
Logical Methods in Computer Science
Vol. 8(3:24)2012, pp. 1–15
www.lmcs-online.org

Submitted May 2, 2011
Published Sep. 27, 2012

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES

MICHAEL HOLTMANN a, LUKASZ KAISER b, AND WOLFGANG THOMAS c

a Lehrstuhl für Informatik 7, RWTH Aachen University
e-mail address: holtmann@automata.rwth-aachen.de

b LIAFA, CNRS & Université Paris Diderot – Paris 7
e-mail address: kaiser@liafa.univ-paris-diderot.fr

c Lehrstuhl für Informatik 7, RWTH Aachen University
e-mail address: thomas@automata.rwth-aachen.de

Abstract. We study variants of regular infinite games where the strict alternation of
moves between the two players is subject to modifications. The second player may postpone
a move for a finite number of steps, or, in other words, exploit in his strategy some
lookahead on the moves of the opponent. This captures situations in distributed systems,
e.g. when buffers are present in communication or when signal transmission between
components is deferred. We distinguish strategies with different degrees of lookahead,
among them being the continuous and the bounded lookahead strategies. In the first
case the lookahead is of finite possibly unbounded size, whereas in the second case it is
of bounded size. We show that for regular infinite games the solvability by continuous
strategies is decidable, and that a continuous strategy can always be reduced to one of
bounded lookahead. Moreover, this lookahead is at most doubly exponential in the size
of a given parity automaton recognizing the winning condition. We also show that the
result fails for non-regular games where the winning condition is given by a context-free
ω-language.

1. Introduction

The algorithmic theory of infinite games is a powerful and flexible framework for the design
of reactive systems (see e.g. [8]). It is well known that, for instance, the construction of
a controller acting indefinitely within its environment amounts to the computation of a
winning strategy in an infinite game. For the case of regular games, algorithmic solutions of
this synthesis problem have been developed, providing methods for automatic construction
of controllers. The basis of this approach is the Büchi-Landweber Theorem, which says that
in a regular infinite game, i.e. a game over a finite arena with a winning condition given by
an ω-regular language, a finite-state winning strategy for the winner can be constructed [2].
Much work in the past two decades has been devoted to generalizations of this fundamental
result. The game-theoretic setting is built on two components, a game arena or game graph,
representing the transition structure of a system, and a winning condition, usually given

1998 ACM Subject Classification: D.2.4.
Key words and phrases: automata, model checking, regular infinite games.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(3:24)2012

c© M. Holtmann, Ł. Kaiser, and W. Thomas
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. HOLTMANN, L. KAISER, AND W. THOMAS

by a logic formula or an automata theoretic condition. Most generalizations address an
extension of either of the two, or both. A rapidly growing literature is thus concerned with
the case of infinite game graphs and non-regular winning conditions [16, 3, 1].

In the present paper we investigate a different kind of generalization of the basic setting,
regarding the possibility to get a lookahead on the moves of the opponent. To explain
this aspect it is convenient to refer to the simplest format of infinite games, also called
Gale-Stewart games [10]. In such a game we abstract from arenas but just let the two
players choose letters from a finite alphabet in turn. (For notational convenience let us
only consider the typical case of the Boolean alphabet B := {0, 1}.) A play is built up as a
sequence a0b0a1b1 · · · where ai is chosen by one player and bi by the other. A natural view
is to consider the sequence α = a0a1 · · · as input stream and β = b0b1 · · · as output stream.
Accordingly, the players are called Player Input and Player Output, or short Player I and
Player O. The play is won by Player O if the ω-word

(

a0
b0

)(

a1
b1

)(

a2
b2

)

· · · ∈ (B2)ω satisfies the
winning condition, i.e. if it belongs to a given ω-regular language L. In the classical setting,
a strategy for Player O is a function f that maps a finite input prefix a0 · · · ai to the bit bi
that is to be chosen by Player O. Such a strategy induces an operator λ : Bω → B

ω from
input streams to output streams. In this work we study more generalized operators that
correspond to strategies where the choice of bi depends on a0 · · · aj, for j 6= i. We show
results on the existence of such strategies for different conditions on the relation between i
and j.

There are two motivations for the study of such a generalization, a practical and a
theoretical one. In many scenarios, the occurrence of delays (say between input and output)
is realistic, either as a modeling assumption or as a feature of strategies. For example, the
design of a controller may involve a buffer that allows to store a sequence of input bits
of some fixed length d such that the bit bi of the output sequence is to be delivered with
lookahead d, i.e. on the basis of the input sequence a0 · · · ai+d. Conversely, in the context
of networked control (i.e. systems with components in different locations), there may be
a delay d in the transmission of data, which means that the delivery of bi is due at a
point where only the input bits a0 · · · ai−d are available. It is clear that the occurrence of
lookaheads and delays influences the existence of solutions. In the first case, we obtain for
increasing d an increasing advantage for the output player, whereas in the second case we
obtain an increasing disadvantage. Observe that the cases are symmetric in the two players,
and thus are mutually reducible.

A more theoretical motivation is to explore more comprehensively and systematically
the solution concepts for infinite games. The classical concept of a strategy gives a very spe-
cial kind of operator, but there are natural options of higher generality, well-known already
from background fields like descriptive set theory and topology [10]. Let us mention four
fundamental levels of operators, corresponding to different levels of obligation for Player O
to move. The most general ones are the continuous operators (see e.g. [15, 14]). An op-
erator λ is continuous (in the Cantor space of infinite sequences over B) if in the output
sequence β = λ(α) the bit bi is determined by a finite prefix of α. Referring only to the
length of prefixes, we call an operator uniformly continuous if for some strictly monotone
function h : N → N we have that bi is determined by a0 · · · ah(i). For fixed h we then speak
of h-delay operators. On a further level of specialization, we are dealing with operators of
bounded delay. These are h-delay operators with h(i) ≤ i + d, for some d ∈ N. Analo-
gously, if h(i) = i + d, then we speak of operators with constant delay d, and finally, the
function h(i) = i supplies the operators induced by standard strategies. All these levels of

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 3

delay naturally correspond to different types of games; for example, a continuous strategy
involves the moves “wait” or “output b” after each move of the opponent.

Our main result connects the different kinds of operators in the context of infinite games.
We show that in a two-person game with regular winning condition, one can decide whether
there is a continuous winning strategy for Player O, and in this case a strategy of constant
delay can be constructed. Moreover, one can compute a suitable bound d for the delay.
Thus, in the first mentioned application scenario, if a standard controller for satisfying a
regular specification does not exist then one can decide whether some finite buffer will help,
and determine the needed size of that buffer. We also show that the result fails when passing
to non-regular specifications. However, which functions may be appropriate for uniformly
continuous strategies in the non-regular case is left open. It seems that for infinite-state (or
non-regular) games our result can serve as an entry into a much wider field of study (see
e.g. the recent work [7]).

As indicated above, the idea of generalized concepts of strategies is far from new. An
early contribution is found in the (not well-known) paper of Hosch and Landweber [9]. It
deals with constant delay strategies in regular games and exploits a result of Even and
Meyer from Boolean circuit theory to establish a bound for delays [5]. We obtain this
result here as a corollary of the main theorem. The extension of our result over [9] covers
three aspects: the connection with strategies of unbounded delay, a considerably simplified
and transparent proof of the Hosch-Landweber-Theorem (the construction in [9] is highly
complex), and finally better complexity bounds for suitable delays.

This paper is organized as follows. In the next section we introduce notation. In
Section 3 we present several kinds of functions and the operators they induce. We also
bridge from continuous operators to delay operators and introduce games with delay. In
Sections 4–6 we prove our main result via a two-stage reduction: In Section 4 we do the
first step, switching over to block games. In Section 5 we deal with notions related to
semigroups and define a semigroup game. This framework is finally used in Section 6 to
establish the second step of the reduction, i.e. the connection between block games and the
semigroup game. Sections 7 and 8 provide evidence that our results cannot be generalized
to ω-context-free specifications and give an outlook on future investigations.

2. Preliminaries

Let Σ be a finite alphabet. By Σ∗ and Σω we denote the sets of finite and infinite words over
Σ. Usually, finite words are denoted u, v, . . . whereas α, β, . . . are infinite words. By |u| we
denote the length of u and Σn := {u | |u| = n} is the set of words of length n. N is the set

of natural numbers and N+ := N \ {0}. Given n1, n2 ∈ N with n1 < n2 we write Σ[n1,n2] for
⋃

n1≤n≤n2
Σn.

A (deterministic) finite automaton, DFA for short, over Σ is a tuple A = (Q, q0, δ, F)
where Q is a (non-empty) finite set of states, q0 ∈ Q is the initial state, δ : Q×Σ → Q is a
transition function, and F ⊆ Q is a set of final states. The run ρu of A on u := u0 · · · un−1

is the finite sequence ρu(0) · · · ρu(n) with ρu(0) = q0 and ρu(i + 1) = δ(ρu(i), ui) for i =
0, . . . , n−1. We define A to accept u if and only if ρu(n) ∈ F . The set of all words accepted
by A is called the ∗-language of A and denoted L∗(A). Later in our work we need the
following basic property of deterministic finite automata.

Lemma 2.1. Let A be a DFA with n states and |L∗(A)| = ∞. Then, for all i ∈ N, A
accepts a word ui of length i ≤ |ui| ≤ i+ n.

4 M. HOLTMANN, L. KAISER, AND W. THOMAS

Proof. Let A be a DFA with n states and |L∗(A)| = ∞. Since L∗(A) is infinite it must be
possible, for each i ∈ N, to read a word u of length i such that from δ∗(q0, u) a final state
is reachable. Otherwise, the length of words accepted by A is bounded by i, which is a
contradiction to the infiniteness of L∗(A). Then, from δ∗(q0, u) we can reach a final state
by a word u′ of length at most n. The word uu′ is accepted by A and is of length between
i and i+ n.

A (deterministic) parity automaton, DPA for short, over Σ is similar to a DFA, but
instead of the set F of final states it has a coloring, i.e. a function c : Q → {0, . . . ,m}. A
run of a DPA is the natural extension of a run of a DFA to infinite words. For α ∈ Σω,
the set Inf(ρα) is the set of states visited infinitely often in run ρα. We define the parity
automaton A to accept α if and only if max(Inf(c(ρα))) is even, i.e. the maximal color
seen infinitely often in the run on α is even. Accordingly, the acceptance condition of A is
called a max-parity acceptance condition. The set of all words accepted by A is called the
ω-language of A and denoted Lω(A).

In the next sections, we write L(A) instead of L∗(A) or Lω(A) if it is clear from the
context whether A is a DFA or DPA. It is well-known that languages accepted by DPAs
are exactly the ω-regular languages (see e.g. [8]).

A parity game Γ = (V, VI , VO, E, c) is played by two players, Player I and Player O, on
a directed graph G = (V,E):

• V = VI ·∪ VO is a partition of V into positions of Player I and Player O,
• E ⊆ V × V is the set of allowed moves, and
• c : V → {0, . . . ,m} is a coloring of V (w.l.o.g. m ∈ 2N).

We assume that for each v ∈ V there is a valid move from v, i.e. vE := {w | (v,w) ∈ E} 6= ∅.
A play is an infinite path through G. A (standard) strategy for Player O is a function
f : V ∗VO → V defining, for each position of Player O and each history v0 · · · vk of the
play, her next move. Thus, for each v0 · · · vk (with (vi, vi+1) ∈ E for all i = 0, . . . , k − 1)
and vk ∈ VO, the function f is defined such that (vk, f(v0 · · · vk)) ∈ E. A play v0v1 · · ·
is consistent with the strategy f if for each vi ∈ VO the next position is given by f , i.e.
vi+1 = f(v0 · · · vi).

The parity winning condition is again defined so that a play v0v1 · · · is winning for
Player O if and only if the maximal color occurring infinitely often in {c(vi) | i ∈ N}
is even. In the other case the play is winning for Player I. The function f is called a
winning strategy for Player O from v0 if each play starting in v0 that is consistent with f is
winning for Player O, and analogously for Player I. Parity games, even on infinite graphs,
are determined, i.e. for each v either Player I or Player O has a winning strategy from v
(see e.g. [8]).

For the rest of this paper, let us fix {0, 1} as input and output alphabet, i.e. let
ΣI = ΣO := B. All the definitions and results are analogous for other finite alphabets of
size at least two.

3. Operators and Games with Delay

In this section we introduce different kinds of functions and operators, and show how they
induce games with different degrees of lookahead. Below, we mostly use the term “delay”
in place of “lookahead”, following e.g. [9].

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 5

3.1. Delay Operators. Let λ denote a function from B
ω to B

ω, also called an operator.
We shall distinguish the following classes of operators, starting form the most general ones.

(1) continuous operators
(2) uniformly continuous operators
(3) h-delay operators for a fixed h : N → N

(4) bounded delay operators
(5) d-delay operators for a fixed d ∈ N

An operator λ is continuous if in the output sequence β = λ(α) each bit is determined
by a finite prefix of α. This condition is equivalent to the standard topological definition,
where λ is continuous if the preimage λ−1(U) of every open set U ⊆ B

ω is open in B
ω. Here,

open sets in B
ω are given by the standard Cantor topology, i.e. U ⊆ B

ω is open if there
exists W ⊆ B

∗ such that U = {wBω | w ∈ W}. Consult e.g. [14] for more details. This
topology is induced by the standard metric δ on B

ω:

δ(α, β) =

{

2−min{n|αn 6=βn} if α 6= β,

0 otherwise,

and the standard metric definitions of continuity and uniform continuity are equivalent
to the ones we use. Let us recall here three of these classical definitions. An operator
λ : B

ω → B
ω is:

• Continuous if for all α, β ∈ B
ω and each ǫ > 0 there exists a δ > 0 such that if δ(α, β) < δ

then δ(λ(α), λ(β)) < ǫ.
• Uniformly continuous if for each ǫ > 0 there exists a δ > 0 such that for all α, β ∈ B

ω if
δ(α, β) < δ then δ(λ(α), λ(β)) < ǫ.

• Lipschitz continuous with constant C if for all α, β ∈ B
ω the following holds: δ(λ(α), λ(β)) ≤

C · δ(α, β).

Since we do not use metric properties of the Cantor space, to formally capture the constraint
that each output bit is determined by a finite prefix of the input, we define the continuity of
λ in the following equivalent way. We use a map l that transforms each input bit into either
0 or 1 or ⊲, the latter meaning that the production of the next output bit is still deferred.
The value λ(α) is then obtained from the sequence of l-values by deleting all entries ⊲.

Definition 3.1. An operator λ : Bω → B
ω is continuous if there exists l : B∗ → {0, 1,⊲}

such that for all α ∈ B
ω the word l(α) := l(α0)l(α0α1)l(α0α1α2) · · · satisfies the following:

(1) l(α) does not end with ⊲
ω, and

(2) λ(α) = strip(l(α)) where strip(l(α)) is the word l(α) with all ⊲ removed.

Let us now define h-delay and uniformly continuous operators. Let h : N → N be a
strictly monotone function. We say that λ is an h-delay operator if, for each α ∈ B

ω, the bit
(λ(α))i depends only on α0 · · ·αh(i). An operator λ is uniformly continuous if there exists
an h such that λ is an h-delay operator. Observe that each uniformly continuous operator is
indeed continuous – the function h supplies the information how long the output ⊲ should
be produced.

For the space B
ω it is known that the converse also holds. This is a consequence of

König’s Lemma, or equivalently of the fact that continuous functions on a closed bounded
space are uniformly continuous.

Lemma 3.2. For every continuous operator λ : Bω → B
ω there exists a strictly monotone

function h : N → N such that λ is an h-delay operator.

6 M. HOLTMANN, L. KAISER, AND W. THOMAS

By the above lemma, the classes of continuous operators B
ω → B

ω and uniformly
continuous operators B

ω → B
ω are exactly the same. A space where this does not hold is

e.g. R := B
ω \ {0ω}. Consider λ1 : R → R with

λ1(α) :=

{

01ω if α = 0∗10β for some β ∈ B
ω

1ω otherwise

Intuitively, the operator λ1 checks if there is 0 or 1 after the first 1 in the input. One
can verify that λ1 is a continuous function from B

ω \ {0ω} to B
ω, but it is not uniformly

continuous and can not be extended to any continuous function from B
ω to B

ω. Our results
do not hold for such operators: Already λ1 is a counterexample, since it is continuous but
not of bounded delay. Thus, in this paper we adhere to the space B

ω.
Among the uniformly continuous operators, we distinguish an even more restricted class

of bounded delay operators. A function h : N → N is said to be of bounded delay if there
exist i0, d ∈ N such that h(i) = i + d for all i ≥ i0, and it is said to be a d-delay function
(or a function of constant delay d) if h(i) = i + d for all i ∈ N. The induced operators are
named accordingly.

In topological terms, bounded delay operators are Lipschitz continuous functions from
B
ω to B

ω, as defined above. The d-delay operator is clearly Lipschitz continuous with
constant C = 2d. Conversely, if an operator λ is not of bounded delay then for each d there
exists α ∈ B

ω and an index i such that the i-th bit of λ(α) is not a function of the first
i + d bits of α. This means that there exists β ∈ B

ω with the same first i + d bits as α,
i.e. satisfying δ(α, β) < 2−(i+d), such that λ(β) differs from λ(α) on the i-th bit, therefore
δ(λ(α), λ(β)) ≥ 2−i. This contradicts Lipschitz continuity as the constant C would have to
satisfy C > 2d, for all d ∈ N.

In all definitions above, we assume that the delay function h is strictly monotone. For
our purpose it is more convenient to consider the function fh : N → N+, denoting the
number of additional input bits until the next output bit:

fh(i) :=

{

h(0) + 1 if i = 0

h(i)− h(i − 1) if i > 0

In the next sections, we work only with the functions fh. Moreover, we use the special
notation 〈d〉 for the function fh with h of constant delay d: 〈d〉(0) = d + 1 and 〈d〉(i) = 1
for i > 0. From now on, we omit the subscript h in our notation.

3.2. Regular Games with Delay. In this section we introduce the regular infinite game
Γf (L). It is induced by an ω-language L (usually given by a DPA A) over B2, and a function
f : N → N+. (Since we focus on the impact of the function f , we omit L if it is clear from
the context and write Γf .) The function f imposes a delay (or lookahead) on the moves of
Player O. This means that in round i Player I has to choose f(i) many bits, and Player O
chooses one bit, afterwards. This way the players build up two infinite sequences; Player I
builds up α = a0a1 · · · and Player O builds up β = b0b1 · · · , respectively. The corresponding
play is winning for Player O if and only if the word

(

a0
b0

)(

a1
b1

)(

a2
b2

)

· · · is accepted by A. For a

DPA A, we say that L(A) is solvable with finite delay if and only if there exists f : N → N+

such that Player O wins Γf (L(A)) (analogously for restricted classes of functions).
Observe that the possible strategies for Player O in Γf correspond precisely to h-delay

operators, since Player O must output her ith bit after receiving the next f(i) bits of input.

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 7

Thus, the question whether there exists an h-delay operator λ such that {
(

α
λ(α)

)

| α ∈ B
ω} ⊆

L(A) is equivalent to the question whether there exists a winning strategy for Player O in
Γf .

A basic observation is that winning with delay is a monotone property. For two functions
f, g : N → N+ we write f ⊑ g if and only if f(i) ≤ g(i) for all i ∈ N.

Remark 3.3. If Player O wins Γf0 then she also wins Γf for each f ⊒ f0. Analogously, if
Player I wins Γg0 then he also wins Γg, for each g ⊑ g0.

Example 3.4. Let L ⊆ (B2)ω be given by the ω-regular expression
(

0 a

a ∗

)

Σω +

(

1 ∗ ∗ b

b ∗ ∗ ∗

)

Σω

where a, b ∈ B and ∗ denotes any bit. If Player I chooses 0 as his first bit then Player O
needs to know a, so she needs delay one in this situation. Contrary, if Player I chooses 1
as his first bit then Player O needs delay three to obtain b. Thus, she wins the game with
delay three, but neither with delay two nor one.

In the next sections we prove our main result (see Theorem 6.4): Let A be a DPA

with n states, m colors, and let n′ := 2(mn)2n . Then, there is a continuous operator λ with
(

α
λ(α)

)

∈ L(A) (for all α ∈ B
ω) if and only if there is a (2n′ − 1)-delay operator with the

same property. To obtain this result we show that L(A) is solvable with finite delay if and
only if L(A) is solvable with delay 2n′ − 1.

4. The Block Game

In this section we make the first step in the proof of our main result, which is to relax the
number of bits Player I can choose in each move. For this reason we introduce a new game
Γ′
f , called the block game.

The game Γ′
f differs from Γf in two ways. Firstly, the lengths of the words to be chosen

by the players are decided by Player I, within certain intervals determined by f . Secondly,
Player I is one move ahead compared to Γf .

A play in Γ′
f is built up as follows: Player I chooses u0 ∈ B

[f(0),2f(0)] and u1 ∈ B
[f(1),2f(1)],

then Player O chooses v0 ∈ B
|u0|. In each round thereafter, i.e. for i ≥ 2, Player I chooses

ui ∈ B
[f(i),2f(i)] and Player O responds by a word vi−1 ∈ B

|ui−1|. The winning condition is
defined as before.

We show that Player I wins the game Γf for all functions f if and only if he wins
the block game Γ′

f for all functions f . To this end, for f : N → N+, let f ′ be defined by

f ′(0) := f(0) + f(1), and f ′(i) := f(i+ 1) for i > 0.

Proposition 4.1. Let f : N → N+. If Player I wins Γf ′ then he also wins Γ′
f .

Proof. Assume Player I has a winning strategy in Γf ′ . For i ∈ N, let ui be the words
chosen by Player I in Γf ′ and u′i the words chosen by Player I in Γ′

f , and analogously

vi, v
′
i for Player O. The winning strategy yields u0 ∈ B

f ′(0) as Player I’s first move. Since
f(0)+f(1) = f ′(0) we can choose u′0u

′
1 = u0 as Player I’s first move in Γ′

f . Player O answers

by v′0 ∈ B
|u′

0
|. We can use v′0 to simulate the moves v0, . . . , v|v′

0
|−1 of Player O in Γf ′ , each

of which consists of one bit. Player I answers by u1, . . . , u|v′
0
| of lengths f ′(1), . . . , f ′(|v′0|).

8 M. HOLTMANN, L. KAISER, AND W. THOMAS

Since |v′0| ≥ 1, the sum f ′(1) + · · · + f ′(|v′0|) is non-empty and at least f ′(1) = f(2).
Accordingly, the word u1 · · · u|v′

0
| is long enough to give u′2 with f(2) ≤ |u′2| ≤ 2f(2). We

choose u′2 as the prefix of u1 · · · u|v′
0
| of length f(2). Player O answers in Γ′

f by v′1 of length

|u′1|, and we can use it to simulate another |v′1| rounds in Γf ′ . Thereby, we obtain enough
bits to give u′3, and so on. This way, we build up the same plays in Γf ′ and Γ′

f . Since

Player I wins Γf ′ , he also wins Γ′
f .

For f : N → N+, let f
′′ be inductively defined by f ′′(0) := f(0) and

f ′′(i+ 1) :=

2(f ′′(0)+...+f ′′(i))
∑

j=0

f(j).

Proposition 4.2. Let f : N → N+. If Player I wins Γ′
f ′′ then he also wins Γf .

Proof. Assume Player I has a winning strategy in Γ′
f ′′ . For i ∈ N, let u′i be the words chosen

by Player I in Γ′
f ′′ and ui the words chosen by Player I in Γf , and analogously v′i, vi for

Player O. Player I’s winning strategy yields u′0 ∈ B
[f ′′(0),2f ′′(0)] and u′1 ∈ B

[f ′′(1),2f ′′(1)] as his
first move in Γ′

f ′′ . For i ∈ N, let d′i be the length of u′i. Since

d′0 + d′1 ≥ f ′′(0) + f ′′(1) = f(0) +

2f ′′(0)
∑

j=0

f(j),

we can give the moves u0, . . . , ud′
0
of Player I in Γf . This yields Player O’s answers

v0, . . . , vd′
0
−1, i.e. d′0 bits. We can use them to simulate v′0, i.e. Player O’s first move

in Γ′
f ′′ . Player I’s winning strategy yields u′2 of length f ′′(2) ≤ d′2 ≤ 2f ′′(2). We need to

give another d′1 moves of Player I in Γf to obtain Player O’s answers vd′
0
, . . . , vd′

0
+d′

1
−1. For

that we need f(d′0 + 1) + . . . + f(d′0 + d′1) bits. With u′2 in our hands we can give these
moves, because

d′2 ≥ f ′′(2) = f(0) + . . . + f(2f ′′(0) + 2f ′′(1))
≥ f(0) + . . . + f(d′0 + d′1)
≥ f(d′0 + 1) + . . .+ f(d′0 + d′1).

Iterating this we obtain the same plays built up in Γ′
f ′′ and Γf . Since Player I wins Γ

′
f ′′ , he

also wins Γf .

The following corollary of Propositions 4.1 and 4.2, which follows by taking functions
of the form f ′ in the one direction and of the form f ′′ in the other, is the first step in our
proof.

Corollary 4.3. Let A be a DPA. Then the following are equivalent:

(1) For all f : N → N+ Player I wins Γf (L(A)).
(2) For all f : N → N+ Player I wins Γ′

f (L(A)).

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 9

5. The Semigroup Game

In this section we introduce a game which is independent of particular delays. To define
it, we extract from a DPA A two equivalence relations, one for each player, such that the
moves of the players are equivalence classes of these relations. The first one (for Player O)
is denoted ∼ and induces a finite semigroup on (B2)∗. The second one (for Player I) is
denoted ≈ and ranges over B

∗. Roughly speaking, two (pairs of) words are equivalent if
they effect the same behavior on A.

Our approach to transform parity automata into finite semigroups is similar to the
constructions presented in [11, 12]. Let A = (Q, q0, δ, c) be a DPA over B

2. We use the
semiring S := ({⊥} ∪ c(Q),+, ·) in which addition is defined as maximum, i.e. x + y :=
max(x, y) with ⊥ being the least element, and multiplication is defined as follows:

x · y :=

{

max(x, y) if x 6= ⊥ and y 6= ⊥

⊥ otherwise

Note that the set Leq := (B2)∗, i.e. the set of pairs of words of equal length, is a regular
language. With each pair

(

u
v

)

∈ Leq we associate a matrix µ
(

u
v

)

of size |Q|2 with entries in

S, i.e. µ
(

u
v

)

∈ SQ×Q, defined as follows:

µ

(

u

v

)

p,q

:=







⊥ if δ∗
(

p,
(

u
v

))

6= q

max{c(π)} if δ∗
(

p,
(

u
v

))

= q and π is the associated A-path

Observe that SQ×Q induces a finite semigroup and µ
(

u
v

)

· µ
(

u′

v′

)

= µ
(

uu′

vv′

)

. Let ∼ be the

equivalence relation on Leq defined by:
(

u
v

)

∼
(

u′

v′

)

if and only if µ
(

u
v

)

= µ
(

u′

v′

)

. For each
(

u
v

)

, the equivalence class
[(

u
v

)]

is identified by a matrix µ ∈ SQ×Q. Since S and Q are

finite, SQ×Q is finite as well, and so the relation ∼ has finite index, i.e. it has finitely many
equivalence classes. We denote the index of ∼ by index(∼). Note that Leq/∼ induces a
finite semigroup, and µ is a semigroup morphism from (Leq/∼, ·) to (SQ×Q, ·).

Lemma 5.1. Let
(

u
v

)

∈ Leq. Then, the set
[(

u
v

)]

is a regular ∗-language over B
2.

Proof. We construct an automaton recognizing
[(

u
v

)]

as follows: First, we construct for all
p, q ∈ Q, k ∈ c(Q) the automaton Ap,q,k recognizing the set of all words that induce a
path from p to q in A where k is the highest color seen on that path. The idea for this
construction is to simulate the behavior of A while memorizing the highest color seen. To
this end, define Ap,q,k := (c(Q) ×Q,B2, (c(p), p), δ′, {(k, q)}) where

δ′
(

(k′, p′),
(x

y

))

:=
(

max
{

k′, c
(

δ
(

p′,
(x

y

)))}

, δ
(

p′,
(x

y

)))

for all k′ ∈ c(Q), p′ ∈ Q,x, y ∈ B. The automaton starts in the state (c(p), p) and simulates
the behavior of A on its input. If it stops in state (k, q) then it accepts. The automaton
A[(u

v
)] is then obtained as the intersection of all Ap,q,k for p, q, k such that µ

(

u
v

)

p,q
= k.

Since ∼ has finite index, we can find automata for all equivalence classes of ∼ in the
following way: For r ∈ N, let A1, . . . ,Ar be the automata already constructed. Then ∼ has
index r if and only if

⋃

i=1,...,r L(Ai) = Leq. This equality can be effectively checked, and if

this test fails, then we repeat the construction with a word contained in Leq\
⋃

i=1,...,r L(Ai).

10 M. HOLTMANN, L. KAISER, AND W. THOMAS

Let ≈ be the equivalence relation on B
∗ defined by

u ≈ u′ : ⇐⇒ ∀
[(u0

v0

)]

:
(

∃v :
(u

v

)

∈
[(u0

v0

)]

⇐⇒ ∃v′ :
(u′

v′

)

∈
[(u0

v0

)])

.

For u ∈ B
∗, the ≈-equivalence class of u, denoted [u], can be identified with a subset of the

set of all ∼-classes. Since ∼ has finite index, we get that ≈ has finite index as well; more
precisely it holds index(≈) ≤ 2index(∼).

Lemma 5.2. Let u ∈ B
∗. Then, the set [u] is a regular ∗-language over B.

Proof. We construct an automaton recognizing the language [u] as follows: First, we have

to check for which ∼-classes
[(

u0

v0

)]

there exists v ∈ B
|u| such that

(

u
v

)

∈
[(

u0

v0

)]

. Let B

be a DFA recognizing
[(

u0

v0

)]

. We take the projection on the first component (deleting the

second component from the transitions of B) and test whether the resulting automaton, say
B′, accepts u. If we do the same for all ∼-classes, then we obtain r automata B′

1, . . . ,B
′
r

accepting u, and s automata B′
r+1, . . . ,B

′
r+s not accepting u, where r+s = index(∼). From

these automata we can effectively construct an automaton for [u], because

[u] =
⋂

i=1,...,r

L(B′
i) ∩

⋂

j=r+1,...,r+s

L(B′
j).

We now define the game ΓSG (induced by a DPA A over B2) where the moves of the players
are classes from B

∗/≈ and Leq/∼, respectively. Accordingly, we call ΓSG the semigroup
game of A.

The game ΓSG is defined similar to the block game Γ′. The difference is that the players
do not choose concrete words but the respective classes from the relations ∼ and ≈. A play
is built up as follows: Player I chooses infinite classes [u0], [u1] ∈ B

∗/≈, then Player O
chooses a class

[(

u0

v0

)]

∈ Leq/∼. In each round thereafter, i.e. for i ≥ 2, Player I chooses an

infinite class [ui] ∈ B
∗/≈ and Player O chooses a class

[(

ui−1

vi−1

)]

∈ Leq/∼. A play is winning

for Player O if and only if
(

u0

v0

)(

u1

v1

)(

u2

v2

)

· · · is accepted by A.

Note that B
∗/≈ contains at least one infinite class and that for each class [u] there

exists at least one class in Leq/∼ associated with [u] (by the definition of ≈). Hence,
both players can always move. Furthermore, the winning condition of ΓSG is well-defined

because acceptance of A is independent of representatives: If
[(

ui

vi

)]

=
[(u′

i

v′
i

)]

for all i ∈ N,

then
(

u0

v0

)(

u1

v1

)

· · · ∈ L(A) ⇐⇒
(u′

0

v′
0

)(u′
1

v′
1

)

· · · ∈ L(A).

ΓSG can be modeled by a parity game on a graph of size O(22(mn)nmn). (Thus, its
winner is computable [8].) In the vertices we keep track of the ≈-classes recently chosen
by Player I, a color depending on the course of the play and the current state q of A. The
vertex reached by a move

[(

u
v

)]

of Player O is colored by µ
(

u
v

)

q,q′
, where q′ is the state

reached in A from q when reading
(

u
v

)

.

6. Connecting the Block Game and the Semigroup Game

In this section we show that Player I wins the block game Γ′
f for all functions f : N → N+ if

and only if he wins the semigroup game ΓSG. This completes the reduction and also yields
the proof of our main result.

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 11

The basic idea of the proof of Theorem 6.2 (see below) is, for arbitrary f , to simulate
the moves of the players in Γ′

f by the corresponding equivalence classes of the relations ∼
and ≈, respectively, and vice versa. For the last-mentioned direction, one has the problem
whether a class [ui] contains an appropriate representative, i.e. one of length between f(i)
and 2f(i). We use Lemma 2.1 to show that there exists a particular f such that each
function g with g ⊒ f indeed has this property. Then, the following lemma completes the
proof.

Lemma 6.1. Player I wins Γ′
f for all functions f : N → N+ if and only if there exists a

function g0 : N → N+ such that Player I wins Γ′
g for all g ⊒ g0.

Proof. The direction from left to right is immediate. For the converse, recall first that the
block game Γ′

f is determined for each f . Assume there exists f0 such that Player I does

not win Γ′
f0
. Determinacy yields that Player O wins Γ′

f0
. By Proposition 4.1 Player O wins

Γf ′
0
, and from Remark 3.3 it follows that she also wins Γf for all f ⊒ f ′

0. Proposition 4.2

yields that Player O wins Γ′
f ′′ , for all f ⊒ f ′

0. Towards a contradiction, let g0 be a function

such that Player I wins Γ′
g for all g ⊒ g0, and let f∗ be the maximum of g0 and f ′

0, i.e. for
all i ∈ N

f∗(i) := max{g0(i), f
′
0(i)}.

Since f∗ ⊒ f ′
0 it holds that Player O wins Γ′

f ′′
∗
. However, since f ′′

∗ ⊒ f∗ ⊒ g0 Player I must

win Γ′
f ′′
∗
, by assumption. This yields a contradiction which means that g0 cannot exist.

Lemma 6.1 and the next theorem establish the second step of our reduction.

Theorem 6.2. Player I wins ΓSG if and only if there is a function f : N → N+ such that
Player I wins Γ′

g for all g ⊒ f .

Proof. We start with the direction from right to left. Let f : N → N+ be a function such that
Player I wins Γ′

g for all g ⊒ f . We define a function g0 such that g0 ⊒ f and each word of

length g0(i) is contained in an infinite ≈-class, for all i ∈ N. To this end, let d′ be the length
of a longest word in all finite ≈-classes1 and define, for all i ∈ N, g0(i) := max{f(i), d′ +1}.

Since g0 ⊒ f , Player I wins Γ′
g0

by assumption, and a winning strategy yields his first

two moves u0, u1. Both [u0] and [u1] are infinite, and so he can choose them in ΓSG. We
simulate Player O’s answer

[(

u0

v0

)]

by choosing v0 in Γ′
g0
, and Player I’s winning strategy

yields u2 with [u2] being infinite. Choosing [u2] in ΓSG we obtain Player O’s next move
[(

u1

v1

)]

, and so on.
We argue that the plays built up have the same maximal color occurring infinitely often.

It suffices to show that in both plays a move of Player O leads A to the same state, via
paths with equal maximal color. Then, the rest follows by induction. Let qi be the current
state of A and ui, ui+1 be the words chosen by Player I. If Player O chooses

[(

ui

vi

)]

in ΓSG,

then we reach the state qi+1 := δ∗
(

qi,
(

ui

vi

))

via the maximal color µ
(

ui

vi

)

qi,qi+1

. The state

qi+1 is well-defined because from qi every
(u′

i

v′
i

)

∈
[(

ui

vi

)]

leads A to the same state, though

via different paths, but with the same maximal color. In Γ′
g0

Player O chooses vi. As in

ΓSG, we reach the state qi+1 via the maximal color µ
(

ui

vi

)

qi,qi+1

.

1If ≈ has no finite equivalence class, then we define d′ := 0.

12 M. HOLTMANN, L. KAISER, AND W. THOMAS

Conversely, assume that Player I wins ΓSG. Let A1, . . . ,Ar be automata recognizing
all the ≈-classes, and n′ the maximal number of states among these automata, i.e. n′ :=
max{n1, . . . , nr}, where nj is the number of states of Aj (j = 1, . . . , r). Let f be the
constant function with f(i) := n′ for all i ∈ N. We first show that Player I wins Γ′

f :

Player I’s winning strategy in ΓSG yields [u0], [u1]. Since [u0], [u1] are infinite, we can apply
Lemma 2.1. Accordingly, each Aj accepts a word of length between f and f + nj and thus
between f and 2f , because nj ≤ f .2 Hence, we can assume w.l.o.g. that f ≤ |u0|, |u1| ≤ 2f .
Player I chooses u0, u1 in Γ′

f and Player O answers by a word v0 with |v0| = |u0|. We

simulate this move by
[(

u0

v0

)]

in ΓSG and obtain Player I’s answer [u2], so the next move of

Player I in Γ′
f is u2 (for appropriate u2). Player O chooses v1 with |v1| = |u1|, and so on.

The plays built up this way have the same maximal color occurring infinitely often, using
the same inductive argument as above. Starting at qi, Player O’s move vi in Γ′

f has the same

effect as the corresponding move
[(

ui

vi

)]

in ΓSG, i.e. we reach the state qi+1 := δ∗
(

qi,
(

ui

vi

))

via the maximal color µ
(

ui

vi

)

qi,qi+1

.

We complete the proof by showing that Player I wins Γ′
g for all g ⊒ f . Let |[a, b]| := b−a

be the size of the interval [a, b]. If g ⊒ f , then (since |[f, 2f]| = n′) it holds |[g(i), 2g(i)]| ≥ n′,
for all i ∈ N. Hence, to win Γ′

g Player I simply chooses longer representatives of the ≈-

classes than in Γ′
f .

A thorough analysis of the constructions of the ∼-classes and ≈-classes, respectively,
yields an upper bound for n′. Let n be the number of states of A and m the number of
colors. Let u, v ∈ B

∗ with |u| = |v|. Since A is deterministic, there is exactly one entry
distinct from ⊥ in each of the n rows of µ

(

u
v

)

, and Ap,q,k has at most mn states. Hence, each
A[(u

v
)] has at most (mn)n states, i.e. as many as the product of n (deterministic) automata

of size mn. To obtain an automaton for a class [u] we have to intersect index(∼) languages
(cf. page 10). By the same argument as above, there are at most (mn)n possible matrices
identifying all the ∼-classes. Since our construction includes determinization, we obtain
each A[u] having at most k states, where

k ≤ (2(mn)n)(mn)n = 2(mn)2n .

Next, we obtain our main result showing that in regular games constant delay is sufficient
for Player O to win, if she can win with delay at all. Recall that we write 〈d〉 for the
constant delay function, 〈d〉(0) = d+ 1 and 〈d〉(i) = 1 for i > 0.

Lemma 6.3. Let n′ be as in the proof of Theorem 6.2. Then, Player O wins ΓSG if and
only if Player O wins Γ〈2n′−1〉.

Proof. Define f(i) := n′ for all i ∈ N and let w of length d′ be a longest word in all finite ≈-
classes. Moreover, let L(A′) = [w], where A′ has n states. Then we have d′ < n. Otherwise,
the run of A′ on w had a loop, which is a contradiction to the finiteness of L(A′). Since
n ≤ n′ we get d′ < n′ and so d′ +1 ≤ n′. Thus, each ≈-class containing a word of length at
least f is infinite.

Assume that Player O wins ΓSG. We first show that Player O wins Γ′
f . Let u0, u1 with

n′ ≤ |u0|, |u1| ≤ 2n′ be the first move of Player I in Γ′
f . By the above remarks [u0], [u1] are

infinite, and we can simulate [u0], [u1] in ΓSG. Player O’s winning strategy in ΓSG yields

2To simplify matters we write f instead of f(i).

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 13

[(

u0

v0

)]

for some suitable v0. Let him choose v0 in Γ′
f . Then Player I chooses u2 and we

simulate [u2] in ΓSG, and so on.
As in the proof of Theorem 6.2, we obtain plays with the same maximal color occurring

infinitely often, and so Player O wins Γ′
f . Simulating a winning strategy for Γ′

f she also wins

Γ〈2n′−1〉. The factor 2 comes from the fact that we need at least 2n′ bits when simulating

Player I’s first move in Γ′
f .

Conversely, let Player O win Γ〈2n′−1〉 and g(i) := 2n′, for all i ∈ N. Since g ⊒ 〈2n′ − 1〉,
Player O wins Γg. Then, by Proposition 4.2, she also wins Γ′

g′′ . Given a winning strategy

for Player O in Γ′
g′′ we can specify one for her in ΓSG as follows: A move [ui] of Player I

is simulated by ui in Γ′
g′′ , for g′′(i) ≤ |ui| ≤ 2g′′(i). (By Lemma 2.1, an appropriate

representative ui must exist because g′′ ⊒ g, and so |[g′′(i), 2g′′(i)]| ≥ n′ for all i ∈ N.)
We use Player O’s answer vi−1 to choose

[(

ui−1

vi−1

)]

in ΓSG. This yields a play winning for

Player O in ΓSG.

With Corollary 4.3, Lemma 6.1 and Theorem 6.2 we have shown that the problem
whether L(A) is solvable with finite delay is reducible to the question whether Player O
wins ΓSG. Finally, Lemma 6.3 shows that L(A) is solvable with finite delay if and only if it
is solvable with constant delay.

Theorem 6.4. Let A be a DPA over B
2. Then, L(A) is solvable with finite delay if and

only if L(A) is solvable with delay 2n′ − 1. There is a continuous operator λ such that
{
(

α
λ(α)

)

| α ∈ B
ω} ⊆ L(A) if and only if there is a (2n′ − 1)-delay operator with the same

property.

Assuming that A has n states and m colors we can bound the number of vertices of
ΓSG by 22(mn)n+1mn. Since it requires only m colors, its winner can be computed in time
O((22(mn)n+1mn)m) [13].

Corollary 6.5. Let A be a DPA over B2. The problem whether L(A) is solvable with finite
delay and the problem whether there is a continuous operator λ with {

(

α
λ(α)

)

| α ∈ B
ω} ⊆

L(A) are in 2ExpTime.

7. Lookahead in Non-Regular Games

In this section we show that the above results do not hold for context-free ω-languages
(CFLω, for an introduction see e.g. [4]). Let us first recall that it is undecidable whether a
context-free ω-language L ⊆ B

ω is universal, i.e. whether L = B
ω holds.

Theorem 7.1 (see also [6]). Let L ⊆ (B2)ω be a context-free ω-language. Then, it is
undecidable whether there exists f such that Player O wins Γf (L).

Proof. We make a reduction from the universality problem for context-free ω-languages.
Let LI ∈ CFLω and L :=

{(

α
β

)

| α ∈ LI , β ∈ B
ω
}

. If LI is universal then L is universal as

well, and Player O wins with any f . Conversely, if LI is not universal, then Player I wins by
playing a word α /∈ LI . There is no response β such that

(

α
β

)

∈ L, therefore Player O looses

with each f . Altogether, LI is universal if and only if there exists f such that Player O
wins Γf (L).

14 M. HOLTMANN, L. KAISER, AND W. THOMAS

It has recently been shown [7] that the same holds for deterministic ω-context-free
specifications, but in that case at least establishing the winner of the standard game Γ〈0〉 is
decidable [16].

In addition to undecidability for the general case, we show that there exist context-free
specifications which are solvable with finite delay, but not with constant delay.

Example 7.2. Let L ⊆ (B2)ω be defined such that if Player I chooses an ω-word of the
form α = 12m00n012m10n1 · · · , for mi, ni ∈ N+, then Player O wins if and only if he answers
by β = 1m00m0+n01m10m1+n1 · · · . This means Player O’s ith block of 1s must have exactly
half the length of Player I’s ith block of 1s, and both blocks must start at the same position.
If α is not of the above form, then Player O wins as well.

The language L is recognized by a deterministic ω-pushdown automaton. As long as
the input is

(1
1

)

, we push a symbol on the stack. If we read the first
(1

0

)

after
(1

1

)

, we start
to pop symbols from the stack. If we reach the initial stack symbol at the same time as we
read the first

(0
0

)

after
(1

0

)

then we are satisfied and visit a final state.
Observe that Player O wins Γf (L), if f(i) := 2 for all i ∈ N. When she has to give her

ith bit βi she already knows Player I’s (2i)th bit α2i, and that is enough to decide whether
to play 0 or 1.

Let us show that L is not solvable with constant delay. Towards a contradiction,
assume Player O wins Γ〈d〉 for some d ∈ N. We construct a winning strategy for Player I

in Γ〈d〉 as follows: Player I chooses 1d+1 as initial move and 1 as each of his d subsequent
moves. Player O must answer each of these d + 1 moves by choosing 1. Otherwise, she
loses immediately. Afterwards, Player I chooses another 1 to complete his block of 1s to
even length. (After this move, Player I has chosen exactly twice as many 1s as Player O.)
Whatever Player O answers, say b, Player I wins by choosing 1− b next. This is due to the
fact that the block of 1s chosen by Player O gets either too short or too long.

8. Conclusion

In this paper we introduced and compared strategies with different kinds of lookahead in
regular infinite games. We showed that continuous strategies can be reduced to uniformly
continuous strategies of a special form, namely strategies with constant lookahead. This
result is a first step into a wider – and it seems rather unexplored – topic. Let us mention
some aspects. First, it is straightforward to present the results in a set-up that is symmetric
in the two players. We also skipped here a lower bound proof for the double exponential
size in Theorem 6.4. It is also possible to think of “infinite lookahead” where, for instance,
the second player may use information about the first player’s sequence up to a partition of
the space of sequences into regular sets. Moreover, while basic questions about lookahead
in context-free games have recently been answered, some problems for visibly pushdown
winning conditions remain open, cf. [7].

References

[1] Alexis-Julien Bouquet, Olivier Serre, and Igor Walukiewicz. Pushdown games with unboundedness and
regular conditions. volume 2914 of LNCS, pages 88–99. Springer, 2003.

[2] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state strategies.
Transactions of the AMS, 138:295–311, 1969.

DEGREES OF LOOKAHEAD IN REGULAR INFINITE GAMES 15

[3] Thierry Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and parity games.
In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, ICALP,
volume 2719 of LNCS, pages 556–569. Springer, 2003.

[4] Rina S. Cohen and Arie Y. Gold. Omega-computations on deterministic pushdown machines. Journal
of Computer and System Sciences, 16(3):275–300, 1978.

[5] Shimon Even and Albert R. Meyer. Sequential boolean equations. IEEE Transactions on Computers,
C-18(3):230–240, 1969.

[6] Olivier Finkel. Topological properties of omega context-free languages. Theoretical Computer Science,
262(1-2):669–697, 2001.

[7] Wladimir Fridman, Christof Löding, and Martin Zimmermann. Degrees of lookahead in context-free
infinite games. In Proceedings of CSL ’11, volume 12 of LIPIcs, pages 264–276. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2011.

[8] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics and Infinite Games,
volume 2500 of LNCS. Springer, 2002.

[9] Frederick A. Hosch and Lawrence H. Landweber. Finite delay solutions for sequential conditions. In
M. Nivat, editor, Automata, Languages and Programming, pages 45–60, Paris, France, 1972. North-
Holland, Amsterdam.

[10] Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Company, 1980.

[11] Dominique Perrin and Jean-Éric Pin. Semigroups and automata on infinite words. In J. Fountain,
editor, NATO Advanced Study Institute Semigroups, Formal Language and Groups, pages 49–72. Kluwer
academic publishers, 1995.

[12] Jean-Éric Pin. Finite semigroups and recognizable languages: An introduction, 1995.
[13] Sven Schewe. Solving parity games in big steps. In Vikraman Arvind and Sanjiva Prasad, editors,

FSTTCS, volume 4855 of LNCS, pages 449–460. Springer, 2007.
[14] Wolfgang Thomas and Helmut Lescow. Logical specifications of infinite computations. In J. W.

de Bakker, W. P. de Roever, and G. Rozenberg, editors, REX School/Symposium, volume 803 of LNCS,
pages 583–621. Springer, 1993.

[15] Boris A. Trakhtenbrot and Janis M. Barzdin. Finite Automata, Behavior and Synthesis. North Holland,
Amsterdam, 1973.

[16] Igor Walukiewicz. Pushdown processes: Games and model checking. volume 1102 of LNCS, pages 62–74.
Springer, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Operators and Games with Delay
	3.1. Delay Operators
	3.2. Regular Games with Delay

	4. The Block Game
	5. The Semigroup Game
	6. Connecting the Block Game and the Semigroup Game
	7. Lookahead in Non-Regular Games
	8. Conclusion
	References

