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Abstract. Networks of timed automata (NTA) are widely used to model distributed
real-time systems. Quite often in the literature, the automata are allowed to share clocks,
i.e. transitions of one automaton may be guarded by conditions on the value of clocks reset
by another automaton. This is a problem when one considers implementing such model
in a distributed architecture, since reading clocks a priori requires communications which
are not explicitly described in the model. We focus on the following question: given an
NTA A1 ‖ A2 where A2 reads some clocks reset by A1, does there exist an NTA A′

1 ‖ A′
2

without shared clocks with the same behavior as the initial NTA? For this, we allow the
automata to exchange information during synchronizations only, in particular by copying
the value of their neighbor’s clocks. We discuss a formalization of the problem and define
an appropriate behavioural equivalence. Then we give a criterion using the notion of
contextual timed transition system, which represents the behavior of A2 when in parallel
with A1. Finally, we effectively build A′

1 ‖ A′
2 when it exists.

Introduction

Timed automata [AD94] are one of the most famous formal models for real-time systems.
They have been deeply studied and very mature tools are available, like Uppaal [BDL04],
Epsilon [CGL93] and Kronos [BDM+98].

Networks of Timed Automata (NTA) are a natural generalization to model real-time
distributed systems. In this formalism, each automaton has a set of clocks that constrain
its real-time behavior. But quite often in the literature, the automata are allowed to share
clocks, which provides a special way of making the behavior of one automaton depend
on what the others do. Actually shared clocks are relatively well accepted and can be a
convenient feature for modeling systems. Imagine for instance several agents performing
together a distributed task according to a predefined schedule. In a typical implementation
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the schedule would be sent to the agents at the beginning and every agent would store its
own copy of the schedule. But for a (simplified) model of the system, it may be easier to
have one timed automaton modeling a single copy of the schedule and every agent referring
to it via shared clocks.

Since NTA are almost always given a sequential semantics, shared clocks can be handled
very easily even by tools: once the NTA is transformed into a single timed automaton by
the classical product construction, the notion of distribution is lost and the notion of shared
clock itself becomes meaningless. Nevertheless, implementing a model with shared clocks
in a multi-core architecture is not straightforward since reading clocks a priori requires
communications which are not explicitly described in the model.

Here we are concerned with the expressive power of shared clocks according to the
distributed nature of the system. We are aware of only one previous study about this
aspect, presented in [LPW07]. Our purpose is to identify NTA where sharing clocks could
be avoided, i.e. NTA which syntactically use shared clocks, but whose semantics could be
achieved by another NTA without shared clocks. For simplicity, we look at NTA made
of two automata A1 and A2 where only A2 reads clocks reset by A1. The first step is to
formalize which aspect of the semantics we want to preserve in this setting. Then the idea
is essentially to detect cases where A2 can avoid reading a clock because its value does not
depend on the actions that are local to A1 and thus unobservable to A2. To generalize
this idea we have to compute the knowledge of A2 about the state of A1. We show that
this knowledge is maximized if we allow A1 to communicate its state to A2 each time they
synchronize on a common action.

In order to formalize our problem we need an appropriate notion of behavioral equiv-
alence between two NTA. We explain why classical comparisons based on the sequential
semantics, like timed bisimulation, are not sufficient here. We need a notion that takes the
distributed nature of the system into account. That is, a component cannot observe the
moves and the state of the other and must choose its local actions according to its partial
knowledge of the state of the system. We define the notion of contextual timed transition
systems (contextual TTS) in order to formalize this idea.

Then we express the problem of avoiding shared clocks in terms of contextual TTS and
we give a characterization of the NTA for which shared clocks can be avoided. Finally we
effectively construct an NTA without shared clocks with the same behavior as the initial one,
when it exists. A possible interest is to allow a designer to use shared clocks as a high-level
feature in a model of a protocol, and rely on our transformation to make it implementable.

Related work. The semantics of time in distributed systems has already been debated. The
idea of localizing clocks has already been proposed and some authors [ABG+08, DL07,
BJLY98] have even suggested to use local-time semantics with independently evolving
clocks. Here we stay in the classical setting of perfect clocks evolving at the same speed.
This is a key assumption that provides an implicit synchronization and lets us know some
clock values without reading them.

Many formalisms exist for real-time distributed systems, among which NTA [AD94] and
time Petri nets [Mer74]. So far, their expressiveness was compared [BCH+05, BR08, CR06,
Srb08] essentially in terms of sequential semantics that forget concurrency. In [BCH12],
we defined a concurrency-preserving translation from time Petri nets to networks of timed
automata. This transformation uses shared clocks and the question whether these could be
avoided remained open.
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While partial-order semantics and unfoldings are well known for untimed systems, they
have been very little studied for distributed real-time systems [CCJ06, BHR06]. Partial
order reductions for (N)TA were proposed in [Min99, BJLY98, LNZ05]. Behavioral equiv-
alence relations for distributed systems, like history-preserving bisimulations, were defined
for untimed systems only [BDKP91, vGG01].

Finally, our notion of contextual TTS deals with knowledge of agents in distributed
systems. This is the aim of epistemic logics [HFMV95], which have been extended to
real-time in [WL04, Dim09]. Our notion of contextual TTS also resembles the technique
of partitioning states based on observation, used in timed games with partial observabil-
ity [BDMP03, DLLN09].

Organization of the paper. The paper is organized as follows. Section 1 recalls basic notions
about TTS and NTA. Section 2 presents the problem of avoiding shared clocks on examples
and rises the problem of comparing NTA component by component. For this, the notion
of contextual TTS is developed in Section 3. The problem of avoiding shared clocks is
formalized and characterized in terms of contextual TTS. Then Section 4 presents our
construction.

1. Preliminaries

1.1. Timed Transition Systems. The behavior of timed systems is often described as
timed transition systems.

Definition 1.1. A timed transition system (TTS) is a tuple (S, s0,Σ,→) where S is a set
of states, s0 ∈ S is the initial state, Σ is a finite set of actions disjoint from R≥0, and
→ ⊆ S × (Σ ∪ R≥0)× S is a set of edges.

For any a ∈ Σ ∪ R≥0, we write s
a
−→ s′ if (s, a, s′) ∈ →, and s

a
−→ if for some s′,

(s, a, s′) ∈ →. We define the transition relation ⇒ as:

• s
ε
=⇒ s′ if s(

ε
−→)∗s′,

• ∀a ∈ Σ, s
a
=⇒ s′ if s(

ε
−→)∗

a
−→ (

ε
−→)∗s′,

• ∀d ∈ R≥0, s
d
=⇒ s′ if s(

ε
−→)∗

d0=⇒ (
ε
−→)∗ · · ·

dn=⇒ (
ε
−→)∗s′, where

∑n
k=0 dk = d.

A path of a TTS is a possibly infinite sequence of transitions ρ = s
d0−→ s′0

a0−→

· · · sn
dn−→ s′n

an−→ · · · , where, for all i, di ∈ R≥0 and ai ∈ Σ. A path is initial if it

starts in s0. A path ρ = s
d0−→ s′0

a0−→ · · · sn
dn−→ s′n

an−→ s′n · · · generates a timed word

w = (a0, t0)(a1, t1) . . . (an, tn) . . . where, for all i, ti =
∑i

k=0 dk. The duration of w is
δ(w) = supi ti and the untimed word of w is λ(w) = a0a1 . . . an . . . . TW0(Σ) denotes the
set of finite timed words of duration 0 over Σ, i.e. TW0(Σ) = {w | δ(w) = 0 ∧ λ(w) ∈ Σ∗}.

Paths(Σ, d) denotes the set of finite paths of duration d over Σ. Lastly, we write s
w
−→ s′ if

there is a path from s to s′ that generates the timed word w.
In the sequel, we use the following notations: for i ∈ {1, 2}, Ti = (Si, s

0
i ,Σi,→i) is a

TTS, and Σ 6ε
i = Σi \ {ε}, where ε is the silent action.
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Product of timed transitions systems. The product of T1 and T2, denoted by T1 ⊗ T2, is the
TTS

(

S1 × S2, (s
0
1, s

0
2),Σ1 ∪Σ2,→

)

, where → is defined as:

• (s1, s2)
a
−→ (s′1, s2) iff s1

a
−→1 s

′
1, for any a ∈ Σ1 \ Σ

6ε
2,

• (s1, s2)
a
−→ (s1, s

′
2) iff s2

a
−→2 s

′
2, for any a ∈ Σ2 \ Σ

6ε
1,

• (s1, s2)
a
−→ (s′1, s

′
2) iff s1

a
−→1 s

′
1 and s2

a
−→2 s

′
2, for any a ∈ (Σ 6ε

1 ∩ Σ 6ε
2) ∪ R≥0.

Timed Bisimulations. Let R be a binary relation over S1 × S2. R is a strong (resp. weak)
timed bisimulation relation between T1 and T2 if s01 R s02 and s1 R s2 implies that, for any

a ∈ Σ ∪ R≥0, if s1
a
−→1 s

′
1, then, for some s′2, s2

a
−→2 s

′
2 (resp. s2

a
=⇒2 s

′
2) and s′1 R s′2; and

conversely, if s2
a
−→2 s

′
2, then, for some s′1, s1

a
−→1 s

′
1 (resp. s1

a
=⇒1 s

′
1) and s

′
1 R s′2.

We write T1 ≈ T2 (resp. T1 ∼ T2) when there is a strong (resp. weak) timed bisimulation
between T1 and T2.

1.2. Networks of Timed Automata. The set B(X) of clock constraints over the set
of clocks X is defined by the grammar g ::= x ⊲⊳ k | g ∧ g, where x ∈ X, k ∈ N and
⊲⊳ ∈ {<,≤,=,≥, >}. Invariants are clock constraints of the form i ::= x ≤ k | x < k | i ∧ i.

Definition 1.2. A network of timed automata (NTA) [AD94] is a parallel composition of
timed automata (TA) denoted as A1 ‖ · · · ‖ An, with Ai = (Li, ℓ

0
i ,Xi,Σi, Ei, Inv i) where Li

is a finite set of locations, ℓ0i ∈ Li is the initial location, Xi is a finite set of clocks, Σi is a
finite set of actions, Ei ⊆ Li×B(Xi)×Σi×2Xi ×Li is a set of edges, and Inv i : Li → B(Xi)
assigns invariants to locations.

If (ℓ, g, a, r, ℓ′) ∈ Ei, we also write ℓ
g,a,r
−−−→ ℓ′. For such an edge, g is the guard, a the

action and r the set of clocks to reset. Ci ⊆ Xi is the set of clocks reset by Ai and for i 6= j,
Ci ∩ Cj may not be empty.

Semantics. For simplicity, we give the semantics of a network of two TA A1 ‖ A2. We
denote by ((ℓ1, ℓ2), v) a state of the NTA, where ℓ1 and ℓ2 are the current locations, and
v : X → R≥0, with X = X1 ∪X2, is a clock valuation that maps each clock to its current
value. A state is legal only if its valuation v satisfies the invariants of the current locations,
denoted by v |= Inv1(ℓ1) ∧ Inv2(ℓ2). For each set of clocks r ⊆ X, the valuation v[r] is
defined by v[r](x) = 0 if x ∈ r and v[r](x) = v(x) otherwise. For each d ∈ R≥0, the valuation
v+d is defined by (v+d)(x) = v(x)+d for each x ∈ X. Then, the TTS generated by A1 ‖ A2

is TTS(A1 ‖ A2) = (S, s0,Σ1 ∪ Σ2,→), where S is the set of legal states, s0 = ((ℓ01, ℓ
0
2), v0),

where v0 maps each clock to 0, and → is defined by

Local action: ((ℓ1, ℓ2), v)
a
−→ ((ℓ′1, ℓ2), v

′) iff a ∈ Σ1 \ Σ
6ε
2, ℓ1

g,a,r
−−−→ ℓ′1, v |= g, v′ = v[r] and

v′ |= Inv1(ℓ
′
1), and similarly for a local action in Σ2 \Σ

6ε
1,

Synchronization: ((ℓ1, ℓ2), v)
a
−→ ((ℓ′1, ℓ

′
2), v

′) iff a 6= ε, ℓ1
g1,a,r1
−−−−→ ℓ′1, ℓ2

g2,a,r2
−−−−→ ℓ′2, v |=

g1 ∧ g2, v
′ = v[r1 ∪ r2] and v

′ |= Inv1(ℓ
′
1) ∧ Inv2(ℓ

′
2),

Time delay: ∀d ∈ R≥0, ((ℓ1, ℓ2), v)
d
−→ ((ℓ1, ℓ2), v + d) iff ∀d′ ∈ [0, d], v + d′ |= Inv1(ℓ1) ∧

Inv2(ℓ2).



AVOIDING SHARED CLOCKS IN NTA 5

A1

x ≤ 2

A2

x ≥ 1, a, {x} x ≤ 2 ∧ y ≤ 3, b

Figure 1: A2 could avoid reading clock x which belongs to A1.

A run of an NTA is an initial path in its TTS. The semantics of a TA A alone can also
be given as a TTS denoted by TTS(A) with only local actions and delay. A TA is non-Zeno
iff for every infinite timed word w generated by a run, time diverges (i.e. δ(w) = ∞). This
is a common assumption for TA. In the sequel, we always assume that the TA we deal with
are non-Zeno.

Remark 1.3. Let A1 ‖ A2 be such that X1 ∩ X2 = ∅. Then TTS(A1) ⊗ TTS(A2) is
isomorphic to TTS(A1 ‖ A2). This is not true in general when X1 ∩X2 6= ∅. For example,
in Fig. 2, taking b at time 0.5 and e at time 1 is possible in TTS(A1) ⊗ TTS(A2) but not
in TTS(A1 ‖ A2), since b resets x which is tested by e.

2. Need for Shared Clocks

2.1. Problem Setting. We are interested in detecting the cases where it is possible to
avoid sharing clocks, so that the model can be implemented using no other synchronization
than those explicitly described by common actions.

In this paper, we consider only the case of a network of two TA, A1 ‖ A2, such that A1

does not read the clocks reset by A2, and A2 may read the clocks reset by A1. We want
to know whether A2 really needs to read these clocks, or if another NTA A′

1 ‖ A′
2 could

achieve the same behavior as A1 ‖ A2 without using shared clocks.
A first remark is that our problem makes sense only if we insist on the distributed nature

of the system, made of two separate components. On the other hand, if the composition
operator is simply used as a convenient syntax for describing a system that is actually
implemented on a single sequential component, then a simple product automaton would
perfectly describe the system and every clock becomes local.

So, let us consider the example of Fig. 1, made of two TA, supposed to describe two
separate components. Remark that A2 reads clock x which is reset by A1. But a simple
analysis shows that this reading could be avoided: because of the condition on its clock y,
A2 can only take transition b before time 3; but x cannot reach value 2 before time 3, since
it must be reset between time 1 and 2. Thus, forgetting the condition on x in A2 would not
change the behavior of the system.

2.2. Transmitting Information during Synchronizations. Consider now the example
of Fig. 2. Here also A2 reads clock x which is reset by A1, and here also this reading
could be avoided. The idea is that A1 could transmit the value of x when synchronizing,
and afterwards any reading of x in A2 can be replaced by the reading of a new clock x′

dedicated to storing the value of x which is copied on the synchronization. Therefore A2

can be replaced by A′
2 pictured in Fig. 2, while preserving the behavior of the NTA, but

also the behavior of A2 w.r.t. A1.
We claim that we cannot avoid reading x without this copy of clock. Indeed, after the

synchronization, the maximal delay in the current location depends on the exact value of
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x ≤ 3

x ≤ 3

A1

ℓs

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x = 3
c

x < 1
b
{x}

y ≥ 2
s

x ≥ 1
e

{y}

x′ ≤ 4

y ≥ 2
s

x′ := x

x′ ≥ 1
e

{y}

A′
2

Figure 2: A2 reads x which belongs to A1 and A′
2 does not.

x, and even if we find a mechanism to allow A′
2 to move to different locations according

to the value of x at synchronization time, infinitely many locations would be required (for
example, if s occurs at time 2, x may have any value in (1, 2]).

Coding Transmission of Information. In order to model the transmission of information
during synchronizations, we allow A′

1 and A′
2 to use a larger synchronization alphabet than

A1 and A2. This allows A
′
1 to transmit discrete information, like its current location, to A′

2.
But we saw that A′

1 also needs to transmit the exact value of its clocks, which requires
a more general mechanism than the simple clock resets. For this we allow an automaton
to copy its neighbor’s clocks into local clocks during synchronizations. This is denoted
as updates of the form x′ := x in A′

2 (see Fig. 2). This feature is a bit unusual but has
already been studied: it is a restricted class of updatable timed automata as defined in
[BDFP04]. Moreover, as shown in [BDFP04], the class we consider, without comparisons
of clocks and with only equalities in the updates is not more expressive than classical TA
for the sequential semantics (any updatable TA of the class is bisimilar to a classical TA),
and the emptiness problem is PSPACE-complete, as in the case of classical TAs.

Semantics. TTS(A1 ‖ A2) can be defined as previously, with the difference that the synchro-

nizations are now defined by: ((ℓ1, ℓ2), v)
a
−→ ((ℓ′1, ℓ

′
2), v

′) iff ℓ1
g1,a,r1
−−−−→1 ℓ

′
1, ℓ2

g2,a,r2,u
−−−−−→2 ℓ

′
2

where u is a partial function from X2 to X1, v |= g1 ∧ g2, v
′ = (v[r1 ∪ r2])[u], and v′ |=

Inv(ℓ′1) ∧ Inv(ℓ′2). The valuation v[u] is defined by v[u](x) = v(u(x)) if u(x) is defined, and
v[u](x) = v(x) otherwise.

Here, we choose to apply the reset r1∪r2 before the update u, because we are interested
in sharing the state reached in A1 after the synchronization, and r1 may reset some clocks
in C1 ⊆ X1.

2.3. Towards a Formalization of the Problem. We want to know whether A2 really
needs to read the clocks reset by A1, or if another NTA A′

1 ‖ A′
2 could achieve the same

behavior as A1 ‖ A2 without using shared clocks. It remains to formalize what we mean by
“having the same behavior” in this context.

First, we impose that the locality of actions is preserved, i.e. A′
1 uses the same set

of local actions as A1, and similarly for A′
2 and A2. For the synchronizations, we have

explained earlier why we allow A′
1 and A′

2 to use a larger synchronization alphabet than A1
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p0x ≤ 1

p1 p2

A1

q0y ≤ 2

q1 y ≤ 2 q2y ≤ 2

q3 q4 q5 q6

A2

y ≤ 2

r1 y ≤ 2 r2y ≤ 2

A′
2

x = 1
d

x = 1
e
{x}

y = 2
c

y = 2
c

y = 2∧
x = 1

a

y = 2∧
x = 2
b

y = 2∧
x = 1

b

y = 2∧
x = 2
a

y = 2
c

y = 2
c

y = 2
a

y = 2
b

Figure 3: A2 needs to read the clocks of A1 and TTS(A1 ‖ A2) ∼ TTS(A1 ‖ A′
2).

and A2. The correspondence between both alphabets will be done by a mapping ψ (this
point will be refined later).

Now we have to ensure that the behavior is preserved. The first idea that comes
to mind is to impose bisimulation between ψ(TTS(A′

1 ‖ A′
2)) (i.e. TTS(A′

1 ‖ A′
2) with

synchronization actions relabeled by ψ) and TTS(A1 ‖ A2). But this is not sufficient, as
illustrated by the example of Fig. 3 (where ψ is the identity). Intuitively A2 needs to read
x when in q1 (and similarly in q2) at time 2, because this reading determines whether it
will perform a or b, and the value of x cannot be inferred from its local state given by q1
and the value of y. Anyway TTS(A1 ‖ A′

2) is bisimilar to TTS(A1 ‖ A2), and A
′
2 does not

read x. For the bisimulation relation R, it is sufficient to impose (p1, q1) R (p1, r1) and
(p2, q1) R (p2, r2).

What we see here is that, from the point of view of A2 and A′
2, these two automata

do not behave the same. As a matter of fact, when A2 fires one edge labeled by c, it has
not read x yet, and there is still a possibility to fire a or b, whereas when A′

2 fires one edge
labeled by c, there is no more choice afterwards. Therefore we need a relation between A′

2
and A2, and in the general case, a relation between A′

1 and A1 also.

3. Contextual Timed Transition Systems

As we are interested in representing a partial view of one of the components, we need to
introduce another notion, that we call contextual timed transition system. This resembles
the powerset construction used in game theory to capture the knowledge of an agent about
another agent [Rei84].

Notations. S = Σ 6ε
1 ∩ Σ 6ε

2 denotes the set of common actions. Q1 denotes the set of states
of TTS(A1). When s = ((ℓ1, ℓ2), v) is a state of TTS(A1 ‖ A2), we also write s = (s1, s2),
where s1 = (ℓ1, v|X1

) is in Q1, and s2 = (ℓ2, v|X2\X1
), where v|X is v restricted to X.

Definition 3.1 (UR(s)). Let TTS(A1) = (Q1, s0,Σ1,→1) and s ∈ Q1. The set of states
of A1 reachable from s by local actions in 0 delay (and therefore not observable by A2) is
denoted by UR(s) (for Unobservably Reachable) and defined as

UR(s) = {s′ ∈ Q1 | ∃w ∈ TW0(Σ1 \ Σ
6ε
2) : s

w
−→1 s

′} .
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3.1. Contextual TTS.

Contextual States. The states of this contextual TTS are called contextual states. They
can be regarded as possibly infinite sets of states of TTS(A1 ‖ A2) for which A2 is in the
same location and has the same valuation over X2 \X1. A2 may not be able to distinguish
between some states (s1, s2) and (s′1, s2). In TTSA1

(A2), these states are grouped into the
same contextual state. However, when X2 ∩ X1 6= ∅, it may happen that A2 is able to
perform a local action or delay from (s1, s2) and not from (s′1, s2), even if these states are
grouped in a same contextual state.

Definition 3.2 (Contextual TTS). Let TTS(A1 ‖ A2) = (Q, q0,Σ1 ∪ Σ2,⇒). Then, the
TTS of A2 in the context of A1, denoted by TTSA1

(A2), is the TTS (S, s0, (Σ2 \ S) ∪ (S×
Q1),→), where

• S = {(S1, s2) | ∀s1 ∈ S1, (s1, s2) ∈ Q},
• s0 = (S0

1 , s
0
2), s.t. (s

0
1, s

0
2) = q0 and S0

1 = UR(s01),
• → is defined by

– Local action: for any a ∈ Σ2 \ S, (S1, s2)
a
−→ (S′

1, s
′
2) iff ∃s1 ∈ S1 : (s1, s2)

a
=⇒ (s1, s

′
2),

and S′
1 = {s1 ∈ S1 | (s1, s2)

a
=⇒ (s1, s

′
2)}

– Synchronization: for any (a, s′1) ∈ S × Q1, (S1, s2)
a,s′

1−−→ (UR(s′1), s
′
2) iff ∃s1 ∈ S1 :

(s1, s2)
a
=⇒ (s′1, s

′
2)

– Local delay: for any d ∈ R≥0, (S1, s2)
d
−→ (S′

1, s
′
2) iff ∃s1 ∈ S1, ρ ∈ Paths(Σ1 \ Σ

6ε
2, d) :

(s1, s2)
ρ
=⇒ (s′1, s

′
2), and S

′
1 = {s′1 | ∃s1 ∈ S1, ρ ∈ Paths(Σ1 \ Σ

6ε
2, d) : (s1, s2)

ρ
=⇒ (s′1, s

′
2)}

For example, consider A1 and A2 of Fig. 3. The initial state is
(

{(p0, 0)}, (q0, 0)
)

. From
this contextual state, it is possible to delay 2 time units and reach the contextual state
(

{(p1, 2), (p2, 1)}, (q0, 2)
)

. Indeed, during this delay, A1 has to perform either e and re-
set x, or d. Now, from this contextual state, we can take an edge labeled by c, and
reach

(

{(p1, 2), (p2, 1)}, (q1, 2)
)

. Lastly, from this new state, a can be fired, because it is
enabled by ((p2, 1), (q1, 2)) in the TTS of the NTA, and the reached contextual state is
(

{(p2, 1)}, (q3, 2)
)

.

Unrestricted Contextual TTS. We say that there is no restriction in TTSA1
(A2) if whenever

a local step is possible from a reachable contextual state, then it is possible from all the
states (s1, s2) that are grouped into this contextual state. In the example above, there is
a restriction in TTSA1

(A2) because we have seen that a is enabled only by ((p2, 1), (q1, 2)),
and not by all states merged in

(

{(p1, 2), (p2, 1)}, (q1, 2)
)

. Formally, we use the predicate
noRestrictionA1

(A2) defined as follows.

Definition 3.3 (noRestrictionA1
(A2)). The predicate noRestrictionA1

(A2) holds iff for any
reachable state (S1, s2) of TTSA1

(A2), both

• ∀a ∈ Σ2 \ S, (S1, s2)
a
−→ (S′

1, s
′
2) ⇐⇒ ∀s1 ∈ S1, (s1, s2)

a
=⇒ (s1, s

′
2), and

• ∀d ∈ R≥0, (S1, s2)
d
−→ ⇐⇒ ∀s1 ∈ S1,∃ρ ∈ Paths(Σ1 \ Σ

6ε
2, d) : (s1, s2)

ρ
=⇒

Remark 3.4. If A2 does not read X1, then there is no restriction in TTSA1
(A2).
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A1 A2

x < 1, a

a
x ≥ 1, b, {x}

Figure 4: TTSQ1
(A1) ⊗ TTSA1

(A2) ≈ TTSQ1
(A1 ‖ A2), although there is a restriction in

TTSA1
(A2)

Sharing of Information During Synchronizations. Later we assume that during a synchro-
nization, A1 is allowed to transmit all its state to A2, that is why, in TTSA1

(A2), we
distinguish the states reached after a synchronization according to the state reached in A1.
We also label the synchronization edges by a pair (a, s1) ∈ S×Q1 where a is the action and
s1 the state reached in A1.

For the sequel, let TTSQ1
(A1) (resp. TTSQ1

(A1 ‖ A2)) denote TTS(A1) (resp. TTS(A1 ‖
A2)) where the synchronization edges are labeled by (a, s1), where a ∈ S is the action, and
s1 is the state reached in A1.

We can now state a nice property of unrestricted contextual TTS that is similar to the
distributivity of TTS over the composition when considering TA with disjoint sets of clocks
(see Remark 1.3). We say that a TA is deterministic if it has no ε-transition and for any
location ℓ and action a, there is at most one edge labeled by a from ℓ.

Lemma 3.5. If there is no restriction in TTSA1
(A2), then TTSQ1

(A1) ⊗ TTSA1
(A2) ≈

TTSQ1
(A1 ‖ A2). Moreover, when A2 is deterministic, this condition becomes necessary.

The example of Fig. 4 shows that the reciprocal does not hold when A2 is not determin-
istic. In order to prove Lemma 3.5, we first present two propositions. The first one relates
the reachable states of TTSA1

(A2) with those of TTSQ1
(A1)⊗TTSA1

(A2).

Proposition 3.6.

(1) For any reachable state (S1, s2) of TTSA1
(A2),

s1 ∈ S1 =⇒ (s1, (S1, s2)) is a reachable state of TTSQ1
(A1)⊗ TTSA1

(A2)
(2) noRestrictionA1

(A2) iff
for any reachable state (S1, s2) of TTSA1

(A2),
s1 ∈ S1 ⇐⇒ (s1, (S1, s2)) is a reachable state of TTSQ1

(A1)⊗ TTSA1
(A2)

Proof. (1) For any reachable state (S1, s2), let us denote by P (S1, s2) the fact that for
any s1 ∈ S1, (s1, (S1, s2)) is reachable in TTSQ1

(A1) ⊗ TTSA1
(A2). We give a recursive

proof. First, the initial state (S0
1 , s

0
2) satisfies P (S

0
1 , s

0
2) because for any s1 ∈ S0

1 = UR(s01),

∃w ∈ TW0(Σ1\Σ
6ε
2) : s

0
1

w
−→1 s1 and hence (s01, (S

0
1 , s

0
2))

w
−→ (s1, (S

0
1 , s

0
2)). Then, assume some

reachable state (S1, s2) of TTSA1
(A2) satisfies P (S1, s2) and show that any state (S′

1, s
′
2)

reachable in one step from (S1, s2) also satisfies P (S′
1, s

′
2). There can be three kinds of steps

from (S1, s2) in TTSA1
(A2).

(1) If for some a ∈ Σ2 \ S, (S1, s2)
a
−→ (S′

1, s
′
2), then for any s′1 ∈ S′

1 ⊆ S1, (s
′
1, (S1, s2))

a
−→

(s′1, (S
′
1, s

′
2)), i.e. P (S

′
1, s

′
2) holds.

(2) If for some (a, s′1) ∈ S × Q1, (S1, s2)
a,s′

1−−→ (S′
1, s

′
2), then S′

1 = UR(s′1), and for some

s1 ∈ S1, (s1, (S1, s2))
a,s′

1−−→ (s′1, (S
′
1, s

′
2)). By the same reasoning as for (S0

1 , s
0
2), for any

s′′1 ∈ S′
1 = UR(s′1), ∃w ∈ TW0(Σ1 \Σ

6ε
2) : (s

′
1, (S

′
1, s

′
2))

w
−→ (s′′1 , (S

′
1, s

′
2)). Hence P (S

′
1, s

′
2)

holds.
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(3) If for some d ∈ R≥0, (S1, s2)
d
−→ (S′

1, s
′
2), then ∃d1 ≤ d : (S1, s2)

d1−→ (S1
1 , s

1
2) ∧ ∃s11 ∈

S1
1 , s1 ∈ S1 : (s1, s2)

d1=⇒ (s11, s
1
2), that is (s11, (S

1
1 , s

1
2)) is reachable, and by time-

determinism, (S1
1 , s

1
2)

d−d1−−−→ (S′
1, s

′
2).

For the third case, take d1 small enough (but strictly positive) so that S1
1 = {s′1 | ∃s1 ∈

S1 : (s1, s2)
d1=⇒ (s11, s

1
2) ∧ s

′
1 ∈ UR(s11)}. That is, after some local actions that take no time,

A1 is able to perform a delay d1 during which no local action is enabled (such d1 exists
because of the non-zenoness assumption). With such d1, any state s′1 ∈ S1

1 is such that

s′1 ∈ UR(s11) for some s11 so that (s11, (S
1
1 , s

1
2)) is reachable. Therefore, ∃w ∈ TW0(Σ1 \Σ

6ε
2) :

(s11, (S
1
1 , s

1
2))

w
−→ (s′1, (S

1
1 , s

1
2)) and hence P (S1

1 , s
1
2) holds.

Since A1 is not Zeno, any delay in TTSA1
(A2) can be cut into a finite number of such

smaller global delays. Hence, for any (S1, s2) that satisfies P (S1, s2), for any d ∈ R≥0 such

that (S1, s2)
d
−→ (S′

1, s
′
2), P (S

′
1, s

′
2) holds.

(2, ⇒) (1) already gives that ∀s1 ∈ S1, (s1, (S1, s2)) is a reachable state. So it remains
to prove that, when noRestrictionA1

(A2), if (s1, (S1, s2)) is a reachable state, then s1 ∈ S1.
We say that a reachable state s = (s1, (S1, s2)) satisfies P (s) iff s1 ∈ S1.

Assume noRestrictionA1
(A2) and s = (s1, (S1, s2)) is a reachable state that satisfies

P (s). Then, any state s′ reachable in one step from s by some local action or delay a ∈
(Σ1∪Σ2)\S∪R≥0 or by some synchronization (a, s′1) ∈ S×Q1 matches one of the following
cases:

• if a ∈ Σ1 \ Σ 6ε
2, then s′ = (s′1, (S1, s2)) such that s′1 ∈ UR(s1) ⊆ S1 (by construction,

s1 ∈ S1 =⇒ UR(s1) ⊆ S1),
• if a ∈ Σ2 \Σ1, then s

′ = (s1, (S1, s
′
2)),

• if a ∈ R≥0, then s
′ = (s′1, (S

′
1, s

′
2)), where s

′
1 such that (s1, s2)

a
=⇒ (s′1, s

′
2) is in S

′
1 = {q′1 |

∃q1 ∈ S1, ρ ∈ Paths(Σ1 \ Σ
6ε
2, a) : (q1, s2)

ρ
=⇒ (q′1, s

′
2)},

• if (a, s′1) ∈ (S×Q1), then s
′ = (s′1, (UR(s

′
1), s

′
2)).

Therefore, any state s′ reached in one step from s also satisfies P (s′), and recursively, since
the initial state s0 = (s01, (UR(s

0
1), s

0
2)) satisfies P (s0), any reachable state s of TTSQ1

(A1)⊗
TTSA1

(A2) satisfies P (s).
(2, ⇐) By contradiction, assume there is a restriction in state (S1, s2) for local delay or

action a ∈ (Σ2 \ Σ1) ∪ R≥0 i.e. a is possible from some state (s′1, s2) but not from another
state (s1, s2) such that s′1, s1 ∈ S1. Then, after performing a from (s1, (S1, s2)), that is
reachable according to Proposition 3.6, we reach state (s1, (S

′
1, s

′
2)) such that s1 /∈ S′

1.

Proposition 3.7. If noRestrictionA1
(A2) then, for any timed word w over (Σ2\S)∪(S×Q1),

there exists at most one S1 such that, for some s2, (S
0
1 , s

0
2)

w
−→ (S1, s2) in TTSA1

(A2) (i.e.
S1 is uniquely determined by w, whatever the structure of A2).

Proof. Assuming noRestrictionA1
(A2), we show that, for any (S1

1 , s
1
2) reachable in TTSA1

(A2),
for any action or delay in (Σ2 \ S) ∪ (S ×Q1) ∪R≥0, there is at most one S1 such that, for
some s2, (S1, s2) is a successor of (S1

1 , s
1
2) by this action.

Indeed, by construction, and since there is no restriction,

• any successor of (S1
1 , s

1
2) by a local action is of the form (S1

1 , s
′
2),

• any successor of (S1
1 , s

1
2) by a synchronization (a, s′1) is of the form (UR(s′1), s

′
2),

• any successor of (S1
1 , s

1
2) by a delay d is of the form (S1, s

′
2) with S1 = {s′1 | ∃ρ ∈

Paths(Σ1 \ Σ
6ε
2, d), s1 ∈ S1

1 : s1
ρ
−→1 s

′
1}.
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Therefore, for any possible action or delay, S1 does not depend on the state of A2, and is
uniquely determined by this action or delay.

Since (S0
1 , s

0
2) is unique, for any timed word w over (Σ2 \ S) ∪ (S ×Q1), either w does

not describe a valid path in TTSA1
(A2), or there exists a unique S1 such that for some s2,

(S0
1 , s

0
2)

w
−→ (S1, s2) in TTSA1

(A2).

We can now prove Lemma 3.5.

Proof of Lemma 3.5. Assume noRestrictionA1
(A2), and define relation R as (s1, (S1, s2)) R

(s′1, s
′
2)

def
⇐⇒ s1 = s′1 ∧ s2 = s′2, for any reachable states (s1, (S1, s2)) of TTSQ1

(A1) ⊗
TTSA1

(A2) and (s′1, s
′
2) of TTSQ1

(A1 ‖ A2). By Proposition 3.6, since (s1, (S1, s2)) is
reachable, s1 ∈ S1. We show that R is a strong timed bisimulation.

First, the initial states are R-related: (s01, (S
0
1 , s

0
2)) R (s01, s

0
2). Then, if (s1, (S1, s2)) R

(s′1, s
′
2), four kinds of steps are possible:

• if for some a ∈ Σ1 \ Σ 6ε
2, (s1, (S1, s2))

a
−→ (s′1, (S1, s2)), then (s1, s2)

a
=⇒ (s′1, s2) and

(s′1, (S1, s2)) R (s′1, s2), and conversely.

• if for some a ∈ Σ2 \Σ1, (s1, (S1, s2))
a
−→ (s1, (S1, s

′
2)), then, ∀s11 ∈ S1, (s11, s2)

a
=⇒ (s11, s

′
2)

(because noRestrictionA1
(A2)), and in particular, (s1, s2)

a
=⇒ (s1, s

′
2) and (s1, (S1, s

′
2)) R

(s1, s
′
2), and conversely.

• if for some (a, s′1) ∈ S×Q1, (s1, (S1, s2))
a,s′

1−−→ (s′1, (S
′
1, s

′
2)), then (s1, s2)

a,s′
1==⇒ (s′1, s

′
2) and

(s′1, (S
′
1, s

′
2)) R (s′1, s

′
2), and conversely.

• if for some d ∈ R≥0, (s1, (S1, s2))
d
−→ (s′1, (S

′
1, s

′
2)), then (s1, s2)

d
=⇒ (s′1, s

′
2) (because

noRestrictionA1
(A2)), and (s′1, (S

′
1, s

′
2)) R (s′1, s

′
2), and conversely.

Now assume A2 is deterministic. Let relation R be a strong timed bisimulation between
TTSQ1

(A1)⊗ TTSA1
(A2) and TTSQ1

(A1 ‖ A2).
By contradiction, assume there is a restriction in TTSA1

(A2). Then there is a reachable
state (S1, s2) of TTSA1

(A2), and a local delay or action a ∈ (Σ2 \ Σ1) ∪ R≥0 such that, for
some s1, s

′
1 ∈ S1, (s1, s2) enables a in TTSQ1

(A1 ‖ A2), whereas (s
′
1, s2) does not.

By definition of a bisimulation, there also exist two states (p1, (P1, p2)) and (p′1, (P
′
1, p

′
2)

such that (p1, (P1, p2)) R (s1, s2) and (p′1, (P
′
1, p

′
2)) R (s′1, s2). That is, in particular,

(p′1, (P
′
1, p

′
2)) does not enable a. Moreover, these states can be chosen so that they are

reached by the same timed word over (Σ2 \ S) ∪ (S × Q1), and since A2 is deterministic,
p2 = p′2 = s2.

Now, we can assume that (S1, s2) is chosen so that it is the first state with a restriction
along an initial path. Then, the paths to (P1, s2) and (P ′

1, s2) generate the same timed word
over (Σ2 \ S) ∪ (S×Q1), and by Proposition 3.7, P1 = P ′

1 = S1.
Therefore, we have shown the existence of a state (p′1, (S1, s2)) in TTSQ1

(A1)⊗TTSA1
(A2)

that does not enable a, which means that (S1, s2) does not enable a in TTSA1
(A2). This

contradicts the fact that there exists s1 ∈ S1 such that (s1, s2) enables a.

We are now in condition to formalize our problem.

3.2. Need for Shared Clocks Revisited. We have argued in Section 2.3 that the ex-
istence of a NTA A′

1 ‖ A′
2 without shared clocks and such that ψ(TTSQ′

1
(A′

1 ‖ A′
2)) ∼

TTSQ1
(A1 ‖ A2) is not sufficient to capture the idea that A2 does not need to read the

clocks of A1. We are now equipped to define the relations we want to impose on the separate
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A1

x ≤ 1

A2

y ≤ 2

A′
2

y ≤ 2x = 1, d

x = 1, e, {x}

y = 2 ∧ x = 2, a

y = 2 ∧ x = 1, b

y = 2, a

y = 2, b

Figure 5: A2 needs to read the clocks of A1 and TTSA1
(A2) ∼ TTSA1

(A′
2).

components, namely ψ(TTSQ′
1
(A′

1)) ∼ TTSQ1
(A1) and ψ(TTSA′

1
(A′

2)) ∼ TTSA1
(A2). And

since we have seen the importance of labeling the synchronization actions in contextual
TTS by labels in S×Q1 rather than in S, the correspondence between the synchronization
labels of A′

1 ‖ A
′
2 with those of A1 ‖ A2 is now done by a mapping ψ : S′ ×Q′

1 → S×Q1.
This settles the problem of the example of Fig. 3 where TTSA1

(A′
2) 6∼ TTSA1

(A2) (here
A′

1 = A1), but as shown in Fig. 5, a problem remains. In this example, we can see that A2

needs to read clock x of A1 to know whether it has to perform a or b at time 2, and yet
TTSA1

(A2) ∼ TTSA1
(A′

2) (here also A′
1 = A1). The intuition to understand this is that

the contextual TTS merge too many states for the two systems to remain differentiable.
However we remark that here, the first condition that we have required in Section 2, namely
the global bisimulation between ψ(TTS(A′

1 ‖ A
′
2)) and TTS(A1 ‖ A2), does not hold.

3.2.1. Formalization. Now we show that the conjunction of global and local bisimulations
actually gives the good definition.

Definition 3.8 (Need for shared clocks). Given A1 ‖ A2 such that A1 does not read the
clocks of A2, A2 does not need to read the clocks of A1 iff there exists an NTA A′

1 ‖ A′
2

without shared clocks (but with clock copies during synchronizations), using the same sets
of local actions and a synchronization alphabet S′ related to the original one by a mapping
ψ : S′ ×Q′

1 → S×Q1, and such that

(1) ψ(TTSQ′
1
(A′

1 ‖ A
′
2)) ∼ TTSQ1

(A1 ‖ A2) and

(2) ψ(TTSQ′
1
(A′

1)) ∼ TTSQ1
(A1) and

(3) ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2).

Notice that this does not mean that the clock constraints that read X1 can simply be
removed from A2 (see Fig. 2).

Lemma 3.9. When there is no restriction in TTSA1
(A2), any NTA A′

1 ‖ A
′
2 which has no

shared clocks and which satisfies items 2 and 3 of Definition 3.8, also satisfies item 1.

Proof. When noRestrictionA1
(A2) holds, then by Lemma 3.5, TTSQ1

(A1)⊗ TTSA1
(A2) ≈

TTSQ1
(A1 ‖ A2). So for any NTA A′

1 ‖ A′
2 satisfying items 2 and 3 of Definition 3.8,

we have ψ(TTSQ′
1
(A′

1)) ⊗ ψ(TTSA′
1
(A′

2)) ∼ TTSQ1
(A1 ‖ A2). It remains to show that

ψ(TTSQ′
1
(A′

1 ‖ A′
2)) ≈ ψ(TTSQ′

1
(A′

1)) ⊗ ψ(TTSA′
1
(A′

2)). Remark that applying ψ to the
labels before doing the product allows more synchronizations than applying ψ on the TTS of
the system since ψ may merge different labels. We show that, in our case, the two resulting
TTS are bisimilar anyway.

For this, let R1 be a bisimulation relation between ψ(TTSQ′
1
(A′

1)) and TTSQ1
(A1), and

R2 be a bisimulation relation between ψ(TTSA′
1
(A′

2)) and TTSA1
(A2). We will build induc-

tively a bisimulation R between ψ(TTSQ′
1
(A′

1 ‖ A′
2)) and ψ(TTSQ′

1
(A′

1)) ⊗ ψ(TTSA′
1
(A′

2))

such that for any (q1, q2) and (r1, r2) such that (q1, q2) R (r1, r2), there exists a state s1 of
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TTSQ1
(A1) and a state s2 of TTSA1

(A2) such that q1 R1 s1 and r1 R1 s1 and q2 R2 s2
and r2 R2 s2. The inductive definition of R is as follows. The initial states (which are
the same in both sides) are in relation; R is preserved by delays; R is preserved by playing
local actions. The key is the treatment of synchronizations: when (q1, q2) R (r1, r2) and

q1
a1−→ q′1 in TTSQ1

(A1) and q2
a2−→ q′2 in TTSA1

(A2) with ψ(a1) = ψ(a2) = a, then the
existence of the s1 and s2 mentioned earlier ensures that there exists a state (r′1, r

′
2) in

ψ(TTSQ′
1
(A′

1 ‖ A
′
2)) such that (r1, r2)

a
−→ (r′1, r

′
2), and we set (q′1, q

′
2) R (r′1, r

′
2) for any such

(r′1, r
′
2).

3.2.2. A Criterion to Decide the Need for Shared Clocks. We are now ready to give a crite-
rion to decide whether shared clocks are necessary.

Theorem 3.10. When there is no restriction in TTSA1
(A2) holds, A2 does not need to

read the clocks of A1. When A2 is deterministic, this condition becomes necessary.

Proof of Theorem 3.10, necessary condition when A2 is deterministic. Like in the proof of
Lemma 3.9, we show that for any NTA A′

1 ‖ A′
2 satisfying items 2 and 3 of Definition 3.8,

ψ(TTSQ′
1
(A′

1 ‖ A′
2)) ∼ TTSQ1

(A1) ⊗ TTSA1
(A2). But, by Lemma 3.5, when A2 is deter-

ministic and TTSA1
(A2) has restrictions, TTSQ1

(A1)⊗TTSA1
(A2) is not timed bisimilar to

TTSQ1
(A1 ‖ A2) (not even weakly timed bisimilar since there are no ε-transitions). Hence

any NTA A′
1 ‖ A

′
2 satisfying items 2 and 3 of Definition 3.8, does not satisfy item 1.

We remark from the proof that when there is a restriction in TTSA1
(A2), even infinite

A′
1 and A′

2 would not help. Next section will be devoted to the constructive proof of the
direct part of this theorem.

The counterexample in Fig. 4 also works here to argue that the conditions of Lemma 3.9
and Theorem 3.10 are not necessary when A2 is not deterministic. Indeed A′

2 with only
one unguarded edge labeled by a and A′

1 = A1 satisfy the three items of Definition 3.8 but
there is a restriction in TTSA1

(A2).

4. Constructing a Network of Timed Automata without Shared Clocks

This section is dedicated to proving Theorem 3.10 by constructing suitable A′
1 and A′

2.
For simplicity, we assume that in A2, the guards on the synchronizations do not read X1.
Otherwise, the constraints that read X1 could be moved into the corresponding edges in A1,
with the intuition that, for a synchronization, each automaton can check the constraints
about its own clocks.

4.1. Construction. First, our A′
1 is obtained from A1 by replacing all the labels a ∈ S

on the synchronization edges of A1 by (a, ℓ1) ∈ S × L1, where ℓ1 is the output location of
the edge. Therefore the synchronization alphabet between A′

1 and A′
2 will be S

′ = S × L1,
which allows A′

1 to transmit its location after each synchronization.
Then, the idea is to build A′

2 as a product A1,2 ⊗ A2,mod (⊗ denotes the product of
TA as it is usually defined [AD94]), where A2,mod plays the role of A2 and A1,2 acts as a
local copy of A′

1, from which A2,mod reads clocks instead of reading those of A′
1. For this,

as long as the automata do not synchronize, A1,2 will evolve, simulating a run of A′
1 that

is compatible with what A′
2 knows about A′

1. And, as soon as A′
1 synchronizes with A′

2,
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A′
2 updates A1,2 to the actual state of A′

1. If the clocks of A1,2 always give the same truth
value to the guards and invariants of A2,mod than the actual value of the clocks of A′

1, then
our construction behaves like A1 ‖ A2. To check that this is the case, we equip A′

2 with an
error location, /, and edges that lead to it if there is a contradiction between the values of
the clocks of A′

1 and the values of the clocks of A1,2. The guards of these edges are the only
cases where A′

2 reads clocks of A′
1. Therefore, if / is not reachable, they can be removed

so that A′
2 does not read the clocks of A′

1. More precisely, a contradiction happens when
A2,mod is in a given location and the guard of an outgoing edge is true according to A1,2

and false according to A′
1, or vice versa, or when the invariant of the current location is

false according to A′
1 (whereas it is true according to A1,2, since A2,mod reads the clocks of

A1,2).
Namely, Smod = A′

1 ‖ (A1,2 ⊗ A2,mod ) where A1,2 and A2,mod are defined as follows.
A1,2 = (L1, ℓ

0
1,X

′
1,S

′ ∪ {ε}, E′
1, Inv

′
1), where

• each clock x′ ∈ X ′
1 is associated with a clock c(x′) = x ∈ X1 (c is a bijection from X ′

1 to
X1). For any clock constraint γ, γ′ denotes the clock constraint where any clock x of X1

is substituted by x′ of X ′
1.

• ∀ℓ ∈ L1, Inv
′
1(ℓ) = Inv1(ℓ)

′

• E′
1 = {ℓ1

g′,ε,r′

−−−→ ℓ2 | ∃a ∈ Σ1 \ Σ
6ε
2 : ℓ1

g,a,c(r′)
−−−−−→ ℓ2 ∈ E1}

(simulate local actions of A1)

∪ {ℓ
tt,(a,ℓ2),c
−−−−−−→ ℓ2 | ℓ ∈ L1 ∧ a ∈ S ∧ ∃ℓ1

g,a,r
−−−→ ℓ2 ∈ E1}

(update the state of A1,2 at each synchronization with A1)
where c denotes the assignment of any clock x′ ∈ X ′

1 with the value of its associated clock
c(x′) = x ∈ X1 (written x′ := x in Fig. 6).

A2,mod = (L2 ∪ {/}, ℓ02,X2 ∪X
′
1 ∪X1, (Σ2 \Σ1) ∪ S

′, E′
2, Inv

′
2), where

• ∀ℓ ∈ L2, Inv
′
2(ℓ) = Inv2(ℓ)

′ and Inv ′2(/) = tt,

• E′
2 = {ℓ1

g′,a,r
−−−→ ℓ2 | ℓ1

g,a,r
−−−→ ℓ2 ∈ E2 ∧ a /∈ S}

∪ {ℓ1
g,(a,ℓ),r
−−−−−→ ℓ2 | ℓ1

g,a,r
−−−→ ℓ2 ∈ E2 ∧ a ∈ S ∧ ℓ ∈ L1}

∪ {ℓ
¬Inv2(ℓ),ε,∅
−−−−−−−→ / | ℓ ∈ L2}

∪ {ℓ
g′∧¬g,ε,∅
−−−−−−→ / | ℓ

g,a,r
−−−→ ℓ′ ∈ E2 ∧ a /∈ S}

∪ {ℓ
¬g′∧g,ε,∅
−−−−−−→ / | ℓ

g,a,r
−−−→ ℓ′ ∈ E2 ∧ a /∈ S}.

For the example of Fig. 2, A1,2 and A2,mod are pictured in Fig. 6.
We now prove the correspondence between a state of Smod and two states of TTS(A1 ‖

A2) that are merged into the same state of TTSA1
(A2). This is stated in the following propo-

sition. A state of Smod is denoted as (s1, s1,2, s2) =
(

(ℓ1, v|X1
), (ℓ1,2, v|X′

1
), (ℓ2, v|X2\X1

)
)

.

For a given state of A1,2, s1,2 = (ℓ1,2, v|X′
1
), we denote by s′1,2 the state (ℓ1,2, v

′), where

v′ : X1 → R≥0 is defined as: for any x ∈ X1, v
′(x) = v(x′) (i.e. s′1,2 is a state of A1).

Reciprocally, for a given state of A1, s
′
1,2 = (ℓ1,2, v

′), s1,2 denotes the state (ℓ1,2, v), where

v : X ′
1 → R≥0 is defined as: for any x′ ∈ X ′

1, v(x
′) = v′(x).

Proposition 4.1. Let (s1, s1,2, s2) be a state of Smod . If along one path that leads to
(s1, s1,2, s2) no edge leading to / is enabled, then there exists S1 such that (S1, s2) is a
reachable state of TTSA1

(A2) and s1 and s′1,2 are both in S1.

Conversely, let (S1, s2) be a reachable state of TTSA1
(A2), and s1 and s′1,2 be some

states in S1. Then (s1, s1,2, s2) is a state of Smod .
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x′ ≤ 3

x′ ≤ 3

A1,2

ℓs

x′ ≤ 4 /

A2,mod

x′ ≥ 1
εa

x′ = 3
εc

x′ < 1
εb
{x′}

y ≥ 2
(s, ℓs)

x′ ≥ 1
e

{y}

¬(x ≤ 4)

x′ ≥ 1 ∧ x < 1

x′ < 1 ∧ x ≥ 1
(s, ℓs)

x′ := x

(s, ℓs)

x′ := x

(s, ℓs), x
′ := x

Figure 6: A1,2 and A2,mod for the example of Fig. 2 . We represent by dotted arcs the edges
leading to the error state, and by dashed arcs those used during synchronizations
to reset A1,2 to the actual state of A1.

Proof. Let (s1, s1,2, s2) be a reachable state of Smod , such that there is a path ρ from the
initial state (s01, s

0
1,2, s

0
2) to (s1, s1,2, s2) that does not enable any edges leading to / (except

maybe from (s1, s1,2, s2)). We give a recursive proof. First, for the initial state (s01, s
0
1,2, s

0
2)

of Smod , s
0
1 and s

0′
1,2 are both in S0

1 such that (S0
1 , s

0
2) is the initial state of TTSA1

(A2). Now,

assume this is true for some (p1, p1,2, p2) visited along ρ. That is, there exists P1 such that
(P1, p2) is reachable and p1, p

′
1,2 ∈ P1. Then, the next state s′ visited along ρ is reached

after one of the following steps:

• local action in A′
1: s

′ = (q1, p1,2, p2) such that q1 ∈ UR(p1) ⊆ P1,
• local action in A1,2: s

′ = (p1, q1,2, p2) such that q′1,2 ∈ UR(p′1,2) ⊆ P1,

• local action in A2: s
′ = (p1, p1,2, q2) such that there exists S′

1 such that (S′
1, q2) is reachable

from (P1, q2) by the same action, and, since no edge leading to / is enabled, both (p1, p2)
and (p′1,2, p2) enable this step in TTS(A1 ‖ A2). Therefore, p1, p

′
1,2 ∈ S

′
1.

• synchronization: s′ = (q1, q1,2, q2) such that there exists S′
1 = UR(q1) such that (S′

1, q2)
is reachable from (P1, q2) by the same action, and q1 = q′1,2 ∈ S′

1.

By recursion, (s1, s1,2, s2) also satisfies the property, that is, there exists S1 such that (S1, s2)
is reachable and s1, s

′
1,2 ∈ S1.

Conversely, let denote by P (S1, s2) the fact that for any reachable state (S1, s2) of
TTSA1

(A2), for any states s1, s
′
1,2 ∈ S1, (s1, s1,2, s2) is a reachable state of Smod . First,

for any s1, s
′
1,2 ∈ S0

1 = UR(s01), (s1, s1,2, s
0
2) is a reachable state, because by construction,

A1,2 can only mimic (as long as there is no synchronization) one possible behavior of A1 to
reach s1,2 from s01, therefore P (S

0
1 , s

0
2) holds. Assume that for some reachable state (S1, s2)

P (S1, s2) holds. Then any state reachable in one step from (S1, s2) is reached by one of the
following steps.

• If for some a ∈ Σ2 \ S, (S1, s2)
a
−→ (S′

1, s
′
2), then for any s1, s

′
1,2 ∈ S′

1 ⊆ S1, (s1, s
′
1,2, s2)

a
−→

(s1, s
′
1,2, s

′
2), i.e. P (S

′
1, s

′
2) holds.

• If for some (a, s′1) ∈ S × Q1, (S1, s2)
a,s′

1−−→ (S′
1, s

′
2), then S′

1 = UR(s′1), and for any
s1, s

′
1,2 ∈ S

′
1, (s1, s1,2, s

′
2) can be reached from some (p1, p1,2, s2) such that p1, p

′
1,2 ∈ S1.

Indeed, in Smod , synchronization ((a, ℓ′1), s
′
1) resets A1,2 in the same state as A1 and then
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A1 performs some local actions while A1,2 also performs some local actions mimicking
one possible behavior of A1 (that is why s′1,2 ∈ S′

1). Hence P (S
′
1, s

′
2) holds.

• If for some d ∈ R≥0, (S1, s2)
d
−→ (S′

1, s
′
2), then we use the same reasoning as for a syn-

chronization. Since A1,2 is built so that it mimics any possible behavior of A1 between
synchronizations, any state s′1,2 ∈ S′

1 reachable by A1 during this delay corresponds to a

state s1,2 reachable by A1,2. Hence P (S
′
1, s

′
2) also holds.

By recursion, P (S1, s2) holds for any reachable state (S1, s2).

Lastly, the following lemma will be used to prove the direct part of Theorem 3.10.

Lemma 4.2. / is reachable in Smod iff there is a restriction in TTSA1
(A2).

Proof. Assume / is not reachable in Smod . From Proposition 4.1, we know that for any
state (S1, s2) of TTSA1

(A2), for any s1, s
′
1,2 in S1, there is a corresponding state s =

(

(ℓ1, v|X1
), (ℓ1,2, v|X′

1
), (ℓ2, v|X2\X1

)
)

= (s1, s1,2, s2) of Smod . Moreover, for any such s, if
there is an outgoing edge towards / from ℓ2, then this edge is never enabled. That is,
for any time constraint γ read in ℓ2 in the original system S (invariant of ℓ2 or guard
of an outgoing edge with a local action), v|X2∪X1

|= γ ⇐⇒ v|(X2\X1)∪X′
1
|= γ′. Hence

for any enabled step from (S1, s2), s1 and s′1,2 are in the same restriction. Therefore,
noRestrictionA1

(A2).
Assume / is reachable in Smod . From Proposition 4.1, we know that for any state s =

(

(ℓ1, v|X1
), (ℓ1,2, v|X′

1
), (ℓ2, v|X2\X1

)
)

= (s1, s1,2, s2) of Smod , reached after a path that does

not enable edges leading to / (except maybe from this last state), there is a corresponding
state (S1, s2) of TTSA1

(A2) such that s1 and s′1,2 are both in S1. If / can be reached, then
consider a path that reaches / and such that no edge leading to / was enabled before along
the path. The last state s of Smod visited before / is such that for some time constraint
γ evaluated at s from ℓ2, v|X2∪X1

|= γ and v|(X2\X1)∪X′
1
6|= γ′ (or conversely). Therefore, a

local action or local delay is possible from (s1, s2) and not from (s′1,2, s2). Hence (S1, s2) is
a state with a restriction.

We now give a first simple case for which Theorem 3.10 can be proved easily. We say that
A1 has no urgent synchronization if for any location, when the invariant reaches its limit, a
local action is enabled. Under this assumption, we can show that A′

2 = A1,2⊗A
′
2,mod , where

A′
2,mod is A2,mod without location / (that is never reached according to Lemma 4.2) and its

ingoing edges, is suitable. Indeed, we can show that A′
2 does not read X1 and is such that

ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2), where for any ((a, ℓ1), s1) ∈ S

′×Q′
1, ψ(((a, ℓ1), s1)) = (a, s1).

Obviously, item 2 of Definition 3.8 holds, and Lemma 3.9 says that item 1 also holds.
When A1 has urgent synchronizations, this construction allows one to check the absence

of restriction in TTSA1
(A2), but it does not give directly a suitable A′

2. We define the
construction of A′

2 for the general case in Subsection 4.3.

Proof of Theorem 3.10, direct part, when no urgent synchronization in A1.
Assume noRestrictionA1

(A2). We consider A′
2 = A1,2 ⊗ A′

2,mod where A′
2,mod is A2,mod

without / (that is never reached according to Lemma 4.2) and its ingoing edges. Therefore,
A′

2,mod does not read X1 and neither does A′
2 = A1,2 ⊗ A′

2,mod . Below we show that A′
2 is

a suitable candidate because ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2) (ψ(TTSQ′

1
(A′

1)) ∼ TTSQ1
(A1)

obviously holds).
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Let R be the relation such that for any reachable state (S1, s2) of TTSA1
(A2), and any

reachable state (S′
1, s

′
2) of ψ(TTSA′

1
(A′

2)),

(S1, s2) R (S′
1, s

′
2)

def
⇐⇒







s2 = (ℓ2, v2) and s
′
2 = ((ℓ1,2, ℓ2), v

′
2) s.t.

∀x ∈ X2 \X1, v2(x) = v′2(x)
S1 = S′

1

i.e. A2 and A′
2,mod are both in ℓ2 and their local clocks have the same value, and A1 and

A′
1 are in indistinguishable states (states merged in a same contextual state S1). Obviously,

the initial states, (S0
1 , s

0
2) and (S0

1 , s
0′
2 ), are R-related. Since there is no marked state in

TTSA1
(A2) (resp. in TTSA′

1
(A′

2)), for any state s = (S1, s2) (resp. s′ = (S′
1, s

′
2)) of this

TTS, all time constraints read by automaton 2 in ℓ2 (invariant of ℓ2 and guards of the
outgoing edges) have the same truth value for all the states (s1, s2) such that s1 ∈ S1 (resp.
s1 ∈ S′

1). In the sequel, we say that valuation V of s (resp. V ′ of s′) satisfies constraint g,
when the valuations of all states (s1, s2) in s (resp. in s′) satisfy g. Assume now that for
some reachable states (S1, s2) and (S′

1, s
′
2), (S1, s2) R (S′

1, s
′
2).

Local Action. If a ∈ Σ2 \Σ1 is enabled from (S1, s2), then, there is an associated edge in A2,

ℓ2
g,a,r
−−−→ p2 such that guard g is satisfied by V . Let g′ be the guard on the corresponding

outgoing edge (ℓ1,2, ℓ2)
g′,a,r
−−−→ (ℓ1,2, p2) in A′

2. g uses clocks in X2, and by construction, g′

has the same form but with clocks in (X2 \X1) ⊎X
′
1. (S1, s2) R (S′

1, s
′
2) says that v2 and

v′2 coincide on X2 \ X1, and since / is never reached in Smod , V satisfies the constraints
of g on X1 iff V ′ satisfies the constraints of g′ on X ′

1. That is, V |= g ⇐⇒ V ′ |= g′.
Therefore A′

2 can also perform a from (S1, s
′
2) and the states reached in both systems are

R-related: (S1, q2) R (S1, q
′
2), because q2 = (p2, v2[r]) and q

′
2 = ((ℓ1,2, p2), v

′
2[r]). This also

holds reciprocally.

Synchronization. Assume for some (a, s′1) ∈ S × Q1, (S1, s2)
a,s′

1−−→ (S′
1, q2). That is, there

is an edge ℓ2
g2,a,r2
−−−−→ p2 in A2 such that v2 |= g2 and q2 = (p2, v2[r2]) and, for some

(ℓ1, v1) ∈ S1, an edge ℓ1
g1,a,r1
−−−−→ p1 in A1 such that v1 |= g1 and s′1 = (p1, v1[r1]) ∈ S′

1.
Hence, synchronization ((a, p1), s

′
1) is also enabled from state (S1, s

′
2) because A2,mod is in

the same location as A2, and has the same clock values over X2 \X1, and A
′
1 is also in some

state of S1, therefore, there is also the same state (ℓ1, v1) ∈ S1 which enables (a, p1). We
do not consider A1,2 because it is always ready to synchronize. Moreover, the state reached
in ψ(TTSA′

1
(A′

2)) after this synchronization is (S′
1, q

′
2) such that (S′

1, q2) R (S′
1, q

′
2), because

q2 = (p2, v2[r2]) and q′2 =
(

(p1,2, p2), (v
′
2[r2])[c]

)

where c denotes the copy of the clocks of
X1 into their associated clocks of X ′

1 and therefore c modifies only clocks that we do not
consider in relation R, and r2 ⊆ C2 ⊆ (X2 \ X1) resets the same clocks in both systems.
And reciprocally.

Local Delay. Assume for some d ∈ R≥0, (S1, s2)
d
−→ (S′

1, q2). Then, V + d |= Inv2(ℓ2), and
since / is never reached in Smod , V+d |= Inv2(ℓ2) ⇐⇒ V ′+d |= Inv ′2(ℓ2). That is, the same

delay is enabled from (S1, s
′
2) while A1,2 may perform some local steps: (S1, s

′
2)(

g0,ε,r0
−−−−→)

∗ d0−→

(
gn,ε,rn
−−−−→)

∗
. . .

dn−→ (S′′
1 , q

′
2), where

∑n
i=0 di = d, gi is a guard over X ′

1 and ri is a reset included
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in X ′
1. This works because we assumed that A1 has no urgent synchronization (and so does

A′
1). Therefore, A1,2 cannot force a synchronization.

Reciprocally, if we can perform a delay d from (S1, s
′
2), then V ′ + d |= Inv ′2(ℓ2) ∧

Inv ′1(ℓ1,2). And since V + d |= Inv2(ℓ2) ⇐⇒ V ′ + d |= Inv ′2(ℓ2), we can perform the same
delay from (S1, s2).

Moreover, we reach equivalent states in both systems. Indeed, A2 and A′
2,mod stay in

the same location, the clocks in X2 \X1 increase their value by d, and the set of states of

A1 and A′
1 becomes S′

1 = S′′
1 = {s′1 | ∃s1 ∈ S1, ρ ∈ Paths(Σ1 \ Σ

6ε
2, d) : (s1, s2)

ρ
=⇒ (s′1, q2)}.

Therefore, R is a weak timed bisimulation and ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2). Lastly,

by Lemma 3.9, ψ(TTSQ′
1
(A′

1 ‖ A′
2)) ∼ TTSQ1

(A1 ‖ A2) also, and A2 does not need to read
X1.

In the example of Fig. 2, / is not reachable in Smod (see Fig. 6), therefore A2 does
not need to read X1. For an example where / is reachable, consider the same example

with an additional edge
tt,f,{x}
−−−−→ from the end location of A1 to a new location. Location

/ can now be reached in Smod , for example consider a run where s is performed at time 2
leading to a state where v(x) = 2 and v(x′) = 2, and then A1 immediately performs f and
resets x, leading to a state where the valuation v′ is such that v′(x) = 0 and v′(x′) = 2,
and satisfies guard x′ ≥ 1 ∧ x < 1 in Smod . Therefore, with this additional edge in A1, A2

needs to read X1. Indeed, without this edge, A2 knows that A1 cannot modify x after the
synchronization, but with this edge, A2 does not know whether A1 has performed f and
reset x, while this may change the truth value of its guard x ≥ 1.

4.2. Complexity.

PSPACE-hardness. The reachability problem for timed automata is known to be PSPACE-
complete [AD90]. We will reduce this problem to our problem of deciding whether A2

needs to read the clocks of A1. Consider a timed automaton A over alphabet Σ, with some
location ℓ. Build the timed automaton A2 as A augmented with two new locations ℓ′ and

ℓ′′ and two edges, ℓ
tt,ε,∅
−−−→ ℓ′ and ℓ′

x=1,a,∅
−−−−−→ ℓ′′, where x is a fresh clock, and a is some action

in Σ. Let A1 be the one of Fig. 4 with an action b /∈ Σ. Then, ℓ is reachable in A iff A2

needs to read x which belongs to A1. Therefore the problem of deciding whether A2 needs
to read the clocks of A1 is also PSPACE-hard.

PSPACE-membership. Moreover, we can show that when A2 is deterministic, our prob-
lem is in PSPACE. Indeed, by Theorem 3.10 and Lemma 4.2, / is not reachable iff
noRestrictionA1

(A2) iff A2 does not need to read the clocks of A1. Since the size of the
modified system on which we check the reachability of / is polynomial in the size of the
original system, our problem is in PSPACE.
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ℓ0x ≤ 3

ℓ1x ≤ 3

A1

ℓ2

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x ≤ 1
b
{x}

y ≥ 2
s

x ≥ 1
e

{y}

Figure 7: A1 has an urgent synchronization.

4.3. Dealing with Urgent Synchronizations. If we use exactly the same construction
as before and allow urgent synchronizations, the following problem may occur. Remind
that A1,2 simulates a possible run of A′

1 while A′
1 plays its actual run. There is no reason

why the two runs should coincide. Thus it may happen that the run simulated by A1,2

reaches a state where the invariant expires and only a synchronization is possible. Then
A′

2 is expecting a synchronization with A′
1, but it is possible that the actual A′

1 has not
reached a state that enables this synchronization. Intuitively, A′

2 should then realize that
the simulated run cannot be the actual one and try another run compatible with the absence
of synchronization.

In fact, between two synchronizations, A1,2, the local copy of A1, can be constructed
to simulate only one fixed run of A1, instead of being able to simulate all its runs. If this
run is well chosen, then the situation described above never happens, and we can use a
construction similar to the one above, on which we can prove that if / is not reachable,
then any run of A1 is compatible with the fixed run of A1,2, and A2 can avoid reading the
clocks of A1.

Therefore, the idea of the construction is to force A1,2 to simulate one of the runs of A1

(from the state reached after the last synchronization) that has maximal duration before it
synchronizes again with A2,mod (or never synchronizes again if possible). There may not be
any such run if some time constraints are strict inequalities, but the idea can be adapted
even to this case. This choice of a run of A1 is as valid as the others, and it prevents the
system from having to deal with the subtle situation that we described above. Below, we
describe the construction of A1,2 in two cases:

(1) After any synchronization there is a local run of maximal duration.
(2) It may happen that, after a synchronization, there is no run of maximal duration because

of some strict time constraints.

Case 1: After any synchronization there is a local run of maximal duration. Consider au-
tomaton A1 in Fig. 7. We can see that, for the urgent synchronization to happen as late as
possible, A1,2 has to fire b at time 1, so that it can then wait 3 time units before synchro-
nizing, although it is still able to synchronize at any time (we add the same dashed edges
as in Fig. 6). Fig. 8 shows a timed automaton that achieves the desired behaviour for A1,2

using a fresh clock z to force the simulation of b at time 1.
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z ≤ 1

x′ ≤ 3

ℓ2

z = 1
εb

{x′, z}

(s, ℓ2)
x′ := x

(s, ℓ2)

x′ := x

(s, ℓ2), x
′ := x

Figure 8: A1,2 associated with A1 of Fig. 7.
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Figure 9: The region automaton of A1 of Fig. 7. The dashed arcs indicate occurrences of
internal actions of A1 that will be removed in the construction of A1,2 in order
to force a run of maximal duration between synchronizations. The occurrences
of the synchronization s, represented by dotted arrows, are treated separately in
the construction of A1,2.

This can be generalized for any A1. The idea is essentially to force A1,2 to follow the
appropriate finite or ultimately periodic path in the region automaton [AD94] of A1. The
construction is described below and illustrated by Fig. 9.

A1,2 is now built over the region automaton [AD94] of A1. Transitions labeled by
some a ∈ S are treated separately like in the original construction. The problem now is to
constrain A1,2 to take one of the most time consuming local runs after a synchronization.

The first step is to build the region automaton of A1, and remove the synchronizations.
Then, from each state s we compute the most time consuming run and keep only the output
arcs of s that start a most time consuming run.

The computation of the most time consuming runs from s is done as follows. If one of
the paths from s has a loop, then there is an infinite run from s with local actions, and since
we consider non-Zeno TA, time diverges and this run is valid. If no path from s contains
a loop, then the paths from s are finite and there is a finite number of such paths. It is
possible to compute, for each path, the supremum of the duration of the path: just sum
the maximal delays in each location (including the time spent in the last location).

It remains to force, using a fresh clock, the longest stay in each state.
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Lastly, we treat the synchronizations like in the construction of Section 4.1: for each
synchronizing edge in A1, and each corresponding output state in the region automaton, we
add synchronizing edges from all states of A1,2, which reset the state of A1,2 to the actual
state of A1. These edges are labeled by “γ(R), (a, ℓ1), c”, where γ(R) is the constraint that
describes the region R associated with the target state, a is the synchronization label in
A1, ℓ1 is the output location of the synchronization in A1, and c is the assignment of clock
values.

Definition of A1,2. Assume (S, s0, E) is a structure that stores the region automaton of
A1, without the synchronization edges, and with only the edges that are in the most time
consuming paths computed as explained earlier. That is, S (resp. s0) is the set of states
(resp. the initial state) of the region automaton of A1, and E ⊆ S × (N × E1) × S stores

edges in the form s
d,e
−−→ s′ where d is the delay that has to be performed in ℓ(s), the location

associated with state s, before performing edge e labeled by some action in Σ1 \ S. Then,
A1,2 = (S, s0,X1 ∪ C

′
1 ∪ {z},S′ ∪ {ε}, E′

1, Inv
′
1) where

• C ′
1 is the set of clocks associated with C1 as previously, and clocks in X1 will be read on

the synchronizations only,

• E′
1 = {s

z=d,ε,r′∪{z}
−−−−−−−−→ s′ | ∃s

d,e
−−→ s′ ∈ E : e = (ℓ(s)

g,a,c(r′)
−−−−−→ ℓ(s′))}

∪ {s
γ,(a,ℓ2),c
−−−−−→ s′ | s ∈ S ∧ γ ≡ γ(R(s′)) ∧ a ∈ S ∧ ∃ℓ1

g,a,r
−−−→ ℓ2 ∈ E1}

where γ(R(s′)) is the clock constraint that describes the region of state s′, and c still
denotes the assignment of any clock x′ ∈ C ′

1 with the value of its associated clock c(x′) =
x ∈ C1 (written x′ := x).

• ∀s ∈ S, Inv ′1(s) ≡ z ≤ d if ∃s
d,e
−−→ s′ ∈ E, and Inv ′1(s) ≡ tt otherwise.

We can now prove the direct way of Theorem 3.10 in this setting where A1 may have
urgent synchronizations, and the most time consuming local runs between two synchroniza-
tions exist. First, let us recall some notations. Smod = A′

1 ‖ (A1,2 ⊗A2,mod ), with the same
A′

1 and A2,mod as before, A′
2 = A1,2 ⊗A′

2,mod where A′
2,mod denotes A2,mod without location

/, and ψ is such that for any ((a, ℓ1), s1) ∈ S
′ ×Q′

1, ψ(((a, ℓ1), s1)) = (a, s1).

Proof of Theorem 3.10, when runs of maximal duration before synchronization exist.
We show that when noRestrictionA1

(A2) holds, A2 does not need to read the clocks of A1,
because then, the constructed A′

1 ‖ A
′
2 satisfies Definition 3.8, i.e. has no shared clocks and

(1) ψ(TTSQ′
1
(A′

1 ‖ A
′
2)) ∼ TTSQ1

(A1 ‖ A2) and

(2) ψ(TTSQ′
1
(A′

1)) ∼ TTSQ1
(A1) (this still holds because A

′
1 has not changed)

(3) ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2).

First, we can prove that / is reachable in Smod iff there is a restriction in TTSA1
(A2),

as we proved Lemma 4.2. Indeed, what works when A1,2 simulates any run of A1 also works
when A1,2 simulates a fixed run of A1.

Then, we can prove that, if / is not reachable (i.e. if there is no restriction in TTSA1
(A2)),

then ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2). We use the same relation R as in the previous proof

in 4.1, that is, R is the relation such that for any reachable state (S1, s2) of TTSA1
(A2),



22 S. BALAGUER AND T. CHATAIN
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Figure 10: A1 has an urgent synchronization and there is no path with maximal duration
before this synchronization.

and any reachable state (S′
1, s

′
2) of ψ(TTSA′

1
(A′

2)),

(S1, s2) R (S′
1, s

′
2)

def
⇐⇒







s2 = (ℓ2, v2) and s
′
2 = ((ℓ1,2, ℓ2), v

′
2) s.t.

∀x ∈ X2 \X1, v2(x) = v′2(x)
S1 = S′

1

The proof of this bisimulation follows the same steps as the proof in 4.1, except now we
know that A1,2 cannot force a synchronization by construction, and not by assuming that
there is not urgent synchronization in A1.

Then, by Lemma 3.9, ψ(TTSQ′
1
(A′

1 ‖ A
′
2)) ∼ TTSQ1

(A1 ‖ A2) also.

Case 2: There is not always a Local Run of Maximal Duration after a Synchronization.
Now, we show how to adapt the previous construction when there are strict time constraints
and there is no path of maximal duration before an urgent synchronization. For example,
consider automaton A1 of Fig. 10 that has an urgent synchronization and such that there
is no path of maximal duration before this synchronization is taken: as previously, b has
to be performed as late as possible, but because of the strict inequality x < 1 on the edge
labeled by b, it is not possible to enforce this.

Here also, the construction relies on the region automaton and on the computation of
the supremum of the possible durations. Then the idea is again to follow one of the paths
with the best supremum duration. But there may not exist any optimal timing to run this
path and reach the supremum. Then we run it with one possible timing and we wait in
the last region, ignoring the invariant that would force us to synchronize. In our example,
the supremum of the duration of the path with b is 4, and is greater than the supremum of
any other paths (the paths with a have a maximal duration of 3). Therefore, b has to be
performed while x is in the region defined by 0 < x < 1.

Now, when A1,2 reaches a state where it has to synchronize, if A′
1 is not ready to

synchronize (i.e. A′
1 is not in the location before the synchronization), then this means

that A′
1 took a more time consuming path (and not necessarily the same actions). Then

A2,mod can stop using the values of the clocks of A1,2 to evaluate the truth value of its time
constraints, and simply take their truth value according to the last region that makes the
invariant of the urgent synchronization true (i.e. the region of its current valuation), since
it would still be in this region if it had been more time consuming. Note that, if / is not
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Figure 11: A1,2 and A2,mod for the NTA of Fig. 10.

reachable, this means that, if A1,2 had performed a more time consuming run (for example
the actual run followed by A′

1), then A2,mod would have been able to perform the same run.
Therefore, “stopping” the clocks in their current region has no side effects.

In the construction, this results in new synchronization edges, performed by A1,2 and
A2,mod , when A1,2 has not been slow enough (i.e. when the invariant expires). In our
example, the synchronization labeled by final regionR, guarded by x′ = 3, notifies A2,mod

that A1,2 is stuck in the final region R (here R corresponds to ℓ1 and 2 < x′ < 3) but that
its clocks do not satisfy the constraint any more. In this case, A2,mod enters a duplicated
version of itself, where the guards over X1 are no more evaluated according to the value of
the duplicated clocks X ′

1, but simply replaced by their truth value according to the final
region. In the example of Fig. 11, the constraint x′ ≥ 1 that appears on the arc from ℓ′

to ℓ′′ is simply replaced by tt, because the constraint is true in region R. The duplicated
versions can still reach location /, and the constraints on the edges leading to / are also
evaluated according to the final region.

If a synchronization happens when A2,mod is in one of its duplicated versions, then
A2,mod goes back to its initial version, as depicted in Fig. 11.

In order to prove the soundness of the construction, one has to show that if there is
no restriction in TTSA1

(A2) (i.e. if / is not reachable), then ψ(TTSA′
1
(A′

2)) ∼ TTSA1
(A2).

The bisimulation relation now takes the new states into account as follows.

(S1, s2) R (S′
1, s

′
2)

def
⇐⇒















s2 = (ℓ2, v2) and s
′
2 = ((ℓ1,2, ℓ

′
2), v

′
2) s.t.

ℓ2 = ℓ′2 or ℓ′2 is one of the duplicated versions of ℓ2
∀x ∈ X2 \X1, v2(x) = v′2(x)
S1 = S′

1
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5. Discussion and Extensions

We have shown that in a distributed framework, when locality of actions and synchro-
nizations matter, NTA with shared clocks cannot be easily transformed into NTA without
shared clocks. The fact that the transformation is possible can be characterized using the
notion of contextual TTS which represent the knowledge of one automaton about the other.
Checking whether the transformation is possible is PSPACE-complete.

In system design, our technique could help a designer to use shared clocks in an abstract
specification, and build automatically an implementable distributed model without shared
clocks. Coming back to the example described in the introduction with several agents per-
forming together a distributed task according to a predefined schedule, this would generate
the mechanism for creating the local copies of the schedule.

A first point to notice is that, contrary to what happens when one considers the sequen-
tial semantics, NTA with shared clocks are strictly more expressive if we take distribution
into account. This somehow justifies why shared clocks were introduced: they are actually
more than syntactic sugar.

Another interesting point that we want to recall here is the use of transmitting infor-
mation during synchronizations. In the end, when the construction is possible, the only
modification that is needed for A1 is the renaming of the synchronizations, which codes this
transmission of information. On the other side, A2 needs a much stronger modification in
order to handle the information transmitted by A1.

Finally, it is noticeable that infinitely precise information is required in general. This
advocates the interest of updatable (N)TA used in an appropriate way, and more generally
gives a flavor of a class of NTA closer to implementation.

Perspectives. Our first perspective is to generalize our result to the symmetrical case where
A1 also reads clocks from A2. Then of course we can tackle general NTA with more than
two automata.

Notice that the set UR(s1) used in the definition of contextual TTS is always put in
parallel with a state s2. Therefore, it can be extended to URs2(s1) that represents the
set of states that A1 can immediately reach from s1 while A2 is in s2. This means that
the TTS of A2 in the context of A1 can still be defined when A1 also reads clocks from
A2. However, we do not know whether Theorem 3.10 is still true with this definition of
contextual TTS, because most of the intermediate lemmas and propositions to prove this
theorem use TTS(A1) that is not defined when A1 reads clocks from A2.

Another line of research is to focus on transmission of information. The goal would be to
minimize the information transmitted during synchronizations, and see for example where
the limits of finite information lay. Even when infinitely precise information is required to
achieve the exact semantics of the NTA, it would be interesting to study how this semantics
can be approximated using finitely precise information.

Finally, when shared clocks are necessary, one can discuss how to minimize their num-
ber, or how to implement the model on a distributed architecture and how to handle shared
clocks with as few communications as possible.
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