
Logical Methods in Computer Science
Vol. 11(1:7)2015, pp. 1–50
www.lmcs-online.org

Submitted Oct. 26, 2011
Published Mar. 13, 2015

SIMULATION IN THE CALL-BY-NEED LAMBDA-CALCULUS WITH

LETREC, CASE, CONSTRUCTORS, AND SEQ ∗

MANFRED SCHMIDT-SCHAUSS a, DAVID SABEL b, AND ELENA MACHKASOVA c

a,b Dept. Informatik und Mathematik, Inst. Informatik, J.W. Goethe-University, PoBox 11 19 32,
D-60054 Frankfurt, Germany
e-mail address: {schauss,sabel}@ki.informatik.uni-frankfurt.de

c Division of Science and Mathematics, University of Minnesota, Morris, MN 56267-2134, U.S.A
e-mail address: elenam@morris.umn.edu

Abstract. This paper shows equivalence of several versions of applicative similarity and
contextual approximation, and hence also of applicative bisimilarity and contextual equiv-
alence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data
constructors, case-expressions and Haskell’s seq-operator. LR models an untyped version
of the core language of Haskell. The use of bisimilarities simplifies equivalence proofs in
calculi and opens a way for more convenient correctness proofs for program transforma-
tions.

The proof is by a fully abstract and surjective transfer into a call-by-name calculus,
which is an extension of Abramsky’s lazy lambda calculus. In the latter calculus equiva-
lence of our similarities and contextual approximation can be shown by Howe’s method.
Similarity is transferred back to LR on the basis of an inductively defined similarity.

The translation from the call-by-need letrec calculus into the extended call-by-name
lambda calculus is the composition of two translations. The first translation replaces the
call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting
infinite trees which emerge by unfolding the letrec expressions. The second translation
encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown
syntactically by comparing reductions of both calculi.

A further result of this paper is an isomorphism between the mentioned calculi, which
is also an identity on letrec-free expressions.

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program constructs / Pro-
gram semantics; Logic; [Software and its engineering]: Software notations and tools—Formal language
definitions—Semantics.

Key words and phrases: semantics, contextual equivalence, bisimulation, lambda calculus, call-by-need,
Haskell.
∗ This paper is an extended version of [SSSM10] for more expressive calculi, and also of [SS07] w.r.t. infinite

trees, with fully worked out proofs.
a The first author is supported by the DFG under grant SCHM 986/9-1.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:7)2015

c© M. Schmidt-Schauß, D. Sabel, and E. Machkasova
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

1. Introduction

Motivation. Non-strict functional programming languages, such as the core-language of
Haskell [Pey03], can be modeled using extended call-by-need lambda calculi.

The operational semantics of such a programming language defines how programs are
evaluated and how the value of a program is obtained. Based on the operational semantics,
the notion of contextual equivalence (see e.g. [Mor68, Plo75]) is a natural notion of program
equivalence which follows Leibniz’s law to identify the indiscernibles, that is two programs
are equal iff their observable (termination) behavior is indistinguishable even if the pro-
grams are used as a subprogram of any other program (i.e. if the programs are plugged into
any arbitrary context). For pure functional programs it suffices to observe whether or not
the evaluation of a program terminates with a value (i.e. whether the program converges).
Contextual equivalence has several advantages: Any reasonable notion of program equiv-
alence should be a congruence which distinguishes obvious different values, e.g. different
constants are distinguished, and functions (abstractions) are distinguished from constants.
Contextual equivalence satisfies these requirements and is usually the coarsest of such con-
gruences. Another (general) advantage is that once expressions, contexts, an evaluation,
and a set of values are defined in a calculus, its definition of contextual equivalence can be
derived, and thus this approach can be used for a broad class of program calculi.

On the other hand, due to the quantification over all program contexts, verifying equiv-
alence of two programs w.r.t. contextual equivalence is often a difficult task. Nevertheless
such proofs are required to ensure the correctness of program transformations where the
correctness notion means that contextual equivalence is preserved by the transformation.
Correctness of program transformations is indispensable for the correctness of compilers,
but program transformations also play an important role in several other fields, e.g. in
code refactoring to improve the design of programs, or in software verification to simplify
expressions and thus to provide proofs or tests.

Bisimulation is another notion of program equivalence which was first invented in the
field of process calculi (e.g. [Mil80, Mil99, SW01]), but has also been applied to functional
programming and several extended lambda calculi (e.g. [How89, Abr90, How96]). Finding
adequate notions of bisimilarity is still an active research topic (see e.g. [KW06, SKS11]).
Briefly explained, bisimilarity equates two programs s1, s2 if all experiments passed for s1
are also passed by s2 and vice versa. For applicative similarity (and also bisimilarity) the
experiments are evaluation and then recursively testing the obtained values: Abstractions
are applied to all possible arguments, data objects are decomposed and the components are
tested recursively. Applicative similarity is usually defined co-inductively, i.e. as a greatest
fixpoint of an operator. Applicative similarity allows convenient and automatable proofs of
correctness of program transformations, e.g. in mechanizing proofs [DBG97].

Abramsky and Ong showed that applicative bisimilarity is the same as contextual equiv-
alence in a specific simple lazy lambda calculus [Abr90, AO93], and Howe [How89, How96]
proved that in classes of lambda-calculi applicative bisimulation is the same as contextual
equivalence. This leads to the expectation that some form of applicative bisimilarity may
be used for calculi with Haskell’s cyclic letrec. However, Howe’s proof technique appears
to be not adaptable to lambda calculi with cyclic let, since there are several deviations
from the requirements for the applicability of Howe’s framework. (i) Howe’s technique is
for call-by-name calculi and it is not obvious how to adapt it to call-by-need evaluation. (ii)
Howe’s technique requires that the values (results of reduction) are recognizable by their

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 3

top operator. This does not apply to calculi with letrec, since letrec-expressions may be
values as well as non-values. (iii) Call-by-need calculi with letrec usually require reduction
rules to shift and join letrec-bindings. These modifications of the syntactic structure of
expressions do not fit well into the proof structure of Howe’s method.

Nevertheless, Howe’s method is also applicable to calculi with non-recursive let even in
the presence of nondeterminism [MSS10], where for the nondeterministic case applicative
bisimilarity is only sound (but not complete) w.r.t. contextual equivalence. However, in
the case of (cyclic) letrec and nondeterminism applicative bisimilarity is unsound w.r.t.
contextual equivalence [SSSM11]. This raises a question: which call-by-need calculi with
letrec permit applicative bisimilarity as a tool for proving contextual equality?

Our Contribution. In [SSSM10] we have already shown that for the minimal extension
of Abramsky’s lazy lambda calculus with letrec which implements sharing and explicit re-
cursion, the equivalence of contextual equivalence and applicative bisimilarity indeed holds.
However, the full (untyped) core language of Haskell has data constructors, case-expressions
and the seq-operator for strict evaluation. Moreover, in [SSMS13] it is shown that the ex-
tension of Abramsky’s lazy lambda calculus with case, constructors, and seq is not con-
servative, i.e. it does not preserve contextual equivalence of expressions. Thus our results
obtained in [SSSM10] for the lazy lambda calculus extended by letrec only are not transfer-
able to the language extended by case, constructors, and seq. For this reason we provide
a new proof for the untyped core language of Haskell.

As a model of Haskell’s core language we use the call-by-need lambda calculus LLR

which was introduced and motivated in [SSSS08]. The calculus LLR extends the lazy lambda
calculus with letrec-expressions, data constructors, case-expressions for deconstructing the
data, and Haskell’s seq-operator for strict evaluation.

We define the operational semantics of LLR in terms of a small-step reduction, which
we call normal order reduction. As it is usual for lazy functional programming languages,
evaluation of LLR-expressions successfully halts if a weak head normal form is obtained,
i.e. normal order reduction does not reduce inside the body of abstractions nor inside
the arguments of constructor applications. The LLR calculus has been studied in detail in
[SSSS08] and correctness of several important program transformations has been established
for it.

Our main result in this paper is that several variants of applicative bisimilarities are
sound and complete for contextual equivalence in LLR, i.e. coincide with contextual equiv-
alence. Like context lemmas, an applicative bisimilarity can be used as a proof tool for
showing contextual equivalence of expressions and for proving correctness of program trans-
formations in the calculus LLR. Since we have completeness of our applicative bisimilarities
in addition to soundness, our results can also be used to disprove contextual equivalence of
expressions in LLR. Additionally, our result shows that the untyped applicative bisimilarity
is sound for a polymorphic variant of LLR, and hence for the typed core language of Haskell.

Having the proof tool of applicative bisimilarity in LLR is also very helpful for more
complex calculi if their pure core can be conservatively embedded in the full calculus. An
example is our work on Concurrent Haskell [SSS11, SSS12], where our calculus CHF that
models Concurrent Haskell has top-level processes with embedded lazy functional evaluation.
We have shown in the calculus CHF that Haskell’s deterministic core language can be
conservatively embedded in the calculus CHF.

4 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

LLR

Ltree

Lname Llcc
W N

N ◦W

Figure 1: Overall structure. Solid lines are fully-abstract translations, which are also iso-
morphisms and identities on letrec-free expressions; dotted lines are convergence
preservation to/from the system Ltree of infinite trees.

We prove the equivalence between the applicative similarities and contextual equiva-
lence in LLR, by lifting the equivalence from a letrec-free call-by-name calculus Llcc . The
calculus Llcc minimally extends Abramsky’s lazy calculus by Haskell’s primitives. As shown
in [SSMS13], data constructors and seq are explicitly needed in Llcc . The structure of the
proof, with its intermediate steps, is shown in Figure 1. We prove the equivalence between
the applicative similarities and contextual equivalence in Llcc , by extending Howe’s method.
We bridge LLR and Llcc in two steps, using intermediate calculi Lname and Ltree . Lname is
the call-by-name variant of LLR, and Llcc is obtained from Lname by encoding letrec using
multi-fixpoint combinators. The calculi LLR and Lname are related to each other via their
infinite unfoldings, thus we introduce a calculus Ltree of infinite trees (similar infinitary
rewriting, see [KKSdV97, SS07]). Convergence of expressions in LLR and Lname is shown
to be equivalent to their translation as an infinite tree in the calculus Ltree (dotted lines
in the picture). We establish full abstractness of translation N and W between calculi
LLR, Lname , and Llcc with respect to contextual equivalence. Correctness of similarity is
transferred back from Llcc to LLR on the basis of an inductively defined similarity (for more
details see Fig. 7.2).

A consequence of our result is that the three calculi LLR, Lname , and Llcc are isomorphic,
modulo the equivalence (see Corollaries 6.17 and 5.33), and also that the embedding of the
calculus Llcc into the call-by-need calculus LLR is an isomorphism of the respective term
models.

Related Work. In [Gor99] Gordon shows that bisimilarity and contextual equivalence
coincide in an extended call-by-name PCF language. Gordon provides a bisimilarity in
terms of a labeled transition system. A similar result is obtained in [Pit97] for PCF extended
by product types and lazy lists where the proof uses Howe’s method ([How89, How96];
see also [MSS10, Pit11]), and where the operational semantics is a big-step one for an
extended PCF-language. The observation of convergence in the definition of contextual
equivalence is restricted to programs (and contexts) of ground type (i.e. of type integer or
Bool). Therefore Ω and λx.Ω are equal in the calculi considered by Gordon and Pitts. This
does not hold in our setting for two reasons: first, we observe termination for functions
and thus the empty context already distinguishes Ω and λx.Ω, and second, our languages
employ Haskell’s seq-operator which permits to test convergence of any expression and thus
the context seq [·] True distinguishes Ω and λx.Ω.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 5

[Jef94] presents an investigation into the semantics of a lambda-calculus that permits
cyclic graphs, where a fully abstract denotational semantics is described. However, the
calculus is different from our calculi in its expressiveness since it permits a parallel conver-
gence test, which is required for the full abstraction property of the denotational model.
Expressiveness of programming languages was investigated e.g. in [Fel91] and the usage
of syntactic methods was formulated as a research program there, with non-recursive let

as the paradigmatic example. Our isomorphism-theorem 7.7 shows that this approach is
extensible to a cyclic let.

Related work on calculi with recursive bindings includes the following foundational
papers. An early paper that proposes cyclic let-bindings (as graphs) is [AK94], where
reduction and confluence properties are discussed. [AFM+95, AF97] study equational the-
ory for call-by-need lambda calculus extended with non-recursive let, which is finer than
contextual equivalence, and in [MOW98] it is shown that call-by-name and call-by-need
evaluation induce the same observational equivalences for a call-by-need lambda calculus
with non-recursive let. Additionally, the extension of the corresponding calculi by recur-
sive let is discussed in [AFM+95, AF97], and further call-by-need lambda calculi with a
recursive let are presented in [AB97, AB02, NH09] where [NH09] study the equivalence
between a natural semantics and a reductions semantics. In [AB02] it is shown that there
exist infinite normal forms and that the calculus satisfies a form of confluence. All these
calculi correspond to our calculus LLR. A difference is that the let-shifting in the standard
reduction in the mentioned works is different from LLR. However, this difference is not sub-
stantial, since it does not influence the contextual semantics. A more substantial difference
is that LLR combines recursive let with data constructors, case-expressions and seq, which
none of the related works do.

In [MS99] a call-by-need calculus is analyzed which is closer to our calculus LLR, since
letrec, case, and constructors are present (but not seq). Another difference is that [MS99]
uses an abstract machine semantics as operational semantics, while their approach to pro-
gram equivalence is based on contextual equivalence, as is ours.

The operational semantics of call-by-need lambda calculi with letrec are investigated
in [Lau93] and [Ses97], where the former proposed a natural semantics, and proved it correct
and adequate with respect to a denotational semantics, and the latter derived an efficient
abstract machine from the natural semantics.

Investigations of the semantics of lazy functional programming languages including the
seq-operator can be found in [JV06, VJ07].

Outline. In Sect. 2 we introduce some common notions of program calculi, contextual
equivalence, similarity and also of translations between those calculi. In Sect. 3 we introduce
the extension Llcc of Abramsky’s lazy lambda calculus with case, constructors, and seq,
and two letrec-calculi LLR, Lname as further syntactic extensions. In Sect. 4 we show
that for so-called “convergence admissible” calculi an alternative inductive characterization
of similarity is possible. We then use Howe’s method in Llcc to show that contextual
approximation and a standard version of applicative similarity coincide. Proving that Llcc

is convergence admissible then implies that the alternative inductive characterization of
similarity can be used for Llcc . In Sect. 5 and 6 the translations W and N are introduced
and the full-abstraction results are obtained. In Sect. 7 we show soundness and completeness
of our variants of applicative similarity w.r.t. contextual equivalence in LLR. We conclude
in Sect. 8.

6 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

2. Common Notions and Notations for Calculi

Before we explain the specific calculi, some common notions are introduced. A calculus
definition consists of its syntax together with its operational semantics which defines the
evaluation of programs and the implied equivalence of expressions:

Definition 2.1. An untyped deterministic calculus D is a four-tuple (E,C,→,A), where E
are expressions (up to α-equivalence), C : E → E is a set of functions (which usually repre-
sents contexts), → is a small-step reduction relation (usually the normal-order reduction),
which is a partial function on expressions (i.e., deterministic), and A ⊂ E is a set of answers
of the calculus.

For C ∈ C and an expression s, the functional application is denoted as C[s]. For
contexts, this is the replacement of the hole of C by s. We also assume that the identity
function Id is contained in C with Id [s] = s for all expressions s, and that C is closed under
composition, i.e. C1, C2 ∈ C =⇒ C1 ◦ C2 ∈ C.

The transitive closure of → is denoted as
+
−→ and the transitive and reflexive closure

of → is denoted as
∗
−→. The notation

0∨1
−−→ means equality or one reduction, and

k
−→ means

k reductions. Given an expression s, a sequence s → s1 → . . . → sn is called a reduction
sequence; it is called an evaluation if sn is an answer, i.e. sn ∈ A; in this case we say s
converges and denote this as s↓Dsn or as s↓D if sn is not important. If there is no sn s.t.
s↓Dsn then s diverges, denoted as s⇑D. When dealing with multiple calculi, we often use

the calculus name to mark its expressions and relations, e.g.
D
−→ denotes a reduction relation

in D.

We will have to deal with several calculi and preorders. Throughout this paper we
will use the symbol 4 for co-inductively defined preorders (i.e. similarities), and ≤ for
(inductively defined or otherwise defined) contextual preorders. For the corresponding sym-
metrizations we use ≃ for 4 ∩ < and ∼ for ≤ ∩ ≥. All the symbols are always indexed by
the corresponding calculus and sometimes more restrictions like specific sets of contexts are
attached to the indices of the symbols.

Contextual approximation and equivalence can be defined in a general way:

Definition 2.2 (Contextual Approximation and Equivalence, ≤D and ∼D). Let D =
(E,C,→,A) be a calculus and s1, s2 be D-expressions. Contextual approximation (or con-
textual preorder) ≤D and contextual equivalence ∼D are defined as:

s1 ≤D s2 iff ∀C ∈ C : C[s1]↓D ⇒ C[s2]↓D
s1 ∼D s2 iff s1 ≤D s2 ∧ s2 ≤D s1

A program transformation is a binary relation η ⊆ (E× E). A program transformation
η is called correct iff η ⊆ ∼D.

Note that ≤D is a precongruence, i.e., ≤D is reflexive, transitive, and s ≤D t implies
C[s] ≤D C[t] for all C ∈ C, and that ∼D is a congruence, i.e. a precongruence and an
equivalence relation.

We also define a general notion of similarity coinductively for untyped deterministic
calculi. We first define the operator FD,Q on binary relations of expressions:

Definition 2.3. Let D = (E,C,→,A) be an untyped deterministic calculus and let Q ⊆ C

be a set of functions on expressions (i.e. ∀Q ∈ Q : Q : E → E). Then the Q-experiment

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 7

operator FD,Q : 2(E×E) → 2(E×E) is defined as follows for η ⊆ E× E:

s1 FD,Q(η) s2 iff s1↓Dv1 =⇒ ∃v2. (s2↓v2 ∧ ∀Q ∈ Q : Q(v1) η Q(v2))

Lemma 2.4. The operator FD,Q is monotonous w.r.t. set inclusion, i.e. for all binary
relations η1, η2 on expressions η1 ⊆ η2 =⇒ FD,Q(η1) ⊆ FD,Q(η2).

Proof. Let η1 ⊆ η2 and s1 FD,Q(η1) s2. From the assumption s1 FD,Q(η1) s2 the implication
s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀Q ∈ Q : Q(v1) η1 Q(v2)) follows. From η1 ⊆ η2 the implication
s1↓v1 =⇒ (s2↓Dv2 ∧ ∀Q ∈ Q : Q(v1) η2 Q(v2)) follows. Thus, s1 FQ(η2) s2.

Since FD,Q is monotonous, its greatest fixpoint exists:

Definition 2.5 (Q-Similarity, 4D,Q). The behavioral preorder 4D,Q, called Q-similarity,
is defined as the greatest fixed point of FD,Q.

We also provide an inductive definition of behavioral equivalence, which is defined as a
contextual preorder where the contexts are restricted to the set Q (and the empty context).

Definition 2.6. Let D = (E,C,→,A) be an untyped deterministic calculus, and Q ⊆ C.
Then the relation ≤D,Q is defined as follows:

s1 ≤D,Q s2 iff ∀n ≥ 0 : ∀Qi ∈ Q : Q1(Q2(. . . (Qn(s1))))↓D =⇒ Q1(Q2(. . . (Qn(s2))))↓D

Note that contextual approximation is a special case of this definition, i.e. ≤D = ≤D,C.
Later in Section 4.1 we will provide a sufficient criterion on untyped deterministic calculi

that ensures that 4D,Q and ≤D,Q coincide.
We are interested in translations between calculi that are faithful w.r.t. the correspond-

ing contextual preorders.

Definition 2.7 ([SSNSS08, SSNSS09]). For i = 1, 2 let (Ei,Ci,→i,Ai) be untyped de-
terministic calculi. A translation τ : (E1,C1,→1,A1) → (E2,C2,→2,A2) is a mapping
τE : E1 → E2 and a mapping τC : C1 → C2 such that τC(Id1) = Id2 . The following
properties of translations are defined:

• τ is compositional iff τ(C[s]) = τ(C)[τ(s)] for all C, s.
• τ is convergence equivalent iff s↓1 ⇐⇒ τ(s)↓2 for all s.
• τ is adequate iff for all s, t ∈ E1: τ(s) ≤2 τ(t) =⇒ s ≤1 t.
• τ is fully abstract iff for all s, t ∈ E1: s ≤1 t ⇐⇒ τ(s) ≤2 τ(t).
• τ is an isomorphism iff it is fully abstract and a bijection on the quotients

τ/∼ : E1/∼ → E2/∼.

Note that isomorphism means an order-isomorphism between the term-models, where
the orders are ≤1 /∼ and ≤2 /∼ (which are the relations in the quotient).

Proposition 2.8 ([SSNSS08, SSNSS09]). Let (Ei,Ci,→i,A1) for i = 1, 2 be untyped deter-
ministic calculi. If a translation τ : (E1,C1,→1,A1) → (E2,C2,→2,A2) is compositional
and convergence equivalent, then it is also adequate.

Proof. Let s, t ∈ E1 with τ(s) ≤2 τ(t) and let C[s]↓1 for some C ∈ C. It is sufficient to show
that this implies C[t]↓1: Convergence equivalence shows that τ(C[s])↓2. Compositionality
implies τ(C)[τ(s)]↓2, and then τ(s) ≤2 τ(t) implies τ(C)[τ(t)]↓2. Compositionality applied
once more implies τ(C[t])↓2, and then convergence equivalence finally implies C[t]↓1.

8 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

3. Three Calculi

In this section we introduce the calculi LLR, Lname , and Llcc . LLR is a call-by-need calculus
with recursive let, data constructors, case-expressions, and the seq-operator. The calculus
Lname has the same syntactic constructs as LLR, but uses a call-by-name, rather than a call-
by-need, evaluation. The calculus Llcc does not have letrec, and also uses a call-by-name
evaluation.

For all three calculi we assume that there is a (common) set of data constructors c
which is partitioned into types, such that every constructor c belongs to exactly one type.
We assume that for every type T the set of its corresponding data constructors can be
enumerated as cT,1, . . . , cT,|T | where |T | is the number of data constructors of type T . We
also assume that every constructor has a fixed arity denoted as ar(c) which is a non-negative
integer. We assume that there is a type Bool among the types, with the data constructors
False and True both of arity 0. We require that data constructors occur only fully saturated,
i.e. a constructor c is only allowed to occur together with ar(c) arguments, written as
(c s1 . . . sar(c)) where si are expressions of the corresponding calculus1. We also write (c −→s)
as an abbreviation for the constructor application (c s1 . . . sar(c)). All three calculi allow
deconstruction via case-expressions:

caseT s of (cT,1 x1,1 . . . x1,ar(cT,1) → s1) . . . (cT,|T | x|T |,1 . . . x|T |,ar(cT,|T |) → s|T |)

where s, si are expressions and xi,j are variables of the corresponding calculus. Thus there is
a caseT -construct for every type T and we require that there is exactly one case-alternative
(cT,i xi,1 . . . xi,ar(cT,i) → si) for every constructor cT,i of type T . In a case-alternative

(cT,i xi,1 . . . xi,ar(cT,i) → si) we call cT,i xi,1 . . . xi,ar(cT,i) a pattern and si the right hand
side of the alternative. All variables in a case-pattern must be pairwise distinct. We will
sometimes abbreviate the case-alternatives by alts if the exact terms of the alternatives are
not of interest. As a further abbreviation we sometimes write if s1 then s2 else s3 for the
case-expression (caseBool s1 of (True → s2) (False → s3)).

We now define the syntax of expressions with letrec, i.e. the set EL of expressions
which are used in both of the calculi LLR and Lname .

Definition 3.1 (Expressions EL). The set EL of expressions is defined by the following
grammar, where x, xi are variables:

r, s, t, ri, si, ti ∈ EL ::= x | (s t) | (λx.s) | (letrec x1 = s1, . . . , xn = sn in t)

| (c s1 . . . sar(c)) | (seq s t) | (caseT s of alts)

We assign the names application, abstraction, seq-expression, or letrec-expression to the
expressions (s t), (λx.s), (seq s t), or (letrec x1 = s1, . . . , xn = sn in t), respectively.
A value v is defined as an abstraction or a constructor application. A group of letrec
bindings is sometimes abbreviated as Env . We use the notation {xg(i) = sh(i)}

n
i=m for the

chain xg(m) = sh(m), xg(m+1) = sh(m+1), . . . , xg(n) = sh(n) of bindings where g, h : N → N are
injective, e.g., {xi = si−1}

n
i=m means the bindings xm = sm−1, xm+1 = sm, . . . xn = sn−1.

We assume that variables xi in letrec-bindings are all distinct, that letrec-expressions
are identified up to reordering of binding-components, and that, for convenience, there is
at least one binding. letrec-bindings are recursive, i.e., the scope of xj in (letrec x1 =
s1, . . . , xn−1 = sn−1 in sn) are all expressions si with 1 ≤ i ≤ n.

1Partial applications of constructors of the form c s1 . . . sn (as e.g. available in Haskell) thus have to be
represented by λxn+1 . . . λxar(c).c s1 . . . sn xn+1 . . . xar(c).

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 9

CL denotes the set of all contexts for the expressions EL.

Free and bound variables in expressions and α-renamings are defined as usual. The set
of free variables in s is denoted as FV (s).

Convention 3.2 (Distinct Variable Convention). We use the distinct variable convention,
i.e., all bound variables in expressions are assumed to be distinct, and free variables are
distinct from bound variables. All reduction rules are assumed to implicitly α-rename bound
variables in the result if necessary.

In all three calculi we will use the symbol Ω for the specific (letrec-free) expression
(λz.(z z)) (λx.(x x)). In all of our calculi Ω is divergent and the least element of the
corresponding contextual preorder. This is proven in [SSSS08] for LLR and can easily be
proven for the other two calculi using standard methods, such as context lemmas. Note
that this property also follows from the Main Theorem 7.6 for all three calculi.

3.1. The Call-by-Need Calculus LLR. We begin with the call-by-need lambda calculus
LLR which is exactly the call-by-need calculus of [SSSS08]. It has a rather complex form
of reduction rules using variable chains. The justification is that this formulation permits
direct syntactic proofs of correctness w.r.t. contextual equivalence for a large class of trans-
formations. Several modifications of the reduction strategy, removing indirections, do not
change the semantics of the calculus, however, they appear to be not treatable by syntactic
proof methods using diagrams (see [SSSS08]). LLR-expressions are exactly the expressions
EL.

Definition 3.3. The reduction rules for the calculus and language LLR are defined in Fig. 2,
where the labels S, V are used for the exact definition of the normal-order reduction below.
Several reduction rules are denoted by their name prefix: the union of (llet-in) and (llet-e)
is called (llet). The union of (llet), (lapp), (lcase), and (lseq) is called (lll).

For the definition of the normal order reduction strategy of the calculus LLR we use
the labeling algorithm in Fig. 3 which detects the position where a reduction rule is applied
according to the normal order. It uses the following labels: S (subterm), T (top term), V
(visited), and W (visited, but not target). We use ∨ when a rule allows two options for a
label, e.g. sS∨T stands for s labeled with S or T .

A labeling rule l ❀ r is applicable to a (labeled) expression s if s matches l with the
labels given by l, where s may have more labels than l if not otherwise stated. The labeling
algorithm takes an expression s as its input and exhaustively applies the rules in Fig. 3
to sT , where no other subexpression in s is labeled. The label T is used to prevent the
labeling algorithm from descending into letrec-environments that are not at the top of the
expression. The labels V and W mark the visited bindings of a chain of bindings, where
W is used for variable-to-variable bindings. The labeling algorithm either terminates with
fail or with success, where in general the direct superterm of the S-marked subexpression
indicates a potential normal-order redex. The use of such a labeling algorithm corresponds
to the search of a redex in term graphs where it is usually called unwinding.

Definition 3.4 (Normal Order Reduction of LLR). Let s be an expression. Then a single

normal order reduction step
LR
−−→ is defined as follows: first the labeling algorithm in Fig. 3

is applied to s. If the labeling algorithm terminates successfully, then one of the rules in
Fig. 2 is applied, if possible, where the labels S, V must match the labels in the expression

10 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

(lbeta) C[((λx.s)S t)] → C[letrec x = t in s]

(cp-in) letrec x1 = (λx.s)S , {xi = xi−1}
m
i=2,Env in C[xVm]

→ letrec x1 = (λx.s), {xi = xi−1}
m
i=2,Env in C[(λx.s)]

(cp-e) letrec x1 = (λx.s)S , {xi = xi−1}
m
i=2,Env , y = C[xVm] in t

→ letrec x1 = (λx.s), {xi = xi−1}
m
i=2,Env , y = C[(λx.s)] in t

(lapp) C[((letrec Env in s)S t)] → C[(letrec Env in (s t))]

(lcase) C[(caseT (letrec Env in s)S of alts)]
→ C[(letrec Env in (caseT s of alts))]

(lseq) C[(seq (letrec Env in s)S t)] → C[(letrec Env in (seq s t))]

(llet-in) letrec Env1 in (letrec Env2 in s)S → letrec Env1,Env2 in s

(llet-e) letrec Env1, x = (letrec Env2 in s)S in t → letrec Env1,Env2, x = s in t

(seq-c) C[(seq vS s)] → C[s] if v is a value

(seq-in) (letrec x1 = vS , {xi = xi−1}
m
i=2,Env in C[(seq xVm s)])

→ (letrec x1 = v, {xi = xi−1}
m
i=2,Env in C[s])

if v is a constructor application

(seq-e) (letrec x1 = vS , {xi = xi−1}
m
i=2,Env , y = C[(seq xVm s)] in t)

→ (letrec x1 = v, {xi = xi−1}
m
i=2,Env , y = C[s] in t)

if v is a constructor application

(case-c) C[(caseT (ci
−→s)Sof . . . ((ci

−→y) → ti) . . .)] → C[(letrec {yi = si}
ar(ci)
i=1 in ti)]

if ar(ci) ≥ 1
(case-c) C[(caseT cSi of . . . (ci → ti) . . .)] → C[ti] if ar(ci) = 0

(case-in) letrec x1 = (ci
−→s)S , {xi = xi−1}

m
i=2,Env

in C[caseT xVm of . . . ((ci
−→z) → t) . . .]

→ letrec x1 = (ci
−→y), {yi = si}

n
i=1, {xi = xi−1}

m
i=2,Env

in C[(letrec {zi = yi}
ar(ci)
i=1 in t)] if ar(ci) ≥ 1 and where yi are fresh

(case-in) letrec x1 = cSi , {xi = xi−1}
m
i=2,Env in C[caseT xVm . . . (ci → t) . . .]

→ letrec x1 = ci, {xi = xi−1}
m
i=2,Env in C[t] if ar(ci) = 0

(case-e) letrec x1 = (ci
−→s)S , {xi = xi−1}

m
i=2,

u = C[caseT xVm of . . . ((ci
−→z) → t) . . .],Env

in r

→ letrec x1 = (ci
−→y), {yi = si}

ar(ci)
i=1 , {xi = xi−1}

m
i=2,

u = C[(letrec {zi = yi}
ar(ci)
i=1 in t)],Env

in r
if ar(ci) ≥ 1 and where yi are fresh

(case-e) letrec x1 = cSi , {xi = xi−1}
m
i=2, u = C[caseT xVm . . . (ci → t) . . .],Env in r

→ letrec x1 = ci, {xi = xi−1}
m
i=2 . . . , u = C[t],Env in r if ar(ci) = 0

Figure 2: Reduction rules of LLR

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 11

(letrec Env in s)T ❀ (letrec Env in sS)V

(s t)S∨T ❀ (sS t)V

(seq s t)S∨T ❀ (seq sS t)V

(caseT s of alts)S∨T ❀ (caseT sS of alts)V

(letrec x = s,Env in C[xS]) ❀ (letrec x = sS ,Env in C[xV])
(letrec x = sV ∨W , y = C[xS],Env in t) ❀ fail
(letrec x = C[xS],Env in s) ❀ fail
(letrec x = s, y = C[xS],Env in t) ❀ (letrec x = sS , y = C[xV],Env in t)

if C[x] 6= x
(letrec x = s, y = xS ,Env in t) ❀ (letrec x = sS , y = xW ,Env in t)

Figure 3: Labeling algorithm for LLR

s (again s may have more labels). The normal order redex is defined as the left-hand side
of the applied reduction rule. The notation for a normal-order reduction that applies the

rule a is
LR,a
−−−→, e.g.

LR,lapp
−−−−−→ applies the rule (lapp).

The normal order reduction of LLR implements a call-by-need reduction with sharing
which avoids substitution of arbitrary expressions. We describe the rules: The rule (lbeta)
is a sharing variant of classical β-reduction, where the argument of an abstraction is shared
by a new letrec-binding instead of substituting the argument in the body of an abstraction.
The rules (cp-in) and (cp-e) allow to copy abstractions into needed positions. The rules
(lapp), (lcase), and (lseq) allow moving letrec-expressions to the top of the term if they
are inside a reduction position of an application, a case-expression, or a seq-expression. To
flatten nested letrec-expressions, the rules (llet-in) and (llet-e) are added to the reduction.
Evaluation of seq-expressions is performed by the rules (seq-c), (seq-in), and (seq-e), where
the first argument of seqmust be a value (rule seq-c) or it must be a variable which is bound
in the outer letrec-environment to a constructor application. Since normal order reduction
avoids copying constructor applications, the rules (seq-in) and (seq-e) are required. Cor-
respondingly, the evaluation of case-expressions requires several variants: there are again
three rules for the cases where the argument of case is already a constructor application
(rule (case-c)) or where the argument is a variable which is bound to a constructor applica-
tion (perhaps by several indirections in the letrec-environment) which are covered by the
rule (case-in) and (case-e). All three rules have two variants: one variant for the case when a
constant is scrutinized (and thus no arguments need to be shared by new letrec-bindings)
and another variant for the case when arguments are present (and thus the arity of the
scrutinized constructor is strictly greater than 0). For the latter case the arguments of the
constructor application are shared by new letrec-bindings, such that the newly created
variables can be used as references in the right hand side of the matching alternative.

Definition 3.5. A reduction context RLR is any context, such that its hole is labeled with
S or T by the LLR-labeling algorithm.

Of course, reduction contexts could also be defined recursively, as in [SSSS08, Definition
1.5], but such a definition is very cumbersome due to a large number of special cases. The
labeling algorithm provides a definition that, in our experience, is easier to work with.

12 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

(gc) C[letrec {xi = si}
n
i=1 in t] → C[t], if FV (t) ∩ {x1, . . . , xn} = ∅

(gc) C[letrec {xi = si}
n
i=1, {yi = ti}

m
i=1 in t] → C[letrec {yi = ti}

m
i=1 in t],

if (FV (t) ∪
⋃m

i=1 FV (ti)) ∩ {x1, . . . , xn} = ∅

(lwas)C[(s (letrec Env in t))] → C[letrec Env in (s t)]

(lwas)C[(c s1 . . . (letrec Env in si) . . . sn)] → C[letrec Env in (c s1 . . . si . . . sn)]

(lwas)C[(seq s (letrec Env in t))] → C[letrec Env in seq s t]

Figure 4: Transformations for garbage collection and letrec-shifting

By induction on the term structure one can easily verify that the normal order redex,
as well as the normal order reduction, is unique. A weak head normal form in LLR (LLR-
WHNF) is either an abstraction λx.s, a constructor application (c s1 . . . sar(ci)), or an
expression (letrec Env in v) where v is a constructor application or an abstraction, or
an expression of the form (letrec x1 = v, {xi = xi−1}

m
i=2,Env in xm), where v = (c −→s).

We distinguish abstraction-WHNF (AWHNF) and constructor WHNF (CWHNF) based on
whether the value v is an abstraction or a constructor application, respectively. The notions
of convergence, divergence and contextual approximation are as defined in Sect. 2. If there
is no normal order reduction originating at an expression s then s⇑LR. This, in particular,
means that expressions for which the labeling algorithm fails to find a redex, or for which
there is no matching constructor for a subexpression (that is a WHNF) in a case redex
position, or expressions with cyclic dependencies like letrec x = x in x, are diverging.

Example 3.6. We consider the expression s1 := letrec x = (y λu.u), y = λz.z in x.
The labeling algorithm applied to s1 yields (letrec x = (yV λu.u)V , y = (λz.z)S in xV)V .

The reduction rule that matches this labeling is the reduction rule (cp-e), i.e. s1
LR
−−→

(letrec x = ((λz′.z′) λu.u), y = (λz.z) in x) = s2. The labeling of s2 is (letrec x =

((λz′.z′)S λu.u)V , y = (λz.z) in xV)V , which makes the rule (lbeta) applicable, i.e. s2
LR
−−→

(letrec x = (letrec z′ = λu.u in z′), y = (λz.z) in x) = s3. The labeling of s3 is
(letrec x = (letrec z′ = λu.u in z′)S , y = (λz.z) in xV)V . Thus an (llet-e)-reduction is

applicable to s3, i.e. s3
LR
−−→ (letrec x = z′, z′ = λu.u, y = (λz.z) in x) = s4. Now s4 gets

labeled as (letrec x = z′W , z′ = (λu.u)S , y = (λz.z) in xV)V , and a (cp-in)-reduction is

applicable, i.e. s4
LR
−−→ (letrec x = z′, z′ = (λu.u), y = (λz.z) in (λu.u)) = s5. The labeling

algorithm applied to s5 yields (letrec x = z′, z′ = (λu.u), y = (λz.z) in (λu.u)S)V , but no
reduction is applicable to s5, since s5 is a WHNF.

Concluding, the calculus LLR is defined by the tuple (EL,CL,
LR
−−→,ALR) where ALR are

the LLR-WHNFs, where we equate alpha-equivalent expressions, contexts and answers.

In [SSSS08] correctness of several program transformations was shown:

Theorem 3.7 ([SSSS08, Theorems 2.4 and 2.9]). All reduction rules shown in Fig. 2 are
correct program transformations, even if they are used with an arbitrary context C in the
rules without requiring the labels. The transformations for garbage collection (gc) and for
shifting of letrec-expressions (lwas) shown in Fig. 4 are also correct program transforma-
tions.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 13

(letrec Env in s)X ❀ (letrec Env in sX) if X is S or T
(s t)S∨T ❀ (sS t)
(seq s t)S∨T ❀ (seq sS t)
(caseT s of alts)S∨T ❀ (caseT sS of alts)

Figure 5: Labeling algorithm for Lname

(beta) C[(λx.s)S t] → C[s[t/x]]

(gcp) C1[letrec Env , x = s in C2[x
S∨T]] → C1[letrec Env , x = s in C2[s]]

(lapp) C[((letrec Env in s)S t)] → C[(letrec Env in (s t))]

(lcase) C[(caseT (letrec Env in s)S of alts)]
→ C[(letrec Env in (caseT s of alts))]

(lseq) C[(seq (letrec Env in s)S t)] → C[(letrec Env in (seq s t))]

(seq-c) C[(seq vS s)] → C[s] if v is a value

(case) C[(caseT (c s1 . . . sar(c))
S of . . . ((c x1 . . . xar(c)) → t) . . .)]

→ C[t[s1/x1, . . . , sar(c)/xar(c)]]

Figure 6: Normal order reduction rules
name
−−−→ of Lname

3.2. The Call-by-Name Calculus Lname . Now we define a call-by-name calculus on EL-
expressions. The calculus Lname has EL as expressions, but the reduction rules are different
from LLR. The calculus Lname does not implement a sharing strategy but instead performs
the usual call-by-name beta-reduction and copies arbitrary expressions directly into needed
positions.

In Fig. 5 the rules of the labeling algorithm for Lname are given. The algorithm uses
the labels S and T . For an expression s the labeling starts with sT .

An Lname reduction context Rname is any context where the hole is labeled T or S by
the labeling algorithm, or more formally they can be defined as follows:

Definition 3.8. Reduction contexts Rname are contexts of the form L[A] where the context
classes A and L are defined by the following grammar, where s is any expression:

L ∈ L ::= [·] | letrec Env in L
A ∈ A ::= [·] | (A s) | (caseT A of alts) | (seq A s)

Normal order reduction
name
−−−→ of Lname is defined by the rules shown in Fig. 6 where

the labeling algorithm according to Fig. 5 must be applied first. Note that the rules (seq-c),
(lapp), (lcase), and (lseq) are identical to the rules for LLR (in Fig. 2), but the labeling
algorithm is different.

Unlike LLR, the normal order reduction of Lname allows substitution of arbitrary ex-
pressions in (beta), (case), and (gcp) rules. An additional simplification (compared to
LLR) is that nested letrec-expressions are not flattened by reduction (i.e. there is no
(llet)-reduction in Lname). As in LLR the normal order reduction of Lname has reduction

14 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

rules (lapp), (lcase), and (lseq) to move letrec-expressions out of an application, a seq-
expression, or a case-expression.

Note that
name
−−−→ is unique. An Lname -WHNF is defined as an expression either of the

form L[λx.s] or of the form L[(c s1 . . . sar(c))] where L is an L context. Let Aname be the

set of Lname -WHNFs, then the calculus Lname is defined by the tuple (EL,CL,
name
−−−→,Aname)

(modulo α-equivalence).

3.3. The Extended Lazy Lambda Calculus Llcc. In this subsection we give a short de-
scription of the lazy lambda calculus [Abr90] extended by data constructors, case-expressions
and seq-expressions, denoted with Llcc . Unlike the calculi Lname and LLR, this calculus
has no letrec-expressions. The set Eλ of Llcc-expressions is that of the usual (untyped)
lambda calculus extended by data constructors, case, and seq:

r, s, t, ri, si, ti ∈ Eλ ::= x | (s t) | (λx.s) | (c s1 . . . sar(c)) | (caseT s of alts) | (seq s t)

Contexts Cλ are Eλ-expressions where a subexpression is replaced by the hole [·]. The
set Alcc of answers (or also values) are the Llcc-abstractions and constructor applications.
Reduction contexts Rlcc are defined by the following grammar, where s is any Eλ-expression:

Rlcc ∈ Rlcc := [·] | (Rlcc s) | caseT Rlcc of alts | seq Rlcc s

An
lcc
−→-reduction is defined by the three rules shown in Fig. 7, and thus the calculus

Llcc is defined by the tuple (Eλ,Cλ,
lcc
−→,Alcc) (modulo α-equivalence).

(nbeta) Rlcc [((λx.s) t)]
lcc
−→ Rlcc [s[t/x]]

(ncase) Rlcc [(caseT (c s1 . . . sar(c)) of . . . ((c x1 . . . xar(c)) → t) . . .)]
lcc
−→ t[s1/x1, . . . , sar(c)/xar(c)]

(nseq) Rlcc [seq v s]
lcc
−→ Rlcc[s], if v is an abstraction or a constructor application

Figure 7: Normal order reduction
lcc
−→ of Llcc

4. Properties of Similarity and Equivalences in Llcc

An applicative bisimilarity for Llcc and other alternative definitions are presented in subsec-
tion 4.2. As a preparation, we first analyze similarity for deterministic calculi in general.

4.1. Characterizations of Similarity in Deterministic Calculi. In this section we
prove that for deterministic calculi (see Def. 2.1), the applicative similarity and its general-
ization to extended calculi, defined as the greatest fixpoint of an operator on relations, is
equivalent to the inductive definition using Kleene’s fixpoint theorem.

This implies that for deterministic calculi employing only beta-reduction, applicative
similarity can be equivalently defined as s 4 t, iff for all n ≥ 0 and closed expressions ri, i =
1, . . . , n, the implication (s r1 . . . rn)↓D =⇒ (t r1 . . . rn)↓D holds, provided the calculus is
convergence-admissible, which means that for all r: (s r)↓Dv ⇐⇒ ∃v′ : s↓Dv

′ ∧ (v′ r)↓Dv
(see Def. 4.5).

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 15

This approach has a straightforward extension to calculi with other types of reductions,
such as case- and seq-reductions. The calculi may also consist of a set of open expressions,
contexts, and answers, as well as a subcalculus consisting of closed expressions, closed
contexts and closed answers. We will use convergence-admissibility only for closed variants
of the calculi.

In the following we assume D = (E,C,→,A) to be an untyped deterministic calculus
and Q ⊆ C be a set of functions on expressions. Note that the relations 4D,Q and ≤D,Q

are defined in Definitions 2.5 and 2.6, respectively.

Lemma 4.1. For all expressions s1, s2 ∈ E the following holds: s1 4D,Q s2 if, and only if,
s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀Q ∈ Q : Q(v1) 4D,Q Q(v2)).

Proof. Since 4D,Q is a fixpoint of FD,Q, we have 4D,Q = FD,Q(4D,Q). This equation is
equivalent to the claim of the lemma.

Now we show that the operator FD,Q is lower-continuous, and thus we can apply
Kleene’s fixpoint theorem to derive an alternative characterization of 4D,Q.

For infinite chains of sets S1, S2 . . . , we define the greatest lower bound w.r.t. set-

inclusion ordering as glb(S1, S2, . . .) =
∞⋂

i=1
Si.

Proposition 4.2. FQ is lower-continuous w.r.t. countably infinite descending chains C =
η1 ⊇ η2 ⊇ . . ., i.e. glb(FQ(C)) = FQ(glb(C)) where FQ(C) is the infinite descending chain
FQ(η1) ⊇ FQ(η2) ⊇

Proof. “⊇”: Since glb(C) =
∞⋂

i=1
ηi, we have for all i: glb(C) ⊆ ηi. Applying monotonicity

of FQ yields FQ(glb(C)) ⊆ FQ(ηi) for all i. This implies FQ(glb(C)) ⊆
∞⋂

i=1
FQ(ηi), i.e.

FQ(glb(C)) ⊆ glb(FQ(C)).
“⊆”: Let (s1, s2) ∈ glb(FQ(C)), i.e. for all i: (s1, s2) ∈ FQ(ηi). Unfolding the definition

of FQ gives: ∀i : s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀Q ∈ Q : Q(v1) ηi Q(v2)). Now we can move
the universal quantifier for i inside the formula: s1↓Dv1 =⇒ (s2↓Dv2 ∧ ∀Q ∈ Q : ∀i:

Q(v1) ηi Q(v2)). This is equivalent to s1↓Dv1 =⇒ (s2↓Dv2 ∧∀Q ∈ Q : Q(v1)
(∞⋂

i=1
ηi
)
Q(v2))

or s1↓Dv1 =⇒ (s2↓Dv2∧∀Q ∈ Q : (Q(v1), Q(v2)) ∈ glb(C)) and thus (s1, s2) ∈ FQ(glb(C)).

Definition 4.3. Let 4D,Q,i for i ∈ N0 be defined as follows:

4D,Q,0 = E× E and 4D,Q,i = FD,Q(4D,Q,i−1)if i > 0

Theorem 4.4. 4D,Q =
∞⋂

i=1
4D,Q,i

Proof. The claim follows from Kleene’s fixpoint theorem, since FQ is monotonous and lower-
continuous, and since 4D,Q,i+1 ⊆ 4D,Q,i for all i ≥ 0.

This representation of 4D,Q allows inductive proofs to show similarity. Now we show
that Q-similarity is identical to ≤D,Q under moderate conditions, i.e. our characterization
result will only apply if the underlying calculus is convergence-admissible w.r.t. Q:

Definition 4.5. An untyped deterministic calculus (E,C,→,A) is convergence-admissible
w.r.t. Q if, and only if ∀Q ∈ Q, s ∈ E, v ∈ A : Q(s)↓Dv ⇐⇒ ∃v′ : s↓Dv

′ ∧Q(v′)↓Dv

16 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Convergence-admissibility can be seen as a restriction on choosing the set Q: In most
calculi (subsets of) reduction contexts satisfy the property for convergence-admissibility,
while including non-reduction contexts into Q usually breaks convergence-admissibility.

Lemma 4.6. Let (E,C,→,A) be convergence-admissible w.r.t. Q. Then the following holds:

• s1 ≤D,Q s2 =⇒ Q(s1) ≤D,Q Q(s2) for all Q ∈ Q
• s1 ≤D,Q s2, s1↓Dv1, and s2↓Dv2 =⇒ v1 ≤D,Q v2

Proof. The first part is easy to verify. For the second part it is important that D is deter-
ministic. Let s1 ≤D,Q s2, and s1↓Dv1, s2↓Dv2 hold. Assume that Q1(. . . (Qn(v1)))↓Dv

′
1 for

some n ≥ 0 where all Qi ∈ Q. Convergence-admissibility implies Q1(. . . ((Qn(s1))))↓Dv
′
1.

Now s1 ≤D,Q s2 implies Q1(. . . (Qn(s2)))↓Dv
′
2. Finally, convergence-admissibility (applied

multiple times) shows that s2↓Dv2 and Q1(. . . (Qn(v2)))↓Dv
′
2 holds.

We prove that 4D,Q respects functions Q ∈ Q provided the underlying deterministic
calculus is convergence-admissible w.r.t. Q:

Lemma 4.7. Let (E,C,→,A) be convergence-admissible w.r.t. Q. Then for all s1, s2 ∈ E :
s1 4D,Q s2 =⇒ Q(s1) 4D,Q Q(s2) for all Q ∈ Q

Proof. Let s1 4D,Q s2, Q0 ∈ Q, and Q0(s1)↓Dv1. By convergence admissibility s1↓Dv
′
1 holds

and Q0(v
′
1)↓Dv1. Since s1 4D,Q s2 this implies s2↓Dv

′
2 and for all Q ∈ Q : Q(v′1) 4D,Q Q(v′2).

Hence, from Q0(v
′
1)↓Dv1 we derive Q0(v

′
2)↓Dv2. Convergence admissibility now implies

Q0(s2)↓Dv2.
It remains to show for all Q ∈ Q: Q(v1) 4D,Q Q(v2): Since Q0(v

′
1)↓Dv1 and Q0(v

′
2)↓Dv2,

applying Lemma 4.1 to Q0(v
′
1) 4D,Q Q0(v

′
2) implies Q(v1) 4D,Q Q(v2) for all Q ∈ Q.

We now prove that ≤D,Q and Q-similarity coincide for convergence-admissible deter-
ministic calculi:

Theorem 4.8. Let (E,C,→,A) be convergence-admissible w.r.t. Q. Then ≤D,Q = 4D,Q.

Proof. “⊆”: Let s1 ≤D,Q s2. We use Theorem 4.4 and show s1 4D,Q,i s2 for all i. We use
induction on i. The base case (i = 0) obviously holds. Let i > 0 and let s1↓Dv1. Then
s1 ≤D,Q s2 implies s2↓Dv2. Thus, it is sufficient to show that Q(v1) 4D,Q,i−1 Q(v2) for all
Q ∈ Q: As induction hypothesis we use that s1 ≤D,Q s2 =⇒ s1 4D,Q,i−1 s2 holds. Using
Lemma 4.6 twice and s1 ≤D,Q s2, we have Q(v1) ≤D,Q Q(v2). The induction hypothesis
shows that Q(v1) 4D,Q,i−1 Q(v2). Now the definition of 4D,Q,i is satisfied, which shows
s1 4D,Q,i s2.

“⊇”: Let s1 4D,Q s2. By induction on the number n of Q-contexts we show ∀n,Qi ∈ Q :
Q1(. . . (Qn(s1)))↓D =⇒ Q1(. . . (Qn(s2)))↓D. The base case follows from s1 4D,Q s2. For
the induction step we use the following induction hypothesis: t1 4D,Q t2 =⇒ ∀j < n,Qi ∈
Q : Q1(. . . (Qj(t1)))↓D =⇒ Q1(. . . (Qj(t2)))↓D for all t1, t2. Let Q1(. . . (Qn(s1)))↓D. From
Lemma 4.7 we have r1 4D,Q r2, where ri = Qn(si). Now the induction hypothesis shows
that Q1(. . . (Qn−1(r1)))↓D =⇒ Q1(. . . (Qn−1(r2)))↓D and thus Q1(. . . (Qn(s2)))↓D.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 17

≤lcc

4o
lcc

4o
lcc,Qlcc

≤o
lcc,Qlcc

4cand

!

Thm 4.34

Thm 4.28

Thm 4.37

Thm 4.37

≤lcc contextual preorder in lcc

4o
lcc open extension of similarity in lcc

4cand co-inductively defined candidate rela-
tion for Howe’s technique

4o
lcc,Qlcc

open extension of Q-similarity in Llcc

with Q = Qlcc

≤o
lcc,Qlcc

open extension of contextual preorder in
Llcc restricted to contexts Qlcc

Figure 8: Structure of soundness and completeness proofs for similarities in Llcc. The =!=
indicates a required equality which can only be proved via Howe’s technique.

4.2. Applicative Simulation in Llcc. In this section we will show that applicative simi-
larity and contextual preorder coincide in Llcc .

Notation. In abuse of notation we use higher order abstract syntax as e.g. in [How89]
for the proof and write τ(..) for an expression with top operator τ , which may be all possible
term constructors, like case, application, a constructor, seq, or λ, and θ for an operator
that may be the head of a value, i.e. a constructor or λ.

Definition 4.9. For a relation η on closed Eλ-expressions η
o is the open extension on Llcc:

For (open) Eλ-expressions s1, s2, the relation s1 ηo s2 holds, if for all substitutions σ such
that σ(s1), σ(s2) are closed, the relation σ(s1) η σ(s2) holds. Conversely, for binary relations
µ on open expressions, (µ)c is the restriction to closed expressions.

We say a binary relation µ is operator-respecting, iff si µ ti for i = 1, . . . , n implies
τ(s1, . . . , sn) µ τ(t1, . . . , tn).

Note that τ and θ may also represent the binding λ using λ(x.s) as representing λx.s.
For consistency of terminology and treatment with that in other papers such as [How89],
we assume that removing the top constructor λx in relations is done after a renaming. For
example, λx.s µ λy.t is renamed before further treatment to λz.s[z/x] µ λz.t[z/y] for a fresh
variable z.

Plan of Subsection 4.2. We start by explaining the subgoals of the soundness and
completeness proofs for similarities in Llcc and its structure, illustrated in Fig. 8. The main
result we want to show is that contextual preorder ≤lcc and 4o

lcc,Qlcc
coincide, where 4o

lcc,Qlcc

is the open extension of 4lcc,Qlcc
, and 4lcc,Qlcc

is Q-similarity introduced in Definition 2.5
instantiated with the subcalculus of Llcc which consists of closed expressions, closed contexts,
and closed answers, and Qlcc is a specific set of small closed Llcc-contexts. Q-similarity does
not allow a direct proof of soundness and completeness for contextual equivalence using
Howe’s method [How89, How96], since it is not stated in terms of the syntactic form of
values derived by evaluation. We overcome this obstacle by defining another similarity 4lcc

in Llcc for which we will perform the proof of soundness and completeness w.r.t. contextual
preorder. Since the definition of 4lcc does not obviously imply that 4lcc is a precongruence,
a candidate relation 4cand is defined, which is trivially compatible with contexts, but needs
to be shown to be transitive. After proving 4cand= 4o

lcc, i.e. that 4
o
lcc is a precongruence,

soundness of 4o
lcc w.r.t. contextual preorder ≤lcc follows. Completeness can then also be

proven. In a second step we prove that 4o
lcc,Qlcc

is sound and complete for contextual
equivalence, i.e.≤lcc = 4o

lcc,Qlcc
. After showing that Llcc is convergence-admissible we are

18 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

also able to show that the inductive description ≤lcc,Qlcc
of Q-similarity coincides with

4lcc,Qlcc
.

Another obstacle is that the contextual preorder contains the irregularity λx.Ω ≤lcc

c s1 . . . sn for any constructor c. This requires an adapted definition of the similarity relation,
and a slightly modified proof route.

In the following let cBot be the set of Eλ-expressions s with the property that for all
Eλ-substitutions σ: if σ(s) is closed, then σ(s)⇑lcc . That λx.s ≤lcc (c s1 . . . sn) indeed holds
is shown in Proposition 4.32. Now we define an applicative similarity 4lcc in Llcc analogous
to [How89, How96], where this irregularity is taken into account.

Definition 4.10 (Similarity in Llcc). Let η be a binary relation on closed Eλ-expressions.
Let Flcc be the following operator on relations on closed Eλ-expressions:
s Flcc(η) t holds iff

• s↓lccλx.s
′ =⇒

(
t↓lccλx.t

′ and s′ ηo t′, or

t↓lcc(c t′1 . . . t
′
n) and s′ ∈ cBot

)

• s↓lcc(c s′1 . . . s
′
n) =⇒

(
t↓lcc(c t′1 . . . t

′
n) and the relation s′i η t′i holds for all i

)

Similarity 4lcc is defined as the greatest fixpoint of the operator Flcc . Bisimilarity ≃lcc

is defined as s ≃lcc t iff s 4lcc t ∧ t 4lcc s.

Note that the operator Flcc is monotone, hence the greatest fixpoint 4lcc exists.

4.2.1. Similarity and Contextual Preorder Coincide in Llcc. Although applying Howe’s proof
technique is standard, for the sake of completeness, and to demonstrate that the irregular-
ity λx.Ω ≤lcc (c s1 . . . sn) can also be treated, we will explicitly show in this section that
4o

lcc = ≤lcc using Howe’s method [How89, How96].

Lemma 4.11. For a relation η on closed expressions it holds ((η)o)c = η, and also s ηo t
implies σ(s) ηo σ(t) for any substitution σ. For a relation µ on open expressions, µ ⊆
((µ)c)o is equivalent to s µ t =⇒ σ(s) (µ)c σ(t) for all closing substitutions σ.

Proposition 4.12 (Co-Induction). The principle of co-induction for the greatest fixpoint
of Flcc shows that for every relation η on closed expressions with η ⊆ Flcc(η), we derive
η ⊆ 4lcc. This obviously also implies (η)o ⊆ (4lcc)

o.

The fixpoint property of 4lcc implies:

Lemma 4.13. For a closed value θ1(s1, . . . , sn), and a closed term t with θ1(s1, . . . , sn) 4lcc

t, we have t↓lcc θ2(t1, . . . , tn), and there are two cases:

(1) θ1 = θ2 are constructors or λ and si 4
o
lcc ti for all i.

(2) θ1(s1, . . . , sn) = λ(x.s) with s ∈ cBot and θ2 is a constructor.

Lemma 4.14. For two expressions s, t: s ∈ cBot implies s 4o
lcc t. Thus any two expressions

s, t ∈ cBot are bisimilar: s ≃o
lcc t.

Particular expressions in cBot are (case (λx.s) alts) and (c(s1, . . . , sn) a1 . . . am) for
m ≥ 1; also s ∈ cBot implies that (s t), (seq s t), (case s alts) and σ(s) are also in cBot .

Lemma 4.15. The relations 4lcc and 4o
lcc are reflexive and transitive.

Proof. Reflexivity follows by showing that η := 4lcc ∪ {(s, s) | s ∈ Eλ, s closed} satisfies
η ⊆ Flcc(η). Transitivity follows by showing that η := 4lcc ∪ (4lcc ◦ 4lcc) satisfies
η ⊆ Flcc(η) and then using the co-induction principle.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 19

The goal in the following is to show that 4lcc is a precongruence. This proof proceeds
by defining a precongruence candidate 4cand as a closure of 4lcc within contexts, which
obviously is operator-respecting, but transitivity needs to be shown. By proving that 4o

lcc

and 4cand coincide, on the one hand transitivity of 4cand follows (since 4lcc is transitive)
and on the other hand (and more importantly) it follows that 4o

lcc is operator-respecting
(since 4cand is operator-respecting) and thus a precongruence.

Definition 4.16. The precongruence candidate 4cand is a binary relation on open expres-
sions and is defined as the greatest fixpoint of the monotone operator Fcand on relations on
all expressions:

(1) x Fcand (η) s iff x 4o
lcc s.

(2) τ(s1, . . . , sn) Fcand (η) s iff there is some expression τ(s′1, . . . , s
′
n) 4

o
lcc s with si η s′i for

i = 1, . . . , n.

Lemma 4.17. If some relation η satisfies η ⊆ Fcand (η), then η ⊆ 4cand .

Since 4cand is a fixpoint of Fcand , we have:

Lemma 4.18.

(1) x 4cand s iff x 4o
lcc s.

(2) τ(s1, . . . , sn) 4cand s iff there is some expression τ(s′1, . . . , s
′
n) 4o

lcc s with si 4cand s′i
for i = 1, . . . , n.

Some technical facts about the precongruence candidate are now proved:

Lemma 4.19. The following properties hold:

(1) 4cand is reflexive.

(2) 4cand and (4cand)
c are operator-respecting.

(3) 4o
lcc ⊆ 4cand and 4lcc ⊆ (4cand)

c.

(4) 4cand ◦4o
lcc ⊆ 4cand .

(5) (s 4cand s′ ∧ t 4cand t′) =⇒ t[s/x] 4cand t′[s′/x].

(6) s 4cand t implies that σ(s) 4cand σ(t) for every substitution σ.

(7) 4cand ⊆ ((4cand)
c)o

Proof. Parts (1) – (3) can be shown by structural induction and using reflexivity of 4o
lcc.

Part (4) follows from the definition, Lemma 4.18, and transitivity of 4o
lcc.

For part (5) let η := 4cand ∪ {(r[s/x], r′[s′/x]) | r 4cand r′}. Using co-induction it suf-
fices to show that η ⊆ Fcand (η): In the case x 4cand r′, we obtain x 4o

lcc r′ from the defi-
nition, and s′ 4o

lcc r′[s′/x] and thus x[s/x] 4cand r′[s′/x]. In the case y 4cand r, we obtain
y 4o

lcc r′ from the definition, and y[s/x] = y 4o
lcc r′[s′/x] and thus y = y[s/x] 4cand r′[s′/x].

If r = τ(r1, . . . , rn), r 4cand r′ and r[s/x] η r′[s′/x], then there is some τ(r′1, . . . , r
′
n) 4

o
lcc r′

with ri 4cand r′i. W.l.o.g. bound variables have fresh names. We have ri[s/x] η r′i[s
′/x] and

τ(r′1, . . . , r
′
n)[s

′/x] 4o
lcc r′[s′/x]. Thus r[s/x] Fcand (η) r

′[s′/x].
Part (6) follows from item (5). Part (7) follows from item (6) and Lemma 4.11.

Lemma 4.20. The middle expression in the definition of 4cand can be chosen to be closed if
s, t are closed: Let s = τ(s1, . . . , sar(τ)), such that s 4cand t holds. Then there are operands
s′i, such that τ(s′1, . . . , s

′
ar(τ)) is closed, ∀i : si 4cand s′i and τ(s′1, . . . , s

′
ar(τ)) 4

o
lcc t.

20 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Proof. The definition of 4cand implies that there is an expression τ(s′′1, . . . , s
′′
ar(τ)) such that

si 4cand s′′i for all i and τ(s′′1, . . . , s
′′
ar(τ)) 4o

lcc t. Let σ be the substitution with σ(x) := rx
for all x ∈ FV (τ(s′′1 , . . . , s

′′
ar(τ))), where rx is any closed expression. Lemma 4.19 now shows

that si = σ(si) 4cand σ(s′′i) holds for all i. The relation σ(τ(s′′1 , . . . , s
′′
ar(τ))) 4o

lcc t holds,

since t is closed and due to the definition of an open extension. The requested expression
is τ(σ(s′′1), . . . , σ(s

′′
ar(τ))).

Since reduction
lcc
−→ is deterministic:

Lemma 4.21. If s
lcc
−→ s′, then s′ 4o

lcc s and s 4o
lcc s′.

Lemmas 4.21 and 4.19 imply that 4cand is right-stable w.r.t. reduction:

Lemma 4.22. If s 4cand t and t
lcc
−→ t′, then s 4cand t′.

We show that 4cand is left-stable w.r.t. reduction:

Lemma 4.23. Let s, t be closed expressions such that s = θ(s1, . . . , sn) is a value and
s 4cand t. Then there are two possibilities:

(1) s = λx.s1 and t↓lccc(t1, . . . , tn), where c is a constructor;

(2) there is some closed value t′ = θ(t1, . . . , tn) with t
lcc,∗
−−−→ t′ and for all i : si 4cand ti.

Proof. The definition of 4cand implies that there is a closed expression θ(t′1, . . . , t
′
n) with

si 4cand t′i for all i and θ(t′1, . . . , t
′
n) 4lcc t. Lemma 4.13 implies that t↓lcc , hence either

t
lcc,∗
−−−→ c(t′′1 , . . . , t

′′
n) or t

lcc,∗
−−−→ λx.t′′1 .

• First let θ = λ. The case t
lcc,∗
−−−→ c(t′′1 , . . . , t

′′
n) is possibility (1) of the lemma.

In the second case, t
lcc,∗
−−−→ λx.t′′1 , Lemma 4.22 implies λx.s1 4cand λx.t′′1 . Definition

of 4cand and Lemma 4.20 now show that there is some closed λx.t′′′1 with s1 4cand t′′′1
and λx.t′′′1 4lcc λx.t′′1. The latter relation implies t′′′1 4o

lcc t′′1, which shows s′1 4cand t′′1 by
Lemma 4.19 (4).

• If θ is a constructor, then there is a closed expression θ(t′1, . . . , t
′
n) with si 4cand t′i for

all i and θ(t′1, . . . , t
′
n) 4lcc t. The properties of 4lcc imply that t

lcc,∗
−−−→ θ(t′′1, . . . , t

′′
n) with

t′i 4lcc t′′i for all i. By definition of 4cand and Lemma 4.19 (4), we obtain si 4cand t′′i for
all i.

Proposition 4.24. Let s, t be closed expressions, s 4cand t and s
lcc
−→ s′ where s is the

redex. Then s′ 4cand t.

Proof. The relation s 4cand t implies that s = τ(s1, . . . , sn) and by Lemma 4.20 there is
some closed t′ = τ(t′1, . . . , t

′
n) with si 4cand t′i for all i and t′ 4o

lcc t.

• For the (nbeta)-reduction, s = (s1 s2), where s1 = (λx.s′1), s2 is a closed term, and
t′ = (t′1 t

′
2). The relation (λx.s′1) = s1 4cand t′1 implies that there exists a closed expression

λx.t′′1 4o
lcc t

′
1 with s′1 4cand t′′1.

◦ The first case is t′1
lcc,∗
−−−→ c(. . .) and t′′1 ∈ cBot . Lemma 4.19 implies λx.s′1 4cand λx.t′′1,

and again by Lemma 4.19, we derive s′1[s2/x] 4cand t′′1[s2/x], where t
′′
1 [s2/x] ∈ cBot . Then

t′′1[s2/x] 4
o
lcc t by Lemma 4.14, which implies s′1[s2/x] 4cand t. Since s

lcc
−→ s′1[s2/x], the

lemma is proven for this case.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 21

◦ The second case is t′1
lcc,∗
−−−→ λx.t′′′1 with t′′1 4o

lcc t′′′1 . We also obtain λx.t′′1 4o
lcc λx.t′′′1 , and

by the properties of 4o
lcc w.r.t. reduction, also t

′′
1[t

′
2/x] 4

o
lcc t

′′′
1 [t

′
2/x]. From t′

lcc,∗
−−−→ t′′′1 [t

′
2/x]

we obtain t′′′1 [t
′
2/x] 4lcc t. Lemma 4.19 and transitivity of 4lcc now show s′1[s2/x] 4cand

t′′1[t
′
2/x]. Hence s′1[s2/x] 4cand t, again using Lemma 4.19.

• Similar arguments as for the second case apply to the case-reduction.
• Suppose, the reduction is a (nseq)-reduction. Then s 4cand t and s = (seq s1 s2). Lemma
4.20 implies that there is some closed (seq t′1 t

′
2) 4

o
lcc t with si 4cand t′i. Since s1 is a value,

Lemma 4.23 shows that there is a reduction t′1
lcc,∗
−−−→ t′′1 , where t

′′
1 is a value. There are the

reductions s
lcc
−→ s2 and (seq t′1 t

′
2)

lcc,∗
−−−→ (seq t′′1 t′2)

lcc
−→ t′2. Since t

′
2 4

o
lcc (seq t′1 t

′
2) 4

o
lcc t,

and s2 4cand t′2, we obtain s2 4cand t.

Proposition 4.25. Let s, t be closed expressions, s 4cand t and s
lcc
−→ s′. Then s′ 4cand t.

Proof. We use induction on the length of the path to the redex. The base case is proven

in Proposition 4.24. Let R[s], t be closed, R[s] 4cand t and R[s]
lcc
−→ R[s′], where we

assume that the redex s is not at the top level and that R is an Llcc-reduction con-
text. The relation R[s] 4cand t implies that R[s] = τ(s1, . . . , sn) and that there is some

closed expression t′ with t′ = τ(t′1, . . . , t
′
n) 4o

lcc t with si 4cand t′i for all i. If sj
lcc
−→ s′j,

then by induction hypothesis s′j 4cand t′j . Since 4cand is operator-respecting, we also ob-

tain R[s′] = τ(s1, . . . , sj−1, s
′
j , sj+1, . . . , sn) 4cand τ(t′1, . . . , t

′
j−1, t

′
j, t

′
j+1, . . . , t

′
n), and from

τ(t′1, . . . , t
′
n) 4

o
lcc t we have R[s′] = τ(s1, . . . , sj−1, s

′
j, sj+1, . . . , sn) 4cand t.

Lemma 4.26. If λx.s, λx.t are closed, λx.s 4cand λx.t, and t ∈ cBot, then also s ∈ cBot.

Proof. For any closed r, we also have (λx.s) r 4cand (λx.t) r, since 4cand is operator-

respecting. From t ∈ cBot , we obtain that ((λx.t) r)⇑lcc. Now suppose that (λx.s) r
lcc,∗
−−−→ s′,

where s′ is a value. Lemma 4.25 implies that s′ 4cand (λx.t) r. Now Lemma 4.23 shows
that this is impossible. Hence s ∈ cBot .

Now we can prove an improvement of Lemma 4.23:

Lemma 4.27. Let s, t be closed expressions such that s = θ(s1, . . . , sn) is a value and
s 4cand t. Then there are two possibilities:

(1) s = λx.s1, t↓lccc(t1, . . . , tn) where c is a constructor, and s1 ∈ cBot.

(2) there is some closed value t′ = θ(t1, . . . , tn) with t
lcc,∗
−−−→ t′ and for all i : si 4cand ti.

Proof. This follows from Lemma 4.23 and Lemma 4.26.

Now we are ready to prove that the precongruence candidate and similarity coincide.

Theorem 4.28. (4cand)
c = 4lcc and 4cand = 4o

lcc.

Proof. Since 4lcc ⊆ (4cand)
c by Lemma 4.19, we have to show that (4cand)

c ⊆ 4lcc. There-
fore it is sufficient to show that (4cand)

c satisfies the fixpoint equation for 4lcc. We
show that (4cand)

c ⊆ Flcc((4cand)
c). Let s (4cand)

c t for closed terms s, t. We show
that s Flcc((4cand)

c) t: If s ⇑lcc , then s Flcc((4cand)
c) t holds by Definition 4.10. If

s↓lccθ(s1, . . . , sn), then θ(s1, . . . , sn) (4cand)
c t by Proposition 4.25.

Lemmas 4.25 and 4.27 show that there are two possibilities:

• t
lcc,∗
−−−→ c(t1, . . . , tn) for a constructor c, s↓lccλx.s1, and s1 ∈ cBot .

22 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

• t
lcc,∗
−−−→ θ(t1, . . . , tn) and for all i : si 4cand ti.

This implies s Flcc((4cand)
c) t. Thus the fixpoint property of (4cand)

c w.r.t. Flcc holds, and
hence (4cand)

c = 4lcc .

Now we prove the second part. The first part, (4cand)
c ⊆ 4lcc , implies ((4cand)

c)o ⊆
4o

lcc by monotonicity. Lemma 4.19 (7) implies 4cand ⊆ ((4cand)
c)o ⊆ 4o

lcc. The other
direction is proven in Lemma 4.19 (3).

Since 4o
lcc is reflexive and transitive (Lemma 4.15) and (4cand)

c is operator-respecting
(Lemma 4.19 (2)), this immediately implies:

Corollary 4.29. 4o
lcc is a precongruence on expressions Eλ. If σ is a substitution, then

s 4o
lcc t implies σ(s) 4o

lcc σ(t).

Lemma 4.30. 4o
lcc ⊆ ≤lcc.

Proof. Let s, t be expressions with s 4o
lcc t such that C[s]↓lcc. Let σ be a substitution that

replaces all free variables of C[s], C[t] by Ω. The properties of the call-by-name reduction
show that also σ(C[s])↓lcc . Since σ(C[s]) = σ(C)[σ(s)], σ(C[t]) = σ(C)[σ(t)] and since
σ(s) 4o

lcc σ(t), we obtain from the precongruence property of 4o
lcc that also σ(C[s]) 4lcc

σ(C[t]). Hence σ(C[t])↓lcc . This is equivalent to C[t]↓lcc, since free variables are replaced
by Ω, and thus they cannot overlap with redexes. Hence 4o

lcc ⊆ ≤lcc.

Corollary 4.31. s
lcc
−→ s′ implies s ∼lcc s′. Thus the reduction rules of the calculus Llcc

are correct w.r.t. ∼lcc in any context.

Proof. This follows from Lemmas 4.21 and 4.30.

Now we show a characterization for Eλ-expressions, which includes the previously men-
tioned irregularity of ≤lcc:

Proposition 4.32. Let s be a closed Llcc-expression. Then there are three cases: s ∼lcc Ω,
s ∼lcc λx.s′ for some s′, s ∼lcc (c s1 . . . sn) for some terms s1, . . . , sn and constructor c.

For two closed Llcc-expressions s, t with s ≤lcc t: Either s ∼lcc Ω, or s ∼lcc (c s1 . . . sn),
t ∼lcc (c t1 . . . tn) and si ≤lcc ti for all i for some terms s1, . . . , sn, t1, . . . , tn and constructor
c, or s ∼lcc λx.s′ and t ∼lcc λx.t′ for some expressions s′, t′ with s′ ≤o

lcc t′, or s ∼lcc λx.s′

and t ∼lcc (c t1 . . . tn) for some term s′ ∈ cBot, expressions t1, . . . , tn and constructor c.

Proof. We apply Lemma 4.30. Corollary 4.31 then shows that using reduction the classifi-
cation of closed expressions into the classes w.r.t. ∼lcc holds.

For two closed Llcc-expressions s, t with s 4lcc t: we obtain the classification in the
lemma but with 4lcc instead of ≤lcc. For the three cases s ≃lcc Ω, both s, t are equivalent
to constructor expressions, and both s, t are equivalent to abstractions, we obtain also that
s ≤lcc t. In the last case λx.s′ 4lcc (c s1 . . . sn), we also obtain from the 4lcc-definition, that
it is valid and from Lemma 4.30, that it implies λx.s′ ≤lcc (c s1 . . . sn). Other combinations
of constructor applications, abstractions and Ω cannot be in ≤lcc-relation:

• (c t1 . . . tn) 6≤lcc Ω and λx.s 6≤lcc Ω since the empty context distinguishes them.
• (c1 s1 . . . sn) 6≤lcc (c2 t1 . . . tm): Let C := caseT [·] (c1 x1 . . . xn → λy.y) alts where all al-
ternatives in alts have right hand side Ω. Then C[(c1 s1 . . . sn)]↓lcc but C[(c2 t1 . . . tm)]⇑lcc.

• (c s1 . . . sn) 6≤lcc (c t1 . . . tn) if si 6≤lcc ti: Let context D be the witness for si 6≤lcc ti. Then
C = caseT [·] (c x1 . . . xn → D[xi]) distinguishes (c s1 . . . sn) and (c t1 . . . tn)

• (c s1 . . . sn) 6≤lcc (λx.t): The context caseT [·] (c x1 . . . xn → λy.y) alts is a witness.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 23

• λx.s 6≤lcc λx.t if s 6≤lcc t: Let D be the witness for s 6≤lcc t. Then C = D[([·] x)]
distinguishes λx.s and λx.t.

• λx.s 6≤lcc (c t1 . . . tn) if s 6∈ cBot : Since s 6∈ cBot and FV (s) ⊆ {x}, there exists a closing
substitution σ = {x 7→ r} such that σ(s)↓lcc . For the context C = ([·] r) the expression
C[λx.s] converges while C[(c t1 . . . tn)] diverges.

Lemma 4.33. ≤lcc ⊆ 4o
lcc.

Proof. The relation ≤c
lcc satisfies the fixpoint condition, i.e. ≤

c
lcc ⊆ Flcc(≤

c
lcc), which follows

from Corollary 4.31 and Proposition 4.32.

Lemmas 4.30 and 4.33 immediately imply:

Theorem 4.34. 4o
lcc = ≤lcc.

4.2.2. Alternative Definitions of Bisimilarity in Llcc. We want to analyze the translations
between our calculi, and the inherent contextual equivalence. This will require to show that
several differently defined relations are all equal to contextual equivalence.

Using Theorem 4.8 we show that in Llcc , behavioral equivalence can also be proved
inductively:

Definition 4.35. The set Qlcc of contexts Q is assumed to consist of the following contexts:

(i) ([·] r) for all closed r,
(ii) for all types T , constructors c of T , and indices i:

(caseT [·] of . . . (c x1 . . . xar(c) → xi) . . .) where all right hand sides of other case-
alternatives are Ω,

(iii) for all types T and constructors c of T : (caseT [·] of . . . (c x1 . . . xar(c) → True) . . .)
where all right hand sides of other case-alternatives are Ω.

The relations 4lcc,Qlcc
, ≤lcc,Qlcc

are instantiations of Definitions 2.5 and Definition 2.6, re-
spectively, with the set Qlcc and the closed part of Llcc consisting of the subsets of all closed
Eλ-expressions, closed contexts Cλ, and closed answers Alcc .

Lemma 4.36. The calculus Llcc is convergence-admissible in the sense of Definition 4.5,
where the Q-contexts are defined as above.

Proof. Values in Llcc are Llcc-WHNFs. The contexts Q are reduction contexts in Llcc. Hence
every reduction of Q[s] will first evaluate s to v and then evaluate Q[v].

Theorem 4.37. 4lcc = 4lcc,Qlcc
= ≤lcc,Qlcc

and 4o
lcc= 4o

lcc,Qlcc
= ≤o

lcc,Qlcc

Proof. Theorem 4.8. shows 4lcc,Qlcc
= ≤lcc,Qlcc

since Llcc is convergence-admissible.

The first equation is proved by showing that the relations satisfy the fixpoint equations
of the other one in Definition 4.10 and 2.5, respectively.

• 4lcc ⊆ FQ(4lcc): Assume s 4lcc t for two closed s, t. If s↓lccv, then t↓lccw for values
v,w. Since reduction preserves ≃lcc , the fixpoint operator conditions are satisfied if v,w
are both abstractions or both constructor applications. If v = λx.s′ with s′ ∈ cBot and
w = c(t1, . . . , tn), Q(v) diverges for all Q, hence s FQ(4lcc) t.

• 4lcc,Qlcc
⊆ Flcc(4lcc,Qlcc

): Assume s 4lcc,Qlcc
t. Let s↓lccv. Then also t↓lccw for some value

w. In the cases that v,w are both abstractions or both constructor applications, when
using appropriate Q of kind (ii) or (iii), the Flcc-conditions are satisfied. If v = λx.s′ and
w = c(t1, . . . , tn), we have to show that s′ ∈ cBot : this can be done using all Q-contexts
of the form ([] r), since (w r)⇑lcc in any case.

24 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Definition 4.38. Let CE lcc be the following set of closed Eλ-expressions built from con-
structors, Ω, and closed abstractions. These can be constructed according to the grammar:

r ∈ CE lcc ::= Ω | λx .s | (c r1 . . . rar(c))

where λx.s is any closed Eλ-expression.
The set QCE is defined like the set Qlcc in Definition 4.35, but only expressions r from

CE lcc are taken into account in the contexts ([·] r) in (i).

We summarize several alternative definitions for contextual preorder and applicative
simulation for Llcc , where we also include further alternatives. (1) is contextual preorder,
(2) the applicative simulation, (3), (4) and (5) are similar to the usual call-by-value variants,
where (4) and (5) separate the closing part of contexts, where (5) can be seen as bridging
the gap between call-by-need and call-by-name. (7) is the Q-similarity, (8) is a further
improved inductive Q-simulation by restricting the set of test arguments for abstractions,
and (9) is the co-inductive version of (8).

Theorem 4.39. In Llcc, all the following relations on open Eλ-expressions are identical:

(1) ≤lcc.
(2) 4o

lcc.
(3) The relation ≤lcc,1 defined by s1 ≤lcc,1 s2 iff for all closing contexts C: C[s1]↓lcc =⇒

C[s2]↓lcc.
(4) The relation ≤lcc,2, defined as: s1 ≤lcc,2 s2 iff for all closed contexts C and all closing

substitutions σ: C[σ(s1)]↓lcc =⇒ C[σ(s2)]↓lcc.
(5) The relation ≤lcc,3, defined as: s1 ≤lcc,3 s2 iff for all multi-contexts M [·, . . . , ·] and all

substitutions σ: M [σ(s1), . . . , σ(s1)]↓lcc =⇒ M [σ(s2), . . . , σ(s2)]↓lcc.
(6) The relation ≤lcc,4, defined as: s1 ≤lcc,4 s2 iff for all contexts C[·] and all substitutions

σ: C[σ(s1)]↓lcc =⇒ C[σ(s2)]↓lcc.
(7) ≤o

lcc,Qlcc

(8) The relation ≤o
lcc,QCE

where ≤lcc,QCE
is defined as in Definition 2.6 instantiated by the

closed part of Llcc and by the set QCE in Definition 4.38.
(9) The relation 4o

lcc,QCE
is defined as in Definition 2.5 instantiated by the closed part of

Llcc and by set QCE in Definition 4.38.

Proof. • (1) ⇐⇒ (2) ⇐⇒ (7): This is Theorem 4.34 and Theorem 4.37
• (1) ⇐⇒ (3): The “⇒”-direction is obvious. For the other direction let s1 ≤lcc,1 s2
and let C be a context such that ∅ 6= FV (C[s1]) ∪ FV (C[s2]) = {x1, . . . , xn} and let

C[s1]↓lcc , i.e. C[s1]
lcc,∗
−−−→ v where v is an abstraction or a constructor application. Let

C ′ = (λx1, . . . , xn.C) Ω . . .Ω
︸ ︷︷ ︸

n-times

. Then C ′[si]
lcc,nbeta,∗
−−−−−−→ s′i = C[si][Ω/x1, . . . ,Ω/xn] for

i = 1, 2. It is easy to verify that the reduction for C[s1] can also be performed for

s′i, since no reduction in the sequence C[s1]
lcc,∗
−−−→ v can be of the form R[xi] with R

being a reduction context. Thus C ′[si]↓lcc . Since C ′[si] must be closed for i = 1, 2, the

precondition implies C ′[s2]↓lcc and also s′2↓lcc . W.l.o.g. let s′2
lcc,∗
−−−→ v′ where v′ is an

Llcc-WHNF. It is easy to verify that no term in this sequence can be of the form R[Ω],
where R is a reduction context, since otherwise the reduction would not terminate (since

R[Ω]
lcc,+
−−−→ R[Ω]). This implies that we can replace the Ω-expression by the free variables,

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 25

i.e. that C[s2]↓lcc . Note that this also shows by the previous items (and Corollary 4.31)
that (nbeta) is correct for ∼lcc .

• (1) ⇐⇒ (4): This follows from Corollary 4.31 since closing substitutions can be simulated
by a context with subsequent (nbeta)-reduction. This also implies that (nbeta) is correct
for ∼lcc,2 and by the previous item it also correct for ∼lcc,1 (where ∼lcci = ≤lcc,i ∩ ≥lcc,i).

• (6) ⇐⇒ (1) The direction “ =⇒ ” is trivial. For the other direction let s1 ≤lcc s2 and let
C be a context, σ be a substitution, such that C[σ(s1)]↓lcc . Let σ = {x1 → t1, . . . xn → tn}

and let C ′ = C[(λx1, . . . , xn.[·]) t1 . . . tn]. Then C ′[s1]
nbeta,n
−−−−→ C[σ(s1)]. Since (nbeta)-

reduction is correct for ∼lcc , we have C ′[s1]↓lcc . Applying s1 ≤lcc s2 yields C ′[s2]↓lcc.

Since C ′[s2]
nbeta,n
−−−−→ C[σ(s2)] and (nbeta) is correct for ∼lcc , we have C[σ(s2)]↓lcc .

• (5) ⇐⇒ (6): Obviously, s1 ≤lcc,3 s2 =⇒ s1 ≤lcc,4 s2. We show the other direction by
induction on n – the number of holes in M – that for all Eλ-expressions s1, s2: s1 ≤lcc,4 s2
implies M [σ(s1), . . . σ(s1)]↓lcc =⇒ M [σ(s2), . . . σ(s2)]↓lcc .

The base cases for n = 0, 1 are obvious. For the induction step assume that M has
n > 1 holes. Let M ′ = M [σ(s1), ·2, . . . , ·n] and M ′′ = M [σ(s2), ·2, . . . , ·n]. Then obvi-
ously M ′[σ(s1), . . . , σ(s1)] = M [σ(s1), . . . , σ(s1)] and thus M ′[σ(s1), . . . , σ(s1)]↓lcc . For
C = M [·1, σ(s1), . . . , σ(s1)] we have C[σ(s1)] = M ′[σ(s1), . . . , σ(s1)] and also C[σ(s2)] =
M ′′[σ(s1), . . . , σ(s1)]. Since C[σ(s1)]↓lcc , the relation s1 ≤lcc,4 s2 implies that C[σ(s2)]↓lcc
and hence M ′′[σ(s1), . . . , σ(s1)]↓lcc . Now, since the number of holes of M ′′ is strictly
smaller than n, the induction hypothesis show that M ′′[σ(s2), . . . , σ(s2)]↓lcc . Because of
M ′′[σ(s2), . . . , σ(s2)] = M [σ(s2), . . . , σ(s2)] we have M [σ(s2), . . . , σ(s2)]↓lcc .

• (7) ⇐⇒ (8): The direction (7) =⇒ (8) is trivial.
For the other direction we show that ≤o

lcc,QCE
⊆ ≤o

lcc,Qlcc
by showing that the inclusion

≤lcc,QCE
⊆ ≤lcc,Qlcc

holds. Let s1, s2 be closed expressions with s1 ≤lcc,QCE
s2 and let

Q1[. . . Qn[s1] . . .]↓lcc for Qi ∈ Qlcc . Let m be the number of normal-order-reductions
of Q1[. . . Qn[s1] . . .] to an Llcc-WHNF. Since the reduction rules are correct w.r.t. ∼lcc,
for every subexpression r of the contexts Qi, there is some r′ with r′ ≤lcc r, where
r′ ∈ QCE , which is derived from r by (top-down)-reduction, which may also be non-normal

order, i.e. r
lcc,∗
−−−→ rm+1 where rm+1 has reducible subexpressions (not in an abstraction)

only at depth at least m + 1. All those deep subexpressions are then replaced by Ω,
and this construction results in r′. By construction, r′ ≤lcc r. We do this for all the
contexts Qi, and obtain thus contexts Q′

i. The construction using the depth m shows
that (Q′

1[. . . [Q
′
n[s1]]])↓lcc , since the normal-order reduction does not use subexpressions

at depth greater than m in those r′. By assumption, this implies (Q′
1[. . . [Q

′
n[s2]]])↓lcc,

and since (Q′
1[. . . [Q

′
n[s2]]]) ≤lcc (Q′

1[. . . [Q
′
n[s2]]]), this also implies (Q1[. . . [Qn[s2]]]).

• (8) ⇐⇒ (9): This follows for the relations on closed expressions by Theorem 4.8, since
the deterministic calculus (see Def. 2.1) for Llcc with QCE as defined above is convergence-
admissible. It also holds for the extensions to open expressions, since the construction
for the open extension is identical for both relations.

Also the following can easily be derived from Theorem 4.39 and Corollary 4.31.

Proposition 4.40. For open Eλ-expressions s1, s2, where all free variables of s1, s2 are in
{x1, . . . , xn}: s1 ≤lcc s2 ⇐⇒ λx1, . . . xn.s1 ≤lcc λx1, . . . xn.s2

Proposition 4.41. Given any two closed Eλ-expressions s1, s2: s1 ≤lcc s2 iff the following
conditions hold:

26 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

• If s1↓lccλx.s
′
1, then either (i) s2↓lccλx.s

′
2, and for all (closed) r ∈ CE lcc: s1 r ≤lcc s2 r,

or (ii) s2↓lcc(c s′′1 . . . s
′′
n) and s′1 ∈ cBot.

• if s1↓lcc(c s′1 . . . s
′
n), then s2↓lcc(c s′′1 . . . s

′′
n), and for all i : s′i ≤lcc s′′i

Proof. The if-direction follows from the congruence property of ≤lcc and the correctness of
reductions. The only-if direction follows from Theorem 4.39.

This immediately implies

Proposition 4.42. Given any two closed Eλ-expressions s1, s2.

• If s1, s2 are abstractions, then s1 ≤lcc s2 iff for all closed r ∈ CE lcc: s1 r ≤lcc s2 r
• If s1 = (c t1 . . . tn) and s2 = (c′ t′1 . . . t

′
m) are constructor expressions, then s1 ≤lcc s2 iff

c = c′, n = m and for all i : ti ≤lcc t′i

We finally consider a more relaxed notion of similarity which allows to use known contextual
equivalences as intermediate steps when proving similarity of expressions:

Definition 4.43 (Similarity up to ∼lcc). Let 4lcc,∼ be the greatest fixpoint of the following
operator Flcc,∼ on closed Llcc-expressions:

We define an operator Flcc,∼ on binary relations η on closed Llcc-expressions:
s Flcc,∼(η) t iff the following holds:

(1) If s ∼lcc λx.s
′ then there are two possibilities: (i) if t ∼lcc (c t1 . . . tn) then s′ ∈ cBot , or

(ii) if t ∼lcc λx.t′ then for all closed r : ((λx.s′) r) η ((λx.t′) r);
(2) If s ∼lcc (c s1 . . . sn) then t ∼lcc (c t1 . . . tn) and si η ti for all i.

Obviously, we have s 4lcc,∼ t iff one of the three cases holds: (i) s ∼lcc λx.s′, t ∼lcc λx.t′,
and (λx.s′) r 4lcc,∼ (λx.t′) r for all closed r; (ii) s ∼lcc λx.s′, t ∼lcc (c t1 . . . tn), and
s′ ∈ cBot , or (iii) s ∼lcc (c s1 . . . sn), t ∼lcc (c t1 . . . tn), and si 4lcc,∼ ti for all i.

Proposition 4.44. 4lcc,∼ = 4lcc = ≤c
lcc, and 4o

lcc,∼ = 4o
lcc = ≤lcc.

Proof. We show the first equation via the fixpoint equations. (i) We prove that the relation
4lcc,∼ satisfies the fixpoint equation for 4lcc : Let s 4lcc,∼ t, where s, t are closed. If
s↓lcc(c s1 . . . sn), then also s ∼lcc (c s1 . . . sn) which clearly implies t↓lcc(c t1 . . . tn), and also
t ∼lcc (c t1 . . . tn). The relation 4lcc,∼ is a fixpoint of Flcc,∼(η), hence si 4lcc,∼ ti for all i.

If s↓lccλx.s
′ and t↓lccλx.t

′ then similar arguments show ((λx.s′) r) 4lcc,∼ ((λx.t′) r)
for all r. If s↓lccλx.s

′ and t↓lcc(c t1 . . . tn), then s ∼lcc λx.s′ and t ∼lcc (c t1 . . . tn). Again
the fixpoint property of 4lcc,∼ shows s′ ∈ cBot .

(ii) We prove that the relation 4lcc satisfies the fixpoint equation for Flcc,∼: Let s 4lcc t
for closed s, t. We know that this is the same as s ≤lcc t. If s ∼lcc (c s1 . . . sn), then clearly
s↓lcc(c s′1 . . . s

′
n) where (c s1 . . . sn) ∼lcc (c s′1 . . . s

′
n). Since in this case t ∼lcc (c t1 . . . tn)

and thus t↓lcc(c t′1 . . . t
′
n) where t ∼lcc (c t1 . . . tn) ∼lcc (c t′1 . . . t

′
n), and also si 4lcc,∼ ti for

all i holds, since reduction is correct. If s ∼lcc λx.s′ and s ∼lcc λx.t′ then s↓lccλx.s
′′ and

t↓lccλx.t
′′ and ((λx.s′) r) 4lcc,∼ ((λx.t′) r).

If s ∼lcc λx.s′ and s ∼lcc (c t1 . . . tn), then for s↓lccλx.s
′′, we have λx.s′ ∼lcc λx.s′′, and

since s ≤lcc t, the characterization of expressions in Proposition 4.32 shows s′, s′′ ∈ cBot .

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 27

5. The Translation W : LLR → Lname

The translation W : LLR → Lname is defined as the identity on expressions and contexts,
but the definitions of convergence predicates are different. In this section we prove that
contextual equivalence based on LLR-evaluation and contextual equivalence based on Lname -
evaluation are equivalent. We use infinite trees to connect both evaluation strategies. In
[SS07] a similar result was shown for a lambda calculus without seq, case, and constructors.

5.1. Calculus for Infinite Trees Ltree . We define infinite expressions which are intended
to be the letrec-unfolding of the EL-expressions with the extra condition that cyclic variable
chains lead to local nontermination represented by Bot. We then define the calculus Ltree

which has infinite expressions and performs reduction on infinite expressions.

Definition 5.1. Infinite expressions EI are defined like expressions EL without letrec-
expressions, adding a constant Bot, and interpreting the grammar co-inductively, i.e. the
grammar is as follows

S, T, Si, Ti ∈ EI ::= x | (S1 S2) | (λx.S) | Bot
| (c S1 . . . Sar(c)) | (seq S1 S2) | (caseT S of alts)

In order to distinguish in the following the usual expressions from the infinite ones, we
say tree or infinite expressions. As meta-symbols we use s, si, t, ti for finite expressions and
S, T, Si, Ti for infinite expressions. The constant Bot is without any reduction rule.

In the following definition of a mapping from finite expressions to their infinite images,
we sometimes use the explicit binary application operator @ for applications inside the
trees (i.e. an application in the tree is sometimes written as (@ S1 S2) instead of (S1 S2)),
since it is easier to explain, but use the common notation in other places. A position is
a finite sequence of positive integers, where the empty position is denoted as ε. We use
Dewey notation for positions, i.e. the position i.p is the sequence starting with i followed
by position p. For an infinite tree S and position p, the notation S|p means the subtree at
position p and p(S) denotes the head symbol of S|p.

This induces the representation of an infinite expression S as a (partial) function S
from positions to labels where application of the function S to a position p is written as
p(S) and where the labels are @, caseT , (c x1 . . . xn) (for a case-alternative), seq, c, λx,
and x. The domain of such a function must be a prefix-closed set of positions, and the
continuations of a position p depend on the label at p and must coincide with the syntax
according to the grammar in Definition 5.1.

Definition 5.2. The translation IT : EL → EI translates an expression s ∈ EL into
its infinite tree IT (s) ∈ EI . We define the mapping IT by providing an algorithm that,
computes the partial function IT (s) from positions to labels. Given a position p, computing
p(IT (s)) starts with s‖p and then proceeds with the rules given in Fig. 9. The first group
of rules defines the computed label for the position ε, the second part of the rules describes
the general case for positions. If the computation fails (or is undefined), then the position
is not valid in the tree IT (s). The equivalence of infinite expressions is extensional equality
of the corresponding functions, where we additionally do not distinguish α-equal trees.

Example 5.3. The expression letrec x = x, y = (λz.z) x y in y has the corresponding
tree ((λz1.z1) Bot ((λz2.z2) Bot ((λz3.z3) Bot . . .))).

28 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

C[(s t)‖ε] 7→ @
C[(caseT . . .)‖ε] 7→ caseT
C[(c x1 . . . xn → s)‖ε] 7→ (c x1 . . . xn) for a case-alternative
C[(seq s t)‖ε] 7→ seq

C[(c s1 . . . sn)‖ε] 7→ c
C[(λx.s)‖ε] 7→ λx
C[x‖ε] 7→ x if x is a free variable or a lambda-bound variable in C[x]

The cases for general positions p:

1. C[(λx.s)‖1.p] 7→ C[λx.(s‖p)]
2. C[(s t)‖1.p] 7→ C[(s‖p t)]
3. C[(s t)‖2.p] 7→ C[(s t‖p)]
4. C[(seq s t)‖1.p] 7→ C[(seq s‖p t)]
5. C[(seq s t)‖2.p] 7→ C[(seq s t‖p)]
6. C[(caseT s of alt1 . . . altn)‖1 .p] 7→ C[(caseT s‖p of alt1 . . . altn)]
7. C[(caseT s of alt1 . . . altn)‖(i+1).p] 7→ C[(caseT s ofalt1 . . . alt i‖p . . . altn)]
8. C[. . . (c x1 . . . xn → s)‖1.p . . .] 7→ C[. . . (c x1 . . . xn → s‖p) . . .]
9. C[(c s1 . . . sn)‖i.p] 7→ C[(c s1 . . . si‖p . . . sn)]
10. C[(letrec Env in s)‖p] 7→ C[(letrec Env in s‖p)]
11. C1[(letrec x = s,Env in C2[x‖p])] 7→ C1[(letrec x = s‖p,Env in C2[x])]

12.
C1[letrec x = s, y = C2[x‖p],

Env in t]
7→

C1[letrec x = s‖p, y = C2[x],
Env in t]

13. C1[(letrec x = C2[x‖p],Env in s)] 7→ C1[(letrec x = C2[x]‖p,Env in s)]

If the position ε hits the same (let-bound) variable twice, then the result is Bot.
(This can only happen by a sequence of rules 11,12,13.)

Figure 9: Infinite tree construction from positions for fixed s

The set CI of infinite tree contexts includes any infinite tree where a subtree is replaced
by a hole [·]. Reduction contexts on trees are defined as follows:

Definition 5.4. Call-by-name reduction contexts Rtree of Ltree are defined as follows, where
the grammar is interpreted inductively and S ∈ EI :

R,Ri ∈ Rtree ::= [·] | (R S) | (case R of alts) | (seq R S)

For an infinite tree, a reduction position p is any position such that p(S) is defined and there
exists some R ∈ Rtree with R[S′] = S and R|p = [·]

Definition 5.5. An Ltree -answer (or an Ltree -WHNF) is any infinite EI-expression S which
is an abstraction or constructor application, i.e. ε(S) = λx or ε(S) = c for some constructor
c. The reduction rules on infinite expressions are allowed in any context and are as follows:

(betaTr) ((λx.S1) S2) → S1[S2/x]
(seqTr) (seq S1 S2) → S2 if S1 is an Ltree -answer
(caseTr) (caseT (c S1 . . . Sn) of . . . (c x1 . . . xn → S′) . . .) → S′[S1/x1, . . . , Sn/xn]

If S = R[S1] for a Rtree -context R, and S1
a
−→ S2 for a ∈ {(betaTr), (caseTr), or (seqTr)},

then we say S
tree
−−→ S′ = R[S2] is a normal order reduction (tree-reduction) on infinite trees.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 29

Here S1 is the tree-redex of the tree-reduction. We also use the convergence predicate ↓tree
for infinite trees defined as: S↓tree iff S

tree,∗
−−−→ S′ and S′ is an Ltree -WHNF.

Note that
tree,betaTr
−−−−−−−→ and

tree,caseTr
−−−−−−→ only reduce a single redex, but may modify infin-

itely many positions, since there may be infinitely many positions of a replaced variable x.
E.g., a (tree ,betaTr) of IT ((λx .(letrec z = (z x) in z)) r) = (λx .((. . . (. . . x) x) x)) r
→ ((. . . (. . . r) r) r) replaces the infinite number of occurrences of x by r.

Concluding, the calculus Ltree is defined by the tuple (EI ,CI ,
tree
−−→,Atree) where Atree

are the Ltree -WHNFs.
In the following we use a variant of infinite outside-in developments [Bar84, KKSdV97]

as a reduction on trees that may reduce infinitely many redexes in one step. The motivation
is that the infinite trees corresponding to finite expressions may require the reduction of

infinitely many redexes of the trees for one
LR
−−→- or

Lname−−−−→-reduction, respectively.

Definition 5.6. We define an infinite variant of Barendregt’s 1-reduction: Let S ∈ EI be an
infinite tree. Let † be a special label and M be a set of (perhaps infinitely many) positions
of S, which must be redexes w.r.t. the same reduction a ∈ {(betaTr), (caseTr), or (seqTr)}.

Now exactly all positions m ∈ M of S are labeled with †. By S
I,M
−−→ S′ we denote the

(perhaps infinite) development top down, defined as follows:

• Let S0 = S and M0 = M .
• Iteratively compute Mi+1 and Si+1 from Mi and Si for i = 0, 1, 2, . . . as follows:
Let d be the length of the shortest position in Mi, and Mi,d be the finite set of positions
that are the shortest ones in Mi.

For every p ∈ Mi,d construct an infinite tree Tp from Si|p by iterating the following
reduction until the root of Si|p is not labeled: remove the label from the top of Si|p, then
perform a labeled reduction inheriting all the labels. If this iteration does not terminate,
because the root of Si|p gets labeled in every step, then the result is Tp := Bot (unlabeled),
otherwise a result Tp is computed after finitely many reductions.

Now construct Si+1 by replacing every subtree at a position p ∈ Mi,d in Si by Tp: for
the positions p of Si that do not have a prefix that is in Mi,d, we set p(Si+1) := p(Si) and
for p ∈ Mi,d we set Si|p := Tp.

Let Mi+1 be the set of positions in Si+1 which carry a label †. The length of the
shortest position is now at least d+ 1. Then iterate again with Mi+1, Si+1.

• S′ is defined as the result after (perhaps infinitely many) construction steps S1, S2, . . .

If the initial set M does not contain a reduction position then we write S
I,M,¬tree
−−−−−−→ S′.

We write S
I,¬tree
−−−−→ S′ (S

I
−→ S′, resp.) if there exists a set M such that S

I,M,¬tree
−−−−−−→ S′

(S
I,M
−−→ S′, resp.).

Example 5.7. We give two examples of standard reduction and
I,M
−−→-reductions.

An
LR
−−→-reduction on expressions corresponds to an

I,M
−−→-reduction on infinite trees and

perhaps corresponds to an infinite sequence of infinite tree-reductions. Consider letrec y =
(λx.y) a in y. The (LR, lbeta)-reduction with a subsequent (LR, llet) reduction results in
letrec y = y, x = a in y. The corresponding infinite tree of letrec y = (λx.y) a in y is
S = ((λx1.((λx2.((λx3.(. . . a)) a)) a)) a). The (tree ,betaTr)-reduction-sequence is infinite.
let M be the infinite set of positions of all the applications in S, i.e. M = {ε, 1.1, 1.1.1.1, . . .}.
Then in the (infinite) development described in Def. 5.6 all intermediate trees have a label

30 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

at the top, and thus we have S
I,M
−−→ Bot. For a set M without ε, the result will be a value

tree.

For the expression letrec y = (seq True (seq y False)) in y the
LR
−−→-reduction

results in the expression letrec y = (seq y False) in y which diverges. The corre-
sponding infinite tree is (seq True (seq ((seq True (seq (. . .) False)) False))), which
has an infinite number of tree-reductions, at an infinite number of deeper and deeper po-
sitions. Let M = {ε, 1.2, 1.2.1.2, . . .} be the set consisting of all those positions. Then

S
I,M
−−→ (seq (seq (seq . . . False) False) False).

There may be S, S′ such that S
I,M
−−→ S′ as well as S

I,M ′

−−−→ S′ for some sets M,M ′

where M contains a reduction position, but M ′ does not contain a reduction position. For
example S = (λx1.x1) ((λx2.x2) ((λx3.x3) . . .)), where a single (betaTr)-reduction at the
top reproduces S, as well as a single (betaTr)-reduction of the argument.

5.2. Standardization of Tree Reduction. Before considering the concrete calculi LLR

and Lname and their correspondence to the calculus with infinite trees, we show that for
an arbitrary reduction sequence on infinite trees resulting in an answer we can construct a
tree-reduction sequence that results in an Ltree -WHNF.

Lemma 5.8. Let T be an infinite expression. If T
I,M,¬tree
−−−−−−→ T ′ for some M , where T ′ is

an answer, then T is also an answer.

Proof. This follows since an answer cannot be generated by
I,M,¬tree
−−−−−−→-reductions, since

neither abstractions nor constructor expressions can be generated at the top position.

Lemma 5.9. Any overlapping between a
tree
−−→-reduction and a

I,M
−−→-reduction can be closed

as follows. The trivial case that both given reductions are identical is omitted.

T
I,M

//

tree
��

·

tree
��
✤

✤

·
I,M ′

//❴❴ ·

T
I,M

//

tree
��

·

·
I,M ′

??�
�

�

T
I,M

//

tree
��

·

tree���
�
�

·

Proof. This follows by checking the overlaps of
I
−→ with tree-reductions. The third diagram

applies if the positions of M are removed by the tree-reduction. The second diagram applies
if the tree-redex is included in M and the first diagram is applicable in all other cases.

Lemma 5.10. Let T be an infinite tree such that there is a tree-reduction sequence of length

n to a WHNF T ′, and let S be an infinite tree with T
I,M
−−→ S. Then S has a tree-reduction

sequence of length ≤ n to a WHNF T ′′.

Proof. This follows from Lemma 5.9 by induction on n.

Lemma 5.11. Consider two reductions
I,M1
−−−→ and

I,M2
−−−→ of the same type (betaTr), (caseTr)

or (seqTr). For all trees T, T1, T2: if T
I,M1
−−−→ T1, and T

I,M2
−−−→ T2, and M2 ⊆ M1, then there

is a set M3 of positions, such that T2
I,M3
−−−→ T1.

T

I,M2 ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
I,M1 // T1

T2

I,M3

66♠♠♠♠♠♠♠

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 31

Proof. The argument is that the set M3 is computed by labeling the positions in T using
M1, and then by performing the infinite development using the set of redexes M2, where
we assume that the M1-labels are inherited. The set of positions of marked redexes in T2

that remain and are not reduced by T1
I,M2
−−−→ T2 is exactly the set M3.

Consider a reduction T
I,M
−−→ T ′ of type (betaTr), (caseTr) or (seqTr). This reduction

may include a redex of a normal order tree-reduction. Then the reduction can be split into

T
tree
−−→ T1

I
−→ T ′, and splitting of the reduction can be iterated as long as the remaining

T1
I
−→ T ′ has a tree-redex. It may happen that this process does not terminate.

We consider this non-terminating case, i.e. let T0
I,M
−−→ T ′ and we can assume that

there exist infinitely many T1, T2, . . . and M1,M2, . . . , such that for any k: T0
tree,k
−−−→ Tk and

Tk
I,Mk−−−→ T ′. By induction we can show for every k ≥ 1: Tk−1 = Rk−1[Sk−1] → Rk−1[Sk] =

Tk for a reduction context Rk and where Sk−1 is the redex and Sk is the contractum of
Tk−1 → Tk and the normal order tree-redex of Mk labels a subterm of Sk. This holds, since

the infinite development for T
I,M
−−→ T ′ is performed top down.

This implies that the infinite tree-reduction goes deeper and deeper along one path of
the tree, or at some point all remaining tree-reductions are performed at the same position.

Lemma 5.12. Let T
I,M
−−→ T ′ such that T ′↓tree and M labels the normal order redex of T .

Then there exists T ′′ and M ′ such that T
tree,∗
−−−→ T ′′ M ′,¬tree

−−−−−→ T ′.

Proof. Let T = T0
tree,k
−−−→ Tk, Tk

I,Mk−−−→ T ′ where Mk labels a normal order redex.

T ′

T0

I,M

22❡❡❡
tree

// T1 = R1[S1]
tree

//

I,M1

33❢❢
. . .

tree
// Tk = Rk[Sk]

tree
//

I,Mk

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉
. . .

We have Tk = Rk[Sk] where Rk is a reduction context, and Mk labels the hole of Rk, which

is the normal order redex. The normal order reduction is Tk = Rk[Sk]
tree
−−→ Rk[S

′
k] =: Tk+1.

Let pk be the path of the hole of Rk, together with the constructors and symbols (case,
seq, constructors and @) on the path. Also let Mk = Mk,1 ·∪Mk,2, (where ·∪ means disjoint
union) where the labels of Mk,1 are in Rk, and the labels Mk,2 are in Sk. Lemma 5.11, the
structure of the expressions and the properties of the infinite top down developments show
that the normal order redex can only stay or descend, i.e. h > k implies that pk is a prefix
of ph.

Also, we have Rk[Sk]
I,Mk−−−→ R′

k[S
′], where Rk[·]

Mk,1
−−−→ R′

k[·], and Sk
I
−→ S′.

There are three cases:

• The normal order reduction of T0 halts, i.e., there is a maximal k. Then obviously

T
tree,∗
−−−→ Tk

Mk,¬tree−−−−−−→ T ′.
• There is some k, such that Rk = Rh for all h ≥ k. In this case, T ′ = R′

k[s
′]. The infinite

development T0
I,M
−−→ T ′ will reduce infinitely often at the position of the hole, hence it

will plug a Bot at position pk of T ′, and so T ′ = R′
k[Bot]. But then T ′ cannot converge,

and so this case is not possible.

32 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

• The positions pk of the reduction contexts Rk will grow indefinitely. Then there is an
infinite path (together with the constructs and symbols) p such that pk is a prefix of p for
every k. Moreover, p is a position of T ′. The sets Mk,1 are an infinite ascending set w.r.t.

⊆, hence there is a limit tree T∞ with T
tree,∞
−−−−→ T∞, which is exactly the limit of the

contexts Rk for k → ∞. There is a reduction T∞
I,M ′

−−−→ T ′ which is exactly M ′ =
⋃

k Mk,1.
Hence T ′ has the path p, and we see that the tree T ′ cannot have a normal order redex,
since the search for such a redex goes along p and thus does not terminate. This is a
contradiction, and hence this case is not possible.

Lemma 5.13. Let T
I,M,¬tree
−−−−−−→ T1

tree
−−→ T ′. Then the reduction can be commuted to T

tree
−−→

T3
I,M ′

−−−→ T ′ for some M ′.

Proof. This follows since the
I,M,¬tree
−−−−−−→-reduction cannot generate a new normal order tree-

redex. Hence, the normal order redex of T1 also exists in T . The set M ′ can be found by
labeling T with M , then performing the tree-reduction where all labels of M are kept and
inherited by the reduction, except for those positions which are removed by the reduction.

Lemma 5.14. Let T
I,¬tree
−−−−→ T ′ and T ′↓tree . Then T↓tree .

Proof. We show by induction on k that whenever T
I,¬tree
−−−−→ T ′ tree,k

−−−→ T ′′ where T ′′ is an Ltree -
WHNF, then T↓tree . The base case is k = 0 and it holds by Lemma 5.8. For the induction

step let T
I,¬tree
−−−−→ T ′ tree

−−→ T0
tree,k
−−−→ T ′′. We apply Lemma 5.13 to T

I,¬tree
−−−−→ T ′ tree

−−→ T0 and

thus have T
tree
−−→ T1

I,M
−−→ T0

tree,k
−−−→ T ′′ for some M .

This situation can be depicted by the following diagram where the dashed reductions
follow by Lemma 5.13:

T

tree
��✤

✤

I,¬tree
// T ′ tree // T0

tree,k
// T ′′

T1

I,M

55❧❧❧❧❧❧❧❧

If M does not contain a normal order redex, then the induction hypothesis shows that
T1↓tree and thus also T↓tree . Now assume that M contains a normal order redex. Then

we apply Lemma 5.12 to T1
I,M
−−→ T0 (note that T0↓tree and hence the lemma is applicable).

This shows that T1
tree,∗
−−−→ T ′′

0
I,¬tree
−−−−→ T0:

T

tree
��

I,¬tree
// T ′ tree // T0

tree,k
// T ′′

T1

tree,∗
��✤
✤

I,M

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

T ′′
0

I,¬tree

<<②
②

②
②

②
②

②
②

②

Now we can apply the induction hypothesis to T ′′
0

¬tree
−−−→ T0

tree,k
−−−→ T ′′ and have T ′′

0 ↓tree
which also shows T↓tree .

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 33

Proposition 5.15 (Standardization). Let T1, . . . , Tk be infinite trees such that Tk

I,Mk−1
−−−−−→

Tk−1
I,Mk−2
−−−−−→ Tk−2 . . .

I,M1
−−−→ T1, where T1 is an Ltree-WHNF. Then Tk↓tree

Proof. We use induction on k. If k = 1 then the claim obviously holds since Tk = T1 is al-

ready an Ltree -WHNF. For the induction step assume that Ti
I,Mi−1
−−−−→ Ti−1 . . .

I,M1
−−−→ T1 and

Ti↓tree . Let Ti+1
I,Mi
−−−→ Ti. If Mi contains a normal order redex, then we apply Lemma 5.12

and have the following situation

Ti+1

tree,∗
��

I,Mi // Ti

I,∗
//

tree,∗
��

T1

T ′
i+1

I,¬tree

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
T ′
i

where T ′
i is an Ltree -WHNF. We apply Lemma 5.14 to T ′

i+1
I,¬tree
−−−−→ Ti

tree,∗
−−−→ T ′

i which shows
that T ′

i+1↓tree and thus also Ti+1↓tree .
If Mi contains no normal order redex, we have

Ti+1
I,¬tree

// Ti

I,∗
//

tree,∗
��

T1

T ′
i

where T ′
i is an Ltree -WHNF. We apply Lemma 5.14 to Ti+1

I,¬tree
−−−−→ Ti

tree,∗
−−−→ T ′

i and have
Ti+1↓tree .

5.3. Equivalence of Tree-Convergence and LLR-Convergence. In this section we will
show that LLR-convergence for finite expressions s ∈ EL coincides with convergence for the
corresponding infinite tree IT (s).

Lemma 5.16. Let s1, s2 ∈ EL be finite expressions and s1 → s2 by a rule (cp), or (lll).
Then IT (s1) = IT (s2).

Lemma 5.17. Let s be a finite expression. If s is an LLR-WHNF then IT (s) is an answer.
If IT (s) is an answer, then s↓LR.

Proof. If s is an LLR-WHNF, then obviously, IT (s) is a answer. If IT (s) is an answer, then
the label computation of the infinite tree for the empty position using s, i.e. s‖ε, must be λx
or c for some constructor. If we consider all the cases where the label computation for s‖ε
ends with such a label, we see that s must be of the form NL[v], where v is an LLR-answer
and the contexts NL are constructed according to the grammar:

NL ::= [·] | letrec Env in NL
| letrec x1 = NL[·], {xi = NL[xi−1]}

n
i=2 ,Env in NL[xn]

We show by induction that every expression NL[v], where v is a value, can be reduced
by normal order (cp)- and (llet)-reductions to a WHNF in LLR. We use the following

34 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

induction measure µ on NL[v]:

µ(v) := 0
µ(letrec Env in NL[v]) := 1 + µ(NL[v])
µ(letrec x1 = NL1 [v], {xi = NLi [xi−1]}

n
i=2 ,Env in NLn+1 [xn]) :=

µ(NL1 [v]) + µ(letrec x2 = NL2 [v], {xi = NLi [xi−1]}
n
i=3 ,Env in NLn+1 [xn])

The base case obviously holds, since v is already an LLR-WHNF. For the induction step as-

sume that NL[v ′]
LR,cp∨llet,∗
−−−−−−−→ t , where t is an LLR-WHNF for every NL[v ′] with µ(NL[v ′]) <

k . Let NL, and v be fixed, such that µ(NL[v]) = k ≥ 1 . There are two cases:

• NL[v] = letrec Env in NL′[v]. If NL′ is the empty context, then NL[v] is an LLR-WHNF.
Otherwise NL′[v] is a letrec-expression. Thus we can apply an (LR, (llet-in))-reduction
to NL[v], where the measure µ is decreased by one. The induction hypothesis shows the
claim.

• NL[v] = letrec x1 = NL1 [v], {xi = NLi [xi−1]}
n
i=2 ,Env in NLn+1 [xn]. If NLn+1 [xn]

is a letrec-expression, then we can apply an (LR, llet-in)-reduction to NL[v] and the
measure µ is decreased by 1. If NLn+1 is the empty context, and there is some i such
that NLi is not the empty context, then we can choose the largest number i and apply an
(LR, llet-e)-reduction to NL[v]. Then the measure µ is strictly decreased and we can use
the induction hypothesis. If all the contexts NLi for i = 1, . . . , n+ 1 are empty contexts,
then either NL[v] is an LLR-WHNF (if v is a constructor application) or we can apply an
(LR, cp) reduction to obtain an LLR-WHNF.

Lemma 5.18. Let s ∈ EL such that s
LR,a
−−−→ t. If the reduction a is (cp) or (lll) then

IT (s) = IT (t). If the reduction a is (lbeta), (case-c), (case-in), (case-e) or (seq-c),

(seq-in),(seq-c) then IT (s)
I ,M ,a′

−−−−→ IT (t) for some M , where a′ is (betaTr), (caseTr), or
(seqTr), respectively, and the set M contains normal order redexes.

Proof. Only the latter needs a justification. Therefore, we label every redex in IT (s) that

is derived from the redex s
LR
−−→ t by IT (.). This results in the set M for IT (s). There will

be at least one position in M that is a normal order redex of IT (s).

Proposition 5.19. Let s ∈ EL such that s↓LR. Then IT (s)↓tree .

Proof. We assume that s
LR,∗
−−−→ t, where t is a WHNF. Using Lemma 5.18, we see that there

is a finite sequence of reductions IT (s)
I ,∗
−−→ IT (t). Lemma 5.17 shows that IT (r) is an

Ltree -WHNF. Now Proposition 5.15 shows that IT (s)↓tree .

We now consider the other direction and show that for every expression s: if IT (s)
converges, then s converges, too.

Lemma 5.20. Let R be some reduction context, s.t. IT (s) = R[T]
tree,a′

−−−−→ R[T ′]. Then for
(a′, a) ∈ {(betaTr, lbeta), (caseTr, case), (seqTr, seq)} there exist expressions s1, s2, s3 and

an infinite tree T ′ with s
LR,lll,∗
−−−−→ s1

LR,cp,0∨1
−−−−−−→ s2

LR,a
−−−→ s3 with R[T ′]

I,M
−−→ IT (s3).

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 35

s
IT (·)

//

LR,lll,∗
��✤
✤
✤ IT (s) = R[T]

tree,a′

�� I,M,a′

vv

P
▼
❍
❆
✻

✤

✟
⑥

✈
q

♥

s1
LR,cp,0∨1

��
✤

✤

s2

IT (·)

99t
t

t
t

t
t

t
t

t
t

LR,a

��✤
✤
✤

R[T ′]

I,M ′,a′
��✤
✤

s3
IT (·)

//❴❴❴❴❴❴❴❴ IT (s3)

Proof. Let p be the position of the hole of R. We follow the label computation to T along p
inside s and show that the redex corresponding to T can be found in s after some (lll) and
(cp) reductions. For applications, seq-expressions, and case-expressions there is a one-to-
one correspondence. If the label computation shifts a position into a “deep” letrec, i.e.
C[(letrec Env in s)‖p] 7→ C[(letrec Env in s‖p)] where C is non-empty, then a sequence
of normal order (lll)-reduction moves the environment Env to the top of the expression,

where perhaps it is joined with a top-level environment of C. Let s
LR,lll,∗
−−−−→ s′. Lemma 5.16

shows that IT (s ′) = IT (s) and the label computation along p for s′ requires fewer steps
than the computation for s. Hence this construction can be iterated and terminates. This

yields a reduction sequence s
LR,lll,∗
−−−−→ s1 such that the label computation along p for s1

does not shift the label into deep letrecs and where IT (s) = IT (s1) (see Lemma 5.16).
Now there are two cases: Either the redex corresponding to T is also a normal order redex
of s1, or s1 is of the form letrec x1 = λx.s′, x2 = x1, . . . , xm = xm−1, . . . R

′[xm] For
the latter case an (LR, cp) reduction is necessary before the corresponding reduction rule
can be applied. Again Lemma 5.16 assures that the infinite tree remains unchanged. After

applying the corresponding reduction rule, i.e. s2
LR,a
−−−→ s3, the normal order reduction

may have changed infinitely many positions of IT (s3), while R[T]
tree,a′

−−−−→ R[T ′] does not
change all these positions, but nevertheless Lemma 5.18 shows that there is a reduction

R[T]
I,M,a′

−−−−→ IT (s3), and Lemma 5.11 shows that also R[T ′]
I,M ′,a′

−−−−→ IT (s3) for some M ′.

Example 5.21. An example for the proof of the last lemma is the expression s defined
as s := letrec x = (λy.y) x in x. Then IT (s) = (λy .y) ((λy .y) ((λy .y) . . .)). The

tree-reduction for IT (s) is IT (s)
tree,betaTr
−−−−−−−→ IT (s). On the other hand the normal order

reduction of LLR reduces to s′ := letrec x = (letrec y = x in y) in x and IT (s ′) = Bot.

To join the reductions we perform an
I,M
−−→-reduction for IT (s) where all redexes are labeled

in M , which also results in Bot.

Proposition 5.22. Let s be an expression such that IT (s)↓tree . Then s↓LR.

Proof. The precondition IT (s)↓tree implies that there is a tree-reduction sequence of IT (s)
to an Ltree -WHNF. The base case, where no tree-reductions are necessary, is treated in

Lemma 5.17. In the general case, let T
tree,a′

−−−−→ T ′ be a tree-reduction. Lemma 5.20 shows

that there are expressions s′, s′′ with s
LR,lll,∗
−−−−→

LR,cp,0∨1
−−−−−−→ s′

LR,a
−−−→ s′′, and T ′ I,M

−−→ IT (s ′′).
Lemma 5.10 shows that IT (s ′′) has a normal order tree-reduction to a WHNF where the
number of tree-reductions is strictly smaller than the number of tree-reductions of T to a

36 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

WHNF. Thus we can use induction on this length and obtain a normal order LR-reduction
of s to a WHNF.

Propositions 5.19 and 5.22 imply the theorem

Theorem 5.23. Let s be an EL-expression. Then s↓LR if and only if IT (s)↓tree .

5.4. Equivalence of Infinite Tree Convergence and Lname-convergence. It is easy to
observe that several reductions of Lname do not change the infinite trees w.r.t. the translation
IT (·):

Lemma 5.24. Let s1, s2 ∈ EL. Then s1
name,a
−−−−→ s2 for a ∈ {gcp, lapp, lcase, lseq} implies

IT (s1) = IT (s2).

Lemma 5.25. For (a, a′) ∈ {(beta,betaTr), (case, caseTr), (seq, seqTr)} it holds:

If s1
name,a
−−−−→ s2 for si ∈ EL, then IT (s1)

tree,a′

−−−−→ IT (s2).

Proof. Let s1 := Rname [s
′
1]

name ,a
−−−−→ Rname [s

′
2] = s2 where s′1 is the redex of the

name
−−−→-

reduction and Rname is an Lname -reduction context. First one can observe that the redex
s′1 is mapped by IT to a unique tree position within a tree reduction context in IT (s1).

We only consider the (beta)-reduction, since for a (case)- or a (seq)-reduction the reason-
ing is completely analogous. So let us assume that s′1 = ((λx.s′′1) s

′′
2). Then IT transforms

s′1 into a subtree σ((λx.IT (s ′′1)) IT (s ′′2)) where σ is a substitution replacing variables by in-
finite trees. The tree reduction replaces σ((λx.IT (s ′′1)) IT (s ′′2)) by σ(IT (s ′′1))[σ(IT (s ′′2))/x],
hence the lemma holds.

Proposition 5.26. Let s ∈ EL be an expression with s↓name . Then IT (s)↓tree .

Proof. This follows by induction on the length of a normal order reduction of s. The
base case holds since IT (L[v]), where v is an Lname -answer is always an Ltree -answer. For

the induction step we consider the first reduction of s, say s
name
−−−→ s′. The induction

hypothesis shows IT (s ′)↓tree . If the reduction s
name
−−−→ s′ is (name ,gcp), (name ,lapp),

(name ,lcase), or (name ,lseq), then Lemma 5.24 implies IT (s)↓tree . If s
name ,a
−−−−→ s′ for

a ∈ {(beta), (case), (seq)}, then Lemma 5.25 shows IT (s)
tree
−−→ IT (s ′) and thus IT (s)↓tree .

Now we show the other direction:

Lemma 5.27. Let s ∈ EL such that IT (s) = R[T], where R is a tree reduction context and

T is a value or a redex. Then there are expressions s′, s′′ such that s
name,lapp∨lcase∨lseq∨gcp,∗
−−−−−−−−−−−−−−−−−→

s′, IT (s ′) = IT (s), s′ = R[s′′], IT (L[s ′′]) = T, where R = L[A[·]] is a reduction context
for some L-context L and some A-context A, s′′ may be an abstraction, a constructor
application, or a beta-, case- or seq-redex iff T is an abstraction, a constructor application,
or a betaTr-, caseTr- or seqTr-redex, respectively, and the position p of the hole in R is
also the position of the hole in A[·].

Proof. The tree T may be an abstraction, a constructor application, an application, or
a betaTr-, caseTr- or seqTr-redex in R[T]. Let p be the position of the hole of R. We
will show by induction on the label-computation for p in s that there is a reduction

s
name ,lapp∨lcase∨lseq∨gcp,∗
−−−−−−−−−−−−−−−−−→ s′, where s′ is as claimed in the lemma.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 37

We consider the label-computation for p to explain the induction measure, where we use
the numbers of the rules given in Fig. 9. Let q be such that the label computation for p is
of the form (10)∗.q and q does not start with (10). The measure for induction is a tuple
(a, b), where a is the length of q, and b ≥ 0 is the maximal number with q = (2 ∨ 4 ∨ 6)b.q′.
The base case is (a, a): Then the label computation is of the form (2∨ 4∨ 6)∗ and indicates
that s is of the form L[A[s′′]] and satisfies the claim of the lemma. For the induction step
we have to check several cases:

(1) The label computation starts with (10)∗(2 ∨ 4 ∨ 6)+(10). Then a normal-order (lapp),
(lcase), or (lseq) can be applied to s resulting in s1. The label-computation for p w.r.t.
s1 is of the same length, and only applications of (10) and (2 ∨ 4 ∨ 6) are interchanged,
hence the second component of the measure is strictly decreased.

(2) The label computation starts with (10)∗(2∨4∨6)∗(11). Then a normal-order (gcp) can
be applied to s resulting in s1. The length q is strictly decreased by 1, and perhaps one
(12)-step is changed into a (11)-step. Hence the measure is strictly decreased.

In every case the claim on the structure of the contexts and s′ can easily be verified.

Lemma 5.28. Let s be an expression with IT (s)
tree
−−→ T. Then there is some s′ with

s
name ,∗
−−−−→ s′ and IT (s ′) = T.

Proof. If IT (s)
tree
−−→ T , then IT (s) = R[S] where R is a reduction context, S a tree-redex

with S
tree
−−→ S′ and T = R[S′]. Let p be the position of the hole of R in IT (s). We apply

Lemma 5.27, which implies that there is a reduction s
name ,∗
−−−−→ s′, such that IT (s) = IT (s ′)

and s′ = R[s′′] where R = L[A[·]] is a reduction context and IT (L[s ′′]) is a beta-, case-, or

seq-redex. It is obvious that s′ = L[A[s′′]]
name,a
−−−−→ t. Now one can verify that IT (t) = T

must hold.

Proposition 5.29. Let s be an expression with IT (s)↓tree . Then s↓name .

Proof. We use induction on the length k of a tree reduction IT (s)
tree,k
−−−→ T , where T is an

Ltree -answer. For the base case it is easy to verify that if IT (s) is an Ltree -answer, then

s
name,gcp,∗
−−−−−−−→ L[v] for some L-context L and some Lname -value v. Hence we have s↓name .

The induction step follows by repeated application of Lemma 5.28.

Corollary 5.30. For all EL-expressions s: s↓name if, and only if IT (s)↓tree .

Theorem 5.31. ≤name = ≤LR.

Proof. In Corollary 5.30 we have shown that Lname -convergence is equivalent to infinite
tree convergence. In Theorem 5.23 we have shown that LLR-convergence is equivalent to
infinite tree convergence. Hence, Lname -convergence and LLR-convergence are equivalent,
which further implies that both contextual preorders and also the contextual equivalences
are identical.

Corollary 5.32. The translation W is convergence equivalent and fully abstract.

Since W is the identity on expressions, this implies:

Corollary 5.33. W is an isomorphism according to Definition 2.7.

38 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

A further consequence of our results is that the general copy rule (gcp) is a correct
program transformation in LLR. This is a novel result, since in previous work only special
cases were proved correct.

Proposition 5.34. The program transformation (gcp) is correct in Lname and LLR.

Proof. Correctness of (gcp) in Lname holds, since for s, t ∈ EL with s
gcp
−−→ t and for any con-

text C: IT (C [s]) = IT (C [t]). Hence Corollary 5.30 implies that C[s]↓name ⇐⇒ C[t]↓name

and thus s ∼name t. Theorem 5.31 finally also shows s ∼LR t.

6. The Translation N : Lname → Llcc

We use multi-fixpoint combinators as defined in [Gol05] to translate letrec-expressions EL

of the calculus Lname into equivalent ones without a letrec. The translated expressions
are Eλ and belong to the calculus Llcc.

Definition 6.1. Given n ≥ 1, a family of n fixpoint combinators Y
n
i for i = 1, . . . , n can

be defined as follows:

Y
n
i := λf1, . . . , fn.((λx1, . . . , xn.fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

(λx1, . . . , xn.f1 (x1 x1 . . . xn) . . . (xn x1 . . . xn))
. . .
(λx1, . . . , xn.fn (x1 x1 . . . xn) . . . (xn x1 . . . xn)))

The idea of the translation is to replace (letrec x1 = s1, . . . , xn = sn in t) by
t[B1/x1, . . . , Bn/xn] where Bi := Y

n
i F1 . . . Fn and Fi := λx1, . . . , xn.si.

In this way the fixpoint combinators implement the generalized fixpoint property:
Y

n
i F1 . . . Fn ∼ Fi (Y n

1 F1 . . . Fn) . . . (Y
n
n F1 . . . Fn). However, our translation uses mod-

ified expressions, as shown below.
Consider the expression (Y n

i F1 . . . Fn). After expanding the notation for Y
n
i we

obtain the expression ((λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn) where Xi can be expanded
to Xi = λx1 . . . xn.(fi (x1 x1 . . . xn) . . . (xn x1 . . . xn)). If we reduce further then we get:

(λf1, . . . , fn.(Xi X1 . . . Xn)) F1 . . . Fn
nbeta,∗
−−−−→ (X ′

i X
′
1 . . . X ′

n),
where X ′

i = λx1 . . . xn.(Fi (x1 x1 . . . xn) . . . (xn x1 . . . xn))

We take the latter expression as the definition of the multi-fixpoint translation, where
we avoid substitutions and instead generate (nbeta)-redexes which ensures that contexts
are mapped to contexts

Definition 6.2. The translation N : Lname → Llcc is recursively defined as:

• N(letrec x1 = s1, . . . , xn = sn in t) =
(λx′1, . . . , x

′
n.(λx1, . . . xn.N(t)) U1 . . . Un) X

′
1 . . . X

′
n

where x′1, . . . , x
′
n are fresh variables

Ui = x′i x
′
1 . . . x

′
n,

X ′
i = λx1 . . . xn.Fi(x1 x1 . . . xn) . . . (xn x1 . . . xn),

Fi = λx1, . . . , xn.N(si).
• N(s t) = (N(s) N(t))
• N(seq s t) = (seq N(s) N(t))
• N(c s1 . . . sar(c)) = (c N(s1) . . . N(sar(c)))
• N(λx.s) = λx.N(s)

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 39

• N(caseT s of alt1 . . . alt|T |) = caseT N(s) of N(alt1) . . . N(alt|T |)
• for a case-alternative: N(c x1 . . . xar(c) → s) = (c x1 . . . xar(c) → N(s))
• N(x) = x.

We extend N to contexts by treating the hole as a constant, i.e. N([·]) = [·]. This is
consistent, since the hole is not duplicated by the translation.

6.1. Convergence Equivalence of N . In the following we will also use the context class
B, defined as B = L[B] | A[B] | [·] (L- and A-contexts are defined as before in Sect. 3.2).

The proof of convergence equivalence of the translation N may be performed directly,
but it would be complicated due to the additional (nbeta)-reductions required in Llcc . For
this technical reason we provide a second translation N ′, which requires a special treatment
for the translation of contexts and uses a substitution function σ:

Definition 6.3. The translation N ′ : Lname → Llcc is recursively defined as:

• N ′(letrec x1 = s1, . . . , xn = sn in t) = σ(N ′(t)), where

σ = {x1 7→ U1, . . . xn 7→ Un}
Ui = (X ′

i X
′
1 . . . X ′

n),
X ′

i = λx1 . . . xn.Fi(x1 x1 . . . xn) . . . (xn x1 . . . xn),
Fi = λx1, . . . , xn.N

′(si).

• N ′(s t) = (N ′(s) N ′(t))
• N ′(seq s t) = (seq N ′(s) N ′(t))
• N ′(c s1 . . . sn) = (c N ′(s1) . . . N

′(sn))
• N ′(λx.s) = λx.N ′(s)
• N ′(caseT s of alt1 . . . alt|T |) = caseT N ′(s) of N ′(alt1) . . . N ′(alt|T |)

• for a case-alternative: N ′(c x1 . . . xar(c) → s) = (c x1 . . . xar(c) → N ′(s))
• N ′(x) = x.

The extension of N ′ to contexts is done only for B-contexts and requires an extended notion
of contexts that are accompanied by an additional substitution, i.e. a B-context translates
into a pair (C, σ) of a context C and a substitution σ acting as a function on expressions.
Filling the hole of (C, σ) by an expression s is by definition (C, σ)(s) = C[σ(s)]. The
translation for B-contexts is defined as
N ′(C) = (C ′, σ), where C ′ and σ are calculated by applying N ′ to C: for calculating

C ′ the hole of C is treated as a constant, and σ is the combined
substitution affecting the hole of C ′.

This translation does not duplicate holes of contexts.

Lemma 6.4. The translation N is equivalent to N ′ on expressions, that is for all EL-
expressions s the equivalence N(s) ∼lcc N ′(s) holds.

Proof. This follows from the definitions and correctness of (nbeta)-reduction in Llcc by
Theorem 4.31.

We first prove that the translation N ′ is convergence-equivalent. Due to Lemma 6.4 this
will also imply that N is convergence-equivalent. All reduction contexts L[A[·]] in Lname

translate into reduction contexts Rlcc in Llcc since removing the case of letrec from the
definition of a reduction context in Lname results in the reduction context definition in Llcc.

40 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

However, this cannot be reversed, since a translated expression of Lname may have a redex
in Llcc, but it is not a normal order redex in Lname since (lapp), (lseq), or (lcase) reductions
must be performed first to shift letrec-expressions out of an application, a seq-expression,
or a case-expression. The lemma below gives a more precise characterization of this relation:

Lemma 6.5. If L[A[·]] is a reduction context in Lname , then N ′(L[A[·]]) = R[σ(·)], where
R is a reduction context in Llcc and σ is a substitution.

If R is a reduction context in Llcc, and N ′(C ′) = (R,σ) for some substitution σ and
some context C ′ in Lname , then C ′ is a B-context.

Proof. The first claim can be shown by structural induction on the context L[A[·]]. It holds,
since applications are translated into applications, seq-expressions are translated into seq-
expressions, case-expressions are translated into case-expressions, and letrec-expressions
are translated into substitutions.

The other part can be shown by induction on the number of translation steps. It
is easy to observe that the definition of a reduction context in Lname does not descend
into letrec-expressions below applications, seq-, and case-expressions. For instance, in
((letrec Env in ((λx.s1) s2)) s3) the reduction contexts are [·] and ([·] s3) and the redex is
(lapp), i.e. the reduction context does not reach ((λx.s1) s2). In general, applications, seq-,
and case-expressions in such cases appear in B-contexts, as defined above. By examining
the expression definition we observe that these (lapp), (lseq), and/or (lcase)-redexes are the
only cases where non-reduction contexts may be translated into reduction contexts.

Lemma 6.6. Let N ′(s) = t. Then:

(1) If s is an abstraction then so is t.
(2) If s = (c s1 . . . sar(c)) then t = (c t′1 . . . t

′
ar(c)).

Proof. This follows by examining the translation N ′.

We will now use reduction diagrams to show the correspondence of Lname -reduction
and Llcc-reduction w.r.t. the translation N ′.

Transferring Lname -reductions into Llcc-reductions.
In this section we analyze how normal order reduction in Lname can be transferred into Llcc

via N ′. We illustrate this by using reduction diagrams. For s
name
−−−→ t we analyze how the

reduction transfers to N ′(s). The cases are on the rule used in s
name
−−−→ t:

• (beta) Let s = R[(λx.s1) s2] be an expression in Lname , where R is a reduction context.

We observe that in Lname : s
name
−−−→ t = R[s1[s2/x]]. Let N ′(R[·]) = (R′, σ). Then the

translations for s and t are as follows:

N ′(s) = R′[σ(N ′((λx.s1) s2))] = R′[(λx.σ(N ′(s1))) σ(N
′(s2))]

N ′(t) = N ′(R[s1[s2/x]]) = R′[σ(N ′(s1[s2/x]))] = R′[σ(N ′(s1))[σ(N
′(s2))/x]]

Since R′ is a reduction context in Llcc, this shows N
′(s)

lcc,nbeta
−−−−−→ N ′(t). Thus we have

the diagram (1) in Figure 10.
• (gcp) Consider the (gcp) reduction. Without loss of generality we assume that x1 is the
variable that gets substituted:

s = L[letrec x1 = s1, . . . , xn = sn in R[x1]]
name ,gcp
−−−−−−→

t = L[letrec x1 = s1, . . . , xn = sn in R[s1]]

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 41

·
N ′

//
name,
beta ��

·
lcc,nbeta
��

·
N ′

// ·

·
N ′

//
name,
gcp ��

·
lcc,nbeta,2n
��

·
N ′

// ·

·
N ′

//
name,
case ��

·
lcc,ncase
��

·
N ′

// ·

(1) (2) (3)

·
N ′

//
name,
lapp ��

·

·
N ′

==④④④④④④④

·
N ′

//
name,
lcase ��

·

·
N ′

==④④④④④④④

·
N ′

//
name,
lseq ��

·

·
N ′

==④④④④④④④

·
N ′

//
name,
seq ��

·
lcc,nseq
��

·
N ′

// ·

(4) (5) (6) (7)

Figure 10: Diagrams for transferring reductions between Lname and Llcc

Let N ′(L) = ([·], σL), N
′(letrec x1 = s1, . . . , xn = sn in [·]) = ([·], σEnv), and N ′(R) =

(R′, σR) where R′ is a reduction context. Then

N ′(s) = σL(σEnv (R
′[σR(x1)])) = σL(σEnv (R

′))[σL(σEnv (σR(x1)))]
= σL(σEnv (R

′))[σL(σEnv (x1))]

where the last step follows, since x1 cannot be substituted by σR, and

N ′(t) = σL(σEnv (R
′))[σL(σEnv (N

′(s1)))]

where it is again necessary to observe that σR(s1) = s1 must hold. The context R′′ =
σL(σEnv (R

′)) must be a reduction context, since R′ is a reduction context. This means

that we need to show that R′′[σL(σEnv (x1))]
lcc,∗
−−−→ R′′[σL(σEnv (N

′(s1)))] holds.
By Definition 6.3 of the translation N ′ we have σL(σEnv (x1)) = U1 = (X ′

1X
′
1 . . . X

′
n),

where X ′
i = λx1 . . . xn.Fi(x1x1 . . . xn) . . . (xnx1 . . . xn), and Fi = λx1, . . . , xn.σL(N

′(si)),
i.e., N ′(t) = R′′[U1].

Performing the applications, we transform U1 in 2n steps as

(λx1, . . . , xn.(F1(x1x1 . . . xn) . . . (xnx1 . . . xn))) X
′
1 . . . X ′

n
nbeta,n
−−−−→ F1 (X ′

1X
′
1 . . . X

′
n) . . . (X ′

nX
′
1 . . . X

′
n)

= (λx1, . . . , xn.σL(N
′(s1))) (X

′
1X

′
1 . . . X

′
n) . . . (X ′

nX
′
1 . . . X

′
n)

nbeta,n
−−−−→ σL(N

′(s1))[U1/x1, . . . , Un/xn].

Obviously, for all reduction contexts in Llcc holds: r1
lcc
−→ r2 implies R[r1]

lcc
−→ R[r1].

Hence N ′(s)
lcc,nbeta,2n
−−−−−−−→ R′′[σL(N

′(s1))[U1/x1, . . . , Un/xn]] and since x1, . . . , xn cannot
occur free in L, the last expression is the same as R′′[σL(σEnv (N

′(s)))]. Thus we obtain the
diagram (2) in Figure 10, where n is the number of bindings in the letrec-subexpression
where the copied binding is.

• (case) The diagram for this case is marked (3) in Figure 10. The case is similar to

(beta): s = R[caseT (c −→si) . . . ((c
−→xi) → r) . . .]

name
−−−→ R[r[s1/x1, . . . , sar(c)/xar(c)]] = t.

Let N ′(R[·]) = (R′, σ). Then the translations for s and t are as follows:

N ′(s) = R′[σ(N ′(caseT (c s1 . . . sar(c)) . . . ((c x1 . . . xar(c)) → r) . . .))]
= R′[caseT (c σ(N ′(s1))) . . . σ(N

′(sar(c))) . . . ((c x1 . . . xar(c)) → σ(N ′(r))) . . .]

42 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

N ′(t) = N ′(R[r[s1/x1, . . . , sar(c)/xar(c)]])
= R′[σ(N ′(r[s1/x1, . . . , sar(c)/xar(c)]))]
= R′[σ(N ′(r))[σ(N ′(s1))/x1, . . . , σ(N

′(sar(c)))/xar(c)]]

Since R′ is a reduction context in Llcc , this shows N
′(s)

lcc
−→ N ′(t).

• (lapp) The reduction is R[(letrec Env in s1) s2]
name
−−−→ R[(letrec Env in (s1 s2))].

Since free variables of s2 do not depend on Env , the translation of s2 does not change by
adding Env . I.e., for N ′(R) = (R′, σR) and N ′(letrec Env in [·]) = ([·], σEnv) we have

N ′(R[(letrec Env ∈ s1) s2]) = R′[σR(σEnv(N
′(s1)) N

′(s2))]

= R′[σR(σEnv (N
′(s1 N ′(s2))))]

= N ′(R[(letrec Env in (s1 s2))])

and thus the diagram for this case is as the one marked (4) in Figure 10.
• (lcase) The case is analogous to that of (lapp), with the diagram marked as (5) in Fig-
ure 10.

• (lseq) The case is analogous to (lapp) and (lcase), with the diagram (6) in Figure 10.

• (seq) s = R[seq v s1]
name
−−−→ R[s1] = t where v is an abstraction or a constructor applica-

tion
Let N ′(R[·]) = (R′, σ). Then the translations for s and t are as follows:

N ′(s) = R′[σ(N ′(seq v s1))] = R′[seq σ(N ′(v)) σ(N ′(s1))]

N ′(t) = R′[σ(N ′(s1))]

By Lemma 6.6 N ′(v) is a value in Llcc (which cannot be changed by the substitution

σ) and thus N ′(s)
lcc,nseq
−−−−−→ N ′(t). The diagram for this case is (7) in Figure 10.

We inspect how WHNFs and values of both calculi are related w.r.t. N ′:

Lemma 6.7. Let s be irreducible in Lname , but not an Lname -WHNF. Then N ′(s) is irre-
ducible in Llcc and also not an Llcc-WHNF.

Proof. Assume that expression s is irreducible in Lname but not an Lname -WHNF. There
are three cases:

(1) Expression s is of the form R[x] where x is a free variable in R[x], then let N ′(R) =
(R′, σ) and thus N ′(s) = R′[σ(x)]. Since σ only substitutes bound variables, we get
σ(x) = x and thus N ′(s) = R′[x] where x is free in R′[x]. Hence N ′(s) cannot be an
Llcc-WHNF and it is irreducible in Llcc .

(2) Expression s is of the form R[caseT (c s1 . . . sar(c)) of alts], but c is not of type T .
Let N ′(R) = (R′, σ). Then N ′(s) = R′[caseT (c σ(N ′(s1)) . . . σ(N

′(sar(c)))) of alts′]
which shows that N ′(s) is not an Llcc-WHNF and irreducible in Llcc .

(3) Expression s is of the form R[((c s1 . . . sar(c)) r)]. Then again N ′(s) is not an Llcc-
WHNF and irreducible.

Lemma 6.8. Let s ∈ EL. Then s is an Lname -WHNF iff N ′(s) is an Llcc-WHNF.

Proof. If s = L[λx.s′] or s = L[(c s1 . . . sar(c))] then N ′(s) = λx.σ(N ′(s′)) or N ′(s) =
(c σ(N ′(s1)) . . . σ(N

′(sar(c)))) respectively, both of which are Llcc-WHNFs.

For the other direction assume that N ′(s) is an abstraction or a constructor application.
The analysis of the reduction correspondence in the previous paragraph shows that s cannot
have a normal order redex in Lname , since otherwiseN

′(s) cannot be an Llcc-WHNF. Lemma

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 43

6.7 shows that s cannot be irreducible in Lname , but not an Lname -WHNF. Thus s must be
an Lname -WHNF.

Transferring Llcc-reductions into Lname-reductions.
We will now analyze how normal order reductions for N ′(s) can be transferred into normal
order reductions for s in Lname .

Let s be an EL-expression and N ′(s)
lcc
−→ t. We split the argument into three cases

based on whether or not a normal order reduction is applicable to s:

• If s
(name)
−−−−→ r, then we can use the already developed diagrams, since normal-order reduc-

tion in both calculi is unique.
• s is a WHNF. This case cannot happen, since then N ′(s) would also be a WHNF (see
Lemma 6.8) and thus irreducible.

• s is irreducible but not a WHNF. Then Lemma 6.7 implies that N ′(s) is irreducible in

Llcc which contradicts the assumption N ′(s)
lcc
−→ t. Thus this case is impossible.

We summarize the diagrams in the following lemma:

Lemma 6.9. Normal-order reductions in Lname can be transferred into reductions in Llcc,
and vice versa, by the diagrams in Figure 10.

Proposition 6.10. N ′ and N are convergence equivalent, i.e. for all EL-expressions s:
s↓name ⇐⇒ N ′(s)↓lcc (s↓name ⇐⇒ N(s)↓lcc, resp.).

Proof. We first prove convergence equivalence of N ′: Suppose s↓name . Let s
name ,k
−−−−→ s1

where s1 is a WHNF. We show that there exists an Llcc-WHNF s2 such that N ′(s)
lcc,∗
−−−→ s2

by induction on k. The base case follows from Lemma 6.8. The induction step follows by
applying a diagram from Lemma 6.9 and then using the induction hypothesis.

For the other direction we assume that N ′(s)↓lcc, i.e. there exists a WHNF s1 ∈ Llcc s.t.

N ′(s)
lcc,k
−−−→ s1. By induction on k we show that there exists a Lname -WHNF s2 such that

s
name ,∗
−−−−→ s2. The base case is covered by Lemma 6.8. The induction step uses the diagrams.

Here it is necessary to observe that the diagrams for the reductions (lapp), (lcase), and
(lseq) cannot be applied infinitely often without being interleaved with other reductions.
This holds, since let-shifting by (lapp), (lcase), and (lseq) moves letrec-symbols to the top
of the expressions, and thus there are no infinite sequences of these reductions.

It remains to show convergence equivalence of N : Let s↓name then N ′(s)↓lcc , since N ′

is convergence equivalent. Lemma 6.4 implies N ′(s) ∼lcc N(s) and thus N(s)↓lcc must hold.
For the other direction Lemma 6.4 shows that N(s)↓lcc implies N ′(s)↓lcc . Using convergence
equivalence of N ′ yields s↓name .

Lemma 6.11. The translation N is compositional, i.e. for all expressions s and all contexts
C: N(C[s]) = N(C)[N(s)].

Proof. This easily follows by structural induction on the definition.

Proposition 6.12. For all s1, s2 ∈ EL: N(s1) ≤lcc N(s2) =⇒ s1 ≤name s2, i.e. N is
adequate.

Proof. Since N is convergence-equivalent (Proposition 6.10) and compositional by Lemma
6.11, we derive that N is adequate (see [SSNSS08] and Section 2).

44 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Lemma 6.13. For letrec-free expressions s1, s2 ∈ Eλ the following holds: s1 ≤name

s2 =⇒ s1 ≤lcc s2.

Proof. Note that the claim only makes sense since clearly Eλ ⊆ EL. Let s1, s2 be letrec-free

such that s1 ≤name s2. Let C be an Llcc-context such that C[s1]↓lcc, i.e. C[s1]
lcc,k
−−−→ λx.s′1.

By comparing the reduction strategies in Lname and Llcc , we obtain that C[s1]
name ,k
−−−−→ λx.s′2

(by the identical reduction sequence) since C[s1] is letrec-free. Thus, C[s1]↓name and also
C[s2]↓name , i.e. there is a normal order reduction in Lname for C[s2] to a WHNF. Since
C[s2] is letrec-free, we can perform the identical reduction in Llcc and obtain C[s2]↓lcc .

The language Llcc is embedded into Lname (and also LLR) by ι(s) = s.

Proposition 6.14. For all s ∈ EL: s ∼name ι(N(s)).

Proof. We first show that for all expressions s ∈ EL: s ∼name ι(N(s)). Since N is the
identity mapping on letrec-free expressions of Lname and N(s) is letrec-free, we have
N(ι(N(s))) = N(s). Hence adequacy of N (Proposition 6.12) implies s ∼name ι(N(s)).

Proposition 6.15. For all s1, s2 ∈ EL: s1 ≤name s2 =⇒ N(s1) ≤lcc N(s2).

Proof. For this proof it is necessary to observe that Eλ ⊆ EL, thus we can treat Llcc

expressions as Lname expressions. Let s1, s2 ∈ EL and s1 ≤name s2. By Proposition 6.14:
N(s1) ∼name s1 ≤name s2 ∼name N(s2), thus N(s1) ≤name N(s2). Since N(s1) and N(s2)
are letrec-free, we can apply Lemma 6.13 and thus have N(s1) ≤lcc N(s2).

Now we put all parts together, where (N ◦W)(s) means N(W (s)):

Theorem 6.16. N and N ◦ W are fully-abstract, i.e. for all expressions s1, s2 ∈ EL:
s1 ≤LR s2 ⇐⇒ N(W (s1)) ≤lcc N(W (s2)).

Proof. Full-abstractness of N follows from Propositions 6.12 and 6.15. Full-abstractness of
N ◦W thus holds, since W is fully-abstract (Corollary 5.32).

Since N is surjective, this and Corollary 6.17 imply:

Corollary 6.17. N and N ◦W are isomorphisms according to Definition 2.7.

The results also allow us to transfer the characterization of expressions in Llcc into
LLR. With cBotLR we denote the set of EL-expressions s with the property that for all
substitutions σ: if σ(s) is closed, then σ(s) ⇑LR.

Proposition 6.18. Let s be a closed EL-expression. Then there are three cases: s ∼ Ω,
s ∼LR λx.s′ for some s′, s ∼LR c s1 . . . sn for some terms s1, . . . , sn and constructor c.
Moreover, the three cases are disjoint. For two closed EL-expressions s, t with s ≤LR t:
Either s ∼LR Ω, or s ∼LR c s1 . . . sn, t ∼ c t1 . . . tn and si ≤LR ti for all i for some terms
s1, . . . , sn, t1, . . . , tn and constructor c, or s ∼LR λx.s′ and t ∼LR λx.t′ for some expressions
s′, t′ with s′ ≤LR t′, or s ∼LR λx.s′ and t ∼LR c t1 . . . tn for some term s′ ∈ cBotLR,
expressions t1, . . . , tn and constructor c.

Proof. This follows by Proposition 4.32 and since N ◦ W is surjective, compositional and
fully abstract, and the identity on constructors.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 45

s1 ≤LR s2

s1 ≤LR,QCE
s2

s1 4LR,QCE
s2

W (s1) ≤name W (s2) N(W (s1)) ≤lcc N(W (s2))

N(W (s1)) 4lcc,QCE
N(W (s2))

LLR Lname Llcc
W

N ◦W

N

Cor

5.32

Thm

6.16

Thm
4.39

Prop
7.2

Thm
7.5

see Proof of Prop. 7.2

Figure 11: The structure of the reasoning for the similarities in LLR for closed expressions.

7. On Similarity in LLR

In this section we will explain co-inductive and inductive (bi)similarity for LLR. Our re-
sults of the previous sections then enable us to show that these bisimilarities coincide with
contextual equivalence in LLR.

7.1. Overview of soundness and completeness proofs for similarities in LLR. Be-
fore we give details of the proof for lifting soundness and completeness of similarities from
Llcc to LLR, we show an outline of the proof in Fig. 11. The diagram shows fully abstract
translations between the calculi LLR, Lname , and Llcc defined and studied in Sections 5
and 6, where Corollary 5.32 and Theorem 6.16 show full abstractness for W and N , re-
spectively. These fully-abstract translations that are also surjective, and the identity on
letrec-free expressions, allow us to prove that s1 ≤LR s2 ⇐⇒ N(W (s1)) ≤lcc N(W (s2)).
By Theorem 4.37 in Llcc, this is equivalent to N(W (s1)) 4o

lcc N(W (s2)). The proof is
completed by using the translations by transferring the equations back and forth between
LLR and Llcc in this section in order to finally show that s1 ≤LR s2 ⇐⇒ s1 4

o
LR,QCE

s2 in
Theorem 7.6.

7.2. Similarity in LLR. The definition of LLR-WHNFs implies that they are of the form
R[v], where v is either an abstraction λx.s or a constructor application (c s1 . . . sar(ci)), and
where R is an LLR-AWHNF-context according to the grammar R ::= [·] | (letrec Env in [·])
if v is an abstraction, and R is an LLR-CWHNF-context according to the grammar R ::=
[·] | (letrec Env in [·]) | (letrec x1 = [·], {xi = xi−1}

m
i=2,Env in xm) if v is a constructor

application. Note that LLR-AWHNF-contexts and LLR-CWHNF-contexts are special LLR-
reduction contexts, also called LLR-WHNF-contexts.

First we show that finite simulation (see [SSM08]) is correct for LLR:

Definition 7.1. Let ≤LR,QCE
be defined for LLR as instantiating the relation ≤Q in Def-

inition 2.6 with the closed subcalculus of the calculus LLR and the set Q with QCE from
Definition 4.38.

The relation 4LR,QCE
is Q-similarity (Definition 2.5) instantiated for the calculus LLR

with the set of contexts QCE (Definition 4.38). Its open extension is denoted with 4o
LR,QCE

.

Proposition 7.2. Let s1, s2 be closed EL-expressions. Then s1 ≤LR s2 iff s1 ≤LR,QCE
s2.

46 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Proof. The ⇒ direction is trivial. We show ⇐, the nontrivial part: Assume that the
inequation s1 ≤LR,QCE

s2 holds. Then N(W (s1)) ≤lcc,QCE
N(W (s2)), since for every n ≥ 0

and context Q = Qn(. . . (Q2(Q1[]) . . .)) with Qi ∈ QCE , we have N(W (Q)) = Q, and also
Q(si) ↓LR ⇐⇒ Q(si) ↓lcc , since N ◦W is convergence-equivalent and compositional, and the
identity on letrec-free expressions. Now Theorem 4.39 shows N(W (s1)) ≤lcc N(W (s2)),
and then Theorem 6.16 shows s1 ≤LR s2.

The following lemma is helpful in applying Theorem 4.8.

Lemma 7.3. The closed part of the calculus LLR is convergence-admissible: For all contexts
Q ∈ QCE , and closed LLR-WHNFs w: Q(s)↓LRw iff ∃v : s↓LRv and Q(v)↓LRw.

Proof. “⇒”: First assume Q is of the form ([·] r) for closed r. Let (s r)↓LRw. There are two

cases, which can be verified by induction on the length k of a reduction sequence (s r)
LR,k
−−−→

w: (s r)
LR,∗
−−−→ ((λx.s′) r)

LR,∗
−−−→ w, where s

LR,∗
−−−→ (λx.s′), and the claim holds. The other case

is (s r)
LR,∗
−−−→ (letrec Env in ((λx.s′) r))

LR,∗
−−−→ w, where s

LR,∗
−−−→ (letrec Env in (λx.s′)).

In this case ((letrec Env in (λx.s′)) r)
LR,(lapp)
−−−−−−→ (letrec Env in ((λx.s′) r))

LR,∗
−−−→ w, and

thus the claim is proven. The other cases where Q is of the form (caseT [·] of . . .) can be
proven similarly.
The “⇐”-direction can be proven using induction on the length of reduction sequences.

Lemma 7.4. In LLR, the equation (≤c
LR)

o = ≤LR holds.

Proof. If s, t are (open) EL-expressions with s ≤LR t, then (λx1. . . . xn.s) s1 . . . sn ≤c
LR

(λx1. . . . xn.t) s1 . . . sn for closed expressions si, and then by correctness of reduction in
LLR, σ(s) ≤

c
LR σ(t), and hence ≤LR ⊆ (≤c

LR)
o.

If for all closing EL-substitutions σ: σ(s) ≤c
LR σ(t), then using the fully abstract

translations N ◦ W , we obtain N ◦ W (σ)(N ◦ W (s)) ≤c
lcc N ◦ W (σ)(N ◦ W (t)), hence

N ◦W (s) ≤c
lcc (N ◦W (t)) by Theorem 4.39. Again using fully abstractness of N ◦W , we

obtain s ≤LR t.

Theorem 7.5. In LLR, for closed EL-expressions s and t the statements s 4LR,QCE
t,

s ≤LR,QCE
t and s ≤LR t are all equivalent.

Proof. Lemma 7.3 shows that Theorem 4.8 is applicable for the testing contexts from QCE ,
i.e. 4LR,QCE

= ≤LR,QCE
and Proposition 7.2 shows ≤LR,QCE

= ≤c
LR

For open EL-expressions, we can lift the properties from Llcc, which also follows from
full abstraction of N ◦W and from Lemma 4.40.

The results above imply the following theorem:

Main Theorem 7.6. ≤LR = 4o
LR,QCE

.

Proof. Theorem 7.5 shows 4LR,QCE
= ≤LR,QCE

= ≤c
LR, hence 4o

LR,QCE
= (≤c

LR)
o. Then

Lemma 7.4 shows (≤c
LR)

o = ≤LR = 4o
LR,QCE

.

The Main Theorem 7.6 implies that our embedding of Llcc into the call-by-need letrec
calculus LLR (modulo ∼) is isomorphic w.r.t. the corresponding term models, i.e.

Theorem 7.7. The identical embedding ι : Eλ → EL is an isomorphism according to
Definition 2.7.

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 47

Remark 7.8. Consider a polymorphically typed variant of LLR, say Lpoly
LR , and a corre-

sponding type-indexed contextual preorder ≤LR,poly,τ which relates expressions of polymor-
phic type τ and where the testing contexts are restricted to well-typed contexts, i.e. for
s, t of type τ the inequality s ≤LR,poly,τ t holds iff for all contexts C such that C[s] and
C[t] are well-typed: C[s]↓LR =⇒ C[t]↓LR. Obviously for all expressions s, t of type τ the
inequality s ≤LR t implies s ≤LR,poly,τ t, since any test (context) performed for ≤LR,poly,τ

is also included in the tests for ≤LR (there are more contexts). Thus the main theorem
implies that 4o

LR,QCE
is sound w.r.t. the typed preorder ≤LR,poly,τ . Of course completeness

does not hold, and requires another definition of similarity which respects the typing.

7.3. Similarity up to ∼LR. A more comfortable tool to prove program equivalences in
LLR is the following similarity definition which allows to simplify intermediate expressions
that are known to be equivalent.

Definition 7.9 (Similarity up to ∼LR). Let 4LR,∼ be the greatest fixpoint of the following
operator FLR,∼ on closed EL-expressions:

We define an operator FLR,∼ on binary relations η on closed Llcc-expressions:
s FLR,∼(η) t iff the following holds:

(1) If s ∼LR λx.s′ then there are two possibilities: (i) if t ∼LR (c t1 . . . tn) then s′ ∈ cBotLR,
or (ii) if t ∼LR λx.t′ then for all closed r : ((λx.s′) r) η ((λx.t′) r);

(2) If s ∼LR (c s1 . . . sn) then t ∼LR (c t1 . . . tn) and si η ti for all i.

Lemma 7.10. ≤c
LR ⊆ 4LR,∼

Proof. We show that η := ≤c
LR is FLR,∼-dense, i.e. η ⊆ FLR,∼(η).

Let s η t and s ∼LR λx.s′. Since s ≤c
LR t either t ∼LR λx.t′ or t ∼LR c t1 . . . tn and

s′ ∈ cBotLR. For the latter case we are finished. For the former case we have λx.t′ ∼c
LR t.

Since ≤c
LR is a precongruence, this implies ((λx.s′) r) ≤LR ((λx.t′) r) for all closed EL-

expressions r. Thus we conclude s FLR,∼(η) t.
Now let s η t and s ∼c

LR c s1 . . . sn. Then t ∼c
LR (c t1 . . . tn) by Proposition 6.18.

The contexts Ci := (case [] of . . . (c x1 . . . xn → xi) . . .) where all other right hand sides
of case-alternatives are ⊥, show that also si ≤LR ti must hold, since otherwise s ≤c

LR t
cannot hold. Thus also in this case s FLR,∼(η) t holds.

Lemma 7.11. N(W (4LR,∼)) ⊆ 4lcc,∼.

Proof. We show that η := {(N(W (s)), N(W (t))) | s 4LR,∼ t} is Flcc,∼-dense (see Definition
4.43), i.e. η ⊆ Flcc,∼(η). Let s 4LR,∼ t for closed s, t. If N(W (s)) ∼lcc λx.s′, then also
s ∼LR λx.s′. Now there are two cases: If t ∼LR (c t1 . . . tn) then s′ ∈ cBotLR must hold.
Then also s′ ∈ cBot and N(W (t)) ∼lcc (c t1 . . . tn) and we are finished. If t ∼LR λx.t′

then for all closed EL-expressions r: (λx.s′) r 4LR,∼ (λx.t′) r (by unfolding the fixpoint
equation for FLR,∼). Since N ◦W is surjective, compositional and fully abstract, this also
shows N(W (λx.s′)) r η N(W (λx.t′)) r for all Llcc-expressions r.

If N(W (s)) ∼lcc (c s1 . . . sn), then also s ∼LR (c s1 . . . sn). Now s 4LR,∼ t shows
that t ∼LR (c t1 . . . tn) such that for all i: si 4LR,∼ ti. Hence (si, ti) ∈ η and also
N(W (t)) ∼lcc (c t1 . . . tn), since N ◦W is fully abstract.

48 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

Theorem 7.12. ≤LR = 4o
LR,∼

Proof. For the closed relations, one direction of the equation 4LR,∼ = ≤c
LR is Lemma 7.10,

the other direction follows from Lemma 7.11, since s 4LR,∼ t implies N(W (s)) 4lcc,∼

N(W (t)) which in turn implies N(W (s)) ≤c
lcc N(W (t)) and finally, full-abstraction of N ◦W

shows s ≤c
LR t.

For the open extension the claimed equality holds, since s ≤LR t iff σ(s) ≤LR σ(t) for
all closing substitutions σ: This holds, since for σ = {x1 7→ s1, . . . , xn 7→ sn} the equation
σ(s) ∼LR letrec x1 = s1, . . . , xn = sn in s holds by correctness of the general copy rule
(gcp) (Proposition 5.34) and of garbage collection (gc) (Theorem 3.7).

We demonstrate the use of similarity up to ∼LR in the following example:

Example 7.13. As an example we prove the list law R[map (λx .True) (repeat u)] ∼LR

R′[(repeat True)] where u is a closed expression and R′, R, resp. contains the definition of
repeat , or repeat and map, resp., i.e. the corresponding EL-expressions are:

s := letrec

repeat = λx .Cons x (repeat x),
map = λf .λxs.caseList xs of (Nil → Nil) (Cons y ys → Cons (f y) (map f ys))
in map (λx .True) (repeat u)

t := letrec

repeat = λx .Cons x (repeat x),
in repeat True

Let η := {(t, s), (s, t)}∪{(True, True)}. We show that η ⊆ FLR,∼(η) which implies s 4LR,∼ t
as well as t 4LR,∼ s and thus by Theorem 7.12 also s ∼LR t.

Evaluating s and t in normal order first shows: s ∼LR v1, t ∼LR v2 with

v1 = letrec

repeat = λx .Cons x (repeat x),
map = λf .λxs.caseList xs of (Nil → Nil) (Cons y ys → Cons (f y) (map f ys))
f1 = (λx.True), x1 = t, xs1 = Cons x′1 x′2, x

′
1 = x1, x

′
2 = (repeat t), y1 = x ′

1 , ys1 = x ′
2

in Cons (f1 y1) (map f1 ys1)

v2 = letrec

repeat = λx .Cons x (repeat x),
x1 = True

in Cons x1 (repeat x1)

Using correctness of garbage collection, copying of bindings (gcp), shifting constructors over
letrec, and the other correct reduction rules (see Theorem 3.7 and Proposition 5.34), we
can simplify as follows: v1 ∼LR Cons True s and v2 ∼LR Cons True t. Now the proof is
finished, since obviously True η True and s η t, t η s.

8. Conclusion

In this paper we have shown that co-inductive applicative bisimilarity, in the style of Howe,
and also the inductive variant, is equivalent to contextual equivalence in a deterministic call-
by-need calculus with letrec, case, data constructors, and seq which models the (untyped)
core language of Haskell. This also shows soundness of untyped applicative bisimilarity

SIMULATION IN THE CALL-BY-NEED LAMBDA CALCULUS 49

for the polymorphically typed variant of LLR. As a further work one may try to estab-
lish a coincidence of the typed applicative bisimilarity and contextual equivalence for a
polymorphically typed core language of Haskell.

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments.

References

[AB97] Zena M. Ariola and Stefan Blom. Cyclic lambda calculi. In Mart́ın Abadi and Takayasu Ito,
editors, TACS 1997, volume 1281 of Lecture Notes in Comput. Sci., pages 77–106. Springer,
1997.

[AB02] Z. M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Ann. Pure

Appl. Logic, 117:95–168, 2002.
[Abr90] S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics in Functional

Programming, pages 65–116. Addison-Wesley, 1990.
[AF97] Z. M. Ariola and M Felleisen. The call-by-need lambda calculus. J. Funct. Programming,

7(3):265–301, 1997.
[AFM+95] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda

calculus. In POPL 1995, pages 233–246. ACM, 1995.
[AK94] Z. M. Ariola and J. W. Klop. Cyclic Lambda Graph Rewriting. In LICS 1994, pages 416–425.

IEEE, 1994.
[AO93] S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. Inf. Comput.,

105(2):159–267, 1993.
[Bar84] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam,

New York, 1984.
[DBG97] Louise A. Dennis, Alan Bundy, and Ian Green. Using a generalisation critic to find bisimulations

for coinductive proofs. In CADE 1997, volume 1249 of Lecture Notes in Comput. Sci., pages
276–290, London, UK, UK, 1997. Springer-Verlag.

[Fel91] M. Felleisen. On the expressive power of programming languages. Sci. Comput. Programming,
17(1–3):35–75, 1991.

[Gol05] M. Goldberg. A variadic extension of Curry’s fixed-point combinator. Higher-Order and Symbolic

Computation, 18(3-4):371–388, 2005.
[Gor99] A. D. Gordon. Bisimilarity as a theory of functional programming. Theoret. Comput. Sci., 228(1-

2):5–47, 1999.
[How89] D. Howe. Equality in lazy computation systems. In LICS 1989, pages 198–203. IEEE, 1989.
[How96] D. Howe. Proving congruence of bisimulation in functional programming languages. Inform. and

Comput., 124(2):103–112, 1996.
[Jef94] A. Jeffrey. A fully abstract semantics for concurrent graph reduction. In LICS 1994, pages 82–91.

IEEE, 1994.
[JV06] P. Johann and J. Voigtländer. The impact of seq on free theorems-based program transforma-

tions. Fund. Inform., 69(1–2):63–102, 2006.
[KKSdV97] R. Kennaway, J. W. Klop, M. Ronan Sleep, and F.-J. de Vries. Infinitary lambda calculus.

Theoret. Comput. Sci., 175(1):93–125, 1997.
[KW06] V. Koutavas and M. Wand. Small bisimulations for reasoning about higher-order imperative

programs. In POPL 2006, pages 141–152. ACM, 2006.
[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In POPL 1993, pages 144–154. ACM,

1993.
[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Comput. Sci.

Springer, 1980.
[Mil99] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge university press,

1999.
[Mor68] J.H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, MIT, 1968.

50 M. SCHMIDT-SCHAUSS, D. SABEL, AND E. MACHKASOVA

[MOW98] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. J. Funct. Program-

ming, 8:275–317, 1998.
[MS99] A. K. D. Moran and D. Sands. Improvement in a lazy context: An operational theory for

call-by-need. In POPL 1999, pages 43–56. ACM, 1999.
[MSS10] M. Mann and M. Schmidt-Schauß. Similarity implies equivalence in a class of non-deterministic

call-by-need lambda calculi. Inform. and Comput., 208(3):276 – 291, 2010.
[NH09] K. Nakata and M. Hasegawa. Small-step and big-step semantics for call-by-need. J. Funct.

Program., 19:699–722, 2009.
[Pey03] S. Peyton Jones. Haskell 98 language and libraries: the Revised Report. Cambridge University

Press, 2003. www.haskell.org.
[Pit97] A. M. Pitts. Operationally-based theories of program equivalence. In Semantics and Logics of

Computation. Cambridge University Press, 1997.
[Pit11] A. M. Pitts. Howe’s method for higher-order languages. In D. Sangiorgi and J. Rutten, editors,

Advanced Topics in Bisimulation and Coinduction, volume 52 of Cambridge Tracts Theoret.

Comput. Sci., chapter 5, pages 197–232. Cambridge University Press, 2011.
[Plo75] G. D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. Theoret. Comput. Sci.,

1:125–159, 1975.
[Ses97] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Programming, 7(3):231–264, 1997.
[SKS11] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order lan-

guages. ACM Trans. Program. Lang. Syst., 33(1):5, 2011.
[SS07] M. Schmidt-Schauß. Correctness of copy in calculi with letrec. In RTA 2007, volume 4533 of

Lecture Notes in Comput. Sci., pages 329–343. Springer, 2007.
[SSM08] M. Schmidt-Schauß and E. Machkasova. A finite simulation method in a non-deterministic call-

by-need calculus with letrec, constructors and case. In RTA 2008, number 5117 in Lecture Notes
in Comput. Sci., pages 321–335. Springer-Verlag, 2008.

[SSMS13] M. Schmidt-Schauß, E. Machkasova, and D. Sabel. Extending Abramsky’s lazy lambda calculus:
(non)-conservativity of embeddings. In RTA 2013, volume 21 of LIPIcs, pages 239–254, Dagstuhl,
Germany, 2013. Schloss Dagstuhl.

[SSNSS08] M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of compositional
translations for observational semantics. In 5th IFIP TCS 2008, volume 273 of IFIP, pages
521–535. Springer, 2008.

[SSNSS09] M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, and D. Sabel. Adequacy of compositional
translations for observational semantics. Frank report 33, Inst. f. Informatik, Goethe-University,
Frankfurt, 2009. http://www.ki.informatik.uni-frankfurt.de/papers/frank/ .

[SSS11] D. Sabel and M. Schmidt-Schauß. A contextual semantics for Concurrent Haskell with futures.
In PPDP 2011, pages 101–112, New York, NY, USA, 2011. ACM.

[SSS12] David Sabel and Manfred Schmidt-Schauß. Conservative concurrency in Haskell. In Nachum
Dershowitz, editor, LICS 2012, pages 561–570. IEEE, 2012.

[SSSM10] M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Simulation in the call-by-need lambda-
calculus with letrec. In RTA 2010, volume 6 of LIPIcs, pages 295–310. Schloss Dagstuhl, 2010.

[SSSM11] M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Counterexamples to applicative simulation
and extensionality in non-deterministic call-by-need lambda-calculi with letrec. Inf. Process.

Lett., 111(14):711–716, 2011.
[SSSS08] M. Schmidt-Schauß, M. Schütz, and D. Sabel. Safety of Nöcker’s strictness analysis. J. Funct.

Programming, 18(04):503–551, 2008.
[SW01] D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. Cambridge university

press, 2001.
[VJ07] J. Voigtländer and P. Johann. Selective strictness and parametricity in structural operational

semantics, inequationally. Theor. Comput. Sci, 388(1–3):290–318, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://www.ki.informatik.uni-frankfurt.de/papers/frank/

	1. Introduction
	Motivation
	Our Contribution
	Related Work
	Outline

	2. Common Notions and Notations for Calculi
	3. Three Calculi
	3.1. The Call-by-Need-Calculus LR
	3.2. The Call-by-Name Calculus LNAME
	3.3. The Extended Lazy Lambda Calculus Llcc

	4. Properties of Similarity and Equivalences in LCC
	4.1. Characterizations of Similarity in Deterministic Calculi
	4.2. Applicative simulation in LCC

	5. The Translation W
	5.1. Calculus for Infinite Trees Ltree
	5.2. Standardization of Tree Reduction
	5.3. Equivalence of Tree-Convergence and LR-Convergence
	5.4. Equivalence of Infinite Tree Convergence and LNAME-convergence

	6. The Translation N
	6.1. Convergence Equivalence of N

	7. On Similarity in LR
	7.1. Overview of soundness and completeness proofs for similarities in LR
	7.2. Similarity in LR
	7.3. Similarity up to simcLR

	8. Conclusion
	Acknowledgements
	References

