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Abstract. We extend first-order logic with counting by a new operator that allows it to
formalise a limited form of recursion which can be evaluated in logarithmic space. The
resulting logic LREC has a data complexity in LOGSPACE, and it defines LOGSPACE-
complete problems like deterministic reachability and Boolean formula evaluation. We
prove that LREC is strictly more expressive than deterministic transitive closure logic with
counting and incomparable in expressive power with symmetric transitive closure logic
STC and transitive closure logic (with or without counting). LREC is strictly contained in
fixed-point logic with counting FP+C. We also study an extension LREC= of LREC that
has nicer closure properties and is more expressive than both LREC and STC, but is still
contained in FP+C and has a data complexity in LOGSPACE.

Our main results are that LREC captures LOGSPACE on the class of directed trees and
that LREC= captures LOGSPACE on the class of interval graphs.

1. Introduction

Descriptive complexity theory gives logical characterisations for most of the standard com-
plexity classes. For example, Fagin’s Theorem [7] states that a property of finite structures
is decidable in NP if and only if it is definable in existential second-order logic Σ1

1. More
concisely, we say that Σ1

1 captures NP. Similarly, Immerman [13] and Vardi [26] proved that
fixed-point logic FP captures PTIME,1 and Immerman [15] proved that deterministic tran-
sitive closure logic DTC captures LOGSPACE. However, these and all other known logical
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characterisations of PTIME and LOGSPACE and all other complexity classes below NP have
a serious drawback — they only hold on ordered structures. (An ordered structure is a
structure that has a distinguished binary relation which is a linear order of the elements of
the structure.) The question of whether there are logical characterisations of these complex-
ity classes on arbitrary, not necessarily ordered structures, is viewed as the most important
open problem in descriptive complexity theory. For the class PTIME this problem goes back
to Chandra and Harel’s fundamental article [4] on query languages for relational databases.

For PTIME, at least partial positive results are known. The strongest of these say that
fixed-point logic with counting FP+C captures PTIME on all classes of graphs with excluded
minors [11] and on the class of interval graphs [19]. It is well-known that fixed-point logic
FP (without counting) is too weak to capture PTIME on any natural class of structures that
are not ordered. The idea that the extension FP+C by counting operators might remedy the
weakness of FP goes back to Immerman [14]. Together with Lander he proved that FP+C

captures PTIME on the class of trees [17]. Later, Cai, Fürer, and Immerman [3] proved that
FP+C does not capture PTIME on all finite structures.

Much less is known for LOGSPACE. In view of the results described so far, an obvious
idea is to try to capture LOGSPACE with the extension DTC+C of deterministic transitive
closure logic DTC by counting operators. However, Etessami and Immerman [6] proved
that (directed) tree isomorphism is not definable in DTC+C, not even in the stronger tran-
sitive closure logic with counting TC+C. Since Lindell [23] proved that tree isomorphism is
decidable in LOGSPACE, this shows that DTC+C does not capture LOGSPACE.

We introduce a new logic LREC and prove that it captures LOGSPACE on directed trees.
An extension LREC= captures LOGSPACE on the class of interval graphs (and on the class
of undirected trees). The logic LREC is an extension of first-order logic with counting by
a “limited recursion operator”. The logic is more complicated than the transitive closure
and fixed-point logics commonly studied in descriptive complexity, and it may look rather
artificial at first sight. To explain the motivation for this logic, recall that fixed-point logics
may be viewed as extensions of first-order logic by fixed-point operators that allow it to
formalise recursive definitions in the logics. LREC is based on an analysis of the amount
of recursion allowed in logarithmic space computations. The idea of the limited recursion
operator is to control the depth of the recursion by a “resource term”, thereby making sure
that we can evaluate the recursive definition in logarithmic space. Another way to arrive
at the logic is based on an analysis of the classes of Boolean circuits that can be evaluated
in LOGSPACE. We will take this route when we introduce the logic in Section 3.

LREC is easily seen to be (semantically) contained in FP+C. We show that LREC con-
tains DTC+C, and as LREC captures LOGSPACE on directed trees, this containment is strict.
Moreover, LREC is not contained in TC+C. Then we prove that undirected graph reachabil-
ity is not definable in LREC. Hence LREC does not contain transitive closure logic TC, not
even in its symmetric variant STC, and therefore LREC is strictly contained in FP+C.

It can be argued that our proof of the inability of LREC to express graph reachabil-
ity reveals a weakness in our definition of the logic rather than a weakness of the limited
recursion operator underlying the logic: LREC is not closed under (first-order) logical reduc-
tions. To remedy this weakness, we introduce an extension LREC= of LREC. It turns out
that undirected graph reachability is definable in LREC= (this is a convenient side effect of
the definition and not a deep result). Thus LREC= strictly contains symmetric transitive
closure logic with counting. We prove that LREC= captures LOGSPACE on the class of
interval graphs. To complete the picture, we prove that plain LREC, even if extended by a
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symmetric transitive closure operator, does not capture LOGSPACE on the class of interval
graphs.

The paper is organised as follows: After giving the necessary preliminaries in Section 2,
in Section 3 we introduce the logic LREC and prove that its data complexity is in LOGSPACE.
Then in Section 4, we prove that directed tree isomorphism and canonisation are definable
in LREC. As a consequence, LREC captures LOGSPACE on directed trees. In Section 5, we
study the expressive power of LREC and prove that undirected graph reachability is not
definable in LREC. The extension LREC= is introduced in Section 6. Finally, our results
on interval graphs are presented in Section 7. We close with a few concluding remarks and
open problems.

2. Basic Definitions

N denotes the set of all non-negative integers. For all m,n ∈ N, we let [m,n] := {p ∈ N |
m ≤ p ≤ n} and [n] := [1, n]. Mappings f : A → B are extended to tuples ā = (a1, . . . , ak)
over A via f(ā) := (f(a1), . . . , f(ak)). Given a tuple ā = (a1, . . . , ak), let ã := {a1, . . . , ak}.
If ∼ is an equivalence relation on a set A, we denote by a/∼ the equivalence class of an
element a with respect to ∼, and by A/∼ the quotient of A with respect to ∼.

A vocabulary is a finite set τ of relation symbols, where each R ∈ τ has a fixed arity
ar(R). A τ -structure A consists of a non-empty finite set V (A), its universe, and for each

R ∈ τ a relation R(A) ⊆ V (A)ar(R). For logics L,L′ we write L ≤ L
′ if L is semantically

contained in L
′, and L < L

′ if this containment is strict.
All logics considered in this paper are extensions of first-order logic with counting

(FO+C); see, e.g., [5, 10, 16, 22, 15] for a detailed discussion of FO+C and its extensions.
FO+C extends first-order logic by a counting operator that allows for counting the cardi-
nality of FO+C-definable relations. It lives in a two-sorted context, where structures A
are equipped with a number sort N(A) := [0, |V (A)|]. FO+C-variables are either structure
variables that range over the universe of a structure, or number variables that range over
the number sort. For each variable u, let Au := V (A) if u is a structure variable, and
Au := N(A) if u is a number variable. Tuples (u1, . . . , uk) and (v1, . . . , vℓ) of variables are
compatible if k = ℓ, and for every i ∈ [k] the variables ui and vi have the same type. Let
A(u1,...,uk) := Au1 × · · · ×Auk . An assignment in A is a mapping α from the set of variables
to V (A) ∪N(A), where for each variable u we have α(u) ∈ Au. For tuples ū = (u1, . . . , uk)
of variables and ā = (a1, . . . , ak) ∈ Aū, the assignment α[ā/ū] maps ui to ai for each i ∈ [k],
and each variable v 6∈ ũ to α(v).

FO+C is obtained by extending first-order logic with the following formula formation
rules: p ≤ q is a formula for all number variables p, q; and #ū ψ = p̄ is a formula for all
tuples ū of variables, all tuples p̄ of number variables, and all formulae ψ. Free variables
are defined in the obvious way, with free(#ū ψ = p̄) := (free(ψ)\ ũ)∪ p̃. Formulae #ū ψ = p̄
hold in a structure A under an assignment α in A if |{ā ∈ Aū | (A,α[ā/ū]) |= ψ}| = 〈α(p̄)〉A ,

where for tuples n̄ = (n1, . . . , nk) ∈ N(A)k we let 〈n̄〉A be the number

〈n̄〉A :=
k
∑

i=1

ni · (|V (A)| + 1)i−1.

If A is understood from the context, we write 〈n̄〉 instead of 〈n̄〉A.
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We write ϕ(u1, . . . , uk) to denote a formula ϕ with free(ϕ) ⊆ {u1, . . . , uk}. Given a
formula ϕ(u1, . . . , uk), a structure A and a1, . . . , ak ∈ A(u1,...,uk), we write A |= ϕ[a1, . . . , ak]
if ϕ holds in A with ui assigned to the element ai, for each i ∈ [k]. We use similar notation
for substitution: For a tuple (v1, . . . , vk) of variables that is compatible with (u1, . . . , uk), we
let ϕ(v1, . . . , vk) be the result of substituting vi for ui for every i ∈ [k]. We write ϕ[A,α; ū]
for the set of all tuples ā ∈ Aū with (A,α[ā/ū]) |= ϕ.

In many places throughout this paper we refer to various transitive closure and fixed-
point logics (all mentioned in the introduction). Our results and remarks about the relation
between these logics and our new logics LREC and LREC= are relevant for a reader familiar
with descriptive complexity theory to put our results in context, but they are not essential
to follow the technical core of this paper. Therefore, we omit the definitions and refer the
reader to the textbooks [5, 10, 16, 22] and the paper [15].

3. The Logic LREC

In this section, we introduce LREC as a first step towards the logic LREC=, to be intro-
duced in Section 6. LREC is already expressive enough to capture LOGSPACE on directed
trees, but still lacks several important properties. For example, it is unable to capture
LOGSPACE on undirected trees and interval graphs (cf. Remark 7.15), and is not closed
under first-order reductions (Section 6). On the other hand, although LREC= could have
been introduced without the detour via LREC, its definition is much easier to grasp by
developing an understanding of LREC first.

Let us start our development of LREC by looking at how certain kinds of Boolean
circuits can be evaluated in LOGSPACE.

∧

∨

1 0

1 ¬

∧

1 0 1 1

The figure on the right shows a Boolean formula, i.e., a
Boolean circuit whose underlying graph is a tree. It is easy to
evaluate such circuits in LOGSPACE: Start at the output node,
determine the value of the first child recursively, then determine
the value of the second child, and so on. We only have to store
the current node and its value (if it has been determined al-
ready), since the parent node and the next child of the parent
(if any) are uniquely determined by the current node. It is known
that Boolean formula evaluation is complete for LOGSPACE un-
der NC

1-reductions [1].2 In contrast, Boolean circuit evaluation is PTIME-complete.

≥ 2

≥ 1

1 0

1 ¬

≥ 2

1 0 1 1

Let us now turn to formulae with threshold gates, which,
in addition to Boolean gates, may contain gates of the form
“≥ i” for a number i; such a gate outputs 1 if, and only if, at
least i input gates are set to 1. An example is shown on the left.
To evaluate such formulae in LOGSPACE, we again start at the
root and evaluate the values of the children recursively. For
each node we count how many 1-values we have seen already.
To this end, when evaluating the values of the children of a
node v, we begin with the child with the largest subtree and
proceed to children with smaller subtrees. Note that the ith

2Boolean formula evaluation is only complete for LOGSPACE if input formulae are represented as graphs
(e.g., by the list of all edges plus gate types). It was however shown in [2] that the problem is complete for
NC

1 under AC
0-reductions if input formulae are given by their natural string encoding.
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child of v in this order has a subtree of size at most s/i, where s is the size of the subtree of
v. So, we can store a counter of up to log2 i bits for the number of 1-values seen so far. It is
easy to extend the algorithm to formulae with other arithmetic gates such as modulo-gates.

∧

∨

∨ ∧

≥ 2 ∧ ¬ ∨

¬ ∧ ≥ 2 ∧

0 1 1 1

As a more complicated example, let us consider the following
type of circuit. A circuit C has the m-path property if for all paths
P in C the product of the in-degrees of all but the first node on
P is at most m. For example, formulae have the 1-path property,
whereas the circuit on the right has the 16-path property. It is
not hard to see that for every k ≥ 1, circuits C having the |C|k-
path property can be evaluated in LOGSPACE. The idea here is
very similar to the one for evaluating circuits with threshold gates.
We start at the root node and evaluate the children recursively.
After “entering” a node v from one of its parent nodes, say p(v),
we check whether v evaluates to 1 by counting the number of
children that evaluate to one using the above-mentioned strategy,
and return with this information to p(v). In order to return to
p(v), we need to remember p(v), which we do by storing the index
of p(v) among all the in-neighbours of v. This requires only log2 d

−(v) bits of storage, where
d−(v) denotes the in-degree of v. The space for writing down the index of the predecessor
p(v) for each vertex v on the path from the root to the currently visited vertex is thus
bounded by the sum of the logarithms of the in-degrees of the vertices v on that path.
Since C has the |C|k-path property, this sum is bounded by log2|C|k, and thus logarithmic
in the size of C. Another way of evaluating the circuit is to first “unravel” the circuit to a
tree (i.e., a formula) which can be done in LOGSPACE due to the |C|k-path property, and
then to evaluate the formula as above.

The logic LREC allows it to recursively define sets X of tuples based on graphs G that
have the |G|k-path property for some k ≥ 1.

We turn to the formal definition of the logic LREC. To define the syntax, let τ be a
vocabulary. The set of all LREC[τ ]-formulae is obtained by extending the formula formation
rules of FO+C[τ ] by the following rule: If ū, v̄, w̄ are compatible tuples of variables, p̄, r̄ are
non-empty tuples of number variables, and ϕE and ϕC are LREC[τ ]-formulae, then

ϕ := [lrecū,v̄,p̄ ϕE, ϕC](w̄, r̄) (3.1)

is an LREC[τ ]-formula, and we let free(ϕ) := (free(ϕE) \ (ũ∪ ṽ)) ∪ (free(ϕC) \ (ũ∪ p̃)) ∪ w̃∪ r̃.
To define the semantics of LREC[τ ]-formulae, let A be a τ -structure and α an assignment

in A. The semantics of LREC[τ ]-formulae that are not of the form (3.1) is defined as usual.
Let ϕ be an LREC[τ ]-formula of the form (3.1). We define a set X ⊆ Aū ×N recursively

as follows. We consider E := ϕE[A,α; ū, v̄] as the edge relation of a directed graph G with
vertex set V := Aū. Moreover, for each vertex ā ∈ V we think of the set C(ā) := {〈n̄〉 |

n̄ ∈ ϕC[A,α[ā/ū]; p̄]} of integers as the label of ā. Let āE := {b̄ ∈ V | āb̄ ∈ E} and
Eb̄ := {ā ∈ V | āb̄ ∈ E}. Then, for all ā ∈ V and ℓ ∈ N,

(ā, ℓ) ∈ X :⇐⇒ ℓ > 0 and

∣

∣

∣

∣

∣

{

b̄ ∈ āE

∣

∣

∣

∣

(

b̄,

⌊

ℓ− 1

|Eb̄|

⌋)

∈ X

}∣

∣

∣

∣

∣

∈ C(ā).

Notice that X contains only elements (ā, ℓ) with ℓ > 0. Hence, the recursion eventually
stops at ℓ = 0. We call X the relation defined by ϕ in (A,α). Finally, we let

(A,α) |= ϕ :⇐⇒
(

α(w̄), 〈α(r̄)〉
)

∈ X.
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a {3}

b[11]

e f

c d {0}

g {4}

h i j k
[0, 11]

[0, 11]

[0, 11] [0, 11] [0, 11]

∅

∅

Figure 1: The graph G from Example 3.1. Each vertex is labelled with a subset of [0, 11].

Example 3.1 (Boolean circuit evaluation). Let σ := {E,P∧, P∨, P¬, P0, P1}. A Boolean
circuit C may be viewed as a σ-structure, where E(C) is the edge relation of C, and P⋆(C)
contains all ⋆-gates for ⋆ ∈ {∧,∨,¬, 0, 1}. Suppose C has the |C|-path-property. Then,

ϕ(z) := ∃r1, r2 ([lrecx,y,p ϕE, ϕC](z, (r1, r2)) ∧ ∀r(r ≤ r1 ∧ r ≤ r2))

with ϕE(x, y) := E(x, y) and

ϕC(x, p) := (P∧(x) ∧ #y E(x, y) = p) ∨ (P∨(x) ∧ “p > 0”) ∨ (P¬(x) ∧ “p = 0”) ∨ P1(x)

states that gate z evaluates to 1.
For example, let C be the first circuit at the beginning of this section, and let α be the

assignment in C mapping z to the root of C, r1 to 4, and r2 to 0. Figure 1 shows the graph
G = (V, E) with V := Cx, E := ϕE[C,α;x, y], and labels defined by ϕC. The vertices a–k of G

are precisely the vertices of C, and each vertex is labelled with a subset of N(C) = [0, 11].
Let X be the relation defined by [lrecx,y,p ϕE, ϕC](z, (r1, r2)) in (C,α). For a leaf v of G,
we have (v, 1) ∈ X (and, in fact, (v, ℓ) ∈ X for any ℓ > 0) if and only if 0 occurs in the
label of v. Hence, (v, 1) ∈ X for v ∈ {c, e, h, j, k}, but (f, 1) /∈ X and (i, 1) /∈ X. Since
(e, 1) ∈ X and 1 occurs in the label of b, we also have (b, 2) ∈ X; as for the leaves, we also
have (b, ℓ) ∈ X for any ℓ ≥ 2. However, note that (g, 2) /∈ X (and, in fact, (g, ℓ) /∈ X for all
ℓ > 0), because there are only three children v of g with (v, 1) ∈ X, but 3 does not appear
in the label of g. Consequently, (d, 3) ∈ X. Since we now have (b, 3) ∈ X, (c, 3) ∈ X, and
(d, 3) ∈ X, we have (a, 4) ∈ X, and therefore (C,α) |= ϕ.

While for the circuit C above, we could have replaced the tuple (r1, r2) in the formula ϕ
by a single number variable r, it is not hard to construct circuits C which have the |C|-path
property, but the single number variable r does not suffice. �

Example 3.2 (Deterministic transitive closure). Let G = (V,E) be a directed graph and
a, b ∈ V . Then there is a deterministic path from a to b in G if there exists a path v1, . . . , vn

from a = v1 to b = vn in G such that for every i ∈ [n− 1], vi+1 is the unique out-neighbour
of vi. Figure 2(a) shows a directed graph with a deterministic path from c to d.

Let ψ(ū, v̄) be an LREC[τ ]-formula, and let s̄, t̄ be tuples of variables such that ū, v̄, s̄, t̄
are pairwise compatible. We devise a formula ϕ(s̄, t̄) such that for any τ -structure A and
assignment α in A, we have (A,α) |= ϕ(s̄, t̄) iff in the graph G = (V,E) defined by V := Aū

and E := ψ[A,α; ū, v̄] there is a deterministic path from α(s̄) to α(t̄). Note that there is
such a path precisely if, in the graph obtained from G by reversing the edges, there is a path
vn, . . . , v1 from α(t̄) to α(s̄) such that for every i ∈ [n − 1], vi+1 is the unique in-neighbour
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e

c d

(a) A graph with a deterministic path from
c to d.

[6]

e[6]

c[0, 6]
[6] [6]

d [6]

(b) The associated labelled graph defined
by ϕE and ϕC.

Figure 2: A graph with a deterministic path, and the labelled graph defined by the formulae
ϕE and ϕC in Example 3.2 from that graph.

of vi. Therefore, we can choose ϕ like this:

ϕ := ∃r̄ [lrecv̄,ū,p̄ ϕE(v̄, ū), ϕC(v̄, p̄)](t̄, r̄), (3.2)

where p̄ and r̄ are |ū|-tuples of number variables, and

ϕE(v̄, ū) := ψ(ū, v̄) ∧ ∀v̄′(ψ(ū, v̄′) → v̄′ = v̄), ϕC(v̄, p̄) := v̄ = s̄ ∨ (v̄ 6= s̄ ∧ p̄ 6= 0̄).

Informally, ϕE(v̄, ū) removes all edges āb̄ of G, where ā has more than one out-neighbour,
and reverses the remaining edges. All that remains is to check whether there is a path from
α(t̄) to α(s̄) in the graph defined by ϕE. The node labelling formula ϕC is chosen in such
a way that the latter is true iff (α(t̄), ℓ), for an ℓ ≤ |V |, appears in the relation X defined
by ϕ in (A,α). If, for example, G is the graph in Figure 2(a), and if α(s̄) = c and α(t̄) = d,
then the labelled graph defined by ϕE and ϕC is as shown in Figure 2(b), and it is easy to
see that (d, 4) ∈ X, while, for example, (e, ℓ) /∈ X for all ℓ > 0. �

As from now, we use

[dtc ū,v̄ ψ](s̄, t̄) (3.3)

as an abbreviation for the LREC-formula in (3.2).

Remark 3.3. In the preceding two examples, the set X turned out to possess a certain
monotonicity property: If (ā, ℓ) ∈ X for some ℓ, then (ā, ℓ′) ∈ X for all ℓ′ ≥ ℓ. In general,
however, the relation X defined by an lrec operator does not possess this property. For
example, consider the formula ϕ := [lrecu,v,p E(u, v), “p = 0”](u, p). Now let G be the
graph consisting of a single edge (a, b), and let α be the assignment mapping u to a and p
to 2. Then the relation X defined by ϕ in (G,α) contains (a, 1), but not (a, 2).

The following theorem shows that the data complexity of LREC is in LOGSPACE.

Theorem 3.4. For every vocabulary τ , and every LREC[τ ]-formula ϕ there is a determinis-
tic logspace Turing machine that, given a τ -structure A and an assignment α in A, decides
whether (A,α) |= ϕ.

Proof. We proceed by induction on the structure of ϕ. The case where ϕ is not of the form
(3.1) is easy. Let ϕ be of the form (3.1), i.e., let

ϕ = [lrecū,v̄,p̄ ϕE, ϕC](w̄, r̄).

Let G = (V, E) be the graph with V = Aū and E = ϕE[A,α; ū, v̄], let C(ā) := {〈n̄〉 | n̄ ∈
ϕC[A,α[ū/ā]; p̄]} for all ā ∈ V, and let X ⊆ V ×N be the relation defined by ϕ in (A,α). We
construct a deterministic logspace Turing machine that decides whether (α(w̄), 〈α(r̄)〉) ∈ X.
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The machine is constructed in two steps. The first step consists of constructing a de-
terministic logspace Turing machine M1 that, given A and α as input, computes a labelled
directed tree T that is obtained basically from “unravelling” G starting at α(w̄) with “re-
source” 〈α(r̄)〉. The second step is to devise a deterministic logspace Turing machine M2

that takes T as input and decides whether its root, (α(w̄), 〈α(r̄)〉), belongs to X. The
composition of M1 and M2 finally yields the desired machine.

Let k := |r̄|. We define a labelled directed tree T whose set W of vertices consists of
all the sequences ((ā0, ℓ0), . . . , (ām, ℓm)) of pairs from V × N for some m ∈ N such that

(1) (ā0, ℓ0) = (α(w̄), 〈α(r̄)〉),
(2) āi+1 ∈ āiE for all i < m, and

(3) ℓi+1 =
⌊

ℓi−1
|Eāi+1|

⌋

for all i < m.

There is an edge from ((ā0, ℓ0), . . . , (ām, ℓm)) to ((ā′
0, ℓ

′
0), . . . , (ā′

m′ , ℓ′m′)) in T if m′ = m+ 1,
and (ā′

i, ℓ
′
i) = (āi, ℓi) for all i ≤ m. We label each vertex v = ((ā0, ℓ0), . . . , (ām, ℓm)) ∈ W

with the set C(v) := C(ām), and with the number fail(v) ∈ {0, 1} such that fail(v) = 1 iff
ℓm = 0. Note that fail(v) = 1 only if v is a leaf in T . Clearly, T is a labelled directed tree
rooted at (α(w̄), 〈α(r̄)〉).

Define Y ⊆ W such that

v ∈ Y ⇐⇒ |{w ∈ Y | w is a child of v}| ∈ C(v) and fail(v) = 0 (for every v ∈ W ).

Claim 1. For every v = ((ā0, ℓ0), . . . , (ām, ℓm)) ∈ W we have v ∈ Y if and only if (ām, ℓm) ∈
X. In particular, (α(w̄), 〈α(r̄)〉) ∈ X if and only if (α(w̄), 〈α(r̄)〉) ∈ Y .

Proof. The proof is by induction on the rank rv of v in T : if v is a leaf in T , then rv = 0;
and if v is not a leaf in T , then rv is one more than the maximum of the ranks of v’s children.
For every v = ((ā0, ℓ0), . . . , (ām, ℓm)) ∈ W , let λ(v) := (ām, ℓm).

Suppose that rv = 0, that is, v is a leaf in T . Consider (ā, ℓ) = λ(v). Then āE is the
empty set or ℓ = 0. First consider the case that ℓ = 0. In this case, (ā, ℓ) /∈ X by the
definition of X. But we also have fail(v) = 1, which implies v /∈ Y . Next consider the case
that āE is the empty set and ℓ > 0. In this case,

v ∈ Y ⇐⇒ 0 ∈ C(v) = C(ā) ⇐⇒ (ā, ℓ) ∈ X,

as desired.
Suppose now that rv = r+ 1, and that the claim is true for vertices w with rw ≤ r. In

particular, since v is not a leaf we must have fail(v) = 0. This implies ℓ > 0, and

v ∈ Y ⇐⇒ |{w ∈ Y | w is a child of v}| ∈ C(v)

⇐⇒ |{λ(w) ∈ X | w is a child of v}| ∈ C(v) by the induction hypothesis. (3.4)

Let W ′ be the set of all children w of v such that λ(w) ∈ X, and let f : W ′ → Aū be such
that for all w ∈ W ′, f(w) is the first component of λ(w). Then f is a bijection from W ′ to
the set of all tuples b̄ ∈ āE with

(

b̄,

⌊

ℓ− 1

|Eb̄|

⌋)

∈ X. (3.5)

As a consequence, the number of all tuples b̄ ∈ āE with (3.5) is precisely |W ′|. Hence, by
(3.4) and ℓ > 0,

v ∈ Y ⇐⇒ |W ′| ∈ C(v) = C(ā) ⇐⇒ λ(v) = (ā, ℓ) ∈ X. �
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By Claim 1, it suffices to compute T , and use T to decide whether its root, (α(w̄), 〈α(r̄)〉),
belongs to Y . This is precisely what the two machines M1 and M2 mentioned at the begin-
ning of this proof do. We now prove the existence of such machines.

Claim 2. There is a deterministic logspace Turing machine that takes A and α as input
and outputs T .

Proof. We first construct a deterministic logspace Turing machine M that takes A and α
as input and outputs the vertices of T (represented as sequences ((ā0, ℓ0), . . . , (ām, ℓm)) as
above). This machine makes use of a deterministic logspace Turing machine ME that takes
A, α and a pair (ā, b̄) ∈ V

2 as input and decides whether āb̄ ∈ E. Such a machine exists by
the induction hypothesis. Once M is constructed, we can easily compute the edges and the
labels of T , using a deterministic logspace Turing machine for computing the labels C(ā) for
each ā ∈ V as guaranteed by the induction hypothesis.

In what follows, we describe how M computes the vertices of T from A and α. We
basically do a depth-first search in G starting in α(w̄) with “resources” 〈α(r̄)〉. In each

step, we visit some vertex ā ∈ V. We also maintain a number ℓ < |N(A)|k, the length m
of the path P = (ā0, . . . , ām) on which ā was reached from α(w̄), and for each i ∈ [m] a
number ei ∈ [0, |Eāi| − 1] with the following property. For each b̄ ∈ Aū let b̄0, . . . , b̄p be

the elements of Eb̄ ordered lexicographically according to their representation in the input
string; let pre(b̄, i) := b̄i. Then the number ei will have the property that āi−1 = pre(āi, ei).
When we move from ā to some vertex b̄ ∈ āE we update ℓ to be

decr(ℓ, b̄) :=

⌊

ℓ− 1

|Eb̄|

⌋

.

This ensures that the space needed to store the numbers e1, . . . , em is logarithmic in |W |
(which we shall prove later). Finally, upon visiting ā for the first time, we write the sequence
(ā0, ℓ0), . . . , (ām, ℓm) to the output tape, where the ℓi are the values for ℓ maintained along
the path P .

More precisely, we proceed as follows. In the first step, we let ā := α(w̄), ℓ := 〈α(r̄)〉 and

m := 0. Let ā ∈ V, ℓ < |N(A)|k, m ∈ N and numbers e1, . . . , em be given. Furthermore, let
ā0, . . . , ām be such that ām = ā, and for each i ∈ [m], āi−1 = pre(āi, ei); and let ℓ0, . . . , ℓm
be such that ℓ0 = 〈α(r̄)〉 and for each i ∈ [m], ℓi = decr(ℓi−1, āi). Notice that each of the
āi and ℓi can be computed in logarithmic space given ā, m, e1, . . . , em and i as input. Let
� be some fixed ordering on āE. There are now two possible cases:

(1) m was increased in the last move, or there was no last move. This corresponds to a
first visit of the vertex ā with ℓ on the current path. Therefore we write the sequence
(ā0, ℓ0), . . . , (ām, ℓm) to the output tape. We then let j := 0 be the index of the child of
ā to be visited next.

(2) m was decreased in the last move. This corresponds to a return from a child b̄ of ā.
Therefore, we do not write anything to the output tape. Let b̄ be the vertex visited in
the last step, let j′ be its rank in āE with respect to � (i.e., the number of elements in
āE that precede b̄ with respect to �), and let j := j′ + 1.

If ℓ > 0 and j ≤ |āE|−1, we update ā to be the element of rank j in āE with respect to �; we
also update ℓ to be decr(ℓ, ā), increase m by one, and let em be such that ām = pre(ā, em).
Otherwise, if ℓ = 0 or j = |āE|, we do the following. If m = 0, we stop; and if m > 0 we
update ā to be ām−1, set ℓ to ℓm−1, and decrease m by one. It is not hard to see that this
procedure outputs all the vertices of T .
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Maintaining the vertex ā ∈ V and the vertex from the respective last step needs space
O(log |V (A)|). Notice that

ℓ0 = 〈α(r̄)〉 ≤ (|V (A)| + 1)k − 1.

Since ℓi = decr(ℓi−1, āi) for every i ∈ [m], this implies

m ≤ ℓ0 < (|V (A)| + 1)k and
m
∏

i=1

|Eāi| <
ℓ0
ℓm

< (|V (A)| + 1)k. (3.6)

In particular, m together with a bit indicating whether m was increased or decreased in the
last move can be maintained in space O(log |V (A)|). Furthermore, each of the numbers ei

needs space ηi := ⌈log2|Eāi|⌉. Let I be the set of all i ∈ [m] with |Eāi| ≥ 2. By (3.6) we
have |I| ≤ log2(|V (A)| + 1)k. Hence,

m
∑

i=1

ηi =
∑

i∈I

⌈log2|Eāi|⌉ ≤ |I| + log2

∏

i∈I

|Eāi|
(3.6)

≤ 2 log2(|V (A)| + 1)k.

In particular, we can store e1, . . . , em as a single number e with η := 2 log2(|V (A)|+1)k −1)
bits, reserving ηi bits in e for the number ei. To extract ei from e, we start by computing
ηm from ā = ām, let em be the number represented by the last ηm bits of e, and let ām−1 :=
pre(ām, em). We then compute ηm−1 from ām−1, let em−1 be the number corresponding to
bit ηm−1 to η − ηm of e, and let ām−2 := pre(ām−1, em−1). We continue this way until ei is
found. �

Claim 3. There is a deterministic logspace Turing machine that takes T as input and
decides whether the root (α(w̄), 〈α(r̄)〉) of T belongs to Y .

Proof. Let v0 := (α(w̄), 〈α(r̄)〉). On input T , a deterministic logspace Turing machine can
decide whether v0 ∈ Y as follows. The idea is to visit the vertices in a depth-first fashion,
starting in v0, and count, for each node that is visited, the number of children that belong
to Y . To implement this in logarithmic space, we proceed in steps as follows.

In each step, we are in a vertex v of T , which is v0 in the first step. With each vertex
vi on the path v0, v1, . . . , vm from v0 to v we associate 2 · ℓv(i) bits of memory for counters

t(i), c(i) from 0 to 2ℓv(i) − 1, where ℓv(i) will be specified below. The counter t(i) simply
counts the number of children of vi that have already been processed (excluding the vertex
in whose subtree we are currently in), while c(i) counts the number of children of vi that
have already been processed and belong to Y . We guarantee that the sum of the numbers
2 · ℓv(i) over i ∈ [0,m] is bounded by 6 · log2|W |. Moreover, it will be easy to determine
ℓv(i) from v and i in logspace; so we can store the counters in a bit string of length at most
6 · log2|W |, and identify the bits that belong to t(i) and c(i) from that bit string in logspace,
given v and i. By visiting the children of each vertex in decreasing order of the number of
vertices in the children’s subtrees, we ensure that there is always enough space to keep the
counters in memory until all children have been processed.

We now give a more detailed description of a single step. In the initial step, we set
v := v0 and t(0) := c(0) := 0. For the other steps, we need the following definitions:

• The size s(v) of a vertex v ∈ W is the number of vertices in the subtree of T rooted
at v. It is easy to compute this number in logarithmic space: all we need to do is to
initialise a counter, iterate over all vertices of T , and for each such vertex move upwards
and increment the counter by 1 if v is reached.
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• Let v ∈ W , and let w1, . . . , wp be the children of v such that s(w1) ≥ s(w2) ≥ · · · ≥ s(wp);
children of the same size are ordered in lexicographic order based on their representation
in the input string. For every j ∈ [p], let child(v, j) := wj . The vertex child(v, j) is easy
to compute in logarithmic space, given v and j.

• Let v ∈ W , let v0, v1, . . . , vm be the path from v0 to v, and let i ∈ [0,m]. Then

ℓv(i) :=

{

⌈log2 j⌉, if i < m and child(vi, j) = vi+1,

⌈log2|W |⌉, if i = m.

This number is easy to compute in logspace given v and i as input.

Suppose that v is the current vertex, and that v0, v1, . . . , vm is the path from v0 to v. If
t(m) is smaller than the number of children of v, then we set v := child(v, t(m) + 1) and
t(m + 1) := c(m + 1) := 0, and continue with the next step. Otherwise, we check whether
c(m) ∈ C(v) and fail(v) = 0. If this is the case, we say that v succeeds. In any case, whether
v succeeds or not, we do the following:

(1) If m = 0, then we accept T iff v succeeds.
(2) If m > 0, then we increase t(m− 1) by one, and if v succeeds we also increase c(m− 1)

by one. Afterwards, we let v be the parent of v, and continue with the next step. Note
that with the updated v, 2ℓv(m − 1) bits suffice to store t(m − 1) and c(m − 1).

It should be clear that this procedure correctly decides whether v0 ∈ Y .
Concerning the space for the counters, let j0, j1, . . . , jm−1 be such that child(vi, ji) =

vi+1 for every i < m. Then
∑

i<m

ℓv(i) =
∑

i<m
ji≥2

⌈log2 ji⌉ ≤
∑

i<m
ji≥2

(

1 + log2 ji
)

= |{i < m | ji ≥ 2}| + log2

∏

i<m

ji. (3.7)

Now observe that

s(vi+1) <
s(vi)

ji
for every i ∈ [0,m − 1]. (3.8)

To see this, consider wj := child(vi, j) for every j ≤ ji. By the choice of child(·, ·), we have
s(w1) ≥ · · · ≥ s(wji

). Hence, if s(wji
) = s(vi+1) ≥ s(vi)/ji, then s(w1)+ · · ·+s(wji

) ≥ s(vi),
which is impossible. As a consequence of (3.8), we have

|{i < m | ji ≥ 2}| < log2|W | and
∏

i<m

ji
(3.8)
<

∏

i<m

s(vi)

s(vi+1)
=

s(v0)

s(vm)
≤ |W |. (3.9)

Altogether, this yields

∑

i≤m

ℓv(i)
(3.7)

≤ |{i < m | ji ≥ 2}| + log2

∏

i<m

ji + log2|W | + 1
(3.9)
< 3 log2|W | + 1,

which implies
∑

i≤m ℓv(i) ≤ 3 log2|W |, and therefore
∑

i≤m 2ℓv(i) ≤ 6 log2|W |. �

Altogether, this concludes the proof of Theorem 3.4.
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Remark 3.5. It follows from Example 3.2 that DTC+C ≤ LREC. This containment is strict
as directed tree isomorphism is definable in LREC (we will show this in the next section),
but not in DTC+C. On the other hand, it is easy to see that the relation X defined by
an LREC-formula of the form (3.1) in an interpretation (A,α) can be defined in fixed point
logic with counting FP+C. Hence, LREC ≤ FP+C, and this containment is strict since we
show in Section 5 that undirected graph reachability is not LREC-definable.

4. Capturing Logspace on Directed Trees

In this section we show that LREC captures LOGSPACE on the class of all directed trees.
Our construction is based on Lindell’s LOGSPACE tree canonisation algorithm [23]. Note,
however, that Lindell’s algorithm makes essential use of a linear order on the tree’s vertices
that is given implicitly by the encoding of the tree. Here we do not have such a linear order,
so we cannot directly translate Lindell’s algorithm to an LREC-formula. We show that we
can circumvent using the linear order if we have a formula for directed tree isomorphism.
Hence, our first task is to construct such a formula.

4.1. Directed Tree Isomorphism. Let T be a directed tree. For every v ∈ V (T ) let Tv

be the subtree of T rooted at v, let size(v) := |V (Tv)| be the size of v, and let #s(v) be the
number of children of v of size s. We construct an LREC[{E}]-formula ϕ∼=(x, y) that is true
in a directed tree T with interpretations v,w ∈ V (T ) for x, y if and only if Tv

∼= Tw. We
assume that |V (T )| ≥ 4, but it is easy to adapt the construction to directed trees with less
than 4 vertices.

We implement the following recursive procedure to check whether Tv
∼= Tw:

(1) If size(v) 6= size(w) or if #s(v) 6= #s(w) for some s ∈ [0, |V (Tv)| − 1], then return
“Tv 6∼= Tw”.

(2) If for all children v̂ of v there is a child ŵ of w and a number k such that
(a) Tv̂

∼= Tŵ,
(b) there are exactly k children ẘ of w with Tv̂

∼= Tẘ, and
(c) there are exactly k children v̊ of v with Tv̊

∼= Tŵ,
then return “Tv

∼= Tw”.
(3) Return “Tv 6∼= Tw”.

Clearly, this procedure outputs “Tv
∼= Tw” if and only if Tv

∼= Tw.
To simplify the presentation we fix a directed tree T and an assignment α in T , but the

construction will be uniform in T and α.
We construct a directed graph G = (V, E) with labels C(v) ⊆ N for each v ∈ V as follows.

Let V := N(T )×V (T )4 ×N(T ). The first component of each vertex is its type; the meaning
of the other components will become clear soon. Although G will not be a tree, it is helpful
to think of it as a decision tree for deciding Tv

∼= Tw. For each pair (v,w) ∈ V (T )2, we
designate the vertex āv,w = (0, v, w, v, w, 0) to stand for “Tv

∼= Tw”. Let us call (v,w) easy if
v,w satisfy the condition in line 1 of the procedure (i.e., size(v) 6= size(w), or #s(v) 6= #s(w)
for some s ∈ [0, |V (Tv)| − 1]). Note that the set of all such easy pairs is LREC-definable.3 If

3Using the dtc-operator (3.3) from Example 3.2 we can construct an LREC[{E}]-formula defining the
descendant relation between vertices in a directed tree, and using this formula it is easy to determine the
size and the number of children of size s of a vertex.



L-RECURSION AND A NEW LOGIC FOR LOGARITHMIC SPACE 13

āv,w n = # children of v

āv,w,v̂ n > 0

āv,w,v̂,ŵ,k n = 1 if #size(v̂)(v) = 1; n = 3 otherwise

ā0
v,w,v̂,ŵ,kn = k ā1

v,w,v̂,ŵ,k n = kāv̂,ŵ

āv̂,ẘ āv̊,ŵ

Figure 3: Sketch of “decision tree” for deciding Tv
∼= Tw. Here, v̂, v̊ range over the children

of v; ŵ, ẘ range over the children of w; and k ∈ [#size(v̂)(v)]. Moreover, v̂, v̊, ŵ, ẘ

all have the same size. Labels indicate which integers n belong to the set C(ā)
labelling each vertex ā. If v̂ is the only child of v of size size(v̂), then āv̂,ŵ is the
only child of āv,w,v̂,ŵ,k.

(v,w) is easy, then āv,w has no outgoing edges and C(āv,w) = ∅. On the other hand, if (v,w)
is not easy, then G contains the following edges and labels (see Figure 3 for an illustration):

• The vertex āv,w has an outgoing edge to āv,w,v̂ := (1, v, w, v̂, w, 0), for each child v̂ of v.
Furthermore, C(āv,w) = {# of children of v}. This corresponds to “for all children v̂ of
v. . . ” in the above procedure’s step 2.

• The vertex āv,w,v̂ has an outgoing edge to āv,w,v̂,ŵ,k := (2, v, w, v̂, ŵ, k), for each child ŵ of
w with size(ŵ) = size(v̂) and each k ∈ [#size(v̂)(v)]. Furthermore, C(āv,w,v̂) = N(T ) \ {0}.
This branching corresponds to “. . . there is a child ŵ of w and a number k such that. . . ”.

• The vertex āv,w,v̂,ŵ,k has an outgoing edge to āv̂,ŵ. If v̂ is the only child of v of size size(v̂),
then this is the only outgoing edge, and we let C(āv,w,v̂,ŵ,k) = {1}. Otherwise, there are
additional outgoing edges to āi

v,w,v̂,ŵ,k = (3 + i, v, w, v̂, ŵ, k) for i ∈ {0, 1}, and we let

C(āv,w,v̂,ŵ,k) = {3}. This corresponds to conditions 2a–2c.
• The vertex ā0

v,w,v̂,ŵ,k has outgoing edges to āv̂,ẘ for each child ẘ of w of size size(v̂),

and ā1
v,w,v̂,ŵ,k has outgoing edges to āv̊,ŵ for each child v̊ of v of size size(ŵ) = size(v̂).

Furthermore, C(āi
v,w,v̂,ŵ,k) = {k}. The vertex āi

v,w,v̂,ŵ,k corresponds to condition 2b for
i = 0, and to 2c for i = 1.

From the above description it should be easy to construct LREC[{E}]-formulae ϕE(ū, ū′) and
ϕC(ū, p), where ū = (qt, x, y, x̂, ŷ, qk) and ū′ = (q′

t, x
′, y′, x̂′, ŷ′, q′

k), such that ϕE[T, α; ū, ū′] =
E, and {〈n〉 | n ∈ ϕC[T, α[ā/ū]; p]} = C(ā) for each ā ∈ V.

Let
ϕ∼=(x, y) := ∃r̄ [lrecū,ū′,p ϕE, ϕC]((0, x, y, x, y, 0), r̄),

where r̄ is a 5-tuple of number variables.4 Let X be the relation defined by ϕ∼= in (T, α).
Then:

Lemma 4.1. Let v,w ∈ V (T ).

(1) If (āv,w, ℓ) ∈ X for some ℓ ∈ N, then Tv
∼= Tw.

(2) If Tv
∼= Tw, then for all ℓ ≥ size(v)5 we have (āv,w, ℓ) ∈ X.

4We use 0 as a constant, but clearly we can modify ϕ∼= to a formula that does not use the constant 0.
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Proof. Ad (1): The proof is by induction on size(v). If size(v) = 1 and (āv,w, ℓ) ∈ X, then
(v,w) is not easy, which implies size(w) = 1 and hence Tv

∼= Tw.
Now let size(v) = s+1 for some s ≥ 1. If (āv,w, ℓ) ∈ X, then (v,w) is not easy, implying

size(w) = s+ 1 and #t(v) = #t(w) for all t ∈ N. It is then easy to see that for all children
v̂ of v in T there is a child ŵ of w in T and a number k ∈ [1,#size(v̂)v] such that

• (āv̂,ŵ, ℓ
′) ∈ X for some ℓ′ ∈ N,

• there are exactly k children ẘ of w such that (āv̂,ẘ, ℓ
′) ∈ X for some ℓ′ ∈ N, and

• there are exactly k children v̊ of v such that (āv̊,ŵ, ℓ
′) ∈ X for some ℓ′ ∈ N.

By the induction hypothesis, this corresponds to step 2 of the procedure given at the
beginning of Section 4.1, and therefore implies Tv

∼= Tw.

Ad (2): The proof is by induction on size(v). Suppose that size(v) = 1 and Tv
∼= Tw. Then

size(w) = 1 which implies that (v,w) is not easy. Furthermore, as v has no children in T ,
we know that āv,w has no children in G and C(āv,w) = {0}. Hence, (āv,w, ℓ) ∈ X for all
ℓ ≥ 1 = size(v)5.

Now suppose that size(v) = s + 1 for some s ≥ 1, and Tv
∼= Tw. First note that (v,w)

is not easy. Let ℓ ≥ (s+ 1)5. We show that (āv,w,v̂, ℓ− 1) ∈ X for all children v̂ of v, which
implies (āv,w, ℓ) ∈ X. Let v̂ be a child of v in T . Since Tv

∼= Tw, there is a child ŵ of w of
size s′ := size(v̂) and a number k ∈ [#s′(v)] such that

• Tv̂
∼= Tŵ,

• there are exactly k children ẘ of w of size s′ such that Tv̂
∼= Tẘ, and

• there are exactly k children v̊ of v of size s′ such that Tv̊
∼= Tŵ.

Pick such ŵ and k.
Let us deal with the case #s′(v) = 1 first. In this case, āv̂,ŵ is the only child of

āv,w,v̂,ŵ,k; moreover, āv,w,v̂,ŵ,k and āv̂,ŵ have exactly one incoming edge each. Since Tv̂
∼=

Tŵ and ℓ − 3 ≥ (s′)5, the induction hypothesis implies (āv̂,ŵ, ℓ − 3) ∈ X. Consequently
(āv,w,v̂, ℓ− 1) ∈ X.

In the following we assume #s′(v) ≥ 2. Let d := 3 · #s′(v)2. Note that all vertices in
Figure 3 except the type 0-vertices have exactly one incoming edge, and that the in-degree
d′ of a type 0-vertex āv′,w′ , where v′, w′ are children of v and w, respectively, of size s′ is at
most d, because it has incoming edges from

• vertices āv,w,v′,w′,k, where v and w are the (unique) parents of v′ and w′, respectively, and
k ∈ [#s′(v)];

• vertices ā0
v,w,v′,ŵ,k, where v,w, k are as above and ŵ is a child of w of size s′; and

• vertices ā1
v,w,v̂,w′,k, where v,w, k are as above and v̂ is a child of v of size s′.

Let ℓ′ := ⌊(ℓ− 4)/d⌋. Then

ℓ′ ≥
ℓ− d− 3

d
≥

s5

d
+
s4

d
− 2 ≥

#s′(v)5 · (s′)5

3 · #s′(v)2
+

#s′(v)4

3 · #s′(v)2
− 2 ≥ 2(s′)5 − 1 ≥ (s′)5,

where for the second inequality we use (s+1)5 ≥ s5+s4, for the third one we use #s′(v)·s′ ≤
s, and for the fourth one we use #s′(v) ≥ 2. Hence, by the induction hypothesis we have:

• (āv̂,ŵ, ⌊(ℓ − 3)/d′⌋) ∈ X (note that ⌊(ℓ− 3)/d′⌋ ≥ ℓ′).
• There are exactly k children ẘ of w of size s′ with (āv̂,ẘ, ⌊(ℓ − 4)/d′⌋) ∈ X (note that

⌊(ℓ− 4)/d′⌋ ≥ ℓ′), which implies (ā0
v,w,v̂,ŵ,k, ℓ− 3) ∈ X.

• There are exactly k children v̊ of v of size s′ with (āv̊,ŵ, ⌊(ℓ− 4)/d′⌋) ∈ X, which implies
that (ā1

v,w,v̂,ŵ,k, ℓ− 3) ∈ X.
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It follows immediately that (āv,w,v̂,ŵ,k, ℓ− 2) ∈ X, and therefore (āv,w,v̂, ℓ− 1) ∈ X.

Corollary 4.2. Let v,w ∈ V (T )2. Then, T |= ϕ∼=[v,w] if and only if Tv
∼= Tw.

Proof. T |= ϕ∼=[v,w] holds precisely when (āv,w, |N(T )||r̄|−1) ∈ X. Furthermore, |N(T )||r̄|−

1 ≥ |V (T )|5 ≥ size(v)5. Therefore, by the preceding lemma, (āv,w, |N(T )||r̄| − 1) ∈ X is
equivalent to Tv

∼= Tw, and the claim follows.

4.2. Defining an Order on Directed Trees. Lindell’s tree canonisation algorithm is
based on a logspace-computable linear order on isomorphism classes of directed trees. We
show that a slightly refined version of this order is LREC-definable.

Let T be a directed tree. For each v ∈ V (T ) let π(v) :=
(

size(v),#1(v), . . . ,#size(v)−1(v)
)

be the profile of v.5 Let � be the total preorder on V (T ),6 where v ≺ w whenever

(1) π(v) < π(w) lexicographically, or
(2) π(v) = π(w) and the following is true: Let v1, . . . , vk and w1, . . . , wk be the children of

v and w, respectively, ordered such that v1 � · · · � vk and w1 � · · · � wk. Then there
is an i ∈ [k] with vi ≺ wi, and for all j < i we have vj � wj and wj � vj .

Note that v � w and w � v imply Tv
∼= Tw. We show that � is LREC-definable.

To simplify the presentation, we again fix a directed tree T and an assignment α, and
we assume that |V (T )| ≥ 4.

We apply the lrec-operator to the following graph G = (V, E) with labels C(v) ⊆ N
for each v ∈ V. Let V := N(T ) × V (T )4 × N(T ). For each (v,w) ∈ V (T )2, the vertex
āv,w = (0, v, w, v, w, 0) represents “v ≺ w”. If π(v) < π(w), then āv,w has no outgoing edges
and C(āv,w) = {0}. If π(v) > π(w), then āv,w has no outgoing edges and C(āv,w) = ∅. Note
that the relation “π(v) ≤ π(w)” is LREC-definable.

Suppose that π(v) = π(w). For all t, u ∈ V (T ) let θu(t) be the number of children u′ of
u with Tu′ ∼= Tt. Call a child v̂ of v good if θv(v̂) > θw(v̂) and for all children v′ of v with
size(v′) < size(v̂) we have θv(v′) = θw(v′). Then it is not hard to see that v ≺ w precisely if
there is a good child v̂ of v, a child ŵ of w of size s := size(v̂) and a k ∈ [#s(v)] such that:

• v̂ ≺ ŵ;
• there are exactly k children ẘ of w of size s with ẘ ≺ v̂;
• there are exactly k children v̊ of v of size s with v̊ ≺ ŵ and Tv̊ 6∼= Tv̂;
• and for all k children w′ of w of size s with w′ ≺ v̂ we have θv(w′) = θw(w′).

The “decision tree” in Figure 4 checks precisely these conditions.
Using the formula ϕ∼= from the previous section it is now straightforward to construct

LREC[{E}]-formulae ϕE(ū, ū′) and ϕC(ū, p) that define the edge relation E of G and the sets
C(ā) for each ā ∈ V, where ū and ū′ are as in the definition of ϕ∼=. Let

ϕ≺(x, y) := ∃r̄ [lrecū,ū′,p ϕE, ϕC]((0, x, y, x, y, 0), r̄),

where r̄ is a 5-tuple of number variables. Let X be the relation defined by ϕ≺ in (T, α). We
then have:

Lemma 4.3. Let v,w ∈ V (T ).

(1) If (āv,w, ℓ) ∈ X for some ℓ ∈ N, then v ≺ w.

5Lindell’s order can be obtained by replacing π(v) with π′(v) :=
(

size(v), #children of v
)

.
6That is, � is a preorder on V (T ) such that for all v, w ∈ V (T ) we have v � w or w � v.
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āv,w n > 0

(1, v, w, v̂, ŵ, k) n = 1 if #size(v̂)(v) = 1; n = 4 otherwise

āv̂,ŵ (2, v, w, v̂, ŵ, k) n = k

āẘ,v̂

(3, v, w, v̂, ŵ, k) n = k

āv̊,ŵ

(4, v, w, v̂, ŵ, k) n = k

āw′,v̂

Figure 4: Gadget for deciding v ≺ w when π(v) = π(w). Here, v̂ ranges over good children
of v; v̊ ranges over children of v of size s := size(v) and Tv̊ 6∼= Tv̂; ŵ, ẘ range over
children of w of size s; w′ ranges over children of w of size s with θv(w′) = θw(w′);
and k ∈ [#s(v)]. The edges from (2, v, w, v̂, ŵ, k) to (t, . . . ) for t ∈ {2, 3, 4} exist
only if #s(v) > 1. Labels indicate which integers n belong to the set C(ā) labelling
each vertex ā.

(2) If v ≺ w, then for all ℓ ≥ size(v)5 we have (āv,w, ℓ) ∈ X.

Proof. The proof is similar to the proof of Lemma 4.1.

Ad (1): The proof is by induction on size(v). Suppose size(v) = 1. If (āv,w, ℓ) ∈ X, then
π(v) ≤ π(w). We cannot have π(v) = π(w), since otherwise 0 /∈ C(āv,w) (see Figure 4), so
that X would contain at least one tuple of the form

(

(1, v, w, v̂, ·, ·), ℓ − 1) with v̂ a child
of v. But such a tuple does not exist, since v has no children. It follows that π(v) < π(w)
which implies v ≺ w.

Now let size(v) = s + 1 for some s ≥ 1. If (āv,w, ℓ) ∈ X, then as above we have
π(v) ≤ π(w). If π(v) < π(w), we have v ≺ w. So, suppose that π(v) = π(w), that is,
size(w) = s+ 1 and #t(v) = #t(w) for all t ∈ N. It is then easy to see that there is a good
child v̂ of v, a child ŵ of w of size s := size(v̂), and a k ∈ [#s(v)] such that

• (āv̂,ŵ, ℓ
′) ∈ X for some ℓ′ ∈ N,

• there are exactly k children ẘ of w of size s such that (āẘ,v̂, ℓ
′) ∈ X for some ℓ′ ∈ N,

• there are exactly k children v̊ of v of size s with Tv̊ 6∼= Tv̂ such that (āv̊,ŵ, ℓ
′) ∈ X for some

ℓ′ ∈ N, and
• all k children w′ of w of size s with (āẘ,v̂, ℓ

′) ∈ X for some ℓ′ ∈ N satisfy θv(w′) = θw(w′).

By the induction hypothesis, this means that

• v̂ ≺ ŵ,
• there are exactly k children ẘ of w of size s such that ẘ ≺ v̂,
• there are exactly k children v̊ of v of size s with Tv̊ 6∼= Tv̂ such that v̊ ≺ ŵ, and
• all k children w′ of w of size s with w′ ≺ v̂ satisfy θv(w′) = θw(w′).

As pointed out in Section 4.2, this implies v ≺ w.

Ad (2): The proof is by induction on size(v). If size(v) = 1 and v ≺ w, then π(v) < π(w).
By the construction of G this immediately implies (āv,w, ℓ) ∈ X for all ℓ ≥ 1 = size(v)5.

Now suppose that size(v) = s+1 for some s ≥ 1, and v ≺ w. First note that π(v) ≤ π(w).
If π(v) < π(w), then (āv,w, ℓ) ∈ X for all ℓ ≥ 1, and in particular, for all ℓ ≥ size(v)5. So,
assume that π(v) = π(w).

Since v ≺ w, there is a good child v̂ of v, a child ŵ of w of size s′ := size(v̂) and a
k ∈ [#s′(v)] such that
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• v̂ ≺ ŵ,
• there are exactly k children ẘ of w of size s′ with ẘ ≺ v̂,
• there are exactly k children v̊ of v of size s′ with v̊ ≺ ŵ and Tv̊ 6∼= Tv̂, and
• for all k children w′ of w of size s′ with w′ ≺ v̂ we have θv(w′) = θw(w′).

Pick such v̂, ŵ and k.
If #s′(v) = 1, then āv̂,ŵ is the only child of (1, v, w, v̂, ŵ, k), and (1, v, w, v̂, ŵ, k) and

āv̂,ŵ each have exactly one incoming edge. Since v̂ ≺ ŵ and ℓ − 2 ≥ (s′)5, the induction
hypothesis implies (āv̂,ŵ, ℓ− 2) ∈ X, and consequently, (āv,w, ℓ) ∈ X.

In the following we assume #s′(v) ≥ 2. Let d := 4 #s′(v)2. Note that all vertices in
Figure 4 except the type 0-vertices have exactly one incoming edge. The type 0-vertices
āv′,w′ , where v′, w′ are children of v and w, respectively, of size s′, have incoming edges from

• vertices (1, v, w, v′ , w′, k), where k ∈ [#s′(v)];
• vertices (2, w, v, w′ , v′′, k), where k is as above and v′′ is a child of v of size s′;
• vertices (3, v, w, v′′ , w′, k), where k and v′′ is a good child of v; and
• vertices (4, w, v, w′ , v′′, k), where k and v′′ is a child of v of size s′.

Hence, the in-degree of āv′,w′ is at most d. For the type 0-vertices āw′,v′ , where v′, w′ are
children of v and w, respectively, of size s′, this is symmetric.

Let ℓ ≥ (s+ 1)5 and ℓ′ := ⌊(ℓ− 3)/d⌋. Then

ℓ′ ≥
ℓ− d− 2

d
≥

s5

d
+
s4

d
− 2 ≥

#s′(v)5 · (s′)5

4 · #s′(v)2
+

#s′(v)4

4 · #s′(v)2
− 2 ≥ 2(s′)5 − 1 ≥ (s′)5,

where for the second inequality we use (s+1)5 ≥ s5+s4, for the third one we use #s′(v)·s′ ≤
s, and for the fourth one we use #s′(v) ≥ 2 Hence, by the induction hypothesis we have:

• (āv̂,ŵ, ⌊(ℓ − 2)/d1⌋) ∈ X, where d1 ≤ d is the in-degree of āv̂,ŵ,
• there are exactly k children ẘ of w of size s′ with (āẘ,v̂, ⌊(ℓ− 3)/d2⌋) ∈ X, where d2 ≤ d

is the in-degree of the vertices āẘ,v̂,
• there are exactly k children v̊ of v of size s′ with Tv̊ 6∼= Tv̂ and (āv̊,ŵ, ⌊(ℓ − 3)/d3⌋) ∈ X,

where d3 ≤ d is the in-degree of the vertices āv̊,ŵ, and
• for all k children w′ of w of size s′ with (āw′,v̂, ⌊(ℓ− 3)/d2⌋) ∈ X we have θv(w′) = θw(w′).

It follows immediately that (āv,w, ℓ) ∈ X.

Corollary 4.4. Let v,w ∈ V (T ). Then, T |= ϕ≺[v,w] if and only if v ≺ w.

4.3. Canonising Directed Trees. We now construct an LREC-formula γ(p, q) such that
for every directed tree T we have T ∼= ([|V (T )|], γ[T ; p, q]). Since DTC captures LOGSPACE

on ordered structures [15] and a linear order is available on the number sort, we immediately
obtain:

Theorem 4.5. LREC captures LOGSPACE on the class of directed trees.

Since directed tree isomorphism is in LOGSPACE by Lindell’s tree canonisation algo-
rithm, but not TC+C-definable [6], we obtain:

Corollary 4.6. LREC 6≤ TC+C on the class of all directed trees.

We use l-recursion to define a set X ⊆ V (T ) × N(T )2 (for simplicity, we omit the
“resources” in the description) such that for every v ∈ V (T ) the set Xv := {(m,n) ∈
N(T )2 | (v,m, n) ∈ X} is the edge relation of an isomorphic copy ([|V (Tv)|],Xv) of Tv.
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Each vertex of T is numbered by its position in the preorder traversal sequence, e.g., the
root is numbered 1, its first child v1 is numbered 2, its second child v2 is numbered 2+size(v1),
and so on.

To apply the lrec operator, we define a graph G = (V, E) with labels C(v) ⊆ N for each
v ∈ V as follows. Let V := V (T ) × N(T )2, where (v,m, n) ∈ V stands for “(m,n) ∈ Xv?”.
If v is a leaf, then Xv should be empty, so for all m,n ∈ N(T ) we let (v,m, n) have
no outgoing edges and define C((v,m, n)) := ∅. Suppose that v is not a leaf and w is a
child of v. Let Dw be the set of all children w′ of v with w′ ≺ w, and let ew be the
number of children w′ of v with Tw

∼= Tw′ . For each i ∈ [0, ew − 1], the set Xv will
contain an edge from 1 to pw,i := 2 +

∑

w′∈Dw
size(w′) + i · size(w), and the edges in

{(pw,i − 1 +m, pw,i − 1 +n) | (m,n) ∈ Xw}. Hence we let (v, 1, pw,i) have no outgoing edges
and define C((v, 1, pw,i)) := {0}. Furthermore, for all m,n ∈ N(T ) and all i < ew, we let
ā := (v, pw,i − 1 +m, pw,i − 1 + n) have an edge to (w,m,n) and define C(ā) := {ew}.

It is now easy to construct LREC-formulae ϕE(x1, p1, p
′
1, x2, p2, p

′
2) and ϕC(x1, p1, p

′
1, q)

that define the graph G and the labels C(·). Let

γ(p1, p2) := ∃x∃r
(

“x is the root” ∧ [lrec(x1,p1,p′
1
),(x2,p2,p′

2
),q ϕE, ϕC]((x, p1, p2), r)

)

.

Noting that the in-degree of each vertex (v,m, n) is at most ev, it is straightforward to show
that γ defines an isomorphic copy of a directed tree:

Lemma 4.7. Let X be the relation defined by γ in T , let v ∈ V (T ) and let Xv := {(m,n) |
((v,m, n), ℓ) ∈ X for some ℓ ≥ size(v)}. Then Tv

∼= ([|V (Tv)|],Xv).

Proof. The proof is by induction on size(v). Clearly, the lemma is true if size(v) = 1.
Suppose that size(v) = s + 1. By the induction hypothesis, for each child w of v we have
Tw

∼= ([|V (Tw)|],Xw).
Let ℓ ≥ size(v). Since for all children w of v and all m,n ∈ N(T ), the in-degree

of (w,m,n) in G is at most ew and ew · size(w) < size(v) (which implies ⌊(ℓ − 1)/ew⌋ ≥
⌊(size(v) − 1)/ew⌋ ≥ size(w)),

{(pw,i − 1 +m, pw,i − 1 +m) | (m,n) ∈ Xw} ⊆ Xv for each child w of v and i < ew.

Furthermore, by construction, we have (1, pw,i) ∈ Xv for each child w of v and i < ew, and
there are no more edges. It is easy to see that Tv

∼= ([|V (Tv)|],Xv).

Remark 4.8. The results of this section extend to coloured directed trees with a linear order
on the colours. To be precise, consider a directed tree T and a total preorder E on V (T ).
Let � be as in Section 4.2. We define a refinement �′ of � by letting v ≺′ w whenever
v ⊳ w, or: v E w and w E v and v ≺ w. It should be obvious how to modify ϕ≺(x, y)
to an LREC[{E,E}]-formula ϕ′

≺(x, y) defining ≺′. Using this formula, we then obtain a
formula γ′(p, q) such that (V (T ), E(T ),E) ∼= ([|V (T )|], γ′[T ; p, q],E′), where m E′ n iff for
the vertices v,w that correspond to m,n we have v E w.

5. Inexpressibility of Reachability in Undirected Graphs

While LREC captures LOGSPACE on directed trees, its expressive power still lacks the ability
to define certain important problems on undirected graphs that can be defined easily in other
logics such as STC with LOGSPACE data complexity. As an example, we show in this section
that LREC cannot define reachability in undirected graphs:
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V 1
1

V 1
2

V 1
3

V 2
1

V 2
2

V 2
3

Figure 5: The graph G3. The gray areas highlight the different layers of G3.

Theorem 5.1. There is no LREC[{E}]-formula ϕ(x, y) such that for all undirected graphs
G and all v,w ∈ V (G), G |= ϕ[v,w] iff there is a path from v to w in G.

As an immediate corollary we obtain:

Corollary 5.2. STC 6≤ LREC

To prove Theorem 5.1, we show that reachability is not LREC-definable on a certain
class of directed graphs. This class, called C throughout this section, is defined in terms of
the following family of graphs Gn, for n ≥ 1. Here, each graph Gn consists of 2 ·n2 vertices,

which are partitioned into layers V 1
1 , . . . , V

1
n , V

2
1 , . . . , V

2
n with |V j

i | = n. Any two vertices in

consecutive layers V j
i and V j

i+1 are connected by an edge. That is, the set E(Gn) of edges

of Gn is {(v,w) ∈ V j
i × V j

i+1 | i ∈ [n − 1], j ∈ [2]}. For example, the graph G3 is shown in
Figure 5. Now, the class C is defined as:

C := {G | G is a graph such that G ∼= Gn for some n ≥ 1}.

The key property of the graphs in C that enables us to show that reachability on C is
not LREC-definable is that they are rich in a certain kind of automorphisms. Indeed, let v
and w be nodes occurring in the same layer of Gn. Then there is an automorphism of Gn

swapping v and w, and fixing the remaining vertices point-wise. To see why this could be
useful at all, consider an LREC-formula ϕ of the form [lrecū1,ū2,p̄ ϕE, ϕC](w̄, r̄), and suppose
we want to decide membership of a tuple (ā0, ℓ0) in the relation X defined by ϕ in (Gn, α),
for an assignment α. First, we would compute the graph G with vertex set Gū1

n and edge
set E defined by ϕE, and then we would recurse to decide which of the tuples (ā1, ℓ1), for
successor nodes ā1 of ā0 in G and ℓ1 = ⌊(ℓ0 − 1)/|Eā1|⌋, belong to X. To decide membership
of each of the tuples (ā1, ℓ1) in X, we again have to recurse to decide which of the tuples
(ā2, ℓ2), for successor nodes ā2 of ā1 in G and ℓ2 = ⌊(ℓ1 − 1)/|Eā2|⌋, belong to X, and so on.
Exploiting the above-mentioned automorphisms enables us to show that along each branch
(ā0, ℓ0), (ā1, ℓ1), (ā2, ℓ2), . . . of the “recursion tree”, we see only a constant number of tuples
(āi+1, ℓi+1), where āi+1 does not contain all the vertices of Gn that occur in āi, or vice versa.
Thus, we are left with finitely many sub-branches “in between” those tuples that contain
the same vertices of Gn. If all those sub-branches had constant length, then the whole
“recursion tree” would have constant depth, so that we could easily find an FO+C-formula
that is equivalent to ϕ on C (provided ϕE and ϕC are equivalent to FO+C-formulae). Since
reachability is not FO+C definable on C, this would immediately imply Theorem 5.1. In
general, the sub-branches do not have constant length (due to number variables that may
occur in ū1 and ū2), so that we move to a logic that is more expressive than FO+C, but
still lacks the ability to define reachability on C.

More precisely, we show that on C, every LREC[{E}]-formula is equivalent to a formula
in the infinitary counting logic L∗

∞ω(C), introduced in [21] (see also [22, Section 8.2]). The
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fact that L∗
∞ω(C)-formulae without free number variables are Gaifman-local [21] then yields

that reachability is not L∗
∞ω(C)-definable, and hence not LREC-definable, on C.

5.1. The Logic L∗
∞ω(C). Before delving into the details of translating LREC-formulae into

L∗
∞ω(C)-formulae, we give here a brief review of the logic L∗

∞ω(C). For a detailed account,
we refer the reader to [21], or [22, Section 8.2].

L∗
∞ω(C) on the one hand extends FO+C by allowing for infinite disjunctions and con-

junctions, and on the other hand imposes restrictions so as to make the resulting logic not
too powerful. While in the context of FO+C, we equipped structures A with a counting sort
N(A) = [0, |V (A)|], in the context of L∗

∞ω(C) we extend this counting sort to the set of all
natural numbers. Furthermore, L∗

∞ω(C)-formulae may use any natural number n ∈ N as a
constant, which is always interpreted as n.

L∗
∞ω(C) is a restriction of the extremely powerful logic L∞ω(C), which is defined as

follows. A term t is a structure variable, a number variable, or a non-negative integer; if t
is a structure variable, we call t structure term, and otherwise number term. The atomic
formulae of L∞ω(C)[τ ] have the form R(x1, . . . , xr), where R ∈ τ , r is the arity of R, and
x1, . . . , xr are structure variables; or t = u, where t and u are either structure terms or
number terms; or t ≤ u, where t and u are number terms. The set of all L∞ω(C)[τ ]-
formulae is the smallest set that contains all atomic formulae, and is closed under the
following formula formation rules:

(1) If ϕ ∈ L∞ω(C)[τ ], then ¬ϕ ∈ L∞ω(C)[τ ].
(2) If Φ ⊆ L∞ω(C)[τ ], then

∨

Φ and
∧

Φ belong to L∞ω(C)[τ ].
(3) If ϕ ∈ L∞ω(C)[τ ] and x is a variable, then ∃xϕ and ∀xϕ belong to L∞ω(C)[τ ].
(4) If ϕ ∈ L∞ω(C)[τ ], x is a structure variable, and n ∈ N, then ∃≥nxϕ ∈ L∞ω(C)[τ ].
(5) If ϕ ∈ L∞ω(C)[τ ], x̄ is a tuple of structure variables, and p̄ is a tuple of number terms,

then #x̄ ϕ = p̄ belongs to L∞ω(C)[τ ].

Note that, in contrast to FO+C, L∞ω(C) restricts us to tuples of structure variables in
counting formulae #x̄ ϕ = p̄. The semantics of L∞ω(C)[τ ]-formulae constructed as in 1, 3,
and 5 is as usual. The semantics of formulae of the form

∨

Φ or
∧

Φ is “at least one ϕ ∈ Φ
is satisfied” and “all ϕ ∈ Φ are satisfied”, respectively. Formulae of the form ∃≥nxϕ have
the meaning “there are at least n assignments to x for which ϕ is satisfied”.

L∗
∞ω(C)[τ ]-formulae are those L∞ω(C)[τ ]-formulae whose rank is bounded. Here, the

rank rk(ϕ) of a L∞ω(C)[τ ]-formula ϕ is defined as follows. For atomic formulae ϕ we have
rk(ϕ) = 0. Furthermore, rk(¬ϕ) = rk(ϕ), rk(

∨

Φ) = rk(
∧

Φ) = supϕ∈Φ rk(ϕ), rk(∃xϕ) =

rk(∀xϕ) = rk(∃≥nxϕ) = 1 + rk(ϕ) if x is a structure variable, rk(∃xϕ) = rk(∀xϕ) = rk(ϕ)
if x is a number variable, and rk(#x̄ ϕ = p̄) = |x̄| + rk(ϕ). Now, a L∞ω(C)[τ ]-formula ϕ
belongs to L∗

∞ω(C)[τ ] if there is a number n ∈ N with rk(ϕ) ≤ n.
As shown in [21], every L∗

∞ω(C) formula without free number variables is Gaifman
local. To make this precise, we need some more notation. Given a graph G and vertices
v,w ∈ V (G), let distG(v,w) denote the length of a shortest path from v to w in the
undirected graph obtained from G by adding edges (w′, v′) for every edge (v′, w′) ∈ E(G),
or ∞ if there is no such path. For all k ≥ 1, all tuples v̄ = (v1, . . . , vk) ∈ V (G)k and all
r ∈ N, let BG

r (v̄) := {w ∈ V (G) | ∃i ∈ [k] : distG(vi, w) ≤ r}, and define NG
r (v̄) to be

the subgraph of G induced by BG
r (v̄). The following theorem is stated in [21] for arbitrary

vocabularies:
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Theorem 5.3 (Restricted form of a theorem in [21]). For every L∗
∞ω(C)[{E}]-formula

ϕ(x̄) without free number variables, there is an r ∈ N such that for all graphs G and all

ā, b̄ ∈ V (G)|x̄| with (NG
r (ā), ā) ∼= (NG

r (b̄), b̄) we have: G |= ϕ[ā] ⇐⇒ G |= ϕ[b̄].

Using Theorem 5.3, it is straightforward to show that:

Corollary 5.4. There is no L∗
∞ω(C)[{E}]-formula ϕ(x, y) such that for all G ∈ C and all

v,w ∈ V (G) we have G |= ϕ[v,w] iff there is a path from v to w in G.

Proof. For a contradiction, suppose that ϕ(x, y) is an L∗
∞ω(C)[{E}]-formula such that for

all G ∈ C and all v,w ∈ V (G) we have G |= ϕ[v,w] iff there is a path from v to w in G.
Let r ∈ N be as guaranteed by Theorem 5.3. We can now pick vertices v,w1, w2 ∈ Gr+2

with N
Gr+2
r (v,w1) ∼= N

Gr+2
r (v,w2) such that w1 is reachable from v, but w2 is not reachable

from v. Since Gr+2 |= ϕ[v,w1], we then have Gr+2 |= ϕ[v,w2], a contradiction.

5.2. Translation of LREC-Formulae Into L∗
∞ω(C)-Formulae. We now describe the

translation of an LREC-formula ϕ into an L∗
∞ω(C)-formula ϕ̃ that is equivalent to ϕ on C.

The translation proceeds by induction on the structure of ϕ, where the only interesting case
is that of LREC-formulae ϕ of the form

[lrecū1,ū2,p̄ ϕE, ϕC](w̄, r̄).

To decide whether ϕ holds in a given graph Gn under an assignment α, ϕ̃ needs to check
whether the tuple (ā0, ℓ0), for ā0 := α(w̄) and ℓ0 := 〈α(r̄)〉, belongs to the relation X
defined by ϕ in (Gn, α). To this end, it looks at the graph G with vertex set Gū1

n and edge
set ϕE[Gn, α; ū1, ū2], or rather at its ℓ0-unravelling G

(ā0,ℓ0) at ā0:

Definition 5.5. The ℓ-unravelling of a graph G = (V, E) at a vertex v ∈ V is the tree G
(v,ℓ)

defined as follows:

(1) The nodes of G
(v,ℓ) are all finite sequences ((v0, ℓ0), . . . , (vn, ℓn)), where (v0, ℓ0) = (v, ℓ),

(v0, . . . , vn) is a path in G, and ℓi = ⌊(ℓi−1 − 1)/|Evi|⌋ for every i ∈ [n].
(2) There is an edge from a node ((v0, ℓ0), . . . , (vm, ℓm)) to a node ((v′

0, ℓ
′
0), . . . , (v′

n, ℓ
′
n))

whenever n = m+ 1, and (v′
i, ℓ

′
i) = (vi, ℓi) for every i ≤ m.

(3) Each node ((v0, ℓ0), . . . , (vm, ℓm)) is labelled with (vm, ℓm).

For each node of G
(ā0,ℓ0), ϕ̃ checks whether its label belongs to X. Clearly, this suffices to

decide whether (ā0, ℓ0) ∈ X.

Our construction is based on the following property of G
(ā0,ℓ0):

Lemma 5.6. Let ϕE(x̄, ȳ, z̄) be a formula, where x̄, ȳ are compatible, let n > |x̄| + |z̄| + 2,
let α be an assignment for ϕE in Gn, and let G = (V, E) be the graph with V := Gx̄

n and E :=

ϕE[Gn, α; x̄, ȳ]. Consider a node ((ā0, ℓ0), . . . , (ām, ℓm)) in G
(ā,ℓ), where ℓ ≤ |N(Gn)|r − 1.

Then, the size of

I := {i ∈ [m] | (ãi−1 ∪ α(z̃)) ∩ V (Gn) 6= (ãi ∪ α(z̃)) ∩ V (Gn)}

is bounded by a constant that depends only on ϕE and r.

Proof. We first show that the size of

K := {i ∈ I | ãi−1 ∩ V (Gn) * (ãi ∪ α(z̃)) ∩ V (Gn)}



22 M. GROHE, B. GRUßIEN, A. HERNICH, AND B. LAUBNER

is bounded by a constant that only depends on ϕE and r. To this end, consider an i ∈ K
and a b ∈ ãi−1 ∩ V (Gn) such that b /∈ ãi ∪α(z̃). Let us call an element b′ ∈ V (Gn) a sibling
of b if b and b′ belong to the same layer in Gn. There are at least

n− |ãi ∪ α(z̃)| − 1 ≥ n− (|x̄| + |z̄| + 1)

siblings of b in Gn that do not occur in ãi ∪ α(z̃) ∪ {b}. Each such sibling b′ gives rise to
an automorphism fb′ : V (Gn) → V (Gn) of Gn that fixes all the vertices in V (Gn) \ {b, b′}
point-wise, maps b to b′, and maps b′ to b. As a consequence, for each such sibling b′ we have
fb′(āi−1)āi ∈ E, where fb′(āi−1) is the tuple obtained from āi−1 by replacing each element
b′′ in āi−1 that belongs to V (Gn) with fb′(b′′). This implies

|Eāi| ≥ n− d1,

where d1 := |x̄| + |z̄| + 1 depends only on ϕE.

Observe that, by the definition of G
(ā,ℓ), we have ℓ0 = ℓ ≤ |N(Gn)|r − 1 ≤ (2n)2r and

ℓ0 ≥
∏m

i=1 |Eāi|. Hence,

(2n)2r ≥
m
∏

i=1

|Eāi| ≥
∏

i∈K

|Eāi| ≥
∏

i∈K

(n− d1) = (n− d1)|K|.

For n > d1 + 1 this implies |K| ≤ logn−d1
(2n)2r ≤ 2r(1 + logn−d1

n), which is bounded by a
constant d2 that only depends on ϕE and r.

To conclude the proof, consider a maximal set I ′ ⊆ I such that there are no i, i′ ∈ I ′

and k ∈ K with i ≤ k ≤ i′. We show that |I ′| is bounded by a constant d3 that depends
only on ϕE. This then implies the lemma as

|I| ≤ (|K| + 1) · (d3 + 1) ≤ (d2 + 1) · (d3 + 1).

Let imin := min I ′ and imax := max I ′, and notice that
(

ãimin−1 ∪ α(z̃)
)

∩ V (Gn) ⊆
(

ãimin
∪ α(z̃)

)

∩ V (Gn) ⊆ · · · ⊆
(

ãimax
∪ α(z̃)

)

∩ V (Gn).

Since (ãimax
∪ α(z̃)) ∩ V (Gn) contains at most d3 := |x̄| elements that do not belong to

(ãimin−1 ∪ α(z̃)) ∩ V (Gn), there are at most d3 indices i ∈ [imin, imax] with
(

ãi−1 ∪ α(z̃)
)

∩

V (Gn) (
(

ãi ∪ α(z̃)
)

∩ V (Gn). Hence, |I ′| ≤ d3, as desired.

We are now ready to prove that on C, every LREC[{E}]-formula is equivalent to a
L∗

∞ω(C)[{E}]-formula.

Lemma 5.7. For every LREC[{E}]-formula ϕ(x̄), there is a L∗
∞ω(C)[{E}]-formula ϕ̃(x̄)

such that for all G ∈ C and all ā ∈ Gx̄, we have: G |= ϕ[ā] ⇐⇒ G |= ϕ̃[ā].

Proof. As mentioned above, we proceed by induction on the structure of ϕ. The only
interesting case is that of an LREC[{E}]-formula of the form

ϕ = [lrecū1,ū2,p̄ ϕE, ϕC](w̄, r̄).

Let v̄E be an enumeration of all variables in free(ϕE) that are not listed in ū1ū2, and let v̄C

be an enumeration of all variables in free(ϕC) that are not listed in ū1p̄.

We aim to construct, for all integers n ≥ 1 and ℓ ≤ |N(Gn)||r̄| − 1, a L∗
∞ω(C)[{E}]-

formula ψn,ℓ(ū1, v̄E, v̄C) such that for all assignments α in Gn, and all ā ∈ Gū1
n ,

Gn |= ψn,ℓ[ā, α(v̄E), α(v̄C)] ⇐⇒ (ā, ℓ) ∈ X,
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where X is the relation defined by ϕ in (Gn, α). Furthermore, the rank of each ψn,ℓ will be
bounded by a constant that depends only on ϕ, so that

ϕ̃ :=
∨

n≥1
ℓ<(2n2+1)|r̄|

(

“the universe has size 2n2” ∧ “r̄ represents the number ℓ” ∧ ψn,ℓ(w̄, v̄E, v̄C)
)

is a L∗
∞ω(C)[{E}]-formula that is equivalent to ϕ on C.

Construction of ψn,ℓ(ū1, v̄E, v̄C): Fix n ≥ 1 and ℓ ≤ |N(Gn)||r̄| − 1. To simplify the presen-
tation, we also fix an assignment α in Gn, and the graph G = (V, E) with V := Gū1

n and
E := ϕE[Gn, α; ū1, ū2]; the formula ψn,ℓ(ū1, v̄E, v̄C) we are going to construct will however not
depend on α. For every ā ∈ V, let

tn,ℓ(ā) := max {t ∈ N | there is a node (ā0, ℓ0), . . . , (ām, ℓm) in G
(ā,ℓ) such that t equals

|{i ∈ [m] | (ãi−1 ∪ α(ṽE)) ∩ V (Gn) 6= (ãi ∪ α(ṽE)) ∩ V (Gn)}|}.

By Lemma 5.6 there is a constant t∗ that only depends on ϕ such that

tn,ℓ(ā) < t∗ for all ā ∈ V.

In what follows, we construct, for all t ≤ t∗, a L∗
∞ω(C)[{E}]-formula ψt

n,ℓ(ū1, v̄E, v̄C) such

that for all ā ∈ V with tn,ℓ(ā) < t, we have:

Gn |= ψt
n,ℓ[ā, α(v̄E), α(v̄C)] ⇐⇒ (ā, ℓ) ∈ X,

where X is the relation defined by ϕ in (Gn, α). Furthermore, the rank of ψt
n,ℓ will not

depend on n or ℓ. The desired formula ψn,ℓ can then be defined as:

ψn,ℓ := ψt∗

n,ℓ.

Construction of ψt
n,ℓ(ū1, v̄E, v̄C): We construct the formulae ψt

n,ℓ(ū1, v̄E, v̄C) by induction on

t. For t = 0, we define ψ0
n,ℓ(ū1, v̄E, v̄C) to be an arbitrary unsatisfiable formula. The idea for

the construction of ψt+1
n,ℓ (ū1, v̄E, v̄C) is as follows. Let ā ∈ V, and

Q(ā) := {(ām, ℓm) | ((ā0, ℓ0), . . . , (ām, ℓm)) ∈ V (G(ā,ℓ)), and for all i ∈ [m] we have:

(ãi−1 ∪ α(ṽE)) ∩ V (Gn) = (ãi ∪ α(ṽE)) ∩ V (Gn)}.

To check whether (ā, ℓ) ∈ X, we “guess” the set X̂ = Q(ā) ∩ X, and then simply check

whether (ā, ℓ) ∈ X̂. To guess X̂ , we can use an infinite disjunction over all subsets R of

Q(ā). Then we only need to verify for each R whether R indeed corresponds to X̂ . For
the latter, we count, for each pair (ā′, ℓ′) ∈ Q(ā), the number of pairs (ā′′, ℓ′′) such that
ā′ā′′ ∈ E, ℓ′′ = ⌊(ℓ′ − 1)/|Eā′′|⌋ and (ā′′, ℓ′′) ∈ X, and check that (ā′, ℓ′) ∈ R whenever this
number belongs to the label of ā′ defined by ϕC. How do we check whether (ā′′, ℓ′′) ∈ X?
If (ã′ ∪ α(ṽE)) ∩ V (Gn) = (ã′′ ∪ α(ṽE)) ∩ V (Gn), that is, if (ā′′, ℓ′′) ∈ Q(ā), then we simply
check whether (ā′′, ℓ′′) ∈ R. Otherwise, we use the formula ψt

n,ℓ′′ .

Let ϕ′
E and ϕ′

C be L∗
∞ω(C)[{E}]-formulae that are equivalent to ϕE and ϕC, respectively.

Such formulae exist by the induction hypothesis. Using ϕ′
E it is easy to construct, for each

ℓ′ ∈ [0, ℓ], an L∗
∞ω(C)[{E}]-formula χℓ′(ū1, ū

′
1, v̄E) such that for all ā, ā′ ∈ Gū1

n ,

Gn |= χℓ′ [ā, ā′, α(v̄E)] ⇐⇒ (ā′, ℓ′) ∈ Q(ā).

Here, ū′
1 is a tuple of variables that is compatible with, but disjoint from ū1.
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Let Q′ be the set of all pairs (ū′, ℓ′), where ℓ′ ∈ [0, ℓ], and ū′ is obtained from ū′
1 by

replacing each structure variable with a structure variable from ū1 and each number variable
with an integer from N(Gn) = [0, 2n2]. Intuitively, each R ⊆ Q′ corresponds to a guess of
Q(ā) ∩X as described above. For each R ⊆ Q′, let ψt+1

n,ℓ,R(ū1, v̄E, v̄C) be

∧

(ū′,ℓ′)∈R

(

χℓ′(ū1, ū
′, v̄E) → ∃p̄

(

ϕ′
C(ū′, p̄, v̄C) ∧ #ū′′(ϕ′

E(ū′, ū′′, v̄E) ∧ ϑR,ū′,ℓ′(ū′′)
)

= p̄
)

)

∧
∧

(ū′,ℓ′)∈Q′

(ū′,ℓ′)/∈R

(

χℓ′(ū1, ū
′, v̄E) → ∃p̄

(

¬ϕ′
C(ū′, p̄, v̄C) ∧ #ū′′(ϕ′

E(ū′, ū′′, v̄E) ∧ ϑR,ū′,ℓ′(ū′′)
)

= p̄
)

)

where

ϑR,ū′,ℓ′(ū′′) :=

∨

ℓ′′∈[0,ℓ′]

(

“ℓ′′ =

⌊

ℓ′ − 1

|Eū′′|

⌋

” ∧
(

(

χℓ′′(ū′, ū′′, v̄E) ∧ “(ū′′, ℓ′′) ∈ R”
)

∨ ψt
n,ℓ′′(ū′′, v̄E, v̄C)

)

)

and “(ū′′, ℓ′′) ∈ R” stands for
∨

(ū⋆,ℓ⋆)∈R, ℓ⋆=ℓ′′ ū⋆ = ū′′. Then it is not hard to see that the
formula

ψt+1
n,ℓ (ū1, v̄E, v̄C) :=

∨

R⊆Q′

(ū1,ℓ)∈R

ψt+1
n,ℓ,R(ū1, v̄E, v̄C)

is as desired. Clearly, the rank of ψt+1
n,ℓ does not depend on n or ℓ.

To conclude this section, note that Theorem 5.1 follows immediately from Lemma 5.7
and Corollary 5.4.

6. An Extension of LREC

The proof of the previous section’s Theorem 5.1 indicates that LREC is not closed under
logical reductions, not even under very simple first-order reductions.7 Indeed, it is easy to
see that there is a first-order reduction that maps a graph Gn, for n ≥ 3, as defined in
Section 5 to a disjoint union Ĝn of two directed paths on n vertices each, by identifying
vertices in the same layer. Reachability on the class of all graphs isomorphic to Ĝn for
an n ≥ 3 is easily seen to be LREC-definable. Hence, if LREC was closed under first-order
reductions, then reachability on the class of all graphs isomorphic to Gn for some n would
be LREC-definable, contradicting the previous section’s results.

In this section, we introduce an extension LREC= of LREC whose data complexity is
still in LOGSPACE, and thus captures LOGSPACE on directed trees, while being closed
under logical reductions. The idea is to admit a third formula ϕ= in the lrec-operator that
generates an equivalence relation on the vertices of the graph defined by ϕE.

Let τ be a vocabulary. The set of all LREC=[τ ]-formulae is obtained from LREC[τ ] by
replacing the rule for the lrec-operator from Section 3 as follows: If ū, v̄, w̄ are compatible

7We defer the definition of logical reductions and what it means to be closed under logical reductions to
Definition 6.4 and Lemma 6.6. For first-order reduction, see also [5].
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tuples of variables, p̄, r̄ are non-empty tuples of number variables, and ϕ=, ϕE and ϕC are
LREC=-formulae, then the following is an LREC=[τ ]-formula:

ϕ := [lrecū,v̄,p̄ ϕ=, ϕE, ϕC](w̄, r̄). (6.1)

We let free(ϕ) :=
(

free(ϕ=) \ (ũ ∪ ṽ)
)

∪
(

free(ϕE) \ (ũ ∪ ṽ)
)

∪
(

free(ϕC) \ (ũ ∪ p̃)
)

∪ w̃ ∪ r̃.
To define the semantics of LREC=[τ ]-formulae ϕ of the form (6.1), let A be a τ -structure

and α an assignment in A. Let V0 := Aū and E0 := ϕE[A,α; ū, v̄]. We define ∼ to be the
reflexive, symmetric, transitive closure of the binary relation ϕ=[A,α; ū, v̄] over V0. Now
consider the graph G = (V, E) with

V := V0/∼ and E := {(ā/∼, b̄/∼) ∈ V
2 | āb̄ ∈ E0}.

To every ā/∼ ∈ V we assign the set

C(ā/∼) := {〈n̄〉 | there is an ā′ ∈ ā/∼ with n̄ ∈ ϕC[A,α[ā′/ū]; p̄]}

of labels. Then the definition of X can be taken verbatim from Section 3. We let (A,α) |= ϕ
if and only if

(

α(w̄)/∼, 〈α(r̄)〉
)

∈ X. As for LREC, we have:

Theorem 6.1. For every vocabulary τ , and every LREC=[τ ]-formula ϕ there is a deter-
ministic logspace Turing machine that, given a τ -structure A and an assignment α in A,
decides whether (A,α) |= ϕ.

Sketch. The proof is a straightforward modification of the proof of Theorem 3.4. The only
difference is that, when we deal with LREC=-formulae of form (6.1), we use the vertex set
V, the edge set E, and the labels C(·) as defined above to compute the set X. It is easy to
compute these sets by first computing the relation ∼ from ϕ=[A,α; ū, v̄] using Reingold’s
logspace algorithm for undirected reachability [25]. Note that once ∼ has been obtained,
the equivalence class of every element ā ∈ Aū can be determined.

The following example shows that undirected graph reachability is definable in LREC=.
This does not involve an implementation of Reingold’s algorithm in our logic, but just
uses the observation that the computation of the equivalence relation ∼ boils down to the
computation of undirected reachability.

Example 6.2 (Undirected reachability). The following LREC=-formula defines undirected
graph reachability:

ϕ(s, t) := [lrecx,y,p ϕ=(x, y), ϕE(x, y), ϕC(x, p)](s, 1),

where ϕ=(x, y) := E(x, y), ϕE(x, y) := ¬x = x and ϕC(x, p) := x = t. To see this, let G
be an undirected graph and α an assignment in G. Define ∼, V, E, C and the set X as
above. Clearly, the set V consists of the connected components of G. Furthermore, the set
E is empty since ϕE is unsatisfiable. Therefore, for all v ∈ V (G) we have (v/∼, 1) ∈ X iff
0 ∈ C(v/∼). The latter is true precisely if α(t) ∈ v/∼, i.e., if v and α(t) are in the same
connected component of G. It follows that for all v,w ∈ V (G) we have G |= ϕ[v,w] if and
only if v and w are in the same connected component of G, that is, if there is a path from
v to w in G. �

Remark 6.3. It follows immediately from the previous example that STC+C ≤ LREC=.
Actually, the containment is strict, because LREC 6≤ STC+C by Corollary 4.6. Since in
STC+C (and actually in STC) it is possible to transform trees into directed trees, the
results from Section 4 imply that LREC= captures LOGSPACE on the class of all trees,
directed as well as undirected. Note also that LREC= ≤ FP+C.
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To conclude this section, we show that LREC= is closed under logical reductions. We
first introduce L-transductions (also known as L-interpretations [5]):

Definition 6.4 (Transduction). Let L be a logic, let τ1, τ2 be vocabularies and let ℓ ≥ 1.

(1) An ℓ-ary L[τ1, τ2]-transduction is a tuple

Θ =
(

θV (ū), θ≈(ū, v̄),
(

θR(ūR,1, . . . , ūR,ar(R))
)

R∈τ2

)

of L[τ1]-formulae, where ū, v̄ are compatible ℓ-tuples of variables and for every R ∈ τ2

and i ∈ [ar(R)], ūR,i is an ℓ-tuple of variables that is compatible to ū.
(2) Let A be a τ1-structure such that θV [A; ū] is non-empty. We define a τ2-structure Θ[A]

as follows. We let ≈ be the reflexive, symmetric, transitive closure of the binary relation
θ≈[A; ū, v̄], and call ≈ the equivalence relation generated by θ≈[A; ū, v̄]. Let

V (Θ[A]) := θV [A; ū]/≈,

and for each R ∈ τ2, let

R(Θ[A]) := {(ā1/≈, . . . , āar(R)/≈) |

ā1, . . . , āar(R) ∈ θV [A; ū], A |= θR[ā1, . . . , āar(R)]}.

So, informally, a L[τ1, τ2]-transduction defines a mapping from structures over the first
vocabulary, τ1, into structures over the second vocabulary, τ2, via L[τ1]-formulae.

Example 6.5. Consider the FO[{E}, {E}]-transduction Θ = (θV (x), θ≈(x, y), θE(x, y))
with θV (x) := x = x, θ≈(x, y) := ∀z

(

E(x, z) ↔ E(y, z)
)

and θE(x, y) := E(x, y). Re-
call the definition of the graphs Gn from Section 5. For n > 3, the equivalence relation ≈
generated by θ≈[Gn;x, y] is θ≈[Gn;x, y] itself. It relates any two vertices that occur in the
same layer of Gn. Hence, for n > 3, Θ[Gn] is the disjoint union of two paths of length n. �

The following lemma shows that LREC= is closed under LREC=-reductions. Precisely,
this means that:

Lemma 6.6. Let τ1, τ2 be vocabularies, let ℓ ≥ 1, let

Θ =
(

θV (ū), θ≈(ū, v̄),
(

θR(ūR,1, . . . , ūR,ar(R))
)

R∈τ2

)

be an ℓ-ary LREC=[τ1, τ2]-transduction, and let ϕ(x1, . . . , xκ, p1, . . . , pλ) be an LREC=[τ2]-
formula with x1, . . . , xκ structure variables and p1, . . . , pλ number variables.

Then there is an LREC=[τ1]-formula ϕ−Θ(ū1, . . . , ūκ, q̄1, . . . , q̄λ), where ū1, . . . , ūκ are
compatible with ū and q̄1, . . . , q̄λ are ℓ-tuples of number variables, such that for all τ1-
structures A where Θ[A] is defined, all ā1, . . . , āκ ∈ Aū and all n̄1, . . . , n̄λ ∈ N(A)ℓ,

A |= ϕ−Θ[ā1, . . . , āκ, n̄1, . . . , n̄λ] ⇐⇒ ā1/≈, . . . , āκ/≈ ∈ V (Θ[A]),

〈n̄1〉A , . . . , 〈n̄λ〉A ∈ N(Θ[A]), and

Θ[A] |= ϕ
[

ā1/≈, . . . , āκ/≈, 〈n̄1〉A , . . . , 〈n̄λ〉A

]

,

where ≈ is the equivalence relation as defined in Definition 6.4.

Proof. The proof is by induction on the structure of ϕ. Without loss of generality, we
assume that ϕ neither contains implication (→) nor biimplication (↔).

To simplify the presentation, we consider a fixed τ1-structure A where Θ[A] is defined
and let ≈ be the equivalence relation as defined in Definition 6.4. We also consider fixed
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ā1, . . . , āκ ∈ Aū and n̄1, . . . , n̄λ ∈ N(A)ℓ. The reader should consider A and these tuples to
be universally quantified in the statements where they occur.

From θ≈(ū, v̄), it is easy to construct an LREC=-formula θ′
≈(ū, v̄) such that θ′

≈[A; ū, v̄]
is the equivalence relation generated by θ≈[A; ū, v̄], that is, the reflexive, symmetric, and
transitive closure of θ≈(ū, v̄). Let χs(ū) := ∃v̄

(

θV (v̄) ∧ θ′
≈(ū, v̄)

)

. Then for all ā ∈ Aū,

A |= χs[ā] ⇐⇒ ā/≈ ∈ V (Θ[A]).

Using the construction from the proof of [20, Lemma 2.4.3], we can construct an LREC=-

formula δ#
V (q̄) such that for all n̄ ∈ N(A)ℓ we have A |= δ#

V [n̄] whenever 〈n̄〉A = |V (Θ[A])|.

Hence, for χn(q̄) := ∃q̄′
(

δ#
V (q̄′) ∧ “q̄ ≤ q̄′”

)

and for all n̄ ∈ N(A)ℓ,

A |= χn[n̄] ⇐⇒ 〈n̄〉A ∈ N(Θ[A]).

Finally, let

χ :=
∧

i∈[κ]

χs(ūi) ∧
∧

i∈[λ]

χn(q̄i)

Then,

A |= χ[ā1, . . . , āκ, n̄1, . . . , n̄λ] ⇐⇒

ā1/≈, . . . , āκ/≈ ∈ V (Θ[A]) and 〈n̄1〉A , . . . , 〈n̄λ〉A ∈ N(Θ[A]).

Given ϕ(x1, . . . , xκ, p1, . . . , pλ) we now construct ϕ−Θ(ū1, . . . , ūκ, q̄1, . . . , q̄λ) inductively
as follows:

(1) Suppose that ϕ = R(xi1
, . . . , xik

), where i1, . . . , ik ∈ [κ]. Let I := {i1, . . . , ik}. Then,

ϕ−Θ := χ ∧ (∃v̄i)i∈I

(

∧

i∈I

θ′
≈(ūi, v̄i) ∧

∧

i∈I

θV (v̄i) ∧ θR(v̄i1
, . . . , v̄ik

)

)

.

(2) If ϕ = xi = xj, where i, j ∈ [κ], then ϕ−Θ := χ ∧ θ′
≈(ūi, ūj).

(3) If ϕ = pi ⋆ pj, where ⋆ ∈ {=,≤} and i, j ∈ [λ], then, ϕ−Θ := χ ∧ “q̄i ⋆ q̄j”.

(4) If ϕ = ¬ψ, then ϕ−Θ := χ ∧ ¬ψ−Θ.

(5) If ϕ = ψ1 ⋆ ψ2, where ⋆ ∈ {∧,∨}, then ϕ−Θ := ψ−Θ
1 ⋆ ψ−Θ

2 .
(6) Suppose that ϕ = Quψ with Q ∈ {∀,∃} and u ∈ {x1, . . . , xκ, p1, . . . , pλ}. In case that

Q = ∀ and u = xi, we let ϕ−Θ := χ∧ ∀ūi

(

χs(ūi) → ψ−Θ
)

. The other cases can be dealt
with similarly.

(7) Suppose that ϕ = #(xi1
, . . . , xik

, pik+1
, . . . , pik+m

)ψ = (pj1
, . . . , pjk′ ). Based on the

construction from the proof of [20, Lemma 2.4.3], it is possible to construct an LREC=-
formula δ(r̄1, . . . , r̄k′) such that for all m̄1, . . . , m̄k′ ∈ N(A)ℓ,

A |= δ[m̄1, . . . , m̄k′ ]

⇐⇒
∣

∣

∣

{

(

āi1
/≈, . . . , āik

/≈,
〈

n̄ik+1

〉

A
, . . . ,

〈

n̄ik+m

〉

A

)

|

A |= ψ−Θ[ā1, . . . , āκ, n̄1, . . . , n̄λ]
}
∣

∣

∣ = 〈m̄1, . . . , m̄k′〉A ,

where

〈m̄1, . . . , m̄k′〉A :=
k′
∑

s=1

〈m̄s〉A · |N(Θ[A])|s−1.

We then let ϕ−Θ := χ ∧ δ(q̄j1
, . . . , q̄jk′ ).
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(8) Suppose that ϕ = [lrecū′,v̄′,p̄′ ϕ=, ϕE, ϕC](w̄′, r̄′). Then,

ϕ−Θ := χ ∧ ∃r̄
(

β(r̄′′, r̄) ∧ [lrecū′′,v̄′′,p̄′′ ϕ−Θ
= , ϕ−Θ

E , ϕ−Θ
C ](w̄′′, r̄)

)

,

where ū′′, v̄′′, w̄′′, p̄′′, r̄′′ are obtained from ū′, v̄′, w̄′, p̄′, r̄′ by replacing, for each i ∈ [κ],
the variable xi by ūi, and for each i ∈ [λ], the variable pi by q̄i; r̄ is a tuple of number
variables of length ℓ · |r̄′|; and β is defined as follows. For simplicity, assume that
r̄′ = (p1, . . . , pk). Hence, r̄′′ = (q̄1, . . . , q̄k). The formula β(r̄′′, r̄) has the property that
for all m̄ ∈ N(A)ℓ·k,

A |= β[n̄1, . . . , n̄k, m̄] ⇐⇒ 〈m̄〉A =
k
∑

s=1

〈n̄s〉A · |N(Θ[A])|s−1.

Note that, since |N(Θ[A])| ≤ |N(A)|ℓ, the tuple m̄ is long enough to hold the sum on
the right hand side. Constructing β as desired is a not too difficult exercise.

It is straightforward, though tedious, to verify that ϕ−Θ is as desired.

7. Capturing Logspace on Interval Graphs

With the added expressive power of LREC=, it is not only possible to capture LOGSPACE

on the class of all trees, but also on the class of all interval graphs, as we shall show in
this section. Basically, interval graphs are graphs whose vertices are closed intervals, and
whose edges join any two distinct intervals with a non-empty intersection. They form a
well-established and widely investigated class of graphs, and it was recently shown [18] (see
also [20]) that interval graph canonisation is in LOGSPACE.

To prove that LREC= captures LOGSPACE on interval graphs, we proceed as in the case
of directed trees. First, we describe an LREC=-definable canonisation procedure for interval
graphs, and then we use the fact that DTC (and hence LREC=) captures LOGSPACE on
ordered structures. Our canonisation procedure combines algorithmic techniques from [18]
with the logical definability framework in [19]. Parts of this section can be found in more
detail in [20].

7.1. Background on Interval Graphs. In this section, we define interval graphs and
state some basic properties. For a more detailed exposition, we refer the reader to [20].

Definition 7.1 (Interval graph, interval representation). Given a finite collection I of
closed intervals Ii = [ai, bi] ⊂ N, let GI = (V,E) be the graph with vertex set V = I,
joining two distinct intervals Ii, Ij ∈ V by an edge whenever Ii ∩ Ij 6= ∅. We call I an
interval representation of a graph G if G ∼= GI . A graph G is an interval graph if there is
an interval representation of G.

Figure 6 shows an interval graph G together with an interval representation of G.
An interval representation I of a graph G is called minimal if the set

⋃

I ⊂ N is of min-
imum size among all interval representations of G. Clearly, for any interval representation
I there exists a minimal interval representation Imin such that GI

∼= GImin
.

Recall that a clique of a graph G = (V,E) is a set C ⊆ V such that the subgraph of G
induced by C is complete. A maximal clique, or max clique, of G is a clique of G that is
not properly contained in another clique of G. We denote the set of all max cliques of G by
MG. Let I be a minimal interval representation of G and Iv denote the interval in I that



L-RECURSION AND A NEW LOGIC FOR LOGARITHMIC SPACE 29

a

b c d

e

f g h

i k

a

b c d
e

f
g h

i k

Figure 6: An interval graph G and an interval representation of G.

corresponds to vertex v ∈ V . Then M(k) = {v
∣

∣ k ∈ Iv} is a max clique of G for every k
for which M(k) is non-empty. Furthermore, for any max clique M of G, there is a k ∈ N
with M = M(k). Thus, any minimal interval representation of G induces a linear order on
MG which has the property that each vertex is contained in consecutive max cliques. It
is known [9, 24] that a graph G is an interval graph if and only if its max cliques can be
brought into a linear order, so that each vertex of G is contained in consecutive max cliques.

Thus, max cliques play an important role for the structure of interval graphs. Our
canonisation procedure essentially relies on bringing the max cliques of an interval graph
into a suitable order.

The maximal cliques of an interval graph G = (V,E) can be handled rather easily in
our logic. Let Nc(v) denote the closed neighbourhood of a vertex v in G, that is, the set
containing v and all vertices adjacent to v. As shown in [19], the max cliques of G can be
identified by the vertex pairs (u, v) ∈ V 2 with the property that Nc(u) ∩ Nc(v) is a clique
in G, and for no other pair (u′, v′) ∈ V 2 where Nc(u′) ∩ Nc(v′) is a clique in G it holds that
Nc(u) ∩ Nc(v) ( Nc(u′) ∩ Nc(v′):

Lemma 7.2 ([19], Lemma IV.1). Let G be an interval graph and let M be a max clique of
G. Then there are vertices u, v ∈ M , not necessarily distinct, such that M = Nc(u) ∩ Nc(v).

In particular, the max cliques of G as well as the equivalence relation on vertex pairs defining
the same max clique are first-order definable.

7.2. Modular Decompositions. Our canonisation procedure relies on a specific decom-
position of graphs, known as modular decomposition, which was first introduced by Gallai
[8]. The basic building blocks of modular decompositions are modules. Given a graph
G = (V,E), a set W ⊆ V is a module of G if for all vertices v ∈ V \W either {v} ×W ⊆ E
or ({v} × W ) ∩ E = ∅. Note that V and all singleton vertex sets are modules of G, called
trivial modules. We call a module W proper if W ( V .

Gallai’s modular decomposition is based on the following: If G is not connected, then its
connected components W1, . . . ,Wk are clearly proper modules. Similarly, if the complement
graph Gc of G is not connected, then the connected components W1, . . . ,Wk of Gc are proper
modules of G. For graphs G with more than one vertex where both G and Gc are connected,
Gallai shows in [8] that the set of maximal proper modules of G is a partition of G’s vertex
set. We base our modular decomposition on the same properties, only for the last one we
use a slightly different partition into modules W1, . . . ,Wk, which we define in Section 7.4.8

Let WG be the set of modules W1, . . . ,Wk and let ∼G be the equivalence relation on V

8The main difference between our decomposition and Gallai’s is that we do not bother to create extra
modules for sets of pairwise connected twins since we can handle them perfectly well with our methods.
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corresponding to the partition WG (i.e., v ∼G w whenever v,w ∈ Wi for some i ∈ [k]). Let
us consider the graph

LG := (V/∼G
, ELG

), where ELG
:= {(u/∼G

, v/∼G
) | (u, v) ∈ E}.

Intuitively, LG is the graph obtained from G by collapsing all the modules in WG into
single vertices. Since each pair of modules Wi,Wj ∈ WG, i 6= j, is either completely
connected or completely disconnected, G is completely determined by LG and the graphs
G[Wi], for i ∈ [k], where G[Wi] denotes the subgraph of G induced by the vertices in Wi.
By decomposing the G[Wi], i ∈ [k], inductively until we arrive at singleton sets everywhere,
we obtain G’s modular decomposition.

We define the modular decomposition tree T (G) of a graph G recursively. If |V | = 1,
then T (G) is the rooted tree that consists of only one vertex, vertex V, which is the root
of T (G). Let |V | > 1. Then, the modular decomposition tree T (G) is a rooted tree which
consists of a vertex V, which is the root of T (G), and of subtrees T (G[W ]) for all W ∈ WG.
We obtain T (G) by adding an edge from V to the root of T (G[W ]) for all W ∈ WG. This
modular decomposition tree is uniquely determined for every graph G [8].

Notice that for an interval graph G where Gc is not connected, all except one connected
component of Gc must contain only a single vertex. Each of these single vertices is adjacent
to all other vertices in G. We call a vertex with that property an apex. Thus, if G is an
interval graph with Gc disconnected, then WG =

⋃

a∈A{{a}} ∪ {V \ A} where A is the set
of apices, and the graph LG is isomorphic to a clique. Also, if G contains an apex, then
either |V | = 1 or Gc is not connected.

The following three sections are about defining and canonising the graph LG for an
interval graph G. This is easy for unconnected graphs G or graphs that have at least one
apex. Thus, we will consider connected graphs without any apices.

7.3. Extracting Information About the Order of Maximal Cliques. Throughout
this section let G be a connected interval graph without any apices.

We call a max clique C a possible end of G if there is a minimal interval representation
I of G so that C is minimal with respect to the order induced by I.

Now we pick a max clique M of G. We assume it to be a possible end of G, and give
a recursive procedure that turns out to recover all the information about the order of the
max cliques induced by choosing M as an end of G.

Let M ∈ MG. The binary relation ≺M is defined recursively on the elements of MG

as follows:

Initialisation: M ≺M C for all C ∈ MG \ {M}

C ≺M D if

{

∃E ∈ MG with E ≺M D and (E ∩ C) \D 6= ∅ or

∃E ∈ MG with C ≺M E and (E ∩D) \ C 6= ∅.
(⋆)

By exploiting the definition’s symmetry, ≺M can be defined through a reachability
query in the undirected graph OM , which has pairs of max cliques from MG as its vertices,
and in which two vertices (A,B) and (C,D) are connected by an edge whenever A ≺M B
implies C ≺M D with one application of (⋆). Hence:

Lemma 7.3. There exists an STC-formula that for any interval graph G and for any max
clique M of G defines the relation ≺M .
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We now state a few important properties of ≺M . Recall that a binary relation R on a
set A is asymmetric if ab ∈ R implies ba 6∈ R for all a, b ∈ A. In particular, asymmetric
relations are irreflexive.

Lemma 7.4 ([19], Lemma IV.3, Corollary IV.6, Lemma IV.7). Let M be a max clique of
an interval graph G. Then the following properties are equivalent:

• ≺M is asymmetric,
• ≺M is a strict weak order (that is, ≺M is irreflexive, transitive, and incomparability is

an equivalence relation),
• M is a possible end of G.

Since ≺M is STC-definable and asymmetry of ≺M is FO-definable, the preceding lemma
gives us a way to define possible ends of interval graphs in STC+C.

Lemma 7.5. Let C ⊂ MG be a set of max cliques with M 6∈ C. Suppose that for all
B ∈ MG \ C and any C,C ′ ∈ C it holds that B ∩ C = B ∩ C ′. Then the max cliques in C
are mutually incomparable with respect to ≺M .

Proof. By a derivation chain of length k we mean a finite sequence X0 ≺M Y0, X1 ≺M Y1,
. . ., Xk ≺M Yk such that X0 = M and for each i ∈ [k], the relation Xi ≺M Yi follows from
Xi−1 ≺M Yi−1 by one application of (⋆). Clearly, whenever it holds that X ≺M Y there is
a derivation chain that has X ≺M Y as its last element.

Suppose for contradiction that there are C,C ′ ∈ C with C ≺M C ′. Let M ≺M Y0,
X1 ≺M Y1, . . ., Xk ≺M Yk be a derivation chain for C ≺M C ′. Since Xk = C, Yk = C ′, and
M 6∈ C, there is a largest index i so that either Xi or Yi is not contained in C.

If Xi 6∈ C, then Xi+1 ∈ C and Yi = Yi+1 ∈ C and it holds that Xi ∩ Xi+1 \ Yi+1 6= ∅.
Consequently, Xi ∩Xi+1 6= Xi ∩Yi+1, contradicting the assumption of the lemma. Similarly,
if Yi 6∈ C, then Yi+1 ∈ C and Xi = Xi+1 ∈ C and it holds that Yi ∩ Yi+1 \ Xi+1 6= ∅. Thus,
Yi ∩ Yi+1 6= Yi ∩Xi+1, again a contradiction.

The span of a vertex v ∈ V in G, denoted span(v), is the number of max cliques of G
that v is contained in. Recall from Section 7.1 that the equivalence relation on vertex pairs
defining the same max clique is first-order definable. Note that, since equivalence classes
can be counted in STC+C [19, Lemma II.7], the span of a vertex is STC+C-definable on
the class of all interval graphs.

Lemma 7.6 ([19], Lemma IV.4, Corollary IV.5). Suppose M is a possible end of G and C
is a maximal set of ≺M -incomparable max cliques. Then

• B ∩C = B ∩ C ′ for all C,C ′ ∈ C, B ∈ MG \ C,
• SC :=

⋃

C∈C C \
⋃

B∈MG\C B is a module of G, and

• SC =
{

v ∈
⋃

C
∣

∣ span(v) ≤ |C|
}

.

Finally, let ∼G
M be the equivalence relation on V for which x ∼G

M y if and only if x = y, or
there is a maximal set C of incomparable max cliques with respect to ≺M with |C| > 1 so that
x, y ∈ SC . Let GM = G/∼G

M
:= (V/∼G

M
, EM ), where EM := {(u/∼G

M
, v/∼G

M
) | (u, v) ∈ E}. It

is easy to check that ∼G
M and the graph GM are STC+C-definable.

If C is a maximal set of ≺M -incomparables in G with |C| > 1, then there is precisely
one max clique MC in GM which contains all the equivalence classes associated with C, i.e.,
MC = {v/∼G

M
| v ∈

⋃

C}. We conclude:
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Lemma 7.7. ≺M induces a linear order on GM ’s max cliques. In particular, GM is an
interval graph.

7.4. Modules WG and the Graph LG. We are now ready to give the definition of the
set WG, which we mentioned in Section 7.2, for connected interval graphs G without an
apex. Furthermore, we show how to define graphs that are isomorphic to the graph LG

from Section 7.2 in STC+C. In particular, this will enable us to prove, in Section 7.5, that
an isomorphic copy of LG on the number sort is STC+C-definable.

Let G = (V,E) be a connected interval graph without an apex. Then G contains more
than one max clique. Let PG be the set of all maximal proper subsets C of MG with the
property that for any B ∈ MG \ C we have B ∩ C = B ∩ C ′ for all C,C ′ ∈ C. We must
have |PG| ≥ 3 since G is connected and no vertex may be included in all max cliques of G.
Furthermore, if C, C′ ∈ PG and C 6= C′, then C ∩C′ = ∅. To see this, suppose that D ∈ C ∩C′.
Then B ∩A = B ∩D = B ∩C for all A,C ∈ C ∪ C′ and B 6∈ C ∪ C′. So as |PG| ≥ 3, C ∪ C′

is a proper subset of MG satisfying the above property, which contradicts the maximality
of C and C′. We conclude that PG is a partition of MG.

For each C ∈ PG with |C| ≥ 2 we define SC =
⋃

C \
⋃

(MG \ C). The correspondence in
names to the modules SC as defined in Lemma 7.6 is intended, of course, and makes sense
since the sets C ∈ PG enjoy the same interaction properties with the rest of the graph as
maximal sets of ≺M -incomparable max cliques (cf. Lemma 7.6).

We can now define the modules WG mentioned in Section 7.2 for connected interval
graphs G without an apex. We let S := {SC | C ∈ PG with |C| ≥ 2}, and define

WG := S ∪
⋃

v∈V \
⋃

S

{{v}}.

From the fact that PG is a partition of MG, we conclude that WG forms a partition of
V , whereby inducing the equivalence relation ∼G on V . In the following, we call this
equivalence relation alternatively ∼PG

.
We are going to construct STC+C-definable graphs isomorphic to LG. Let ZM be the

max clique which is ≺M -maximal in GM . Now we forget about ≺M and consider ≺ZM
on

GM . We write
LM := GM/

∼
GM
ZM

= (V (GM )/
∼

GM
ZM

, E(GM )/
∼

GM
ZM

)

with E(GM )/
∼

GM
ZM

= {(u/
∼

GM
ZM

, v/
∼

GM
ZM

) | (u, v) ∈ E(GM )}. Lemma 7.7 implies again that

≺ZM
induces a linear order on the max cliques of LM .

Lemma 7.8. Let G be a connected interval graph that does not contain an apex, and let
M1, . . . ,Mk be its possible ends. Then all of the graphs LMl

, l ∈ [k], are isomorphic to LG

and we may partition [k] into at most two sets Q,Q′ so that (LMi
,≺ZMi

) and (LMj
,≺ZMj

)

are order isomorphic whenever i, j ∈ Q or i, j ∈ Q′.

Proof. Equivalence relation ∼PG
does the same as ∼G

M , only that it is based on PG instead
of the (finer) partition of max cliques induced by a strict weak ordering ≺M .

Our goal is to show that each LM with M ∈ {M1, . . . ,Mk} is isomorphic to G/∼PG
.

For this it is enough to show that the concatenation of equivalence relation ∼G
M with ∼GM

ZM

is equal to ∼PG
. Whenever C ∈ PG and M 6∈ C, Lemma 7.5 implies that the max cliques in
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C are ≺M -incomparable. As the sets in PG were chosen to be maximal, C is also a maximal
set of ≺M -incomparables (Lemma 7.6). It follows that ∼PG

is equal to ∼G
M on

⋃

M 6∈C∈PG
C.

When forming GM = G/∼G
M

, each maximal set of ≺M -incomparable max cliques C is

replaced by the max clique MC = {v/∼G
M

| v ∈
⋃

C}. Note that this is also true when C

consists of just one max clique. As a result, PG induces a partition PM of the max cliques
of GM . Also, if CM is the cell of PM which contains M , then CM is the only cell of PM

which is possibly not a singleton. As |PM | ≥ 3, ZM 6∈ CM .

The final step is to show that ∼PM
equals ∼GM

ZM
on GM . If v/∼G

M
is a vertex of GM

and v/∼G
M

is an equivalence class of ∼G
M with |v/∼G

M
| > 1, then v/∼G

M
is only contained

in one max clique of GM . Hence, PM inherits from PG the property that it partitions
the max cliques MGM

of GM into maximal sets C so that for any B ∈ MGM
\ C we have

B∩C = B ∩C ′ for all C,C ′ ∈ C. Arguing analogously as above, it follows that ∼PM
equals

∼GM

ZM
. Therefore, ∼PG

is equal to the concatenation of ∼G
M with ∼GM

ZM
and LM is isomorphic

to LG. This proves the first part of the lemma.
To see the second part, observe that ≺ZM

induces a linear order on LM ’s max cliques.
This is true for all M ∈ {M1, . . . ,Mk}, so whenever N is a possible end of LM , then ≺N

linearly orders the max cliques of LM . Thus, LM has two possible ends which correspond-
ingly induce two orders on the max cliques and vertices of G/∼PG

.

7.5. Canonising LG. Before showing how to use the modular decomposition tree for canon-
ising interval graphs G = (V,E) in our logic, let us take a look at how to define a canonical
copy of LG in STC+C.

From the fact that G is an interval graph, it is not hard to see that LG is an interval
graph, too. Furthermore, notice that, if A is a max clique of G, then

ALG
:= {v/∼G

| v ∈ A}

is a max clique of LG, and that all max cliques of LG are of this form.

Lemma 7.9.

(1) There are STC+C-formulae ϕ∼, ϕL such that for all interval graphs G, ϕ∼ defines the
equivalence relation ∼G, and ϕL the edge relation of the graph LG.

(2) Let G be a connected graph without any apices. If LG has m > 1 max cliques, then
there exist exactly two linear orderings of LG’s max cliques, each the reverse of the
other. There is an STC+C-formula that defines all pairs of tuples (u, v), (u′, v′) ∈ V 2

such that (u, v), (u′, v′) represent max cliques A,M of G, M is a possible end of G, and
ALG

appears within the first ⌊m
2 ⌋ max cliques of LG with respect to ≺ZM

.
(3) There is an STC+C-formula that, for all interval graphs G, defines an isomorphic copy

of LG on the number sort.

Proof. Let us start by showing property (1). If G is not connected or G contains an apex,
then ∼G is STC-definable. If G is connected and does not contain an apex, then for each

possible end M of G the concatenation of equivalence relation ∼G
M with ∼GM

ZM
is equal to ∼G

(Lemma 7.8). The STC+C-definability of equivalence relation ∼G is a direct consequence of
the STC+C-definability of the possible ends M and the equivalence relation ∼G

M , Lemma 7.7,

which allows us to define max clique ZM , and the STC+C-definability of ∼GM

ZM
.
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We do not define the graph LG explicitly, but rather implicitly within G. That is, we do
not single out a representative of each equivalence class v/∼G

of ∼G, but treat all vertices
in v/∼G

as representatives of v/∼G
. Notice that, since all equivalence classes of ∼G are

modules of G, the edge relation of LG can be defined as the set of all edges of G between
vertices in different equivalence classes.

To show Property (2), recall that by Lemma 7.8 there are exactly two linear orderings
of LG’s max cliques, each the reverse of the other. By Property (1), we can define LG, and
for a possible end M of LG we can define the linear order ≺ZM

(Lemma 7.3). Hence, given
max clique A, we can define ALG

and associate the linear order with A where ALG
appears

within the first ⌊m
2 ⌋ max cliques of LG.

Property (3) is easy to see for graphs that are not connected or contain an apex. For
connected interval graphs G that do not have any apices, Property (3) follows directly from
Section IV.B in [19], where the author shows that there is an STC+C-formula that defines
an ordered copy of G on the number sort if there is a max clique M of G such that ≺M is
a linear order on G’s max cliques.

According to the preceding lemma we can define an isomorphic copy of LG on the
number sort. In the following, we denote this copy by K(LG).

7.6. The Coloured Modular Decomposition Tree. To obtain a complete invariant of
an interval graph G = (V,E), we construct a refinement of the modular decomposition tree,
the coloured modular decomposition tree, in this section.

Let us consider the modular decomposition tree T (G) of an interval graph G. We call
a module W ∈ V (T (G)) a decomposition module if W = V , or |W | > 1 and G[W ∗] is a
connected graph, where W ∗ is the parent of W in T (G). All modules W where G[W ∗] is not
connected are called component modules. We let Wdec

G be the set of all decomposition mod-
ules and Wcon

G be the set of all component modules occurring in the modular decomposition
tree of G.

Let P ′ := {(M,n) | M ∈ MG, n ∈ [|V |]}. Recall the definition of the span of a vertex
from Section 7.3, and that it is STC+C-definable. For each (M,n) ∈ P ′, define VM,n as the
set of vertices of the connected component of G[{v ∈ V | span(v) ≤ n}] which intersects
with M (if non-empty), and let GM,n := G[VM,n]. Now let P be the set of those (M,n) ∈ P ′

for which the following properties are satisfied:

(1) The number n is maximal among those n′ with the property that VM,n′ = VM,n.
(2) For all m′ > n where VM,m′ is a module, VM,n is a subset of an equivalence class of

∼GM,m′ with more than one vertex, or there exists a vertex a ∈ VM,m′ \ VM,n that is an
apex of GM,m′ .

Lemma 7.10. If (M,n) ∈ P, then VM,n is a connected component of a decomposition

module in Wdec
G . Moreover, if D is a connected component of a decomposition module in

the modular decomposition tree of G, then there is an (M,n) ∈ P with VM,n = D.

Proof. Notice that for all modules W of G and all max cliques C of G with C ∩W 6= ∅ the
set W ∩C is a max clique of G[W ], and every max clique of G[W ] is of that form. Further,
an easy induction shows that for all modules W ∈ Wdec

G ∪ Wcon
G the following properties are

satisfied:

(A) Let C,C ′ ∈ MG be max cliques of G with C 6= C ′ where C ∩W 6= ∅ and C ′ ∩W 6= ∅.
Then for max cliques C ∩W, C ′ ∩W of G[W ] we have C ∩W 6= C ′ ∩W.
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(B) Let C := {C ∈ MG | C ∩W 6= ∅}. Then for all B ∈ MG \ C and all C,C ′ ∈ C we have
B ∩ C = B ∩ C ′.

(C) For the set C from (B), W =
⋃

C∈C VC,c where c := |C| if W contains an apex and
c := |C| − 1 if W has no apices, and for each C ∈ C the set VC,c is a connected
component of W.

In order to show Lemma 7.10, we also need the following properties:

Claim 1. If VM,k is a connected component of a decomposition module W of G, and
VM,k ( VM,l for an l > k, then W ( VM,l.

Proof. Let k′ be the maximum span of a vertex in W. Since VM,k ∈ Wdec
G ∪ Wcon

G , we
have VM,k = VM,k′ as a direct consequence of Property C. Thus, we can assume that k ≥ k′.
Further, we have VM,l 6⊆ W as VM,l ⊆ W leads to a contradiction, because VM,l is connected
and VM,k ( VM,l is a connected component of W. Thus, VM,l \W is non-empty. Since VM,l

is connected and VM,k ⊆ VM,l ∩W, there must exist a vertex v ∈ VM,l \W that is adjacent
to a vertex in the non-empty set VM,l ∩W. As W is a module, v is adjacent to all vertices
in W. Therefore, W ⊆ VM,l, because span(w) ≤ k′ ≤ l for all vertices w ∈ W. �

Claim 2. Let (M,d) ∈ P ′ and VM,d be a module in Wdec
G ∪ Wcon

G . If VM,d is a clique, then
there exists only one max clique C ∈ MG with C ∩ VM,d 6= ∅.

Proof. Since VM,d is a clique, there must exist a max clique B ∈ MG with VM,d ⊆ B. Let us
assume, there exists a max clique B′ ∈ MG different from B with B′ ∩VM,d 6= ∅. According
to Property A we have B ∩ VM,d 6= B′ ∩ VM,d and therefore B′ ∩ VM,d ( VM,d. Since VM,d

is a module, B′ ∪ VM,d is a clique, a contradiction to B′ being a max clique. �

Claim 3. Let (M,d) ∈ P ′ and VM,d be a module in Wdec
G ∪Wcon

G . Further, let 0 < d′ < d be
such that VM,d′ ( VM,d, and let A 6= ∅ be the set of apices of GM,d. Then VM,d′ ⊆ VM,d \A.

Proof. If VM,d is a clique, then according to Claim 2 max clique M is the only max clique in
MG with M ∩ VM,d 6= ∅. Thus, VM,d = VM,1 and there does not exist a d′ with 0 < d′ < d
such that VM,d′ ( VM,d.

Now let VM,d be not a clique. Further, let C be the set of max cliques C ∈ MG with
C ∩VM,d 6= ∅ and c := |C|. In the following we show that a ∈ VM,d is an apex of GM,d if and
only if span(a) = c. If a ∈ VM,d and span(a) = c, then a is contained in every max clique
of G that has a non-empty intersection with VM,d. As every vertex in VM,d is contained in
at least one max clique of G, which of course has a non-empty intersection with VM,d, a is
an apex of GM,d. Now let a be an apex of GM,d and let us assume that there exists a max
clique C ∈ MG with C∩VM,d 6= ∅ and a 6∈ C. Apex a is adjacent to all vertices in C∩VM,d,
and since VM,d is a module, a is also adjacent to all vertices in C \VM,d. Therefore. C ∪ {a}
is a clique, which is a contradiction to C being a maximal clique of G.

From span(v) = c for all vertices v ∈ A, span(v) < c for all v ∈ VM,d\A and VM,d′ ( VM,d

it follows that d′ < c. Consequently, VM,d′ ⊆ VM,d \ A. �

To proceed with the proof of Lemma 7.10, we first show that if D is a connected
component of a decomposition module W ∈ Wdec

G and M ∈ MG with M ∩ D 6= ∅, then
there is an n ∈ N such that (M,n) ∈ P and VM,n = D.

We proof this by induction on the depth of the modular decomposition tree: Clearly,
if D is a connected component of decomposition module V (i.e., a connected component of
G), then D = VM,|V | for a max clique M with M ∩D 6= ∅, and (M, |V |) ∈ P.
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Now, let D be a component of module W ∈ Wdec
G with W 6= V. Let c be the number

c′ of max cliques of G intersecting with W if W contains an apex and c′ − 1 if W has no
apices. According to Property C, VM,c = D. Let n be maximal with VM,n = VM,c. Then
(M,n) ∈ P ′ and D = VM,n. Choosing (M,n) like that ensures that Property 1 is satisfied
for (M,n).

It remains to show Property 2. Let m′ > n and let VM,m′ be a module. According to
Property 1 we have VM,n ( VM,m′ . Thus, Claim 1 implies W ( VM,m′ .

First, let us assume there exists an apex a of GM,m′ . If there exists an apex of GM,m′ in
VM,m′ \W, we have shown Property 2. Thus, let us assume all apices of GM,m′ , in particular
a, are in W. Since W is a module and a ∈ W , the vertex sets VM,m′ \ W and W must be
completely connected. If W contains two vertices w,w′ that are not adjacent, then in the
minimal interval representation the interval of each vertex in VM,m′ \W has to intersect the
intervals of both w and w′. Thus, the intervals of all vertices in VM,m′ \ W intersect with
each other and each vertex in VM,m′ \W is an apex, a contradiction. Let us assume W is a
clique. Let W ∗ be the parent module of W in the modular decomposition tree of G. Since
W is a decomposition module, |W | > 1 and W ∗ contains either an apex, or is connected
and contains no apices. W ∗ cannot contain an apex, because then all vertices in W ∗ form
a clique and W is not in WG[W ∗]. If W ∗ is connected and contains no apices, then W = SC

for C ∈ PG[W ∗] where C is a set of max cliques of G[W ∗] with |C| ≥ 2 (see Section 7.4). As
W is connected, W = VM,n. According to Claim 2 there exists only one max clique C of
G with C ∩ W 6= ∅. Consequently, C ′ := C ∩ W ∗ is the only max clique in G[W ∗] with
C ′ ∩W 6= ∅, a contradiction. Hence, W cannot be a clique.

Now let us assume that there does not exist an apex of GM,m′ . Thus, ∼GM,m′ is

constructed as described in Section 7.4. Let W ′ be the parent module W ∗ of W in the
modular decomposition tree of G if W ∗ is a decomposition module, or if W ∗ is a component
module, let W ′ be the parent of module W ∗. Then W ′ is a decomposition module. Further,
let D′ be the component of W ′ that contains W. Notice that no matter what set we chose
for W ′, we have D′ = W ∗. According to Property C, there exists an n′ ∈ [|V |] such that
D′ = VM,n′ . Let n′ be maximal with that property. Therefore, W ∗ = VM,n′ and W ∗ is a
component of a decomposition module. By inductive assumption we have (M,n′) ∈ P. If
VM,n′ = VM,m′ , then VM,n is a subset of equivalence class W of ∼GM,m′ with more than

one vertex and we are done. Therefore, let us assume VM,n′ 6= VM,m′ . If n′ < m′, then
VM,n ⊆ W (W ∗ = VM,n′ ( VM,m′ . As (M,n′) satisfies Property 2 and there does not exist
an apex in GM,m′ , the set VM,n′ , and therefore also the set VM,n ( VM,n′ , is a subset of an
equivalence class of ∼GM,m′ with more than one vertex.

It remains to consider m′ < n′ where VM,n′ 6= VM,m′ . Then VM,n ⊆ W ( VM,m′ (
VM,n′ = W ∗. If W ∗ = VM,n′ contains an apex, then W = VM,n′ \ A where A is the set of
apices of GM,n′ . According to Claim 3, VM,m′ ⊆ VM,n′ \ A. But this implies VM,m′ ⊆ W , a
contradiction.

Finally, let us assume W ∗ = VM,n′ is connected and does not contain an apex. Then
W = SC for a C ∈ PG[W ∗] with |C| ≥ 2 where PG[W ∗] is the set of all maximal proper subsets
C′ of MG[W ∗], the set of max cliques of G[W ∗], with the property that for any B ∈ MG[W ∗] \
C′ we have C∩B = C ′∩B for all C,C ′ ∈ C′. For all C ∈ MG[W ∗] with C∩VM,m′ 6= ∅ let f(C)
be the set C ∩ VM,m′ . As VM,m′ is a module, the set {f(C) | C ∈ MG[W ∗], C ∩ VM,m′ 6= ∅}
is the set MGM,m′ of max cliques of GM,m′ . Let f(C) be the set {f(C) | C ∈ C}. Then f(C)

is exactly the set of max cliques of GM,m′ that have a non-empty intersection with W . Let
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f(C), f(C ′) ∈ f(C) and f(B) ∈ MGM,m′ \f(C). Then f(C)∩ f(B) = f(C ′)∩ f(B), because

C ∩ B = C ′ ∩ B and therefore (C ∩ VM,m′) ∩ (B ∩ VM,m′) = (C ′ ∩ VM,m′) ∩ (B ∩ VM,m′).
Further, |f(C)| > 1, since |C| > 1 and for C,C ′ ∈ C ⊆ MG[W ∗] with C 6= C ′ we have
C∩W 6= C ′∩W according to Property A. Consequently, (C∩VM,m′)∩W 6= (C ′∩VM,m′)∩W
and f(C) 6= f(C ′) for max cliques f(C), f(C ′) ∈ f(C). We obtain that there exists a subset
f(C′) of MGM,m′ with f(C) ⊆ f(C′) such that f(C′) ∈ PGM,m′ . As there exists no max

clique f(B) ∈ MGM,m′ \ f(C′) with f(B) ∩ W 6= ∅, W ⊆ Sf(C′) and we have shown that

VM,n is a subset of equivalence class Sf(C′) of ∼GM,m′ with more than one vertex.

For the other direction, let (M,n) ∈ P , we need to show that VM,n is a component of a
decomposition module. We prove this by induction on n. Clearly, this holds for n = |V (G)|,
so let n < |V (G)|. Let p be minimal such that p > n and (M,p) ∈ P . Since (M, |V |) ∈ P
such a number exists. By inductive assumption we know that VM,p is a component of a
decomposition module. Thus, VM,p is a module occurring in V (T (G)), the vertices of the
modular decomposition tree of G.

Since (M,n) ∈ P , (M,n) satisfies Property 2. Thus, VM,n is a subset of an equivalence
class of ∼GM,p

with more than one vertex or there exists an apex of GM,p in VM,p \ VM,n.
Let VM,n be a subset of an equivalence class W of ∼GM,p

with more than one vertex.
As VM,p is connected, the equivalence class W is a decomposition module. Let D be the
connected component of W that contains VM,n. If VM,n = D, then VM,n is a component
of a decomposition module and we are done. If VM,n is a proper subset of D, we obtain
a contradiction to the choice of p, since we have already shown that for component D
of decomposition module W there must exist an m ∈ [|V |] such that (M,m) ∈ P and
VM,m = D, and n < m < p.

Now let there be a vertex a ∈ VM,p \ VM,n that is an apex of GM,p. Let A be the set
of apices of GM,p. According to Claim 3 we have VM,n ⊆ VM,p \ A. Further, |VM,p \ A| = 1
implies that v ∈ VM,p \A is also an apex. Consequently, |VM,p \A| > 1. Therefore, we have
either shown that VM,n is a component of equivalence class VM,p \ A of ∼GM,p

with more
than one vertex or obtain a contradiction to the choice of p.

Corollary 7.11. There is an STC+C-formula ϕ(x, y, z) such that for all interval graphs
G = (V,E), all v,w ∈ V , and all n ∈ [|V |], we have G |= ϕ[v,w, n] iff M = Nc(v) ∩ Nc(w)
is a max clique of G and (M,n) ∈ P .

We are now ready to define the coloured modular decomposition tree. An illustration
of the tree can be found in Figure 7.

Formally, the coloured modular decomposition tree is defined as T = TG = (VT , ET ),
where the set VT of nodes and the set ET of edges of T is defined as follows. VT is the
union of the following sets:

• the set V of component vertices vVM,n
, one for each set VM,n with (M,n) ∈ P ,

• the set A of arrangement vertices a{≺Q},VM,n
where {≺Q} is the singleton set of the

distinguished minimal order on LGM,n
’s max cliques if K(LGM,n

) is not order isomorphic
under its two linear orderings (recall the definition of K(LGM,n

) from Section 7.5). If
K(LGM,n

) is order isomorphic under its two linear orderings, then max clique Q identifies
an order ≺Q, namely, the order whereQLGM,n

occurs first (see Section 7.5 for the definition

of QLGM,n
). Q defines both orders if QLGM,n

is located in the middle. Thus, for each Q

the set {≺Q} is the set of orders containing either only one of the isomorphic orders or
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a{≺Mi
},V (i ≤ 4) a{≺Mi

},V (i = 5, 6) a{≺Mi
},V (i ≥ 7)

s{f,g,h,j},V

v{f} v{g,h,j}

a{≺Mi
},{g,h,j} (i = 3, 4)

s{g,j},{g,h,j}

s{k,l,m,n},V

v{k,l,m,n}

a{≺Mi
},{k,l,m,n} (i = 5, 6)

s{m,n},{k,l,m,n}

s{o,p,q,r,s,t,u},V

v{o,p,q,r,s,t,u}

a{≺Mi
},{o,p,q,r,s,t,u} (7 ≤ i ≤ 10)

s{t,u},{o,p,q,r,s,t,u}

v{t} v{u}

{2, 4} {3, 3} {2, 4}

{2}{1} {1}

v{g} v{j} v{m} v{n}

Figure 7: An interval graph and its coloured modular decomposition tree. Component
vertices vU are represented together with the interval graph LU labeling them.
The colours of module vertices are indicated in the gray fields next to them.

both. Consequently, for each set VM,n there are at most three arrangement vertices of
the form a{≺Q},VM,n

.
• the set S of module vertices sWA,VM,n

for which A is a max clique of G, and WA is the
vertex in LGM,n

(WA is a module of VM,n with more than one vertex) that contains vertices
of A, and

• {sV }, where sV is a special vertex acting as the root of T .

We colour the vertices in V by assigning to each vVM,n
∈ V the ordered graph K(LGM,n

). The
vertices in A remain uncoloured and may therefore be exchanged by an automorphism of
T whenever their subtrees are isomorphic. Each sWA,VM,n

∈ S is coloured with the multiset
of integers corresponding to the positions that the max clique ALGM,n

takes in the orders

of LGM,n
. The edge relation ET of T is now defined in a straight-forward manner, with all

edges directed away from the root sV .
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• sV is connected to all vVM,n
∈ V with n = |V |.

• Each vVM,n
∈ V is connected to all vertices in A of the form a{≺Q},VM,n

with Q∩VM,n 6= ∅.
Therefore, vVM,n

is connected to at most three vertices.
• Each a{≺Q},VM,n

∈ A is connected to all those sWA,VM,n
∈ S so that {≺Q} is the set

of orders of LVM,n
under which module WA ∈ V (LGM,n

) attains its minimal position,
that is, for every max clique Q that intersects with a module W of VM,n with |W | > 1,
vertex a{≺Q},VM,n

∈ A is connected to sWQ,VM,n
∈ S.

• Every sWA,VM,n
∈ S is connected to those vVM′,n′ ∈ V for which VM ′,n′ is a connected

component of the module WA, that is, for each max clique A the vertex sWA,VM,n
∈ S is

connected to vVA,n′ ∈ V with n′ = max{m < n | (VA,m) ∈ P}.

The point of the arrangement vertices A is to ensure that the order of submodules
is properly accounted for. If our modular tree did not have such a safeguard, exchang-
ing modules in symmetric positions might give rise to a non-isomorphic graph, but it
would not change the tree, so T would be useless for the task of distinguishing between
these two graphs.

We will later need STC+C-definability of this coloured tree. Thus, notice that the tree’s
vertices are equivalence classes, which are STC+C definable. Also the edge relation and the
colours are STC+C-definable (Lemma 7.9).

Lemma 7.12 below shows that our modular trees are a complete invariant of interval
graphs, so modular trees can be used to tell whether two interval graphs are isomorphic.

Lemma 7.12 ([18],[20]). Let G and H be interval graphs. If their modular trees are iso-
morphic, then so are G and H.

The graphs LGM,n
resemble the concept of overlap components used in [18] for the

definition of a similar kind of modular tree. Overlap components are connected components
of the subgraph of G in which only those edges are present for which the neighbourhood of
neither endpoint is contained in the neighbourhood of the other (intuitively, their intervals
overlap). It can be checked that overlap components and graphs LGM,n

only differ in the
way they treat vertices that are contained in just one max clique: overlap components treat
them as further modules (which they trivially are), the LGM,n

graphs directly put them
into their unambiguous places. In [18] the authors show Lemma 7.12 for this similar kind
of modular tree. A detailed proof of Lemma 7.12 can be found in [20].

7.7. Total Preorder on Coloured Directed Trees. We can make use of the STC+C-
definable modular decomposition tree, and define a total preorder on the vertices of TG, that
is, a linear order on the isomorphism classes of the (coloured) subtrees of TG identified by
its root vertices.

For our purposes, we define a coloured directed tree as a tuple T = (V,E,L), where
(V,E) is a directed tree and L ⊆ V × N(V )2 is a relation that assigns to each vertex
a ∈ V a colour La := {(m,n) | (a,m, n) ∈ L}. It is easy to bring the coloured modular
decomposition tree into this form. For example, if a is a component vertex, say vVM,n

, then
La consists of all tuples (m,n), where (m,n) is an edge in the colour of a (i.e., an edge in
the canon of LVM,n

by which a is coloured in TG). Furthermore, if a is a module vertex, say
sWA,VM,n

, then La consists of all tuples (m,n), where m occurs n times in the colour of a.
In all other cases, we simply leave La empty.
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We let ϕE(x, y) be the formula such that for all coloured directed trees T , assignments
α and a, b ∈ V (T ):

(T, α) |= ϕE[a, b] ⇐⇒ La is lexicographically less than or equal to Lb.

Then ϕE defines a total preorder E on the vertices of any coloured directed tree.
Let ϕ≺(x, y) and ϕ∼=(x, y) be as defined in Section 4.2 and Section 4.1, respectively. If

we identify each subtree of a directed tree with its root vertex, then the LREC=-formula
ϕ�(x, y) := ϕ≺(x, y) ∨ ϕ∼=(x, y) defines a linear order � on the isomorphism classes of the
subtrees of a directed tree.

We define a refinement �′ of � by letting v ≺′ w whenever v ⊳ w, or: v E w and w E v
and v ≺ w. It should be obvious how to modify the formula ψ�(x, y) to an LREC=-formula
ψ�′ defining �′.

7.8. Canonisation. This section deals with the canonisation of interval graphs, that is,
how to construct an LREC=-formula κ′(p, q) such that for each interval graph G we have
G ∼= ([|V (G)|], κ′[G; p, q]). As a result we obtain the following:

Theorem 7.13. LREC= captures LOGSPACE on the class of all interval graphs.

We use the modular decomposition tree and the total preorder on its vertices for canon-
isation. We apply l-recursion on the modular decomposition tree, and as we have done for
canonising trees we build the canon from the leaves to the root of the tree. Recursively, we
construct the canon by first building the disjoint union of the canons of the components of
submodules, then use the arrangement vertices to insert all submodules at the correct side
and build the canon of the corresponding component of a module.

In the following we explain the canonisation procedure in more detail. The following
lemma shows that it suffices to give an LREC=-formula κ(p, q) such that for every interval
graph G we have G ∼= ([|V (G)|], κ[TG; p, q]). It follows from Lemma 6.6 and the fact that
the coloured modular decomposition tree of an interval graph is STC+C-definable.

Lemma 7.14. If there exists an LREC=-formula κ(p, q) such that for all interval graphs
G we have G ∼= ([|V (G)|], κ[TG; p, q]) and κ[TG; p, q] ⊆ [|V (G)|]2, then there also exists an
LREC=-formula κ′(p′, q′) such that for all interval graphs G, G ∼= ([|V (G)|], κ′[G; p′, q′]).

Proof. As pointed out at the end of Section 7.6, the coloured modular decomposition tree of
an interval graph G is definable in STC+C, and thus in LREC=. That is, there are LREC=-
formulae θV (ū), θ≈(ū, v̄), θE(ū, v̄) and θL(ū, q̄), where ū, v̄ are compatible tuples and q̄ is a
tuple of number variables, such that for all interval graphs G and all assignments α,

• θ≈[G,α; ū, v̄] is an equivalence relation ≈,
• θV [G,α; ū]/≈ is the set of vertices of TG,
• θE[G,α; ū, v̄]/≈ := {(ā/≈, b̄/≈) | (ā, b̄) ∈ θE [G,α; ū, v̄]} is the edge relation of TG,
• and θL[G,α; ū, q̄]/≈ is the colour-relation of the modular decomposition tree TG.

We now apply Lemma 6.6 with the transduction Θ = (θV (ū), θ≈(ū, v̄), θE(ū, v̄), θL(ū, q̄)) to

obtain an LREC=-formula κ−Θ(p̄′, q̄′) such that for all m̄, n̄ ∈ N(G)|ū|, G |= κ−Θ[m̄, n̄] iff
〈m̄〉G , 〈n̄〉G ∈ N(Θ[G]) and Θ[G] |= κ[〈m̄〉G , 〈n̄〉G]. Note that Θ[G] = TG. As κ[TG; p, q] ⊆
[|V (G)|]2, the condition 〈m̄〉G , 〈n̄〉G ∈ N(Θ[G]) can be replaced by 〈m̄〉G , 〈n̄〉G ∈ N(G).

Hence, the tuples p̄′, q̄′ of number variables in κ−Θ can be identified with single number
variables p′, q′, which yields the desired formula κ′(p′, q′).
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In general, the canonisation procedure is similar to the one of directed trees. To apply l-
recursion we use a graph G = (V, E) with labels C(v) ⊆ N for all v ∈ V. We let V := V (TG) ×
N(TG)2 be the vertices of G and for all component vertices vVM,n

∈ V, (vVM,n
, p, q) ∈ V

stands for “(p, q) ∈ XvVM,n
?”, where XvVM,n

is the edge relation of an isomorphic copy

([|VM,n|],XvVM,n
) of GM,n.

In the following we explain the edge relation E and labels C of graph G.

Edges introduced by module vertices.
In TG, each vertex sWA,VM,n

∈ S is connected to those vVM′,n′ ∈ V for which VM ′,n′ is a

connected component of the module WA. Thus, we can use the available total preorder ≺′

on the children of sWA,VM,n
(cf. Section 7.7) to construct the canon of the disjoint union

of the children’s canons from the canons of the children. For a vertex s ∈ S and a child
v := vVM,n

∈ V of s, let Dv be the set of all children v′ of s with v′ ≺′ v, and ev be the
number of children v′ of s defining modules isomorphic to VM,n (i.e., v′ �′ v and v �′ v′).
For all p, q ∈ N(TG)2 and all i ∈ [0, ev − 1], we let ā := (s, pv,i + p, pv,i + q) have an edge
to (v, p, q) where pv,i :=

∑

vV
M′,n′ ∈Dv

|VM ′,n′ | + i · |VM,n| and define C(ā) = {ev}. Notice that

here we can have an in-degree greater than 1.

Edges introduced by arrangement vertices.
Let us consider a vertex a{≺Q},VM,n

∈ A. Its children in TG are vertices sWA,VM,n
for specific

submodules of the module VM,n, and we need to integrate the canons of them into the canon
K(LVM,n

) of LVM,n
. The canon K(LVM,n

) is STC+C-definable (Lemma 7.9) and we assume
it to be assigned to the first part [1, |V (LVM,n

)|] of the number sort. Notice that on the
number sort we have a distinguished ordering <N of the max cliques.

If a{≺Q},VM,n
∈ A has no sibling, then we have a distinguished order of the max cliques

of LVM,n
, and we can integrate each canon of a submodule into K(LVM,n

) according to the
colour of its vertex s. By integrating a submodule, we mean the following: We first sum up
the size of K(LVM,n

) and the sizes of all submodules defined by children of a{≺Q},VM,n
with

smaller colours, and increase each vertex of the canon of the submodule by this number.
Further, in the canon K(LVM,n

) we want to replace the smallest vertex z that lies in the
max clique that is at the position defined by the colour of s and in no other max clique
by the modified canon of the submodule. In order to do that, we add an edge between
all vertices that are adjacent to z and all vertices of the modified canon of the submodule.
For a{≺Q},VM,n

, we define the out-going edges of a{≺Q},VM,n
in G such that, if X denotes

the relation defined by the final LREC=-formula, the graph with edge relation {(p, q) ∈
N(TG)2 | ((a{≺Q},VM,n

, p, q), ℓ) ∈ X for large enough ℓ} consists of the modified canons of
the submodules and all new edges. Note that we have not yet removed the replaced vertices.

If a{≺Q},VM,n
has siblings, a single child, and the colour of the single child contains two

equal positions, we know we have to insert the canon of its child in the middle (regarding
the ordering of the max cliques) of K(LVM,n

). For such a vertex a{≺Q},VM,n
we construct

the edges of G so that we obtain the following graph on the number sort: We add the size
of K(LVM,n

) to each vertex of the canon of the submodule, and add all edges that would be
generated if we inserted the modified canon into the canon K(LVM,n

) replacing the smallest
vertex in the middle max clique.

Now, let a{≺Q1
},VM,n

and a{≺Q2
},VM,n

be siblings where the colour of at least one child

contains different positions. We determine their order with respect to the total preordering.
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Say, a{≺Q1
},VM,n

≺′ a{≺Q2
},VM,n

. Then we want to integrate the submodules of a{≺Q1
},VM,n

all into the first half (regarding <N ) of the max cliques of canon K(LVM,n
), and the submod-

ules of a{≺Q2
},VM,n

into the second half. Therefore, we create the edges of G in such a way

that the graph on the number sort at vertex a{≺Q1
},VM,n

is as follows: Each child of vertex

a{≺Q1
},VM,n

represents a certain submodule of VM,n. We sum up the size of K(LVM,n
), the

size of the submodule in the middle if it exists, and the sizes of all submodules defined by
children of a{≺Q1

},VM,n
with smaller colours, and add this value to each vertex of the canon

of this certain submodule. Finally, we insert each of these modified canons into the max
clique specified by the smaller value contained in the colour of the corresponding vertex, in
the same way we did before, and add all newly created edges to the modified canons of the
submodules. For vertex a{≺Q2

},VM,n
we construct the graph on the number sort equivalently,

only that we additionally add the sum of the sizes of all submodules defined by children of
a{≺Q1

},VM,n
to the vertices of the canons of the submodules.

If a{≺Q1
},VM,n

and a{≺Q2
},VM,n

are equivalent with respect to the total preorder, we

insert the submodules of a{≺Qi
},VM,n

for i = 1, 2 at both sides. We position the submodules

according to both values that are contained in their colours. Thus, if there is no submodule
that belongs in the middle at vertex a{≺Qi

},VM,n
, for i = 1, 2, the edge relation of G almost

enables us to define the canon of module VM,n, except that we still need to remove the
vertices that were replaced.

For each a ∈ A that fits in the last case, we let C(a, p, q) = {2}, otherwise C(a, p, q) = {1},
for all p, q ∈ N(TG). Note, that only in the last case, we obtain in-degrees larger than 1,
that is, there the in-degree is 2.

Edges introduced by component vertices.
Let v = vVM,n

∈ V. In the preceding step, we introduced edges for arrangement vertices
a{≺Q},VM,n

so that, if X denotes the relation defined by the final LREC=-formula in an inter-
val graph whose coloured modular decomposition tree is TG, the graph with edge relation
{(p, q) ∈ N(TG)2 | ((a{≺Q},VM,n

, p, q), ℓ) ∈ X for large enough ℓ} is almost a canon of VM,n;

we still need to insert K(LVM,n
), and remove the vertices of K(LVM,n

) that correspond to
the submodules of VM,n.

Recall from Lemma 7.9 that the canon K(LVM,n
) is STC+C-definable. The set of

vertices of K(LVM,n
) is [1, |V (LVM,n

)|]. Let R be the set of vertices that have to be re-

moved from K(VM,n), so that the resulting graph plus the edges from {(p, q) ∈ N(TG)2 |
((a{≺Q},VM,n

, p, q), ℓ) ∈ X for large enough ℓ} is isomorphic to VM,n. It is easy to define R
by considering the different cases as we did above.

Let f(r) := r − dr, where dr = |{s ∈ R | s < r}|. Then, the contracted canon
Q := {(f(p), f(q)) | (p, q) ∈ K(LVM,n

)} is STC+C-definable, and we assign it to the first
part [1, |V (LVM,n

)| − |R|] of the number sort. Thus, we set C(v, f(p), f(q)) = N(TG) for
all (p, q) ∈ K(LVM,n

). Furthermore, for each child a ∈ A of v, we include all edges from
(v, f(p), f(q)) to (a, p, q) for all p, q ∈ N(TG) \ R. Finally, for all (p, q) 6∈ K(LVM,n

) we set
C(v, f(p), f(q)) = {1}.

Finishing the construction.
In order to actually perform l-recursion we need sufficient “resources”. Taking a look at the
in-degrees, we notice that they are only larger than one when we treat isomorphic connected
components while building the disjoint union, or when the graph VM,n is symmetric and we
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insert the submodules twice at both sides. Either way, an incoming degree of d means that
we insert d disjoint isomorphic copies into the graph on the number sort. Hence, it suffices
to use a binary resource term.

Remark 7.15. It is possible to show that there is no LREC+TC[{E}]-sentence ϕ such that
for all connected interval graphs G1, G2 we have G1 ⊎G2 |= ϕ if and only if G1

∼= G2. The
proof is based on similar ideas as the proof of Theorem 5.1.

8. Conclusion

We introduce the new logics LREC and LREC=, extending first-order logic with counting by
a recursion operator that can be evaluated in logarithmic space. By capturing LOGSPACE

on trees and interval graphs, we obtain the first nontrivial descriptive characterisations of
LOGSPACE on natural classes of unordered structures. It would be interesting to extend
our results to further classes of structures such as the class of planar graphs or classes of
graphs of bounded tree width.

The expressive power of LREC= is not yet well-understood. For example, it is an open
question whether directed graph reachability is expressible in LREC=, and even whether
LREC= has the same expressive power as FP+C. (Of course assumptions from complexity
theory indicate that the answer to both questions is negative.) It is also an open question
whether reachability on undirected trees is expressible in plain LREC.

It is obvious that our capturing results can be transferred to nondeterministic logarith-
mic space NL by adding a transitive closure operator to the logic. However, it would be
much nicer to have a natural “nondeterministic” variant of our limited recursion operator
that allows it to express directed graph reachability and thus yields a logic that contains
TC. We leave it as an open problem to find such an operator.
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