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ABSTRACT. Ludics is a reconstruction of logic with interaction as a primitive notion, in the
sense that the primary logical concepts are no more formulas and proofs but cut-elimination
interpreted as an interaction between objects called designs. When the interaction between
two designs goes well, such two designs are said to be orthogonal. A behaviour is a set of
designs closed under bi-orthogonality. Logical formulas are then denoted by behaviours.
Finally proofs are interpreted as designs satisfying particular properties. In that way,
designs are more general than proofs and we may notice in particular that they are not
typed objects. Incarnation is introduced by Girard in Ludics as a characterization of
“useful” designs in a behaviour. The incarnation of a design is defined as its subdesign that
is the smallest one in the behaviour ordered by inclusion. It is useful in particular because
being “incarnated” is one of the conditions for a design to denote a proof of a formula.
The computation of incarnation is important also as it gives a minimal denotation for a
formula, and more generally for a behaviour. We give here a constructive way to capture
the incarnation of the behaviour of a set of designs, without computing the behaviour
itself. The method we follow uses an alternative definition of designs: rather than defining
them as sets of chronicles, we consider them as sets of paths, a concept very close to that
of play in game semantics that allows an easier handling of the interaction: the unfolding
of interaction is a path common to two interacting designs.

2012 ACM CCS: [Theory of computation]: Logic—Linear logic.
Key words and phrases: Ludics, Linear Logic, Incarnation, Normalization, Game Semantics.

@b This work has been partially funded by the French ANR projet blanc “Locativity and Geometry of
Interaction” LOGOI ANR-10-BLAN-0213 02.

|E |LOGICAL METHODS © C. Fouqueré and M. Quatrini
IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(4:6)2013 © |Creative Commons


http://creativecommons.org/about/licenses

2 C. FOUQUERE AND M. QUATRINI

1. INTRODUCTION

1.1. Ludics: a theory of Logic based on interaction. The cut elimination procedure
is one of the main facts of Proof Theory, as it corresponds to a notion of computation in
computer science, the one used in functional programming. In Ludics, the logical theory
that J.-Y. Girard developed in [19], the cut elimination moved from a central position
towards a primitive one: technically, the cut is no more a formal rule, i.e., one of the
elementary constructors of formal proofs; the cut-rule disappears, instead of which a notion
of interaction arises which happens between cut-free proof-like objects called designs. A
design is a forest with actions as nodes, where an action is an abstract view of an application
of arule. An interaction is a travel through two such forests. Two designs are said orthogonal
when interaction terminates.

Such an approach resting on interaction has strong relations with the Geometry of
Interaction project [16} [17] which aims at studying cut-elimination as an interaction between
proofs seen as operators. As in Geometry of Interaction, the process of cut-elimination
happens in Ludics between objects that are more general than proofs.

Interaction between designs may also be understood as normalization in A-calculus. As
described by Terui [33], a design corresponds to a generalized untyped A-term in which the
abstraction/application duality appears as several n-ary abstraction/applications dualities.

1.2. Ludics and Game Semantics. The approach developed in Ludics is closely related
to another approach of calculus developed around a notion of interaction: the one occurring
between player strategies in a game. Since the 90’s, beginning with seminal works of Lafont
and Streicher [23], Game Semantics has been extremely fruitful for studying various frag-
ments of Linear Logic or Classical Logic in order to obtain full completeness results, from
the multiplicative fragment [211 [I}, 28], 11 2] 24], to Linear and Classical logics [25] 26} 10, 27].
Considering event structures as a basis for Game Semantics, Mellies [29] [30] was able to
prove full completeness for Linear Logic using asynchronous games: a formula is interpreted
as an asynchronous game, and there is a full correspondence between proofs and strategies
satisfying particular conditions. It has been noticed that the basic concepts of Ludics may
be expressed in terms of Game Semantics [13] 8, [7] (see also [5] for a thorough presentation).

e an action is a mowe, the abstraction of the application of a rule,
e the sequence of actions used during interaction is a play, the cut-elimination steps,
e a design is an innocent strategy, it is also a frame of a sequent calculus derivation.

However there is a fundamental difference between Game Semantics as it is generally used
and Ludics. Strategies are typed, while designs are a priori untyped. More concretely, a
game comes with a set of plays, i.e., sequences of moves that satisfy particular conditions,
a strategy is nothing else but such a set of plays. In Ludics, a play is what results from the
interaction between two designs, and a game, what denotes a formula, is interpreted as a
behaviour, i.e., a set of designs which is closed under bi-orthogonality. Notice that, consid-
ered as an element of a behaviour, only part of a design may be travelled during interactions
with designs in the orthogonal of the behaviour, and this part has to be considered as a
strategy in terms of Game Semantics. In simple words, a behaviour constrains the use of a
design, the design being viewed as a set of potential plays, hence only a potential strategy.
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1.3. Ludics: main results, new concepts. Starting from the sole notion of interaction,
Ludics defines new objects: designs which are completely defined by their interactions, as
affirmed by the separation theorem [19]. Then, once given objects of Ludics, it is possible
to rebuild the logic. A formula is denoted by a behaviour; a proof of a formula is denoted by
designs satisfying specific properties. With this in mind, Ludics can be seen as a semantics
of Linear Logic: (i) the meaning of a formula is a set of designs, (ii) a design may be viewed
as abstracting a concrete, polarized and focalized proof (and taking into account infinity
and failures). Besides the usual theorems (associativity, stability, ... ), two important prop-
erties are available within Ludics: internal and full completeness. Internal completeness
results from the fact that the space of behaviours/formulas is fully describable in terms
of multiplicative and additive connectives over behaviours/formulas. Full completeness is
obtained when one characterizes the correspondence between all proofs (of formulas) and
specific designs (of behaviourﬂ). Ludics introduces also original additional concepts among
which locativity, i.e., the replacement of a formula by its address. Making explicit locativity
plays an important role in recent versions of Geometry of Interaction [20], [32]. Another
original new concept of Ludics is incarnation, a central concept in this paper. Incarnation is
a characterization of “useful” designs in a behaviour E, i.e., designs necessary for defining
E with respect to orthogonality. To be “incarnated”, or “material”, is one of the conditions
for a design to denote a proof of a formula. The incarnation |E| of a behaviour E is its set
of incarnated designs, i.e., designs ® such that ©® = |D|g, the incarnation |D|g of a design
® being defined as the smallest design included in ® and belonging to E. The computation
of incarnation is important as it gives a kind of minimal presentation of behaviours, and in
particular of the denotation of a formula or a type. A behaviour being defined as the closure
of a set of designs with respect to orthogonality, it could be useful to have a constructive
way to capture its incarnation, without computing the behaviour itself, particularly when
considering not yet closed models (of programs, processes, ...).

1.4. Our contribution. Given a set E of designs of the same base, not necessarily closed
under bi-orthogonality, our aim is to compute the incarnation of the behaviour generated by
this set, without having to fully determine this behaviour. Such a computation is difficult in
general: some pieces may be found in designs of the behaviour that are not already present
in F, and the computation of the ones that are relevant with respect to incarnation does not
seem simpler than computing the behaviour itself. The method we follow uses an alternative
definition of designs: rather than using their original definition as sets of chronicles [19],
we consider them as sets of paths, a concept very close to that of play in game semantics,
that allows an easier handling of the interaction: the unfolding of an interaction is a path
common to two interacting designs. Among the paths of a set of designs F, we characterize
those that are really visited during the interaction with E-+, the orthogonal of E. Hence a
two-step process may be followed: designs in the incarnation of E+ are built from particular
maximal cliques of visitable paths and, these designs being computed, it remains to repeat
the same operation for getting the incarnation of the behaviour generated by the set E.
The rest of this article is organized as follows:

e In section 2, we recall the original definitions of Ludics objects, in particular designs as
cliques of chronicles and the interaction process.

Hn fact behaviours together with a partial equivalence relation.
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Figure 1: Polarity of connectives

e In section B, we define a notion of path together with a definition of coherence on paths.
We present an equivalent definition of a design as a clique of paths.

e We characterize in section [4] those paths that are visitable by interaction.

e In section B, we focus on incarnation. We show that incarnation of the dual is obtained
from particular maximal cliques of visitable paths, from which we obtain a double-step
process for computing the incarnation of the behaviour generated by a set of designs.

2. BASIC FACTS ABOUT LuDICS

2.1. Ludics: an informal introduction from a proof theoretical point of view.
Ludics [19] is a reconstruction of logic with interaction as a primitive notion, in the sense
that the primary logical concepts are no more formulas and proofs but cut-elimination
interpreted as an interaction between objects called designs. The structure of a design
may be introduced by considering the following questions concerning proof structure and
cut-elimination: what is necessary to know about a proof when we are interested in its
behaviour during the process of cut-elimination? Can such a proof-object be completely
defined by this behaviour? Notice that the cut elimination process consists in travelling
along cut-proofs of formulas by passing through each of their rules from the conclusion
of the rule towards their premisses. Therefore, determining each possible cut elimination
process for a given formula is closely related to the search of all possible proofs of this
formula. Hence, the starting question may be formulated as follows: what are the relevant
parts of a proof-object with respect to proof search?

As studied by Andreoli [3], Linear Logic sequent calculus admits a focalized presen-
tation: the proof search may be viewed as a recursive process alternating reversible (or
asynchronous, negative) and non-reversible (or synchronous, positive) steps (see Fig. [I]). In
such a bottom-up approach, as soon as there is a negative formula, i.e., a formula having as
principal connective % or & in the conclusion, such a negative formula is decomposed until
its positive subformulas, i.e., formulas with ® or & as principal connective. Otherwise, if
there are only positive formulas in the conclusion, one of these positive formulas is decom-
posed until its negative subformulas. As proved by Andreoli [3], this focusing discipline is
complete with respect to provability. Going one step further, a hypersequentialized version
of multiplicative-additive Linear Logic sequent calculus may be defined [3| 18, [9] with only
two kinds of logical rules (the positive and the negative) beside the axioms, one strictly
alternating with the other. Formulas and rules of the hypersequentialized sequent calculus
are given in Fig. 2

We give below examples of part of proofs in the hypersequentialized calculus.
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Formulas Pl1|0|(Ft®---®@FY) e - @ (Ft® - -@FY)
Sequents either H A or F'+ A where F is a formula, A is a sequence of formulas
Axiom rules PFPA F1 OFA
'FAA AF Ay
Cut rule ' A A
FAn, LA, A AL A, A
Negative rule (A1 ® - ®A4,)0 -0 (4n® - © A4, )FA
AnbE Ay .0 Ay B A,
Positive rule FAR®-- @A )00 (A ®- - ® Ay, ), A

where UA, C A and for k,l € {1,...n;}, ApNA; = 0.

Figure 2: Hypersequentialized calculus

Example 2.1. Let A, B, C, D, E be negative formulas and F be a positive one, formulas
A®B®C and A® (D ® E) % F) are positive. Their proofs in the hypersequentialized
calculus begin in the following way:

DirF Eiv

: : : : FDeEF
Al pir cir At (D@E)BF)' F
FA@B®C FAR(D®E)RF)

The proof trees may also be represented by means of derivation trees where nodes are the
rules involved in the proofs, noting + when it is a positive rule, — otherwise:

~___—
(+,D ® E,{D,E})

5 (- (D®E)®F)* {D&E,F})
— T

(1, A®B®C,{AL,BL,CLY) (1A (Do E)3F),{AL, (Do E)3 F)L})

Let us outline that such a hypersequentialized presentation of proof objects is relevant for
our starting question. It enables one to get rid of irrelevant parts of proofs with respect to
proof-search or equivalently cut elimination. For example, suppose that A, B and C are
negative linear formulas and that we are looking for a proof of A® (B & C') or for a proof of
(A® B)® (A®C). We just need to find either some proofs of A and B or some proofs of A
and C. Equivalently in terms of cut-elimination, starting from a cut on A® (B @ C') or on
(A® B)® (A®C), the process continues either with cuts on A and on B, or with cuts on A
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and on C. Hence the distinction between formulas A® (B@®C) and (A® B)® (A®C) is not
relevant. Furthermore, it is useless to consider subformulas B® C, A® B, A® C. What is
relevant is to consider subformulas with opposite polarity, here A, B and C. This is realized
in hypersequentialized discipline, where we keep only one of the two equivalent formulas,
e.g. (A® B)® (A® C), and where the logical rule enables to go directly to subformulas A,
B and C.

A still more radical choice is then made in Ludics: instead of (canonical) formulas, only
addresses are kept. A subformula has an address relatively to the occurrence of a formula in
which it appears. Such an address is the locus on which an interaction, i.e., a cut, may take
place. In terms of Ludics, a rule that decomposes a formula into subformulas is replaced by
a rule applied to a locus that generates a finite number of subloci. A locus is presented as
a finite sequence of integers. Subloci generated by applying a rule to a locus £ are built by
increasing the sequence £ with arbitrary distinct integers.

Example 2.2. The two pieces of proofs in (classic) Linear Logic sequent calculus:

FA FB : - B
FA®B FA FBa&C
F(A®B)®@(A®C) and FA®(Ba®C)

At BtH
are both replaced in the hypersequentialized calculus by: FA®B)® (A®C)

1k €2k
and are both replaced in Ludics by: FE&

In the hypersequentialized calculus, one might expect that a proof search stops once it
arrives at an axiom. However in Ludics there are no more formulas, thus no more axioms.
Obviously, there should exist a way to stop an interaction. Still using the proof search
intuition, an interaction ends when one of the interacting designs gives up: this is expressed
by means of a special rule in Ludics, called daimon.

Once the above generalization is performed, presenting designs as abstract proofs may
remain ambiguous. In fact, as it is the case in example 23] two proof-like presentations of
designs that only differ on the distribution of weakened contexts cannot be distinguished
by interaction: it is not possible to find a counter-proof with which the result of the cut-
elimination procedure would be distinct. In terms of Ludics, a rule is presented as an action
of the form (4+/—,&, {i1,...,in}) where i; are integers concatenated as suffixes to £ in order
to create subaddresses, and designs are presented as trees (or more likely forests) where
nodes are actions.

Example 2.3. The two (complete) proof-like trees on the left are more likely represented
by the tree of actions on the right:
E14FE2 £1THES E14FE£2 €3 €1.7F (+,£.1,{4,7})
FE1,£2,€3 F&£1,£.2,£3 \
f = and 6 F by (_757{17273})
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The object in Ludics is the following set of chronicles:
{(_7 3 {17 2, 3}) ;
(_7 67 {17 27 3})(+7 617 {47 7})}

2.2. Designs as cliques of chronicles. The main object of Ludics, the design, is defined
by Girard [19] as a set of pairwise coherent chronicles, i.e. a clique of chronicles, where
chronicles are alternate sequences of actions, the coherence relation being defined below.
The actions themselves are built using a notion of locus.

Definition 2.4 (Locus). A locus is a finite (maybe empty) sequence of integers.

NOTATION: The loci will be denoted by Greek letters: £, o, ...If I is a finite set of integers,
we denote £.1 the set {€.i; i € I}.

Definition 2.5 (Action). An action « is

e cither a positive proper action (+,&,I) or a negative proper action (—,&,I) where the
locus € is said the focus of the action, and the finite set of integers [ is said its ramification,
e or the positive action daimon denoted by .

A locus .3 is justified by an action (4,&, 1) when i € I. By extension an action (€, &.4,J) is
justified by an action (€,&,1) wheni € I, e € {+,—}, + = — and — = +.

In [I9] chronicles are defined as follows:

Definition 2.6 (Chronicle). A chronicle ¢ is a non-empty and finite alternate sequence of
actions such that

e Positive proper action: A positive proper action is either justified, i.e., its focus is built
by one of the previous actions in the sequence, or it is called initial.

e Negative action: A negative action may be initial, in such a case it is the first action of
the chronicle. Otherwise it is justified by the immediate previous positive action.

e Linearity: Actions have distinct focuses.

e Daimon: If present, a daimon ends the chronicle.

Definition 2.7 (Coherence on Chronicles). Two chronicles ¢, and ¢, are coherent, noted
¢, Ce €5, when the two following conditions are satisfied:

o Comparability: Either one extends the other or they first differ on negative actions, i.e.,
if wky Sc wko then either k1 = Ko or k1 and ko are negative actions.

e Propagation: When they first differ on negative actions and these negative actions have
distinct focuses then the focuses of following actions in ¢, and ¢, are pairwise distinct, i.e.,
if w(—, &, 1)wiky Se w(—, &2, I2)waky with § # & then k1 and ko have distinct focuses.

NOTATION: An action is denoted «, x or even k¢ where € is equal to + or —, when we want
to precise its polarity. w denotes a sequence of actions. A chronicle is denoted by ¢, 0, ...
or by kg ...k, when we need to precise the actions occurring in the chronicle.
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Example 2.8.

To summarize, a chronicle is an alternate sequence of actions. (+,£.0.3,{3,5}) R

A set of coherent chronicles may be presented as a tree (in | |
fact, a forest when the first actions of chronicles are negative). (—,£0,{3,8)) (=, &.1,0)

Such a tree branches at negative nodes only and a branch is —~
a chronicle. The tree on the right is a set of two coherent 0.1
chronicles. (+.€,{0,1})

In order to be able to manipulate several chronicles together, it is convenient to consider
chronicles with a given base, i.e., a sequent of loci written I' = A such that A is a finite
set of loci and T' contains at most one locus and the loci belonging to I' U A are pairwise
disjoint, i.e., no locus is a sublocus of another one. When I' is empty, the base is called
positive, otherwise it is called negative. A chronicle ¢ is said based on I' - A provided that
I' contains the focus of the initial negative action of ¢ if it exists (otherwise I' is empty) and
A contains the focuses of initial positive actions (so a finite number). Note that coherence
of chronicles does not rely on their bases. In fact, the definition of the base of a chronicle
is liberal: there is not a unique base for each chronicle but several ones. Suppose I' - A is
a base for a chronicle ¢, and that A C A/, then I' - A’ is also a base of ¢. We can observe
that I' U A must contain at least all the focuses of initial actions of ¢ for I' = A to be a base
of ¢. Nevertheless one may consider the coherence of two chronicles either when the base of
the first one is included in the base of the second one, or when the two bases are disjoint.
In this latter case, the only possibility of coherence is when the bases are negative ones.
Definition 2.9 (Designs, Slices, Nets).

e A design ©, based on I' - A, is a set of chronicles based on I' = A, such that the following
conditions are satisfied:
— Forest: The set of chronicles is prefix closed.
— Coherence: The set is a clique of chronicles with respect to <.
— Positivity: A chronicle without extension in ® ends with a positive action.
— Totality: ® is non-empty when the base is positive, in that case all the chronicles begin
with a (unique) positive action.
e A slice is a design & such that if w(—, &, 1), w(—,§, I2) € & then [} = Is.
e A net is a finite set of designs on disjoint bases.

A design may contain several chronicles ending with a negative action of same focus:
this allows for representing the ‘with’ ‘&’ additive connective of Linear Logic. A design may
be split with respect to such situations to give rise to slices: a slice has a multiplicative
structure.

Example 2.10. The following example of design (design D) is based on I £ and gives rise
to two slices € and § (figures below).

(+,£.0.3,{3,5}) (+,£.04,{4}) B4

| | |
(_75'07{378}) (_75'07{4}) (_75'170)

W

Design © = (+,£,{0,1})
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(+,£.0.3,{3,5}) B3 (+,£.04,{4}) Bd
| | | |
(_75'07 {378}) (_75'17®> (_75'07{4}) (_75'17®)
\/ \/
Slice € = (+,¢,{0,1}) Slice § = (+,&,{0,1})

A proof-like presentation of a design is given by the following notion of design as a dessin:

Definition 2.11 (Design as dessin). A design as dessin based on I' = A is a tree of bases
with root I' = A and built by means of the following rules:

— DAIMON %
HA
— POSITIVE RULE TN
2 i e
'_ A7§ (+7 67 I)

for ¢ € I, the A; are pairwise disjoint and included in A.

— NEGATIVE RULE FELA
[V VA S
gl_ A (_7£7m)

N is a set (maybe empty or infinite) of ramifications. For all I € 9, the A;’s are not
necessarily disjoint and are included in A.

With a design based on I' = A, may be associated one or several proof-like presentations: a
design as dessin of same base, with a positive rule for each positive action and a negative rule
containing all the negative actions with the same focus. Nevertheless, such a presentation
is not unique, as it is illustrated in the following example.

Example 2.12. Designs and their proof-like presentation as dessins

e The design based on F I' which contains a unique chronicle, itself reduced to the action
% is denoted Daiy. It has a unique proof-like presentation:

B
e The empty design based on £ I is denoted by &ke. It has also a unique proof-like

presentation: the tree reduced to the root £ F.
e The following design based on £ F:

D= { (_757{17273})a
(_7 57 {17 27 3})(+7 5-17 {47 7})}
has several proof-like presentations, for example the two following ones:
E14FHE2  E1T7THES E14HE€2 63 E1.TF

F&1,£2,63 F&1,62,63
& or &
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e The following design is based on F &:

¢={ (+¢{13});
(+,6,{1,31)(=,€.1,{0});
(+,6,{1,31)(=,€.1,{0})(+,£.1.0,{0});
(+: 6,41, 31)(=, €1, {1});
(+,6,{1,3)(=, 6.1, {1})(+,£.1.1,{0})
(+, 6,41, 31)(=,€.3,{0});
(+:6,{1,3})(~,€3,{0})(+,£.3.0,0)}

Its unique proof-like presentation is:
£1.00F &£1.1.0F -
FEL0  FEL1l FE30
E1F £E3F

RS

2.3. Interaction and Behaviours. Interaction, i.e., cut elimination, is a normalization
of particular nets of designs, called cut-nets [19]. We give below the definition of interaction
in the case of a closed cut-net, i.e., all addresses in bases are part of a cut. Therefore, one
main design is distinguished because its base has no left part, i.e., is positive. The reader
may find in [19] the definition for the general case.

Definition 2.13 (Closed cut-net). Let SR be a net of designs, R is a closed cut-net if

e addresses in bases are either distinct or present twice, once in a left part of a base and
once in a right part of another base,
e the net of designs is acyclic and connex with respect to the graph of bases and cuts.

An address presents in a left part and in a right part defines a cut.

Example 2.14.

e A net of two designs of respective bases - £ and £ F forms a closed cut-net.

e A net of two designs of respective bases £ F o and o = £ is not a closed cut-net: the graph
of cuts is cyclic.

e A net of three designs of respective bases F &, £ F o, o is a closed cut-net.

Definition 2.15 (Interaction on closed cut-nets). Let SR be a closed cut-net. The design
resulting from the interaction, denoted by [R], is defined in the following way: let © be the
main design of R, with first action &,

e if k is a daimon, then [R] = {x},

e otherwise k is a proper positive action (4,0, I) such that o is part of a cut with another
design with last rule (—, o, N) (aggregating ramifications of actions on the same focus o):
— If I ¢ N, then interaction fails.

— Otherwise, interaction follows with the connected part of subdesigns obtained from I
with the rest of fR.

Following this definition, either interaction fails, or it does not end, or it results in the
design Dai = {&}. The definition of orthogonality follows:
Definition 2.16 (Orthogonal, Behaviour).
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b = (+,£.1.1.6,{1})

(b o). (HELL{0Y)  (-E1L{6.8))

(+,£.1.0,{0}) ! / o
(+,6.3.0,0) - __

(_7537{0}) -]

Figure 3: Interaction (dashed line) between two (orthogonal) designs

e Let © be a design of base £+ o1,...,0, (resp. Fo1,...,04),
let R be the net of designs (A, B1,...,B,) (resp. R = (B1,...,B,)), where 2 has base
F ¢ and *B; has base o; F,
R belongs to D+ if [D, R] = Dai.

e Let E be a set of designs of the same base, E- = Nock D+,

e E is a behaviour if E = EXL. A behaviour is positive (tesp. negative) if the base of its
designs is positive (resp. negative).

Example 2.17. We present below a few examples of orthogonals of simple designs.

e In Fig. B we present the interaction between the design € defined in the fourth item of
example and a design § that is one of its orthogonals.

e Designs that are orthogonal to the design ® defined in the third item of example are
the design Dai; based on - &, and designs including the design & given below:

6 = { (+7€7{17273}) ;
(""7 67 {17 27 3})(_7 6’17 {47 7})’1‘}

As already mentioned, there is no way to distinguish the two distinct proof-like presenta-
tions of the design ® by interaction with a design in its orthogonal.

3. DESIGNS AS SETS OF PATHS

We characterize in section [Blincarnation of a set of designs F as particular cliques of visitable
paths in E. A visitable path in a set of designs E is a sequence of actions p in a design ©
of E which are visited during a normalization with a net of designs of E+. A clique of such
paths is a set of pairwise coherent set of paths, where the coherence relation defined in
generalizes the one given for chronicles. What is called in this paper a visitable path is a
play in terms of Game Semantics. We should stress again the fact that designs are untyped
objects: what is used by interaction in a design © depends on the set of designs in which ©
is considered. Concretely, it is possible to consider which designs are orthogonal to a given
design ® alone, or to a set of designs E that contains ®. Sequences of actions of © that
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are visited during interaction are not necessarily the same for the first case (orthogonals to

the set containing © alone) or for the second case (orthogonals to each design of E, hence

also to ©): the set (when closed under bi-orthogonality) in which ® is considered gives the
type. In section M we call normalization path of a design ® a sequence of actions which
are visited by interaction with some net of designs, without taking care of the set in which
we may consider the design ®: a normalization path may be viewed as a potential play in
terms of Game Semantics.

The remainder of this section is devoted to a study of paths based on a net. The base

of a net consists in the sets of loci that serve as initial addresses, hence initial actions of a
design. Paths generalize normalization paths (and visitable paths) in that their definition do
not take into account the dual aspect of a play as we notice below after having introduced
the concept of view. In studies concerning Linear Logic and done by means of Game
Semantics (e.g. [I5] 26]), a play in a strategy is a sequence of actions that satisfies several
conditions among which wvisibility. Visibility is one of the constraints that ensure that a
play is a denotation of a cut-elimination process. Visibility is defined by means of a view
operation on sequences (present in Hyland and Ong-Nickau games [21] 31]). The view
allows to recover a chronicle from a sequence of actions, hence also from paths: a view is
the subsequence obtained from some sequence of actions by jumping from a negative action
to its justification, if any, that should be a positive action, and from a positive action to
the action that immediately precedes. In Fig. [5l on the left, the view of the sequence p is
the dashed red sequence noted " p'. Note that the concept of view derived from the one of
play in Game Semantics has a primitive role in Ludics: a design is a set of chronicles and
chronicles are the views of potential plays, of a potential innocent strategy. In other words,
the concept of view is derived from the one of play in Game Sematics whereas the concept
of path is derived from the one of chronicle in Ludics.

Definition 3.1 (Base, Sequence, View).

e A base of net [ is a non-empty finite set of sequents of pairwise disjoint loci: T'y F Ay,
..., I'n B A, such that each I'; contains exactly one locus &;, except at most one which
may be empty, and the A; are finite sets.

e A sequence of actions s is based on (§ if an action of s either is hereditarily justified by
an element of one of the sets I'; or A;, or is a daimon which is, in the later case, the last
action of s. An action is initial if it is an element of one of the sets I'; or A;.

e Let s be a sequence of actions based on 3, the view "s ' is the subsequence of s defined

as follows:
7 .

— € = e where € is the empty sequence;
r .1

— K =K

w1 = [_’UJ—|KZ+;
— "wr™ "= "wp 'v~ where wy either is empty if £~ is initial or is the prefix of w ending

with the positive action which justifies k™.

Proponent and Opponent players, as coined in Game Semantics, arise naturally in Ludics
from the fact that actions are polarized and polarity alternates in chronicles: with respect
to a design ©, a positive action is played by Proponent whereas a negative action is played
by Opponent. Opponent and Proponent are interchanged when considering an orthogonal
to the design ®. A sequence of actions is visible if the justification of every Proponent action
K is in the Proponent view of k, this is called P-visitability, and dually, if the justification
of every Opponent action « is in the Opponent view of x , called O-visitability. A path,
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Figure 4: Path p: Constraint of negative jump between kT justified by x'~

see Def. 3.2 is defined as an alternate, justified, linear, total sequence of actions that
satisfies the P-visitability (Opponent being not already known). We prove in section [ that
a normalization path is a path such that its dual is also a path: in other words the two
facets of visibility are satisfied, i.e., P- and O-visitability. The constraints (Totality) and
(Daimon) are added to care of positive bases: in case the base contains a sequent - A, either
the path is reduced to the daimon or it begins with a positive action focused on a locus of

A.

Definition 3.2 (Path). A path p based on f is a finite sequence of actions based on
such that

e Alternation: The polarity of actions alternate between positive and negative.

e Justification: A proper action is either justified, i.e., its focus is built by one of the
previous actions in the sequence, or it is called initial with a focus in one of I'; (resp. A;)
if the action is negative (resp. positive).

o Negative jump: (There is no jump on positive action) Let gx be a subsequence of p,

- If 5 is a positive proper action justified by a negative action ' then ' € "¢ .

- If k is an initial positive proper action then its focus belongs to one A; and either
is the first action of p and I'; is empty, or x is immediately preceded in p by a negative
action with a focus hereditarily justified by an element of I'; U A;.

e Linearity: Actions have distinct focuses.

e Daimon: If present, a daimon ends the path. If it is the first action in p then one of I';
is empty.

o Totality: If there exists an empty I';, then p is non-empty and begins either with % or
with a positive action with a focus in A;.

In the remainder of the paper, we use an explicit formulation for the justifier of an action
to precede it in the sequence (negative jump): Let x be a positive proper action justified by
a negative action #/, k' € " g ' iff there is a sequence aa' o ..., beginning with x = aa' ,
ending with £’ = «;, and such that a; immediately precedes oz;F in p and oz:jrl justifies
«; . Fig. [l gives an example of a sequence that is not a path: the sequence ¢ ‘jumps’ from
the negative action (—,£.1.1.0,{1}) in a chronicle to the positive action (+,£.2.1,{1}) that
stays in another chronicle. Remark also that the view "¢ 'is not a chronicle. Proposition 3.2
establishes that the view of a path is a chronicle, and we prove in proposition that views
of a set of pairwise coherent paths define a net of designs.

A path is positive or negative with respect to the polarity of its last action. If P is a set
of paths, we note P the subset of P consisting of positive paths, i.e., paths ending with a
positive action. Remark that a (non-empty in case the base is positive) prefix of a path is
a path. Remark also that a chronicle based on I' H A is a path. Before we establish how

paths may be viewed as chronicles, a few more facts must be stated.

Lemma 3.3. Let p be a path based on (3, and x be a proper action occurring in"p .
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Figure 5: The sequence p is a path, whereas g is not a path.

o If k is initial and negative in " p ' then it is the only initial negative action occurring in
"p' and it is the first action of "p.

e K is initial in p iff it is initial in"p .

o k is justified by k' in p iff Kk is justified by &’ in"p.

Proof. Let us observe that by construction if  is a proper action occurring in " p' and if

wk is a prefix of p then "wk ' is a prefix of "p.

e If k is negative and initial in " p ' then it is the first action of " p': we have p = wrw’ and
"p'="wk 'w) = kw). Hence it is unique.

e By construction, if x is initial in p then it is initial in " p'. Similarly, if  is justified by
k' in "p' then k is justified by «’ in p.

We prove the converse of the two last properties by considering separately the two polarities

of k.

e If x is negative and justified by &’ in p then, by construction, & is justified by x" in "p .
Hence if & is initial in " p ', it should be initial in p.

e If s is positive and justified by a negative action ' in p then there is a finite sequence
ozaroza ,...0,, beginning with k = Ozg_, ending with x" = «;, and such that o;; immediately

+ . + . . - . .
precedes ;" in p and o7 | justifies o; . This means that the prefix wx of p may be written
- -+ -+
Wpoy, At wn_1 ... af w;...agag. Then
Twk ' = '—wna;a;twn_l ... ozaoza'_' = rwn—'/{'a:{a;_l - ozi_oz;-" B Y

Hence & is justified by &' in "p . Thus if & is initial in "p ', then it should be initial in p.
L]
Proposition 3.4. Let p be a non empty path based onT'y = Ay, ..., 'y = A,,. The sequence

Tp'is a chronicle based on Ty &+ Ay for some k € {1,...,n}.

Proof. Since p contains at least one action, " p ' contains at least x where  is the last action
of p. By construction "p ' is alternate. As a consequence of lemma [3.3] the proper actions
of "p ' whose focuses are not in one of the bases (hence not initial in p) are justified in "p .
And of course if present the daimon ends "p'. Moreover, a negative action which is not
initial is justified by the positive action which immediately precedes it in "p'. Hence "p'
is a chronicle. We just have still to check that the chronicle "p ' is based on one I'y - Ay.
This is done by induction on the length of p.
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® p=~K:
Suppose that x is negative. It is initial, its focus is in one I'y, then " p ' is the chronicle &
based on I', = Ay.
Suppose that x is positive. In such a case, there exists an empty 'y and either kK = & or
the focus of « is in Ag. Thus " p' = & is a chronicle based on  Ay.

e p = wk1k. By induction hypothesis, for each non-empty strict prefix g of p, there exists
k4 such that "g'is a chronicle based on a Ly, F A,
Suppose that x is negative. If it is initial, its focus is in one T'y, then " p ' is the chronicle
k based on I'y, = Aj. Otherwise, by construction x is justified by the positive action x’
which immediately precedes x in "p'. Let wok’ be the prefix of p ending by #’. It is
a strict non-empty prefix, hence there exists k such that "wys’ ' is a chronicle based on
[k Agand "p' = "wor’ 'k is also a chronicle based on 'y - Ay.
Suppose that & is positive. We have that "p' = "wr; 'x and "wr; ' is a chronicle based
on some I'y, = Ay. Note that "wr; " is a chronicle based on I'y, - Aj. So we suppose now
that x # % If k is initial then its focus is one 6; € A; and the focus of x1 is hereditarily
justified by an element of I'; U A;. Hence j = k and " p ' is a chronicle based on I'y F Ay.
If x is justified by a negative action k' then p = wok’wik and, by lemma B3] " is in
'—p—' = "wor'w; 'k. Hence, as by induction "wgx'w; ' is a chronicle based on some I'y, - Ay,

sois"p.

[

In the following, we develop further on this idea and show in proposition that we can
build in a unique way a net of designs from the views of a set of paths. For that purpose, we
must consider the views of all prefizes of paths: each prefix may define a particular chronicle.
Furthermore, not only such paths must obviously have the same base but they must also be
pairwise coherent, where this coherence relation generalizes the notion of coherence given
for chronicles.

Definition 3.5 (Coherence on paths). Two paths p; and p; on the same base are coherent,
noted p; < p2, when:
— their first actions have same polarity: either positive and the first actions are the same
or negative;
— for all sequences wy /{f and ZUQI{;_ respectively prefixes of p; and py:
if "w; '="wy ' then /if = m;;
— for all sequences wik; and wak, , respectively prefixes of p; and ps,
let w{ be either the empty sequence if kj is initial or the prefix of p; ending by the
justification of x|,
let w9 be either the empty sequence if k, is initial or the prefix of p, ending by the
justification of x5,
if "w)'="w) " and k] and k, have distinct focuses
then for all actions o7 and oy such that wik] wjo1 and wyk, whoy are respectively
prefixes of p; and p,, and such that x; € '_wlffl_w/lal—' and k, € '—w2/£2_w’202—', o1
and o9 have distinct focuses.
To rephrase the last item, x] and k5 satisfying the conditions, o1 and oy should have
distinct focuses if they are ulterior actions hereditarily justified by x; and k5 respectively
in p; and ps.
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The relation < is reflexive. Note that, applied to chronicles, the notion of coherence on
paths coincide with the notion of coherence on chronicles given by Girard [19] and recalled
in the previous section. Hence, in the following, we only use the notation < to speak of
coherence between paths or between chronicles. Moreover, the comparability property in
the definition of coherence between chronicles is still satisfied between coherent paths: if
p1 < p2 then either one extends the other or they first differ on negative actions. In fact,
if wﬂf and wn; are respective prefixes of p; and p, with /4311— #* /13', then the condition of
coherence is not satisfied, hence p; Z p,.

We show below that the union of views of prefixes of coherent paths such that maximal
ones are positive forms a net of designs. Taking a unique path, we recover the fact that it
gives rise to a net of slices.

NOTATIONS:

— Let p be a non-empty path, p* is the prefix closure of p, i.e., the set of paths that are
non-empty prefixes of p. We put ¢* = {¢}.

— Let D be a set of paths of the same base, "D'={"p';p € D} and D* = UpeD j2

— Let p be a pathh, "p* "is noted "p". More generally, " D* " is noted "D,

Proposition 3.6. Let D be a non empty set of non empty coherent paths based on B such
that mazximal ones are positive and let D* be its closure by prefizes. The set of chronicles
TD™ defined as the union of views of paths of D* forms a net of designs based on [3.

Proof. Let B =T1F Aq,..., T, F A,. Let p be either an element of one of I'; or the focus
of the first positive action of the paths of D (and in this case there exists i such that T'; = ().
We consider the subset D7 of D* defined in the following way:

D} ={pe D*; "p'begins with an action focused on p}

We consider the set of chronicles defined by rD;;—' ={pipe D;}. Suppose '—D;_' is not
empty. We know by proposition [3.4] that there exists ¢ such that these chronicles are all
based on I'; = A;, and either I'; is empty and p € A; or I'; = {p}. Then we check that rD;;_'
is a design based on I'; F A;:

e (Forest) Suppose that ¢ € I—D;;—I and let w be a non empty prefix of ¢. Asc¢c € rD;—', there
is a path p belonging to D and a prefix p’ of p, belonging to Dj, such that "p/'=c The
last action  of w belongs to " p/ . If « is the daimon, then it is the last action of ¢, hence
w=¢c§€E '_D;—'. Otherwise, & is a proper action occurring in ' ¢’ ', hence in p/, thus there
exists wy and wok is a prefix of p’. We already observed that in that case Twok ' is a
prefix of " p/ ' ending with k. Hence w = "wgk ' belongs to '—D;—'.

o (Coherence) Suppose that wk; and wry belong to '—D;—'. This means that there are two
paths p; and po, belonging to D, and two prefixes pj and p} of respectively p; and po,
belonging to Dy, such that "pl 1= we; for i = 1,2. Let us note p = wiky and ph = waks.
— If k1 and k9 are positive then '—pg—' ="w;k; ' ="w; 'k; for i =1,2, hence "wy ' =w =

"wy . Thus, as p1 and pp are coherent, k1 = Ka.
— If k1 and ko are negative with distinct focuses then all the ulterior actions o7 and o9
hereditarely justified by x1 and kg respectively in p; and p, have distinct focuses; then

it is still true in rpl_' and '—pg—', i.e., if wik] wior and wak, whoo are initial sequences
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respectively of p; and p, and are such that k] € rwml_w’lal—' and Kk, € '—wg@_wéag—',
then o1 and o9 have distinct focuses.
e (Positivity) By construction since the maximal paths in D are positive ones, chronicles
in '—D;—' without extension end with a positive action.
e (Totality) It follows from the Totality constraint on paths.
Note that sets rD;;—' are either empty or designs with disjoint sequents as bases. Hence the
result. L]

We know how to reconstruct some designs or nets of designs from cliques of paths. In
fact a net of designs R based on 8 may be recovered from the set of paths on fR, that is to
say paths p based on 3 such that "p" is a subnet of R:

Proposition 3.7. Let R be a net of designs of base 3. Let Py stand for the set of paths p
based on B such that ﬂ—zfn 1s a subnet of R. The following properties are satisfied:

— If ¢ is a chronicle of Py then it is a chronicle of fR.

— P is prefiz-closed.

— pr € Px then [_p_l € Pwy.

— "Pr'=Mm

Proof. As we noticed when defining a path, a prefix of a path is a path, a chronicle is a
path, hence the first two items follow. Moreover a view of a path is a chronicle, hence a
path. U]

We give in proposition B9 an inductive characterization of the set Px. We prove that
chronicles (augmented first with a positive action if the base is positive) are paths, and that
paths are obtained inductively by combining paths that are compatible in the sense given
in proposition B.8: proposition 3.8 below gives a means for building a path p;r from two
existing ones p; and py = gr, i.e. to extend p; by a suffix of py: this extension is a negative
Jump at the end of p;, hence p; must not end with a daimon, r must begin with a negative
action, and actions in 7 must also satisfy a few compatibility conditions with respect to py.

Proposition 3.8. Let p1 = wik] wik{ and ps = wak, wh be two paths based on 3. The

sequence p = wml_w’lliffi;wé s a path based on B if the following conditions are satisfied:

— /{f’ 18 a proper action,

— Twaky 'wh is a path based on B,

— actions in Ky wh and wik] wik] have distinct focuses,

— K] and Ky are together initial, or are justified by the same positive action, ol wy =
we = K1, the action k] is justified by k™ and k3 is initial,

— ,_’u)llil_—l and I—'w2/€2_—| coincide except on their last actions or are respectively equal to
kTr] and K3 .

Proof. By construction p is alternate, its proper actions have distinct focuses and are either
justified or initial with a focus in 8. Moreover, linearity and totality are satisfied and, if
present, the daimon ends pp hence ends the path. It remains to prove that the constraint
(Negative Jump) is satisfied. Let x be an action in p then one has:

- If k is a positive proper action occurring in w} and justified by a negative action £’ in
P2, then K’ belongs to "war, 'wh: the path "wary 'wh should contain a justification for .

2In the case where B contains a positive sequent F A; and T is anchored in F A;.



18 C. FOUQUERE AND M. QUATRINI

Hence in "wak, 'wh there is a sequence ozar Qg ..., beginning with k = 048_ , ending with
k' = «a;, and such that a;’:—l justifies o; and «; immediately precedes oz;."
Then this sequence is completely included into p.

- If k is a positive initial action occurring in w4 then its focus belongs to some A; (in 8) and
the only possibility is that x is immediately preceded in "wok; 'w) by a negative action
with a focus hereditarily justified by an element of I'; U A,. ]

.o -1
in " woky 'wh.

Proposition 3.9. Let R be a net of designs based on 3. The set of paths Py of R may be

exactly characterized as follows:

— if B has only negative sequents, then R C Py and the empty path is in Pyx;

— if there exists a design © of R with a positive base, then © C Py and, for all chronicles ¢
of R beginning with a negative action, k¢ € Py where k™ is the first action of chronicles
of ©;

—ifp = wml_w’ll-if and py = waky wh are two paths belonging to Py and satisfying the
conditions of proposition then p = wik] wWik] Ky wh € Pa.

Proof. Let us give a net R and a set Py = Uizo ]P’fR defined inductively as: Vi > 0, ]P’fR C ]P’f;l

and

— If B has only negative sequents, then R C ]P’g,‘ and the empty path is in ]P’&;

— If there exists a design © of R with a positive base, let k™ be the first action of its
chronicles then ©® C IP’& and for all chronicle ¢ of SR beginning with a negative action,
ktee Py, ;

—Iftp = wml_w’llif and p» = wak, wh are two paths belonging to IP’?R and satisfying the
conditions of proposition B8l then p = wiry wir{ Ky wh € Pl

We show below that Py = Pyx. It is straightforward that ]P’& C Ps. Moreover, with

notations as in the last item, "p" C "p " U Tpy". Hence by induction one proves that

Py C Psx.

One proves the other inclusion by induction on the length of a path p of Py:

— The property is immediate if p is empty, a single action or a chronicle.

— If p = kKT then p is a chronicle, if p = Tk~ then either p is a chronicle, or k™ is a
chronicle and 7 is the first action of a design of 2R with positive base: in all these three
cases p belongs to Py.

— Otherwise p has length at least 3 and is not a chronicle, hence " p ' has at least two actions
less than p. Note that the longest common suffix of p and "p' is not empty and begins
with a negative action, otherwise it would be p hence p would be a chronicle. Let us
note this common suffix k5 wf and set p = piky wh. The path p; is a non-empty path of
P hence by induction an element of some Pg. Moreover p; ends with a positive proper
action. Either p; is reduced to a positive action, hence the base of R is positive and the
result follows from the second item in the definition of Py. Or p; contains at least two
actions if 3 is negative or three actions if 3 is positive. Let p» be defined in the following
way: if the base of R is negative or if this base is positive and "p' has a first action
positive then py =" p ', otherwise let £ be the first action of the design of positive base
and set po = k™" p . In the two cases, p» € Py and is a path. Moreover, x5 w) is a suffix
of "p'. Paths p; and ps satisfy conditions of proposition B.8
- take ki as the last action of pi, hence it is a proper action,

- take wo such that pp = wory wh then "wory 'wh ="py ' is a path based on 3,
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- no actions respectively in k, wh and p; have same focus,

- if k5 is initial then let k] be the first (initial) action of p; if B is negative or be the
second action of p; otherwise. If x; is justified by a positive action then this last one is
followed in p; by a negative action x7 : if it were not the case this positive action would
be the last of p; hence in the common suffix of p and " p ' yielding a contradiction,

. '—wml——' and '_w2/£2_ " coincide except on their last actions which are respectively Ky
and Ky .

Hence p € ]P’;H. This ends the induction on the length of paths of Pg. Thus Px C Py. [

4. NORMALIZATION PATHS, VISITABLE PATHS

In [19], Girard introduces the concept of dispute. In a few words, a dispute is a possible
travel in a cut-net of designs during normalization. Here we will focus on such disputes
and more precisely on sequences of actions followed up on one side of an interaction. In the
sequel of this paper, we restrict ourself to particular closed cut-nets. Recall that a closed
cut-net is a net of designs where all addresses in bases are part of a cut. We distinguish in

such a net one design with base 8 of the form & - oy,...,0, (resp. equal to - oyq,...,0,)
and a net of designs which base is noted S and that is equal to - &, o1 F, ..., on F
(resp. equal to o1 F, ..., o, ). The previous section was devoted to define paths in nets

of designs. This section is concerned with normalization paths, i.e., sequences of actions
that may be followed in a normalization. We prove that a normalization path is a path.
However not all paths are normalization paths as normalization is a kind of ‘mirror’ process:
a path p may be followed by normalization iff its dual noted p is a path, where p has actions
of opposite polarities and terminating with a daimon exactly when p does not end with a
daimon. Then we determine when p is a path as a condition on p. We finish this section
with a more general question: let E be a set of designs of the same base, is it possible to
characterize paths on ® € E that may be visited by an element of E+?

Definition 4.1 (Normalization path). Let (D,9R) be a convergent closed cut-net such that
all the cut loci belong to the base of ®. The normalization path of the interaction of
with MR, denoted (D«+R), is the sequence of actions of ® visited during the normalization.
It may be defined by induction on the number n of normalization steps:

e Casen=1:

— If the interaction stops in one step: either © = Dai, in this case (D+R) = x, or the
main design (which is not ®) is equal to Dai and in this case (D+R) is the empty
sequence.

— Otherwise let kT be the first action of the main design. The first action of (D+R) is
Kkt if D is the main design and is £+ otherwisd].

e Case n = p+ 1: the prefix K1 ...k, of (D+R) is already defined.

Either the interaction stops and (D<fR) = k; ...k, if the main design is a subdesign of

R, or (DNR) = Ky ...HKkpyH if the main design is a subdesign of D.

Or, let kT be the first proper action of the closed cut-net obtained after step p, (D<+R)

begins with x1 ... /ip/{_+ if the main design is a subdesign of R, or it begins with 1 ... kprT

if the main design is a subdesign of ®.

3Where the notation % is simply (£,&,I) = (F,&,I) and may be extended on sequences by € = € and
WK = W K.
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We note (R«D) the sequence of actions visited in R during the normalization with D.

The previous definition makes sense because normalization of convergent closed cut-nets
is a step by step procedure that satisfies lemma

Lemma 4.2. Let (D,R) be a convergent closed cut-net such that the base of © contains

all the cut-loci. Every normalization step (until the last one) is a convergent closed cut-net

(D', R ) where:

— D' is a subdesign of D,

— either ©' is the main design, or ®' is such that its first action is the dual of the one of
the main design, that is a subdesign of R, or Dai is a design of R’.

Proof. By induction on the number of normalization steps, we prove that a) it occurs in
a convergent closed cut-net (D’,9R’) where D’ is a subdesign of © and is either the main
design or such that its first action is the dual of the one of the main design (except that
if the main design is Dai) and b) every newly created cut-locus appears in the base of a
subdesign of © and in the base of a subdesign of *R.

(1) We consider the first normalization step. The property b) is satisfied by hypothesis; the
property a) is deduced from it:

e either © is the main design, it is located on a base - o1, ..., 0, while the other designs
of the closed cut-net are located on o; |,
e or ® is located on £ - 01,...,0,. Since the base of ® contains all the cut loci, the

other designs are 2 based on - £, and the designs 28; based on o; F. The main design

is 2 and since the interaction does not diverge, either 2 is Dai or its first positive

action T is such that the dual action x is one of the first actions of @, then a) is
satisfied.
(2) We prove that the properties a) and b) are preserved during a normalization step:

e We consider a convergent closed cut-net (D', R’') where D’ is a subdesign of © and is
the main design based on F o, A. If ®’ is not Dai, let o be the focus of its first action.
The next normalization step is on the closed cut-net which contains the same designs
as before except that ©’ is replaced by several designs D’ based on oi - A; and the
design based on o I is replaced by its subdesign 21’ based on F o1,...,0n,I". The
main design is now 2':

— Either its first action is & hence a) is satisfied,

— or it is a proper action (+,&,I), where £ = gig or £ € I'. In the first case, since the
interaction does not diverge, the dual action (—, cig, I) is one of the first actions of
the subdesign D/, , of ©, then a) is satisfied. Otherwise £ € I'. The loci belonging to
I" are not initial as in such a case they should appear in the base of © in negative
position, and this is not possible. So £ has been created during the normalization,
and then is located in subdesigns of ©, that is that there is a subdesign of © based
on ¢ - = and (since the interaction does not diverge) having (—, &, I) as first action.
Then a) is satisfied.

Moreover the only new cut loci are the oi’s which are located on subdesigns of .

Hence b) is satisfied.

e We consider a convergent closed cut-net in which the main design 21’ is not Dai and
is such that the dual of its first action (+, 0, I) is one of the first negative action of a
subdesign ®’ based on o - I'. The next normalization step is on the closed cut-net
which contains the same designs as before except that D’ is replaced by its subdesign
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D" based on F o1,...,0n,T and some subdesigns A, based on oi - A;. Since ©” is
the main design, a) is satisfied. Moreover the only new cut loci are the ¢i’s which are
located on ©” which is a subdesign of ©. Hence b) is satisfied.

The following proposition shows that normalization paths are paths.

Proposition 4.3. Let (D,R) be a convergent closed cut-net.
(D«R) is a path on ©. (R<D) is a path on R.

Proof. We prove the first property by induction on the length of a prefix of (D<9R).

- The base case of the induction depends on the polarity of ®: If ® has a negative base
then the empty sequence is a path on ©, otherwise ® has a positive base hence there exists
a first action in the sequence (D<—R), this action being the first action of ©, hence a path
on 2.

- Suppose K ... kpk is a prefix of (D<R) and that by induction hypothesis ki ...k, is a
path on 2.

If k is a positive action then, with respect to normalization, " &1 ... K}p—llﬁl is a chronicle of ©
that extends "k ... /ip—', hence k1 ...kKpk is a path on D.

If k is an initial negative action hence © is negative and « is the first action of the normal-
ization, i.e., p =0, and « is a path on ©.

Otherwise the focus of the negative action x has been created during normalization by a
positive action present in x1 ... kp, hence K1 ... kpK is a path on D.

The second property is proved in the same way. ]

Note that (JR«D) is obtained from (D<R) by just changing polarities of proper actions
and adding a daimon if it were not present in (D<R). More precisely we define the dual
of a positive alternate sequence of actions p (possibly empty) to be a positive alternate
sequence of actions p (possibly empty) in the following way:

o If p=wx, p:=w.

e Otherwise p := px.

Note that p = p. It follows from the definition of a normalization path that © L R iff
dp € Pp such that p € Pr. Such a p is unique and is in fact (D+R). Not all paths of Py
may be visited by a net in D+ as we show in the next example proposed by Faggian [14].

Example 4.4. Consider the design © below:

o0 F €00 70+ £10

F£00,0 F&10,7

OFo 1B
D= F&o,T

Its orthogonal -+ is the following set of nets (where dots may be replaced by any forest of
actions such that the result is a design):

. €00 - &1 £10 - €0
UL F€0.61 F o0 ™ F€0,61 : Eq0 %
EF okbTF EF o ol - & ok TH
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Let us consider the path P= (+7 57 {07 1})(_7 507 {0})(+7 g, {0})(_7 517 {0})(+7 T, {0}) - It is
a path of Pgp, however it is not visited by a net in D+: its dual p is (—, &, {0,1})(+, €0, {0})
(—,0,{0})(+,£1,{0})(—, 7, {0} )% that is not a path.

In [14], Faggian precisely characterizes strong slices, i.e. slices of a design © that may
be completely visited with a unique normalization by an orthogonal of ®. Remember that
a slice of a design is a multiplicative subdesign of @, i.e. a focus appears only in a unique
negative action. Furthermore, Faggian showed that a slice is strong iff it is finite and a
partial preorder traversal may be defined on it: the root is visited, then in preorder each of
its subtrees, the last visited node for each visited subtree being a leaf. We remark that if p
is a normalization path of a design © then "p" is a strong slice of a D: the normalization
process defines such a partial order on the design "p", and by construction "p" C D such
that it does not contain two negative actions with the same focus, i.e. "p" is a slice of D.
To summarize, let p be a sequence of actions based on 3, we have that "p" is a strong slice
iff p and p are paths.

Note that the fact that "p" is a strong slice may be determined by means of constraints
only on p. In fact, a dual of a path p is a path if p satisfies the dual of the first item of the
Negative Jump constraint we call Restrictive Negative Jump. We notice that the Negative
Jump together with Restrictive Negative Jump constraints are equivalent to the Visibility
constraint in Game Semantics.

Proposition 4.5. Let p be a path based on (3, p is a path based on B+ iff p satisfies the
following condition:

o Restrictive Negative Jump: for all sequence qr that is a subsequence of p, if k is a negative
action justified by a positive action k' then k' €' g .

The Restrictive Negative Jump constraint may be explicitly stated as follows:

If k= is a proper action justified by an action x'" then there is a sequence agaar St
beginning with K~ = o , ending with &'t = o} and such that oz;F immediately precedes o
in p and oy justifies oz;r.

Proof. Suppose p is a path then it satisfies the (Negative Jump) constraint hence p satisfies
its dual, hence in particular the (Restrictive Negative Jump) constraint.

Suppose p satisfies (Restrictive Negative Jump). Being given the definition of p and
the fact that p is a path, the sequence p satisfies conditions (Alternation), (Justification),
(Linearity), (Daimon). It remains to check that p satisfies (Totality) and (Negative Jump):
e (Totality) Note that if 3 is negative then either p is empty then p = % is non-empty, or

the first action of p is a negative action hence p is non-empty.
e (Negative Jump)
— The first item is satisfied by p as p satisfies the Restrictive Negative Jump constraint.
— Concerning the second item, let  be an initial positive proper action of p, then & is
negative initial in p, hence the first action of p being given the kind of base we consider.
The result follows. ]

This achieves the characterization of what can be visited in an interaction: let p be a path
in a design ®, p may be visited in an interaction if, by definition, there exists a design € and
p = (D«€). If pis a path then "p" is a design and we have that p = (D« "p"). Finally
proposition gives the constraints that p should satisfy for p to be a path.
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We now move on to a more general question: let E be a set of designs of the same base,
is it possible to characterize paths p on designs of E that may be visited by an orthogonal,
i.e., an element of E+? A mnecessary condition is that p is also a path, i.e., "p" is a strong
slice. Note that there is no reason that "p" may be orthogonal to all the elements of E.
Indeed, the fact that p is a path is not a sufficient condition: suppose a design ® € E with
a first negative action k~, then p = k™~ is a path on ®; p is visited by interaction with

an element R of E- if % contains a design with first positive action x~; but as % € EL,
k7~ should be one of the first negative actions of each design of E. This is the keypoint we
use in proposition [£.8] for having a necessary condition for a path to be wvisitable in a set of
designs E. Note that this condition does not make direct reference to elements of E+.

Definition 4.6 (Visitability in a Set of Designs). Let E be a set of designs of the same
base, a path p is visitable in E if there exists a design ® € E and a net R € E+ such that
p = (D<NR).

Remark 4.7. A visitable path p is positive (i.e., its last action is a positive one). Obviously,
with notations as in the definition, p € Pgp; moreover VD' € E such that p € Po then
p = (D'+9R) as normalization is deterministic.

Proposition 4.8. Let E be a set of designs and let p be a positive path of a design of E,

If the path p is visitable in E then
o the sequence p is a path,
o for all prefiz wk of p, for all design ® in E such that w is a path of D,
if k is a negative action then wk is a path of D,

Proof. Suppose that p is a path visitable in E, then there exists a design Dy € E and a
net Ry € EL such that p = (Dg+Ro), hence p = (Rg+Dyg) is a path (in Ry). Let wk be
a prefix of p and © be a design of E such that w € Pp. Note that w cannot end with a
daimon. Since w is a path of ©, and that normalization is deterministic and ® 1 g, then
w is a prefix of (D+NRg). Suppose first that  is a negative action:

e If w is empty, the base of designs of E is negative, i.e., of the form £ + o1,...,0, and
nets R in B+ have bases - ¢, o1 F, ..., 0, F. So normalizations between SR and designs in
E must begin with the same first positive action % of R, hence k should be a first action
in all designs in E, thus a path in all designs in E.

e Otherwise, we note that after |w| steps of normalization between © and Ry, the cut-
net consists of a net Xp of subdesigns of ® and a net Xg, of subdesigns of designs
of Ry. Moreover, there is exactly one design of positive base in this cut-net and this
design belongs to X9, as w ends with a positive action. Furthermore, X, is also the net
obtained from R after |w| steps in the normalization between Dy and Ry. Then % is the
next action to be used by normalization with @, hence also with © (for normalization
to proceed). Thus wk is a path of . ]

Definition 4.9 (Completion of designs). Let © be a design of base 3, the completion of

9, noted D¢, is the design of base  obtained from ® in the following way:
D:=DU{ckx; c€D,ck” €D, ck X is a chronicle of base §}

Let R be a net of designs, the completion of R also written R¢ is the net of completions of

designs of fA.
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Note that ®¢ is a design: First, an action k™ is either initial or justified by the last action of
¢ (in ¢k7) hence linearity is satisfied. Second, as chronicles ¢ are in © and k™ are negative
actions, chronicles ¢k ™k are pairwise coherent and coherent with actions of ©.

Proposition 4.10. Let ® be a design in a behaviour A, let € C D then €° € A.

Proof. Let € € A+. Hence € 1 ®. Let p be the longest positive-ended path in the design
¢ that is a prefix of (D«€). Either p = (D<€), hence € L €, and also € L € Or there

exist actions £, k1 and a sequence w such that (D+€) = px~rk+w. Consider the chronicle

¢ such that " ps~ ' = ¢x~. By construction, ¢ € €. Either ¢~ € € hence also ¢k kT € € as
¢ C © and there is a unique positive action after a negative action. Contradiction as p is
then not maximal. Or ¢k & € €° hence & | €°, L]

The proposition .10l is also true when we have nets of designs instead of designs.

Proposition 4.11. Let E be a set of designs of same base. Let p be a path of a design of
E. p is visitable in E iff "p" € E*.

Proof. Suppose that p is visitable in E. Then there exist ® € E and R € E* such that
p = (D+R). Furthermore p is a path in R, hence "p" C R. Tt follows from proposition A0
that "p " € Bt
Suppose that "_?—”C € E*, let © be the design in F such that p is a path of ©. Note that
D 1L "p™ and that p= (D<"p"™). ]
Proposition .11l gives a means to compute the set of visitable paths of a set E of
designs of the same base (when E is a finite set of finite designs): take each positive-ended
path p of some design of E, test if for all design ® in F we have ® L "p"™. This method
may be improved by considering only paths that satisfy the necessary constraint given in
proposition .8l

Corollary 4.12. The set of paths visitable in E, noted Vg, is positive-prefix closed: if
pTw € Vi then prt € Vg.

5. INCARNATION EXPRESSED BY MEANS OF PATHS

5.1. Incarnation. A behaviour may contain useless designs with respect to orthogonality.
This is clear when considering a design as a set of paths: if B is a behaviour and ® € B
then designs in B obtained from ® by extending one of its paths are useless with respect
to membership to B. This suggests the following definition:

Definition 5.1 (Incarnation). Let B be a behaviour, © be a design in B.

o |D|B := Upepr " (D+R) " is the incarnation of D with respect to the behaviour B.
e D is material in B if ® = |D|g.
e The incarnation |B| of a behaviour B is the set of its material designs.

|D|p is simply noted || when B is clear from the context.
Note that Jyegr "(D+R) " is a design: if R € B+ then (D<R) is a path included in

D, thus [D| = Upepe " (D+R) " is a design included in ©. Furthermore, by construction,
Usep: "(®+R)" € B+ = B. Hence |B| C B.
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With respect to the inclusion relation on designs belonging to a given behaviour, the
minimal designs are in the incarnation of this behaviour. This is the core of the definition
given by Girard in [19]:

Proposition 5.2. Let B be a behaviour, ® be a design in B. If © is minimal in B with
respect to inclusion then ® € |BJ.

Note that the previous property is also true in the more general setting defined by
Basaldella and Faggian for dealing with exponentials in Ludics [4]. The converse property,
i.e., the fact that actions can only be used once in a normalization, is not true in their setting.
In the present paper, thanks to linearity, the converse property does hold,. Linearity induces

the following fact: (5—<\——§{> = (RD) (see also [19]).

Proposition 5.3. Let B be a behaviour, © be a design in B. If D € |B| then © is minimal
mn B with respect to inclusion.

Proof. Remark that Upegr " (D¢R) " = "Unegr (D¢R) ™. To obtain a design Dy strictly
included in Uyt "(D+R) ", we have to erase at least a chronicle ¢ (and its extensions).
But there is at least a path py € Upepr (D+R) such that ¢ € "py " hence if we denote by

Ro a net such that py = (D<NRp) we have by linearity constraint on designs that Dy £ Ro.
Hence ) ¢ B. L]

Incarnation may be also defined for a set F of nets of designs, when such a set F is the
orthogonal of a set E of designs of the same base, i.e., F = E-:

Definition 5.4. Let E be a set of designs of the same base § = &y + d1,...,0, (resp.
B =k 61,...,8,), |’ = (&) be a net of designs belonging to E+, with &; of base d; I for
i€{l,...,n} and €y based on I §. With ® € E, let (F?P) = "(5«D) " be a net of designs
such that S? is a design with the same base as €;.

The incarnation of R, denoted |R|g1, is the net (Ugep §7)-

The incarnation of E+, written |E*|, is the set of nets of designs {|R|g.; R € EL}.

The incarnation of such nets of designs is well-defined: with notations given in the pre-
vious definition, for all i, ¥ C &;, hence User 37 is a design included in ;. Furthermore,
for all © € E, © L [R|g:. Hence [E*-| C EX. Abusively, we note |R|g1 = Upep " (RD) .

Let us consider a set of designs E of the same base, we gave a necessary condition in
proposition [4.8] for a path to be visitable in E, notice now that visitability is sufficient for
computing the incarnation of a design in the behaviour generated by E: it follows from the
definition that [D|g1. = "Pp N V" when ® € E. In other words, it is not necessary to
compute the behaviour of a set of designs for computing the incarnation of its designs. This
suggests the following questions. Is it possible to compute directly the incarnation of the
behaviour generated by E, resting only on the paths visitable in E? Are designs in E all
necessary for computing this incarnation? We remark below that none of these questions
admits an obvious answer: on the one hand the biorthogonal may contain designs that are
built from parts of several designs of E, on the other hand even if some kinds of designs are
clearly redundant some other cases remain out of reach.

One of the easiest kind of designs of a biorthogonal that may be clearly generated from
already known designs concerns those obtained by replacing subtrees by daimons. In fact
this is part of an explicit characterization of the relation ® < €&, that reads © is more



26 C. FOUQUERE AND M. QUATRINI

¢ ¢
o=<e: 9 oce:. D ce . D ¢

Figure 6: Relations of inclusion and to be more defined, and daimon closure of a design.

defined than &, between designs with the same base. The relation ® < & holds whenever
D+ C ¢+, This characterization is part of the separation theorem [19]: the relation < is a
partial order and we have that ® < €& iff every chronicle ¢ € ©® — € can be written ¢’ for
a certain ¢’ such that ¢ € €. The relation < subsumes the inclusion relation. Indeed, we
have of course that if © C € then ® < &. This is already taken into account in incarnation
as a material design is minimal with respect to inclusion in a behaviour. There is another
fact causing a design © to be more defined than a design &: by substituting chronicles
wkTw' in ® by the only chronicle w»x in €. As a consequence, if ® is in the behaviour E++
then so is &, moreover if D is in the incarnation |E+*| then so is €. We call such a set of
designs € the daimon closure of © and we note it D% (see next definition). Relations of
inclusion and to be more defined, as well as the daimon closure of a design, are schematized
in Figure 5.1

Definition 5.5 (Daimon closure). Let © be a design, the daimon closure of ©, denoted by
DT is the set of designs obtained from © by substituting, for some set of negative chronicles
¢ € D, all the chronicles ck™w € D by the chronicles ox.

Let E be a set of designs of the same base, the daimon closure of E noted E¥ is the set

U’DGE /D%'

To rephrase what precedes, behaviours and incarnation are ‘closed under daimon’.
Hence the complement E \ E¥ of E¥ in E is sufficient for generating the incarnation of
E. However this does not fully address the question: in example (.7, designs & and § are
sufficient for generating the incarnation of, say, {€,§, &, H}.

Example 5.6. We have that |{¢/,§, &' }L| = {¢,F, ¢, ¢, §'}E wherefl

F€1.0,2.00
£1.00Fp o01F£20 £1.01Fp 02FE£20 .0+ €.1.0
F&ELO,n  FE20,0 F&E1.0,0  FHE2.0,0 FE1.0,u
E1Fp £E2F 0o Elkp £E2F o Elkp E2F o0
¢ = & o u F = H& o u 6 = F& o, p

4In the representation of designs, we may choose to put p or ¢ in any of the branches when they are not
a focus of an action. The choice we take has no consequence on the result.
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£.1.0.0 F 1.0.0 £.1.0.1 F p.0.0
F£.1.0,1.0.0 F£.1.0,4.0.0
w0+ £.1.0 0.1k &2.0 w0+ £.1.0 0.2 &£2.0
FE1.0,p F£20,0 FE1.0,u F£2.0,0
ElFp £E2F 0 E1Fp (E2F 0
¢’ = F&ou , "= F&ou

Example 5.7. We have that [{&,F} 1| = {€&,§, &, H}'F where:

F€1.0,01.0, 010~ FE1.0,01.0,01.0 & FE1.0,01.0,2.1.0 ~ F€1.0,0.1.0,0.1.0

w1k £1.0,0.1.0 ¢E1F p1.0,0.1.0 o1k &.1.0,u.1.0 olF ©.1.0,£.1.0
F£1.0,0.1.0,u Fp.1.0,0.1.0,¢ F&1.0,u.1.0,0 Fp.1.0,6.1.0,0
o1k &1.0,u olF p.1.0,¢& wlk-£1.0,0 E1F p1.0,0
F£1.0,0,u Fu.1.0,0,& FE1.0,0,u Fu.1.0,0,&
ElF o, wlko ElFo,p wlko
¢ = |_£7O-7,u 5 = "6,0’,,& &= F&opu 9= |_£7O-7:u

Note that each design is obtained from each other one by commuting some actions.
Obviously, such commutations do not always give rise to elements of the biorthogonal as
it depends on the rest of the set of designs. Moreover, designs in the incarnation may not
necessarily be obtained this way: In example[5.6] designs ¢” and §” are built by adding the
pair of actions (+, u, {0})(—, £.0,{0}) into paths which become visitable reversing proposi-
tion 4.8 every path in a dual design travels through this pair.

From the previous remarks, it seems that there is no clear way to compute directly an
incarnation. To circumvent this difficulty, we use in this paper an indirect approach for
computing an incarnation. First, as we develop it in the next subsection, the incarnation
|E+| may be defined by means of E only, where E is a set of designs. Second we remark with
the following proposition that |[EL++| = |(JE*|)*|. Hence computing an incarnation involves
twice the same procedure, i.e., computing the incarnation of the dual.

Proposition 5.8. Let E be a set of designs of the same base 3, E++ = |[EX|*L.

Proof. We already noticed that |E+| € EL. Hence E++ C |[EX|*. Let ® € |[EL|*, for all
R € B, D 1L [R|pe hence (|R|gL+D) is a normalization path in |R|gL, hence also in fR.
Thus © L fR. []

5.2. Direct computation of the incarnation of the dual of a set of designs. Let
us define Vg = {p;p € Vi}. It is obvious that if p is visitable in E then 7 is visitable in
EL. In other words, Vg C Vi1. Recall that a design in |E*| should be the set of views of
coherent paths of ‘715 Moreover, such a design should be orthogonal to each design in E,
hence maximal cliques of Vi are natural candidates for defining designs of |E+|. This is not
sufficient. Indeed we get a counter-example by transposing in Ludics an example used by
Ehrhard for the study of hypercoherences [12]. In that counter-example [5.10, we notice that
the infinite sequence resulting of an increasing sequence of visitable paths has to belong to
some design of E. With that constraint we are able to characterize the incarnation of the
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dual (propositions [5.I5land [5.16]). First of all, we remark with the following proposition that
the dual of a clique of visitable paths is an anticlique of paths, this property is necessary
for proving materiality.

Proposition 5.9. Let E be a set of designs based on (3, p and q be two distinct paths of

VE7

e ifpcqthenp#q,

e if C is a clique of paths based on (8 wvisitable in E then C' is an anticlique of paths based
on B+.

Proof. Let p, ¢ be two distinct paths of Vg, and suppose that p < ¢:

e Either one sequence strictly extends the other: w.l.o.g. p = gs~w. Then g = P¥ and
p = gr—w. The paths p and ¢ are strictly incoherent.

e Or there exists two distinct negative actions x; and k; such that p = wk]w; and
q = wky wy. Then p=wrk] wy and ¢ = Wk, wy which are strictly incoherent.

It follows that if C' is a clique of Vg then C is an anticlique of paths. L]

Let C be a set of visitable paths. The fact that C is an anticlique of paths (a set of

pairwise incoherent paths) does not ensure that C is a clique, as the following example
shows.

Example 5.10. Let E = {&,§} where:

£110- €210+ E110F £211 +

F&llr Fe21 &1l Fe21

E1F er E1F er
¢ = H& and § = H&

Paths p and ¢ defined below are incoherent positive visitable paths in E and p and ¢ are
also incoherent:
g = (+,&{1,2) (=, €2, {1})(+, €21, {1}).

We give below a direct characterization of the incarnation of the dual of a set of designs
E. Though simple, it has the disadvantage of requiring a test toward each design of the set
E. We develop in propositions[5.15] and a more complex characterization that considers
only tests toward the set of visitable paths of E.

Proposition 5.11. Let E be a set of designs based on . Let C' C Vi such that for all
design ® € E, C NPy # 0 and C is a clique of Vi, then "C™ belongs to |E*|.

Proof. — Cisa clique then TCMis a design.

— As normalisation is deterministic and by construction of rém, we have that for all design
DeERE,DL"CM e, "C" e EL

— Suppose there exists a strict subnet R of TC™ that is in E+. Hence there exists a path
pE C and p & Px. By construction of rém, there exists a design ® € E such that p € Pyp.
Hence normalisation between R and D fails : R ¢ EL. Contradiction. Then "C" € E4.0O0
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Proposition 5.12. Let E be a set of designs based on 3. Let R € |El| then there exists
C C Vg such that for all design ® € E, CNPp # 0, Cisa clique of VE and "CT = R.

Proof. As R € |EL|, we know that R = "{(?M+D) ;D € E}". Let us consider C' = (~7 where
C ={(R«C0);¢cE}

e By construction, C is a subset of 17F: and for all design © € E, C NPy # 0.

e As R is a design and C C Py, C is a clique. ]

Let us consider now what constraints should be required on such sets C' referring only
to visitable paths for C' to give rise to a design of the incarnation of the dual.

To be a maximal clique of Vg is not sufficient for characterizing the material designs
of B+, when E is a set of designs. Two additional constraints are required. First, such
a set of paths C should be saturated with respect to paths of Vg: if a visitable path can
be followed in a design © of E and dually in C' then the next positive action in © should
be present dually in the path of C', except when this positive action is a daimon. Second,
the intersection of the anticlique made of duals with designs of E should be, in some way,
finite. Indeed, the same phenomenon also happens with serial-parallel coherence spaces
(the ones obtained from 1 = {x} with the connectives & and @): being given a family of
maximal cliques that covers a coherent space, maximal anticliques cut each such maximal
clique if the space is finite, this is not always the case if the space is infinite. Example [5.13]
given below is a transposition in Ludics of the one given by T. Ehrhard in his study of
hypercoherences [12].

Example 5.13. Let us consider designs generated by the following grammar (n > 0):

9511 92?1“
€00 F €10 - ik ik
F&l F&1 F&l
0. &0 1. 81 ont2 . &1 onys . &1
Qg = Tr Qg = Er ©§ = Er @5 =

For all n > 0, we note n the maximal chronicle of the design ”}3? We note n the dual of n.
Remark that, for all n,p,k > 0,

2n<2p, 2no2ntk)+land, ifn#p, 2n+1#£2p+1
Hence for all n > 0,
{0,2,...,2n,2n + 1}* is a design as well as {0,2,4,...,2n,...}".

Furthermore for all n > 0, {1, 5,...,2%,2?:2}* is a design as well as {0}* and
{1,3,....2n41,...}*

€1100 - €1110 -
FEI0 k£l
€00 €10 F €00 SN

&0 &1
= 3 3 and

For example, {0,1}* =
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- 111100
L anr
FE1ii0 Y e
SRR
— B3
€00 F£10 ST
_ . @r N fir
{0} = T {1,3,4}* = e

Consider the two following designs:

—_—~—

62{972747"'72_717"'}*7 S: {Ivgv"wZn—i—lv"'}*)

and the two following sets of designs:

E={{02....2020+1}Vn >0}, F={{0y}U{{L3.....2n+1,2n 1 2}";¥n > 0}.
Observe that Vg = VieE is the set of positive prefixes of paths n for all n > 0. We have
that {§} UF C |[E'| and F C |({&} UE)*|. The remainders of |[E+| and |({€} U E)*| are
obtained from designs of F by replacing proper positive chronicles ¢ and their extensions by
chronicles ¢. The sets of views of maximal cliques of Vg are then exactly material designs of
E. We note that § ¢ |({€} UE)*|. Indeed, € is not orthogonal to § since their interaction

does not end. In other words, this is so because (+,¢,{1}),(—,&.1,{1}),... is an infinite
sequence of actions in § whose dual is included in €. Excepting this case, the other sets of

views of maximal cliques of Vieyup are exactly material designs of {€} UE.

Definition 5.14. Let E be a set of designs based on 3. Let C' be a set of paths of designs

of E.

— The set C is finite-stable when for all strictly increasing sequence (p,) of elements of
C,if J"p, " is included in a design of E then the sequence (p,) is finite.

— The set C is saturated when for all g prefix of an element of C' and gx* € Vg with
kT # %, we have that gk™ is a prefix of an element of C.

Proposition 5.15. Let E be a set of designs based on 3. Let C' C Vg such that C' is finite-
stable, saturated and C' is a mazimal clique of Vi. Then TC™, the set of views of paths in
C, is a design that belongs to |E*|.

Proof. Suppose that Vg = {€}, then EX = {Dai} and Vi = {%} and the result follows. In
the following we consider that there are some non empty paths visitable in E. As Cis a
clique of Vg, TC™ is a net of designs.
e The net "C"is in E+:
Let € € E. We prove that there is a path g € Pe¢ N C. This way we prove that TCT 1 ¢
either g or g ends with a daimon hence the interaction finishes well. We note V@C the
set of paths in Pg that end with a positive action and are prefixes of paths in C' (hence
visitable in E).
— Suppose that Vg is not empty. Because C' is finite-stable and & € E, sequences of
elements of Vg cannot be infinite strictly increasing. Hence we may consider a path
g maximal in V@C , i.e., maximal such that g € P¢ ends with a positive action and is
a prefix of an element of C. Note that if 4 ends with a daimon then g € C. Either

g € C, hence ¢ = <€ « TC™>, thus € L "C™. Or there are a negative action £~ and
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a sequence w such that gx~w € C. Hence, from proposition 4.8, gk~ € Pe. Moreover
gk~ has an extension gk~ kT in Pe. We construct now a net in EL that “forces’ the
interaction with gx™:
let P = {p/{’_% ;p is a prefix of § and pr’~ is not a prefix of g}
U {gr~ K% ;gr~ K~ is a path of a design in E}

and consider the net )# = "P". We have that % is in E+: gx~ € Vi, hence a
normalisation path between a design of E and R either follows gx~ or diverges from
it on a negative action, in the two cases interaction finishes well as R is “completed”
by means of all possible negative actions, each of them followed by a daimon. Then
(€&+R) = g~ KT, hence g~ kT € V.
If kT = % then g% € Pg and ﬁfi_— € PH—va,—n, thus ¢ L C™. Otherwise, as C' is
saturated, s~ kT is a prefix of an element of C then we have a contradiction with the
fact that ¢ is maximal in V.

— We prove now that V@C is not empty.
Suppose that the base of E is positive. Let k1 be the first action of &, the path s is
visitable in E. If there is no path in C beginning with this action T, the path kT is
coherent with all the paths of C against the maximality of C. Hence either ru € C
or there is a path xtx~w in C extending £+ and kT € Vc

Suppose now that the base of E is negative. Either C = {»B} and the result follows, or
all paths in C begin with the same proper positive action x~. Hence there are sequences
w such that k~w € Vg and then, for all ® € E, k= € Py, in particular k= € Pg. If
K € Pg, then € L TCT. Otherwise there is a unique action kT such that k= kT € € Pe.
Furthermore, kK~ k* € Vi: since k= € Vg there is at least a net in E+ containing <~ as
unique first action and then, since this net is orthogonal to € it has to contain a path
extending x~xT. If there is no path in C extending £~ with the action xT, the path
Kk~ kT is coherent with all the paths of C against the maximality of C. Or there is a

(proper) path k—rtw in C extending x—x+ and k kT € Vec.

e The net "C" is material in EL.

Suppose there exists a strict subnet R of TC™ that is in EL. Hence there exists a path
pE C and P & Pn. As p € Vg, there exists a design € € E and p € Pe. Note that
there exists a unique path in Pe N C as C is an anticlique and € is a design. As %R € B,
g = (&R) € V. Hence ¢ € Pg. Moreover, § € Py, thus "¢ " C TC™, hence coherent
with paths in (~7, hence g € C as C is a maximal clique. But p # ¢ and the two paths
belong to Pe N C. Contradiction. L]

The next proposition shows that one exactly recovers \EH, the incarnation of E+, from
the set of maximal cliques of Vg which are dual to finite-stable subsets of Vg.

Proposition 5.16. Let E be a set of designs of the same base. Let R € |EL| then there

exists C C Vg such that C is finite-stable and saturated and C is a maximal clique of Vg
and "C" = R.

Proof. As R € |E+|, we know that R = T{(R<D) ;D € E}™. Let us consider C' = C where
C ={(RD);D € E}.

e By construction C is a subset of T//E
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e As R is a design and Cc P, Cisa clique.

e Suppose C is not a maximal clique of ‘7}5: there exists a path p € ‘7}5 such that Vq € C P
g and p ¢ C. The path p € Vg thus there exists © € E and 9% € E- and p = (R«D).
Moreover there exists ¢ € C and g = (R«D). As p < ¢, then 7 # ¢. But these two paths

7 and ¢ belong to the same design . Contradiction. Then C' is a maximal clique of V.
e Suppose that there exists a strictly increasing sequence (p,) of prefixes of paths of C' and

D € E such that |J,"p," C D. Note that (p,) is a sequence of prefixes of paths of C.

If the sequence is infinite strictly increasing, the normalization between "C™7 and D does
not finish, contradicting the fact that normalization ends between R and D.

e (C is saturated: Suppose that ¢ is a prefix of an element of C' and gr™ € Vg with kT # .
There exists a design € € E such that gk* € Pg. Furthermore g € Py. As normalisation
is deterministic and R L €, there exists a sequence w such that (€+R) = gxTw. Hence
gk is a prefix of an element of C'. Il

Proposition 5.17. Let E be a set of designs based on 3. The incarnation of the behaviour

generated by E is determined by applying the following steps:

(1) Consider the set of paths of E which may be the wvisitable paths of E (by means of
proposition [{.8).

(2) Establish Vi, the set of visitable paths of E, by keeping from the previous set the paths
passing the proposition [4.11] .

(3) Obtain |E*| from the set of maximal cliques C of ffg such that C' is finite-stable and
saturated.

(4) Establish V' := Vigy| (again by means of propositions [{-§ and [{.11)), the set of visitable
paths of |EL|. -

(5) Obtain |EX+| from the set of maximal cliques C' of V' such that C' is finite-stable and
saturated.

Proof. Propositions 4.8 [Z.1T] (.15 and .16l allow for computing the incarnation of the dual
of a set of designs. Hence the incarnation of the behaviour generated by E is established by
using twice this process (proposition [5.8]). ]

Remark 5.18. Our construction freely captures the part of incarnation corresponding to
a “daimon closure”: Vg is already closed under daimon as Vg is positive-prefix closed.

6. CONCLUSION

Incarnation is an original concept introduced in Ludics by Girard. Indeed the denotation
of a formula is a behaviour, a set of designs. The incarnation of a behaviour is the subset
of designs that are fully used by interaction. In this paper, we addressed a more general
question: is it possible to compute the incarnation of the behaviour generated by a set E of
designs of the same base, without necessarily computing explicitly this behaviour? What
we could rephrase by saying that we want to isolate, among the information contained in
the designs of E, elementary components that it would have been enough to reorganize
to calculate this incarnation. Our characterization of what is a “visitable path in a set of
designs” is a key ingredient for that purpose (propositions[d.8and [£.11]). From this result, we
were able to characterize designs in the incarnation of the orthogonal E+ as maximal cliques
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of visitable paths such that their dual are finite-stable and saturated (propositions [5.15]
and 5.16]). We deduced then the incarnation as a twofold process (proposition [5.17T).

In fact, the notion of incarnation suggests implicitly and indirectly the hope of finding

a kind of “basis” (as defined in vector spaces): the incarnation of a behaviour contains
enough information to find all its elements, it also avoids some redundancy since it contains
only the minimal designs with respect to inclusion. Can we go further? A first step is easy
to cross: we could consider a concept a little “finer” than that of incarnation by taking only
designs minimal with respect to the relation < recalled in section [f] and that serves for the
separation theorem. In fact the set {® € Et+;Ve€ € ELL if € < ® then ¢ = D} is a subset
of |[E++|. And it suffices to take its closure by daimon to find the usual incarnation.
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