
Logical Methods in Computer Science
Vol. 8 (2:06) 2012, pp. 1–60
www.lmcs-online.org

Submitted Oct. 27, 2011
Published Jun. 1, 2012

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING ∗

PATRICK BAHR

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, 2100 Copenhagen, Denmark
URL: http://www.diku.dk/˜paba

e-mail address: paba@diku.dk

Abstract. Term graph rewriting provides a simple mechanism to finitely represent re-
stricted forms of infinitary term rewriting. The correspondence between infinitary term
rewriting and term graph rewriting has been studied to some extent. However, this en-
deavour is impaired by the lack of an appropriate counterpart of infinitary rewriting on the
side of term graphs. We aim to fill this gap by devising two modes of convergence based
on a partial order respectively a metric on term graphs. The thus obtained structures
generalise corresponding modes of convergence that are usually studied in infinitary term
rewriting.

We argue that this yields a common framework in which both term rewriting and term
graph rewriting can be studied. In order to substantiate our claim, we compare convergence
on term graphs and on terms. In particular, we show that the modes of convergence on
term graphs are conservative extensions of the corresponding modes of convergence on
terms and are preserved under unravelling term graphs to terms. Moreover, we show that
many of the properties known from infinitary term rewriting are preserved. This includes
the intrinsic completeness of both modes of convergence and the fact that convergence via
the partial order is a conservative extension of the metric convergence.

1. Introduction

Non-terminating computations are not necessarily undesirable. For instance, the termina-
tion of a reactive system would be usually considered a critical failure. Even computations
that, given an input x, should produce an output y are not necessarily terminating in nature
either. For example, the various iterative approximation algorithms for π produce approx-
imations of increasing accuracy without ever terminating with the exact value of π. While
such iterative approximation computations might not reach the exact target value, they are
able to come arbitrary close to the correct value within finite time.

It is this kind of non-terminating computations which is the subject of infinitary term
rewriting [24]. It extends the theory of term rewriting by giving a meaning to transfinite
reductions instead of dismissing them as undesired and meaningless artifacts. Following
the paradigm of iterative approximations, the result of a transfinite reduction is simply the

1998 ACM Subject Classification: F.4.2, F.1.1.
Key words and phrases: term graphs, partial order, metric, infinitary rewriting, graph rewriting.

∗ Parts of this paper have appeared in the proceedings of RTA 2011 [8].

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (2:06) 2012

© Patrick Bahr
CC© Creative Commons

http://creativecommons.org/about/licenses

2 PATRICK BAHR

term that is approximated by the reduction. In general, such a result term can be infinite.
For example, starting from the term rep(0), the rewrite rule rep(x) → x :: rep(x) produces
a reduction

rep(0) → 0 :: rep(0) → 0 :: 0 :: rep(0) → 0 :: 0 :: 0 :: rep(0) → . . .

that approximates the infinite term 0 :: 0 :: 0 :: Here, we use :: as a binary symbol
that we write infix and assume to associate to the right. That is, the term 0 :: 0 :: rep(0) is
parenthesised as 0 :: (0 :: rep(0)). Think of the :: symbol as the list constructor cons.

Term graphs, on the other hand, allow us to explicitly represent and reason about
sharing and recursion [3] by dropping the restriction to a tree structure, which we have for
terms. Apart from that, term graphs also provide a finite representation of certain infinite
terms, viz. rational terms. As Kennaway et al. [23, 26] have shown, this can be leveraged
in order to finitely represent restricted forms of infinitary term rewriting using term graph
rewriting.

In this paper, we extend the theory of infinitary term rewriting to the setting of term
graphs. To this end, we devise modes of convergence that constrain reductions of transfinite
length in a meaningful way. Our approach to convergence is twofold: we generalise the
metric on terms that is used to define convergence for infinitary term rewriting [14] to term
graphs. In a similar way, we generalise the partial order on terms that has been recently
used to define a closely related notion of convergence for infinitary term rewriting [7]. The
use of two different – but on terms closely related – approaches to convergence will allow us
both to assess the appropriateness of the resulting infinitary calculi and to compare them
against the corresponding infinitary calculi of term rewriting.

1.1. Motivation.

1.1.1. Lazy Evaluation. Term rewriting is a useful formalism for studying declarative pro-
grams, in particular, functional programs. A functional program essentially consists of
functions defined by a set of equations and an expression that is supposed to be evaluated
according to these equations. The conceptual process of evaluating an expression is nothing
else than term rewriting.

A particularly interesting feature of modern functional programming languages, such
as Haskell [29], is the ability to use conceptually infinite computations and data structures.
For example, the following definition of a function from constructs for each number n the
infinite list of consecutive numbers starting from n:

from(n) = n :: from(s(n))

Here, we use the binary infix symbol :: to denote the list constructor cons and s for the
successor function. While we cannot use the infinite list generated by from directly – the
evaluation of an expression of the form from n does not terminate – we can use it in a
setting in which we only read a finite prefix of the infinite list conceptually defined by from.
Functional languages such as Haskell allow this use of semantically infinite data structures
through a non-strict evaluation strategy, which delays the evaluation of a subexpression
until its result is actually required for further evaluation of the expression. This non-strict
semantics is not only a conceptual neatness but in fact one of the major features that make
functional programs highly modular [18].

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 3

The above definition of the function from can be represented as a term rewriting system
with the following rule:

from(x) → x :: from(s(x))

Starting with the term from(0), we then obtain the following infinite reduction:

from(0) → 0 :: from(s(0)) → 0 :: s(0) :: from(s(s(0))) → . . .

Infinitary term rewriting [24] provides a notion of convergence that may assign a meaningful
result term to such an infinite reduction provided there exists one. In this sense, the above
reduction converges to the infinite term 0 :: s(0) :: s(s(0)) :: . . . , which represents the infinite
list of numbers 0, 1, 2, Due to this extension of term rewriting with explicit limit
constructions for non-terminating reductions, infinitary term rewriting allows us to directly
reason about non-terminating functions and infinite data structures.

Non-strict evaluation is rarely found unescorted, though. Usually, it is implemented
as lazy evaluation [17], which complements a non-strict evaluation strategy with sharing.
The latter avoids duplication of subexpressions by using pointers instead of copying. For
example, the function from above duplicates its argument n – it occurs twice on the right-
hand side of the defining equation. A lazy evaluator simulates this duplication by inserting
two pointers pointing to the actual argument. Sharing is a natural companion for non-
strict evaluation as it avoids re-evaluation of expressions that are duplicated before they
are evaluated.

The underlying formalism that is typically used to obtain sharing for functional pro-
gramming languages is term graph rewriting [30, 31]. Term graph rewriting [11, 32] uses
graphs to represent terms thus allowing multiple arcs to point to the same node. For ex-
ample, term graphs allows us to change the representation of the term rewrite rule defining
the function from by replacing

::

x from

s

x

the tree representation

::

x from

s

by a graph representation

which shares the variable x by having two arcs pointing to it.
While infinitary term rewriting is used to model the non-strictness of lazy evaluation,

term graph rewriting models the sharing part of it. By endowing term graph rewriting with
a notion of convergence, we aim to unify the two formalisms into one calculus, thus allowing
us to model both aspects withing the same calculus.

1.1.2. Rational Terms. Term graphs can do more than only share common subexpressions.
Through cycles term graphs may also provide a finite representation of certain infinite terms
– so-called rational terms. For example, the infinite term 0 :: 0 :: 0 :: . . . can be represented
as the finite term graph

::

0

4 PATRICK BAHR

Since a single node on a cycle in a term graph represents infinitely many corresponding
subterms, the contraction of a single term graph redex may correspond to a transfinite
term reduction that contracts infinitely many term redexes. For example, if we apply the
rewrite rule 0 → s(0) to the above term graph, we obtain a term graph that represents the
term s(0) :: s(0) :: s(0) :: . . . , which can only be obtained from the term 0 :: 0 :: 0 :: . . . via a
transfinite term reduction with the rule 0 → s(0). Kennaway et al. [26] investigated this
correspondence between cyclic term graph rewriting and infinitary term rewriting. Among
other results they characterise a subset of transfinite term reductions – called rational
reductions – that can be simulated by a corresponding finite term graph reduction. The
above reduction from the term 0 :: 0 :: 0 :: . . . is an example of such a rational reduction.

With the help of a unified formalism for infinitary and term graph rewriting, it should
be easier to study the correspondence between infinitary term rewriting and finitary term
graph rewriting further. The move from an infinitary term rewriting system to a term graph
rewriting system only amounts to a change in the degree of sharing if we use infinitary term
graph rewriting as a common framework.

Reconsider the term rewrite rule rep(x) → x :: rep(x), which defines a function rep that
repeats its argument infinitely often:

rep(0) → 0 :: rep(0) → 0 :: 0 :: rep(0) → 0 :: 0 :: 0 :: rep(0) → . . . 0 :: 0 :: 0 :: . . .

This reduction happens to be not a rational reduction in the sense of Kennaway et al. [26].
The move from the term rule rep(x) → x :: rep(x) to a term graph rule is a simple

matter of introducing sharing of common subexpressions:

rep

x

::

x rep

x

rep

xis represented by

::

Instead of creating a fresh copy of the redex on the right-hand side, the redex is reused by
placing an edge from the right-hand side of the rule to its left-hand side. This allows us
to represent the infinite reduction approximating the infinite term 0 :: 0 :: 0 :: . . . with the
following single step term graph reduction induced by the above term graph rule:

rep

0

::

0

Via its cyclic structure the resulting term graph represents the infinite term 0 :: 0 :: 0 ::
Since both transfinite term reductions and the corresponding finite term graph reduc-

tions can be treated within the same formalism, we hope to provide a tool for studying the
ability of cyclic term graph rewriting to finitely represent transfinite term reductions.

1.2. Contributions & Related Work.

1.2.1. Contributions. The main contributions of this paper are the following:

(i) We devise a partial order on term graphs based on a restricted class of graph homo-
morphisms. We show that this partial order forms a complete semilattice and thus is
technically suitable for defining a notion of convergence (Theorem 5.15). Moreover, we

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 5

illustrate alternative partial orders and show why they are not suitable for formalising
convergence on term graphs.

(ii) Independently, we devise a metric on term graphs and show that it forms a complete
ultrametric space on term graphs (Theorem 7.4).

(iii) Based on the partial order respectively the metric we define a notion of weak conver-
gence for infinitary term graph rewriting. We show that – similar to the term rewriting
case [7] – the metric calculus of infinitary term graph rewriting is the total fragment
of the partial order calculus of infinitary term graph rewriting (Theorem 8.10).

(iv) We confirm that the partial order and the metric on term graphs generalise the partial
order respectively the metric that is used for infinitary term rewriting (Proposition 5.19
and 6.16). Moreover, we show that the corresponding notions of convergence are
preserved by unravelling term graphs to terms thus establishing the soundness of our
notions of convergence on term graphs w.r.t. the convergence on terms (Theorems 9.9
and 9.11).

(v) We substantiate the appropriateness of our calculi by a number of examples that
illustrate how increasing the sharing gradually reduces the number of steps necessary
to reach the final result – eventually, from an infinite number of steps to a finite number
(Sections 8 and 9).

1.2.2. Related Work. Calculi with explicit sharing and/or recursion, e.g. via letrec, can also
be considered as a form of term graph rewriting. Ariola and Klop [3] recognised that adding
such an explicit recursion mechanism to the lambda calculus may break confluence. In order
to reconcile this, Ariola and Blom [2, 1] developed a notion of skew confluence that allows
them to define an infinite normal form in the vein of Böhm trees.

Recently, we have investigated other notions of convergence for term graph rewriting [10,
9] that use simpler variants of the partial order and the metric that we use in this paper.
Both of them have theoretically pleasing properties, e.g. the ideal completion and the metric
completion of the set of finite term graphs both yield the set of all term graphs. However, the
resulting notions of weak convergence are not fully satisfying and in fact counterintuitive
for some cases. We will discuss this alternative approach and compare it to the present
approach in more detail in Sections 5 and 6.

1.3. Overview. The structure of this paper is as follows: in Section 2, we provide the nec-
essary background for metric spaces, partially ordered sets and term rewriting. In Section 3,
we give an overview of infinitary term rewriting. Section 4 provides the necessary theory
for graphs and term graphs. Sections 5 and 6 form the core of this paper. In these sections
we study the partial order and the metric on term graphs that are the basis for the modes
of convergence we propose in this paper. In Section 7, we then compare the two resulting
modes of convergence. Moreover, in Section 8, we use these two modes of convergence to
study two corresponding infinitary term graph rewriting calculi. In Section 9, we study the
correspondences between infinitary term graph rewriting and infinitary term rewriting.

Some proofs have been omitted from the main body of the text. These proofs can be
found in the appendix of this paper.

6 PATRICK BAHR

Contents

1. Introduction 1
1.1. Motivation 2
1.2. Contributions & Related Work 4
1.3. Overview 5
2. Preliminaries 6
2.1. Sequences 7
2.2. Metric Spaces 7
2.3. Partial Orders 7
2.4. Terms 8
2.5. Term Rewriting Systems 8
3. Infinitary Term Rewriting 9
4. Graphs & Term Graphs 11
4.1. Homomorphisms 13
4.2. Isomorphisms & Isomorphism Classes 15
5. A Rigid Partial Order on Term Graphs 19
5.1. Partial Orders on Term Graphs 20
5.2. The Rigid Partial Order 24
6. A Rigid Metric on Term Graphs 30
6.1. Truncating Term Graphs 31
6.2. The Effect of Truncation 33
6.3. Deriving a Metric on Term Graphs 36
7. Metric vs. Partial Order Convergence 37
8. Infinitary Term Graph Rewriting 40
8.1. Term Graph Rewriting Systems 40
8.2. Convergence of Transfinite Reductions 42
9. Term Graph Rewriting vs. Term Rewriting 46
9.1. Soundness & Completeness of Infinitary Term Graph Rewriting 46
9.2. Preservation of Convergence under Unravelling 47
9.3. Finite Representations of Transfinite Term Reductions 50
10. Conclusions & Future Work 52
Acknowledgement 53
References 53
Appendix A. Proof of Lemma 5.14 54
Appendix B. Proof of Lemma 6.10 57

2. Preliminaries

We assume the reader to be familiar with the basic theory of ordinal numbers, orders and
topological spaces [21], as well as term rewriting [34]. In order to make this paper self-
contained, we briefly recall all necessary preliminaries.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 7

2.1. Sequences. We use the von Neumann definition of ordinal numbers. That is, an
ordinal number (or simply ordinal) α is the set of all ordinal numbers strictly smaller than α.
In particular, each natural number n ∈ N is an ordinal number with n = {0, 1, . . . , n− 1}.
The least infinite ordinal number is denoted by ω and is the set of all natural numbers.
Ordinal numbers will be denoted by lower case Greek letters α, β, γ, λ, ι.

A sequence S of length α in a set A, written (aι)ι<α, is a function from α to A with
ι 7→ aι for all ι ∈ α. We use |S| to denote the length α of S. If α is a limit ordinal, then
S is called open. Otherwise, it is called closed. If α is a finite ordinal, then S is called
finite. Otherwise, it is called infinite. For a finite sequence (ai)i<n we also use the notation
〈a0, a1, . . . , an−1〉. In particular, 〈〉 denotes the empty sequence. We write A∗ for the set of
all finite sequences in A.

The concatenation (aι)ι<α · (bι)ι<β of two sequences is the sequence (cι)ι<α+β with
cι = aι for ι < α and cα+ι = bι for ι < β. A sequence S is a (proper) prefix of a sequence T ,
denoted S ≤ T (respectively S < T), if there is a (non-empty) sequence S′ with S · S′ = T .
The prefix of T of length β ≤ |T | is denoted T |β . Similarly, a sequence S is a (proper) suffix
of a sequence T if there is a (non-empty) sequence S′ with S′ · S = T .

2.2. Metric Spaces. A pair (M,d) is called a metric space if d is a metric on the set
M . That is, d : M × M → R

+
0 is a function satisfying d(x, y) = 0 iff x = y (identity),

d(x, y) = d(y, x) (symmetry), and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality), for
all x, y, z ∈ M . If d instead of the triangle inequality, satisfies the stronger property
d(x, z) ≤ max {d(x, y),d(y, z)} (strong triangle), then (M,d) is called an ultrametric space.

Let (aι)ι<α be a sequence in a metric space (M,d). The sequence (aι)ι<α converges
to an element a ∈ M , written limι→α aι, if, for each ε ∈ R

+, there is a β < α such that
d(a, aι) < ε for every β < ι < α; (aι)ι<α is continuous if limι→λ aι = aλ for each limit
ordinal λ < α. Intuitively speaking, (aι)ι<α converges to a if the metric distance between
the elements aι of the sequence and a tends to 0 as the index ι approaches α, i.e. they
approximate a arbitrarily well. Accordingly, (aι)ι<α is continuous if it does not leap to a
distant object at limit ordinal indices.

The sequence (aι)ι<α is called Cauchy if, for any ε ∈ R
+, there is a β < α such that,

for all β < ι < ι′ < α, we have that d(mι,mι′) < ε. That is, the elements aι of the sequence
move closer and closer to each other as the index ι approaches α.

A metric space is called complete if each of its non-empty Cauchy sequences converges.
That is, whenever the elements aι of a sequence move closer and closer together, they in
fact approximate an existing object of the metric space, viz. limι→α aι.

2.3. Partial Orders. A partial order ≤ on a set A is a binary relation on A such that
x ≤ y, y ≤ z implies x ≤ z (transitivity); x ≤ x (reflexivity); and x ≤ y, y ≤ x implies x = y
(antisymmetry) for all x, y, z ∈ A. The pair (A,≤) is then called a partially ordered set.
A subset D of the underlying set A is called directed if it is non-empty and each pair of
elements in D has an upper bound in D. A partially ordered set (A,≤) is called a complete
partial order (cpo) if it has a least element and each directed set D has a least upper bound
(lub)

⊔
D. A cpo (A,≤) is called a complete semilattice if every non-empty set B has

greatest lower bound (glb)
d
B. In particular, this means that, in a complete semilattice,

the limit inferior of any sequence (aι)ι<α, defined by lim infι→α aι =
⊔

β<α

(d
β≤ι<α aι

)
,

always exists.

8 PATRICK BAHR

There is also an alternative characterisation of complete semilattices: a partially ordered
set (A,≤) is called bounded complete if each set B ⊆ A that has an upper bound in A also
has a least upper bound in A. Two elements a, b ∈ A are called compatible if they have a
common upper bound, i.e. there is some c ∈ A with a, b ≤ c.

Proposition 2.1 (bounded complete cpo = complete semilattice, [19]). Given a cpo (A,≤)
the following are equivalent:

(i) (A,≤) is a complete semilattice.
(ii) (A,≤) is bounded complete.
(iii) Each two compatible elements in A have a least upper bound.

Given two partially ordered sets (A,≤A) and (B,≤B), a function φ : A → B is called
monotonic iff a1 ≤A a2 implies φ(a1) ≤B φ(a2). In particular, we have that a sequence
(bι)ι<α in (B,≤B) is monotonic if bι ≤B bγ for all ι ≤ γ < α.

2.4. Terms. Since we are interested in the infinitary calculus of term rewriting, we consider
the set T ∞(Σ) of infinitary terms (or simply terms) over some signature Σ. A signature
Σ is a countable set of symbols such that each symbol f ∈ Σ is associated with an arity
ar(f) ∈ N, and we write Σ(n) for the set of symbols in Σ that have arity n. The set T ∞(Σ)
is defined as the greatest set T such that t ∈ T implies t = f(t1, . . . , tk) for some f ∈ Σ(k)

and t1, . . . , tk ∈ T . For each constant symbol c ∈ Σ(0), we write c for the term c(). For a
term t ∈ T ∞(Σ) we use the notation P(t) to denote the set of positions in t. P(t) is the
least subset of N∗ such that 〈〉 ∈ P(t) and 〈i〉 ·π ∈ P(t) if t = f(t0, . . . , tk−1) with 0 ≤ i < k
and π ∈ P(ti). For terms s, t ∈ T ∞(Σ) and a position π ∈ P(t), we write t|π for the subterm
of t at π, t(π) for the function symbol in t at π, and t[s]π for the term t with the subterm at
π replaced by s. As positions are sequences, we use the prefix order ≤ defined on them. A
position is also called an occurrence if the focus lies on the subterm at that position rather
than the position itself. The set T (Σ) of finite terms is the subset of T ∞(Σ) that contains
all terms with a finite set of positions.

On T ∞(Σ) a similarity measure sim(·, ·) : T ∞(Σ)×T ∞(Σ) → ω+1 is defined as follows

sim(s, t) = min {|π| |π ∈ P(s) ∩ P(t), s(π) 6= t(π)} ∪ {ω} for s, t ∈ T ∞(Σ)

That is, sim(s, t) is the minimal depth at which s and t differ, respectively ω if s = t. Based

on this similarity measure, a distance function d is defined by d(s, t) = 2−sim(s,t), where we
interpret 2−ω as 0. The pair (T ∞(Σ),d) is known to form a complete ultrametric space [4].

Partial terms, i.e. terms over signature Σ⊥ = Σ ⊎ {⊥} with ⊥ a fresh nullary symbol,
can be endowed with a binary relation ≤⊥ by defining s ≤⊥ t iff s can be obtained from
t by replacing some subterm occurrences in t by ⊥. Interpreting the term ⊥ as denoting
“undefined”, ≤⊥ can be read as “is less defined than”. The pair (T ∞(Σ⊥),≤⊥) is known to
form a complete semilattice [16]. To explicitly distinguish them from partial terms, we call
terms in T ∞(Σ) total.

2.5. Term Rewriting Systems. For term rewriting systems, we have to consider terms
with variables. To this end, we assume a countably infinite set V of variables and extend
a signature Σ to a signature ΣV = Σ ⊎ V with variables in V as nullary symbols. Instead
of T ∞(ΣV) we also write T ∞(Σ,V). A term rewriting system (TRS) R is a pair (Σ, R)
consisting of a signature Σ and a set R of term rewrite rules of the form l → r with

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 9

l ∈ T ∞(Σ,V) \ V and r ∈ T ∞(Σ,V) such that all variables occurring in r also occur in
l. Note that both the left- and the right-hand side may be infinite. We usually use x, y, z
and primed respectively indexed variants thereof to denote variables in V. A substitution
σ is a mapping from V to T ∞(Σ,V). Such a substitution σ can be uniquely lifted to a
homomorphism from T ∞(Σ,V) to T ∞(Σ,V) mapping a term t ∈ T ∞(Σ,V) to tσ by setting

xσ = σ(x) if x ∈ V and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) if f ∈ Σ(n).
As in the finitary setting, every TRS R defines a rewrite relation →R that indicates

rewrite steps:

s →R t ⇐⇒ ∃π ∈ P(s), l → r ∈ R,σ : s|π = lσ, t = s[rσ]π

Instead of s →R t, we sometimes write s →π,ρ t in order to indicate the applied rule ρ and
the position π, or simply s → t. The subterm s|π is called a ρ-redex or simply redex, rσ its
contractum, and s|π is said to be contracted to rσ.

3. Infinitary Term Rewriting

Before pondering over the right approach to an infinitary calculus of term graph rewriting,
we want to provide a brief overview of infinitary term rewriting [24, 7, 13]. This should
give an insight into the different approaches to dealing with infinite reductions. However,
in contrast to the majority of the literature on infinitary term rewriting, which is concerned
with strong convergence [24, 27], we will only consider weak notions of convergence in this
paper; cf. [14, 20, 33]. This weak form of convergence, also called Cauchy convergence, is
entirely based on the sequence of objects produced by rewriting without considering how
the rewrite rules are applied.

A (transfinite) reduction in a term rewriting system R, is a sequence S = (tι →R

tι+1)ι<α of rewrite steps in R. Note that the underlying sequence of terms (tι)ι<α̂ has
length α̂, where α̂ = α if S is open, and α̂ = α+ 1 if S is closed. The reduction S is called
m-continuous in R, written S : t0 →֒m R . . . , if the sequence of terms (tι)ι<α̂ is continuous
in (T ∞(Σ),d), i.e. limι→λ tι = tλ for each limit ordinal λ < α. The reduction S is said to
m-converge to a term t in R, written S : t0 →֒m R t, if it is m-continuous and limι→α̂ tι = t.

Example 3.1. Consider the term rewriting system R containing the rule ρ1 : a :: x →
b :: a :: x. By repeatedly applying ρ1, we obtain the infinite reduction

S : a :: c → b :: a :: c → b :: b :: a :: c → . . .

The position at which two consecutive terms differ moves deeper and deeper during the
reduction S, i.e. the d-distance between them tends to 0. Hence, S m-converges to the
infinite term s = b :: b :: b :: . . . , i.e. S : a :: c →֒m s.

Now consider a TRS with the slightly different rule ρ2 : a :: x → a :: b ::x. This TRS
yields a reduction

S′ : a :: c → a :: b :: c → a :: b :: b :: c → . . .

Even though the rule ρ2 is applied at the root of the term in each step of S′, the d-distance
between two consecutive terms tends to 0 again. The reduction S′ m-converges to the
infinite term s′ = a :: b :: b :: . . . , i.e. S′ : a :: c →֒m s′.

In contrast to the weak m-convergence that we consider here, strong m-convergence [24,
27] additionally requires that the depth of the contracted redexes tends to infinity as the
reduction approaches a limit ordinal. Concerning Example 3.1 above, we have for instance

10 PATRICK BAHR

that S also strongly m-converges – the rule is applied at increasingly deep redexes – whereas
S′ does not strongly m-converge – each step in S′ results from a contraction at the root.

In the partial order model of infinitary rewriting [7], convergence is defined via the limit
inferior in the complete semilattice (T ∞(Σ⊥),≤⊥). Given a TRS R = (Σ, R), we extend it
to R⊥ = (Σ⊥, R) by adding the fresh constant symbol ⊥ such that it admits all terms in
T ∞(Σ⊥). A reduction S = (tι →R⊥

tι+1)ι<α in this system R⊥ is called p-continuous in
R, written S : t0 →֒p R . . . , if lim infι→λ tι = tλ for each limit ordinal λ < α. The reduction
S is said to p-converge to a term t in R, written S : t0 →֒p R t, if it is p-continuous and
lim infι→α̂ tι = t.

The distinguishing feature of the partial order approach is that each continuous re-
duction also converges due to the semilattice structure of partial terms. Moreover, p-
convergence provides a conservative extension to m-convergence that allows rewriting mod-
ulo meaningless terms [7] by essentially mapping those parts of the reduction to ⊥ that are
divergent according to the metric mode of convergence.

Intuitively, the limit inferior in (T ∞(Σ⊥),≤⊥) – and thus p-convergence – describes an
approximation process that accumulates each piece of information that remains stable from
some point onwards. This is based on the ability of the partial order ≤⊥ to capture a notion
of information preservation, i.e. s ≤⊥ t iff t contains at least the same information as s does
but potentially more. A monotonic sequence of terms t0 ≤⊥ t1 ≤⊥ . . . thus approximates
the information contained in

⊔
i<ω ti. Given this reading of ≤⊥, the glb

d
T of a set of terms

T captures the common (non-contradicting) information of the terms in T . Leveraging this
observation, a sequence that is not necessarily monotonic can be turned into a monotonic
sequence tj =

d
j≤i<ω si such that each tj contains exactly the information that remains

stable in (si)i<ω from j onwards. Hence, the limit inferior lim infi→ω si =
⊔

j<ω

d
j≤i<ω si

is the term that contains the accumulated information that eventually remains stable in
(si)i<ω. This is expressed as an approximation of the monotonically increasing information
that remains stable from some point on.

Example 3.2. Reconsider the system from Example 3.1. The reduction S also p-converges
to s. This can be seen by forming the sequence (

d
j≤i<ω si)i<ω of stable information of the

underlying sequence (si)i<ω of terms in S:

::

⊥ ⊥

::

b ::

⊥ ⊥

::

b ::

b ::

⊥ ⊥

::

b ::

b ::

b

(
d

0≤i<ω si) (
d

1≤i<ω si) (
d

2≤i<ω si) . . . (s)

This sequence approximates the term s = b :: b :: b ::
Now consider the rule ρ1 together with the rule ρ3 : b :: x → a :: b ::x. Starting with

the same term, but applying the two rules alternately at the root, we obtain the reduction
sequence

T : a :: c → b :: a :: c → a :: b :: a :: c → b :: a :: b :: a :: c → . . .

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 11

Now the differences between two consecutive terms occur right below the root symbol “ :: ”.
Hence, T does not m-converge. This, however, only affects the left argument of each “ :: ”.
Following the right argument position, the bare list structure becomes eventually stable.
The sequence (

d
j≤i<ω si)i<ω of stable information

::

⊥ ⊥

::

⊥ ::

⊥ ⊥

::

⊥ ::

⊥ ::

⊥ ⊥

::

⊥ ::

⊥ ::

⊥

(
d

0≤i<ω si) (
d

1≤i<ω si) (
d

2≤i<ω si) . . . (t)

approximates the term t = ⊥ :: ⊥ :: ⊥ Hence, T p-converges to t.

Note that in both the metric and the partial order setting continuity is simply the
convergence of every proper prefix: a reduction S = (tι → tι+1)ι<α is m-continuous (re-
spectively p-continuous) iff every proper prefix S|β m-converges (respectively p-converges)
to tβ.

In order to define p-convergence, we had to extend terms with partiality. However, apart
from this extension, both m- and p-convergence coincide. To describe this more precisely
we use the following terms: a reduction S : s →֒p . . . is p-continuous in T ∞(Σ) iff each term
in S is total, i.e. in T ∞(Σ); a reduction S : s →֒p t is called p-convergent in T ∞(Σ) iff t and
each term in S is total. We then have the following theorem:

Theorem 3.3 (p-convergence in T ∞(Σ) = m-convergence, [5]). For every reduction S in
a TRS the following equivalences hold:

(i) S : s →֒p t in T ∞(Σ) iff S : s →֒m t
(ii) S : s →֒p . . . in T ∞(Σ) iff S : s →֒m . . .

Example 3.2 illustrates the correspondence between p- and m-convergence: the reduction
S p-converges in T ∞(Σ) and m-converges whereas the reduction T p-converges but not in
T ∞(Σ) and thus does not m-converge.

Kennaway [22] and Bahr [6] investigated abstract models of infinitary rewriting based
on metric spaces respectively partially ordered sets. We shall take these abstract models
as a basis to formulate a theory of infinitary term graph reductions. The key question that
we have to address is what an appropriate metric space respectively partial order on term
graphs looks like.

4. Graphs & Term Graphs

This section provides the basic notions for term graphs and more generally for graphs.
Terms over a signature, say Σ, can be thought of as rooted trees whose nodes are labelled
with symbols from Σ. Moreover, in these trees a node labelled with a k-ary symbol is
restricted to have out-degree k and the outgoing edges are ordered. In this way the i-th
successor of a node labelled with a symbol f is interpreted as the root node of the subtree

12 PATRICK BAHR

f

a h

a b

(a) f(a, h(a, b)).

f

h

a

b

h

(b) A graph.

f

f

a

h

(c) A term graph g.

h

f

a

(d) Sub-term graph of g.

Figure 1. Tree representation of a term and generalisation to (term) graphs.

that represents the i-th argument of f . For example, consider the term f(a, h(a, b)). The
corresponding representation as a tree is shown in Figure 1a.

In term graphs, the restriction to a tree structure is abolished. The corresponding
notion of term graphs we are using is taken from Barendregt et al. [11]. We begin by
defining the underlying notion of graphs.

Definition 4.1 (graphs). Let Σ be a signature. A graph over Σ is a tuple g = (N, lab, suc)
consisting of a set N (of nodes), a labelling function lab : N → Σ, and a successor function
suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each node n ∈ N , i.e. a node labelled
with a k-ary symbol has precisely k successors. The graph g is called finite whenever the
underlying set N of nodes is finite. If suc(n) = 〈n0, . . . , nk−1〉, then we write suci(n) for ni.
Moreover, we use the abbreviation arg(n) for the arity ar(lab(n)) of n.

Example 4.2. Let Σ = {f/2, h/2, a/0, b/0} be a signature. The graph over Σ, depicted
in Figure 1b, is given by the triple (N, lab, suc) with N = {n0, n1, n2, n3, n4}, lab(n0) =
f, lab(n1) = lab(n4) = h, lab(n2) = b, lab(n3) = a and suc(n0) = 〈n1, n2〉, suc(n1) =
〈n0, n3〉, suc(n2) = suc(n3) = 〈〉, suc(n4) = 〈n2, n3〉.

Definition 4.3 (paths, reachability). Let g = (N, lab, suc) be a graph and n,m ∈ N .

(i) A path in g from n to m is a finite sequence π ∈ N
∗ such that either

− π is empty and n = m, or
− π = 〈i〉 · π′ with 0 ≤ i < arg(n) and the suffix π′ is a path in g from suci(n) to m.

(ii) If there exists a path from n to m in g, we say that m is reachable from n in g.

Since paths are sequences, we may use the prefix order on sequences for paths as well.
That is, we write π1 ≤ π2 (respectively π1 < π2) if there is a (non-empty) path π3 with
π1 · π3 = π2.

Definition 4.4 (term graphs). Given a signature Σ, a term graph g over Σ is a tuple
(N, lab, suc, r) consisting of an underlying graph (N, lab, suc) over Σ whose nodes are all
reachable from the root node r ∈ N . The term graph g is called finite if the underlying
graph is finite, i.e. the set N of nodes is finite. The class of all term graphs over Σ is denoted
G∞(Σ); the class of all finite term graphs over Σ is denoted G(Σ). We use the notation Ng,
labg, sucg and rg to refer to the respective components N ,lab, suc and r of g. In analogy to
subterms, term graphs have sub-term graphs. Given a graph or a term graph h and a node
n in h, we write h|n to denote the sub-term graph of h rooted in n.

Example 4.5. Let Σ = {f/2, h/2, c/0} be a signature. The term graph g over Σ, depicted
in Figure 1c, is given by the quadruple (N, lab, suc, r), where N = {r, n1, n2, n3}, suc(r) =
〈n1, n2〉, suc(n1) = 〈n1, n3〉, suc(n2) = 〈n1, n3〉, suc(n3) = 〈〉 and lab(r) = lab(n1) = f ,
lab(n2) = h, lab(n3) = c. Figure 1d depicts the sub-term graph g|n2

of g.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 13

Paths in a graph are not absolute but relative to a starting node. In term graphs,
however, we have a distinguished root node from which each node is reachable. Paths
relative to the root node are central for dealing with term graphs:

Definition 4.6 (positions, depth, cyclicity, trees). Let g ∈ G∞(Σ) and n ∈ Ng.

(i) A position of n in g is a path in the underlying graph of g from rg to n. The set of all
positions in g is denoted P(g); the set of all positions of n in g is denoted Pg(n).1

(ii) The depth of n in g, denoted depthg(n), is the minimum of the lengths of the positions
of n in g, i.e. depthg(n) = min {|π| |π ∈ Pg(n)}.

(iii) For a position π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng with π ∈ Pg(n)
and g(π) for its symbol labg(n).

(iv) A position π ∈ P(g) is called cyclic if there are paths π1 < π2 ≤ π with nodeg(π1) =
nodeg(π2), i.e. π passes a node twice. The non-empty path π′ with π1 · π′ = π2 is then
called a cycle of nodeg(π1). A position that is not cyclic is called acyclic. If g has a
cyclic position, g is called cyclic; otherwise g is called acyclic.

(v) The term graph g is called a term tree if each node in g has exactly one position.

Note that the labelling function of graphs – and thus term graphs – is total. In contrast,
Barendregt et al. [11] considered open (term) graphs with a partial labelling function such
that unlabelled nodes denote holes or variables. This is reflected in their notion of homo-
morphisms in which the homomorphism condition is suspended for unlabelled nodes.

4.1. Homomorphisms. Instead of a partial node labelling function for term graphs, we
chose a syntactic approach that is closer to the representation in terms: variables, holes
and “bottoms” are represented as distinguished syntactic entities. We achieve this on term
graphs by making the notion of homomorphisms dependent on a set of constant symbols ∆
for which the homomorphism condition is suspended:

Definition 4.7 (∆-homomorphisms). Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈ G∞(Σ).

(i) A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following holds:

labg(n) = labh(φ(n)) (labelling)

φ(suc
g
i (n)) = such

i (φ(n)) for all 0 ≤ i < arg(n) (successor)

(ii) A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function φ : Ng → Nh

that is homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆ and satisfies

φ(rg) = rh (root)

Note that, for ∆ = ∅, we get the usual notion of homomorphisms on term graphs (e.g.
Barendsen [12]). The ∆-nodes can be thought of as holes in the term graphs that can
be filled with other term graphs. For example, if we have a distinguished set of variable
symbols V ⊆ Σ(0), we can use V-homomorphisms to formalise the matching step of term
graph rewriting, which requires the instantiation of variables.

Example 4.8. Figure 2 depicts two functions φ and ψ. Whereas φ is a homomorphism,
the function ψ is not a homomorphism since, for example, the node labelled a in g3 is
mapped to a node labelled h in g3. Nevertheless, ψ is a {a, b}-homomorphism. Note that

1The notion/notation of positions is borrowed from terms: Every position π of a node n corresponds to
the subterm represented by n occurring at position π in the unravelling of the term graph to a term.

14 PATRICK BAHR

f

h

a

a

f

h

a

φ

g1φ : g2

(a) A homomorphism.

f

a b

f

h

a

ψ

g3ψ : g4
{a, b}

(b) A {a, b}-homomorphism.

Figure 2. ∆-homomorphisms.

∆-homomorphisms may introduce additional sharing in the target term graph by mapping
several nodes in the source to the same node in the target.

Proposition 4.9 (∆-homomorphism preorder). The ∆-homomorphisms on G∞(Σ) form a
category that is a preorder, i.e. there is at most one ∆-homomorphism from one term graph
to another.

Proof. The identity ∆-homomorphism is obviously the identity mapping on the set of
nodes. Moreover, an easy equational reasoning reveals that the composition of two ∆-
homomorphisms is again a ∆-homomorphism. Associativity of this composition is obvious
as ∆-homomorphisms are functions.

To show that the category is a preorder, assume that there are two ∆-homomorphisms
φ1, φ2 : g →∆ h. We prove that φ1 = φ2 by showing that φ1(n) = φ2(n) for all n ∈ Ng by
induction on the depth of n in g.

Let depthg(n) = 0, i.e. n = rg. By the root condition for φ, we have that φ1(rg) = rh =
φ2(rg). Let depthg(n) = d > 0. Then n has a position π · 〈i〉 in g such that depthg(n′) < d
for n′ = nodeg(π). Hence, we can employ the induction hypothesis for n′. Moreover, since
n′ has at least one successor node, viz. n, it cannot be labelled with a nullary symbol
and a fortiori not with a symbol in ∆. Therefore, the ∆-homomorphisms φ1 and φ2 are
homomorphic in n′ and we can thus reason as follows:

φ1(n) = such
i (φ1(n′)) (successor condition for φ1)

= such
i (φ2(n′)) (ind. hyp.)

= φ2(n) (successor condition for φ2)

As a consequence, whenever there are two ∆-homomorphisms φ : g →∆ h and ψ : h →∆

g, they are inverses of each other, i.e. ∆-isomorphisms. If two term graphs are ∆-isomorphic,
we write g ∼=∆ h.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h respectively φ : g →σ

h instead of φ : g →∆ h and call φ a homomorphism respectively a σ-homomorphism. The
same convention applies to ∆-isomorphisms.

The structure of positions permits a convenient characterisation of ∆-homomorphisms:

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 15

Lemma 4.10 (characterisation of ∆-homomorphisms). For g, h ∈ G∞(Σ), a function
φ : Ng → Nh is a ∆-homomorphism φ : g →∆ h iff the following holds for all n ∈ Ng:

(a) Pg(n) ⊆ Ph(φ(n)), and (b) labg(n) 6∈ ∆ =⇒ labg(n) = labh(φ(n)).

Proof. For the “only if” direction, assume that φ : g →∆ h. (b) is the labelling condition
and is therefore satisfied by φ. To establish (a), we show the equivalent statement

∀π ∈ P(g). ∀n ∈ Ng. π ∈ Pg(n) =⇒ π ∈ Ph(φ(n))

We do so by induction on the length of π: if π = 〈〉, then π ∈ Pg(n) implies n = rg. By

the root condition, we have φ(rg) = rh and, therefore, π = 〈〉 ∈ φ(rg). If π = π′ · 〈i〉, then
let n′ = nodeg(π′). Consequently, π′ ∈ Pg(n′) and, by induction hypothesis, π′ ∈ Ph(φ(n′)).
Since π = π′ · 〈i〉, we have suc

g
i (n′) = n. By the successor condition we can conclude

φ(n) = such
i (φ(n′)). This and π′ ∈ Ph(φ(n′)) yields that π′ · 〈i〉 ∈ Ph(φ(n)).

For the “if” direction, we assume (a) and (b). The labelling condition follows imme-
diately from (b). For the root condition, observe that since 〈〉 ∈ Pg(rg), we also have

〈〉 ∈ Ph(φ(rg)). Hence, φ(rg) = rh. In order to show the successor condition, let n, n′ ∈ Ng

and 0 ≤ i < arg(n) such that suc
g
i (n) = n′. Then there is a position π ∈ Pg(n) with

π · 〈i〉 ∈ Pg(n′). By (a), we can conclude that π ∈ Ph(φ(n)) and π · 〈i〉 ∈ Ph(φ(n′)) which

implies that such
i (φ(n)) = φ(n′).

By Proposition 4.9, there is at most one ∆-homomorphism between two term graphs.
The lemma above uniquely defines this ∆-homomorphism: if there is a ∆-homomorphism
from g to h, it is defined by φ(n) = n′, where n′ is the unique node n′ ∈ Nh with
Pg(n) ⊆ Ph(n′). Moreover, while it is not true for arbitrary ∆-homomorphisms, we have
that homomorphisms are surjective.

Lemma 4.11 (homomorphisms are surjective). Every homomorphism φ : g → h, with
g, h ∈ G∞(Σ), is surjective.

Proof. Follows from an easy induction on the depth of the nodes in h.

The {a, b}-homomorphism illustrated in Figure 2b, shows that the above lemma does
not hold for ∆-homomorphisms in general.

4.2. Isomorphisms & Isomorphism Classes. When dealing with term graphs, in par-
ticular, when studying term graph transformations, we do not want to distinguish between
isomorphic term graphs. Distinct but isomorphic term graphs do only differ in the naming
of nodes and are thus an unwanted artifact of the definition of term graphs. In this way,
equality up to isomorphism is similar to α-equivalence of λ-terms and has to be dealt with.

In this section, we characterise isomorphisms and more generally ∆-isomorphisms.
From this we derive two canonical representations of isomorphism classes of term graphs.
One is simply a subclass of the class of term graphs while the other one is based on the
structure provided by the positions of term graphs. The relevance of the former representa-
tion is derived from the fact that we still have term graphs that can be easily manipulated
whereas the latter is more technical and will be helpful for constructing term graphs up to
isomorphism.

Note that a bijective ∆-homomorphism is not necessarily a ∆-isomorphism. To realise
this, consider two term graphs g, h, each with one node only. Let the node in g be labelled
with a and the node in h with b then the only possible a-homomorphism from g to h is

16 PATRICK BAHR

clearly a bijection but not an a-isomorphism. On the other hand, bijective homomorphisms
indeed are isomorphisms.

Lemma 4.12 (bijective homomorphisms are isomorphisms). Let g, h ∈ G∞(Σ) and φ : g →
h. Then the following are equivalent

(a) φ is an isomorphism.
(b) φ is bijective.
(c) φ is injective.

Proof. The implication (a) ⇒ (b) is trivial. The equivalence (b) ⇔ (c) follows from
Lemma 4.11. For the implication (b) ⇒ (a), consider the inverse φ−1 of φ. We need
to show that φ−1 is a homomorphism from h to g. The root condition follows immediately
from the root condition for φ. Similarly, an easy equational reasoning reveals that φ−1 is
homomorphic in Nh since φ is homomorphic in all n ∈ Ng.

From the characterisation of ∆-homomorphisms in Lemma 4.10, we immediately obtain
a characterisation of ∆-isomorphisms as follows:

Lemma 4.13 (characterisation of ∆-isomorphisms). For all g, h ∈ G∞(Σ), a function
φ : Ng → Nh is a ∆-isomorphism iff for all n ∈ Ng

(a) Ph(φ(n)) = Pg(n), and

(b) labg(n) = labh(φ(n)) or labg(n), labh(φ(n)) ∈ ∆.

Proof. Immediate consequence of Lemma 4.10 and Proposition 4.9.

Note that whenever ∆ is a singleton set, the condition labg(n), labh(φ(n)) ∈ ∆ in the

above lemma implies labg(n) = labh(φ(n)). Therefore, we obtain the following corollary:

Corollary 4.14 (σ-isomorphism = isomorphism). Given g, h ∈ G∞(Σ) and σ ∈ Σ(0), we
have g ∼= h iff g ∼=σ h.

Note that the above equivalence does not hold for ∆-homomorphisms with more than
one symbol in ∆: consider the term graphs g = a and h = b consisting of a single node
labelled a respectively b. While g and h are ∆-isomorphic for ∆ = {a, b}, they are not
isomorphic.

4.2.1. Canonical Term Graphs. From the Lemmas 4.12 and 4.13 we learned that isomor-
phisms between term graphs are bijections that preserve and reflect the positions as well
as the labelling of each node. These findings motivate the following definition of canonical
term graphs as candidates for representatives of isomorphism classes:

Definition 4.15 (canonical term graphs). A term graph g is called canonical if n = Pg(n)
holds for each n ∈ Ng. That is, each node is the set of its positions in the term graph.
The set of all (finite) canonical term graphs over Σ is denoted G∞

C (Σ) (respectively GC(Σ)).
Given a term graph h ∈ G∞

C (Σ), its canonical representative C(h) is the canonical term
graph given by

NC(h) = {Ph(n) |n ∈ N } rC(h) = Ph(r) labC(h)(Ph(n)) = labh(n) for all n ∈ N

suc
C(h)
i (Ph(n)) = Ph(such

i (n)) for all n ∈ N, 0 ≤ i < arh(n)

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 17

The above definition follows a well-known approach to obtain, for each term graph g, a
canonical representative C(g) [32]. One can easily see that C(g) is a well-defined canonical
term graph. With this definition we indeed capture a notion of canonical representatives of
isomorphism classes:

Proposition 4.16 (canonical term graphs are isomorphism class representatives). Given
g ∈ G∞(Σ), the term graph C(g) canonically represents the equivalence class [g]∼=. More
precisely, it holds that

(i) [g]∼= = [C(g)]∼= , and (ii) [g]∼= = [h]∼= iff C(g) = C(h).

In particular, we have, for all canonical term graphs g, h, that g = h iff g ∼= h.

Proof. Straightforward consequence of Lemma 4.13.

4.2.2. Labelled Quotient Trees. Intuitively, term graphs can be thought of as “terms with
sharing”, i.e. terms in which occurrences of the same subterm may be identified. The
representation of isomorphic term graphs as labelled quotient trees, which we shall study
in this section, makes use of and formalises this intuition. To this end, we introduce an
equivalence relation on the positions of a term graph that captures the sharing in a term
graph:

Definition 4.17 (aliasing positions). Given a term graph g and two positions π1, π2 ∈ P(g),
we say that π1 and π2 alias each other in g, denoted π1 ∼g π2, if nodeg(π1) = nodeg(π2).

One can easily see that the thus defined relation ∼g on P(g) is an equivalence relation.
Moreover, the partition on P(g) induced by ∼g is simply the set {Pg(n) |n ∈ Ng } that
contains the sets of positions of nodes in g.

Example 4.18. For the term graph g2 illustrated in Figure 2a, we have that 〈0, 0〉 ∼g2
〈1〉

as both 〈0, 0〉 and 〈1〉 are positions of the a-node in g2. For the term graph g4 in Figure 2b,
〈〉 ∼g4

〈1〉 ∼g4
〈1, 1〉 ∼g4

. . . as all finite sequences over 1 are positions of the f -node in g4.

The characterisation of ∆-homomorphisms of Lemma 4.10 can be recast in terms of
aliasing positions, which then yields the following characterisation of the existence of ∆-
homomorphisms:

Lemma 4.19 (characterisation of ∆-homomorphisms). Given g, h ∈ G∞(Σ), there is a
∆-homomorphism φ : g →∆ h iff, for all π, π′ ∈ P(g), we have

(a) π ∼g π
′ =⇒ π ∼h π

′ , and (b) g(π) 6∈ ∆ =⇒ g(π) = h(π).

Proof. For the “only if” direction, assume that φ is a ∆-homomorphism from g to h. Then
we can use the properties (a) and (b) of Lemma 4.10, which we will refer to as (a’) and (b’)
to avoid confusion. In order to show (a), assume π ∼g π

′. Then there is some node n ∈ Ng

with π, π′ ∈ Pg(n). (a’) yields π, π′ ∈ φ(n) and, therefore, π ∼h π
′. To show (b), we assume

some π ∈ P(g) with g(π) 6∈ ∆. Then we can reason as follows:

g(π) = labg(nodeg(π))
(b’)
= labh(φ(nodeg(π)))

(a’)
= labh(nodeh(π)) = h(π)

For the converse direction, assume that both (a) and (b) hold. Define the function φ : Ng →
Nh by φ(n) = m iff Pg(n) ⊆ Ph(m) for all n ∈ Ng and m ∈ Nh. To see that this is

well-defined, we show at first that, for each n ∈ Ng, there is at most one m ∈ Nh with
Pg(n) ⊆ Ph(m). Suppose there is another node m′ ∈ Nh with Pg(n) ⊆ Ph(m′). Since

18 PATRICK BAHR

Pg(n) 6= ∅, this implies Ph(m) ∩ Ph(m′) 6= ∅. Hence, m = m′. Secondly, we show that
there is at least one such node m. Choose some π∗ ∈ Pg(n). Since then π∗ ∼g π

∗ and, by

(a), also π∗ ∼h π∗ holds, there is some m ∈ Nh with π∗ ∈ Ph(m). For each π ∈ Pg(n),
we have π∗ ∼g π and, therefore, π∗ ∼h π by (a). Hence, π ∈ Ph(m). So we know that φ
is well-defined. By construction, φ satisfies (a’). Moreover, because of (b), it is also easily
seen to satisfy (b’). Hence, φ is a homomorphism from g to h.

Intuitively, Clause (a) states that h has at least as much sharing of nodes as g has,
whereas Clause (b) states that h has at least the same non-∆-labelling as g. In this sense, the
above characterisation confirms the intuition about ∆-homomorphisms that we mentioned
in Example 4.8, viz. ∆-homomorphisms may only introduce sharing and relabel ∆-nodes.
This can be observed in the two ∆-homomorphisms illustrated in Figure 2.

From the above characterisations of the existence of ∆-homomorphisms, we can eas-
ily derive the following characterisation of ∆-isomorphisms using the uniqueness of ∆-
homomorphisms between two term graphs:

Lemma 4.20 (characterisation of ∆-isomorphisms). For all g, h ∈ G∞(Σ), g ∼=∆ h iff

(a) ∼g = ∼h , and (b) g(π) = h(π) or g(π), h(π) ∈ ∆ for all π ∈ P(g).

Proof. Immediate consequence of Lemma 4.19 and Proposition 4.9.

Remark 4.21. ∆-homomorphisms can be naturally lifted to the set of isomorphism classes
G∞(Σ)/∼=: we say that two ∆-homomorphisms φ : g →∆ h, φ′ : g′ →∆ h′, are isomorphic,
written φ ∼= φ′ iff there are isomorphisms ψ1 : g ∼= g′ and ψ2 : h ∼= h′ such that ψ2 ◦ φ =
φ′ ◦ ψ1. Given a ∆-homomorphism φ : g →∆ h in G∞(Σ), [φ]∼= : [g]∼= →∆ [h]∼= is a ∆-
homomorphism in G∞(Σ)/∼=. These ∆-homomorphisms then form a category which can
easily be show to be isomorphic to the category of ∆-homomorphisms on G∞

C (Σ) via the
mapping [·]∼=.

Lemma 4.20 has shown that term graphs can be characterised up to isomorphism by
only giving the equivalence ∼g and the labelling g(·) : π 7→ g(π) of the involved term graphs.
This observation gives rise to the following definition:

Definition 4.22 (labelled quotient trees). A labelled quotient tree over signature Σ is
a triple (P, l,∼) consisting of a non-empty set P ⊆ N

∗, a function l : P → Σ, and an
equivalence relation ∼ on P that satisfies the following conditions for all π, π′ ∈ N

∗ and
i ∈ N:

π · 〈i〉 ∈ P =⇒ π ∈ P and i < ar(l(π)) (reachability)

π ∼ π′ =⇒

{
l(π) = l(π′) and

π · 〈i〉 ∼ π′ · 〈i〉 for all i < ar(l(π))
(congruence)

In other words, a labelled quotient tree (P, l,∼) is a ranked tree domain P together with a
congruence ∼ on it and a labelling function l : P/∼ → Σ that honours the rank. Also note
that since P must be non-empty, the reachability condition implies that 〈〉 ∈ P .

Example 4.23. The term graph g2 depicted in Figure 2a is represented up to isomorphism
by the labelled quotient tree (P, l,∼) with P = {〈〉, 〈0〉, 〈0, 0〉, 〈1〉}, l(〈〉) = f , l(〈0〉) = h,
l(〈0, 0〉) = l(〈1〉) = a and ∼ the least equivalence relation on P with 〈0, 0〉 ∼ 〈1〉.

The following lemma confirms that labelled quotient trees uniquely characterise any
term graph up to isomorphism:

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 19

Lemma 4.24 (labelled quotient trees are canonical). Each term graph g ∈ G∞(Σ) induces
a canonical labelled quotient tree (P(g), g(·),∼g) over Σ. Vice versa, for each labelled
quotient tree (P, l,∼) over Σ there is a unique canonical term graph g ∈ G∞

C (Σ) whose
canonical labelled quotient tree is (P, l,∼), i.e. P(g) = P , g(π) = l(π) for all π ∈ P , and
∼g = ∼.

Proof. The first part is trivial: (P(g), g(·),∼g) satisfies the conditions from Definition 4.22.
For the second part, let (P, l,∼) be a labelled quotient tree. Define the term graph

g = (N, lab, suc, r) by

N = P/∼ lab(n) = f iff ∃π ∈ n. l(π) = f

r = [〈〉]∼ suci(n) = n′ iff ∃π ∈ n. π · 〈i〉 ∈ n′

The functions lab and suc are well-defined due to the congruence condition satisfied by
(P, l,∼). Since P is non-empty and closed under prefixes, it contains 〈〉. Hence, r is well-
defined. Moreover, by the reachability condition, each node in N is reachable from the root
node. An easy induction proof shows that Pg(n) = n for each node n ∈ N . Thus, g is a
well-defined canonical term graph. The canonical labelled quotient tree of g is obviously
(P, l,∼). Whenever there are two canonical term graphs with the same canonical labelled
quotient tree (P, l,∼), they are isomorphic due to Lemma 4.20 and, therefore, have to be
identical by Proposition 4.16.

Labelled quotient trees provide a valuable tool for constructing canonical term graphs
as we shall see. Nevertheless, the original graph representation remains convenient for
practical purposes as it allows a straightforward formalisation of term graph rewriting and
provides a finite representation of finite cyclic term graphs, which induce an infinite labelled
quotient tree.

4.2.3. Terms, Term Trees & Unravelling. Before we continue, it is instructive to make
the correspondence between terms and term graphs clear. First, note that, for each term
tree t, the equivalence ∼t is the identity relation IP(t) on P(t), i.e. π1 ∼t π2 iff π1 = π2.
Consequently, we have the following one-to-one correspondence between canonical term
trees and terms: each term t ∈ T ∞(Σ) induces the canonical term tree given by the labelled
quotient tree (P(t), t(·),IP(t)). For example, the term tree depicted in Figure 1a corresponds
to the term f(a, h(a, b)). We thus consider the set of terms T ∞(Σ) as the subset of canonical
term trees of G∞

C (Σ).
With this correspondence in mind, we can define the unravelling of a term graph g as

the unique term t such that there is a homomorphism φ : t → g. The unravelling of cyclic
term graphs yields infinite terms, e.g. in Figure 8 on page 43, the term hω is the unravelling
of the term graph g2. We use the notation U(g) for the unravelling of g.

5. A Rigid Partial Order on Term Graphs

In this section, we shall establish a partial order suitable for formalising convergence of
sequences of canonical term graphs similarly to p-convergence on terms.

Recall that p-convergence in term rewriting systems is based on a partial order ≤⊥ on
the set T ∞(Σ⊥) of partial terms. The partial order ≤⊥ instantiates occurrences of ⊥ from
left to right, i.e. s ≤⊥ t iff t is obtained by replacing occurrences of ⊥ in s by arbitrary
terms in T ∞(Σ⊥).

20 PATRICK BAHR

Since we are considering term graph rewriting as a generalisation of term rewriting, our
aim is to generalise the partial order ≤⊥ on terms to term graphs. That is, the partial order
we are looking for should coincide with ≤⊥ if restricted to term trees. Moreover, we also
want to maintain the characteristic properties of the partial order ≤⊥ when generalising to
term graphs. The most important characteristic we are striving for is a complete semilattice
structure in order to define p-convergence in terms of the limit inferior. Apart from that, we
also want to maintain the intuition of the partial order ≤⊥, viz. the intuition of information
preservation, which ≤⊥ captures on terms as we illustrated in Section 2. We will make this
last guiding principle clearer as we go along.

Analogously to partial terms, we consider the class of partial term graphs simply as
term graphs over the signature Σ⊥ = Σ ⊎ {⊥}. In order to generalise the partial order
≤⊥ to term graphs, we need to formalise the instantiation of occurrences of ⊥ in term
graphs. ∆-homomorphisms, for ∆ = {⊥} – or ⊥-homomorphisms for short – provide the
right starting point for that. A homomorphism φ : g → h maps each node in g to a node in
h while preserving the local structure of each node, viz. its labelling and its successors. In
the case of a ⊥-homomorphisms φ : g →⊥ h, the preservation of the labelling is suspended
for nodes labelled ⊥ thus allowing φ to instantiate each ⊥-node in g with an arbitrary node
in h.

Therefore, we shall use ⊥-homomorphisms as the basis for generalising ≤⊥ to canonical
partial term graphs. This approach is based on the observation that ⊥-homomorphisms
characterise the partial order ≤⊥ on terms. Considering terms as canonical term trees, we
obtain the following equivalence:

s ≤⊥ t ⇐⇒ there is a ⊥-homomorphism φ : s →⊥ t.

Thus, ⊥-homomorphisms constitute the ideal tool for defining a partial order on canonical
partial term graphs that generalises ≤⊥. In the following subsection, we shall explore
different partial orders on canonical partial term graphs based on ⊥-homomorphisms.

5.1. Partial Orders on Term Graphs. Consider the simple partial order ≤S
⊥ defined

on term graphs as follows: g ≤S
⊥ h iff there is a ⊥-homomorphism φ : g →⊥ h. This is a

straightforward generalisation of the partial order ≤⊥ to term graphs. In fact, this partial
order forms a complete semilattice on G∞

C (Σ⊥) [10].
As we have explained in Section 2, p-convergence on terms is based on the ability of

the partial order ≤⊥ to capture information preservation between terms – s ≤⊥ t means
that t contains at least the same information as s does. The limit inferior – and thus
p-convergence – comprises the accumulated information that eventually remains stable.
Following the approach on terms, a partial order suitable as a basis for convergence for
term graph rewriting, has to capture an appropriate notion of information preservation as
well.

One has to keep in mind, however, that term graphs encode an additional dimension of
information through sharing of nodes, i.e. the fact that nodes may have multiple positions.
Since ≤S

⊥ specialises to ≤⊥ on terms, it does preserve the information on the tree structure
in the same way as ≤⊥ does. The difficult part is to determine the right approach to the
role of sharing.

Indeed, ⊥-homomorphisms instantiate occurrences of ⊥ and are thereby able to intro-
duce new information. But while ⊥-homomorphisms preserve the local structure of each
node, they may change the global structure of a term graph by introducing sharing: for

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 21

f

c c

f

c

f

c c

f

c

f

c c

(g0) (g1) (g2) (g4) (gω)

Figure 3. Limit inferior w.r.t. ≤S
⊥ in the presence of acyclic sharing.

f f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

⊥

(g0) (g1) (g2) (g3) (gω) (g′
2). . .

Figure 4. Varying acyclic sharing.

the term graphs g0 and g1 in Figure 3, we have an obvious ⊥-homomorphism – in fact a
homomorphism – φ : g0 →⊥ g1 and thus g0 ≤S

⊥ g1.
There are at least two different ways to interpret the differences in g0 and g1. The first

one dismisses ≤S
⊥ as a partial order suitable for our purposes: the term graphs g0 and g1

contain contradicting information. While in g0 the two children of the f -node are distinct,
they are identical in g1. We will indeed follow this view in this paper and introduce a rigid
partial order ≤R

⊥ that addresses this concern. There is, however, also a second view that does
not see g0 and g1 in contradiction: both term graphs show the f -node with two successors,
both of which are labelled with c. The term graph g1 merely contains the additional piece
of information that the two successor nodes of the f -node are identical. The simple partial
order ≤S

⊥, which follows this view, is studied further in [10].
One consequence of the above behaviour of ≤S

⊥ is that total term graphs are not nec-

essarily maximal w.r.t. ≤S
⊥, e.g. g0 is total but not maximal. The second – more severe –

consequence is that there can be no metric on total term graphs such that the limit w.r.t.
that metric coincides with the limit inferior on total term graph. To see this consider the
sequence (gi)i<ω of term graphs illustrated in Figure 3. Its limit inferior w.r.t. ≤S

⊥ is the
total term graph gω. On the other hand, there is no metric w.r.t. which (gi)i<ω converges
since the sequence alternates between two distinct term graphs. That is, the correspon-
dence between metric and partial order convergence that we know from term rewriting, cf.
Theorem 3.3, is impossible.

In order to avoid the introduction of sharing, we need to consider ⊥-homomorphisms
that preserve the structure of term graphs more rigidly, i.e. not only locally. Recall that
by Lemma 4.24, the structure of a term graph is essentially given by the positions of nodes

22 PATRICK BAHR

and their labelling. Labellings are already taken into consideration by ⊥-homomorphisms.
Thus, we can define a partial order ≤P

⊥ that preserves the structure of term graphs as

follows: g ≤P
⊥ h iff there is a ⊥-homomorphism φ : g →⊥ h with Ph(φ(n)) = Pg(n) for

all n ∈ Ng with labg(n) 6= ⊥. While this would again yield a complete semilattice, it is
unfortunately too restrictive. For example, consider the sequence of term graphs (gi)i<ω

depicted in Figure 4. Due to the cycle, we have for each term graph gi that ⊥ is the only
term graph strictly smaller than gi w.r.t. ≤P

⊥. The reason for this is the fact that the only
way to maintain the positions of the root node of the term graph gi is to keep all nodes of
the cycle in gi. Hence, in order to obtain a term graph h with h ≤P

⊥ gi, we have to either
keep the whole term graph gi or collapse it completely, yielding ⊥. For example, we neither
have g′

2 ≤P
⊥ g2 nor g′

2 ≤P
⊥ g3 for the term graph g′

2 illustrated in Figure 4. As a consequence,
the limit inferior of the sequence (gi)i<ω is ⊥ and not the expected term graph gω.

The fact that the root nodes g2 and g′
2 have different sets of positions is solely caused by

the edge to the root node of g2 that comes from below and thus closes a cycle. Even though
the edge occurs below the root node, it affects its positions. Cutting off that edge, like
in g′

2, changes the sharing. As a consequence, in the complete semilattice (G∞
C (Σ⊥),≤P

⊥),
we do not obtain the intuitively expected convergence behaviour depicted in Figure 8c on
page 43.

This observation suggests that we should only consider the upward structure of each
node, ignoring the sharing that is caused by edges occurring below a node. We will see that
by restricting our attention to acyclic positions, we indeed obtain the desired properties for
a partial order on term graphs.

Recall that a position π in a term graph g is called cyclic iff there are positions π1, π2

with π1 < π2 ≤ π such that nodeg(π1) = nodeg(π2), i.e. π passes a node twice. Otherwise
it is called acyclic. We will use the notation Pa(g) for the set of all acyclic positions in g,
and Pa

g (n) for the set of all acyclic positions of a node n in g. That is, Pa(g) is the set of
positions in g that pass each node in g at most once. Clearly, every node has at least one
acyclic position, i.e. Pa

g (n) is a non-empty set.

Definition 5.1 (rigidity). Let Σ be a signature, ∆ ⊆ Σ(0) and g, h ∈ G∞(Σ) such that
φ : g →∆ h.

(i) Given n ∈ Ng, φ is said to be rigid in n if it satisfies the equation

Pa
g (n) = Pa

h(φ(n)) (rigid)

(ii) φ is called a rigid ∆-homomorphism if it is rigid in all n ∈ Ng with labg(n) 6∈ ∆.

Proposition 5.2 (category of rigid ∆-homomorphisms). The rigid ∆-homomorphisms on
G∞(Σ) form a subcategory of the category of ∆-homomorphisms on G∞(Σ).

Proof. Straightforward.

Note that, for each node n in a term graph g, the positions in Pa
g (n) are minimal

positions of n w.r.t. the prefix order. Rigid ⊥-homomorphisms thus preserve the upward
structure of each non-⊥-node and, therefore, provide the desired structure for a partial
order that captures information preservation on term graphs:

Definition 5.3 (rigid partial order ≤R
⊥). For every g, h ∈ G∞(Σ⊥), define g ≤R

⊥ h iff there
is a rigid ⊥-homomorphism φ : g →⊥ h.

Proposition 5.4 (partial order ≤R
⊥). The relation ≤R

⊥ is a partial order on G∞
C (Σ⊥).

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 23

f

g g

g n1

c

f

g g

g

g

c

f

g

gn2

c

g

⊥

f

g

⊥

g

g n3

⊥

f

g

⊥

g

⊥

(g1) (g2) (g3) (g4) (g5)

Figure 5. Term graphs g1, g2 with maximal lower bounds g3, g4 w.r.t. ≤I
⊥.

Proof. Reflexivity and transitivity of ≤R
⊥ follow immediately from Proposition 5.2. For

antisymmetry, assume g ≤R
⊥ h and h ≤R

⊥ g. By Proposition 4.9, this implies g ∼=⊥ h.
Corollary 4.14 then yields that g ∼= h. Hence, according to Proposition 4.16, g = h.

Example 5.5. Figure 8c on page 43 shows a sequence (hι)ι<ω of term graphs and its limit
inferior hω in (G∞

C (Σ⊥),≤R
⊥): a cyclic list structure is repeatedly rewritten by inserting an

element b in front of the a. We can see that in each step the newly inserted b (including
the additional :: -node) remains unchanged afterwards. In terms of positions, however, each
of the nodes changes in each step since the length of the cycle in the term graph grows
with each step. Since this affects only cyclic positions, we still get the following sequence
(
d

β≤ι<ω hι)β<ω of canonical term trees:

〈⊥ :: ⊥, b :: ⊥ :: ⊥, b :: b :: ⊥ :: ⊥, . . .〉

The least upper bound of this sequence (
d

β≤ι<ω hι)β<ω and thus the limit inferior of (hι)ι<ω

is the infinite canonical term tree hω = b :: b :: b :: Since the cycle changes in each step
and is thus cut through in each element of (

d
β≤ι<ω hι)β<ω, the limit inferior has no cycles

at all.
Note that we do not have this intuitively expected convergence behaviour for the partial

order ≤P
⊥ based on positions: since the length of the cycle grows along the sequence (hι)ι<ω,

we have that the set of positions of the root nodes changes constantly. Hence, the limit
inferior of (hι)ι<ω in (G∞

C (Σ⊥),≤P
⊥) is ⊥.

The partial order ≤R
⊥ based on rigid ⊥-homomorphisms is defined in a rather non-local

fashion as the definition of rigidity uses the set of all acyclic positions. This poses the
question whether there is a more natural definition of a suitable partial order. One such
candidate is the partial order ≤I

⊥, which uses injectivity in order to restrict the introduction

of sharing: g ≤I
⊥ h iff there is a ⊥-homomorphism φ : g →⊥ h that is injective on non-⊥-

nodes, i.e. φ(n) = φ(m) and labg(n), labg(m) 6= ⊥ implies n = m. While this yields indeed a
cpo on G∞

C (Σ⊥), we do not get a complete semilattice. To see this, consider Figure 5. The
two term graphs g3, g4 are two distinct maximal lower bounds of the two term graphs g1, g2

w.r.t. the partial order ≤I
⊥. Hence, the set {g1, g2} does not have a greatest lower bound

in (G∞
C (Σ⊥),≤I

⊥), which is therefore not a complete semilattice. The same phenomenon
occurs if we consider a partial order derived from ⊥-homomorphisms that are injective on
all nodes.

24 PATRICK BAHR

The rigid partial order ≤R
⊥ resolves the issue of ≤I

⊥ illustrated in Figure 5: g3 and g4 are
not lower bounds of g1 and g2 w.r.t. ≤R

⊥. The (unique) ⊥-homomorphism from g3 to g1 is not
rigid as it maps the node n2 to n1 and Pa

g3
(n2) = {〈0, 0〉} whereas Pa

g1
(n1) = {〈0, 0〉, 〈1, 0〉}.

Hence, g3 6≤R
⊥ g1. Likewise, g4 6≤R

⊥ g1 as the (unique) ⊥-homomorphism from g4 to g1 maps
n3 to n1, which again have different acyclic positions. We do find, however, a greatest lower
bound of g1 and g2 w.r.t. ≤R

⊥, viz. g5.

5.2. The Rigid Partial Order. In the remainder of this section, we will study the rigid
partial order ≤R

⊥. In particular, we shall give a characterisation of rigidity in terms of

labelled quotient trees analogous to Lemma 4.19, show that (G∞
C (Σ⊥),≤R

⊥) forms a complete
semilattice, illustrate the resulting mode of convergence, and give a characterisation of term
graphs that are maximal w.r.t. ≤R

⊥.

The partial order ≤I
⊥, derived from injective ⊥-homomorphisms, failed to form a com-

plete semilattice, which is why we abandoned that approach. The following lemma shows
that rigidity is, in fact, a stronger property than injectivity on non-∆-nodes. Hence, ≤R

⊥ is

a restriction of ≤I
⊥.

Lemma 5.6 (rigid ∆-homomorphisms are injective for non-∆-nodes). Let g, h ∈ G∞(Σ)
and φ : g →∆ h rigid. Then φ is injective for all non-∆-nodes in g. That is, for two nodes
n,m ∈ Ng with labg(n), labg(m) 6∈ ∆ we have that φ(n) = φ(m) implies n = m.

Proof. Let n,m ∈ Ng with labg(n), labg(m) 6∈ ∆ and φ(n) = φ(m). Since φ is rigid, it is
rigid in n and m. That is, in particular we have Pa

h(φ(n)) ⊆ Pg(n) and Pa
h(φ(m)) ⊆ Pg(m).

Moreover, because Pa
h(φ(n)) = Pa

h(φ(m)) 6= ∅, we can conclude that Pg(n) ∩ Pg(m) 6= ∅
and, therefore, m = n.

5.2.1. Characterising Rigidity. The goal of this subsection is to give a characterisation of
rigidity in terms of labelled quotient trees. We will then combine this characterisation with
Lemma 4.19 to obtain a characterisation of the partial order ≤R

⊥.
The following lemma provides a characterisation of rigid ∆-homomorphisms that re-

duces the proof obligations necessary to show that a ∆-homomorphism is rigid.

Lemma 5.7 (rigidity). Let g, h ∈ G∞(Σ), φ : g →∆ h. Then φ is rigid iff Pa
h(φ(n)) ⊆ Pg(n)

for all n ∈ Ng with labg(n) 6∈ ∆.

Proof. The “only if” direction is trivial. For the “if” direction, suppose that φ satisfies
Pa

h(φ(n)) ⊆ Pg(n) for all n ∈ Ng with labg(n) 6∈ ∆. In order to prove that φ is rigid, we
will show that Pa

h(φ(n)) = Pa
g (n) holds for each n ∈ Ng with labg(n) 6∈ ∆.

We first show the inclusion Pa
h(φ(n)) ⊆ Pa

g (n). For this purpose, let π ∈ Pa
h(φ(n)).

Due to the hypothesis, this implies that π ∈ Pg(n). Now suppose that π is cyclic in g, i.e.
there are two positions π1, π2 of a node m ∈ Ng with π1 < π2 ≤ π. By Lemma 4.10, we
can conclude that π1, π2 ∈ Ph(φ(m)). This is a contradiction to the assumption that π is
acyclic in h. Hence, π ∈ Pa

g (n).
For the other inclusion, assume some π ∈ Pa

g (n). Using Lemma 4.10 we obtain that
π ∈ Ph(φ(n)). It remains to be shown that π is acyclic in h. Suppose that this is not true,
i.e. there are two positions π1, π2 of a node m ∈ Nh with π1 < π2 ≤ π. Note that since
π ∈ P(g), also π1, π2 ∈ P(g). Let mi = nodeg(πi), i = 1, 2. According to Lemma 4.10, we
have that φ(m1) = m = φ(m2). Moreover, observe that g(π1), g(π2) 6∈ ∆: g(π1) cannot

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 25

be a nullary symbol because π1 < π ∈ P(g). The same argument applies for the case that
π2 < π. If this is not the case, then π2 = π and g(π) 6∈ ∆ follows from the assumption that
labg(n) 6∈ ∆. Thus, we can apply Lemma 5.6 to conclude that m1 = m2. Consequently, π
is cyclic in g, which contradicts the assumption. Hence, π ∈ Pa

h(φ(n)).

From the above lemma we learn that ∆-isomorphisms are also rigid ∆-homomorphisms.

Corollary 5.8 (∆-isomorphisms are rigid). Let g, h ∈ G∞(Σ). If φ : g ∼=∆ h, then φ is a
rigid ∆-homomorphism.

Proof. This follows from Lemma 4.13 and Lemma 5.7.

Similarly to Lemma 4.19, we provide a characterisation of rigid ∆-homomorphisms in
terms of labelled quotient trees:

Lemma 5.9 (characterisation of rigid ∆-homomorphisms). Given g, h ∈ G∞(Σ), a ∆-
homomorphism φ : g →∆ h is rigid iff

π ∼h π
′ =⇒ π ∼g π

′ for all π ∈ P(g) with g(π) 6∈ ∆ and π′ ∈ Pa(h).

Proof. For the “only if” direction, assume that φ is rigid. Moreover, let π ∈ P(g) with
g(π) 6∈ ∆ and π′ ∈ Pa(h) such that π ∼h π

′, and let n = nodeg(π). By applying Lemma 4.10,
we get that π ∈ Ph(φ(n)). Because of π ∼h π

′, also π′ ∈ Ph(φ(n)). Since, according to the
assumption, π′ is acyclic in h, we know in particular that π′ ∈ Pa

h(φ(n)). Since φ is rigid
and labg(n) 6∈ ∆, we know that φ is rigid in n which yields that π′ ∈ Pg(n). Hence, π ∼g π

′.
For the converse direction, let n ∈ Ng with labg(n) 6∈ ∆. We need to show that φ is

rigid in n. Due to Lemma 5.7, it suffices to show that Pa
h(φ(n)) ⊆ Pg(n). Since Pg(n) 6= ∅,

we can choose some π∗ ∈ Pg(n). Then, according to Lemma 4.10, also π∗ ∈ Ph(φ(n)). Let
π ∈ Pa

h(φ(n)). Then π∗ ∼h π holds. Since π is acyclic in h and g(π∗) 6∈ ∆, we can use the
hypothesis to obtain that π∗ ∼g π holds which shows that π ∈ Pg(n).

Note that the above characterisation of rigidity is independent of the ∆-homomorphism
at hand. This is expected since ∆-homomorphisms between a given pair of term graphs are
unique.

By combining the above characterisation of rigidity with the corresponding characteri-
sation of ∆-homomorphisms, we obtain the following compact characterisation of ≤R

⊥:

Corollary 5.10 (characterisation of ≤R
⊥). Let g, h ∈ G∞(Σ⊥). Then g ≤R

⊥ h iff the following
conditions are met:

(a) π ∼g π
′ =⇒ π ∼h π

′ for all π, π′ ∈ P(g)
(b) π ∼h π

′ =⇒ π ∼g π
′ for all π ∈ P(g) with g(π) ∈ Σ and π′ ∈ Pa(h)

(c) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 4.19 and Lemma 5.9.

Note that for term trees (b) is always true and (a) follows from (c). Hence, on term trees,
≤R

⊥ is characterised by (c) alone. This observation shows that ≤R
⊥ is indeed a generalisation

of ≤⊥.

Corollary 5.11. For all s, t ∈ T ∞(Σ⊥), we have that s ≤R

⊥ t iff s ≤⊥ t.

Proof. Follows from Corollary 5.10.

26 PATRICK BAHR

5.2.2. Convergence. In the following, we shall show that ≤R
⊥ indeed forms a complete semi-

lattice on G∞
C (Σ⊥). We begin by showing that it constitutes a complete partial order.

Theorem 5.12 (≤R
⊥ is a cpo). The pair (G∞

C (Σ⊥),≤R

⊥) forms a cpo. In particular, it has
the least element ⊥, and the least upper bound of a directed set G is given by the following
labelled quotient tree (P, l,∼):

P =
⋃

g∈G

P(g) ∼ =
⋃

g∈G

∼g l(π) =

{
f if f ∈ Σ and ∃g ∈ G. g(π) = f

⊥ otherwise

Proof. The least element of ≤R
⊥ is obviously ⊥. Hence, it remains to be shown that each

directed subset G of G∞
C (Σ⊥) has a least upper bound w.r.t. ≤R

⊥. To this end, we show that
the canonical term graph g given by the labelled quotient tree (P, l,∼) described above is
indeed the lub of G. We will make extensive use of Corollary 5.10 to do so. Therefore, we
write (a), (b), (c) to refer to corresponding conditions of Corollary 5.10.

At first we need to show that l is indeed well-defined. For this purpose, let g1, g2 ∈ G
and π ∈ P(g1) ∩ P(g2) with g1(π), g2(π) ∈ Σ. Since G is directed, there is some g ∈ G such
that g1, g2 ≤R

⊥ g. By (c), we can conclude g1(π) = g(π) = g2(π).
Next we show that (P, l,∼) is indeed a labelled quotient tree. Recall that ∼ needs to be

an equivalence relation. For the reflexivity, assume that π ∈ P . Then there is some g ∈ G
with π ∈ P(g). Since ∼g is an equivalence relation, π ∼g π must hold and, therefore, π ∼ π.
For the symmetry, assume that π1 ∼ π2. Then there is some g ∈ G such that π1 ∼g π2.
Hence, we get π2 ∼g π1 and, consequently, π2 ∼ π1. In order to show transitivity, assume
that π1 ∼ π2, π2 ∼ π3. That is, there are g1, g2 ∈ G with π1 ∼g1

π2 and π2 ∼g2
π3. Since

G is directed, we find some g ∈ G such that g1, g2 ≤R
⊥ g. By (a), this implies that also

π1 ∼g π2 and π2 ∼g π3. Hence, π1 ∼g π3 and, therefore, π1 ∼ π3.
For the reachability condition, let π·〈i〉 ∈ P . That is, there is a g ∈ G with π·〈i〉 ∈ P(g).

Hence, π ∈ P(g), which in turn implies π ∈ P . Moreover, π · 〈i〉 ∈ P(g) implies that
i < ar(g(π)). Since g(π) cannot be a nullary symbol and in particular not ⊥, we obtain
that l(π) = g(π). Hence, i < ar(l(π)).

For the congruence condition, assume that π1 ∼ π2 and that l(π1) = f . If f ∈ Σ, then
there are g1, g2 ∈ G with π1 ∼g1

π2 and g2(π1) = f . Since G is directed, there is some g ∈ G

such that g1, g2 ≤R
⊥ g. Hence, by (a) respectively (c), we have π1 ∼g π2 and g(π1) = f .

Using Lemma 4.24 we can conclude that g(π2) = g(π1) = f and that π1 · i ∼g π2 · i for
all i < ar(g(π1)). Because g ∈ G, it holds that l(π2) = f and that π1 · i ∼ π · i for all
i < ar(l(π1)). If f = ⊥, then also l(π2) = ⊥, for if l(π2) = f ′ for some f ′ ∈ Σ, then, by the
symmetry of ∼ and the above argument (for the case f ∈ Σ), we would obtain f = f ′ and,
therefore, a contradiction. Since ⊥ is a nullary symbol, the remainder of the condition is
vacuously satisfied.

This shows that (P, l,∼) is a labelled quotient tree which, by Lemma 4.24, uniquely
defines a canonical term graph. Next we show that the thus obtained term graph g is an
upper bound for G. To this end, let g ∈ G. We will show that g ≤R

⊥ g by establishing
(a),(b) and (c). (a) and (c) are an immediate consequence of the construction. For (b),
assume that π1 ∈ P(g), g(π1) ∈ Σ, π2 ∈ Pa(g) and π1 ∼ π2. We will show that then also
π1 ∼g π2 holds. Since π1 ∼ π2, there is some g′ ∈ G with π1 ∼g′ π2. Because G is directed,

there is some g∗ ∈ G with g, g′ ≤R
⊥ g∗. Using (a), we then get that π1 ∼g∗ π2. Note that

since π2 is acyclic in g, it is also acyclic in g∗: Suppose that this is not the case, i.e. there
are positions π3, π4 with π3 < π4 ≤ π2 and π3 ∼g∗ π4. But then we also have π3 ∼ π4,

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 27

which contradicts the assumption that π2 is acyclic in g. With this knowledge we are able
to apply (b) to π1 ∼g∗ π2 in order to obtain π1 ∼g π2.

In the final part of this proof, we will show that g is the least upper bound of G. For
this purpose, let ĝ be an upper bound of G, i.e. g ≤R

⊥ ĝ for all g ∈ G. We will show that

g ≤R
⊥ ĝ by establishing (a), (b) and (c). For (a), assume that π1 ∼ π2. Hence, there is

some g ∈ G with π1 ∼g π2. Since, by assumption, g ≤R
⊥ ĝ, we can conclude π1 ∼ĝ π2 using

(a). For (b), assume π1 ∈ P , l(π1) ∈ Σ, π2 ∈ Pa(ĝ) and π1 ∼ĝ π2. That is, there is some

g ∈ G with g(π1) ∈ Σ. Together with g ≤R
⊥ ĝ this implies π1 ∼g π2 by (b). π1 ∼ π2 follows

immediately. For (c), assume π ∈ P and l(π) = f ∈ Σ. Then there is some g ∈ G with
g(π) = f . Applying (c) then yields ĝ(π) = f since g ≤R

⊥ ĝ.

Remark 5.13. Following Remark 4.21, we define an order ≤R
⊥ on G∞(Σ⊥)/∼= which is

isomorphic to the order ≤R
⊥ on G∞

C (Σ⊥). Define [g]∼= ≤R
⊥ [h]∼= iff there is a rigid ⊥-

homomorphism φ : g →⊥ h.
The extension of ≤R

⊥ to equivalence classes is easily seen to be well-defined: assume
some rigid ⊥-homomorphism φ : g →⊥ h and two isomorphisms g′ ∼= g and h′ ∼= h. Since,
by Corollary 5.8, isomorphisms are also rigid (⊥-)homomorphisms, we have two rigid ⊥-
homomorphisms φ1 : g′ →⊥ g and φ2 : h →⊥ h′. Hence, by Proposition 5.2, φ2 ◦ φ ◦ φ1 is a
rigid ⊥-homomorphism from g′ to h′.

The isomorphism illustrated above allows us switch between the two partially ordered
sets (G∞

C (Σ⊥),≤R
⊥) and (G∞(Σ⊥)/∼=,≤

R
⊥) in order to use the structure that is more conve-

nient for the given setting. In particular, the proof of Lemma 5.14 below is based on this
isomorphism.

By Proposition 2.1, a cpo is a complete semilattice iff each two compatible elements
have a least upper bound. Recall that compatible elements in a partially ordered set are
elements that have a common upper bound. We make use of this proposition in order to
show that (G∞

C (Σ⊥),≤R
⊥) is a complete semilattice. However, showing that each two term

graphs g, h ∈ G∞
C (Σ⊥) with a common upper bound also have a least upper bound is not

easy. The issue that makes the construction of the lub of compatible term graphs a bit
more complicated than in the case of directed sets is illustrated in Figure 6. Note that the
lub g ⊔ h of the term graphs g and h has an additional cycle. The fact that in g ⊔ h the
second successor of r has to be r itself is enforced by g saying that the first successor of r1

is r1 itself and by h saying that the first and the second successor of r2 must be identical.
Because of the additional cycle in g⊔h, we have that the set of positions in g⊔h is a proper
superset of the union of the sets of positions in g and h. This makes the construction of
g ⊔ h using a labelled quotient tree quite intricate.

Our strategy to construct the lub is to form the disjoint union of the two term graphs
in question and then identify nodes that have a common position w.r.t. the term graph they
originate from. In our example, we have four nodes r1, n1, r2 and n2. At first r1 and r2 have
to be identified as both have the position 〈〉. Next, r1 and n2 are identified as they share
the position 〈0〉. And eventually, also n2 and n1 are identified since they share the position
〈1〉. Hence, all four nodes have to be identified. The result is, therefore, a term graph with
a single node r. The following lemma and its proof, given in Appendix A, show that, for
any two compatible term graphs, this construction always yields their lub.

Lemma 5.14 (compatible elements have lub). Each pair g1, g2 of compatible term graphs
in (G∞

C (Σ⊥),≤R

⊥) has a least upper bound.

28 PATRICK BAHR

f
r1

⊥
n1

(g)

f
r2

⊥
n2

(h)

f

r

(g ⊔ h)

Figure 6. Least upper bound g ⊔ h of compatible term graphs g and h.

Theorem 5.15. The pair (G∞
C (Σ⊥),≤R

⊥) forms a complete semilattice.

Proof. This is, by Proposition 2.1, a consequence of Theorem 5.12 and Lemma 5.14.

In particular, this means that the limit inferior is defined for every sequence of term
graphs.

Corollary 5.16 (limit inferior of ≤R
⊥). Each sequence in (G∞

C (Σ⊥),≤R

⊥) has a limit inferior.

Recall that the intuition of the limit inferior on terms is that it contains the accumu-
lated information that eventually remains stable in the sequence. This interpretation is, of
course, based on the partial order ≤⊥ on terms, which embodies the underlying notion of
“information encoded in a term”.

The same interpretation can be given for the limit inferior based on the rigid partial
order ≤R

⊥ on term graphs. Given a sequence (gι)ι<α of term graphs, its limit inferior
lim infι→α gι is the term graph that contains the accumulation of all pieces of information
that from some point onwards remain unchanged in (gι)ι<α.

Example 5.17. 9d and 9e on page 45 each show a sequence of term graphs and its limit
inferior in (G∞

C (Σ⊥),≤R
⊥).

(i) Figure 9d shows a simple example of how acyclic sharing is preserved by the limit
inferior. The corresponding sequence (

d
β≤ι<ω gι)β<ω of greatest lower bounds is given

as follows:

⊥

(
d

0≤ι<ω gι)

f

⊥

(
d

1≤ι<ω gι)

f

f

⊥

(
d

2≤ι<ω gι)

f

f

f

⊥

(
d

3≤ι<ω gι) . . .

The least upper bound of this sequence of term graphs and thus the limit inferior of
(gι)ι<ω is the term graph gω depicted in Figure 9d.

(ii) The situation is slightly different in the sequence (gι)ι<ω from Figure 9e. Here we
also have acyclic sharing, viz. in the c-node. However, unlike in the previous example
from Figure 9d, the acyclic sharing changes in each step. Hence, a lower bound

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 29

of two distinct term graphs in (gι)ι<ω cannot contain a c-node because a rigid ⊥-
homomorphism must map such a c-node to a c-node with the same acyclic sharing,
i.e. the same acyclic positions. Consequently, the sequence of greatest lower bounds
(
d

β≤ι<ω gι)β<ω looks as follows:

⊥

(
d

0≤ι<ω gι)

f

⊥ h

⊥

(
d

1≤ι<ω gι)

f

f

⊥ h

h

⊥

(
d

2≤ι<ω gι)

f

f

f

⊥ h

h

h

⊥

(
d

3≤ι<ω gι) . . .

We thus get the term graph gω, depicted in Figure 9e, as the limit inferior of (gι)ι<ω.
The ⊥ labelling is necessary because of the change in acyclic sharing throughout the
sequence.

While we have confirmed in Corollary 5.11 that the partial order ≤R
⊥ generalises the partial

order ≤⊥ on terms, we still have to show that this also carries over to the limit inferior. We
can derive this property from the following simple lemma:

Lemma 5.18. If g ∈ G∞
C (Σ⊥) and t ∈ T ∞(Σ⊥) with g ≤R

⊥ t, then g ∈ T ∞(Σ⊥).

Proof. Since t is a term tree, ∼t is an identity relation. According to Corollary 5.10, g ≤R
⊥ t

implies that ∼g ⊆ ∼t. Hence, also ∼g is an identity relation, which means that g is a term
tree as well.

Proposition 5.19. Given a sequence (tι)ι<α over T ∞(Σ⊥), the limit inferior of (tι)ι<α in
(T ∞(Σ⊥),≤⊥) coincides with the limit inferior of (tι)ι<α in (G∞

C (Σ⊥),≤R

⊥).

Proof. Since both structures are complete semilattices, both limit inferiors exist. For each
β < α, let sβ be the glb of Tβ = {tι |β ≤ ι < α} in (T ∞(Σ⊥),≤⊥) and gβ the glb of Tβ in

(G∞
C (Σ⊥),≤R

⊥). Since then gβ ≤R
⊥ tβ, we know by Lemma 5.18 that gβ is a term tree. By

Corollary 5.11, this implies that gβ is the glb of Tβ in (T ∞(Σ⊥),≤⊥) as well, which means
that gβ = sβ.

Let t and g be the limit inferior of (tι)ι<α in (T ∞(Σ⊥),≤⊥) and (G∞
C (Σ⊥),≤R

⊥), respec-
tively. By the above argument, we know that t and g are the lub of the set S = {sβ | β < α}
in (T ∞(Σ⊥),≤⊥) respectively (G∞

C (Σ⊥),≤R
⊥). By Corollary 5.11, t is an upper bound of S

in (G∞
C (Σ⊥),≤R

⊥). Since g is the least such upper bound, we know that g ≤R
⊥ t. Accord-

ing to Lemma 5.18, this implies that g is a term tree. Hence, by Corollary 5.11, g is an
upper bound of S in (T ∞(Σ⊥),≤⊥) and g ≤⊥ t. Since t is the least upper bound of S in
(T ∞(Σ⊥),≤⊥), we can conclude that t = g.

5.2.3. Maximal Term Graphs. Intuitively, partial term graphs represent partial results of
computations where ⊥-nodes act as placeholders denoting the uncertainty or ignorance of
the actual “value” at that position. On the other hand, total term graphs do contain all the
information of a result of a computation – they have the maximally possible information

30 PATRICK BAHR

content. In other words, they are the maximal elements w.r.t. ≤R
⊥. The following proposition

confirms this intuition.

Proposition 5.20 (total term graphs are maximal). Let Σ be a non-empty signature. Then
G∞

C (Σ) is the set of maximal elements in (G∞
C (Σ⊥),≤R

⊥).

Proof. At first we need to show that each element in G∞
C (Σ) is maximal. For this purpose,

let g ∈ G∞
C (Σ) and h ∈ G∞

C (Σ⊥) such that g ≤R
⊥ h. We have to show that then g = h. Since

g ≤R
⊥ h, there is a rigid ⊥-homomorphism φ : g →⊥ h. As g does not contain any ⊥-node,

φ is even a rigid homomorphism. By Lemma 5.6, φ is injective and, therefore, according
to Lemma 4.12, an isomorphism. Hence, we obtain that g ∼= h and, consequently, using
Proposition 4.16, that g = h.

Secondly, we need to show that G∞
C (Σ⊥) does not contain any other maximal elements

besides those in G∞
C (Σ). Suppose there is a term graph g ∈ G∞

C (Σ⊥) \ G∞
C (Σ) which is

maximal in G∞
C (Σ⊥). Hence, there is a node n∗ ∈ Ng with labg(n∗) = ⊥. If Σ contains a

nullary symbol c, construct a term graph h from g by relabelling the node n∗ from ⊥ to
c. However, then g <R

⊥ h, which contradicts the assumption that g is maximal w.r.t. ≤R
⊥.

Otherwise, if Σ(0) = ∅, let n be a fresh node (i.e. n 6∈ Ng) and f some k-ary symbol in Σ.
Define the term graph h by

Nh = Ng ⊎ {n} rh = rg

labh(n) =





f if n = n∗

⊥ if n = n

labg(n) otherwise

such(n) =





〈n, . . . , n〉 if n = n∗

ε if n = n

sucg(n) otherwise

That is, h is obtained from g by relabelling n∗ with f and setting the ⊥-labelled node
n as the target of all outgoing edges of n∗. We assume that n was chosen such that h
is canonical (i.e. n = Ph(n)). Obviously, g and h are distinct. Define φ : Ng → Nh by
n 7→ n for all n ∈ Ng. Clearly, φ defines a rigid ⊥-homomorphism from g to h. Hence,
g ≤R

⊥ h. This contradicts the assumption of g being maximal. Consequently, no element in
G∞

C (Σ⊥) \ G∞
C (Σ) is maximal.

Note that this property does not hold for the simple partial order ≤S
⊥ that we have

considered briefly in the beginning of this section. Figure 3 shows the total term graph g0,
which is strictly smaller than g1 w.r.t. ≤S

⊥.

6. A Rigid Metric on Term Graphs

In this section, we pursue the metric approach to convergence in rewriting systems. To this
end, we shall define a metric space on canonical term graphs. We base our approach to
defining a metric distance on the definition of the metric distance d on terms. In partic-
ular, we shall define a truncation operation on term graphs, which cuts off certain nodes
depending on their depth in the term graph. Subsequently, we study the interplay of the
truncation with ∆-homomorphisms and the depth of nodes within a term graph. Finally,
we use the truncation operation to derive a metric on term graphs.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 31

6.1. Truncating Term Graphs. Originally, Arnold and Nivat [4] used a truncation of
terms to define the metric on terms. The truncation of a term t at depth d ≤ ω, denoted
t|d, replaces all subterms at depth d by ⊥:

t|0 = ⊥, f(t1, . . . , tk)|d+ 1 = f(t1|d, . . . , tk|d), t|ω = t

Recall that the metric distance d on terms is defined by d(s, t) = 2−sim(s,t). The
underlying notion of similarity sim(·, ·) can be characterised via truncations as follows:

sim(s, t) = max {d ≤ ω | s|d = t|d}

We adopt this approach for term graphs as well. To this end, we shall define a rigid
truncation on term graphs. In Section 6.3 we will then show that this truncation indeed
yields a complete metric space.

Definition 6.1 (rigid truncation of term graphs). Let g ∈ G∞(Σ⊥) and d < ω.

(i) Given n,m ∈ Ng, m is an acyclic predecessor of n in g if there is an acyclic position
π · 〈i〉 ∈ Pa

g (n) with π ∈ Pg(m). The set of acyclic predecessors of n in g is denoted
Prea

g(n).

(ii) The set of retained nodes of g at d, denoted Ng
<d, is the least subset M of Ng satisfying

the following two conditions for all n ∈ Ng:

(T1) depthg(n) < d =⇒ n ∈ M (T2) n ∈ M =⇒ Prea
g(n) ⊆ M

(iii) For each n ∈ Ng and i ∈ N, we use ni to denote a fresh node, i.e.
{
ni

∣∣n ∈ Ng, i ∈ N
}

is a set of pairwise distinct nodes not occurring in Ng. The set of fringe nodes of g at
d, denoted Ng

=d, is defined as the singleton set {rg} if d = 0, and otherwise as the set
{
ni

∣∣∣∣∣
n ∈ Ng

<d, 0 ≤ i < arg(n) with suc
g
i (n) 6∈ Ng

<d

or depthg(n) ≥ d− 1, n 6∈ Prea
g(suc

g
i (n))

}

(iv) The rigid truncation of g at d, denoted g‡d, is the term graph defined by

Ng‡d = Ng
<d ⊎Ng

=d rg‡d = rg

labg‡d(n) =

{
labg(n) if n ∈ Ng

<d

⊥ if n ∈ Ng
=d

suc
g‡d
i (n) =

{
suc

g
i (n) if ni 6∈ Ng

=d

ni if ni ∈ Ng
=d

Additionally, we define g‡ω to be the term graph g itself.

Before discussing the intuition behind this definition of rigid truncation, let us have a look
at the rôle of retained and fringe nodes: the set of retained nodes Ng

<d contains the nodes
that are preserved by the rigid truncation. All other nodes in Ng \ Ng

<d are cut off. The
“holes” that are thus created are filled by the fringe nodes in Ng

=d. This is expressed in the

condition suc
g
i (n) 6∈ Ng

<d which, if satisfied, yields a fringe node ni. That is, a fresh fringe
node is inserted for each successor of a retained node that is not a retained node itself. As
fringe nodes function as a replacement for cut-off sub-term graphs, they are labelled with
⊥ and have no successors.

But there is another circumstance that can give rise to a fringe node: if depthg(n) ≥ d−1

and n 6∈ Prea
g(suc

g
i (n)), we also get a fringe node ni. This condition is satisfied whenever an

outgoing edge from a retained node closes a cycle. The lower bound for the depth is chosen
such that a successor node of n is not necessarily a retained node. An example is depicted
in Figure 7a. For depth d = 2, the node n in the term graph g is just above the fringe,
i.e. satisfies depthg(n) ≥ d − 1. Moreover, it has an edge to the node r that closes a cycle.

32 PATRICK BAHR

h
r

hn

h
r

h
n

⊥
n0

f

h

...

h

a

n
ti

m
es

(g) (g‡2) (gn = gn‡2)

(a) Cyclic vs. acyclic sharing.

f

h

h

h

a

f

h

⊥

h

⊥

f

h

h

h

⊥

(g) (g†2) (g‡2)

(b) Comparison with simple truncation.

Figure 7. Examples of truncations.

Hence, the rigid truncation g‡2 contains the fringe node n0 which is now the 0-th successor
of n.

We chose this admittedly complicated notion of truncation in order to make it compat-
ible with the partial order ≤R

⊥: first of all, the rigid truncation of a term graph is supposed

to yield a smaller term graph w.r.t. the rigid partial order ≤R
⊥, i.e. g‡d ≤R

⊥ g. Hence, when-
ever a node is kept as a retained node, also its acyclic positions have to be kept in order
to preserve its upward structure. To achieve this, with each node also its acyclic ancestors
have to be retained. The closure condition (T2) is enforced exactly for this purpose.

To see what this means, consider Figure 7b. It shows a term graph g and its truncation
at depth 2, once without the closure condition (T2), denoted g†2, and once including (T2),
denoted g‡2. The grey area highlights the nodes that are at depth smaller than 2, i.e. the
nodes contained in Ng

<2 due to (T1). The nodes within the area surrounded by a dashed
line are all the nodes in Ng

<2. One can observe that with the simple truncation g†d without

(T2), we do not have g†2 ≤R
⊥ g. The reason in this particular example is the bottommost

h-node whose acyclic sharing in g differs from that in the simple truncation g†2 as one of
its predecessors was removed due to the truncation. This effect is avoided in our definition
of rigid truncation, which always includes all acyclic predecessors of a node.

Nevertheless, the simple truncation g†d has its benefits. It is much easier to work with
and provides a natural counterpart for the simple partial order ≤S

⊥ [10].
The following lemma confirms that we were indeed successful in making the truncation

of term graphs compatible with the rigid partial order ≤R
⊥:

Lemma 6.2 (rigid truncation is smaller). Given g ∈ G∞(Σ⊥) and d ≤ ω, we have that
g‡d ≤R

⊥ g.

Proof. The cases d = ω and d = 0 are trivial. Assume 0 < d < ω and define the function φ
as follows:

φ : Ng‡d → Ng

Ng
<d ∋ n 7→ n

Ng
=d ∋ ni 7→ suc

g
i (n)

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 33

We will show that φ is a rigid ⊥-homomorphism from g‡d to g and, thereby, g‡d ≤R
⊥ g.

Since rg‡d = rg and rg‡d ∈ Ng
<d, we have φ(rg‡d) = rg and, therefore, the root condition.

Note that all nodes in Ng
=d are labelled with ⊥ in g‡d, i.e. all non-⊥-nodes are in Ng

<d. Thus,
the labelling condition is trivially satisfied as for all n ∈ Ng

<d we have

labg‡d(n) = labg(n) = labg(φ(n)).

For the successor condition, let n ∈ Ng
<d. If ni ∈ Ng

=d, then suc
g‡d
i (n) = ni. Hence, we have

φ(suc
g‡d
i (n)) = φ(ni) = suc

g
i (n) = suc

g
i (φ(n)).

If, on the other hand, ni 6∈ Ng
=d, then suc

g‡d
i (n) = suc

g
i (n) ∈ Ng

<d. Hence, we have

φ(suc
g‡d
i (n)) = φ(suc

g
i (n)) = suc

g
i (n) = suc

g
i (φ(n)).

This shows that φ is a ⊥-homomorphism. In order to prove that φ is rigid, we will show
that Pa

g (φ(n)) ⊆ Pg‡d(n) for all n ∈ Ng
<d, which is sufficient according to Lemma 5.7. Note

that we can replace φ(n) by n since n ∈ Ng
<d. Therefore, we can show this statement by

proving
∀π ∈ N

∗∀n ∈ Ng
<d. (π ∈ Pa

g (n) =⇒ π ∈ Pg‡d(n))

by induction on the length of π. If π = 〈〉, then n = rg and, therefore, π ∈ Pg‡d(n). If
π = π′ · 〈i〉, let m = nodeg(π′). Then we have m ∈ Prea

g(n) and, therefore, m ∈ Ng
<d by

the closure property (T2). And since π′ ∈ Pa
g (m), we can apply the induction hypothesis

to obtain that π′ ∈ Pg‡d(m). Moreover, because suc
g
i (m) = n, this implies that mi 6∈ Ng

=d.

Thus, suc
g‡d
i (m) = n and, therefore, π′ · 〈i〉 ∈ Pg‡d(n).

Also note that the rigid truncation on term graphs generalises Arnold and Nivat’s [4]
truncation on terms.

Proposition 6.3. For each t ∈ T ∞(Σ⊥) and d ≤ ω, we have that t‡d ∼= t|d.

Proof. For the case that d ∈ {0, ω}, the equation t‡d = t|d holds trivially. For the other
cases, we can easily see that t|d is obtained from t by replacing all subterms at depth
d by ⊥. On the other hand, since in a term tree each node has at most one (acyclic)
predecessor, which has a strictly smaller depth, we know that the set of retained nodes
N t

<d is the set of nodes of depth smaller than d and the set of fringe nodes N t
=d is the set{

ni
∣∣n ∈ N t, deptht(suct

i(n)) = d
}
. Hence, t‡d is obtained from t by replacing each node at

depth d with a fresh node labelled ⊥. We can thus conclude that t‡d ∼= t|d.

Consequently, if we use the rigid truncation to define a metric on term graphs analo-
gously to Arnold and Nivat, we obtain a metric on term graphs that generalises the metric
d on terms.

6.2. The Effect of Truncation. In order to characterise the effect of a truncation to a
term graph, we need to associate an appropriate notion of depth to a whole term graph:

Definition 6.4 (symbol/graph depth). Let g ∈ G∞(Σ) and ∆ ⊆ Σ.

(i) The depth of g, denoted depth(g), is the least upper bound of the depth of nodes in g,
i.e.

depth(g) =
⊔ {

depthg(n)
∣∣∣n ∈ Ng

}
.

34 PATRICK BAHR

(ii) The ∆-depth of g, denoted ∆-depth(g), is the minimum depth of nodes in g labelled
in ∆, i.e.

∆-depth(g) = min
{

depthg(n)
∣∣∣n ∈ Ng, labg(n) ∈ ∆

}
∪ {ω} .

If ∆ is a singleton set {σ}, we also write σ-depth(g) instead of {σ}-depth(g).

Notice the difference between depth and ∆-depth. The former is the least upper bound of
the depth of nodes in a term graph whereas the latter is the minimum depth of nodes labelled
by a symbol in ∆. Thus, we have that depth(g) = ω iff g is infinite; and ∆-depth(g) = ω iff
g does not contain a ∆-node.

In the following, we will prove a number of lemmas that show how ∆-homomorphisms
preserve the depth of nodes in term graphs. Understanding how ∆-homomorphisms affect
the depth of nodes will become important for relating the rigid truncation to the rigid
partial order ≤R

⊥.

Lemma 6.5 (reverse depth preservation of ∆-homomorphisms). Let g, h ∈ G∞(Σ) and
φ : g →∆ h. Then, for all n ∈ Nh with depthh(n) ≤ ∆-depth(g), there is a node m ∈ φ−1(n)
with depthg(m) ≤ depthh(n).

Proof. We prove the statement by induction on depthh(n). If depthh(n) = 0, then n = rh.
With m = rg, we have φ(m) = n and depthg(m) = 0. If depthh(n) > 0, then there is

some n′ ∈ Nh with such
i (n′) = n and depthh(n′) < depthh(n). Hence, we can employ the

induction hypothesis to obtain some m′ ∈ Ng with depthg(m′) ≤ depthh(n′) and φ(m′) = n′.
Since depthg(m′) ≤ depthh(n′) < depthh(n) ≤ ∆-depth(g), we have labg(m′) 6∈ ∆. Hence, φ

is homomorphic in m′. For m = suc
g
i (m′), we can then reason as follows:

φ(m) = φ(suc
g
i (m′)) = such

i (φ(m′)) = such
i (n′) = n, and

depthg(m) ≤ depthg(m′) + 1 ≤ depthh(n).

Lemma 6.6 (∆-depth preservation of ∆-homomorphisms). Let g, h ∈ G∞(Σ) and φ : g →∆

h, then ∆-depth(g) ≤ ∆-depth(h).

Proof. Let n ∈ Nh with depthh(n) < ∆-depth(g). To prove the lemma, we have to show

that labh(n) 6∈ ∆. According to Lemma 6.5, we find a node m ∈ Ng with depthg(m) ≤

depthh(n) < ∆-depth(g) and φ(m) = n. Since then labg(m) 6∈ ∆, we also have labh(n) 6∈ ∆
by the labelling condition for φ.

For rigid ∆-homomorphisms, we even have a stronger form of depth preservation.

Lemma 6.7 (depth preservation of rigid ∆-homomorphisms). Let g, h ∈ G∞(Σ) and
φ : g →∆ h a rigid ∆-homomorphism. Then depthg(n) = depthh(φ(n)) for all n ∈ Ng

with labg(n) 6∈ ∆.

Proof. If labg(n) 6∈ ∆, then Pa
g (n) = Pa

h(φ(n)). Hence, depthg(n) = depthh(φ(n)) follows
since a shortest position of a node must be acyclic.

The gaps that are caused by a truncation due to the removal of nodes are filled by
fresh ⊥-nodes. The following lemma provides a lower bound for the depth of the introduced
⊥-nodes.

Lemma 6.8 (⊥-depth in rigid truncations). For all g ∈ G∞(Σ) and d < ω, we have that

(i) ⊥-depth(g‡d) ≥ d, and

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 35

(ii) if d > depth(g) + 1, then g‡d = g, i.e. ⊥-depth(g‡d) = ω.

Proof. (i) From the proof of Lemma 6.2, we obtain a rigid ⊥-homomorphism φ : g‡d →⊥ g.
Note that the only ⊥-nodes in g‡d are those in Ng

=d. Each of these nodes has only a
single predecessor, a node n ∈ Ng

<d with depthg(n) ≥ d − 1. By Lemma 6.7, we also have
depthg‡d(n) ≥ d− 1 for these nodes since φ is rigid, n is not labelled with ⊥ and φ(n) = n.

Hence, we have depthg‡d(m) ≥ d for each node m ∈ Ng
=d. Consequently, it holds that

⊥-depth(g‡d) ≥ d.
(ii) Note that if d > depth(g) + 1, then Ng

<d = Ng and Ng
=d = ∅. Hence, g‡d = g.

Remark 6.9. Note that the precondition for the statement of clause (ii) in the lemma
above reads d > depth(g) + 1 rather than d > depth(g) as one might expect. The reason for
this is that a truncation might cut off an edge that emanates from a node at depth d − 1
and closes a cycle. For an example of this phenomenon, take a look at Figure 7a. It shows
a term graph g of depth 1 and its rigid truncation at depth 2. Even though there is no node
at depth 2 the truncation introduces a ⊥-node.

On the other hand, although a term graph has depth greater than d, the truncation at
depth d might still preserve the whole term graph. An example for this behaviour is the
family of term graphs (gn)n<ω depicted in Figure 7a. Each of the term graphs gn has depth
n + 1. Yet, the truncation at depth 2 preserves the whole term graph gn for each n > 0.
Even though there might be h-nodes which are at depth ≥ 2 these nodes are directly or
indirectly acyclic predecessors of the a-node and are, thus, included in Ngn

<2.

Intuitively, the following lemma states that a rigid ⊥-homomorphism has the properties
of an isomorphism up to the depth of the shallowest ⊥-node:

Lemma 6.10 (≤R
⊥ and rigid truncation). Given g, h ∈ G∞(Σ⊥) and d < ω with g ≤R

⊥ h
and ⊥-depth(g) ≥ d, we have that g‡d ∼= h‡d.

The proof of the above lemma is based on a generalisation of Lemma 6.7, which states
that rigid ⊥-homomorphisms map non-⊥-nodes to nodes of the same depth. However, since
the rigid truncation of a term graph does not only depend on the depth of nodes but also
the acyclic sharing in the term graph, we cannot rely on this statement on the depth of
nodes alone. The two key components of the proof of Lemma 6.10 are (1) the property
of rigid ⊥-homomorphisms to map retained nodes of the source term graph exactly to the
retained nodes of the target term graph and (2) that in the same way fringe nodes are
exactly mapped to fringe nodes. Showing the isomorphism between g‡d and h‡d can thus
be reduced to the injectivity on retained nodes in g‡d which is obtained from the rigid
⊥-homomorphism from g to h by applying Lemma 5.6. The full proof of Lemma 6.10 is
given in Appendix B.

We can use the above findings in order to obtain the following properties of truncations
that one would intuitively expect from a truncation operation:

Lemma 6.11 (smaller truncations). For all g, h ∈ G∞(Σ) and e ≤ d ≤ ω, the following
holds:

(i) g‡e ∼= (g‡d)‡e , and (ii) g‡d ∼= h‡d =⇒ g‡e ∼= h‡e.

Proof. (i) For d = ω, this is trivial. Suppose d < ω. From Lemma 6.2, we obtain g‡d ≤R
⊥ g.

Moreover, by Lemma 6.8, we have ⊥-depth(g‡d) ≥ d and, a fortiori, ⊥-depth(g‡d) ≥ e.
Hence, we can employ Lemma 6.10 to get (g‡d)‡e ∼= g‡e.

36 PATRICK BAHR

(ii) Since g‡d ∼= h‡d, we also have (g‡d)‡e ∼= (h‡d)‡e, as the construction of the trunca-
tion only depends on the structure of the term graphs. Hence, using (i) we can conclude

g‡e ∼= (g‡d)‡e ∼= (h‡d)‡e ∼= h‡e.

6.3. Deriving a Metric on Term Graphs. We may now define a rigid distance measure
on canonical term graphs in the style of Arnold and Nivat:

Definition 6.12 (rigid distance). The rigid similarity of two term graphs g, h ∈ G∞
C (Σ),

written sim‡(g, h), is the maximum depth at which the rigid truncation of both term graphs
coincide:

sim‡(g, h) = max {d ≤ ω | g‡d ∼= h‡d} .

The rigid distance between two term graphs g, h ∈ G∞
C (Σ), written d‡(g, h) is defined as

d‡(g, h) = 2−sim‡(g,h), where we interpret 2−ω as 0.

Indeed, the resulting distance forms an ultrametric on the set of canonical term graphs:

Proposition 6.13 (rigid ultrametric). The pair (G∞
C (Σ),d‡) forms an ultrametric space.

Proof. The identity condition is derived as follows:

d‡(g, h) = 0 ⇐⇒ sim‡(g, h) = ω ⇐⇒ g ∼= h
Prop. 4.16

⇐⇒ g = h

The symmetry condition is satisfied by the following equational reasoning:

d‡(g, h) = 2−sim‡(g,h) = 2−sim‡(h,g) = d‡(h, g)

For the strong triangle condition, we have to show that

d‡(g1, g3) ≤ max {d‡(g1, g2),d‡(g2, g3)} ,

which is equivalent to

sim‡(g1, g3) ≥ min {sim‡(g1, g2), sim‡(g2, g3)} .

Let d = sim‡(g1, g2) and e = sim‡(g2, g3). By symmetry, we can assume w.l.o.g. that
d ≤ e, i.e. d = min {sim‡(g1, g2), sim‡(g2, g3)}. By definition of rigid similarity, we have both
g1‡d ∼= g2‡d and g2‡e ∼= g3‡e. From the latter we obtain, by Lemma 6.11, that g2‡d ∼= g3‡d.
That is, g1‡d ∼= g2‡d ∼= g3‡d which means that sim‡(g1, g3) ≥ d.

Example 6.14. Figures 8c and 9d on pages 43 and 45, respectively, show two sequences of
term graphs that are converging in the metric space (G∞

C (Σ),d‡). In the sequence (hi)i<ω

from Figure 8c, we have that the rigid truncation at 0 is trivially ⊥ for all term graphs in
the sequence. From h1 onwards, the rigid truncation at 1 is the term tree ⊥ :: ⊥; from h2

onwards, the rigid truncation at 2 is the term tree b :: ⊥ :: ⊥; etc. Hence, for each n < ω, the
metric distance d‡(hi, hj) between two term graphs from hn onwards, i.e. with n ≤ i, j < ω,
is at most 2−n. That is, the sequence (hi)i<ω is Cauchy. Even more, for the term tree
hω = b :: b :: b :: . . . depicted in Figure 8c we also have that hω‡0 = ⊥, hω‡1 = ⊥ :: ⊥,
hω‡2 = b :: ⊥ :: ⊥, etc. Hence, for each n < ω, the metric distance d‡(hn, hω) is at most 2−n.
That is, the sequence (hi)i<ω converges to hω. In a similar fashion, the sequence depicted
in Figure 9d converges as well.

Figure 9e shows a sequence (gi)i<ω of term graphs that does not converge. In fact, it is
not even Cauchy. To see this, notice that the c-node is at depth 1 in g0 and at depth 2 from
g1 onwards. As in each term graph gi the c-node is reachable from any node in gi without

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 37

forming a cycle, we have that each node is an acyclic ancestor of the c-node. That is,
whenever the c-node is retained by a rigid truncation, so is any other node. Consequently,
we have that gi‡d = gi for each i < ω and d > 2. Hence, the metric distance d‡(gi, gj)
between each pair of term graphs with i 6= j is at least 2−2. That is, (gi)i<ω is not Cauchy.

Since we defined the metric on term graphs in the same style as Arnold and Nivat [4]
defined the partial order d on terms, we can use the correspondence between the rigid
truncation and the truncation on terms in order to derive that the metric d‡ generalises the
metric d on terms.

Corollary 6.15. For all s, t ∈ T ∞(Σ), we have that d‡(s, t) = d(s, t).

Proof. Follows from Proposition 6.3.

From the above observation, we obtain that convergence in the metric space (G∞
C (Σ),d‡)

is a conservative extension of convergence in the metric space (T ∞(Σ),d):

Proposition 6.16. Every non-empty sequence over T ∞(Σ) converges to t in (G∞
C (Σ),d‡)

iff it converges to t in (T ∞(Σ),d).

Proof. The “if” direction follows immediately from Corollary 6.15.
For the “iff” direction we assume a sequence S over T ∞(Σ) that converges to t in

(G∞
C (Σ),d‡). Consequently, S is also Cauchy in (G∞

C (Σ),d‡). Due to Corollary 6.15, S is
then also Cauchy in (T ∞(Σ),d). Since (T ∞(Σ),d) is complete, S converges to some term t′

in (T ∞(Σ),d). Using the “if” direction of this proposition, we then obtain that S converges
to t′ in (G∞

C (Σ),d‡). Since limits are unique in metric spaces, we can conclude that t = t′.

7. Metric vs. Partial Order Convergence

In this section we study both the partially ordered set (G∞
C (Σ⊥),≤R

⊥) and the metric space
(G∞

C (Σ),d‡). In particular, we are interested in the notion of convergence that each of the
two structures provides. We shall show that on total term graphs – i.e. in G∞

C (Σ) – both
structures yield the same notion of convergence. That is, we obtain the same correspondence
that we already know from infinitary term rewriting as stated in Theorem 3.3. Moreover, as
a side product, this finding will also show the completeness of the metric space (G∞

C (Σ),d‡).

The cornerstone of this comparison of the rigid metric d‡ and the rigid partial order ≤R
⊥

is the following characterisation of the rigid similarity sim‡(·, ·) in terms of greatest lower

bounds in (G∞
C (Σ⊥),≤R

⊥):

Proposition 7.1 (characterisation of rigid similarity). Let g, h ∈ G∞
C (Σ) and g ⊓ h the

greatest lower bound of g and h in (G∞
C (Σ⊥),≤R

⊥). Then sim‡(g, h) = ⊥-depth(g ⊓ h).

Proof. At first assume that g = h. Hence, g⊓h = g and, consequently ⊥-depth(g⊓h) = ω as
g does not contain any node labelled ⊥. On the other hand, g = h implies g‡ω ∼= h‡ω, and,
therefore, sim‡(g, h) = ω. If g 6= h, then g 6∼= h by Proposition 4.16. Hence, sim‡(g, h) < ω.
Moreover, since g 6∼= h, we know that g ⊓ h has to be strictly smaller than g or h w.r.t.
≤R

⊥. Hence, according to Proposition 5.20, g ⊓ h has to contain some node labelled ⊥, i.e.
⊥-depth(g ⊓ h) < ω as well. We prove that ⊥-depth(g ⊓ h) = sim‡(g, h) by showing that
both ⊥-depth(g ⊓ h) ≤ sim‡(g, h) and ⊥-depth(g ⊓ h) ≥ sim‡(g, h) hold.

In order to show the former, let d = ⊥-depth(g ⊓ h). Since g ⊓ h ≤R
⊥ g, h, we can apply

Lemma 6.10 twice in order to obtain g‡d ∼= (g ⊓ h)‡d ∼= h‡d. Hence, sim‡(g, h) ≥ d.

38 PATRICK BAHR

To show the converse direction, let d = sim‡(g, h), i.e. g‡d ∼= h‡d. According to

Lemma 6.2, we have both g‡d ≤R
⊥ g and h‡d ≤R

⊥ h. Note that, for the canonical rep-

resentation, we then have C(g‡d) = C(h‡d), C(g‡d) ≤R
⊥ g and C(h‡d) ≤R

⊥ h (cf. Proposi-
tion 4.16 respectively Remark 5.13). That is, C(g‡d) is a lower bound of g and h. Thus,
C(g‡d) ≤R

⊥ g ⊓ h and we can reason as follows:

d ≤ ⊥-depth(g‡d) (Lem. 6.8)

= ⊥-depth(C(g‡d)) (Lem. 6.7, Cor. 5.8)

≤ ⊥-depth(g ⊓ h) (C(g‡d) ≤R
⊥ g ⊓ h, Lem. 6.6)

Remark 7.2. From now on, we are not dealing with the concrete construction of rigid
truncations g‡d anymore. Therefore, we will rather use the canonical representation C(g‡d)
of g‡d. In order to avoid the notational overhead, we write g‡d instead of C(g‡d).

In the next step we show that the metric space (G∞
C (Σ),d‡) is indeed complete. The

following proposition states even more: the limit of Cauchy sequences in the metric space
equals its limit inferior in the partially ordered set (G∞

C (Σ⊥),≤R
⊥):

Proposition 7.3 (metric limit = limit inferior). Let (gι)ι<α be a non-empty Cauchy se-
quence in the metric space (G∞

C (Σ),d‡) and lim infι→α gι its limit inferior in (G∞
C (Σ⊥),≤R

⊥).
Then limι→α gι = lim infι→α gι.

Proof. If α is a successor ordinal, this is trivial, as the limit and the limit inferior are
then gα−1. Assume that α is a limit ordinal and let g be the limit inferior of (gι)ι<α. Since,
according to Theorem 5.15, (G∞

C (Σ⊥),≤R
⊥) is a complete semilattice, g is well-defined. Since

(gι)ι<α is Cauchy, we obtain that, for each ε ∈ R
+, there is a β < α such that we have

d‡(gι, gι′) < ε for all β ≤ ι, ι′ < α. A fortiori, we get that, for each ε ∈ R
+, there is a

β < α such that we have d‡(gβ , gι) < ε for all β ≤ ι < α. By definition of d‡, this is

equivalent to 2−sim‡(gβ ,gι) < ε. Consequently, we have, for each d < ω, a β < α such that
sim‡(gβ , gι) > d for all β ≤ ι < α. Due to Lemma 6.11, sim‡(gβ , gι) > d implies gβ‡d = gι‡d
which in turn implies gβ‡d ≤R

⊥ gι, according to Lemma 6.2. Hence, gβ‡d is a lower bound for

Gβ = {gι |β ≤ ι < α}, i.e. gβ‡d ≤R
⊥

d
Gβ . Moreover, by the definition of the limit inferior,

it holds that
d
Gβ ≤R

⊥ g. Consequently, gβ‡d ≤R
⊥ g, i.e. we have

∀d < ω∃β < α : gβ‡d ≤R
⊥ g (1)

Since, by Lemma 6.8, we have ⊥-depth(gβ‡d) ≥ d, we can apply Lemma 6.10 to obtain
(gβ‡d)‡d ∼= g‡d. Hence, by Lemma 6.11, we have gβ‡d ∼= g‡d and therefore sim‡(g, gβ) ≥ d.
That is, we have shown that

∀d < ω∃β < α : sim‡(g, gβ) ≥ d

Since, for each ε ∈ R
+, we find a d < ω with 2−d < ε, this implies

∀ε ∈ R
+∃β < α : d‡(g, gβ) < ε

This shows that (gι)i<α converges to g. Now it remains to be shown that g is indeed in
G∞

C (Σ), i.e. it does not contain any node labelled ⊥. Suppose that g does contain a node
labelled with ⊥. Then ⊥-depth(g) < ω. Let d = ⊥-depth(g) + 1. By (1), there is a β with
gβ‡d ≤R

⊥ g. By applying Lemma 6.8 and Lemma 6.6, we then get

⊥-depth(g) + 1 = d ≤ ⊥-depth(gβ‡d) ≤ ⊥-depth(g).

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 39

This is a contradiction. Hence, g is indeed in G∞
C (Σ).

This result has two obvious but important consequences: firstly, the limit of a converg-
ing sequence in the rigid metric space is equal to the limit inferior in the rigid complete
semilattice. Secondly, the rigid metric space (G∞

C (Σ),d‡) is complete:

Theorem 7.4 (completeness of rigid metric). The metric space (G∞
C (Σ),d‡) is complete.

Proof. Immediate consequence of Proposition 7.3.

In the following proposition, we show the converse direction of the relation between the
limits of the rigid metric and the limit inferiors of the rigid partial order:

Proposition 7.5 (total limit inferior = limit). Let (gι)ι<α be a non-empty sequence in
(G∞

C (Σ),d‡) and lim infι→α gι its limit inferior in (G∞
C (Σ⊥),≤R

⊥). If lim infι→α gι ∈ G∞
C (Σ),

then lim infι→α gι = limι→α gι.

Proof. If α is a successor ordinal, then both the limit and the limit inferior are equal to
gα−1. Let α be a limit ordinal. According to Proposition 7.3, in order to show that (gι)ι<α

converges and that its limit coincides with its limit inferior, it suffices to prove that (gι)ι<α

is Cauchy.
Let g = lim infι→α gι, and define Gβ = {gι |β ≤ ι < α} and hβ =

d
Gβ for each β < α.

Note that g =
⊔

β<α hβ . Since g is total, i.e. no node in g is labelled with ⊥, we have,
according to Theorem 5.12, that for each π ∈ P(g) there is some βπ < α with hβπ

(π) = g(π).

Note that (hι)ι<α is monotonic w.r.t. ≤R
⊥, i.e. ι ≤ ι′ implies hι ≤R

⊥ hι′ . Since hι ≤R
⊥ hι′

together with hι(π) ∈ Σ implies hι′(π) = hι(π) by Corollary 5.10, we have hγ(π) = g(π) for
all π ∈ P(g) and βπ ≤ γ < α.

Let d < ω. Since there are only finitely many positions in P(g) of length smaller than
d, we know that βd = max {βπ |π ∈ P(g), |π| < d} is a well-defined ordinal smaller than α.
Hence, for all π ∈ P(g) with |π| < d we have hβd

(π) = g(π). Since g is total, we thus have
that ⊥-depth(hβd

) ≥ d.

Since gι, gι′ ∈ Gβd
for each βd ≤ ι, ι′ < α, we have hβd

≤R
⊥ gι, gι′ and thus hβd

≤R
⊥ gι⊓gι′ .

Consequently, by Lemma 6.6, we have that ⊥-depth(gι ⊓ gι′) ≥ ⊥-depth(hβd
). That is,

sim‡(gι, gι′)
P rop. 7.1

= ⊥-depth(gι ⊓ gι′) ≥ ⊥-depth(hβd
) ≥ d for each βd < ι, ι′ < α.

Now, let ε ∈ R
+. We then find some d < ω with ε > 2−d. Consequently, we have

d‡(gι, gι′) = 2−sim‡(gι,gι′) ≤ 2−d < ε for all βd ≤ ι, ι′ < α.

Hence, (gι)ι<α is Cauchy.

Note that Proposition 7.5 depends on the finiteness of the arity of the symbols in the
signature. (This is used in the proof above when observing that a term graph has only
finitely many positions of a bounded length.) This restriction also applies to terms as the
following example shows:

40 PATRICK BAHR

Example 7.6. Let Σ = {f/ω, a/0, b/0} and (ti)i<ω a sequence with

t0 = f(a, a, a, a, a . . .),

t1 = f(b, a, a, a, a . . .),

t2 = f(b, b, a, a, a . . .),

t3 = f(b, b, b, a, a . . .),

...

(ti)i<ω has the limit inferior f(b, b, b, b, b, . . .). On the other hand, the sequence is not even
Cauchy since, for each i 6= j, we have sim‡(ti, tj) = 1 and, therefore, d‡(ti, tj) = 1

2 .

8. Infinitary Term Graph Rewriting

In the previous sections, we have constructed and investigated the necessary metric and
partial order structures upon which the infinitary calculus of term graph rewriting that
we shall introduce in this section is based. After describing the framework of term graph
rewriting that we consider, we will explore two different modes of convergence on term
graphs. In the same way that infinitary term rewriting is based on the abstract notions
of m- and p-convergence [6], infinitary term graph rewriting is an instantiation of these
abstract modes of convergence for term graphs. However, as in the overview of infinitary
term rewriting in Section 2, we restrict ourselves to weak notions of convergence.

8.1. Term Graph Rewriting Systems. In this paper, we adopt the term graph rewriting
framework of Barendregt et al. [11]. In order to represent placeholders in rewrite rules, this
framework uses variables – in a manner much similar to term rewrite rules. To this end,
we consider a signature ΣV = Σ ⊎ V that extends the signature Σ with a set V of nullary
variable symbols.

Definition 8.1 (term graph rewriting systems).

(i) Given a signature Σ, a term graph rule ρ over Σ is a triple (g, l, r) where g is a graph
over ΣV and l, r ∈ Ng such that all nodes in g are reachable from l or r. We write ρl

respectively ρr to denote the left- respectively right-hand side of ρ, i.e. the term graph
g|l respectively g|r. Additionally, we require that, for each variable v ∈ V, there is at
most one node n in g labelled v and that n is different but still reachable from l.

(ii) A term graph rewriting system (GRS) R is a pair (Σ, R) with Σ a signature and R a
set of term graph rules over Σ.

The requirement that the root l of the left-hand side is not labelled with a variable symbol
is analogous to the requirement that the left-hand side of a term rule is not a variable.
Similarly, the restriction that nodes labelled with variable symbols must be reachable from
the root of the left-hand side corresponds to the restriction on term rules that every variable
occurring on the right-hand side of a rule must also occur on the left-hand side.

Term graphs can be used to compactly represent terms, which is formalised by the
unravelling operator U(·). We extend this operator to term graph rules. Figure 8a illustrates
two term graph rules that both represent the term rule a :: x → b :: a :: x from Example 3.1
to which they unravel.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 41

Definition 8.2 (unravelling of term graph rules). Let ρ be a term graph rule with ρl and
ρr its left- respectively right-hand side term graph. The unravelling of ρ, denoted U(ρ) is
the term rule U(ρl) → U(ρr).

The application of a rewrite rule ρ (with root nodes l and r) to a term graph g is
performed in three steps: at first a suitable sub-term graph of g rooted in some node n of
g is matched against the left-hand side of ρ. This amounts to finding a V-homomorphism
φ : ρl →V g|n from the term graph rooted in l to the sub-term graph rooted in n, the redex.
The V-homomorphism φ allows us to instantiate variables in the rule with sub-term graphs
of the redex. In the second step, nodes and edges in ρ that are not reachable from l are
copied into g, such that each edge pointing to a node m in the term graph rooted in l is
redirected to φ(m). In the last step, all edges pointing to n are redirected to (the copy of)
r and all nodes not reachable from the root of (the now modified version of) g are removed.

The formal definition of this construction is given below:

Definition 8.3 (application of term graph rewrite rules, [11]). Let ρ = (Nρ, labρ, sucρ, lρ, rρ)
be a term graph rewrite rule in a GRS R = (Σ, R), g ∈ G∞(Σ) withNρ∩Ng = ∅ and n ∈ Ng.
ρ is called applicable to g at n if there is a V-homomorphism φ : ρl →V g|n. φ is called the
matching V-homomorphism of the rule application, and g|n is called a ρ-redex. Next, we
define the result of the application of the rule ρ to g at n using the V-homomorphism φ.
This is done by constructing the intermediate graphs g1 and g2, and the final result g3.

(i) The graph g1 is obtained from g by adding the part of ρ that is not contained in its
left-hand side:

Ng1 = Ng ⊎ (Nρ \Nρl)

labg1(m) =

{
labg(m) if m ∈ Ng

labρ(m) if m ∈ Nρ \Nρl

suc
g1

i (m) =





suc
g
i (m) if m ∈ Ng

suc
ρ
i (m) if m, suc

ρ
i (m) ∈ Nρ \Nρl

φ(suc
ρ
i (m)) if m ∈ Nρ \Nρl , suc

ρ
i (m) ∈ Nρl

(ii) Let n′ = φ(rρ) if rρ ∈ Nρl and n′ = rρ otherwise. The graph g2 is obtained from g1

by redirecting edges ending in n to n′:

Ng2 = Ng1 labg2 = labg1 suc
g2

i (m) =

{
suc

g1

i (m) if suc
g1

i (m) 6= n

n′ if suc
g1

i (m) = n

(iii) The term graph g3 is obtained by setting the root node r′, which is n′ if n = rg, and
otherwise rg. That is, g3 = g2|r′ . This also means that all nodes not reachable from
r′ are removed.

This induces a pre-reduction step ψ = (g, n, ρ, n′, g3) from g to g3, written ψ : g 7→n,ρ,n′ g3.
In order to indicate the underlying GRS R, we also write ψ : g 7→R g3.

Examples for term graph (pre-)reduction steps are shown in Figure 8. We revisit them
in more detail in Example 8.9 below.

The definition of term graph rewriting in the form of pre-reduction steps is very opera-
tional in style. The result of applying a rewrite rule to a term graph is constructed in several
steps by manipulating nodes and edges explicitly. While this is beneficial for implementing
a rewriting system, it is problematic for reasoning on term graphs up to isomorphisms,

42 PATRICK BAHR

which is necessary for introducing notions of convergence. In our case, however, this does
not cause any harm since the construction in Definition 8.3 is invariant under isomorphism:

Proposition 8.4 (pre-reduction steps). Let φ : g 7→n,ρ,m h be a pre-reduction step in some
GRS R and ψ1 : g′ ∼= g. Then there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h′ with ψ2 : h′ ∼=
h such that ψ2(n′) = n and ψ1(m′) = m.

Proof. Immediate from the construction in Definition 8.3.

The above finding justifies the following definition of reduction steps:

Definition 8.5 (reduction steps). Let R = (Σ, R) be a GRS, ρ ∈ R and g, h ∈ G∞
C (Σ)

with n ∈ Ng and m ∈ Nh. A tuple φ = (g, n, ρ,m, h) is called a reduction step, written
φ : g →n,ρ,m h, if there is a pre-reduction step φ′ : g′ 7→n′,ρ,m′ h′ with C(g′) = g, C(h′) = h,
n = Pg′(n′), and m = Ph′(m′). Similarly to pre-reduction steps, we also write φ : g →R h
or simply φ : g → h for short.

In other words, a reduction step is a canonicalised pre-reduction step.
Note that term graph rules do not provide a duplication mechanism. Each variable is

allowed to occur at most once. Duplication must always be simulated by sharing. This
means for example that variables that should occur on the right-hand side must share the
occurrence of that variable on the left-hand side of the rule with its right-hand side. This
can be seen in the term graph rules in Figure 8a. The sharing can be direct as in ρ1 or
indirect as in ρ2. For variables that are supposed to be duplicated on the right-hand side,
for example in the term rewrite rule h(x) → f(h(x), h(x)), we have to use sharing in order
to represent multiple occurrences of the same variable. This representation can be seen in
the corresponding term graph rules in Figure 9a.

8.2. Convergence of Transfinite Reductions. We now employ the partial order ≤R
⊥ and

the metric d‡ for the purpose of defining convergence of transfinite term graph reductions.
The notion of (transfinite) reductions carries over to GRSs straightforwardly:

Definition 8.6 (transfinite reductions). Let R = (Σ, R) be a GRS. A (transfinite) reduction
in R is a sequence (gι →R gι+1)i<α of rewriting steps in R.

Analogously to reductions in TRSs, we need a notion of convergence in order to define
well-behaved reductions. The two modes of convergence that we introduced for this very
purpose in Section 5 and Section 6 are only defined on canonical term graphs. It is therefore
crucial to work on reduction steps as opposed to pre-reduction steps.

Definition 8.7 (convergence of reductions). Let R = (Σ, R) be a GRS.

(i) Let S = (gι →R gι+1)ι<α be a reduction in R. S is m-continuous in R, written
S : g0 →֒m R . . . , if the underlying sequence of term graphs (gι)ι<α̂ is continuous in R,
i.e. limι→λ gι = gλ for each limit ordinal λ < α. S m-converges to g ∈ G∞

C (Σ) in R,
written S : g0 →֒m R g, if it is m-continuous and limι→α̂ gι = g.

(ii) Let R⊥ be the GRS (Σ⊥, R) over the extended signature Σ⊥ and S = (gι →R⊥
gι+1)ι<α

a reduction in R⊥. S is p-continuous in R, written S : g0 →֒p R . . . , if lim infι→λ gi = gλ

for each limit ordinal λ < α. S p-converges to g ∈ G∞
C (Σ⊥) in R, written S : g0 →֒p R g,

if it is p-continuous and lim infι→α̂ gi = g.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 43

::l

a x

::r

b ::

a

(ρ1)

::l

a x

::r

b

(ρ2)

(a) Term graph rules that unravel to a :: x → b :: a :: x.

::

a c

(g1)

::

b

(g2)

ρ2

(b) A single ρ2-step.

::

a

(h0)

::

b ::

a

(h1)

::

b ::

b ::

a

(h2)

::

b ::

b ::

b
(hω)

ρ1 ρ1 ρ1

(c) An m-convergent term graph reduction over ρ1.

Figure 8. Term graph rules and their reductions.

(iii) Let S = (gι →R⊥
gι+1)ι<α be a reduction in R⊥. The reduction S is called p-

continuous in G∞
C (Σ), if it is p-continuous and gι ∈ G∞

C (Σ) for all ι < α̂. The reduction
S is said to p-converge in G∞

C (Σ) to g, if it is p-continuous in G∞
C (Σ) and p-converges

to g ∈ G∞
C (Σ).

Note that, analogously to p-convergence on terms, we extended the signature of R to Σ⊥

for the definition of p-convergence. Like for terms, this approach serves two purposes. First,
by considering the extended signature Σ⊥, we allow any partial term graph to appear in
a reduction as opposed to only total ones. Consequently, we have the whole complete
semilattice (G∞

C (Σ⊥),≤R
⊥) at our disposal, which means that p-continuity coincides with

p-convergence:

Proposition 8.8. In a GRS, every p-continuous reduction is p-convergent.

Proof. Follows immediately from Corollary 5.16.

The second reasons for the extension to R⊥ is that by not presupposing that the
system’s signature Σ already contains a designated ⊥-symbol, we rule out the possibility
that this ⊥ symbol occurs in one of the rules of the system. Consequently, any ⊥ symbol
present in the final term graph of a reduction is either due to the initial term graph or the
convergence behaviour. This is crucial for establishing a correspondence result between m-
and p-convergence in the vein of Theorem 3.3.

Example 8.9. Consider the term graph rule ρ1 in Figure 8a, which unravels to the term
rule a :: x → b :: a :: x from Example 3.1. Starting with the term tree a :: c, depicted as g1 in
Figure 8b, we obtain the same transfinite reduction as in Example 3.1:

S : a :: c →ρ1
b :: a :: c →ρ1

b :: b :: a :: c →ρ1
. . .

44 PATRICK BAHR

Since the modes of convergence of both the partial order ≤R
⊥ and the metric d‡ coincide

with the corresponding modes of convergence on terms (cf. Proposition 5.19 respectively
Proposition 6.16), we know that, for reductions consisting only of term trees, both m- and
p-convergence in GRSs coincide with the corresponding notions of convergence in TRSs.
This observation applies to the reduction S above. Hence, also in this setting of term graph
rewriting, S both m- and p-converges to the term tree hω shown in Figure 8c. Similarly, we
can reproduce the p-converging but not m-converging reduction T from Example 3.2.

Notice that hω is a rational term tree as it can be obtained by unravelling the finite
term graph g2 depicted in Figure 8b. In fact, if we use the rule ρ2, which unravels to the
term rule a :: x → b :: a :: x as well, we can immediately rewrite g1 to g2. In ρ2, not only the
variable x is shared but the whole left-hand side of the rule. This causes each redex of ρ2

to be captured by the right-hand side [15].
Figure 8c indicates a transfinite reduction starting with a cyclic term graph h0 that

unravels to the rational term t = a :: a :: a :: This reduction both m- and p-converges
to the rational term tree hω as well. Again, by using ρ2 instead of ρ1, we can rewrite h0 to
the cyclic term graph g2 in one step.

For more detailed explanations of the underlying modes of partial order and metric
convergence for the reductions above, revisit Example 5.17 and Example 6.14, respectively.

The following theorem shows that the total fragment of p-converging reductions is in
fact equivalent to m-converging reductions:

Theorem 8.10 (p-convergence in G∞
C (Σ) = m-convergence). For every reduction S in a

GRS the following equivalences hold:

(i) S : g →֒p R h in G∞
C (Σ) iff S : g →֒m R h

(ii) S : g →֒p R . . . in G∞
C (Σ) iff S : g →֒m R . . .

Proof. We only show (i) since (ii) follows similarly.
Let S = (gι →R⊥

gι+1)ι<α. For the “only if” direction assume S : g →֒p R h is p-
converging in G∞

C (Σ). Since S p-converges in G∞
C (Σ), it is a reduction in R. The p-

convergence of S implies that lim infι→λ gi = gλ for each limit ordinal λ < α. Since each
gι is total, we have, according to Proposition 7.5, that limι<λ gi = lim infι→λ gi = gλ for
each limit ordinal λ < α. Hence (gι)ι<α̂ is continuous in the metric space. Likewise, we
also have limι<α̂ gi = lim infι→α̂ gi = h. That is, S m-converges to h. For the “if” direction
assume S : g →֒m R h. Since (gι)ι<α̂ is continuous, we have that limι<λ gi = gλ for each limit
ordinal λ < α. According to Proposition 7.3, we then have that lim infι→λ gi = gλ for each
limit ordinal λ < α. Likewise we also have lim infι→α̂ gi = limι<α̂ gi = h. Hence, S is
p-converging to h. Since S is m-converging it is by definition also in G∞

C (Σ).

Example 8.11. In order to represent term rewrite rules that are not right-linear, i.e. which
have multiple occurrences of the same variable on the right-hand side, we have to use sharing
to represent the occurrences of a variable by a single node. Consider the term rewrite rule
h(x) → f(h(x), h(x)) that duplicates the variable x on the right-hand side. Note that by
repeatedly applying this term rewrite rule starting with term h(c), we obtain a reduction
that m-converges to the full binary tree depicted in Figure 9c.

Figure 9a shows three different ways of representing the term rewrite rule h(x) →
f(h(x), h(x)) as a term graph rule. The rule ρ3 has the lowest degree of sharing since
it shares the variable node directly; ρ1 has the highest degree of sharing as it shares its
complete left-hand side with its right-hand side; ρ2 lies in between the two.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 45

hl

x

fr

(ρ1)

hl

x

fr

h

(ρ2)

hl

x

fr

h h

(ρ3)

(a) Term graph rules that unravel to h(x) → f(h(x), h(x)).

h

c

(g0)

f

(g1)

ρ1

(b) A single ρ1-step.

f

f

f f

f

f f

(c) The full binary tree of f -nodes.

h

c

(g0)

f

h

c

(g1)

f

f

h

c

(g2)

f

f

ff

(gω)

ρ2 ρ2 ρ2

(d) An m-convergent term graph reduction over ρ2.

h

c

(g0)

f

h

c

h

(g1)

f

f

h h

h

c

(g2)

f

f

f

h

h

h

⊥

(gω)

ρ3 ρ3 ρ3

(e) A p-convergent term graph reduction over ρ3.

Figure 9. Term graph rules for duplicating term rewrite rules.

46 PATRICK BAHR

We have observed in Figure 8a before that, by sharing the complete left-hand side with
the right-hand side, the redex gets captured by the right-hand side upon applying the rule
to a term graph. This can be seen again in Figure 9b. By applying ρ1 to the term tree h(c)
once, we immediately obtain the cyclic term graph g1, which unravels to the full binary tree
from Figure 9c.

With the rule ρ2, we have to go through an m-convergent reduction of length ω, depicted
in Figure 9d, in order to obtain the desired term graph normal form that then unravels to
the full binary tree as well.

The same can also be achieved via the rule ρ3: Starting from h(c) we can construct a
reduction that m-converges directly to the full binary tree in Figure 9c. However, we may
also form the reduction shown in Figure 9e in which we always contract the leftmost redex.
As we can see in the picture, this means that the c-node remains constantly at depth 2
while still reachable from any other node. As we explained in Example 6.14, this means
that the reduction does not m-converge. On the other hand, as described in Example 5.17
the reduction p-converges to the partial term graph gω. In fact, from this term graph gω

we can then construct a reduction that p-converges to the full binary tree.

9. Term Graph Rewriting vs. Term Rewriting

In order to assess the value of the modes of convergence on term graphs that we introduced
in this paper, we need to compare them to the well-established counterparts on terms. We
have already observed that, if restricted to term trees, both the partial order ≤R

⊥ and the
metric d‡ on term graphs coincide with corresponding structures ≤⊥ and d on terms, cf.
Corollary 5.11 and Corollary 6.15, respectively. The same holds for the modes of convergence
derived from these structures, cf. Proposition 5.19 and Proposition 6.16.

9.1. Soundness & Completeness of Infinitary Term Graph Rewriting. Ideally, we
would like to see a strong connection between converging reductions in a GRS R and con-
verging reductions in the TRS U(R) that is its unravelling. For example, for m-convergence
we want to see that g →֒m R h implies U(g) →֒m U(R) U(h) – i.e. soundness – and vice versa that
U(g) →֒m U(R) U(h) implies g →֒m R h – i.e. completeness.

Completeness is already an issue for finitary rewriting [11]: a single term graph redex
may corresponds to several term redexes due to sharing. Hence, contracting a term graph
redex may correspond to several term rewriting steps. For example, given a rewrite rule
a → b, we can rewrite f(a, a) to f(a, b), whereas we can rewrite

f

a

f

b

only to

which corresponds to a term reduction f(a, a) → f(b, b). That is, in the term graph we
cannot choose which of the two term redexes to contract as they are represented by the
same term graph redex.

Note that there are techniques to circumvent this problem by incorporating reduction
steps that copy nodes in order to reduce the sharing in a term graph [32]. In this paper,
however, we are only concerned with pure term graph rewriting steps derived from rewrite
rules.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 47

In the context of weak convergence, also soundness becomes an issue. The underlying
reason for this issue is similar to the phenomenon explained above: a single term graph
rewrite step may represent several term rewriting steps, i.e. g →R h implies U(g) →+

U(R)

U(h).2 When we have a converging term graph reduction (gι → gι+1)ι<α, we know that the
underlying sequence of term graphs (gι) converges. However, the corresponding term re-
duction does not necessarily produce the sequence (U(gι)) but may intersperse the sequence
(U(gι)) with additional intermediate terms, which might change the convergence behaviour.

A similar phenomenon is know in infinitary lambda calculus[25]: while one can simulate
certain term rewriting systems with lambda terms, this simulation may fail for infinitary
rewriting since a single term rewriting step may require several β-reduction steps. The
problem that arises in this setting is that the intermediate terms that are introduced in the
lambda reduction may cause the convergence to break.

The same can, in principle, also occur when simulating a term graph reduction by a term
reduction. Since a single term graph rewrite step may require several term rewrite steps,
we may introduce intermediate terms into the reduction that do not directly correspond to
the term graphs in the graph reduction.

9.2. Preservation of Convergence under Unravelling. Due to the abovementioned
difficulties, we restrict ourselves in this paper to the soundness of the modes of convergence
alone. By soundness in this setting we mean that whenever we have a sequence (gι)ι<α of
term graphs converging to g, then the sequence (U(gι))ι<α converges to U(g). That is, con-
vergence is preserved under unravelling. Since the metric d‡ on term graphs generalises the
metric d on terms, cf. Corollary 6.15, it does not matter whether we consider the convergence
of (U(gι))ι<α in the metric space (G∞

C (Σ),d‡) or (T ∞(Σ),d), according to Proposition 6.16.

The same also holds for the limit inferior in (G∞
C (Σ⊥),≤R

⊥) and (T ∞(Σ⊥),≤⊥), due to
Corollary 5.11 and Proposition 5.19.

The cornerstone of the investigation of the unravelling of term graphs is the following
simple characterisation of unravelling in terms of labelled quotient trees:

Proposition 9.1. The unravelling U(g) of a term graph g ∈ G∞(Σ) is given by the labelled
quotient tree (P(g), g(·),IP(g)).

Proof. Since IP(g) is a subrelation of ∼g, we know that (P(g), g(·),IP(g)) is a labelled
quotient tree and thus uniquely determines a term tree t. By Lemma 4.19, there is a
homomorphism from t to g. Hence, U(g) = t.

Employing the above characterisation, we can easily see that the relation ≤R
⊥ is pre-

served under unravelling:

Proposition 9.2. Given g, h ∈ G∞
C (Σ⊥), we have that g ≤R

⊥ h implies U(g) ≤R

⊥ U(h).

Proof. Immediate consequence of Corollary 5.10 and Proposition 9.1.

2If the term graph g is cyclic, the corresponding term reduction may even be infinite.

48 PATRICK BAHR

Likewise, also least upper bounds of ≤R
⊥ are preserved:

Proposition 9.3 (preservation of lubs under unravelling). Given a directed set G in

(G∞
C (Σ⊥),≤R

⊥), also {U(g) | g ∈ G} is directed and U
(⊔

g∈G g
)

=
⊔

g∈G U(g).

Proof. The fact that {U(g) | g ∈ G} is directed in (G∞
C (Σ⊥),≤R

⊥) follows from Proposi-
tion 9.2. The equality follows from the characterisation of the lub in Theorem 5.12 and
from Proposition 9.1.

For greatest lower bounds of ≤R
⊥, the situation is more complicated as we have to

consider arbitrary non-empty sets of term graphs instead of only directed sets.
We start with the characterisation of glbs in the partially ordered set (T ∞(Σ⊥),≤⊥)

of terms. Since this partially ordered set forms a complete semi-lattice, we know that it
admits glbs of arbitrary non-empty sets. The following lemma characterises these glbs:

Lemma 9.4 (glb on terms). The glb
d
T of a non-empty set T in (T ∞(Σ⊥),≤⊥) is given

by the labelled quotient tree (P, l,IP) where

P =
{
π ∈

⋂
t∈T

P(t)
∣∣∣ ∀π′ < π∃f ∈ Σ⊥∀t ∈ T : t(π′) = f

}

l(π) =

{
f if ∀t ∈ T : f = t(π)

⊥ otherwise

Proof. Special case of Proposition 5.9 in [10].

By combining the above characterisation with the characterisation of unravelled term
graphs, we obtain the following:

Corollary 9.5. Given a non-empty set G in (G∞
C (Σ⊥),≤R

⊥), the glb
d

g∈G U(g) is given by

the labelled quotient tree (P, l,IP) where

P =

{
π ∈

⋂
g∈G

P(g)

∣∣∣∣ ∀π′ < π∃f ∈ Σ⊥∀g ∈ G : g(π′) = f

}

l(π) =

{
f if ∀g ∈ G : f = g(π)

⊥ otherwise

Proof. Follows immediately from Lemma 9.4 and Proposition 9.1.

Before we deal with the preservation of glbs under unravelling, we need the following
property that relates the unravelling of a glb to the original term graphs:

Lemma 9.6 (unravelling of a glb). For each non-empty set G in (G∞
C (Σ⊥),≤R

⊥), the term
t = U(

d
G) satisfies the following for all g ∈ G and π ∈ P(t):

(i) π ∈ P(g) (ii) t(π) ∈ Σ =⇒ t(π) = g(π)

Proof. Let g ∈ G, π ∈ P(t), and h =
d
G. Then π ∈ P(h) and h(π) = t(π) according to

Proposition 9.1. Since h ≤R
⊥ g, we may apply Corollary 5.10 to obtain (i) that π ∈ P(g)

and (ii) that t(π) = g(π) whenever t(π) ∈ Σ.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 49

f

a

f

a a

f

⊥ ⊥

(g) (h) (g ⊓ h)

Figure 10. Failure of preservation of glbs under unravelling.

Proposition 9.7 (weak preservation of glbs under unravelling). If G is a non-empty set

in (G∞
C (Σ⊥),≤R

⊥), then U
(d

g∈G g
)

≤R

⊥

d
g∈G U(g).

Proof. Let s = U
(d

g∈G g
)

and t =
d

g∈G U(g). Since both s and t are terms, we can use

the characterisation of ≤⊥ instead of ≤R
⊥. That is, we will show that for each π ∈ P(s), we

have that π ∈ P(t) and that t(π) = s(π) whenever s(π) ∈ Σ.
If π ∈ P(s), then π′ ∈ P(s) for all π′ < π. Since s(π′) cannot be a nullary symbol if

π′ < π, we know that s(π′) 6= ⊥. Hence, we can apply Lemma 9.6 in order to obtain for
all g ∈ G that π ∈ P(g) and that s(π′) = g(π′) for all π′ < π. According to Corollary 9.5,
this means that π ∈ P(t). In order to show the second part, assume that s(π) ∈ Σ. Then,
by Lemma 9.6, g(π) = s(π) for all g ∈ G, which, according to Corollary 9.5, implies that
t(π) = s(π).

In general, glbs are not fully preserved under unravelling as the following example
shows:

Example 9.8. Consider the term graphs g and h in Figure 10. The only difference between
the two term graphs is the sharing of the arguments of the root node. Due to this difference
in sharing, the glb g ⊓ h of the two term graphs is a proper partial term graph as depicted
in Figure 10. On the other hand, since the unravelling of the two term graphs coincides,
viz. U(g) = U(h) = h, we have that U(g) ⊓ U(h) = h. In particular, we have the strict
inequality U(g ⊓ h) <R

⊥ U(g) ⊓ U(h).

Unfortunately, this also means that the limit inferior is only weakly preserved under
unravelling as well:

Theorem 9.9. For every sequence (gι)ι<α in (G∞
C (Σ⊥),≤R

⊥), we have that

U
(
lim inf

ι→α
gι

)
≤R

⊥ lim inf
ι→α

U(gι) .

Proof. This follows from Proposition 9.7 and Proposition 9.3.

Again, we can construct a counterexample that shows that the converse inequality does
not hold in general:

Example 9.10. Let (gι)ι<ω be the sequence alternating between g and h from Figure 10,
i.e. g2ι = g and g2ι+1 = h for all ι < ω. Then

d
α≤ι<ω gι = g ⊓ h for each α < ω and,

consequently, lim infι→ω gι = g⊓h. As we have seen in Example 9.8, g⊓h is the proper partial
term graph depicted in Figure 10. On the other hand, since U(g) = U(h) = h, we have
that lim infι→ω U(gι) = h. In particular, we have the strict inequality U(lim infι→ω gι) <

R
⊥

lim infι→ω U(gι).

50 PATRICK BAHR

Moreover, we cannot expect that any other partial order with properties comparable
to those of ≤R

⊥ fully preserves the limit inferior under unravelling.
The example above shows that any partial order ≤ on partial term graphs whose limit

inferior is preserved under unravelling must also satisfy either g ≤ h or h ≤ g for the term
graphs in Figure 10. That is, such a partial order has to give up the property that total
term graphs are maximal, cf. Proposition 5.20. This observation is independent of whether
this partial order specialises to ≤⊥ on terms.

The sacrifice for full preservation under unravelling goes even further. If a partial
order ≤ on partial term graphs satisfies preservation of its limit inferior under unravelling,
the limit inferior lim infι→ω gι of the sequence (gι)ι<ω from Example 9.10 has to unravel
to h, a total term. That is, lim infι→ω gι has to be a total term graph. On the other
hand, there is no metric – or any Hausdorff topology for that matter – for which (gι)ι<ω

converges at all because (gι)ι<ω alternates between two distinct term graphs. In other
words, the correspondence between m- and p-convergence, which we have for ≤R

⊥ as stated
in Theorem 8.10, cannot be satisfied for such a partial order ≤, regardless of the metric on
term graphs.

The simple partial order ≤S
⊥, which we briefly discussed in comparison to the rigid

partial order ≤R
⊥ in Section 5, takes the other side of the trade-off illustrated above: it

satisfies g ≤S
⊥ h and the preservation of the limit inferior under unravelling but sacrifices

the correspondence between total term graphs and maximality as well as the correspondence
between m- and p-convergence [10].

Using the correspondence between the limit inferior in (G∞
C (Σ⊥),≤R

⊥) and the limit in
(G∞

C (Σ),d‡), we can derive full preservation of limits under unravelling:

Theorem 9.11. For every convergent sequence (gι)ι<α in (G∞
C (Σ),d‡), also (U(g)ι)ι<α is

convergent and

U
(

lim
ι→α

gι

)
= lim

ι→α
U(gι) .

Proof. We prove the equality as follows:

U
(

lim
ι→α

gι

) (1)
= U

(
lim inf

ι→α
gι

) (2)
= lim inf

ι→α
U(gι)

(3)
= lim

ι→α
U(gι)

(1) Since (gι)ι<α is convergent, and thus Cauchy, we can apply Proposition 7.3 to obtain
that limι→α gι = lim infι→α gι.

(2) Since lim infι→α gι is total, so is U(lim infι→α gι). By Proposition 5.20, this means that
U(lim infι→α gι) is maximal w.r.t. ≤R

⊥. Consequently, the inequality U(lim infι→α gι) ≤R
⊥

lim infι→α U(gι) due to Theorem 9.9 yields (2).
(3) This equality follows from Proposition 7.5 and the totality of lim infι→α U(gι).

9.3. Finite Representations of Transfinite Term Reductions. One of the motivations
for considering modes of convergence on term graphs in the first place is the study of finite
representation of transfinite term reductions as finite term graph reductions. Since both
the metric d‡ and the partial order ≤R

⊥ specialise to the corresponding structures on terms,

we can use both the metric space (G∞
C (Σ),d‡) and the partially ordered set (G∞

C (Σ⊥),≤R
⊥)

to move seamlessly from terms to term graphs and vice versa.
For instance, Example 8.11 illustrates reductions that perform essentially the same com-

putations, however, at different levels of sharing / parallelism. This includes the complete
lack of sharing as well, i.e. term rewriting. For each of the cases we can use the partially

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 51

ordered set (G∞
C (Σ⊥),≤R

⊥) and the metric space (G∞
C (Σ),d‡) as a unifying framework to

determine the convergence behaviour.
In order to use the partial order ≤R

⊥ and the metric d‡ as a tool to study finite rep-
resentability of infinite term reductions as finite term graph reductions there still is some
work to be done, though.

First and foremost, we need a unifying framework for performing both term and term
graph rewriting. A straightforward approach to achieve this, is to include copying steps in
term graph reductions that allow us to revert the sharing produced by applying term graph
rules [32]. For example while the rule ρ3 from Figure 9a is the term graph rule with the
least sharing that unravels to ρ : h(x) → f(h(x), h(x)), it still has some sharing in order to
represent the duplication of the variable x on the right-hand side.

The result of this sharing is seen in Figure 9e, which shows that even if we start with a
term tree, the rule ρ3 turns it into a proper term graph. Consequently it is slightly different
from the corresponding term reduction

h

c

f

h

c

h

c

f

f

h

c

h

c

h

c

f

f

f

h

c

h

c

h

c

S : ρ ρ ρ

In fact, while the above term reduction S is m-convergent, the term graph reduction via
ρ3, depicted in Figure 9e, is not.

However, by interspersing the term graph reduction with reduction steps that copy
nodes – and in general sub-term graphs – we instead obtain the following term graph
reduction:

h

c

f

h

c

h

f

h

c

h

c

f

f

h

c

h

h

c

f

f

f

h

c

h

c

h

c

ρ3 copy ρ3 copy

This reduction simulates the corresponding term reduction S more closely and in fact both
reductions m-converge to the same term. Nevertheless, this approach creates the same issue
that we have already noted for soundness: the additional term graphs that get interspersed
with the original term reduction may affect the convergence behaviour.

The second ingredient that we need in order to study the finite representability of trans-
finite term reductions is a compression property [27] for transfinite term graph reductions

52 PATRICK BAHR

that allows us to compress a transfinite term graph reduction that ends in a finite term
graph to a term graph reduction of finite length.

Unfortunately, experience from infinitary term rewriting already shows us that a general
compression property – allowing any reduction to be compressed to length at most ω – is not
possible for weak convergence [24]. However, the more restrictive version of the compression
property that we need, viz. that reductions ending in a finite term graph may be compressed
to finite length, does hold for weakly m-converging term reductions [28] and there is hope
that this carries over to the term graph rewriting setting.

10. Conclusions & Future Work

With the goal of generalising infinitary term rewriting to term graphs, we have presented
two different modes of convergence for an infinitary calculus of term graph rewriting. The
success of this generalisation effort was demonstrated by a number of results. Many of the
properties of the modes of convergence on terms have been maintained in this transition to
term graphs. First and foremost, this includes the intrinsic completeness properties of the
underlying structures, i.e. the metric space is still complete and the partially ordered set still
forms a complete semilattice. Moreover, we were also able to maintain the correspondence
between p- and m-convergence as well as the intuition of the partial order to capture a
notion of information preservation.

An important check for the appropriateness of the modes of convergence on term graphs
is their relation to the corresponding modes of convergence on terms. For both the partial
order and the metric approach, we have that convergence on term graphs is a conservative
extension of the convergence on terms. Conversely, convergence on term graphs carries
over to convergence on terms via the unravelling mapping. Unfortunately, this preservation
of convergence under unravelling is only weak in the case of the partial order setting;
cf. Theorem 9.9. However, as we have explained in Section 9.2, this phenomenon is an
unavoidable side effect of the generalisation to term graphs unless other important properties
are sacrificed. Fortunately, this phenomenon vanishes in the metric setting and we in fact
obtain full preservation of limits under unravelling; cf. Theorem 9.11.

As a result, we have obtained two modes of convergence, which allow us to combine both
infinitary term rewriting and term graph rewriting within one theoretical framework. Our
motivation for this effort is derived from studying lazy evaluation and the correspondence
between infinitary term rewriting and finitary term graph rewriting. For both applications,
we still require more understanding of the matter, though: for the former, we still lack at
least a treatment of higher-order rewriting whereas we are much closer to the latter. We
have discussed issues concerning the correspondence between infinitary term rewriting and
finitary term graph rewriting in detail in Section 9.3: while the unified modes of convergence
are already helpful for studying infinitary rewriting with a varying degree of sharing, we
identified two shortcomings that have to be addressed, viz. the lack of a unifying notion of
rewriting for terms and term graphs and a compression property for transfinite term graph
reductions.

Apart from the abovementioned issues, future work should also be concerned with
establishing a stronger correspondence between infinitary term rewriting and infinitary term
graph rewriting beyond the preservation of limits under unravellings, which we showed
in this paper. Despite the difficulties that we encountered in Section 9.1, we think that
obtaining such results is possible. However, a more promising way of approaching this

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 53

issue is to restrict the notion of convergence to strong convergence as we know it from
infinitary term rewriting [27]. Such a stricter notion of convergence takes the location of a
reduction step into consideration and, thus, provides a closer correspondence between term
graph reductions and their term rewriting counterparts. Indeed, this technique has been
applied successfully to convergence on term graphs based on the simple partial order ≤S

⊥,

which we briefly discussed in comparison to the rigid partial order ≤R
⊥ in Section 5, and a

corresponding metric [10].

Acknowledgement

The author would like to thank the anonymous referees of RTA 2011 as well as the referees
for the special issue of LMCS whose comments greatly helped to improve the presentation
of the material.

References

[1] Zena Ariola and Stefan Blom. Skew and ω-Skew Confluence and Abstract Böhm Semantics. In Aart
Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel de Vrijer, editors, Processes,
Terms and Cycles: Steps on the Road to Infinity, volume 3838 of Lecture Notes in Computer Science,
pages 368–403. Springer Berlin / Heidelberg, 2005.

[2] Zena M Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Ann. Pure Appl.
Logic, 117(1-3):95–168, 2002.

[3] Zena M Ariola and Jan Willem Klop. Lambda Calculus with Explicit Recursion. Inf. Comput.,
139(2):154–233, 1997.

[4] André Arnold and Maurice Nivat. The metric space of infinite trees. Algebraic and topological proper-
ties. Fundam. Inf., 3(4):445–476, 1980.

[5] Patrick Bahr. Infinitary Rewriting - Theory and Applications. Master’s thesis, Vienna University of
Technology, Vienna, 2009.

[6] Patrick Bahr. Abstract Models of Transfinite Reductions. In Christopher Lynch, editor, Proceedings of
the 21st International Conference on Rewriting Techniques and Applications, volume 6 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 49–66, Dagstuhl, Germany, 2010. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[7] Patrick Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees. In Christopher Lynch, editor,
Proceedings of the 21st International Conference on Rewriting Techniques and Applications, volume 6
of Leibniz International Proceedings in Informatics (LIPIcs), pages 67–84, Dagstuhl, Germany, 2010.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] Patrick Bahr. Modes of Convergence for Term Graph Rewriting. In Manfred Schmidt-Schauß, edi-
tor, 22nd International Conference on Rewriting Techniques and Applications, volume 10 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 139–154, Dagstuhl, Germany, 2011. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[9] Patrick Bahr. Convergence in infinitary term graph rewriting systems is simple. Unpublished manu-
script, available from the author’s web site, 2012.

[10] Patrick Bahr. Infinitary term graph rewriting is simple, sound and complete. RTA 2012, to appear,
2012.

[11] Henk P Barendregt, Marko C J D van Eekelen, John R W Glauert, Richard Kennaway, Marinus J
Plasmeijer, and M Ronan Sleep. Term graph rewriting. In Philip C Treleaven de Bakker A. J. Nijman,
editor, Parallel Architectures and Languages Europe, Volume II: Parallel Languages, volume 259 of
Lecture Notes in Computer Science, pages 141–158. Springer Berlin / Heidelberg, 1987.

[12] Erik Barendsen. Term Graph Rewriting. In Terese, editor, Term Rewriting Systems, chapter 13, pages
712–743. Cambridge University Press, 2003.

[13] Stefan Blom. An Approximation Based Approach to Infinitary Lambda Calculi. In Vincent van Oostrom,
editor, Rewriting Techniques and Applications, volume 3091 of Lecture Notes in Computer Science, pages
221–232. Springer Berlin / Heidelberg, 2004.

54 PATRICK BAHR

[14] Nachum Dershowitz, Stéphane Kaplan, and David A Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite,
... Theor. Comput. Sci., 83(1):71–96, 1991.

[15] William M Farmer and Ronald J Watro. Redex capturing in term graph rewriting. Internat. J. Found.
Comput. Sci., 1:369–386, 1990.

[16] Joseph A Goguen, James W Thatcher, Eric G Wagner, and Jesse B Wright. Initial Algebra Semantics
and Continuous Algebras. J. ACM, 24(1):68–95, 1977.

[17] Peter Henderson and James H Morris Jr. A lazy evaluator. In Proceedings of the 3rd ACM SIGACT-
SIGPLAN symposium on Principles on programming languages, pages 95–103, New York, NY, USA,
1976. ACM.

[18] John Hughes. Why Functional Programming Matters. Comput. J., 32(2):98–107, 1989.
[19] Gilles Kahn and Gordon D Plotkin. Concrete domains. Theor. Comput. Sci., 121(1-2):187–277, 1993.
[20] Stefan Kahrs. Infinitary rewriting: meta-theory and convergence. Acta Inform., 44(2):91–121, May

2007.
[21] John L Kelley. General Topology, volume 27 of Graduate Texts in Mathematics. Springer-Verlag, 1955.
[22] Richard Kennaway. On transfinite abstract reduction systems. Technical report, CWI (Centre for Math-

ematics and Computer Science), Amsterdam, 1992.
[23] Richard Kennaway. Infinitary Rewriting and Cyclic Graphs. Electron. Notes Theor. Comput. Sci., 2:153–

166, 1995.
[24] Richard Kennaway and Fer-Jan de Vries. Infinitary Rewriting. In Terese, editor, Term Rewriting Sys-

tems, chapter 12, pages 668–711. Cambridge University Press, 1st edition, 2003.
[25] Richard Kennaway, Jan Willem Klop, M R Sleep, and Fer-Jan de Vries. Infinitary lambda calculus.

Theor. Comput. Sci., 175(1):93–125, 1997.
[26] Richard Kennaway, Jan Willem Klop, M Ronan Sleep, and Fer-Jan de Vries. On the adequacy of graph

rewriting for simulating term rewriting. ACM Trans. Program. Lang. Syst., 16(3):493–523, 1994.
[27] Richard Kennaway, Jan Willem Klop, M Ronan Sleep, and Fer-Jan de Vries. Transfinite Reductions in

Orthogonal Term Rewriting Systems. Inf. Comput., 119(1):18–38, 1995.
[28] Salvador Lucas. Transfinite Rewriting Semantics for Term Rewriting Systems. In Aart Middeldorp,

editor, Rewriting Techniques and Applications, volume 2051 of Lecture Notes in Computer Science,
pages 216–230. Springer Berlin / Heidelberg, 2001.

[29] Simon Marlow. Haskell 2010 Language Report, 2010.
[30] Simon Peyton-Jones. The Implementation of Functional Programming Languages. Prentice Hall, 1987.
[31] Rinus Plasmeijer and Marko C J D van Eekelen. Functional Programming and Parallel Graph Rewriting.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.
[32] Detlef Plump. Term graph rewriting. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and

Grzegorz Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 2: Applications, Languages, and Tools, pages 3–61. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1999.

[33] Jakob Grue Simonsen. Weak Convergence and Uniform Normalization in Infinitary Rewriting. In
Christopher Lynch, editor, Proceedings of the 21st International Conference on Rewriting Techniques
and Applications, volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages 311–324,
Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[34] Terese. Term Rewriting Systems. Cambridge University Press, 1st edition, 2003.

Appendix A. Proof of Lemma 5.14

Lemma 5.14 (compatible elements have lub). Each pair g1, g2 of compatible term graphs
in (G∞

C (Σ⊥),≤R

⊥) has a least upper bound.

Proof of Lemma 5.14. Since {g1, g2} is not necessarily directed, its lub might have positions
that are neither in g1 nor in g2. Therefore, it is easier to employ a different construction
here: Following Remark 5.13, we will use the structure (G∞(Σ⊥)/∼=,≤

R
⊥) which is isomorphic

to (G∞
C (Σ⊥),≤R

⊥). To this end, we will construct a term graph g such that [g]∼= is the lub
of {[g1]∼=, [g2]∼=}. Since we assume that {[g1]∼=, [g2]∼=} has an upper bound, say [ĝ]∼=, there
are two rigid ⊥-homomorphisms φi : gi →⊥ ĝ.

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 55

Let gj = (N j , sucj , labj , rj), j = 1, 2. Since we are dealing with isomorphism classes, we
can assume w.l.o.g. that the nodes in gj are of the form nj for j = 1, 2. Let M = N1 ⊎N2

and define the relation ∼ on M as follows:

nj ∼ mk iff Pgj
(nj) ∩ Pgk

(mk) 6= ∅

∼ is clearly reflexive and symmetric. Hence, its transitive closure ∼+ is an equivalence
relation on M . Now define the term graph g = (N, lab, suc, r) as follows:

N = M/∼+ lab(N) =

{
f if f ∈ Σ,∃nj ∈ N. labj(nj) = f

⊥ otherwise

r = [r1]∼+ suci(N) = N ′ iff ∃nj ∈ N. suc
j
i (nj) ∈ N ′

Note that since 〈〉 ∈ Pg1
(r1) ∩ Pg2

(r2), we also have r = [r2]∼+ .
Before we argue about the well-definedness of g, we need to establish some auxiliary

claims:

nj ∼+ mk =⇒ φj(n
j) = φk(mk) for all nj,mk ∈ M (1)

φj(n
j) = φk(mk) =⇒ nj ∼ mk for all nj,mk ∈ M

with labj(nj), labk(mk) ∈ Σ
(1’)

We show (1) by proving that nj ∼p mk implies φj(nj) = φk(mk) by induction on p > 0. If

p = 1, then nj ∼ mk. Hence, Pgj
(nj) ∩ Pgk

(mk) 6= ∅. Additionally, from Lemma 4.10 we

obtain both Pgj
(nj) ⊆ Pĝ(φj(nj)) and Pgk

(mk) ⊆ Pĝ(φk(mk)). Consequently, we also have

that Pĝ(φj(nj)) ∩ Pĝ(φk(mk)) 6= ∅, i.e. φj(n
j) = φk(mk). If p = q + 1 > 1, then there is

some ol ∈ M with nj ∼ ol and ol ∼q mk. Applying the induction hypothesis immediately
yields φj(n

j) = φl(o
l) = φk(mk).

For (1’), let nj,mk ∈ M with labj(nj), labk(mk) ∈ Σ and φj(n
j) = φk(mk). Since φj

and φk are rigid ⊥-homomorphisms, we have the following equations:

Pa
gj

(nj) = Pa
ĝ
(φj(nj)) = Pa

ĝ
(φk(mk)) = Pa

gk
(mk).

Hence, Pgj
(nj) ∩ Pgk

(mk) 6= ∅ and, therefore, nj ∼ mk.

Next we show that lab is well-defined. To this end, let N ∈ N and nj,mk ∈ N such
that labj(nj) = f1 ∈ Σ and labk(mk) = f2 ∈ Σ. We need to show that f1 = f2. By (1), we
have that φj(n

j) = φk(mk). Since f1, f2 ∈ Σ, we can employ the labelling condition for φj

and φk in order to obtain that

f1 = labj(nj) = l̂ab(φj(nj)) = l̂ab(φk(mk)) = labk(mk) = f2.

To argue that suc is well-defined, we first have to show for all N ∈ N that suci(N) is
defined iff i < ar(lab(N)). Suppose that suci(N) is defined. Then there is some nj ∈ N

such that suc
j
i (nj) is defined. Hence, i < ar(labj(nj)). Since then also labj(nj) ∈ Σ, we

have lab(N) = labj(nj). Therefore, i < ar(lab(N)). If, conversely, there is some i ∈ N with
i < ar(lab(N)), then we know that lab(N) = f ∈ Σ. Hence, there is some nj ∈ N with

labj(nj) = f . Hence, i < ar(labj(nj)) and, therefore, suc
j
i (nj) is defined. Hence, suci(N) is

defined.
To finish the argument showing that suc is well-defined, we have to show that, for all

N,N1, N2 ∈ N and nj,mk ∈ N such that suc
j
i (n

j) ∈ N1 and suck
i (mk) ∈ N2, we indeed have

N1 = N2. As nj,mk ∈ N , we have nj ∼+ mk and, therefore, φj(nj) = φk(nk) according

56 PATRICK BAHR

to (1). Since both suc
j
i (nj) and suck

i (mk) are defined, we have labj(nj), labk(mk) ∈ Σ.
By (1’) we then have nj ∼ mk, i.e. there is some π ∈ Pgj

(nj) ∩ Pgk
(mk). Consequently,

π·〈i〉 ∈ Pgj
(suc

j
i (nj))∩Pgk

(suck
i (mk)). Hence, suc

j
i (n

j) ∼ suck
i (mk) and, therefore, N1 = N2.

Before we begin the main argument we need establish the following auxiliary claims:

Pgj
(nj) ⊆ Pg([nj]∼+) for all nj ∈ M (2)

∀π ∈ Pa
g (N) ∃nj ∈ N. labj(nj) ∈ Σ, π ∈ Pa

gj
(nj) for all N ∈ N with lab(N) ∈ Σ (3)

nj ∼+ mk =⇒ Pa
gj

(nj) = Pa
gk

(mk)
for all nj,mj ∈ M

with labj(nj), labk(mk) ∈ Σ
(4)

For (2), we will show that π ∈ Pgj
(nj) implies π ∈ Pg([nj]∼+) by induction on the

length of π. The case π = 〈〉 is trivial. If π = π′ · 〈i〉, then π′ · 〈i〉 ∈ Pgj
(nj), i.e. for

mj = nodegj
(π′), we have suc

j
i (m

j) = nj. Employing the induction hypothesis, we obtain

π′ ∈ Pg([mj]∼+). Additionally, according to the construction of g, we have suci([m
j]∼+) =

[nj]∼+ . Consequently, π′ · 〈i〉 ∈ Pg([nj]∼+) holds.
Similarly, we also show (3) by induction on the length of π. If π = 〈〉, then we have

〈〉 ∈ Pa
g (N), i.e. N = r. Since, by assumption, lab(r) ∈ Σ holds, there is some j ∈ {1, 2}

such that labj(rj) ∈ Σ. Moreover, we clearly have 〈〉 ∈ Pa
gj

(rj). If π = π′ · 〈i〉, then we have

π′ · 〈i〉 ∈ Pa
g (N). Let N ′ = nodeg(π′). Since π′ · 〈i〉 is acyclic in g, so is π′, i.e. π′ ∈ Pa

g (N ′).

Moreover, we have that suci(N
′) is defined, i.e. lab(N ′) is not nullary and in particular not

⊥. Thus, we can apply the induction hypothesis to obtain some nj ∈ N ′ with labj(nj) ∈ Σ
and π′ ∈ Pa

gj
(nj). Hence, according to the construction of g, we have labj(nj) = lab(N ′),

i.e. suc
j
i (n

j) = mj is defined. Furthermore, we then get mj ∈ N . Since π′ · 〈i〉 ∈ Pgj
(mj), it

remains to be shown that π′ · 〈i〉 is acyclic in gj . Suppose that π′ · 〈i〉 is cyclic in gj . As π′ is
acyclic in gj , this means that there is some position π∗ ∈ Pgj

(mj) with π∗ < π′ · 〈i〉. Using
(2), we obtain that π∗ ∈ Pg(N). This contradicts the assumption of π′ · 〈i〉 being acyclic in
g. Hence, π′ · 〈i〉 is acyclic.

For (4), suppose that nj ∼+ mk holds with labj(nj), labk(mk) ∈ Σ. From (1), we obtain
φj(nj) = φk(nk). Moreover, since both nj and mk are not labelled with ⊥, we know that

φj and φk are rigid in nj and mk, respectively, which yields the equations

Pa
gj

(nj) = Pa
ĝ
(φj(nj)) = Pa

ĝ
(φk(mk)) = Pa

gk
(mk).

Next we show that [g1]∼=, [g1]∼= ≤R
⊥ [g]∼= holds by giving two rigid ⊥-homomorphisms

ψj : gj →⊥ g, j = 1, 2. Define ψj : N j → N by nj 7→ [nj]∼+ . From (2) and the fact

that, according to the construction of g, labj(nj) ∈ Σ implies labj(nj) = lab([nj]∼+), we
immediately get that ψj is a ⊥-homomorphism by applying Lemma 4.10. In order to argue

that ψj is rigid, assume that nj ∈ N j with labj(nj) ∈ Σ. According to Lemma 5.7, it
suffices to show that Pa

g (ψj(nj)) ⊆ Pgj
(nj). Suppose that π ∈ Pa

g (ψj(nj)). Note that, by

the construction of g, ψj(nj) is not labelled with ⊥ either. Hence, we can apply (3) to

obtain some mk ∈ ψj(n
j) with labk(mk) ∈ Σ and π ∈ Pa

gk
(mk). By definition, mk ∈ ψj(nj)

is equivalent to nj ∼+ mk. Therefore, we can employ (4), which yields Pa
gk

(mk) = Pa
gj

(nj).

Hence, π ∈ Pa
gj

(nj).

Note that the construction of g did not depend on ĝ, viz. for any other upper bound

[ĥ]∼= of [g1]∼=, [g2]∼=, we get the same term graph g. Hence, it is still just an arbitrary upper

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 57

bound which means that in order to show that [g]∼= is the least upper bound, it suffices to
show [g]∼= ≤R

⊥ [ĝ]∼=. For this purpose, we will devise a rigid ⊥-homomorphism ψ : g →⊥ ĝ.

Define ψ : N → N̂ by [nj]∼+ 7→ φj(n
j). (1) shows that ψ is well-defined. The root condition

for ψ follows from the root condition for φ1:

ψ(r) = ψ([r1]∼+) = φ1(r1) = r̂.

For the labelling condition, assume that lab(N) = f ∈ Σ for some N ∈ N . Then there
is some nj ∈ N with labj(nj) = f . Therefore, the labelling condition for φj yields

l̂ab(ψ(N)) = l̂ab(φj(nj)) = labj(nj) = f

For the successor condition, let suci(N) = N ′ for some N,N ′ ∈ N . Then there is some

nj ∈ N with suc
j
i (nj) ∈ N ′. Therefore, the successor condition for ψ follows from the

successor condition for φj as follows:

ψ(suci(N)) = ψ(N ′) = ψ([suc
j
i (n

j)]∼+) = φj(suc
j
i (nj))

= ŝuci(φj(nj)) = ŝuci(ψ([nj]∼+)) = ŝuci(ψ(N))

Finally, we show that ψ is rigid. To this end, let N ∈ N with lab(N) ∈ Σ. That is,
there is some nj ∈ N with labj(nj) ∈ Σ. Recall, that we have shown that ψj : gj →⊥ g is
rigid. That is, we have

Pa
gj

(nj) = Pa
g (ψj(nj)) = Pa

g ([nj]∼+).

Analogously, we have Pa
ĝ
(φj(nj)) = Pa

gj
(nj) as φj is rigid, too. Using this, we can obtain

the following equations:

Pa
ĝ
(ψ(N)) = Pa

ĝ
(ψ([nj]∼+)) = Pa

ĝ
(φj(nj)) = Pa

gj
(nj) = Pa

g ([nj]∼+) = Pa
g (N)

Hence, ψ is a rigid ⊥-homomorphism from g to ĝ.

Appendix B. Proof of Lemma 6.10

In this appendix, we will give the full proof of Lemma 6.10. Before we can do this we have
to establish a number of technical auxiliary lemmas.

The lemma below will serve as a tool for the two lemmas that are to follow afterwards.
We know that the set of retained nodes Ng

<d contains at least all nodes at depth smaller
than d due to the closure condition (T1). However, due to the closure condition (T2) also
nodes at a larger depth may be included in Ng

<d. The following lemma shows that this is
not possible for nodes labelled with nullary symbols:

Lemma B.1 (labelling). Let g ∈ G∞(Σ), ∆ ⊆ Σ(0) and d < ω. If ∆-depth(g) ≥ d, then
labg(n) 6∈ ∆ for all n ∈ Ng

<d.

Proof. We will show that N∇ = {n ∈ Ng | labg(n) 6∈ ∆} satisfies the properties (T1) and
(T2) of Definition 6.1 for the term graph g and depth d. Since Ng

<d is the least such set, we

then obtain Ng
<d ⊆ N∇ and, thereby, the claimed statement.

For (T1), let n ∈ Ng with depthg(n) < d. Since ∆-depth(g) ≥ d, we have labg(n) 6∈ ∆
and, therefore, n ∈ N∇. For (T2), let n ∈ N∇ and m ∈ Prea

g(n). Then m cannot be labelled
with a nullary symbol, a fortiori labg(m) 6∈ ∆. Hence, we have m ∈ N∇.

58 PATRICK BAHR

The following two lemmas are rather technical. They state that rigid ∆-homomorphisms
preserve retained nodes and in a stricter sense also fringe nodes.

Lemma B.2 (preservation of retained nodes). Let g, h ∈ G∞(Σ), d < ω, φ : g →∆ h rigid,
and ∆-depth(g) ≥ d. Then φ(Ng

<d) = Nh
<d.

Proof. Let N∇ = {n ∈ Ng | labg(n) 6∈ ∆}. At first we will show that φ(Ng
<d) ⊆ Nh

<d. To

this end, we will show that φ−1(Nh
<d)∩N∇ satisfies (T1) and (T2) of Definition 6.1 for term

graph g and depth d. Since Ng
<d is the least such set, we then obtain Ng

<d ⊆ φ−1(Nh
<d)∩N∇

and, a fortiori, Ng
<d ⊆ φ−1(Nh

<d) which is equivalent to φ(Ng
<d) ⊆ Nh

<d.
For (T1), let n ∈ Ng with depthg(n) < d. Because ∆-depth(g) ≥ d, we know that

labg(n) 6∈ ∆, which means by Lemma 6.7 that we also have depthh(φ(n)) < d. Hence,
φ(n) ∈ Nh

<d by (T1). Since labg(n) 6∈ ∆, we thus have n ∈ φ−1(Nh
<d) ∩N∇.

For (T2), let n ∈ φ−1(Nh
<d) ∩ N∇. That is, we have φ(n) ∈ Nh

<d and labg(n) 6∈ ∆.

Hence, by (T2), it holds that Prea
h(φ(n)) ⊆ Nh

<d. We have to show now that Prea
g(n) ⊆

φ−1(Nh
<d) ∩ N∇. Let m ∈ Prea

g(n). That is, there is some π · 〈i〉 ∈ Pa
g (n) with π ∈ Pg(m).

As labg(n) 6∈ ∆ and φ is rigid, we know that φ is rigid in n. Consequently, π ·〈i〉 ∈ Pa
h(φ(n)).

Moreover, we have π ∈ Ph(φ(m)) by Lemma 4.10. Hence, φ(m) ∈ Prea
h(φ(n)) and, therefore,

φ(m) ∈ Nh
<d by (T2). Additionally, as m has a successor in g, it cannot be labelled with a

symbol in ∆. Hence, m ∈ φ−1(Nh
<d) ∩N∇.

In order to prove the converse inclusion φ(Ng
<d) ⊇ Nh

<d, we will show that φ(Ng
<d)

satisfies (T1) and (T2) for term graph h and depth d. This will prove the abovementioned
inclusion since Nh

<d is the least such set.

For (T1), let n ∈ Nh with depthh(n) < d. By Lemma 6.5, there is some m ∈ Ng with
depthg(m) < d and φ(m) = n. Hence, according to (T1), we have m ∈ Ng

<d and, therefore,

n ∈ φ(Ng
<d).

For (T2), let n ∈ φ(Ng
<d). That is, there is some m ∈ Ng

<d with φ(m) = n. By (T2),
we have Prea

g(m) ⊆ Ng
<d. We must show that Prea

h(n) ⊆ φ(Ng
<d). Let n′ ∈ Prea

h(n). That

is, there is some π · 〈i〉 ∈ Pa
h(n) with π ∈ Ph(n′). Since m ∈ Ng

<d, we have labg(m) 6∈ ∆ by
Lemma B.1. Consequently, φ is rigid in m which yields that π · 〈i〉 ∈ Pa

g (m). Note that then

also π ∈ P(g). Let m′ = nodeg(π). Thus, m′ ∈ Prea
g(m) and, therefore, m′ ∈ Ng

<d according

to (T2). Moreover, because π ∈ Pg(m′) ∩ Ph(n′), we are able to obtain from Lemma 4.10
that φ(m′) = n′. Hence, n′ ∈ φ(Ng

<d).

Lemma B.3 (preservation of fringe nodes). Let g, h ∈ G∞(Σ), φ : g →∆ h rigid, 0 < d < ω,
∆-depth(g) ≥ d, n ∈ Ng, and 0 ≤ i < arg(n). Then ni ∈ Ng

=d iff φ(n)i ∈ Nh
=d.

Proof. Note that, by Lemma B.1, we have that labg(n) 6∈ ∆ for all nodes n ∈ Ng
<d. Addi-

tionally, by Lemma B.2, we obtain φ(Ng
<d) = Nh

<d and, therefore, according to the labelling

condition for φ, we get that labh(n) 6∈ ∆ for all n ∈ Nh
<d.

At first we will show the “only if” direction. To this end, let ni ∈ Ng
=d. By definition,

we then have depthg(n) ≥ d−1. Hence, by Lemma 6.7, depthh(φ(n)) ≥ d−1. Furthermore,

we have that suc
g
i (n) 6∈ Ng

<d or n 6∈ Prea
g(suc

g
i (n)). We show now that in either case we can

conclude φ(n)i ∈ Nh
=d.

Let suc
g
i (n) 6∈ Ng

<d. If we have such
i (φ(n)) 6∈ Nh

<d, then φ(n)i ∈ Nh
=d. So suppose

such
i (φ(n)) ∈ Nh

<d. Since Nh
<d = φ(Ng

<d), according to Lemma B.2, we find some m ∈ Ng
<d

with φ(m) = such
i (φ(n)). However, since suc

g
i (n) 6∈ Ng

<d, we know that m 6= suc
g
i (n).

MODES OF CONVERGENCE FOR TERM GRAPH REWRITING 59

h
r

h
n

h
m

⊥
o

h
r

h
n

φ

hφ : g
⊥

Figure 11. Fringe nodes and rigid ⊥-homomorphisms.

We now show φ(n) 6∈ Prea
h(such

i (φ(n))) by showing that π · 〈i〉 6∈ Pa
h(such

i (φ(n))) whenever
π ∈ Pa

h(φ(n)):

π ∈ Pa
h(φ(n)) ⇐⇒ π ∈ Pa

g (n) (φ is rigid in n)

=⇒ π · 〈i〉 6∈ Pa
g (m) (m 6= suc

g
i (n))

⇐⇒ π · 〈i〉 6∈ Pa
h(φ(m)) (φ is rigid in m)

⇐⇒ π · 〈i〉 6∈ Pa
h(such

i (φ(n))) (φ(m) = such
i (φ(n)))

Together with depthh(φ(n)) ≥ d− 1, this implies that φ(n)i ∈ Nh
=d.

Let n 6∈ Prea
g(suc

g
i (n)). If φ(n) 6∈ Prea

h(such
i (φ(n))), then φ(n)i ∈ Nh

=d. So suppose

that φ(n) ∈ Prea
h(such

i (φ(n))). Hence, φ(n) ∈ Prea
h(φ(suc

g
i (n))) as φ is homomorphic in n.

If labg(suc
g
i (n)) 6∈ ∆, then φ is rigid in suc

g
i (n) and we would also get n ∈ Prea

g(suc
g
i (n))

which contradicts the assumption. Hence, labg(suc
g
i (n)) ∈ ∆ and, therefore, suc

g
i (n) 6∈ Ng

<d

according to Lemma B.1. Thus, we can employ the argument for this case that we have
already given above.

We now turn to the converse direction. For this purpose, let φ(n)i ∈ Nh
=d. Then

depthh(φ(n)) ≥ d− 1 and, consequently depthg(n) ≥ d− 1 by Lemma 6.7. Additionally, we

also have such
i (φ(n)) 6∈ Nh

<d or φ(n) 6∈ Prea
h(such

i (φ(n))). Again we will show that in either

case we can conclude ni ∈ Ng
=d.

If such
i (φ(n)) 6∈ Nh

<d, then φ(suc
g
i (n)) 6∈ Nh

<d and, therefore, φ(suc
g
i (n)) 6∈ φ(Ng

<d)

according to Lemma B.2. Consequently, suc
g
i (n) 6∈ Ng

<d which implies that ni ∈ Ng
=d.

Let φ(n) 6∈ Prea
h(such

i (φ(n))). If n 6∈ Prea
g(suc

g
i (n)), then we get ni ∈ Ng

=d immediately.

So assume that n ∈ Prea
g(suc

g
i (n)). If labg(suc

g
i (n)) 6∈ ∆, then φ would be rigid in suc

g
i (n).

Thereby, we would get φ(n) ∈ Prea
h(φ(suc

g
i (n))) which contradicts the assumption. Hence,

labg(suc
g
i (n)) ∈ ∆. According to Lemma B.1, we then have suc

g
i (n) 6∈ Ng

<d and, therefore,

ni ∈ Ng
=d.

The above lemma depends on the peculiar definition of fringe nodes – in particular
those fringe nodes that are due to the condition

depthg(n) ≥ d− 1 and n 6∈ Prea
g(suc

g
i (n)).

Recall that this condition produces a fringe node for each edge from a retained node that
closes a cycle. Let us have a look at the term graph g depicted in Figure 11. The rigid

60 PATRICK BAHR

truncation g‡2 of g is shown in Figure 7a. If the abovementioned alternative condition for
fringe nodes would not be present, then the set Ng

=2 would be empty (and, thus, g‡2 =
g). Then, however, the rigid ⊥-homomorphism φ illustrated in Figure 11 would violate
Lemma B.3. Since the node m is cut off from h in the truncation h‡2, there is a fringe
node n0 in h‡2. On the other hand, there would be no fringe node n0 in g‡2 if not for the
alternative condition above.

Lemma 6.10 (≤R
⊥ and rigid truncation). Given g, h ∈ G∞(Σ⊥) and d < ω with g ≤R

⊥ h
and ⊥-depth(g) ≥ d, we have that g‡d ∼= h‡d.

Proof of Lemma 6.10. For d = 0, this is trivial. So assume d > 0. Since g ≤R
⊥ h, there is a

rigid ⊥-homomorphism φ : g →⊥ h. Define the function ψ as follows:

ψ : Ng‡d → Nh‡d

Ng
<d ∋ n 7→ φ(n)

Ng
=d ∋ ni 7→ φ(n)i

At first we have to argue that ψ is well-defined. For this purpose, we first need that
φ(Ng

<d) ⊆ Ng‡d. Lemma B.2 confirms this. Secondly, we need that ni ∈ Ng
=d implies

φ(n)i ∈ Ng‡d. This is guaranteed by Lemma B.3.
Next we show that ψ is a homomorphism from g‡d to h‡d. The root condition is

inherited from φ as rg‡d ∈ Ng
<d. Note that, according to Lemma B.1, we have labg(n) ∈ Σ

for all n ∈ Ng
<d. Hence, φ is homomorphic in Ng

<d which means that the labelling condition

for nodes in Ng
<d is also inherited from φ. For nodes ni ∈ Ng

=d, we have labg‡d(ni) = ⊥.

Since, by definition, ψ(ni) ∈ Nh
=d, we can conclude labh‡d(ψ(ni)) = ⊥.

The successor condition is trivially satisfied by nodes in Ng
=d as they do not have any

successors. Let n ∈ Ng
<d and 0 ≤ i < arg‡d(n). We distinguish two cases: At first assume

that ni 6∈ Ng
=d. Hence, suc

g‡d
i (n) = suc

g
i (n) ∈ Ng

<d. Since, by Lemma B.3, also φ(n)i 6∈ Nh
=d,

we additionally have suc
h‡d
i (φ(n)) = such

i (φ(n)). Hence, using the successor condition for
φ, we can reason as follows:

ψ(suc
g‡d
i (n)) = ψ(suc

g
i (n)) = φ(suc

g
i (n)) = such

i (φ(n)) = suc
h‡d
i (φ(n)) = suc

h‡d
i (ψ(n))

If, on the other hand, ni ∈ Ng
=d, then suc

g‡d
i (n) = ni. Moreover, since then φ(n)i ∈ Nh

=d by

Lemma B.3, we have suc
h‡d
i (φ(n)) = φ(n)i, too. Hence, we can reason as follows:

ψ(suc
g‡d
i (n)) = ψ(ni) = φ(n)i = suc

h‡d
i (φ(n)) = suc

h‡d
i (ψ(n))

This shows that ψ is a homomorphism. Note that, according to Lemma 5.6, φ is injective
in Ng

<d. Then also ψ is injective in Ng
<d. For the same reason, ψ is also injective in Ng

=d.

Moreover, we have ψ(Ng
<d) ⊆ Nh

<d and ψ(Ng
=d) ⊆ Nh

=d, i.e. ψ(Ng
<d) ∩ ψ(Ng

=d) = ∅. Hence,
ψ is injective which implies, by Lemma 4.12, that ψ is an isomorphism from g‡d to h‡d.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Motivation
	1.2. Contributions & Related Work
	1.3. Overview

	2. Preliminaries
	2.1. Sequences
	2.2. Metric Spaces
	2.3. Partial Orders
	2.4. Terms
	2.5. Term Rewriting Systems

	3. Infinitary Term Rewriting
	4. Graphs & Term Graphs
	4.1. Homomorphisms
	4.2. Isomorphisms & Isomorphism Classes

	5. A Rigid Partial Order on Term Graphs
	5.1. Partial Orders on Term Graphs
	5.2. The Rigid Partial Order

	6. A Rigid Metric on Term Graphs
	6.1. Truncating Term Graphs
	6.2. The Effect of Truncation
	6.3. Deriving a Metric on Term Graphs

	7. Metric vs. Partial Order Convergence
	8. Infinitary Term Graph Rewriting
	8.1. Term Graph Rewriting Systems
	8.2. Convergence of Transfinite Reductions

	9. Term Graph Rewriting vs. Term Rewriting
	9.1. Soundness & Completeness of Infinitary Term Graph Rewriting
	9.2. Preservation of Convergence under Unravelling
	9.3. Finite Representations of Transfinite Term Reductions

	10. Conclusions & Future Work
	Acknowledgement
	References
	Appendix A. Proof of Lemma 5.14
	Appendix B. Proof of Lemma 6.10

