) from (b). In the application of this Lemma to {Q4} the crucial point is
that (*) in (a) implies all the essential domain theoretic properties holding for this model.
Moreover, we will also show in Theorem [6.0] (b) that the model {Q,,} is also sequentially
complete in the sense that it is closed under taking natural (pointwise) lubs of a special
class of increasing sequences (determined by sequential strategies). For example, in {Q4}
we have the natural lub |#,, f"L giving the least fixed point of f : @ — « for all types a.

2.4. On Efficiency of Naturally Finite Functionals. For the case of the standard con-
tinuous model {D,}, the tabular representation (2.4)) of naturally finite (finitely restricted)
functionals proves to be quite effective and gives rise to an effective numbering of these
functionals [I0]. The main reason for that is that (by induction on types) any monotonic
table as in (2.4]) represents a finitely restricted functional in this model. This also holds for
{W,} (the non-dcpo fully abstract model for PCF™) where naturally finite functionals are
the same as in {D,}. The latter essentially follows from their definability in PCF* [25].
In fact, the predicates “p C 9", “p,1 are upper bounded (consistent)” and the application
operation “pa”, for naturally finite ¢, 1, a, are effectively computable in the cases of {D,}
and {W,}.

Unfortunately, in the model of hereditarily-sequential functionals {Q, } no such effective
numbering is possible as can be shown by appropriate adaptation of the undecidability result
of Loader [16]. In fact, we cannot generally, and effectively, decide which monotonic tables
([24)) represent sequential functionals in Q,, let even for finitely many of k-restricted ones.
But we can enumerate them by means of the finitary strategies introduced in Section [(.2.1]
instead of using non-effective (in this case) tabular representation. In this sense the set of
k-restricted functionals of a fixed type « is finite and recursively enumerable but, in general,
“undecidable”. However, it will be demonstrated in Theorem that, under the above
mentioned “finitary” representation of naturally finite functionals ¢, ), a, the application
“pa” is computable, and it easily follows that “p [Z ¢”, unlike “p C 9", is semidecidable
in {Q4} (and similarly for {W,} in addition to the above tabular effective in this case and
decidable representation).

This seemingly diminishes the role of naturally finite (= finitely restricted) functionals
and their use (like in {D,}) to define effective functionals as those which are (natural)
lubs of a recursively enumerable directed set of (naturally) finite approximations. Such a
definition seems not very appropriate, not only for {Q,}, but even for the case of {W,}.
At least, further research is required. For efficiency of functionals we should, in these cases,
rather use the concept of an effective (sequential and, respectively, wittingly consistent)
computational strategy e.g. as in Definition

Finally, let us mention one more related question on Q and W: for naturally finite ¢
and any x the application ¢z is evidently naturally finite, but is its finitary representation
computable from that of ¢ and a strategy representing x in general? (However, for oz : ¢ it
is computable.)
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2.5. Ideal Completion and Uniqueness of Fully Abstract Models. Although our
goal is the fully abstract non-dcpo (in fact, naturally continuous) models for PCF and
PCF™, it make sense to relate them with the continuous depo model construction of Milner
[21] via the ideal completion procedure.

Now, let & = {E,} be any naturally continuous A-model satisfying the assumption and
the conclusions (i)-(iii) of Lemma 11l Consider its ideal completion & = {E,} which is
a continuous dcpo model defined as follows. A nonempty directed set & C E, of naturally
finite elements is called an ideal if a C b € © = a € & for a,b naturally finite. Let
E,, be the set of all ideals in E,. This is evidently a dcpo ordered by set inclusion C
with {L} the least ideal and with directed lubs coinciding with set unions |J, ;. Let
I(X) ={a | 3z € X(a C = & a naturally finite)} be the ideal generated by a directed set
X,and I(z) = I({z}). AsI(z) C I(y)<=z C y, we have an order isomorphic embedding of
posets I : E, < E,, which is onto for the basic type. Note that always E,_,, = [N, — N,
If a is naturally finite in E, then I(a) is finite element in the dcpo E,. For any & € E,,
I(a) C &<=>a € &. In fact, & is a directed union of such I(a), and F,, is an w-algebraic dcpo
domain with finite elements I(a) for a naturally finite. It is also bounded complete because
E,, is naturally bounded complete. Further, we may define the application operation in &
by fi = I({pa | ¢ € f,a € &}) for any f and i of appropriate types, which makes it a
monotonic order extensional structure. For the latter use the fact that

Va naturally finite 3¢ € g(pa C a) = T € g(p C ).
It is easy to show that.g is continuous, that is having the continuous application operation
(U; fi)(U; &5) = U;; fidj holds for directed families). The application also agrees with the
embedding [ : £ — &:

I(fz) = (I(f)I(x)).
Moreover, £ is a A-model because for the combinators S,K € £ we have

I(S)tyz = 22(y%), and I(K)iy =%
in £ (where all directed lubs are natural/pointwise and “naturally finite” = “finite”). As-
suming additionally the existence of a fixed point combinator in £ satisfying the Y -property

Yf=fYF) =) (2.5)

for all f of appropriate type, its image in & behaves accordingly:

1Y) f =J (L.

The languages PCF and PCF ™ [25,[18] considered in this paper are based on S, K, Y, 0,
plus constants for some level one functions (successor, predecessor, first order equality and
one of two versions of the conditional—sequential and parallel, respectively). For any &
satisfying the Y-property the meaning of all these constants is also not changed by the
embedding I : £ < £. Hence,

Proposition 2.12. The meaning of PCF™) terms in & agrees with that in €. ]
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Definition 2.13. Let C[ ] denote an arbitrary ground type program context in PCF),
A model € satisfying the Y-property (2.5 is called fully abstract relative to PCF™) if

vC ([cIM]] E [CIN]]) = [M] E [N]-

Evidently, £ is fully abstract iff £ is such (relative to PCF() or, equivalently, relative to
PCF™) minus Y; use the Fixed-point Lemma in [21] for the dcpo case of &).

Proposition 2.14. Let £ be any fully abstract and naturally continuous A-model of PCF®)
satisfying the Y -property (2.3). Then the model & is also fully abstract and all finite ele-
ments in &, and therefore all naturally finite elements in £, are definable in PCF™) without
using Y. The same holds for £ fully abstract relative to the language PCFY) minus Y
(although still satisfying Y -property).

Proof. The definability statement for the case of fully abstract continuous dcpo models
(here &) was actually shown in the proof of Theorem 3 in [2I]. This implies the case of
naturally continuous model £ by using Proposition 2.12 ]

It follows as in [21], by taking C[ | =] |C1---Cy : ¢ with C; defining finite elements, that
on definable elements, and therefore on all finite elements such fully abstract &, if exists at
all, is determined uniquely, up to isomorphism. A general construction of such a continuous
depo model from some given level one functions is presented in [21].

Alternatively and extending to the case of non-dcpos, we will define two models Q
and W for PCF and PCF™, respectively, such that it will follow from Theorems (b),
[Tl and [.I3] below (on a generalization of the Y-property, full abstraction property,
universality and natural continuity of Q, and corresponding versions for W) that

Theorem 2.15.

(a) Q and W, are the only possible fully abstract continuous depo models for PCF and
PCF™, respectively (with Q also isomorphic to Milner’s model in [21] and W isomorphic
to D).

(b) Therefore also Q and W are the only possible fully abstract naturally continuoud] models
for PCF and PCF™, respectively, satisfying the Y -property and in which all elements
are definable from arbitrary type ¢+ — ¢ functions of the model where Q,., = W,_,, =
D,—,, = [N — N ]—all monotonic functions. O

More general, in the latter uniqueness formulation we could consider for Q,_,, and W, _,,
some other classes of type ¢ — ¢ monotonic functions, say, all computable—as the minimal
such a class. In the computable case only definability in pure PCF() may be used, without
reference to type ¢ — ¢ functions in (b).

INote that the natural continuity requirement on £ here can be omitted and the proof of (b) can be done
straightforwardly by showing first that (i) the denotational semantics of PCF™) terms (possibly involving
arbitrary type ¢ — ¢ functions) of the type ¢ corresponds exactly to the natural operational semantics, and
(ii) Milner’s Context Lemma [21] for the operational semantics holds. To this end, define a logical relation
a R A between values a in £ and closed PCF(") terms A by letting, for the type t, a B, A = a C, the
value to which A operationally reduces, and show [A] Ra A for closed terms. (Thanks to Achim Jung who
has drawn attention of the author to this proof of (i) and (ii).) The point is that only the Y-property is
used in the proof, and neither dcpo nor continuity properties of models considered are needed. We omit the
details. Then the full abstraction property can be formulated in terms of operational semantics and thus
leads to an operational characterisation of the relation [A] C [B] for PCF™) terms.
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3. SEQUENTIAL STRATEGIES

3.1. Definition, Informal Meaning and Examples.

3.1.1. Preliminary Definitions and Conventions. Let M be any set of abstract elements
denoted as m, m’, my, ma, etc., each having a specified type (e.g., m : ). That is, actually,
M is a disjoint union of sets M, consisting of elements of the type . An additional struc-
ture on M considered below will allow us to call these elements (computational) strategies

(over M).

For each type «, let us also fix an infinite list of variables of this type z{,z5,.... We
will use, z, y, 2/, etc. as meta-variables. However, z; or T = z1,..., 2, will usually refer
to the numbering in the above lists, assuming some typing. That is, x; is i-th variable
of a type which can be recovered from the context. Thus, given any types ai,...,ay,
we have the corresponding canonical list of variables x{*,x5?,... 20" (first variable of
the type aq, second variable of the type aw, etc.) or just xi,...,z, or z, for brevity.

Well-typed applicative terms over M constitute the least set containing atomic terms (i.e.,
variables x : « and constants m : «), and closed under application: if A : o — [ and
B : o then AB : 3. Let Basic-Terms(M) be the set of all well-typed applicative terms of
the Basic-type (actually, ¢) built up from (typed) strategies of M and (typed) variables.
Ifm:a=(a,...,0p, — [) then ma;---x, or mZ will denote the applicative term
(--+ ((max1)xz2) - - - xy) of the type [ with x; : «; (the i-th variable of the type «;). These
notational agreements allow us to avoid type superscripts and related assumptions which,
otherwise, would obscure the exposition. Strictly speaking, all variables, elements of M and
terms are typed.

Additionally, let us agree that, depending on the context, we can identify any variable
x : « with some value in the corresponding set of values E,. This is in the same line as
the tradition of using variables in ordinary mathematical texts. Again, this way we avoid
extra complications in notation, relying on the context. Let us also assume that, by default,
v,v',v1, V9, ... range over N whereas u,w range over N*. Say, v1vs - - - v, € N* denotes the
string of the length k, whereas uw € N* is the concatenation of any two strings u,w € N*,
and uv € N* is the concatenation of any string v with a one element string v, etc. We will
use similar conventions for the case of S* for any other set S.

3.1.2. Main Definition.

Definition 3.1. A system of sequential computational stmtegiesg is a pair (M, M) consist-
ing of the set M of typed elements (strategies) and a partial function

M : M x N* = Basic-Terms(M ) UN,
satisfying the following condition:
ifm:a=(a,...,0q — 1) is a strategy, x1,...,2, is the canonical list

of variables of the types aq,..., ay, respectively, so that mzq -z, : ¢, and
M(m,w) is defined then either

2We will also consider, in Section R} the more general concept of non-deterministic (non-sequential),
wittingly consistent strategies. However, we will typically use the simple term “strategy” relying on the
context.
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(1) M(m,w) = A{xy,...,z,} € Basic-Terms(M) (written also as the
query M(m,w) = “A{z} = ?7) with all variables in A contained in
the list x1,...,x,, or

(2) M(m,w) € N is a (defined) basic value.

We also write M(m,w) = L if M(m,w) is undefined.

Informal comments. Any applicative term of the form

is considered as the query or task “mz = 7”7 of finding its (basic) value by means of the
strategy m with the help of an Oracle as follows:

e by asking, in the case 1 above, queries of the form “A{z} = ?” (concerning &) addressed
to the Oracle, assuming that a finite sequence of answers w € N* to previous queries
(called also a prompt or computation history for the strategy m) have been received from
the Oracle, and

e by giving, in the case 2, a resulting value (solution) for the initial task “mx = 77, based
on the previous computation history w.

In particular, it is possible that M(m,A) = v is a Basic-type value in N, or M(m,A) is

undefined, where A denotes the empty string of the Oracle’s replies to the previous queries

(i.e., when no queries to the Oracle have been asked yet—the empty history) and corresponds

to the beginning state of the computation of strategy m. In the case of M(m,A) =v € N

we say that m defines (or is) a constant strategy giving rise to a final result v without asking

the Oracle any questions. If M(m, A) is undefined, then m is called an undefined constant

strategy. In each of these cases we write, respectively, m = v, or m = {2, or even m = v

or m = 2, especially when « is itself a basic type. Intuitively, a constant strategy v, for

a = (a,...,a — ) defines (computes) the constant functional Az{",..., z3".v of the type

a. Analogously, Q, denotes Az{*,...,z5". L, the constant, undefined functional.

However, typically, the strategy m starts its computation by asking the Oracle sequen-

tially some questions (concerning z)

“CA{z} =7, “Ax{z} =7, “As{z} =7",. . .;

M(m,A) = A1{Z}, M(m,v1) = Ax{T}, M(m,vivs) = A3{Z},...,
assuming that the Oracle replied

“A{z} =017, “Ax{Z} = vo",. ...

We assume that the strategy m cannot continue computation until receiving the definite
answer to the last asked query, if receiving any answer at all. This querying process can
be either (i) finite with no result, if the Oracle does not answer a query, or (ii) infinite, or
(iii) after some answers vq,v9, ..., v, m could “decide” that it has already received all the
“required” answers from the Oracle and stop asking queries by returning a resulting value

M(m,vivg---vg) =v €N,
instead of asking the next query Ay 1{z}, if M(m,vive---vy) is defined at all.

We say that m' is descendant to m if M(m,w) = A{z1,...,x,} for some w and m’
occurs in A{zy,...,z,} (that is, m asks about m’/, or m' is a child strategy of m) or,
recursively, m’ is descendant to a strategy occurring in A{zi,...,x,}. Intuitively, only

descendant strategies matter for the meaning of the given strategy m.
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3.1.3. Additional Requirements on Systems of Strategies. Without restricting generality we
can impose the following natural requirements on systems of strategies.

o If M(m,w) € N, then M(m,wu) is undefined for all non-empty u € N*. (Contraposi-
tion: If M(m,wu) is defined then M(m,w) defines a query.)

e M(m,w) is defined only for m-self-consistent computational histories w = vy - - - vg, i.e.
for such w which do not contain different answers to the same query by m: for all proper
initial segments w'=wvy---v; and w =g --- vy,

M(m,w") = M(m,w’) € Basic-Terms(M) = v;41 = vj11.

Note that only computational histories satisfying these properties are realizable in the inter-
preted computations considered below in Section @l The idea of consistency will be further
generalized in Section [B.] when considering nondeterministic wittingly consistent strategies.

Intuitively, each strategy m : a computes some functional [m] of the type a. Let us
first consider some simple examples.

3.1.4. Ezamples of Strategies. In these examples we assume that strategies compute func-
tionals from the standard continuous model {D,}. In the special case, when M(m,A) =
A{z} and M(m,v) = v for all basic values v € N, we represent (the behaviour of) such a
strategy m by the formal equality

mz = A{z}.
This style of presentation allows us to avoid explicitly using M when the behaviour of
strategies is simple enough. It follows that the (typed) PCF combinators satisfying equal-
itie

Ir =2, Key=2x, Szyz=u2xz(yz), and Yo =z(Yz)

may be also considered as strategies. In fact, we can consider PCF [31] 25] as a system of
strategies (PCF, PCF') where PCF = {I,K,S, Y, if, and some evident basic arithmetical
operations} with typing omitted for brevityE. Note that the least fized point operator Y is
an example of a recursive strategy referring to itself. Another simple example of a strategy
is the conditional PCF constant if : ¢,¢,0 — ¢

y, if x =true (=1),
ifryz=< 2z, if x =false (=0),
1, otherwise.

This strategy asks at most two questions: first “z = 7?” and then, depending on the result
true or false, it asks “y = 77 or “2 = 77, respectively. The answer received from the
Oracle to the second question on y or z will be returned by if as the final result of the
computation. It is quite trivial to rewrite the above conditional equation for if in terms of
MpcF = PCF—in the style of Definition B.11

3Strict1y speaking, we should use the canonical list of variables x1,x2,x3, ... instead of z,y, z and write,
for example, Sz1z2x324 - - Tn = T123(T223)T4 - - - T, for the base type terms.
Athis is actually an infinite system.
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Note that the following version of if, the parallel conditional monotonic function pif, :
(0,t,0 — ) (and analogously for pif, : (0,0,0 — 0))@ defined as

xz, if p=true,
y, if p = false,
z, ifx=uy,

1, otherwise,

pif, p else x then y =

evidently has no computing it sequential strategy asking simple queries of the kind “p = 77,
“r=7"and “y="7" (and, in fact no sequential strategy at all, asking arbitrary queries).
Say, if the first query asked by such a strategy is “p = 7”7, it may happen that the answer
is undefined, leading to an undefined result of the whole computation, whereas it can be
x =y # | which should give a defined result. Analogously, such a strategy could not start
with “z =7" or “y =7".

Unlike pif, every PCF constant can be considered as a sequential strategy. Say, the
successor operation x + 1 for x : ¢ is defined by the evident strategy which asks the question
“r =7" and, after getting a result v € N from the Oracle, returns the value v + 1.

As a less trivial example, consider the following strategy m computing the functional
for the weak sequential existential quantifier 3V : (v — 0) — o:

true, if Px = true for some x,
Jp = with P(y) = false for all y < z,
1, otherwise

To compute I¥*P (i.e., mP) this strategy starts by asking, sequentially, the queries
“PO0=7",“P1="7",...tothe Oracle. The strategy keeps asking these queries in this order
while all the currently received answers are false. As soon as one of the answers obtained
in this order is true or L, this value is the result of the computation. Alternatively, m
could be defined as follows. Again, m starts with asking “P0 = 7?7 (M(m,A) = P0). If
the answer is true, m returns the result true (M(m,true) = true). Otherwise, m asks
“m(Ax.P(z + 1)) = ?[ and returns the answer of the Oracle to this query as the final
result (M(m, false) = m(Ax.P(z + 1)), M(m,false r) = r). Here the lambda abstraction
operator can be simulated, as usual, by combinatory strategies S and K. Then, to compute
35 the system of strategies should also contain strategies m, S, K, and +1 (the successor).
The functional 3%* can be also defined in PCF by the recursive equation

3¥*P = if PO then true else 3“*(A\z.P(x + 1)),
or alternatively by using Y:
3¥% = YAP.if PO then true else 3“°(\z.P(x + 1)).

Consider also the finite sequential existential quantifiers 35 : (1t — 0) — 0, n =0,1,...
which can output both true and false:
true, if Pz = true for some z < n,
with P(y) = false for all y < z,
false, if P1 = false,
1,  otherwise

3P =

5Although we decided to avoid using the boolean type o in the general theory of strategies, the examples
considered here are a little simpler and more natural when this type is used.
6This is a recursive query because m asks about itself.
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The sequential strategy computing 37 P starts by asking n queries “P0 = 77, “P1 = 77,
..y, “Pn = 7. As soon as one of the answers obtained in this order will be true or L
(undefined), this is the result of the computation. Otherwise, if all answers are false, the
strategy asks “PL = 7" and outputs the value of PL.

The sequence of functionals 37, is evidently increasing with a limit 3° = | | 3} which
can be also defined as

true, if Pr = true for some z,
with P(y) = false for all y < z,
false, if Pl = false,
1,  otherwise,

or in terms of PCEF:
P = P(pz.Px), aswell as, 3P = P(uz <n.Pz).

We omit the (well-known) definition in PCF of the p-operator. The sequential strategy
computing 3°P reduces this task to the sub-task P(ux.Pz). The equation for 3% gives
an analogous strategy. The main point here is that strategies may be quite arbitrarily
complicated. As we will see in Theorem [(.2] all (effectively computable) strategies, however
general, can be simulated in PCF, which characterises exactly its expressive power.

FP =

4. INTERPRETED COMPUTATIONS AND THE DENOTATIONAL SEMANTICS OF STRATEGIES

4.1. Preliminaries. Let us fix a given system of strategies (M, M) and a monotonic, order
extensional applicative structure & = {E,} of finite type functionals, with £, = N and
E,,, =[N, — N ]. Our current goal is to define a denotational semantics of strategies

I-la = [H],JIM : M, — E,, or briefly [-] : M — &,

as the least fixed point of some operator [-] — [-]T, that is, the least solution of the
equation [-] = [-]*. This equation is also understood as the requirement of correctness of
the given semantics [-]. In fact, [-[* : M — & is defined via interpreted computations over
& performed by strategies of the system (M, M) relative to [-]. The problem, however,
concerns whether the operator [-] — [-]T is well-defined and whether the required least
fixed point [-] exists. It does exist if {E,} is the standard continuous model {D,}. It also
exists for the monotonic model Q = {Q,} of hereditarily sequential functionals, which we
will consider in Section Bl In both the definition of a system of strategies (M, M) and in
earlier informal comments and examples it was implicitly assumed that both the Oracle
and the strategy m always give correct (in a reasonable sense) answers/solutions to the
queries/tasks they are “resolving”. This can be further clarified as follows.

4.2. Formal Definitions. Assume any semantic map [-] : M — & is given. We can
extend [-] from M to terms [A{Z}] with variables from the list Z as usual, by induction,
[CD] = [C][D], assuming that each variable z;" has some associated value [z7"] € E,,.
That is, [A{Z}] depends on the values of . Then, for any computational strategy m : a =
(a1,...,a, — ), we define that the initial task “mz = 7”7 (to be “resolved” by m) and
all the queries “A{z} = 77 asked by m have corresponding correct solutions (with respect
to [-])—just the unique basic values [mz] and [A{z}] of these Basic-Terms, respectively.
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Let us now give the formal definition of interpreted computation of the basic value of
mZ induced by a strategy m in a system of strategies (M, M) relative to some semantic
map in &, [-] : M — &, and some values of Z in £. This is a maximal finite or infinite
sequence of pairs

(A1,v1), (Ag,v2), . . (4.1)
of queries and Oracle’s answers, i.e. of terms A;{z{",..., 29"} € Basic-Terms(M ) and basic
values v; € N, which satisfy the following two conditions for each (A;,v;):

[-li: M(m,vy---vi1) = Ay,

[-l2: [Ai{z?", ... 25" }] = v; # L (for the given values of " in E,,).
The latter means that Oracle’s answers v; are correct with respect to [-] and the values
of z.

A finite (maximal) interpreted computation (A1, v1),..., (A, ve) ,t > 0, is called suc-

cessful with the result v € N if, additionally,
[-Is: M(m,vy---v) =v e N.
As sequential strategies are “deterministic”, the result v € N is determined uniquely, if
it exists at all. If it does not exist, we also say that the result is undefined (L). This is
possible in the following cases:
(i) the computation is infinite, or
(ii) it is finite and consisting of ¢ pairs, but unsuccessful, that is, M(m, vy, ...,v;) is either
undefined, or = some A{z{",... 20"} with [A{z{',...,2%"}] = L (for the given
values of 237 in E,;).

Now let [m]*Z denote the result v in IN| of the interpreted computation (according
to [-]s above) of the value of mz relative to &, [-] and any values of Z in £. Of course we
would like to expect that [m]™z = [m]z (i.e. that the result of the computation is correct)
what, in general, is not true. For example, take [m] = L for all m of a non-trivial system
of strategies.

Definition 4.1. [-] is called computationally correct if the equation [m]*z = [m]z holds
in & wherever mz : ¢ or, briefly, [-] = [-]T.

In general, [m]*Z is evidently monotonic on Z , as well as on [-], and defines a unique

functional [m]t : Eq, X --- x By, ™5 E,. But is this functional necessarily in E, C

Ey X -+ X By, ™5 E,? If true for all m, this defines a new semantic map [-]* : M — &
and a monotonic operator [-] — [-]T (probably defined not for all [-]). In the case of the
standard continuous model {D,}, this operator, being computable in the above sense, is
evidently well-defined and also continuous and, therefore, has the least fixed point which we
also denote as [-]. But in the general case of monotonic order extensional {E,} (and even
of any continuous and directly complete {E,}, but containing possibly not all continuous
functionals) the required value [m]™ might not exist in the model and, even if it always
exists, the monotonic operator [-] — [-]™ might be not continuous (in the case of arbitrary
monotonic {E,}) and may have no least fixed point[l But, when possible, we take [-]
to be the least solution of the equation [-] = [-]T. Thus, we are interested in the least
computationally correct denotational semantics of strategies.

TAll of this seems quite plausible and desirable to confirm by example.
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Moreover, for any model £ = {FE,} and arbitrary system of sequential strategies
(M, M), let [m]° = L for all m € M and [-]**!' = ([-]*)" assuming the latter is
well-defined in €. Evidently, those [-]™ which exist are defined uniquely. It follows from the
monotonicity of T and monotonicity and order extensionality of £ by induction on n that
[-]* C [-]™**! C [-] assuming [-] is an arbitrary computationally correct semantics.

Definition 4.2. [-] is called naturally defined in £ if all [-]" exist and
[[_]] = H_J |I_]]TL7
n=0

that is, [m] = ;" ,[m]™ holds for each m € M where |4 is the natural, or pointwise lub in
£, as defined in Section 2.2

Proposition 4.3.

(a) If [-] : M — €& is naturally defined in £ then it is T any computationally correct
semantics in E. Thus, if [-] is also computationally correct then it is the least one.

(b) Moreover, if € is naturally continuous and [-] is naturally defined then it is, indeed, the
least computationally correct semantics of (M, M).

Proof.

(a) The conclusion follows from the same statement on all [-]™.

(b) Just the equality [-] = ;2 ,[-]" implies that [m]z T [m]"z C [m]"tz C [m]*z
holds whenever mz : ¢ for some n depending on Z. The converse inequalities [m]*z C
[m]™"*z C [m]z hold for appropriate n depending on Z by using natural continuity of
E. Tt follows that [-] = [-]T, as required. []

Definition 4.4. If the naturally defined semantics [-] : M — &£ exists in £ and is (the least)
computationally correct for all sequential systems of strategies then & is called sequentially
complete.

Besides the evident example of the standard directly complete continuous model {D,}, the
sequential completeness property holds also for the model {Q,} of hereditarily sequential
functionals considered below in Sections BH7l An analogous result takes place for another
model {W,} and a more general concept of nondeterministic (wittingly consistent) strategies
considered in Section Bl

Definition 4.5. Finite type functionals in £ of the form [m] for any strategy m of any
system (M, M) (for the least computationally correct semantics [-], if it does exist) are
called sequentialll If m is a strategy from an (effectively) computable system of strategies
(M, M) (i.e. with computable M), then [m] is called an effectively-sequential functionall]

This is the way that sequential and effectively-sequential finite type functionals (in ap-
propriate {E,}) can be defined in quite general terms of computational strategies [28§].

8We do not expect that this concept is really interesting for arbitrary £. Although it is reasonable to
restrict attention to naturally continuous and sequentially complete models, it may be unknown in advance
that the given structure (such as Q or W considered below) satisfies these properties. Thus, for the sake of
the argument, we need the general definition.

9A sequential functional can also be called sequentially computable, although the corresponding strategy
could be not (effectively) computable at all. That is, the concept of sequential computability is, in fact, a
relative one (see also [34, 27]).
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The same approach works for the type-free version of sequentiality [29] in the Scott model
Do & Do — ]Doo]. It could be also extended to more general type theories and models
and also for more general kinds of basic values than the flat N .

5. HEREDITARILY SEQUENTIAL FUNCTIONALS

5.1. Canonical Strategies.

Definition 5.1. A system of strategies is said to be in the canonical form if all queries
“A{z} =77 asked by these strategies m (with mZ = may - - - x,, of the basic type) have the
form

“rimazy @) Mgy xy) = 77 (5.1)

where each miT = myxy---x, has a type suitably depending on the type of the head
variable x;.

For example, a strategy m of the type (1 — ¢) — ¢ computing a functional mf : ¢ with
f it — ¢ can ask queries of canonical form “f(m’f) = ?” or, in particular, “fn = ?”
if m’f is a constant functional having the integer value n € N. Note that for sequential
computability of such functionals it is insufficient to consider queries of the form “fn = 77.
As we will see in Section [6] the canonical form of queries does not restrict the computational
and denotational power of sequential strategies. Importantly, the descendant strategies my
in (5.I)) have evidently the same, or lower, level (of their types) than m. This will serve
below as the base for the inductive definition of hereditarily sequential functionals in terms
of canonical systems of strategies.

5.2. The Main Inductive Definition. By using the above property of levels of strategies
in canonical systems we can give the following inductive (level-by-level) definition of a
monotonic order extensional structure {Qu} of hereditarily sequential functionals which
will be shown later to be fully abstract model for PCF. The initial part of this model for
types up to level [ is denoted as Q='.

Definition 5.2. For level 0, let , = N be the flat basic domain. Assume, by induction,
that the initial part of the model Q<! satisfying (2.I)) and ([2.2) has been defined. For any
a=(ag,...,a, — ) of level [ + 1 take the minimal k& < n such that (agy1,...,0, — ¢) is
of the level <[, and let, up to uncurryin,

Qa = (Qay X -+ X Quy, — Q(Oékﬂv---van_"))'

More precisely, let

mon

@a = {f : Qoq X X Qan I QL | vz € Qal X X Qak(fj € Q(ak+1,...,an—>L))}'

10 Actually, a closely related and “stronger” isomorphism Do 2 [Doo X Do X - -+ — D,] should be used.
Note that this isomorphism evidently implies Do 2 [Doo — [Doo X - -+ — D,]] and hence Doo = [Doo — Doo].
This allows us to consider strategies asking (infinite) applicative queries over Do, of the basic type ¢, like in
the typed approach.

HNote that the simpler definition Qo = {f: Qa, X - - X Qa, =8 Q.} does not work because we need
to have below Q=!™! to be an appropriate structure closed under application.
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Then
Q<! = Q<lu {Qq | v is of level 1 + 1} (5:2)

can be considered as a monotonic, order extensional applicative structure up to level [ 4+ 1
with the application operator defined by taking the residual map, as in (2.2). Then, for any
« of level [ 4+ 1, define Q, C Q:

Qo = {[m] €Qu|m:a&kmeM&[]: M — QsH!
for some canonical system of strategies M } (5.3)

as the set of all monotonic mappings in Q, which are computable/definable (as described
in Section [£.2)) by the strategies m of the type « of any system of strategies in canonical
form] for which the least correct semantics [-] in the structure Q=*! exists. In fact, we
can equivalently require that [-] is naturally defined (see Definition E4).

Alternatively, and equivalently (see the comments below), we can define for any « of
level [ 41

Qo = {[m][ma] - [m] € Qa | m: (1, yr — @) & my :
& level(y;) <l& m,m; e M
&[] : M — Q=1 correct and naturally defined
for some canonical system of strategies M }. (5.4)

(See also Proposition B3] (a).) Sets of functionals Q, defined in this way for a of level
I 4+ 1 are evidently nonempty and contain at least all the constant functionals. In partic-
ular, they contain the elements |, computable by the undefined strategies 2,. They are
considered to be partially ordered pointwise by C,. This defines the extension Q=1 of
Q<! which satisfies (Z1) and (22). (The latter property of the closure under application
follows straightforwardly assuming (5.4]). This is much more difficult to show, if the more
intuitively plausible (5.3)) is assumed instead; see the comments below.)

This makes the induction step mathematically correct because we assumed, and used,
the fact that Q<! satisfies only (ZI) and ([22). Thus, (5.4) defines a monotonic order
extensional structure QQ by induction.

Comments.

(1) The induction step above defines simultaneously all Q,, of level [+1. The canonical form
of strategies guarantees that no Q. of a higher level (not yet defined) will be needed
in the induction step. By contrast, recall that, for example, Milner’s definition of the
fully abstract dcpo model, as well as later approaches to non-dcpo models, requires
consideration of all types and levels at once.

(2) Although (53) and (54) are, in fact, equivalent definitions of Q, at the level [+ 1,
unfortunately this is not so trivial and when taking the simpler equation (5.3)) the proof

2Wwithout restricting generality, these systems may be evidently considered as containing only strategies
of types 7 up to level [ + 1.

13This will be clear later from isomorphic representation of Q as Q and Theorem (b). See also
Proposition B3
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of the correctness of the whole definition would be rather involved M For the inductive
step in Definition to be legal in this case we must show that the resulting Q=!*!
satisfies both (ZI)) and ([Z2]). The condition (2II) holds by definition, and (2:2)) means
that Q='*! is closed under application (also for results of the level [ + 1), that is under
taking residual maps, like for Q=/!. This is quite straightforward in the case of (5.4),
unlike the case of (5.3) although the latter looks more natural. This is the reason for
our choice of (5.4]) in the above definitiod™. The equivalence of (E3) and (B4) will be
shown later, as well as that an arbitrary system of sequential strategies, not necessary
in the canonical form, has the least correct and even naturally defined denotational
semantics [-] in Q (that is Q is sequentially complete), and that each element in Q,
should have the form [m] for some (even canonical) strategy m : a. The latter means
that Q consists of all, and only, sequentially computable functionals.

(3) In general, we want to know that this structure is natural enough (although it is not
a directly complete poset). That is it is a fully abstract model for PCF, sequentially
complete, naturally continuous, naturally algebraic and naturally bounded complete;
we establish this later. But now we can prove a conditional

Proposition 5.3. If some sequentially complete model Q' exists and each of its elements
has the form [m'] for a strategy in some system of strategies in canonical form for [-] the
(least) correct and naturally defined semantics in Q' then Q" = Q. It follows that in this
case all the mentioned variations of the Definition[52.2 give rise to the same Q.

Proof. Assuming that Q' (as well as Q) satisfies (ZI) and (2:2)) we can even show the
identity Q_’ = Q. Thus, given by induction_@’ sl — Q_Sl (as is definitely true for [ = 0) and
therefore Q/, = Q, for o of level [+ 1, and Q'S = Q<M1 let us show that Q/, = Q,. But,
according to (5.4) and our assumptions (in particular, the closure of Q' under applications
as taking residuals), we have

Q, = {[m]lm]---[m,] € Q, | ...Q=H L}
= {[mllmi]--- [, ] € Q| ... Q=)
= {[m][m1] --- [m+] € Qq | ...QSHI...}
= Qa
with the omitted parts “...” as in (0.4). In the second equality we use the routinely
checked fact that the naturally defined and correct semantic map [-] in Q=1 is also
naturally defined and correct in the extension Q<1 O Q/=H+1 because Q=1 is closed
under applications and all corresponding arguments and answers to all queries considered

are evidently the same in both structures Q'<!*! and Q'S+, (Proposition B3 (a) shows
that [-] is in fact the least correct semantics). O

HMNote that even for the standard definition of (hereditarily) continuous functionals in {Ds} some cor-
rectness proof is necessary. Of course, the case of {Qa} is more complicated. Instead of contrasting the
continuous case with the sequential one we prefer to see some analogy here. Thus, both approaches are
essentially extensional with some intensional component in each case, even if these intensional components
have somewhat different flavour and complexity.

15Thanks to an anonymous referee for suggesting the formula (54) which crucially simplified (made it
just straightforward) correctness proof of the induction step of the definition of Q. Based originally on (53]
it required the full theory of sequential strategies of the next sections. But, anyway, this theory is still
needed to prove the main properties of Q.
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In particular, once the above shows Q = Q', we have a simplified version of (5.3))

Qo = {[m] €Qq | [-] is the least correct semantics of a canonical system in Q<!*1}

with the extensions Q, and Q='*! no more necessary to mention.

5.3. What Next? For showing the required properties of Q such as continuity and sequen-
tial completeness we will need more involved considerations and develop the corresponding
general theory of sequential strategies [29, 28] in Sections [6] and [7l

In particular, to represent the application operation in {Q,} we will need to define
corresponding operation ((mm;)) for arbitrary strategies m : a = (au,...,ap, — ¢) and
my :aq, giving a “residual” strategy ((mmy)) of the type (ag,...,a, — ), such that
[{(mm4)] = [m][m1]; ¢f. Theorem (a). It is crucial here that ((-)) serves as the op-
erational semantics of strategies of arbitrary, not necessarily the basic types.

In fact, we will redefine our model in a non-inductive, “quotient” form {Qa} ~ {Qq}
where @ = ([J{Q.} is a unique universal system of sequential strategies (containing in a
sense all other systems—the unique up to isomorphism terminal object of the category of
all systems of strategies) and will work mainly in terms of @ and Q.

This general theory is based on the operational semantics of strategies and will culmi-
nate in Sections [l in Theorem and its Corollary [6.7] (using the above Proposition [5.3)
that Q = Q. Moreover, we will also prove in Section [ that {Q,} is a fully abstract model
of PCF and has further good domain theoretic properties discussed in Section 2

6. SEQUENTIAL FUNCTIONALS AS QUOTIENT STRATEGIES

According to [29,30], there exists a universal system of sequential strategies (@, Q) (with @
of the cardinality of continuum) such that for any other system of strategies (M, M) there
exist a unigue homomorphism ¢ : (M, M) — (Q, Q). For the rest of this paper we will need
only the existence of (Q, Q), however its explicit construction is presented in Appendix [Al
In general, a homomorphism ¢ : (M, M) — (M', M’) is a map ¢ : M — M’ preserving
types such that

M (p(m),w) = (M(m,w))? holds for all m € M,w € N, where

(AB)? = (A®)(B?), m? = ¢(m), v¥ =wv, ¥ =z, and L¥ = L
for any applicative terms A, B, strategy m, basic value v and variable x. That is, a homo-
morphic image of a strategy has essentially “the same” behaviour M The fact that ( can
map different strategies in M to the same strategy in M’ means that the latter is more
“abstract” version of the former. Homomorphisms are evidently closed under compositions:
M (i 0 p(m),w) = (M (1(m),w))* = (M(m, w))*)*.

Moreover, any strategy m and its homomorphic image ¢(m) have the same denotational

semantics in the following sense.

Proposition 6.1. Let ¢ : (M, M) — (M', M) be a homomorphism.

16 In particular, 1¥ = 1 means that both M’'(p(m),w) and M(m,w) are defined, or not. A more
general concept of an approzimating homomorphism is obtained by allowing the requirement M’ (p(m), w) =
(M(m,w))¥ only in the case of M(m,w) # L. That is, ¢(m) has “the same or more definite” behaviour
than m.
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(a) For any [-] : M" — & and its composition [-] = [p(-)] : M — & the corresponding
results of the interpreted computations coincide: [m]Tz = [¢o(m)]'TZ wherever mz : «.

(b) [ = [e(-)]'™ holds assuming [-]'™ existsI]

(c) If [-]' is computationally correct (resp., naturally defined) then so is the composition
[ = [

(d) For & sequentially complete, [-] = [¢(-)]" holds for the (least) computationally correct
and naturally defined semantics [-] and [-]" of these two systems, respectively.

Proof.
(a) follows from the similarity of the two interpreted computations via the homomorphism

®.
(a) = (b) (by induction):

FI° =TeO1% " =leO)" = [m]""z = [p(m)] "z,
(a) = the first part of (c):

[nle = [e(m)]z = [p(m)]*z & [m]*a.

(b) = the second part of (c):

= W™ = Il = [em)] = Wil ™ 2 Himl ™.

(c) = (d). (See also Proposition 3] (a).) (]

Therefore, it is natural to identify informally m with ¢(m) and with their unique homomor-
phic image in (@, Q), and to consider the latter as a really universal system of strategies
“containing” all possible strategies (up to homomorphism).

Various strategies in Q, C @ computing the same functional in Qy, [¢] = [¢'], may
be identified via an equivalence relation ¢ ~, ¢’ which will be also defined in Section
by using operational semantics of strategies over (@, Q) so that we will actually have Q,
isomorphic to Qq = Qu/~, and even could take the equality Qo = Q. as (another)
definition of Q.. Moreover, we will define a preorder relation <, on the strategies in @,
generating ~, as the corresponding equivalence relation and inducing the approximation
relation C, on Qo (that is, T, = =u / ~) which, in fact, exactly corresponds to the
pointwise approximation relation on Q, assumed in Section

6.1. Operational Semantics for Strategies (Informally). Following [29], we will define
an operation {(pq)) of the application of strategies (having appropriate types) of the universal
system (Q, Q). More generally, given any combination A of any type « consisting only of
strategies, a new strategy can be defined ((A)) € @ of the same type « (also denoted in the
op. cit. as A). In particular, A and ((A)) should have the same denotational meaning in
any “reasonable” model &, that is,

[(AD] = [A], or [{pa)] = [pr]lq]-

This will be achieved in terms of a quite natural computation process induced by the
strategies involved in A, without any reference to any model {E,}. That is why this may

ITFor approximating homomorphisms defined in Footnote [ we rather have [m]" C [¢(m)]'" for all
n=0,1,....
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be considered as an operational semantics ((-)) for the terms A, unlike the denotational
semantics [-].

Therefore, let us consider the formal expression ((A)) as a strategy (or we could take
its unique homomorphic image in ). We need to define the action of Q({(A)),u) for any
string of the Oracle’s answers u € N*. It is both simpler and instructive to first consider the
case when A and ((A)) have the basic type ¢. Such a strategy asks the Oracle no questions
and “computes” some basic value Q({(A4)),A) = v € N, if defined at all, for u = A (the
empty string of Oracle’s answers). Thereby, the corresponding initial task “(A)) = ?”
or task “A = 7”7 of finding this basic value v will be resolved with the help of strategies
participating in A by reducing this task (by induction) to some sub-sub- - - --tasks “C' = 7.
Here all C' are terms of the basic type consisting only of strategies, and therefore having a
numerical solution (if any) computed by induction in the same way until the original task
“A = 7" is resolved. In fact, each sub-sub- - - --task C' has the form C = mD1Dy --- Dy, that
is headed by a strategy m which asks further queries (reduces C to further immediate sub-
tasks), and continues the computation of the value of C' on the basis of the replies obtained.
This generalizes the reduction process of lambda calculus or the natural (call-by-name)
computation of the value of a closed PCF term of the basic type.

In the general case, when the strategy ((A)) or the term A has an arbitrary, non-basic
type a = (aq,...,a5 — t), we need to consider the initial task “(A)y = 77 or “Ayg = 7"
of the basic type ¢, with the variables y; : a;;. Then it will be reduced to various sub-sub-
-+ --tasks C': ¢ which can now involve the variables y. If C'=mDDy--- Dy, is headed by a
strategy m then the further computation (reduction to further immediate sub-tasks of C')
proceeds as in the case above when all tasks considered had no variables. But it is also
possible that C' = y;D1Dy--- Dy, is headed by a variable y; in y. Here we assume that
the computation continues with the help of an arbitrary (now non-empty) prompt u by
the Oracle because the head variable y; itself does not have the “ability” to continue the
computation of C'.

For the initial task “Ay = 77 we actually want to know /compute: under which prompts
u from the Oracle, which sub-sub-- - - -tasks C' headed by a variable, or which resulting values
in N can be generated? (The tasks C headed by a strategy will continue the computation
themselves.) This is essentially the way (with many details omitted) how Q({(A)),u) can
be defined (computed) by this process.

Formally, at each point we have a state of the computation like a “stack” (a finite string
consisting of pending sub-sub-- - - -tasks and basic values as the intermediate results) which
may “pulsate” during time as we will see in the formal definition below.

6.2. Operational Semantics for Strategies—Formal Definitions. Consider

e a system of strategies (M, M),

e an applicative term C' = mD; --- D,, € Basic-Terms(M) (in the role of a currently con-
sidered task or sub-sub-----task of some initial task) with a head strategy m € M and
possibly involving variables.

e the canonical list of variables & = z1,...,x, for m (such that mz : ¢), and

e a prompt w € N*.

Three cases are possible:

(M1) M(m,w) =v €N,

(M2) M(m,w) is undefined, or
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(M3) M(m,w) =B = B{x1,...,z,} € Basic-Terms(M)

in which we will, respectively, say that the task C = mD; ... D, (or “C = 7") is w-reducible
(M1) to the result v, or (M2) to the result L, or (M3) to the immediate sub-task C' =
B{D,...,D,} — the result of substituting the terms Ds,...,D, in B = B{x1,...,2,}
for its free variables x1,...,zy.

Now, given (M, M), consider the set H = H(M) = Basic-Terms(M)U NI As usual,
‘H* denotes the set of finite strings over the set H considered now as consisting of atomic
data. These strings can serve as intermediate configurations of a computation. Let the
initial configurations have the form u(Agy) where u € N* C H* is a numerical string (the
potential Oracle’s answers) and ¢ shown are the only occurrences of variables in Ay : . We
use parentheses around Ay to emphasize that this is a single element of H.

Define a computational procedure consisting of a transformation of finite strings in H*
by the following rules defining inductively a transformation relation F C H* x H*. For
any C,C" € Basic-Terms(M), h € H*, w € N*, and v € N the following transformations
(derivations) are allowed:

(H1) hCw F hv, if C' is w-reducible to v;

(H2) hCw F hCwC, if C' is w-reducible to the immediate sub-task C’;

(H3) vhC - hv, if C has a head variable, i.e., has the form y; D1 D5 - - - Dnj;
(H4) Transitivity: if h = A" and &' = h” then h - h".

Note, that no two of the rules (H1-H3) are applicable simultaneously to a string in H*. It
follows that - determines a deterministic (sequential) computation process. The term C' in
the rules (H1), (H2) should be necessarily headed by a strategy, i.e., should have a form
mDDy--- Dy, with m € M. A derivation terminating in a string of the form hACw, with
C w-reducible to L, is called dead-ended.

For any initial configuration u(Ay) € H*, exactly one of three cases is possible:

(1) uw(Aj) v (with u completely “exhausted” by using (H3)), where v € N;

(2) u(Ag) F (Ag)hC  (with u completely “exhausted” by using (H3)), where h € H* and
“sub-sub-- - - -task” C € Basic-Terms(M ) is headed by a variable;

(3) either there exists an infinite or dead-ended derivation starting with u(Ag), or u'(Ag) F v
holds for some initial segment u’ # w of the string u (i.e. not all prompts from u are

used).

Given any applicative term A of a type « without variables consisting of strategies in M,
consider a formal expression of the form ((A)) as a new strategy of the same type. Define a
new system of strategies (M, M) where M is the set of all such formal expressions ((A)) and
M is a function making M a system of strategies which is defined below with the help of a
“splicing” function 6 : Basic-Terms(M) — Basic-Terms(M). We set §(C) to be the result
of grouping in the term C, with the aid of {(-)), all the maximal sub-terms not containing

variables. For example,
d(mamay1(ms(may2))ysys) = (mama)yr ((ms)) ({ma))yz))ysya.

18Recall that the union is considered here to be disjoint, and Basic-Terms(M ) may also involve variables.

19Here v is considered as the Oracle’s prompt for the variable-headed task C' = y; D1 D> - - Dnj. Thus,
query C' is replaced by the the prompt v which, actually, originates from an element in u of the initial
configuration u(Ag). If v = v'vu’ with v/,u” € N* and v € N then, before applying this rule to the
occurrence of v, the initial segment u’ should have been used analogously as the Oracle’s answers on the
previous steps of the computation.
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Finally, we define M by setting, for any (A) € M and u € N*,

A v €N, . if (1)7
M((A),u) = ¢ 6(C) € Basic-Terms(M), if (?),
1, if (3).

Thus, the system of strategies (M, M) is based on the computation process () induced
by the strategies of (M, M). By (implicit) use of the unique homomorphism from (M, M)
into the universal system of strategies (Q, Q), this gives ((A)) € @ for any applicative term
A over Q without variables. In particular, {(pq)) € @ for any two strategies p,q € Q. For
A of the basic type ¢, the strategy ((A)) computes a constant value v € N of this type
(defined or not). This is also written as ((A)) = v.

Note 6.2. For the case of arbitrary type, the resulting strategy (A)) only asks queries
headed by a variable (see (Q) above) and may be slightly redefined in such a way that all
these queries will be in the canonical form {&51) (by the evident use of combinators S and
K and the splicing function §), even if the strategies participating in A were not canonical.
Alternatively, we could trivially extend ((-)) to the case of A-terms as (A\Z.A)) for A involving
no \ and use these A-terms to get the canonical form.

6.3. Relating Denotational and Operational Semantics of Strategies for the Stan-
dard Continuous Model {D,}. The main result of [29] relates the denotational and op-
erational semantics, [-] and (-)), of strategies in the standard dcpo model {Dy ] of all
continuous finite type functionals over the given basic flat domain D, = N . It consists
in the following equality which holds for any typed applicative combination A of strategies
containing no variables:

[(A)] = [A] or, in particular, [{(pg)] = [p][q]. (6.1)

Here the right-hand side of the equality is the ordinary denotational semantics of an ap-
plicative term defined by the application operator in the model {D,} and by [-] eventually
applied to the strategies comprising A. We will show in Theorem (a) that the same
equality holds in the model {Q,} (and therefore in its isomorphic version {Qq}).

The equality (G.]) is essentially based on the associativity law for ((-)):

{(A) = (A)) or, in particular, ({B)(C)) = (BC) (6.2)

where A, B, C' are any combinations of strategies in (), and A is obtained from A by grouping
some sub-terms of A with the help of the operation ((-)). The associativity law allows us to
eliminate any nesting of {(-)) and can be proved by a thorough analysis of F-computations
defined by strategies ((A)) and ((A); cf. [29] for a detailed proof (for the untyped case and
for more general non-deterministic strategies).

20more precisely,—in an untyped model Do = [Dos — Doo; the case of typed model {Dq } is quite similar

and a corresponding result like (6] is formulated without proof in [28] (see also Footnote [I0])
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6.4. Definition of <, ~ and Q. Having the operational semantics ((-)), we can define a
relation <, on strategies of the same type « as follows.

¢ =Za q = Yq.({aa) = (d'7)) (6.3)
where p <, p’ relates the (constant) strategies of basic type ¢ and means that the strategy p
outputs the same basic value as the strategy p’, if the first value is defined at all. To simplify
notation we will often omit the external ((-)) in inequalities ((A)) < ((B)) for applicative terms
A and B writing simply A < B. Evidently, <, is a preorder on the set of strategies @), of
the type a. The corresponding equivalence relation is denoted as ~,, and the “undefined”
strategy €2, is the =<-least element in each type. Due to the above associativity law, we

have ({(¢)q)) ~ ((qq)) and, hence, ((¢)) ~ q. Therefore,

Proposition 6.3. Any strategy q is ~-equivalent to a strateqy in canonical form (see

Note [6.2]). []

Lemma 6.4. Operational semantics is monotonic in the sense that for any applicative term
A{q} without variables which involves a strategy q,

q=d = (A{q}) = (A{d})-

Proof. We can evidently consider that A has the basic type. Then the proof proceeds by
induction on the length ¢ of the computation (A{q}) = v # L. Let us write A for A{q}
and A’ for A{q'}, etc. Two cases are possible.

(1) A=sA;--- A, and A" = sA]--- A} for the same head strategy s. The case if s is a
constant strategy (with the value v) is trivial. Otherwise, s reduces the computation
of the value v of A to some length < ¢ sub-computations of the (basic) values v; of
some sub-tasks B;. By the induction hypothesis, corresponding B; evaluate to the same
results v;. It follows that A’ also evaluates to v by the strategy s, as required.

(2) A=qAy--- A, and A" = ¢ A} -+ Al for the above ¢ and ¢'. Then, as it was just proved,
qAi - Ay, and gA] --- Al evaluate both to v, and it suffices to note that ¢ < ¢’ and to
use the definition of < with g = ((A’)) and associativity of ((-)). O]

The following Lemma (Theorem 6.4 in [29]) corresponds to the context lemmas in [21].
Lemma 6.5. Given any types o and 3,
qZad = Yp:a— B.((pa) Zp (pd))-
In particular,
qZaq = Yp:ra—u({pg) = (pd)).
Proof.

(=) follows from Lemma
(<) Let us assume (for contraposition) that ¢7 ~ v A, ¢’¢. For any basic value ¢, define
a strategy p by

pxy = if xq = v then cgy else Qzy.
Then pg ~ cg Ag Q3 =~ pqg’, as required. O]
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Now, our goal is to show that Q, (cf. Definition [£.2]) is isomorphic to the quotient Qn =
Qo/~, where each ¢ € @, generates the equivalence class [q] € Q, and C, is the partial
order on @, induced by <,. The natural (typed) application operation in ) is defined by

[plla] = [{pa))] (6.4)

which does not depend on representatives p and g of the equivalence classes. So defined
structure @ is monotonic and order extensional by Lemma [6.4 and definition (€3] of <.

6.5. Denotational Semantics of Strategies in Q and the isomorphism Q= Q. Let
us consider [-] as the denotational semantics of @ in Q.

Theorem 6.6.

(a) Denotational semantics s — [s] of the universal system of strategies Q in Q is coherent
with the operational ond?l: [((A)] = [A4].

(b) Q is sequentially complete (in particular, satisfying the Y -property (2.3)) with [-] the
least correct denotational semantics which is also naturally defined.

Proof.
(a) Apply associativity of (-)) and the definition (6.4) of application in Q. For example,

[(p(ar))] = [(plard)] = [pl[{gr)] = [pI(la][r])] = [p(ar)].

(b) First, show correctness of [-]. Consider the interpreted computation by a strategy ¢ € Q
associated with the task “qzy---xz, = 7”7 of the basic type with some fixed values [g;]
in Q for the arguments z; (and ¢; € Q). We should assume that ¢ receives correct
replies to its queries “A{z1,...,x,} = 7?7 where A is a combination of strategies s € Q
and the variables x;. According to the assignment s — [s] and (a), the correct replies
are obtained just by replacing all strategies s in A by [s] or, equivalently, by replacing
A{zy,...,xn} by [A{q1,...,q}] = [(A{q1,--.,qn}))]. Then we must show that the
resulting basic value v (possibly = L) of the interpreted computation coincides with the
value of the combination [q][q1] - - - [gn] = [qq1 - - - @n] = [{{qq1 - - - qn))]. However, the latter
value is obtained by F-computation, i.e. by essentially the same interpreted computation
as above plus F-sub-computations of the values [A{q1,...,q.}] = [(A{q1, ..., qn}))] for
all queries. The required correctness follows.

Let us show that @ is sequentially complete. First, we present a general consider-
ation on the “approximating” semantics [[—]]k in any monotonic and order extensional
structure £. Given any system of strategies (M, M), define its “approximating” version
(M4, MA) by letting

MA={m*F | me M &k e N},
MAMO w) = 1,
MA(mb w) = (M),

where m* is considered as a formal expression (a pair of m and k), v* = v for v € N,

(AB)* = A*B* for applicative terms, and z* = z for variables. For any structure &, if

a computationally correct [-]4 : M4 — &€ exists then all [-]*: M — &, k € N, exist too

and [m*]* = [m]* holds for all m € M, and vice versa. In particular, [-]* is uniquely
defined, if exists at all (iff all [-]¥ : M — &, k € N, exist).

21Compare this with the equation (.1 for the case of {Dq}.
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Now, let £ =Q, and ¢ : M — Q and ¢? : M4 — Q be the unique homomorphisms.
Then both [-] = [¢(-)] and [-]* = [¢4(-)] are computationally correct semantics of
M and M# in Q by the correctness of [-] and Proposition (c). It follows from the
latter that all [[—]]k : M — Q exist, and, for sequential completeness of (), it remains to
show that [m] = W, [m]* = ¥, [m*]4, that is [p(m)] = ¥, [p?* (mF)], or equivalently,
that for all strategies g of appropriate types ¢(m)g ~, ¢ (m*)g holds for some k. But
the latter holds because, in each F-computation giving a defined result in N, m* behaves
as m for sufficiently large k& and gives the same result.

It follows that [-] and therefore its special case [-] are naturally defined and computa-
tionally correct and hence (by Proposition (a)) both are the least correct semantics

of M and @, respectively, in Q. ]
Corollary 6.7. {Q4} = {Q.}.
Proof. Use Proposition 5.3} L]

7. MAIN RESULTS ON FULL ABSTRACTION AND DOMAIN THEORETIC PROPERTIES OF (Q

7.1. Full Abstraction, Universality and PCF-Definability.

Theorem 7.1. Q 2 Q is fully abstract model of PCF. The same holds for PCF~ (PCF
with Y omitted).

Proof. Assume ¢,q' € Q, and Cq <, Cq’ holds for all PCF combinations C': & — ¢. Then,
in particular, g¢ =<, ¢'¢ for all PCF~ definable terms ¢ of appropriate types. Let us infer
q = ¢, or equivalently that qq <, ¢’q holds for all strategies q of appropriate types. Indeed,
according to Section below, if ¢ - v for some v € N then ¢g¢ F v holds also for some
finite (and even finitary ranked) and therefore definable in PCF ™~ strategies ¢ < ¢ (see
Lemma [7.12] (a) and Theorem (b) below). It follows ¢'¢ - v and ¢/q - v, as required. ]

As in [28] (the case of {D,}), [1, 11] and also [18] (the effective case), we have
Theorem 7.2. For any type « there exists a PCF-definable functional

Us € Q(L—>L)—>a
which is universal in the sense that its range is the whole set Q. of sequential functionals.
Moreover, there exists PCF-definable Ugﬁ € Q.o which enumerates all elements of Q
definable by computable strategies (i.e. those in systems (M, M) with computable M ).
In particular, PCF exactly grasps sequential computability over Q, that is, PCF de-
finable = sequentially computable.

Proof. As in [2§] for the case of {D,}. It is omitted here, but see the proof in Section [ of
analogous result for {W,} and PCF™. O

Theorem 7.3 (Normann [23]). The (unique up to isomorphism) directly complete and
continuous fully abstract model {Qa} for PCF defined by Milner [21] cannot be exhausted
by sequentially computable functionals in Qo — Q, i.e. by those definable in PCF + all
monotonic f: N| — N . ]

22 hich is, more precisely, isomorphic to the limit (ideal) completion Qa of Qu; cf. Section ZH
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More precisely, the proof in [23] shows that Q, is not an w-complete domain for some « of
level 3. We know from Theorem (b) that Q is only sequentially complete.

7.2. Deriving Domain Theoretic Properties of Q. We need to use Lemma 2.11], and
this requires to work out appropriate versions of “finite” approximations of strategies.

7.2.1. Finite, Finitely Restricted and Finitary Sequential Strategies.

Definition 7.4. We say that a system of strategies (M’, M’) is a restriction, or subsystem
(or approzz'matz’o) of another system (M, M) if M’ C M, and, as partial functions,
M € MPA A restriction (M', M) is called finite if both the set M’ and the function M’
are finite. Strategies (if any) from finite restrictions of (M, M) are called finite.

If (M’, M) is a restriction of (M, M) then the (unique) homomorphic image ¢’ in @ of any
min (M', M') is called a restriction, or sub-strategy (or approzimation) of the homomorphic
image ¢ of the same m considered as a strategy of (M, M). By abusing notation, we write
¢ C ¢ Then, evidently, (] C [q] (i.e. ¢ < q), holds in Q.

Let us introduce a more general concept than a finite strategy.

Definition 7.5. Given any system of strategies (M, M), let M (m,w) be defined and
equal to M(m,w) if, and only if, (i) the string w consists only of numbers < k and
(ii) M(m,w) < k in the case of M(m,w) € N. The system (M, M) is called k-restriction
of (M, M). If, in fact, MU = M then the original system is called k-restricted. Then
finitely restricted means k-restricted for some k. A strategy q € @ is called k-restricted if
it is contained in the homomorphic image of some k-restricted system of strategies.

Evidently, M = |J, M, and also any finite (M, M) is finitely restricted (but not vice
versa). k-restricted strategies “understand” only basic values < k, as if it was our basic
domain N so restricted to {0,1,...,k} . Strategies from the original and restricted ver-
sions of a system of strategies, although formally having the same names, behave differently.
Therefore, to emphasize that a restricted version is assumed, we will write m!*! instead of
m and (M MK instead of (M, MI*) whereas m will typically be considered as a strat-
egy of the non-restricted system (M, M) In the following Lemma we identify strategies
with their homomorphic images in Q and relate k-restriction with the projection maps W/
defined in Section

Lemma 7.6. Functionals [m¥)] in Q defined by finitely (k-)restricted strategies are also
finitely (k- )restricted (as defined in Section 2.2]).

Proof. Consider projection functionals W k& = 0,1,... and computing them sequential
strategies 1], Their behaviour can be described by the equality (in the basic type ¢,
assuming f : o and Y : o0 — a)

Rz = f?/_)[k](i), if the result is bounded by k, and = L otherwise.

23put in a different sense than considered above system (M4, M?)

24Note, that the embedding M’ < M is an approximating homomorphism; cf. Footnote

25By considering the explicit construction of @ (cf. [30] or Appendix [A]), the relation C on @ may be
treated, indeed, as set inclusion between strategies considered as graphs of partial functions of a special kind
and is therefore a partial order. However, we will not need this fact.

26Note that, although there is a kind of analogy between the strategies m!* considered here, and m”
considered in the proof of Theorem [6.6] the behaviour of these strategies is different.
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Here ¥!*(Z) means the application of ¥!*! (of appropriate type) to each z; in Z. Let us show
that ml¥l ~ (¥m). The task “Y*lmz = ?” is reducible to “mi¥(z) = 7. By assuming
that m asks queries in canonical form “z;(miZ)--- (m,%) = 77, the task “my*(z) = 77 is
further reducible by m to the sub-task

“WMz) (migM(@)) - (maM(2)) = 27,
and then by ¥l to

“wsgM (my i (2) - 9 my 8 @) = 2
with the head vz}riable x;, where ?2[¥] assumes that only answers < k will be taken into
account. As mi¥*(Z) is F-computationally equivalent to (//*m,)z 7, the latter query is
equivalent to

“zi((WFm)) - (WFmy)z) = 71k,
All of this means that ¥/*}m behaves computationally as m[¥l which asks similar queries
“xi(m[lk]i) e Lf]i) = 707 and reacts to the answers in the same way as m and ¢*m,
except considering the integer values bigger than k as if they were undefined. It follows that
mll ~ (lFlm)), as required. Moreover, [m*] = [/[*][m] = U*[m]. If the original system
is k-restricted then m ~ m!¥! and therefore the functional [m] = Wk [m] is k-restricted
in Q. U]
Definition 7.7. A system of sequential strategies (M, M) is called ranked if (ignoring

types) M is a disjoint union (J;cpny M; such that any strategy in M; can ask queries only
concerning the strategies in M; 1.

We have actually considered a similarly ranked systems in the proof of Theorem (b)
but with the inverse ranking order. Our choice of the ranking order as in Definition [7.7] is
based on the following Lemma. Independently of the choice of this order, ranked systems
of strategies evidently remain ranked under restriction.

Lemma 7.8. Any system of strategies (M, M) is homomorphic image of a ranked system.

Proof. Indeed, (M, M) is homomorphic image of a ranked system (M x N, M') with M’
defined for all m,w,n as
M/(<m7 n>7 w) = SUbn-l-l(M (mv w))

where suby A is obtained from A, for A any term, by replacing each occurrence of a strategy
m’ in A by (m/, k), and subgv = v for any resulting basic output value v. The required
homomorphism is 7 : (m,n) — m. L]

Moreover, if ¢ : (M1, M1) — (My, Ms) is a homomorphism then o2 ((my,n)) = (@o(my),n)
is also a homomorphism of corresponding ranked systems

P (My x N M) — (M x N, My),
and the resulting square diagram commutes: ¢ o 7 = 7 o &,

Definition 7.9. Strategies from ranked systems of strategies (M, M) with both M and
M finite are called finitary. (That is, essentially, finitary = finite & ranked, also = finite
well-founded).) Equivalently, only M may be required to be finite.

27if to replace the variables Z by arbitrary strategies g of the same types
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Lemma 7.10. Finitary strategies are special case of finite strategies which, in turn, are
special cases of finitely restricted ones and therefore define (in fact all; see Theorem [[.13])

finitely restricted functionals in QQ = Q. ]

If M is finite and M = J; M; is the ranking then all M; are empty for i large enough. In a
reasonable sense finitary strategies are considered as non-recursive. Homomorphic images
in @ of finitely restricted (resp., finitary) strategies can also be unofficially called finitely
restricted (resp., finitary) ones. Any (finitary) strategy my € My from a finite ranked
system (M, M) with the ranking M = |J;c¢ M; has a finite rank which is the length r of
a maximal chain my, ..., mgy, of strategies (in My, ..., Myy,, respectively) starting with
given my, such that each myi;, 0 < i < r, asks a query on myy;1q (i.e. m;yq is a child
of m;). Now, Kénig’s Lemma entails more general

Proposition 7.11. All strategies in (M, M) are ﬁm’tarﬁ iff for each m € M there is only
a finite number of computational histories w € N* such that M(m,w) is defined and there
are no infinite chains m = mg, my, mo, ... where m; asks a query on m;yy (i.e. (M, M) is
well-founded).

Proof. “Only if” case is trivial. For “if” case assume its condition, and let
Ms, = {me M |3Img=m,mq,...m, € M Vi <r (my; is a child of m;)}.

Then M, = Ms>, \ M>,11 is an inverse ranking of (M, M) (in the evident sense dual to
Definition [7.9)). By Konig’s Lemma, each m has only a finite set M [(m] C M of improper
descendants (including m itself) which, if intersected with each M, gives a finite (inverse)
ranked subsystem of (M, M), as is essentially required. U]

The finitary strategies of rank 0 are either constant strategies of any type (asking no queries
to the Oracle) or strategies which can ask in each of finitely many possible ways of compu-
tation only (finitely many) queries which are applicative terms consisting of variables only.
The finitary strategies of rank 1 are defined analogously, except that they can ask queries
involving, besides variables, only strategies of rank 0. Etc., for finitary strategies of any
rank.

But we need to be careful with such verbal descriptions. For example, the functional
F(f)=1if f(0) =0then O else 1 (and F(f) = L if f(0) = L) computable by the evident
rank 1 strategy is not finitary because, in its computation, the query f(0) can have any
answer = 0 leading to the definite result 1. In fact, M describing the evident strategy
computing functional F' has an infinite domain.

7.2.2. Observation on Computations and Finitary Strategies. It follows from Lemma
that in computations only countable ranked systems of strategies (M, M) matter.

Lemma 7.12.

(a) For any combination of strategies A : v over (M, M), if At v then also Ay v over
a finite restriction (M', M"Y of (M, M).

(b) For any countable system of strategies, (M, M) = |, (M®), M®)) holds for some mono-
tonic by set inclusion sequence of finite restrictions of (M, M).

280ach in an appropriate finite ranked subsystem of (M, M)
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(c) For any system represented as a monotonic union (M, M) = (J, . (M® M®)Y of some
restrictions, any resulting computation A &+ v over (M, M) is, in fact, a computation
over some (M®) M®)) " or equivalently over some (M, M®*)).

(d) Let the strategy m™®) be just m € M considered as a strategy of (M, M®*)) with M®*)
as in (c ) By identifying these strategies with their homomorphic images in @, this
gives rise to the C-increasing sequence [m®)] with the natural lub [m] = 4, [m®)].

(e) In particular, any functional in Q is the natural lub of an increasing sequence of finitary
presented functionals (and the same for any of the version of “finite” considered in

Section [7.2.1)).

Proof.

(a) Let M’ consist only of those finitely many strategies in M which participate in the
original derivation A k¢ v and (the finite) M’(m, w) be defined if, and only if, m and
the computational history w for m was really used in the derivation A a4 v.

(b) Let M = J,, M}, with M}, any increasing sequence of finite subsets exhausting M. Let
N, = {0,1,...,k} and M*) = M | (M, x N,fk), and define M®) to consist of all
strategies participating in the domain and range of M®).

(¢) Like in (a), construct finite (M’, M’) and embed it in appropriate (M*) MK,

(d) Use (c) with the equation (23] defining the natural lub as the ordinary pointwise defined
lub | | in the basic type by using an appropriate list of arguments.

(e) Use Lemma [7.8 and (d) with M®) as in (b). O

Theorem 7.13.

(a) The model of sequential functionals Q = Q is naturally continuous, naturally w-algebraic
and naturally finitely bounded complete. Naturally finite elements of each Q, are exactly
finitely restricted ones (in the sense of Definition 2.10) or, equivalently, definable by fini-
tary strategies or, equivalently, by finite strategies or, equivalently, by finitely restricted
stmtegz’es@ ~

(b) Naturally finite elements of Q = @ are definable in PCF (even without using Y ).

Proof.

(a) follows from Lemma 2111 whose condition (*) is satisfied because of the above obser-
vations and Lemmas [7.6] [7.8] [[. 10} and, most important, (a). Also recall that the
naturally finite natural lub of an increasing sequence in Q must stabilize.

(b) Use straightforward induction on the rank of finitary sequential strategies. Alterna-
tively, apply the general Theorem concerning definability in PCF (having much
more involved proof). L]

Note 7.14. It follows from the definition of naturally finite elements in Q = Q that any
finitely restricted or finite (possibly recursive) strategy is ~ to some finitary (ranked, non-
recursive) strateqy, by representing the former as the natural (in fact, stabilizing up to ~)
lub of finitary strategies. But this proof is non-constructive, and by appropriate adaptation

29, () may be finite, or even finitary in the case of (b) and ranked (M, M), or finitely restricted in the
case M® = M from Definition [T.5] with m®) denoted there as m!*.

301y [29], special non-deterministic (non-sequential) strategies &, played the role analogous to that of
sequential finitely restricted/finitary strategies considered here to define finite elements in Do (or in {Dq}
in the typed case), and Do was also represented as a quotient of a universal system of (consistent) non-
deterministic strategies.
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of the technique of Loader [16] it should be possible to show that the there is no corresponding
“canonization” algorithm finite — finitary as there is no way to determine the moment of
stabilization in the above lub. Also the related problem “p ~ ¢?” even for finitary (ranked)
strategies should be undecidable.

Note also that Theorem (b) and Lemma (a) were actually used in the proof of
Theorem [1] that the model Q = @ is fully abstract for PCF which was incomplete till
this moment.

We conclude this section by proving that the class of finitary strategies is effectively
closed under taking applications. This was actually used in Section 2.4 in representation of
naturally finite functionals in Q by finitary strategies (and, similarly, for W).

Note 7.15. On the other hand, the closure of finitely (k-) restricted strategies under appli-
cation is trivial. But, unlike the finitary strategies, they are not necessary finite (and can be
recursive). Also, arbitrary finite strategies are probably not closed under application (note
that ranking is essentially used in the proof of the following theorem), however evidently
giving rise to finitely restricted strategies.

Theorem 7.16. For any applicative term A consisting of finitary strategies, the strategy
{(A)) is finitary, too, and (as a finite object understood in the evident sense) can be effectively
computed from A and comprising its strategies.

Proof. Let us slightly generalize the concept of the initial configuration uAg from Section [6.2]
(where u € N* and 7 is a list of variables making the term Ay be of the basic type ¢) by
allowing the term A to contain any variables. The statement which we will actually prove is
a kind of normalization (termination) property: for each applicative term A involving only
finitary strategies and any variables

(*) for any list of variables § making Ay a term of the basic type there exists
only a finite number of finite non-dead-ended computation (sequences of
derivation steps) starting from uAy & - for various u € N* obtained by the
rules (H1-H3) with u completely “exhausted P3.

Then appropriate application of Kénig’s Lemma will imply that ((A)) is indeed finitary and
computable from A.

Following Tait [33] and the presentation by Barendregt [3] of the normalizability proof
for typed calculi, (*) can be shown for any A as follows Define classes of typed terms
consisting of finitary strategies and variables:

C,={A: | A satisfies (*)},
Cop={A:0— B|VB € CalAB € Cp)},

czUco.

31 This requirement also means that for each numerical answer (either computed or taken from u) to a
strategy question during such a computation the strategy should be able to react in a definite way giving
either a result in N, as in the case of (H1), or a new query, as in (H2). If dead-ended computations would
be allowed then we might have an infinite number of them for v € N* with large values in N. Indeed,
only finitely many strategies—all being finitary descendants of those occurring in A—can participate in such
computations, and they “do not understand” large numerical values.

32Exhaustion is necessary, otherwise infinitely many w of unbounded length would be admitted.

33We give the detailed proof to show the specifics of the concept of strategies.
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Evidently,
A€l <= VC €C(AC : 1 = AC satisfies (*)),

and C is closed under taking applications of terms. Any variable satisfies (*) and belongs
to C. Also any finitary strategy trivially satisfies (*). It belongs to C if its rank is 0, i.e. it is
either a constant (defined or undefined) strategy or a strategy whose all possible (basic type)
queries involve only variables. This is because C is closed under applications, and therefore
C-substitution cases of such queries satisfy (*). (That, in fact, all finitary strategies belong
to C can be concluded from the following considerations.)

Then we show by induction on the type of A that

A € C = A satisfies (*). (7.1)

Indeed, the base case A : ¢ holds by definition. For A € C,—p3 and any variable y; : «
we have y; € Cq, Ay € Cg, and hence Ay, satisfies (*) by induction hypothesis. Then it
follows straightforwardly that A itself satisfies (*).

Finally, we show by induction on k& that for any term A whose participating strategies
have rank < k

any C-substitution case of A belongs to C. (7.2)

The case k = 0: That (7.2) holds for atomic terms (variables and rank 0 strategies) was,
in fact, shown above. The rest follows from the closure of C and therefore of the class of
A satisfying (7.2) under applications. For k > 0 it again suffices to show (7.2) for atomic
terms. The main case is finitary strategies m of rank k for which we should show that
m € C. We need to show that mC' : ¢ satisfies (*) for any C' € C of appropriate types.
But this follows from the fact that mgy asks a bounded number of queries B;{y} : ¢, i < N,
involving only variables y and strategies of the rank < k and which therefore satisfy (7.2)
by induction hypothesis, and hence B;{C} € C so that all such B;{C} satisfy (*). Finally,
this implies that mC' satisfies (*). Indeed, from our requirements on the computations
umC F --- each value in u should be used either by m or by (its child strategies from) the
subcomputations generated by B;{C}. Thus, u should have bounded both the length and
participating numerical values. This concludes the proof. L]

8. FuLLY ABSTRACT MODEL FOR PCF™

For the case of PCF™, let us consider the more general concept of a nondeterministic
system of strategies [29] extending the Definition 3] of sequential (deterministic) strategies
by letting

M : M x N* — Basic-Terms(M) UN U {#},
and adding the clause (third possibility for M)
(3) M(m,w) = # (the nondeterministic state of computation).
The nondeterministic state can be also considered as representing a specific query “# = 7”.
The “correct” answer from the Oracle to this query is any numerical value r € N. However,
such an extended concept of nondeterministic strategies is too general to grasp PCF*

(unlike PCF™* — the case which we will not consider in full detail). Thus, we need to
appropriately restrict nondeterministic strategies to fit them with PCF™.
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8.1. Wittingly Consistent Strategies. First, without restricting generality we can as-
sume that the requirements from Section B.I.3] hold also for non-deterministic systems
of strategies. Further, a pair of prompts (computational histories) w = ry---rp and
u = s1---8, € N* for a strategy m is called m-consistent if they do not contain differ-
ent answers to the same query by m, i.e. if for all proper initial segments w® = r; - - - r; and
W= 518,

M(m,w") = M(m,u?) € Basic-Terms(M) = ;11 = 8j11.

In this paper, we will additionally require for systems of nondeterministic strategies (M, M)
that they should be wittingly consistent ([30], Chapter II, §4). This means that, for any
m € M and any m-consistent pair of prompts w and u, the strategy m cannot output two
contradictory final results:

M(m,w) € N & M(m,u) € N = M(m,w) = M(m,u).

Sequential (deterministic) systems of strategies are evidently wittingly consistent (assuming
the first requirement of Section B.1.3]).

Consider one example of such a wittingly consistent strategy mpir computing a parallel
conditional monotonic function pif, = [mpif] : (0,¢,¢ — ¢) defined in Section B.1.4k

M(mpif,A) = #7

M(mpig, 0) = “p =77,

M(mpig, 0true) = “o = 7", M(mpi, 0 false) = “y =77,

M(mpig, 0true v) = v, M(mpi, 0 false v) = v,

M(mpig, 1) = “z =77, M(mpir, 1v) = “y =77, M(mpis, Lvv) = 0.
In all other cases M (mpir,w) is undefined.

Consider also parallel disjunction V : (0,0 — 0) (used in infix notation)

pVq = pif p then true else q.

It is parallel (as well as pif) because it is true if any one of the arguments is true while
the other may even be undefined (L). Thus, there is no sequential way of evaluating the
arguments, but an appropriate wittingly consistent strategy exists.

For wittingly consistent strategies, the interpreted (nondeterministic) computation is
defined as before in Section [£.2l All the successful computations under any given interpre-
tation of strategies [-] should evidently lead to a unique value v € N independently of the
non-deterministic steps. This gives rise, as before, to the concept of the (least correct and
naturally defined) denotational semantics [-] for any system of wittingly consistent strate-
gies. As to operational semantics, ((-)), we can easily show that the (appropriately defined
as in Section [B.2) system of strategies (M, M) is wittingly consistent if (M, M) is.

In the most general case of nondeterministic strategies (the least) denotational seman-
tics may give rise to [m] = T, the “over-defined” or “contradictory” value, for some “con-
tradictory” m because for some values Z the interpreted computation of the value [m]*z
gives different final results in N for various paths of the computation. A weaker concept
of consistency [29, [30] of a system of nondeterministic strategies (in a structure) means the
mere possibility of giving (the least) denotational semantics with [m]z = [m]*Tz # T for all
strategies in M independently of the ways of computation. Witting consistency is a kind of
guarantee, or sufficient condition, of the existence (say, in {D,}) of “non-contradictory” se-
mantics. Otherwise this existence would be either somewhat accidental and unpredictable,
or just fail, because of nondeterminism.
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The theory for sequential strategies vs. PCF considered so far can be naturally and, in
many cases, straightforwardly extended for the case of wittingly consistent nondeterministic
strategies vs. PCF* ( = PCF + pif), giving a fully abstract and naturally continuous order
extensional model W = {W,} consisting exactly of all functionals definable in PCF™ + all
monotonic functions f: N, — N,. (Corresponding results for {ID,}, instead of the case
{W,} considered here for the first time, were announced without proof in [30].) This model
can be defined, like Q, both inductively, level-by-level of types, and as a quotient W of
the universal system (W, W) of wittingly consistent strategies. The universal functionals
Ul e W(,—)—a for each type can be constructed as for Q = Q (and D) for sequential
functionals. This gives a reasonable answer to a question of Longley and Plotkin in [I8]
concerning the mere possibility of a general approach to a fully abstract model for PCF™
with definability properties like the above. (Cf. Introduction for a quotation.)

Everything for wittingly consistent strategies goes almost as smoothly as for sequential
strategies, except we should make some additional technical considerations needed for the
definability of universal functionals U with the range being the whole W,. (We mean
additional considerations in comparison with the case of sequential functionals and PCF [28]
— what is unchanged is presented below without proof.) Note, that universal functionals for
a (countable) fully abstract term model for PCF™ (of types ¢ — «, rather than (: — ¢) — «)
have also been defined in [I§]. But we use our old technique for PCF and {D,} (here —
for the model {W,}) with appropriate additions.

Constructing U is the primary goal of Section B However, for better understand-
ing both of the nature of wittingly consistent strategies, and that witting consistency is
an essential restriction, it makes sense to consider first some example demonstrating that
W is not w-complete and thus does not coincide with the standard continuous model D.
Otherwise, the reader can well skip the following subsection.

8.2. W(,_5)—o is not w-Complete. Although the undefinability result of this section is
essentially well-known (in slightly different form) for the case of {Dy} (cf. [25], 27, 28]), it
makes sense to present its proof in terms of wittingly consistent strategies which was not
published yet, except in [30]. Applied to the case of {W,}, this implies that W, _,q)_, is
not w-complete and, therefore, it is a proper subset of D(,_,)_,-

Let us define functionals 3 and 3, € D(,_y)—0, n > 0, with P € D,,, = W,_,, any
argument for them, by the following equation:

true if Px = true for some z (< n),
I P = ¢ false if PL = false,
1 otherwise.

Recall that PCF™1 = PCF" + 3 defines exactly all computable functionals (computable
— in terms of recursive enumerability of finite approximations) in the standard continuous
model {D,}, and, by using arbitrary (actually, only strict) functions f € D,_,,, this language
defines all continuous functionals of this model [25] 27, 2§]. On the other hand, each 3,, is
definable in PCF™ by using the (wittingly consistent) parallel disjunction V:

3, P =if POV P1V ---V Pn then true else P,

and therefore 3, € W(,_,)_,,. Moreover, 3 = l#,5cIn (pointwise), but 3 ¢ W(,_,_,, C
D(,—0)—o because of the following -
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Proposition 8.1. 3 is not a wittingly consistent functional and hence not definable in
PCF™*. In particular, W is not w-complete at the level 2.

Proof. Let us assume on the contrary that [m] = 3 holds for some strategy m of the type
(t — 0) — o from a wittingly consistent system of strategies (M, M). We may consider that
all queries asked by the strategy m computing mP have the canonical form “P(m/P) = 7"
for some m’ : (1 — 0) — ¢ in M.

For each ¢ € N, define P; by P,o = if z = i then true else L. Let us show that
for various i, the sets of sub-tasks in any successful interpreted computations for mP; do
not intersect. To this end, consider two successful interpreted computations of mP for
P = P, and P = P;, i # j, both giving a result (actually = true by [m] = 3), and
assume on the contrary that the initial task “mP = 77, for P = P; and P = Fj, is
reduced to the same task “P(m’P) = 7" (i.e., with the same m’) in the course of these two
computations. As both the computations should continue further to the result, we would
have P;([m/]|F;) # L, Pj([m']|Pj) # L, both actually = true by the definition of P; and
P;, and hence i = [m']P; = [m/](P; U P;) = [m]|P; = j, contrary to i # j.

Now, let us consider an arbitrary m-prompt w giving a defined boolean result
M (m,w) = r, and show that the only possibility is » = true. Indeed, the corresponding m-
computation along w involves only finite number of queries (M(m,w’) € Basic-Terms(M)
for w’ initial segments of w) which, by the above consideration, may also participate in
successful interpreted computations of [m]P; only for a finite number of i. Therefore, for i
outside this finite set, m-prompt w is m-consistent with the m-prompt w(® arising in some
interpreted computation of the value [m]P; giving a defined result, which should be true
by the assumption [m] = 3. From the definition of witting consistency, it follows that
r = true, as required.

Thus, the values of [m]P for any predicate P : ¢ — o may only be L or true, and [m]
cannot be 3 (for which 3P = false is possible), contrary to the main assumption. []

As to sequential functionals, the increasing sequence 3}, € Q(,_.0)—0, n = 0,1,... analogous
to 3, € W(,_,,)—, cannot demonstrate that Q is not w-complete because this sequence has
the limit 3° existing also in Q(,—.0)—,, as we have shown in Section[3.1l Thus, demonstrating
the incompleteness of Q requires the more subtle considerations of [23] at the level 3.

It is useful to note that strictly sequential functionals of the type (1 — 0) — o, i.e. those
computable by the sequential strategies asking only simple queries of the form “Pi = 77
with ¢ € N, are closed under w-limits. (Hint: first note, that if F' is strictly sequential then
so is any F' C F, and consider limits of finite, in the sense of {D,}, strictly sequential
functionals.) Further, for a functional of the type (: — t) — ¢ or (1 — 0) — o, to be strict
(see below) and sequential is equivalent to be strictly sequential. Moreover, looking for limits
of sequences of more complicated, non necessarily strict sequential functionals of this type
(based on the general queries of the form “P(m’P) = ?7) will also fail. In fact, the minimal
level of Q, where non-w-completeness holds is 3 [23].

8.3. Definability in PCF* of Strict Continuous Functionals F : (v — ) — ¢. Here
we will consider strict level 2 functionals. We will also rely on some definability concepts
and ideas due to Plotkin [25]. A similar definability technique was assumed also in the
corresponding results announced in [27, 28], but without presenting details and proofs.
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A function f € D,_,, is called strict if f1 = 1. Given any a;,b; € N, ¢ < n, n > 0, with
b0, sbn—1

all a; different, let [a07,,,,an71] denote a strict (naturally) finite function in D,_,, such that

|:b07...7bn71:| T = bi, if x = a; for some i < n,
A0yl —1 1, otherwise

or, equivalently,

ot o= | b (8.1)
a;Cx

Recall that more general finite (not necessarily strict) functions in D,_,, are defined by such
tables with a;, b; arbitrary elements of ID,, possibly = L, satisfying a natural consistency
requirement, and defined by equation (8I), and analogously (by induction) for finite ele-
ments of arbitrary D,_,3 with a; and b; being finite elements, respectively, of D, and Dg.
Note, that any (constant) function in I,_,, such that f_L # L is also finite (f = []] for some
¢), but not strict. Let ¢4, a € N, be an effective numbering of all strict finite functions in
D,—,, such that, given a, the numbers n,a;,b; (all # L) can be recovered.

We can also consider strict finite functionals of the form [?p] € D(,—,)—, with ¢ strict
finite and b # L:

|:b] f — b7 if 2 C f7

¥ 1, otherwise.

In general, any continuous functional F' € D,_,,)_,, is called strict if, for all f, flor—u,
the coincidence of f and f’ on all type ¢ arguments # L implies F'f = F f’. Equivalently,
F is strict if for each f there exists a strict (and therefore exists a strict finite) ¢ C f such
that F'f = Fo.

Lemma 8.2.

(a) All strict functionals F € D, are (uniformly) definable in PCF" from strict
functions of type v — v and are, in fact, wittingly consistent.

(b) The same holds for the functionals G : t,(t — t) — ¢ which are strict in the first type ¢
argument and either constant or strict in the second type 1 — v argument (and can be
identified with arbitrary sequences G, : (t — ¢) — ¢, m =0, 1,..., of constant or strict
functionals).

Proof.

(a) First, note that parallel disjunction can be generalized to bounded quantification. This
can be defined in PCF™ recursively (for P: ¢ — o):

(i < n.Pi) =if n =0 then false else (Ji <n — 1.Pi) V P(n — 1).

In particular, (3i < 1.Pi) = L. This allows us to define in PCFT a functional
# (6 —1) = o),
#ef =3i <n(f(ai) # bi),

assuming that ¢, = [2%’,',',',’3{;111] and # is understood as a strict predicate. Here we rely

on the simple fact that the number n and functions a; and b; of ¢ < n are computable
and PCF-definable from ¢ € N. The value of #cf is true if the strict finite function
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Ve = Z%’;',',”Z’j:l is inconsistent with f; #cf = false if [Z%’;',',’,I;’;:ll] C f; otherwise,
#cf = L. Also, #Lf = 1.

Now, any strict F' can be evidently represented as F' = [ |, )21 [gfji)}, or as
— — Bk) | — |8
F=Fwhere F, = | | [soi&)] - [goff(i)} U Foy, 7> 0,
k>r,o(k)#£L

with appropriate strict one place numeric functions «, 3 : © — ¢ such that 5(k) = F Pa(k)-
Although we can take a(k) = k, we will need the general case. Note that for arbitrary
o and 3 this lub may not exist if @) and @,y are consistent, but 3(k) # (k') for
some k. We can evidently assume that o and  are defined ( # L) on the same initial
segment of N, finite or the whole N. (In fact, only two cases suffice here: the whole N,
or the empty segment, if F' = 1. But the case of an arbitrary segment will be needed
later.) Then for arbitrary a and 3 for which the lub F,. exists we have F,.pq 4y = B(k) if
a(k) # L, and also F,, = L if a(r) = L. Then F, is also definable in PCF™ recursively
on r and thus by using the least fixed point operator Y as well as the parallel conditional
function pif:

F|f = pif #a(r)f then F/, f else 3(r).

Let us show that the two definitions are equivalent (F,, = F)). First note that F,
satisfying the first definition should also satisfy this formula with = replaced by 3, thus
giving F C F,.. Indeed, the value of the right-hand side, when defined, is equal either to
B(r), if oy E f, or to Fry1f. In both cases the left-hand side, I f, has evidently the
same value. For the converse, F,. C F, it suffices to show that for the second definition
we have Flpq ) = B(k), for all k > r with defined a(k), assuming that the above union
does exist, and « and 3 are defined on the same initial segment of N. This can be shown
by induction on k — r: if () contradicts p,x) then F,’Apa(k) = 7/»+190a(k) = B(k);
otherwise, F, ¢4k = B(k) = B(r), and hence again F o, x) = B(k).

We can define, in PCF, the correction operator o, 3 +— o/, 3’ with o/ E o and ' C 3
by restricting o/ = a | {k € N | k < n}, and the same for 3, for the maximal n (possibly

= 00) such that the union U]]z;&a,(k# 1 [gla(,k(i)] exists. Evidently, if the unrestricted
union exists for the original o and 3 then o = « and 8’ = (3. This, together with the
definition of F}, constructs, in PCF*, a universal functional Uaf : ((t — 1) — 1) for
all strict continuous functionals of the type ((+ — ¢) — ¢).

Finally, for F = Uaf, the functional F'f can be computed by the strategy s whose
behaviour is definable from the functions o/ (k) and §'(k) as follows:

M(S,A) = #

MsF) = “flag) =",
M(s. kbo) = “fla) =",
M(S, kbObl) = “f(CLQ) — ?,,7
M(S, kboby - - - bn—2) = “f(an—l) =17,

M(S, k?b()bl s bn_gbn_l) — ﬁ/(k’),

where ¢q/ () = [2%’,',',',’,2';111]. It is easy to see that s is wittingly consistent.
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(b) Define, essentially,
Gnf = if G,,, L is constant ¢, then ¢,
else as in the proof of (a), by using some oy, B 1 ¢ — ¢.

This leads to an universal functional for the required class of type (¢, (¢t — ¢) — ¢)
functionals. []

These definability considerations were devoted mainly to strict type (¢ — ¢) — ¢ function-
als of the standard continuous model {D,}. For the monotonic non-dcpo model {W,} we
have isomorphisms W, = D,, W, ,, =D, ., (and also for all level 1 W), but W,_,,)_,, %
D(,—)—., (by Section B2). (The same holds for Q, and Q,—.,, whereas Q(,_,,)_,, is strictly
embeddable in W(,_,,)_,, which is also strictly embeddable in D,_,,)_,, and consisting,
thereby, of continuous functionals only.) Moreover, W(,—,)—, contains all (but not only)
strict continuous functionals. The latter holds because the above Lemma on the (rela-
tive) definability of strict continuous functionals holds in the PCFT-model W, as well as
in D.

8.4. On Denotational Semantics of Wittingly Consistent Strategies. Let us look
again at denotational semantics of any wittingly consistent system of strategies (M, M).

For any strategy m € M of the type a = (a1,...,q, — ) define a 1-1 computable
enumeration of the basic terms A4,,,{Z}, a € N, over M with variables from the canonical
list Z =21 :aq,...,ZTy : ap only which contains all queries to the Oracle potentially “asked”
by the strategy m.

For any such system (M, M), let us construct a system of continuous functionals G/ :
(t = t) — 1, m € M, such that the denotational semantics [-] of the system (M, M) in
the model {D,} (respectively, in {W,}) may be equivalently defined (instead of explicitly
using the interpreted computations) as the least solution of the system of equation

[m]z = GM(Aa[Ama{Z}]), m € M. (8.2)

Here x; are ranging over D, (or, alternatively, over W,,) and, for all m € M, Aa.[An.{Z}]
are considered as strict functions in D,_,, = W,_,,.

The required functionals G can be defined as GM(f) = v € N if, and only if, for

some w = 1y -+ -1, € N* the following two conditions hold:

(1) M(m,w) =v (with M(m,w’) ¢ N for all initial segments w’ of w), and

(2) for all i < k, if M(m,r1---7;) = Ama ( # #) then 111 = f(a).

This definition is correct (v does not depend on the choice of w) because the system of
strategies (M, M) is wittingly consistent. Indeed, let u = sy --- s, satisfy the analogous
condition as w with M(m,u) =v" # v. It follows that the pair u,w is not m-consistent and
for some proper initial segments w’ = ry---r; and v’ = s1--- 55, M(m,w') = M(m,u') =
Apq € Basic-Terms(M) and f(a) = rit1 # sj+1 = f(a) — the contradiction.

The functional GM(f) is also computable by a strategy m* L — 1) — @
induced by m: [m*] = GM. Tt behaves in the same way as m, except that instead of
the queries “A,,, = 7”7 it asks “f(a) = 7?7 for a € N. The resulting system of strate-
gies is denoted as (M*, M*). Evidently, (M*, M*) is sequential /wittingly consistent if
(M, M) is.

34This means that the fixed point equation [-] = [-]* considered formerly can be represented in this form
for appropriate G
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The equation (8:2]) and its versions (83) and (8.4) below considerably simplify the corre-
sponding equation in [28} for the sequential case. They will be needed for the construction
in PCF™ of a universal functional U} in Section B.7l

8.5. Definability of G (f). Without restricting generality we can consider that the given
wittingly consistent system of strategies (M, M) is countable. Elements of M may be
numbered, or even identified with the natural numbers: M = N. Our current goal is to
define the functional G!(f) in PCF* from some type ¢ — ¢ numerical functions which can
be computed from M* (so that if M is effectively computable, such are these numerical
functions, too).

According to the strategy m in (M, M) or m* in (M* M*), the functional G (f)
is evidently either constant c,, or strict. Therefore Am f.G!(f) is definable in PCF™ from
some strict type ¢ — ¢ functions by Lemma B2 (b). Note, that the constants ¢,,, the
(partial) predicate “GM is a constant functional # 1” and the corresponding numerical

functions vy, By, : ¢ — ¢ for the strict GA!(f) used in the Lemma are effectively computable
from M* and m*.

8.6. A Universal Functional for Special Wittingly Consistent Systems of Strate-
gies. Let us fix an arbitrary Basic-term A{j,y,Z} : ¢ constructed from

e symbols of the language PCF,

e avariable j : ¢ and a fixed list of variables § = y1, ... ys of the same type v = (y1,...,7n —
t), and

e a fixed list of variables T =x1 : y1,...,%n : Yn.

Let us also fix a set M = PCFU{ o, 1, o, . . .} of strategies (the constant symbols) with all

tp of the same type . Consider the class KA of all wittingly consistent systems of strategies

(M, M), with M fixed as above and M varying, but with the ordinary reductions for the

constants of PCF and such that the terms p,x1,-- -z, can only be M-reduced to terms of

the form

A{J, tpys sy -+ s Bpss T1, - -+, Tn }, oF shortly A{j, fip, T}
with the same fixed A, where j is a numeral (0 41+ --- + 1) and py,...,ps are arbitrary
natural numbers. The class of effective systems in K4 is called IC?H.

Lemma 8.3. Both for {D,} and {W,}, a universal functional Ufy4 2 (L — 1) = v for some
superset of KKA-computable functionals is definable in PCFT. Specifically, U::‘f ranges over

some superset of KA -computable (Kfﬂ-computable) type v functionals, if f ranges over all
(respectively, all effective) strict monotonic functions of the type v — . In particular,
each KA -computable (Kfﬁ—computable) type v functional is definable in PCF™ from some
(effective, in the case of ICeAH) fiv—t.

Proof. The above recursive equation (8.2]) becomes now
[1p)z = G (p, \jp. AL 11y, 2}]) (8.3)
with z; ranging over D,, (respectively, over W,,). It is inessential that GM here has a

slightly different type than in [82). So, it is still definable in PCF™ from some type ¢ — ¢
strict functions computable from M.

35for a functional denoted there as H
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Now, consider a variable u : ¢+ — = and the following version of the above recursive
equation

upZ = GM(p, \jp. A{j, up1, . .., ups, T}) (8.4)
By using combinators S and K to simulate lambda abstraction, and the least fixed point
combinator Y of an appropriate type, this gives rise to a PCF'-term Uff{ fl e —n
(corresponding to the above variable u : © — 7) depending on some, actually strict, functions

f : ¢ — ¢ which were involved in the PCFT-definition of GM. By some trivial encoding this
gives rise to the required PCF*-term U:/4 : (Lt — ¢) — v involving no variables f at all. []

Note 8.4. Lemma may be easily generalized to the case of any finite number of terms
A{j,g,z} : v with the same variables, giving rise to the universal functional U:Y4 for KA-
computable functionals of the type v .

8.7. A Universal Functional for all Wittingly Consistent Functionals of a Given
Type. The general universal PCF*-definable functional U € W (,—)—a, Or its version
€ D(—1)—a, for all wittingly consistent functionals of any given type « can be obtained

from U:/4 for suitable v and A by using only PCF. Here we also employ the fact that,
without restricting generality, we can consider only systems of strategies m asking queries
in the canonical form (5.I)). Given any such m, this allows us to “concentrate”, by some
encoding most of the strategies descendant to m (having levels < the level of m) in a finite
number of types, and, even in only one type 7, (and, analogously, to further restrict the form
of queries). That is, the general wittingly consistent systems of strategies can be reduced
to the special systems of some class K4 considered above. We omit the details which are
presented in [2§].

9. CONCLUSION

A generalized non-dcpo domain theoretic framework for finite type functionals which are not
necessarily closed under directed limits was presented in this paper in terms of pointwise
(natural) least upper bounds, and corresponding natural continuity, natural algebraicity
and natural bounded completeness properties.

An inductive definition of a monotonic fully abstract model Q for PCF satisfying the
above properties and based on a quite general concept of sequential strategies was also given.
This model consists hereditarily of all finite type functionals computable by the sequential
strategies which also prove to be uniformly definable in PCF from (strict) functions of the
type ¢ — ¢. This is the universality property also characterising precisely the expressive
power of PCF. Thereby we have demonstrated that the old concept of sequential strategies
[29, 28] can be used quite naturally for defining the fully abstract model along with the more
recent game approach [I}, 11}, 22]. The uniqueness of Q was also shown. The essential feature
of our definition is its straightforward, inductive and computational character. For each level
we just hereditarily restrict the class of monotonic functionals to those that are sequentially
computable. However, either the correctness proof of the induction step of this definition,
if based on (B.3]), or (in the case of alternative definition based on (0.4 with a simpler
correctness) proving the main properties of Q is more complicated and requires developing
a general and quite involved theory of all computational strategies with their generalized
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operational semantics coherent with the denotational one. In this way the above “natural”
non-dcpo domain theoretic continuity and other properties of Q = Q are also shown.

Quite analogous inductive definition of a fully abstract model W = W for PCFT =
PCF + “parallel OR” satisfying the above non-dcpo domain theoretic properties + the
universality property relative to PCF™ was also briefly outlined in terms of wittingly con-
sistent nondeterministic strategies. The model W proves to be not w-complete, as well as
the model of sequential functionals Q for which this was shown in [23].

As the future perspective, it would be interesting to develop a game semantics version
of wittingly consistent strategies. Recall also several domain theoretic hypotheses from
Section on the model Q (equally applicable to W) related with the fact that it is not
w-complete, as well as the hypotheses concerning effectiveness of representation of naturally
finite functionals in Section [2.4] and the related Notes [[.14] and on finite and finitary
strategies.
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Basic-Terms({0,, | « € Types}) is the set of basic terms (possibly with variables) over the
set of constants O,.
Define @ (recursively) as the set of all functions

q: (NUN)* U {type} — N UBTg U Types

(considered as partial due to L € N ) satisfying the following conditions for all u,w €

(NUN)* and j € N:

(1) ¢(NUN)*) C N UBTq.

(2) q(type) € Types.

We write ¢ : a if ¢(type) = a and take Q, = {¢ € @ | ¢ : a}. If we have a map
¢ : (NUN)* — N UBTg (i.e. ¢ is undefined on type) then writing ¢’ : o also means
“assignment” of the type a to ¢/, i.e. adding {type — a} to the graph of ¢’ so that
q= (¢ : ) is a map with ¢(type) = a.

(3) ¢q(u) € N = q(uw) = L for non-empty w.

(4) If q(u) = B € BTg and v € N* then all variables in B are from the canonical list
Z1,..., oy for the type of ¢ (the condition similar to that in Definition BII(I)).

(5) If g(u) = B € BT (with u € (NUN)*) and B contains < j occurrences of the symbol
O then g(ujw) = L, otherwise, if the j-th occurrence of O in B has the type B;j then
qj = ((Mw.q(ujw)) : ;) € Q (in fact, € Qp,).

More precisely, we take the set () to be the largest one whose elements g satisfy the above

conditions, i.e. the largest set satisfying

Q C {q: (NUN)"U {type} — N, UBTq U Types | ®(¢,Q)}

where ®(q, Q) is the (universally quantified by u,w and j) conjunction of the above condi-
tions (1)—(5), which is monotonic on Q. (Note that the least such set is just empty. Thus,
the definition of @ is, in fact, co-recursive.)

Define a function Q : @ x N* — N | UBasic-Terms(Q), making the pair (@, Q) a system
of strategies, by taking for all ¢ € @ and u € N*

T, if q(u)=reN,,
Alqi, q2, . ..] € Basic-Terms(Q), if ¢(u) = A € BTp and
Q(q,u) = s ’ = Al
(@,u) q; = (Aw.q(wjw)) : 3, (A1)
Jj=>1
Here A[q1, g2, .. .| is the term obtained as the result of the substitution in A of the strategies
q1, ¢, - - -, respectively, in place of the first, second, etc. occurrences of O in A, and 31, B, . . .

are the types of these occurrences.

Our goal is to show the universality of the defined system of strategies (Q, Q). First,
define p1;(B), for any B € Basic-Terms(M), as the j-th occurrence of an element from
M in term B. If B has < j occurrences of elements from M then p;(B) is undefined.
(If B € BT then p;(B) is the j-th occurrence of a O-symbol in B.) Denote by Oy (B) the
result of “erasing” in B of all occurrences of elements from M, i.e. the result of replacement
of all such occurrences by the symbol O (of appropriate type). Evidently,

B =0um(B)[m(B), m(B), .. ]

(and dually for B € BTq). It will also be convenient to define Oy (r) = r for r € N and
Op(a) = a for a € Types.
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Given any system of strategies (M, M) and m € M, define two functions
M., (NUN)* U {type} — N, U Basic-Terms(M) U Types,
My, : (NUN)* U {type} — N UBTg U Types,

by letting _./\;lm(type) = M, (type) = the type of m, and, iteratively, for any u € N*,
we (NUN)* and j € N,

Mo (u) = M(m,u),
M, (w), if M(m,u) = B € Basic-Terms(M )
- = _ and m; = p;(B),
Mm(ujw) = 1, if M(m,u) ¢ Basic-Terms(M) (A.2)
or i;(B) is undefined,
M (w) = On(Mp(w)).

For any system of strategies (M, M) the elements ¢ of the set Qp = {M,, | m € M}
satisfy the conditions (1)—(5) above. Therefore Qg C @ (preserving types).

Lemma A.1. If ¢ : (M, M) — (M', M') is a homomorphism then pr(m) = M, for all
m e M.

Proof. First note that for all m € M and w € (N U N)* the equality ./\;l:p(m) (w) =

(M, (w))? evidently holds. Tt follows that My (W) = O V oy (W) = Oap (M (w))?

= B (M (w)) = M (w).
Lemma A.2. Q, = q for all g € Q. Therefore @ = U(M,M) QM-

Proof. As Q, =00 Q, and Q,(type) = Q,(type) = q(type), it evidently suffices to show
that, for u € (NUN)* and ¢ € @,

r, if q(u)=reNy,
3, (u) = Alg1,q2,...] € Basic-Terms(Q), if ¢(u) =A € BTg and
T 0; = Ow.glujuw)) : 3
Bj = type of p;(A), j = 1.

This equality is proved by induction on the number of occurrences of symbols from N in the
string u. If u € N* then the equality evidently follows from (A.I) and (A.2). Let u = yiz
where y € N*, ¢ € N and z € (N UN)*. Two cases are possible.

(1) ¢(y) = B € BTo. Then, using (A)), Q(q,y) = Blp1,p2,...] for p; = At.q(yit) : v; and
an appropriate type «;, and hence Qu(yiz) = Qp,(2) according to (A.2)). The number
of occurrences from N in string z is less than in u. Therefore the formula (A.3) is
applicable by induction:

7

]

(A.3)

T, if pi(2) =q(yiz) = q(u) =r € N,
Alqi,qo,- -], if pi(2) = q(u) = A € BTp, and

- = \w.ps(zjw) : B

0y (2) = e NG

= Aw.q(yizjw) : B;
Bj = type of u;(A), j > 1.

Since Q,(u) = Q4(yiz) = Q,,(2), this gives exactly the equality (A3).
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(2) q(y) € Ni. Then Q(q,y) ¢ Basic-Terms(Q) and therefore Q,(u) = Q,(yiz) = L by
(A2). Then q(y) € N, entails q(u) = ¢(yiz) = L by the definition of (). Therefore
(A23) holds in this case as well. O

Theorem A.3. (Q, Q) is the unique up to isomorphism universal system of strategies. For
any system (M, M), the map m — M., is the unique homomorphism (M, M) — (Q, Q).

Proof. The uniqueness of the homomorphism follows from Lemmas [A1] and For, if
¢ (M, M) — (Q, Q) is a homomorphism then ¢(m) = Qu(m) = My, for any m € M.
To establish that m — @, is a homomorphism we need to show that for all m € M
and v € N* that
(i) M(m,u) =r € N} = Q(M,,,u) =r, and
(il)) M(m,u) = Almy,ma,...] € Basic-Terms(M) = Q(M,,u) = AMp,, My, .. ]
Here we assume that A € BTg and m; : 3;, j > 1. The first implication is easy. In the sec-
ond, we need to show by the definition of Q that M,,(u) = A, and M,,,; = Mw. My, (ujw) :
Bj, 7 > 1. Both equalities follow from (A.2). The first is easy. For the second, we get
Mup(ujw) = My, (w) for all w € (NUN)* and j > 1, and apply the erasing operator Oyy.
L]
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