
Logical Methods in Computer Science
Vol. 9(4:3)2013, pp. 1–46
www.lmcs-online.org

Submitted Feb. 28, 2012
Published Oct. 10, 2013

NON-IDEMPOTENT INTERSECTION TYPES

AND STRONG NORMALISATION

ALEXIS BERNADET a AND STÉPHANE GRAHAM-LENGRAND b

a École Polytechnique, France
e-mail address: Bernadet@LIX.Polytechnique.fr

b CNRS and École Polytechnique, France
e-mail address: Graham-Lengrand@LIX.Polytechnique.fr

Abstract. We present a typing system with non-idempotent intersection types, typing a
term syntax covering three different calculi: the pure λ-calculus, the calculus with explicit
substitutions λS, and the calculus with explicit substitutions, contractions and weakenings
λlxr.

In each of the three calculi, a term is typable if and only if it is strongly normalising, as
it is the case in (many) systems with idempotent intersections.

Non-idempotency brings extra information into typing trees, such as simple bounds on
the longest reduction sequence reducing a term to its normal form. Strong normalisation
follows, without requiring reducibility techniques.

Using this, we revisit models of the λ-calculus based on filters of intersection types,
and extend them to λS and λlxr. Non-idempotency simplifies a methodology, based on
such filter models, that produces modular proofs of strong normalisation for well-known
typing systems (e.g. System F). We also present a filter model by means of orthogonality
techniques, i.e. as an instance of an abstract notion of orthogonality model formalised in this
paper and inspired by classical realisability. Compared to other instances based on terms
(one of which rephrases a now standard proof of strong normalisation for the λ-calculus),
the instance based on filters is shown to be better at proving strong normalisation results
for λS and λlxr.

Finally, the bounds on the longest reduction sequence, read off our typing trees, are
refined into an exact measure, read off a specific typing tree (called principal); in each of
the three calculi, a specific reduction sequence of such length is identified. In the case of
the λ-calculus, this complexity result is, for longest reduction sequences, the counterpart of
de Carvalho’s result for linear head-reduction sequences.

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program Constructs—
Functional constructs / Type structures; Semantics and reasoning—Program Semantics—Operational se-
mantics / Denotational semantics.

Key words and phrases: intersection types, non-idempotence, strong normalisation, orthogonality models,
filters, complexity.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(4:3)2013
c© A. Bernadet and S. Graham-Lengrand
CC© Creative Commons

http://creativecommons.org/about/licenses

2 A. BERNADET AND S. GRAHAM-LENGRAND

Contents

1. Introduction 3
2. The calculus 6
2.1. Terms 6
2.2. Types 7
2.3. Typing contexts 8
2.4. Typing judgements 9
3. Soundness 10
3.1. Pure λ-calculus 10
3.2. λS 11
3.3. λlxr 12
4. Denotational semantics for strong normalisation 14
4.1. I-filters 15
4.2. Semantics of terms as I-filters 16
4.3. An example: System F and the likes 16
4.4. An intuitionistic realisability model 17
4.5. Orthogonality models 18
5. Completeness 22
5.1. Two properties of typing trees: Optimality and Principality 22
5.2. λS 24
5.3. Pure λ-calculus 25
5.4. λlxr 28
6. Complexity results 28
6.1. λS 29
6.2. λlxr 30
6.3. Pure λ-calculus 30
7. Other measures of complexity 31
7.1. Number of replacements 31
7.2. Number of duplications 32
7.3. The other measures 32
8. Conclusion 32
References 33
Appendix A. Filter models: classical vs. intuitionistic realisability 36
Appendix B. Preservation of semantics by reduction 36
Appendix C. Full proofs 37

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 3

1. Introduction

M :A M :B

M :A ∩B

Intersection types were introduced in [CD78, CDS79], extending the simply-
typed λ-calculus with a notion of finite polymorphism. This is achieved by
a new construct A ∩B in the syntax of types and new typing rules such as
the one on the right, where M :A denotes that a term M is of type A.

One of the motivations was to characterise strongly normalising (SN) λ-terms, namely
the property that a λ-term can be typed if and only if it is strongly normalising. Variants of
systems using intersection types have been studied to characterise other evaluation properties
of λ-terms and served as the basis of corresponding semantics [BCDC83, Lei86, Kri90, vB95,
Ghi96, AC98, Gal98, DCGL04, DCHM05, ABDC06, CS07].

This paper develops [BL11a, BL11b] with detailed proofs and extends the results to
other calculi than the pure λ-calculus, namely the calculus with explicit substitutions λS (a
minor variant of the calculi λs of [Kes07] and λes of [Ren11]), and the calculus with explicit
substitutions, explicit contractions and explicit weakenings λlxr [KL05, KL07]:

It presents a typing system (for a syntax that covers those of λ, λS and λlxr) that uses
non-idempotent intersection types (as pioneered by [KW99, NM04]).

Intersections were originally introduced as idempotent, with the equation A ∩A = A
either as an explicit quotient or as a consequence of the system. This corresponds to the
understanding of the judgement M :A ∩ B as follows: M can be used as data of type A
or as data of type B. But the meaning of M :A ∩ B can be strengthened in that M will
be used once as data of type A and once as data of type B. With this understanding,
A∩A 6= A, and dropping idempotency of intersections is thus a natural way to study control
of resources and complexity.

Using this typing system, the contributions of this paper are threefold:
Measuring worst-case complexity.
In each of the three calculi, we refine with quantitative information the property that

typability characterises strong normalisation. Since strong normalisation ensures that all
reduction sequences are finite, we are naturally interested in identifying the length of the
longest reduction sequence. This can be done as our typing system is very sensitive to the
usage of resources when terms are reduced (by any of the three calculi).

Our system actually results from a long line of research inspired by Linear Logic [Gir87].
The usual logical connectives of, say, classical and intuitionist logic, are decomposed therein
into finer-grained connectives, separating a linear part from a part that controls how and
when the structural rules of contraction and weakening are used in proofs. This can be seen as
resource management when hypotheses, or more generally logical formulae, are considered as
resource. The Curry-Howard correspondence, which originated in the context of intuitionist
logic [How80], can be adapted to Linear Logic [Abr93, BBdH93], whose resource-awareness
translates to a control of resources in the execution of programs (in the usual computational
sense). From this has emerged a theory of resource λ-calculus with semantical support
(such as the differential λ-calculus) [BL96, BCL99, ER03, BET10, BEM10]. In this line of
research, de Carvalho [dC05, dC09] obtained interesting measures of reduction lengths in
the λ-calculus by means of non-idempotent intersection types: he showed a correspondence
between the size of a typing derivation tree and the number of steps taken by a Krivine
machine to reduce the typed λ-term, which relates to the length of linear head-reductions.
But if we remain in the realm of intersection systems that characterise strong normalisation,
then the more interesting measure is the length of the longest reduction sequence.

4 A. BERNADET AND S. GRAHAM-LENGRAND

In this paper we get a result similar to de Carvalho’s, but with the measure corresponding
to strong normalisation: the length of the longest β-reduction sequence starting from any
strongly normalising λ-term can be read off its typing tree in our system.1

Moreover, the idea of controlling resource usage by intersection types naturally leads to
the investigation of calculi that handle resources more explicitly than the pure λ-calculus.
While the resource calculi along the lines of [BEM10] are well-suited to de Carvalho’s study
of head reductions, our interest in longest reduction sequences (no matter where the redexes
are) lead us to explicit substitution calculi along the lines of [KL05, KL07, Kes07, Ren11].
Hence the extension of our complexity results (already presented in [BL11a] for λ) to λS
and λlxr.2

Filter models and strong normalisation.
Intersection types were also used to build filter models of λ-calculus as early as [BCDC83].3

In particular, [CS07] shows how filters of intersection types can be used to produce models
of various type theories; this in turn provides a modular proof that the λ-terms that are
typable in some (dependent) type theory (the source system) are typable in a unique strongly
normalising system of intersection types (the target system), and are therefore strongly
normalising.

Following [BL11b], we show here an improvement on this methodology, changing the
target system of idempotent intersection types to our system of non-idempotent intersection
types.4 The benefit of that move is that the strong normalisation of this new target system
follows from the fact that typing trees get strictly smaller with every β-reduction. This
is significantly simpler than the strong normalisation of the simply-typed λ-calculus and,
even more so, of its extension with idempotent intersection types (for which [CS07] involves
reducibility techniques [Gir72, Tai75]). Strangely enough there is no price to pay for this
simplification, as the construction and correctness of the filter models with respect to a
source system is not made harder by non-idempotency.

While this improvement concerns any of the source systems treated in [CS07], we choose
to illustrate the methodology with a concrete source system that includes the impredicative
features of System F [Gir72], as suggested in the conclusion of [CS07].

Moreover, extending our improved methodology [BL11b] to the explicit substitution
calculi λS and λlxr is a new contribution that addresses problems that are reputedly
difficult: as illustrated by Melliès [Mel95], strong normalisation can be hard to satisfy by
an explicit substitution calculus. When it is satisfied, proof techniques often reduce the
problem to the strong normalisation of pure λ-terms via a property known as Preservation
of Strong Normalisation (PSN) [BBLRD96], while direct proofs (e.g. by reducibility [Gir72,
Tai75]) become hugely intricated [DL03, LLD+04] even in the simplest explicit substitution
calculus λx [BR95]. Here we have direct proofs of strong normalisation for λS and λlxr,
when it is typed with simple types, idempotent intersection types, System F types. These

1While Linear Logic also evolved typing systems that capture poly time functions [Bai02, BM03, Laf04,
GR07], let us emphasise that no linearity constraint is here imposed and all strongly normalising λ-terms
can be typed (including non-linear ones). In this we also depart from the complexity results specific to the
simply-typed λ-terms [Sch82, Bec01].

2In particular, the explicit contractions of λlxr relate to the left-introduction of intersections.
3For instance, [ABDC06] reveals how the notion of intersection type filter can be tuned so that the

corresponding filter models identify those λ-terms that are convertible by various restrictions of β- and
η-conversion.

4This also departs from [ABDC06].

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 5

are, to our knowledge, the first direct proofs for those systems (i.e. proofs that do not rely
on the strong normalisation of pure λ-terms).

Orthogonality models.
The third contribution of this paper is to show how the above methodology can be

formalised in the framework of orthogonality. Orthogonality underlies Linear Logic and its
models [Gir87] as well as classical realisability [DK00, Kri01, MM09], and is used to prove
properties of proofs or programs [Par97, MV05, LM08].

We formalise here a parametric model construction by introducing an abstract notion of
orthogonality model, which we illustrate with three different instances:

• one instance is a model made of strongly normalising terms
(which, in the case of the pure λ-calculus, captures the traditional use of orthogonality to
prove strong normalisation [Par97, LM08])
• one instance is a model made of terms that are typable with intersection types
• one instance is a model made of filters of intersection types

To our knowledge, this is the first time that some filter models are shown to be
captured by orthogonality techniques. Also, the systematic and modular approach offered
by the abstract notion of orthogonality model facilitates the comparison of different proof
techniques: As already showed in [BL11b], all three orthogonality models provide proofs of
strong normalisation for the pure λ-calculus. But here we also show that, in the case of λS
and λlxr, the term models fail to easily provide such direct proofs: one has to either infer
that a term is strongly normalising from some normalisation (resp. typing) properties of
its projection as a pure λ-term (as in the PSN property), or prove complex normalisation
(resp. typing) properties within λS and λlxr themselves (as in the IE property identified
in [Kes09]). On the contrary, the filter model provides strong normalisation results for λS
and λlxr as smoothly as for the pure λ-calculus.

Structure of the paper.
This paper aims at factorising as much material as possible between the three calculi,

and present the material specific to each of them in a systematic way.
Section 2 presents the generic syntax that covers those of λ-calculus, λS and λlxr; it

presents the (non-idempotent) intersection types, the typing system used in the rest of this
paper and its basic properties.

Section 3 proves Subject Reduction for each of the three calculi, showing that typing trees
get smaller with every reduction, from which strong normalisation is inferred (Soundness).

Section 4 presents the filter structure of our intersection types, and the construction
of a filter model for a very general source typing system, which is thus proved strongly
normalising in each of the three calculi; the abstract notion of orthogonality model is defined
with sufficient conditions for the Adequacy Lemma to hold (being typed implies having a
semantics in the model); three instances of orthogonality models are defined and compared
in the view of proving strong normalisation results for the three calculi.

Section 5 proves Subject Expansion for each of the three calculi, from which typing
derivations are shown to exist for every strongly normalising terms (Completeness); such
derivations are proved to satisfy some specific properties called optimality and principality.

Section 6 draws advantage of the optimality and principality properties to refine the
upper bound on longest reduction sequences into an exact measure that is reached by some
specific reduction sequence; this is done in each of the three calculi.

6 A. BERNADET AND S. GRAHAM-LENGRAND

Section 7 discusses alternative measures for the explicit substitution calculi λS and
λlxr, and Section 8 concludes. An appendix details the proofs of the theorems that would
otherwise overload the paper with technicalities.

2. The calculus

The intersection type system we define here was first designed for the pure λ-calculus.
However, it can easily be extended to other calculi such as the explicit substitution calculus
λS, or the explicit substitution calculus λlxr where weakenings and contractions are also
explicit.

The theories of those three calculi share a lot of material, which is why we present them
in parallel, factorising what can be factorised: For instance, the syntaxes of the three calculi
are fragments of a common grammar, for which a generic intersection type system specifies
a notion of typing for each fragment. However, the calculi do not share the same reduction
rules.

In this section, we first present the common grammar, then we define our generic
intersection type system for it.

2.1. Terms. The syntaxes of the three calculi are subsets of a common grammar defined as
follows:

M,N ::= x | λx.M |MN |M [x := N] |Wx(M) | Cy,zx (M)

The free variables fv(M) of a term M are defined by the rules of figure 1.

fv(x) = {x} fv(λx.M) = fv(M)− {x} fv(MN) = fv(M) ∪ fv(N)

fv(M [x := N]) = (fv(M)− {x}) ∪ fv(N) fv(Wx(M)) = fv(M) ∪ {x}

fv(Cy,zx (M)) =

{
(fv(M)− {y, z}) ∪ {x} if y ∈ fv(M) or z ∈ fv(M)

fv(M) otherwise

Figure 1: Free variables of a term

We consider terms up to α-equivalence and use Barendregt’s convention [Bar84] to avoid
variable capture.

Definition 2.1 (Linear terms).

• x is linear.
• If M and N are linear and fv(M) ∩ fv(N) = ∅, then MN is linear.
• If M is linear and x ∈ fv(M), then λx.M is linear.
• If M and N are linear, x ∈ fv(M) and (fv(M)− {x}) ∩ fv(N) = ∅, then M [x := N] is

linear.
• If M is linear and x /∈ fv(M), then Wx(M) is linear.
• If M is linear, y ∈ fv(M), z ∈ fv(M), and x /∈ fv(M), then Cy,zx (M) is linear.

In this paper we consider in particular the three following fragments of the above syntax.

Definition 2.2 (Fragments).

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 7

Pure λ-calculus: A λ-term is a term M that does not contain M [x := N], or Wx(M) or
Cy,zx (M).

λS-calculus: A λS-term is a term that does not contain Wx(M) or Cy,zx (M).
λlxr-calculus: A λlxr-term is a term M that is linear: every free and bound variable

appears once and only once in the term (see [KL07]).

2.2. Types. To define the intersection type system, we first define the intersection types,
which are the same for the three calculi.

Definition 2.3 (Types).
We consider a countable infinite set of elements called atomic types and use the type

variable τ to range over it.
Intersection types are defined by the following syntax:

F,G, . . . ::= τ | A→ F F -types
A,B, . . . ::= F | A ∩B A-types
U, V, . . . ::= A | ω U -types

F -types are types that are not intersections, A-types are types that are not empty and
U -types are types that can be empty.

We extend the intersection construct as an operation on U -types as follows:

A ∩ ω := A ω ∩A := A ω ∩ ω := ω

Remark 2.4. For all U and V we have :

• U ∩ V exists.
• U ∩ ω = ω ∩ U
• If U ∩ V = ω, then U = V = ω.

Note that we do not assume any implicit equivalence between intersection types (such
as idempotency, associativity, commutativity).

F -types are similar to strict types defined in [vB92].
However, in order to prove theorems such as subject reduction we will need associativity

and commutativity of the intersection ∩. So we define an equivalence relation on types.

Definition 2.5 (≈). We inductively define U ≈ V by the rules of Fig. 2.

F ≈ F A ∩B ≈ B ∩A

A ≈ A′ B ≈ B′

A ∩B ≈ A′ ∩B′
A ≈ B B ≈ C

A ≈ C

(A ∩B) ∩ C ≈ A ∩ (B ∩ C) A ∩ (B ∩ C) ≈ (A ∩B) ∩ C ω ≈ ω

Figure 2: Equivalence on intersection types

The intersection types that we use here differ from those of [BL11a], in that the
associativity and commutativity (AC) of the intersection ∩ are only featured “on the surface”
of types, and not underneath functional arrows →. This will make the typing rules much
more syntax-directed, simplifying the proofs of soundness and completeness of typing with
respect to the strong normalisation property. More to the point, this approach reduces the
use of the AC properties to the only places where they are needed.

8 A. BERNADET AND S. GRAHAM-LENGRAND

Lemma 2.6 (Properties of ≈). For all U , V , W , F , U ′, V ′,

(1) ≈ is an equivalence relation.
(2) If U ≈ ω, then U = ω and if U ≈ F , then U = F .
(3) U ∩ V ≈ V ∩ U and (U ∩ V) ∩W ≈ U ∩ (V ∩W).
(4) If U ≈ U ′ and V ≈ V ′, then U ∩ V ≈ U ′ ∩ V ′.
(5) For all U and V , if U ∩ V ≈ U , then V = ω.

Proof. See Appendix C.

We equip intersection types with a notion of sub-typing:

Definition 2.7 (⊆). We write U ⊆ V if there exists U ′ such that U ≈ V ∩ U ′.

Lemma 2.8 (Properties of ⊆). For all U , U ′, V , V ′ :

(1) ⊆ is a partial pre-order for intersection types, and U ≈ U ′ if and only if U ⊆ U ′ and
U ′ ⊆ U .

(2) U ∩ V ⊆ U and U ⊆ ω
(3) If U ⊆ U ′ and V ⊆ V ′, then U ∩ V ⊆ U ′ ∩ V ′

Proof. Straightforward with Lemma 2.6.

2.3. Typing contexts. We now lift those concepts to typing contexts before presenting
the typing rules.

Definition 2.9 (Contexts).
A context Γ is a total map from variables to U -types such that Dom(Γ) := {x | Γ(x) 6= ω}

is finite. The intersection of contexts Γ ∩∆, the relations Γ ≈ ∆ and Γ ⊆ ∆, are defined
point-wise.

By () we denote the context mapping every variable to ω and by x : U the context
mapping x to U and every other variable to ω.

The special case of Γ ∩∆ when Dom(Γ) and Dom(∆) are disjoint is denoted Γ,∆.

Lemma 2.10 (Properties of contexts). For all contexts Γ, Γ′, ∆, ∆′, Γ′′,

(1) Γ ∩ () = Γ = () ∩ Γ (for instance Γ, x :ω = Γ = x :ω,Γ)
(2) If Γ ∩∆ = (), then Γ = ∆ = () and if Γ ≈ (), then Γ = ()
(3) ≈ is an equivalence relation on contexts.
(4) Γ ∩∆ ≈ ∆ ∩ Γ and (Γ ∩ Γ′) ∩ Γ′′ ≈ Γ ∩ (Γ′ ∩ Γ′′)
(5) If Γ ≈ Γ′ and ∆ ≈ ∆′, then Γ ∩ Γ′ ≈ ∆ ∩∆′

(6) Γ ⊆ ∆ if and only if there exists Γ′ such that Γ ≈ ∆ ∩ Γ′.
(7) ⊆ is a partial pre-order for contexts, and Γ ≈ ∆ if and only if Γ ⊆ ∆ and ∆ ⊆ Γ.
(8) Γ ∩∆ ⊆ Γ
(9) If Γ ⊆ Γ′ and ∆ ⊆ ∆′, then Γ ∩∆ ⊆ Γ′ ∩∆′.

(10) (Γ, x :U) ⊆ Γ, in particular Γ ⊆ ().

Proof. The proofs of these properties are straightforward with the use of Lemma 2.6 and
Lemma 2.8.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 9

2.4. Typing judgements. Now that we have defined types and contexts we can define
typing derivations. Instead of defining three typing systems for the three calculi we can
define one typing system for the common grammar.

Definition 2.11 (Typability in System λ⊆∩).
The judgement Γ `̀̀∩⊆ M :U denotes the derivability of Γ `̀̀∩⊆ M :U with the rules of

Fig. 3. We write Γ `̀̀n∩⊆ M :U if there exists a derivation with n uses of the (App) rule.

x :F `̀̀∩⊆ x :F
(Var)

Γ, x :U `̀̀∩⊆ M :F A ⊆ U

Γ `̀̀∩⊆ λx.M :A→ F
(Abs)

Γ `̀̀∩⊆ M :A→ F ∆ `̀̀∩⊆ N :A

Γ ∩∆ `̀̀∩⊆ MN :F
(App)

Γ `̀̀∩⊆ M :A ∆ `̀̀∩⊆ M :B

Γ ∩∆ `̀̀∩⊆ M :A ∩B
(Inter)

`̀̀∩⊆ M :ω
(Omega)

Γ `̀̀∩⊆ N :A ∆, x : U `̀̀∩⊆ M :F U = A ∨ U = ω

Γ ∩∆ `̀̀∩⊆ M [x := N] :F
(Subst)

Γ, x :U, y :V1, z :V2 `̀̀∩⊆ M :F

Γ, x :U ∩ (V1 ∩ V2) `̀̀∩⊆ Cy,zx (M) :F
(Contraction)

Γ, x :U `̀̀∩⊆ M :F

Γ, x :U ∩A `̀̀∩⊆ Wx(M) :F
(Weakening)

Figure 3: System λ⊆∩

Note that the rule deriving `̀̀∩⊆ M :ω does not interfere with the rest of the system as
ω is not an A-type. It is only here for convenience to synthetically express some statements
and proofs that would otherwise need a verbose case analysis (e.g. Lemma 3.2).

Examples of how λ-terms are typed are given in the next section.
Also, note that the introduction rule for the intersection is directed by the syntax of

the types: If Γ ∩∆ `̀̀∩⊆ M :A ∩B, then the last rule of the derivation is necessarily (Inter)
and its premises are necessarily Γ `̀̀∩⊆ M :A and ∆ `̀̀∩⊆ M :B. We are not aware of any
intersection type system featuring this property, which is here a consequence of dropping the
implicit AC properties of intersections, and a clear advantage over the system in [BL11a].
Similar properties can however be found in systems such as those of [GILL11], which avoids
having to explicitly type a term by an intersection type.

Lemma 2.12 (Basic properties of λ⊆∩).

(1) If Γ `̀̀n∩⊆ M :U ∩ V , then there exist Γ1, Γ2, n1, n2 such that n = n1 + n2, Γ = Γ1 ∩ Γ2,
Γ1 `̀̀n1

∩⊆ M :U and Γ2 `̀̀n2
∩⊆ M :V .

(2) If Γ `̀̀∩⊆ M :A, then Dom(Γ) = fv(M).
(3) If Γ `̀̀n∩⊆ M :U and U ≈ U ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M :U ′

(4) If Γ `̀̀n∩⊆ M :U and U ⊆ V , then there exist m and ∆ such that m ≤ n, Γ ⊆ ∆ and
∆ `̀̀m∩⊆ M :V

Proof. The first point generalises to U -types the previous remark. The second point is by
induction on the typing tree. The third point is by induction on the derivation of U ≈ U ′,
and the fourth one combines the previous points.

10 A. BERNADET AND S. GRAHAM-LENGRAND

The following lemma is used to prove Subject Reduction in both λS and λlxr:

Lemma 2.13 (Typing of explicit substitution). Assume Γ, x :A `̀̀n∩⊆ M :B and ∆ `̀̀m∩⊆ N :A.

Then, there exists Γ′ such that Γ′ ≈ Γ ∩∆ and Γ′ `̀̀n+m
∩⊆ M [x := N] :B.

Proof. See Appendix C.

Remark 2.14. The previous theorem is not true if we replace A by ω: If B is an intersection,
we would need to duplicate the typing tree of N .

3. Soundness

In this section we prove Subject Reduction and Soundness: respectively, the property that
typing is preserved by reduction, and the property that if a term is typable, then it is
strongly normalising for the reduction relation. This is true for the three calculi, but specific
to each of them because the reduction relation is itself specific to each calculus.

Therefore in this section, we work separately on each calculus: each time, we define the
reduction rules and prove the Subject Reduction property, which leads to Soundness.

3.1. Pure λ-calculus. Remember that a pure λ-term is a term M that does not contain
any explicit substitutions M [x := N], or weakenings Wx(M) or contractions Cy,zx (M).

As we will see, only strongly normalising terms can be assigned an A-type by the system
(Theorem 3.4). In fact, all of them can (Theorem 5.21), see for instance how the example
below correctly uses the abstraction rule (A ⊆ ω).

x :F, y :ω `̀̀∩⊆ x :F

x :F `̀̀∩⊆ λy.x :A→F
Owing to non-idempotency, no closed term inhabits the simple type (τ→τ→τ ′)→(τ→τ ′)

(with τ 6= τ ′), but its natural inhabitant λf.λx.f x x in a simply-typed system can here be
given type (τ→τ→τ ′)→(τ ∩ τ→τ ′).

Definition 3.1 (Reduction in λ-calculus).
If M and N are pure λ-terms, we denote by M{x := N} the result of the (implicit)
substitution (as defined in e.g. [Bar84]).

The reduction rule is β-reduction:

(λx.M) N −→ M{x := N}
The congruent closure of this rule is denoted −→β . SNλ denotes the set of strongly

normalising λ-terms (for β-reduction).

Lemma 3.2 (Typing of implicit substitutions). If Γ, x : U `̀̀n∩⊆ M :A and ∆ `̀̀m∩⊆ N : U ,

then there exists Γ′ such that Γ′ ≈ Γ ∩∆ and Γ′ `̀̀n+m
∩⊆ M{x := N} :A.

Proof. See Appendix C.

Theorem 3.3 (Subject Reduction for λ). If Γ `̀̀n∩⊆ M :A and M −→β M ′, then there exist

m and ∆ such that m < n, Γ ⊆ ∆ and ∆ `̀̀m∩⊆ M ′ :A.

Proof. See Appendix C.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 11

B : (λx.M)N −→ M [x := N]
W : y[x := N] −→ y x 6= y
S :

x[x := N] −→ N (SR)
(M1M2)[x := N] −→ (M1[x := N])(M2[x := N]) x ∈ fv(M1), x ∈ fv(M2)
(M1M2)[x := N] −→ M1(M2[x := N]) x /∈ fv(M1), x ∈ fv(M2)
(M1M2)[x := N] −→ (M1[x := N])M2 x /∈ fv(M2)
(λy.M)[x := N] −→ λy.M [x := N] x 6= y, y /∈ fv(N)
(M1[y := M2])[x := N] −→ (M1[x := N])[y := M2[x := N]] x ∈ fv(M1), x ∈ fv(M2), y /∈ fv(N)
(M1[y := M2])[x := N] −→ M1[y := M2[x := N]] x /∈ fv(M1), x ∈ fv(M2)
(M [x := N1])[y := N2] ≡ (M [y := N2])[x := N1] x 6= y, x /∈ fv(N2), y /∈ fv(N1)

Figure 4: Reduction and equivalence rules of λS

The above theorem and its proof are standard but for the quantitative information in the
typability properties. This is where non-idempotent intersections provide a real advantage
over idempotent ones, as every β-reduction strictly reduces the number of application rules
in the typing trees: no sub-tree is duplicated in the process. This is something specific
to non-idempotent intersection types, and obviously false for simple types or idempotent
intersection types.

As a direct corollary we obtain:

Theorem 3.4 (Soundness for λ). If M is a pure λ-term and Γ `̀̀∩⊆ M :A, then M ∈ SNλ.

The converse is also true (strongly normalising terms can be typed in λ⊆∩), see The-
orem 5.21 and more generally section 5.3 (with Subject Expansion, etc.).

3.2. λS. Remember that terms of λS are terms that do not contain any weakenings Wx(M)
or contractions Cy,zx (M). In other words, we consider the extension of the pure λ-calculus
with explicit substitutions (M [x := N]). This is the same syntax as that of λx [BR95], but
unlike λx, the reduction rules only duplicate substitutions when needed. For example, the
following rule:

(M1M2)[x := N] −→ M1[x := N]M2[x := N]

can only be applied if x ∈ fv(M1) and x ∈ fv(M2).
In the other cases, the explicit substitution will only go one way. The rules are chosen

with the proof of Subject Reduction in mind, which is a simple adaptation of the proof in
the pure λ-calculus. This leads to soundness (typable implies strongly normalising), and
therefore Melliès’s counter-example [Mel95] to strong normalisation is naturally avoided.

Definition 3.5 (Reduction in λS).
The reduction and equivalence rules of λS are presented in Fig. 4.
For a set of rules E ⊆ {B,S,W} from Figure 4, −→E denotes the congruent closure of

the rules in E modulo the ≡ rule.
SNλS denotes the set of strongly normalising λS-terms for −→B,S,W .

We call this calculus λS because it is a variant of the calculi λs of [Kes07] and λes
of [Ren11]. That of [Ren11] is more general than that of [Kes07] in the sense that it allows
the reductions

12 A. BERNADET AND S. GRAHAM-LENGRAND

(1) (M1M2)[x := N] −→ M1[x := N]M2 when x /∈ fv(M1), x /∈ fv(M2)
(2) (M1M2)[x := N] −→ M1M2[x := N] when x /∈ fv(M1), x /∈ fv(M2)

Reduction (2) is problematic in our approach since, even though the Subject Reduction
property would still hold, it would not hold with the quantitative information from which
Strong Normalisation can be proved: In the typing tree, the type of M1 is not an intersection
(it is an F -type) but the type of M2 can be one. So we cannot directly type M2[x := N]. If
x ∈ fv(M2) we can use Lemma 2.13, otherwise we have to duplicate the typing tree of N .

We therefore exclude (2) from the calculus, but keep (1) as one of our rules, since it is
perfectly compatible with our approach. It is also needed to simulate (in several steps) the
general garbage collection rule below

M [x := N] −→ M (x /∈ fv(M))

which is present in both [Kes07] and [Ren11], and which we decide to restrict, for simplicity,
to the case where M is a variable different from x.5 All of our results would still hold with
the general garbage collection rule.

Lemma 3.6. −→S,W terminates.

Proof. By a polynomial argument. More precisely, see appendix C.

Theorem 3.7 (Subject Reduction for λS).
Assume Γ `̀̀n∩⊆ M :A. We have the following properties:

• If M −→B M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m < n and Γ′ `̀̀m∩⊆ M ′ :A
• If M −→S M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M ′ :A
• If M −→W M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m ≤ n and Γ′ `̀̀m∩⊆ M ′ :A
• If M ≡M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M ′ :A

Proof. See Appendix C.

Theorem 3.8 (Soundness for λS). If M is a λS-term and Γ `̀̀∩⊆ M :A, then M ∈ SNλS.

Proof. We have Γ `̀̀n∩⊆ M :A for some n, and strong normalisation is provided by a lexico-
grphic argument as follows:

• −→B strictly decreases n
• −→S and −→W decrease n or do not change it
• −→S,W terminates on its own.

3.3. λlxr. Remember that λlxr-terms are terms that are linear. In particular the typing
rules of abstraction, explicit substitution, weakening and contraction, degenerate into the
following rules when linearity is assumed:

A ⊆ C Γ, x :C `̀̀∩⊆ M :F

Γ `̀̀∩⊆ λx.M :A→ F

Γ `̀̀∩⊆ N :B ∆, x :B `̀̀∩⊆ M :F

Γ ∩∆ `̀̀∩⊆ M [x := N] :F

Γ `̀̀∩⊆ M :F

Γ, x :A `̀̀∩⊆ Wx(M) :F

Γ, y :A, z :B `̀̀∩⊆ M :F

Γ, x :A ∩B `̀̀∩⊆ Cy,zx (M) :F

5[Kes07] needs the general version, if only for the lack of rule (1).

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 13

Remark 3.9. Had we defined the (Weakening) and (Contraction) rules as above from the
start (cf. Fig. 3), we would have had to add extra conditions for Theorems 4.9.5 and 4.9.6
to hold. This would amount to assuming some of the consequences of linearity. We prefer to
keep Theorem 4.9 and the whole of Section 4 calculus-independent, by giving a more general
definition of the two rules.

Definition 3.10 (Reduction in λlxr).
The reduction and equivalence rules of λlxr are presented in Fig. 5.
For a set of rules E from Fig. 5 denotes the congruent closure of the rules in E modulo

the equivalence rules.
SNλlxr denotes the set of strongly normalising λlxr-terms for the entire reduction

relation.

B : (λx.M)N −→ M [x := N]
SR : x[x := N] −→ N
SP : (M1M2)[x := N] −→ (M1[x := N])M2 x ∈ fv(M1)

(M1M2)[x := N] −→ M1(M2[x := N]) x ∈ fv(M2)
(λy.M)[x := N] −→ λy.M [x := N] x 6= y, y /∈ fv(N)
Wy(M)[x := N] −→ Wy(M [x := N]) x 6= y

Cz1,z2y (M)[x := N] −→ Cz1,z2y (M [x := N]) y 6= x, y /∈ fv(N), zi /∈ fv(N)
W : Wx(M)[x := N] −→ Wfv(N)(M)

D : Cy,zx (M)[x := N] −→ CY,ZX (M [y := N1][z := N2])
ACC : Cx,vw (Cz,yx (M)) ≡ Cx,yw (Cz,vx (M)) x 6= y, v

Cy,zx (M) ≡ Cz,yx (M)

Cy
′,z′

x′ (Cy,zx (M)) ≡ Cy,zx (Cy
′,z′

x′ (M)) x 6= y′, z′&x′ 6= y, z
M1[y := M2][x := N] −→ M1[y := M2[x := N]] x ∈ fv(M2)

ACW : Wx(Wy(M)) ≡ Wy(Wx(M))
CS : M [x := N1][y := N2] ≡ M [y := N2][x := N1] y /∈ fv(N1), x /∈ fv(N2)

Cy,zw (M)[x := N] ≡ Cy,zw (M [x := N]) x 6= w,&y, z /∈ fv(N)
WAbs : λx.Wy(M) −→ Wy(λx.M) x 6= y
WApp1 : Wy(M)N −→ Wy(MN)
WApp2 : MWy(N) −→ Wy(MN)
WSubs : M [x := Wy(N)] −→ Wy(M [x := N])
Merge : Cy,zw (Wy(M)) −→ Rzw(M)
Cross : Cy,zw (Wx(M)) −→ Wx(Cy,zw (M)) x 6= y, x 6= z
CAbs : Cy,zw (λx.M) −→ λx.Cy,zw (M)
CApp1 : Cy,zw (MN) −→ Cy,zw (M)N y, z ∈ fv(M)
CApp2 : Cy,zw (MN) −→ MCy,zw (N) y, z ∈ fv(N)
CSubs : Cy,zw (M [x := N]) −→ M [x := Cy,zw (N)] y, z ∈ fv(N)

In rule D, X = fv(N), N1 = N{ ~X := ~Y }, N2 = N{ ~X := ~Z}, Y , Z fresh sets of variables in
bijection with X. In rule Merge, Rzw(M) is the renaming of z by w in M .

Figure 5: Reduction and equivalence rules of λlxr

Theorem 3.11 (Subject Reduction for λlxr). If Γ `̀̀n∩⊆ M :A then:

14 A. BERNADET AND S. GRAHAM-LENGRAND

• If M −→B M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m < n, and Γ′ `̀̀m∩⊆ M ′ :A
• If M −→E M ′ and B /∈ E, then there exist Γ′ and m such that Γ ⊆ Γ′, m ≤ n and

Γ′ `̀̀m∩⊆ M ′ :A.
• If M ≡M ′ then there exist Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M ′ :A.

Proof. See Appendix C.

Theorem 3.12 (Soundness for λlxr). If M is a λlxr-term and Γ `̀̀∩⊆ M :A, then M ∈
SNλlxr.

Proof. Similarly to λS we have Γ `̀̀n∩⊆ M :A for some n, and strong normalisation is provided
by a lexicogrphic argument as follows:

• −→B strictly decreases n
• Any other reduction −→E decreases n or does not change it
• The reduction system without the B rule terminates on its own [KL07].

4. Denotational semantics for strong normalisation

In this section we show how to use non-idempotent intersection types to simplify the
methodology of [CS07], which we briefly review here:

The goal is to produce modular proofs of strong normalisation for various source typing
systems. The problem is reduced to the strong normalisation of a unique target system of
intersection types, chosen once and for all. This is done by interpreting each term t as the
set JtK of the intersection types that can be assigned to t in the target system. Two facts
then remain to be proved:

(1) if t can be typed in the source system, then JtK is not empty
(2) the target system is strongly normalising

The first point is the only part that is specific to the source typing system: it amounts to
turning the interpretation of terms into a filter model of the source typing system. The
second point depends on the chosen target system: as [CS07] uses a system of idempotent
intersection types (extending the simply-typed λ-calculus), their proof involves the usual
reducibility technique [Gir72, Tai75]. But this is somewhat redundant with point 1 which
uses similar techniques to prove the correctness of the filter model with respect to the source
system.6

In this paper we propose to use non-idempotent intersection types for the target system,
so that point 2 can be proved with simpler techniques than in [CS07] while point 1 is not

impacted by the move. In practice we propose λ⊆∩ as the target system (that of [BL11a]
would work just as well). The present section shows the details of this alternative.

Notice that λ⊆∩ is not an extension of the simply-typed λ-calculus, in that a typing tree in

the system of simple types is not a valid typing tree in system λ⊆∩ , which uses non-idempotent
intersections (while it is a valid typing tree in the system of [CS07] which uses idempotent
intersections). But a nice application of our proposed methodology is that, by taking the

simply-typed lambda-calculus as the source system, we can produce a typing tree in λ⊆∩
from a typing tree with simple types. We do not know of any more direct encoding.

6If reducibility techniques are needed for the latter, why not use them on the source system directly
(besides formulating a modular methodology)?

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 15

4.1. I-filters. The following filter constructions only involve the syntax of types and are
independent from the chosen target system.

Definition 4.1 (I-filter).

• An I-filter is a set v of A-types such that:
− for all A and B in v we have A ∩B ∈ v
− for all A and B, if A ∈ v and A ⊆ B, then B ∈ v
• In particular the empty set and the sets of all A-types are I-filters and we write them ⊥

and > respectively.
• Let D be the sets of all non-empty I-filters; we call such I-filters values.
• Let E be the sets of all I-filters (E = D ∪ {⊥}).

While our intersection types differ from those in [CS07] (in that idempotency is dropped),
the stability of a filter under type intersections makes it validate idempotency (it contains A
if and only if it contains A ∩A, etc). This makes our filters very similar to those in [CS07],
so we can plug-in the rest of the methodology with minimal change.

Remark 4.2 (Basic properties of I-filters).

(1) If (vi)i∈I is an non empty family of E , then
⋂
i∈I vi ∈ E .

(2) If v is a set of A-types, then there is a smallest v′ ∈ E such that v ⊆ v′ and we write
< v >:= v′.

(3) If v is a set of F -types, then < v > is the closure of v under finite intersections.
(4) If v ∈ E , then v =< {F | F ∈ v} >.
(5) If u and v are sets of F -types such that < u >=< v >, then u = v.

Hence, in order to prove that two I-filters are equal we just have to prove that they
contain the same F -types.

I-filters form an applicative structure:

Definition 4.3 (Application of I-filters). If u, v are in E , then define

u@v := < {F | ∃A ∈ v, (A→ F) ∈ u} >

Remark 4.4. For all u ∈ E , u@⊥ = ⊥@u = ⊥, and for all u ∈ D, >@u = >.

Definition 4.5 (Environments and contexts).
An environment is a map from term variables x, y, . . . to I-filters.
If ρ is an environment and Γ is a context, we say that Γ ∈ ρ, or Γ is compatible with ρ,

if for all x, Γ(x) = ω or Γ(x) ∈ ρ(x).
Assume ρ is an environment, u is an I-filter and x is a variable. Then, the environment

ρ, x 7→ u is defined as follows:

(ρ, x 7→ u)(x) := u
(ρ, x 7→ u)(y) := ρ(y) ∀y 6= x

Remark 4.6 (Environments are I-filters of contexts). 7 Let ρ be an environment.

(1) If Γ ∈ ρ and Γ′ ∈ ρ, then Γ ∩ Γ′ ∈ ρ.
(2) If Γ ∈ ρ and Γ′ is a context such that Γ ⊆ Γ′, then Γ′ ∈ ρ.

7Conversely, if E is an I-filter of contexts, then ρ, defined by ρ(x) = {Γ(x) 6= ω | Γ ∈ E} for all x, is an
environment.

16 A. BERNADET AND S. GRAHAM-LENGRAND

4.2. Semantics of terms as I-filters. The remaining ingredients now involve the target
system; we treat here λ⊆∩ .

Definition 4.7 (Interpretation of terms).
If M is a term and ρ is an environment we define

JMKρ := {A | ∃Γ ∈ ρ,Γ `̀̀∩⊆ M :A}

Remark 4.8. JMKρ ∈ E , and therefore JMKρ =< {F | ∃Γ ∈ ρ,Γ `̀̀∩⊆ M :F} >.

Theorem 4.9 (Inductive characterisation of the interpretation).

(1) JxKρ = ρ(x)

(2) JMNKρ = JMKρ@JNKρ
(3) Jλx.MKρ@u = JMKρ,x7→u if u 6= ⊥.

(4) JM [x := N]Kρ = JMKρ,x7→JNKρ
if JNKρ 6= ⊥

(5) JWx(M)Kρ = JMKρ if ρ(x) 6= ⊥.

(6) JCy,zx (M)Kρ = JMKρ,y 7→ρ(x),z 7→ρ(x).

Proof. See Appendix C.

This theorem makes λ⊆∩ a suitable alternative as a target system: the filter models of the
source systems treated in [CS07] can be done with a system of non-idempotent intersection
types. While we could develop those constructions, we prefer to cover a new range of source
systems: those with second-order quantifiers such as System F .

4.3. An example: System F and the likes.

Definition 4.10 (Types and Typing System). Types are built by the following grammar:

A,B, . . . ::= α | A→B | A ∩B | ∀αA
where α denotes a type variable, ∀αA binds α in A, types are considered modulo α-conversion,
and ftv(A) denotes the free (type) variables of A.

Typing contexts, denoted G, H, . . . are partial maps from term variables to types, and
(x :A) denotes the map from x to A.

Let S be the typing system consisting of the rules in Fig. 6.
Typability in system S will be expressed by judgements of the form G `̀̀S M :A.

Remark 4.11. Note that the typing rules in System S do not necessarily follow the
philosophy of the λlxr-calculus and the λS-calculus. For example, we would expect a typing
system for λS or λlxr to be such that the domain of the typing context is exactly the set of
free variables in the typed term (this leads to interesting properties and better encodings
into proof-nets -see e.g. [KL07]).

However here, we are only interested in strong normalisation, and we therefore consider
a typing system as general as possible (hence the accumulation of rules in Fig. 6), i.e. a
typing system such that the terms that are typed in an appropriate typing system (such as
that of [KL07] for λlxr) can be typed here. This is the case of System S. Alternatively, we
could also adapt and tailor the proof of strong normalisation below to the specific typing
system in which we are interested.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 17

G, x :A `̀̀∩⊆ x :A

G, x :A `̀̀∩⊆ M :B

G `̀̀∩⊆ λx.M :A→B

G `̀̀∩⊆ M :A→B G `̀̀∩⊆ N :A

G `̀̀∩⊆ M N :B

G `̀̀∩⊆ M :A G `̀̀∩⊆ M :B

G `̀̀∩⊆ M :A ∩B

G `̀̀∩⊆ M :A ∩B

G `̀̀∩⊆ M :A

G `̀̀∩⊆ M :A ∩B

G `̀̀∩⊆ M :B

G `̀̀∩⊆ M :A
α /∈ ftv(G)

G `̀̀∩⊆ M :∀αA

G `̀̀∩⊆ M :∀αA

G `̀̀∩⊆ M :A{α := B}

G `̀̀∩⊆ N :A G, x :A `̀̀∩⊆ M :B

G `̀̀∩⊆ M [x := N] :B

G `̀̀∩⊆ M :B x /∈ dom(G)

G, x :A `̀̀∩⊆ Wx(M) :B

G, y :A, z :A `̀̀∩⊆ M :B

G, x :A `̀̀∩⊆ Cy,zx (M) :B

Figure 6: Miscellaneous Typing Rules

4.4. An intuitionistic realisability model. We now build the model Mi
F as follows:

Definition 4.12 (Realisability Predicate). A realisability predicate is a subset X of D
containing >. We define TP(D) as the set of realisability predicates.

Lemma 4.13 (Shape of realisability predicates).

(1) If (Xi)i∈I is a non empty family of TP(D), then
⋂
i∈I Xi ∈ TP(D).

(2) If X and Y in TP(D), then X → Y ∈ TP(D) where X → Y is defined as

X → Y := {u | ∀v ∈ X,u@v ∈ Y }

Proof. The only subtle point is the second one: First, for all v ∈ X, v 6= ⊥ and thus
>@v = > ∈ Y . So > ∈ X → Y . Second, suppose that ⊥ ∈ X → Y . As X 6= ∅, there is
u ∈ X, for which ⊥@u = ⊥ ∈ Y , which contradicts the fact that Y ∈ TP(D).

We can now interpret types:

Definition 4.14 (Interpretation of types).
Valuations are mappings from type variables to elements of TP(D).

Given such a valuation σ, the interpretation of types is defined as follows:

JαKσ := σ(α)
JA→BKσ := JAKσ→JBKσ

JA ∩BKσ := JAKσ ∩ JBKσ
J∀αAKσ :=

⋂
X∈TP(D) JAKσ,α7→X

The interpretation of typing contexts is defined as follows:

JGKσ := {ρ | ∀(x :A) ∈ G, ρ(x) ∈ JAKσ}

Finally we get Adequacy:

Lemma 4.15 (Adequacy Lemma). If G `̀̀S M : A, then for all valuations σ and for all
mappings ρ ∈ JGKσ we have JMKρ ∈ JAKσ.

Proof. By induction on the derivation of G `̀̀S M :A, using Theorem 4.9 (and the fact that
JA{α := B}Kσ = JAKσ,α7→JAKσ

, which is proved by induction on A).

18 A. BERNADET AND S. GRAHAM-LENGRAND

Corollary 4.16 (Strong normalisation of S). If G `̀̀S M :A, then M ∈ SN.

Proof. Applying the previous lemma with σ mapping every type variable to {>} and ρ
mapping all term variables to >, we get JMKρ ∈ JAKσ, so JMKρ 6= ⊥. Hence, M can be

typed in λ⊆∩ , so M ∈ SN.

The advantage of non-idempotent intersection types (over idempotent ones) lies in

the very last step of the above proof: here the typing trees of λ⊆∩ get smaller with every
β-reduction (proof of Theorem 3.4), while a reducibility technique as in [CS07] combines
yet again an induction on types with an induction on typing trees similar to that in the
Adequacy Lemma.

4.5. Orthogonality models. In this section we show how the above methodology can be
integrated to the theory of orthogonality, i.e. how this kind of filter model construction can
be captured by orthogonality techniques [Gir87, DK00, Kri01, MM09]. These techniques are
particularly suitable to prove that typed terms satisfy some property [Par97, MV05, LM08],
the most well-known of which being Strong Normalisation.

For this we define an abstract notion of orthogonality model for the system S defined
in Fig. 6. In particular our definition also applies to sub-systems such as the simply-typed
λ-calculus, the idempotent intersection type system, System F , etc. We could also adapt it
with no difficulty to accommodate System Fω.

Orthogonality techniques and the filter model construction from Section 4.1 (with the
sets D and E) inspire the notion of orthogonality model below. First we need the following
notations:

Notation 4.17. Given a set D, let D∗ be the set of lists of elements of D, with [] representing
the empty list and u ::~v representing the list of head u and tail ~v.

Definition 4.18 (Orthogonality model).
An orthogonality model is a 4-tuple (E ,D, ⊥⊥ , J K) where

• E is a set, called the support
• D ⊆ E is a set of elements called values
• ⊥⊥ ⊆ D ×D∗ is called the orthogonality relation
• J K is a function mapping every term M (typed or untyped) to an element JMKρ of the

support, where ρ is a parameter called environment mapping term variables to values.
• the following axioms are satisfied:

(A1) For all ρ, ~v, x, if ρ(x) ⊥⊥ ~v, then JxKρ ⊥⊥ ~v.

(A2) For all ρ, ~v, M1, M2, if JM1Kρ ⊥⊥ (JM2Kρ ::~v), then JM1 M2Kρ ⊥⊥ ~v.

(A3) For all ρ, ~v, x, M and for all values u,
if JMKρ,x 7→u ⊥⊥ ~v, then Jλx.MKρ ⊥⊥ (u ::~v).

(A4) For all ρ, ~v, x, M1, M2,
if JM2Kρ is a value and JM1Kρ,x7→JM2Kρ

⊥⊥ ~v, then JM1[x := M2]Kρ ⊥⊥ ~v.

(A5) For all ρ, ~v, x, M (such that x /∈ fv(M)) and for all values u,
if JMKρ ⊥⊥ ~v, then JWx(M)Kρ,x 7→u ⊥⊥ ~v.

(A6) For all ρ, ~v, x, y, z (distinct variables), M (such that x /∈ fv(M)) and for all values
u,

if JMKρ,y 7→u,z 7→u ⊥⊥ ~v, then JCy,zx (M)Kρ,x7→u ⊥⊥ ~v.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 19

In fact, D and ⊥⊥ are already sufficient to interpret any type A as a set JAK of values:
if types are seen as logical formulae, we can see this construction as a way of building some
of their realisability / set-theoretical models.

There is no notion of computation pertaining to values, but the interplay between the
interpretation of terms and the orthogonality relation is imposed by the axioms so that the
Adequacy Lemma (which relates typing to semantics) holds:

If `̀̀S∩⊆ M :A, then JMK ∈ JAK

4.5.1. Semantics of types and Adequacy Lemma.

Definition 4.19 (Orthogonal).

• If X ⊆ D, then let X⊥ := {~v ∈ D∗ | ∀u ∈ X,u ⊥⊥ ~v}
• If Y ⊆ D∗, then let Y ⊥ := {u ∈ D | ∀~v ∈ Y, u ⊥⊥ ~v}

Remark 4.20. If X ⊆ D or X ⊆ D∗, then X ⊆ X⊥⊥ and X⊥⊥⊥ = X⊥.

Definition 4.21 (Lists and Cons construct).
If X ⊆ D and Y ⊆ D∗, then define X ::Y := {u ::~v | u ∈ X,~v ∈ Y }.

Definition 4.22 (Interpretation of types).
Mappings from type variables to subsets of D∗ are called valuations.

Given such a valuation σ, the interpretation of types is defined as follows:

[α]σ := σ(α)
[A→B]σ := JAKσ :: [B]σ

[A ∩B]σ := [A]σ ∪ [B]σ
[∀αA]σ :=

⋃
Y⊆D∗ [A]σ,α7→Y

JAKσ := [A]⊥σ
The interpretation of typing contexts is defined as follows:

JGKσ := {ρ | ∀(x :A) ∈ G, ρ(x) ∈ JAKσ}

Remark 4.23. Note that [A{α := B}]σ = [A]σ,α7→[B]σ
and JA{α := B}Kσ = JAKσ,α7→[B]σ

.

Also note that JA ∩BKσ = JAKσ ∩ JBKσ and J∀αAKσ =
⋂
Y⊆D∗ JAKσ,α7→Y .

An orthogonality model is a sufficiently rich structure for Adequacy to hold:

Lemma 4.24 (Adequacy Lemma).
If G `̀̀S M : A, then for all valuations σ and for all mappings ρ ∈ JGKσ we have

JMKρ ∈ JAKσ.

Proof. By induction on G `̀̀S M :A, using the axioms (A1),. . . ,(A6) from Definition 4.18.
See Appendix C.

4.5.2. The special case of applicative structures. In the next section we present instances of
orthogonality models. They will have in common that E is an applicative structure, as we
have seen with I-filters. This motivates the following notion:

Definition 4.25 (Applicative orthogonality model).
An applicative orthogonality model is a 4-tuple (E ,D,@, J K) where:

• E is a set, D is a subset of E , @ is a (total) function from E ×E to E , and J K is a function
(parametrised by an environment) from λ-terms to the support.

20 A. BERNADET AND S. GRAHAM-LENGRAND

• (E ,D, ⊥⊥ , J K) is an orthogonality model,
where the relation u ⊥⊥ ~v is defined as (u@~v) ∈ D
(writing u@~v for (. . . (u@v1)@ . . .@vn) if ~v = v1 :: . . . vn :: []).

Remark 4.26. Axioms (A1) and (A2) are ensured provided that JM NKρ = JMKρ@JNKρ
and JxKρ = ρ(x). These conditions can hold by definition (as in term models, cf. the next

Section), or can be proved (as in Theorem 4.9, which also proves axioms (A3)-(A6)).

4.5.3. Instances of orthogonality models. We now give instances of (applicative) orthogonality
models with well-chosen sets of values, applications, and interpretations of terms, with the
aim of deriving the strong normalisation of a term M of type A in S from the property
JMK ∈ JAK.

The first two instances are term models: terms are interpreted as pure λ-terms (see
Definition 4.27), so the support of those term models is the set of all pure λ-terms seen as
an applicative structure (using term application: M1@termM2 := M1 M2).

Definition 4.27 (Interpretation of terms in a term model).

JxKtermρ := ρ(x)

JM1 M2Ktermρ := JM1Ktermρ JM2Ktermρ

Jλx.MKtermρ := λx.JMKtermρ,x 7→x
JM [x := N]Ktermρ := JMKtermρ,x 7→JNKtermρ

JWx(M)Ktermρ := JMKtermρ

JCy,zx (M)Ktermρ := JMKtermρ,y 7→ρ(x),z 7→ρ(x)

Remark 4.28. JM{x := N}Ktermρ = JMKtermρ,x7→JNKtermρ

In the first instance, values are those pure λ-terms that are strongly normalising (for β).
If we concentrate on the interpretation (as themselves) of the pure λ-terms that are typed in
S, we have an orthogonality model that rephrases standard proofs of strong normalisation
by orthogonality or reducibility candidates [Par97, LM08].

In the second instance, values are those pure λ-terms that can be typed with intersection
types, for instance in system λ⊆∩ .

Theorem 4.29. The structures

• M⊥⊥SN := (Λλ,SNλ,@term, J Kterm)

• M⊥⊥∩ := (Λλ,Λλ∩,@
term, J Kterm) (where Λλ∩ is the set of pure λ-terms typable in λ⊆∩)

are applicative orthogonality models.

Indeed, the applicative structuresM⊥⊥SN andM⊥⊥∩ already satisfy axioms (A1), (A2), and

(A4) to (A6), because of Definition 4.27. Axiom (A3) holds in M⊥⊥SN and M⊥⊥∩ because of
their respective expansion properties:

Lemma 4.30 (Expansion).

(1) If M{x := P} ~N ∈ SNλ and P ∈ SNλ, then (λx.M) P ~N ∈ SNλ.

(2) If M{x := P} ~N ∈ Λλ∩ and P ∈ Λλ∩, then (λx.M) P ~N ∈ Λλ∩.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 21

Admittedly, once λ⊆∩ has been proved to characterise SNλ (Theorems 3.4 and 5.21), the
two points are identical and so are the two models M⊥⊥SN and M⊥⊥∩ . But involving the bridge
of this characterisation goes much beyond what is needed for either point: point 1 is a known
fact of the literature; point 2 is a simple instance of Subject Expansion (Theorem 5.19 in
the next section) not requiring Subject Reduction (Theorem 3.3) while both are involved

at some point in the more advanced property SNλ = Λλ
∩. In brief, as we are interested in

comparing proof techniques for the strong normalisation of System S, the question of which
properties are used and in which order matters.

Now using the Adequacy Lemma (Lemma 4.24), we finally get:

Corollary 4.31. If G `̀̀S M :A, then:

M⊥⊥SN For all valuations σ and all mappings ρ ∈ JGKσ we have JMKtermρ ∈ SNλ.

M⊥⊥∩ For all valuations σ and all mappings ρ ∈ JGKσ
there exist Γ and A such that Γ `̀̀∩⊆ JMKtermρ :A, and therefore JMKtermρ ∈ SNλ.

For M⊥⊥∩ we conclude of course by using Theorem 3.4.

Now notice that, if M is a pure λ-term, this entails M ∈ SNλ by choosing, in both
models, σ to map every type variable to the empty set, and ρ to map every term variable to
itself. Indeed we have:

Remark 4.32. In both structures M⊥⊥SN and M⊥⊥∩ we can check that:

For all lists ~N of values, and any term variable x, x ⊥⊥ ~N .
Hence, for all valuations σ and all types A, x ∈ JAKσ.

However if M is not a pure λ-term, it is not obvious to derive an interesting normalisation
result for M , given that the explicit substitutions / weakenings / contractions in M have

disappeared in JMKtermρ (and in the case ofM⊥⊥SN , relating SNλ to SNλS or SNλlxr is another

task to do).
An idea would be to tweak the interpretation of terms so that every term is interpreted

as itself, even if it has explicit substitutions / weakenings / contractions:

JM [x := N]Ktermρ := JMKtermρ,x 7→x[x := JNKtermρ]

JWx(M)Ktermρ := Wx(JMKtermρ)

JCy,zx (M)Ktermρ := Cy,zx (JMKtermρ,y 7→y,z 7→z)

But proving axioms (A1) to (A6) then becomes much more difficult. This is however the
direction taken by [Kes09] for the explicit substitution calculus λex, where the methodological
cornerstone is a property called IE, which is nothing else but axiom (A4) in M⊥⊥SN . For

M⊥⊥∩ , it might be possible to prove the axioms by inspecting typing derivations and/or using
Subject Expansion (Theorem 5.19 in the next section).

A quicker way is to depart from term models and turn the filter model Mi
F from

Section 4.4 into an orthogonality model: a term is interpreted as the filter of the intersection
types that it can be assigned (e.g. in λ⊆∩ , see Definition 4.7), and orthogonality is defined in
terms of filters being non-empty.

Strong Normalisation will then follow, in a very uniform way for the three calculi λ, λS,
and λlxr, from the fact that terms typable with intersection types are themselves strongly
normalising (Theorems 3.4, 3.8, 3.12 for λ⊆∩).

Theorem 4.33. The structure M⊥⊥F := (E ,D,@, J K) (with the four components as defined
in Section 4.1) is an applicative orthogonality model.

22 A. BERNADET AND S. GRAHAM-LENGRAND

Proof. Indeed,M⊥⊥F satisfies axioms (A1) to (A6) as immediate consequences of Theorem 4.9.

Remark 4.34. For M⊥⊥F we now have: For all list of values ~v, > ⊥⊥ ~v.
Hence, for all valuations σ and all types A, > ∈ JAKσ.

Now using the Adequacy Lemma (Lemma 4.24), we finally get:

Corollary 4.35. If G `̀̀S M :A, then:
For all valuations σ and all mappings ρ ∈ JGKσ we have JMKρ 6= ⊥.

Hence, there exist Γ and A such that Γ `̀̀∩⊆ M :A.

Finally, M ∈ SNλ (resp. M ∈ SNλS, M ∈ SNλlxr, according to the calculus considered).

Proof. The first statement holds because ⊥ /∈ D and JAKσ ⊆ D. To prove the second, we
need to show that there exist such a σ and such a ρ; take σ to map every type variable to
the empty set and take ρ to map every term variable to >. The final result comes from
Theorem 3.4 (resp. Theorem 3.8, Theorem 3.12).

5. Completeness

In Section 3 we have shown that for the three calculi, if a term is typable with intersection
types, then it is strongly normalising. We have briefly mentioned that the converse is true.
In this section we give a proof for the three calculi. Moreover, the typing trees obtained
by these completeness theorems satisfy some interesting properties that will be used in the
next sections (for the complexity results): they are optimal and principal.

The proof of completeness for λS is simpler than the one for the pure λ-calculus. This
is why, in this section, that we will treat the λS calculus first.

5.1. Two properties of typing trees: Optimality and Principality. In the next sub-
section we will notice that the typing trees produced by the proof of completeness all satisfy
a particular properties. In this section we define these properties. The first of these is
optimality.

This property involves the following notions:

Definition 5.1 (Subsumption and forgotten types).

• If π is a typing tree, we say that π does not use subsumption if it features an occurrence
of the abstraction rule where the condition A ⊆ U is either A ≈ U or A ⊆ ω.
• We say that a type A is forgotten in an instance of rule (Abs) or rule (Subst) if in the

side-condition of the rule we have U = ω.
• If a typing tree π uses no subsumption, we collect the list of its forgotten types, written

forg(π), by a standard prefix and depth-first search of the typing tree π.

The optimal property also involves refining the grammar of types:

Definition 5.2 (Refined intersection types). A+, A−, A−− and U−− are defined by the
following grammar:

A+, B+ ::= τ | A−− → B+

A−−, B−− ::= A− | A−− ∩B−−
A−, B− ::= τ | A+ → B−

U−−, V −− ::= A−− | ω

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 23

We say that Γ is of the form Γ−− if for all x, Γ(x) is of the form U−−. The degree of a type
of the form A+ is the number of arrows in negative positions:

δ+(τ) := 0
δ+(A−− → B+) := δ−(A−−) + δ+(B+) + 1

δ−(A−− ∩B−−) := δ−(A−−) + δ−(B−−)

δ−(τ) := 0
δ−(A+ → B−) := δ+(A+) + δ−(B−)

Remark 5.3. If A+ ≈ B+, then δ+(A) = δ+(B), and if A−− ≈ B−−, then δ−(A−−) =
δ−(B−−).

We can finally define the optimal property:

Definition 5.4 (Optimal typing). A typing tree π concluding Γ `̀̀∩⊆ M :A is optimal if

• There is no subsumption in π
• A is of the form A+

• For every (x : B) ∈ Γ, B is of the form B−−

• For every forgotten type B in π, B is of the form B+.

We write Γ `̀̀opt M :A+ if there exists such π.
The degree of such a typing tree is defined as

δ(π) = δ+(A+) + Σx : B−−∈Γδ
−(B−−) + ΣC+∈forg(π)δ

+(C+)

In this definition, A+ is an output type, A− is a basic input type (i.e. for a variable
to be used once), and A−− is the type of a variable that can be used several times. The
intuition behind this asymmetric grammar can be found in linear logic:

Remark 5.5. Intersection in a typing tree means duplication of resource. So intersections
can be compared to exponentials in linear logic [Gir87]. Having an optimal typing tree
means that duplications are not needed in certain parts of the optimal typing tree. In the
same way, in linear logic, we do not need to have exponentials everywhere: A simple type T
can be translated as a type T ∗ of linear logic as follows:

τ∗ := τ
(T → S)∗ := !T ∗(S∗

We can find a more refined translation; it can also be translated as T+ and T− as follow :

τ+ := τ τ− := τ
(T → S)+ := !T−(S+ (T → S)− := T+ (S−

And we have in linear logic : T− ` T ∗ and T ∗ ` T+. So the translation T+ is sound and uses
less exponentials that the usual and naive translation. In some way, it is more “optimal”.
The main drawback is that we cannot compose proofs of optimal translations easily.

We now introduce the second of these properties: the notion of principal typing.

Definition 5.6 (Principal typing).

24 A. BERNADET AND S. GRAHAM-LENGRAND

A typing tree π of M is principal8 if it is optimal and of minimal degree: For every
optimal typing tree π′ of M , δ(π) ≤ δ(π′).

5.2. λS. In order to prove the completeness of the typing system with respect to SNλS , we
first show that terms in normal form (for some adequate notion of normal form) can be
typed, and then we prove Subject Expansion for a notion of reduction that can reduce any
term in SNλS to a normal form (which we know to be typed). In λS, Subject Expansion
is true only for −→B,S (not for −→W). We will prove that it is enough for completeness.
The main reason is that −→W can be postponed w.r.t. −→B,S :

Lemma 5.7 (Erasure postponement).

• If M −→W −→B M ′, then M −→B −→W M ′.
• If M −→W −→S M ′, then M −→+

S −→
+
W M ′.

• If M −→∗S,W M ′, then M −→∗S −→∗W M ′

Proof. The first two points are proved by inspection of the rules: a substitution never blocks
computation.

The third point: Let L a S,W reduction sequence from M to M ′.
If L is not a of the form −→∗S −→∗W , then there exists −→W −→S in L and by using the

second point we can replace it by −→+
S −→

+
W to obtain a reduction sequence L′. Therefore

we have a non-deterministic rewriting of L.
This rewriting increases or does not change the size of L. According to Lemma 3.6,

M is strongly normalising for S,W . Therefore, after a certain number of steps, the size
of L does not change. So, after a certain number of steps, the rewriting is just replacing
−→W −→S by −→S −→W and this terminates. Hence, this rewriting terminates.

By taking a normal form of this rewriting we have M −→∗S −→∗W M ′.

Therefore, the normal forms for −→B,S are “normal enough” to be easily typed:

Lemma 5.8 (Typability of B,S-normal term).
If M cannot be reduced by −→B,S , then there exist Γ and A such that Γ `̀̀opt M :A.

Proof. By induction on M .
We use the fact that if M cannot be reduced by −→B,S , then M is of one of the

following form:

• λx.M1

• x[y1 := M1] · · · [yn := Mn]N1 · · ·Nn

Each of them can easily be typed by a principal typing tree using the induction hypothesis.

8 In the literature, principality is often used (see e.g. [Wel02]) for a typing judgement that characterises,
for a given term, all of its derivable typing judgements: they are all obtained from the principal one
by instantiation of its type variables. This notion was our guiding intuition (and we therefore kept the
terminology) and does relate to a notion of minimality in the size of types (a type is smaller in size than
its instances). But for our purpose, we needed a notion that also says something about typing trees rather
than the typing judgements that they derive, so optimality of typing trees led to a notion of principality on
trees rather than judgements. Saying that all (optimal) typing trees can be obtained by instantiation of the
principal one would require quotienting the trees to identify irrelevant differences (integrating AC-equivalence
of types and contexts), so it was simpler to express a minimality condition on degrees, both to define the
notion and to use it in Section 6 for Complexity results.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 25

Remark 5.9. The algorithm given by the previous proof gives us a principal typing tree.

Theorem 5.10 (Subject Expansion).
If M −→B,S M ′ and Γ′ `̀̀∩⊆ M ′ :A, then there exist Γ ≈ Γ′ such that Γ `̀̀∩⊆ M :A.
Moreover, the optimality property, the degree, and the principality property are all

preserved.

Proof. First by induction on −→B,S and ≈, then by induction on A.
We adapt the proof of Subject Reduction. The optimality property, the degree, and

the principality property are preserved in both directions (Subject Expansion and Subject
Reduction): indeed, since we are considering −→B,S and not −→W , the interface (typing

context, type of the term and forgotten types) is not changed and we do not add any
subsumption.

Theorem 5.11 (Completeness). If M ∈ SNλS, then there exist Γ and A such that Γ `̀̀opt M :
A.

Proof. By induction on the longest reduction sequence of M . If M can be reduced by
−→B,S we can use the induction hypothesis. Otherwise, M is typable.

Remark 5.12. The algorithm given by the previous proof gives us a principal typing tree.

Corollary 5.13. If M −→B,S M ′ and M ′ ∈ SNλS, then M ∈ SNλS.

5.3. Pure λ-calculus. As in the case of λS, proving completeness of the typing system
with respect to SNλ relies on the typability of (some notion of) normal forms and on some
property of Subject Expansion.

For the λ-calculus, the normal forms that we consider are simply the β-normal forms.
Typing them with the optimal typing trees of System λ⊆∩ is therefore very reminiscent
of [DCHM05] that applies a similar technique to type β-normal forms with the principal
types of a system with idempotent intersections.

Definition 5.14 (Accumulators). The fact that a λ-term M is a λ-free head-normal
form with head-variable x (i.e. M is of the form xM1 . . .Mn) is abbreviated as Acc(M,x).
Equivalently, the judgement Acc(M,x) can be defined with the following rules:

Acc(x, x)

Acc(M,x)

Acc(MN,x)

Remark 5.15 (Shape of a normal term). If M is a β-normal form, then either M is of the
form λx.N (for some normal form N) or there exists x such that Acc(M,x) (induction on
M -see e.g. [Böh68]).

Lemma 5.16 (Typability of accumulators).

If Acc(M,x) and π is a derivation of Γ, x :U−− `̀̀∩⊆ M :F , then

(1) F is of the form F−;
(2) for all G−, there exists V −− and a derivation π′ of Γ, x :V −− `̀̀∩⊆ M :G−;

moreover, forg(π′) = forg(π) and if π does not use subsumption, neither does π′.

Proof. (1) By induction on Acc(M,x).
(2) By induction on Acc(M,x).

26 A. BERNADET AND S. GRAHAM-LENGRAND

• For Acc(x, x) : Then Γ−− = () and x :G− `̀̀∩⊆ x :G−.

• For
Acc(M,x)

Acc(MN,x)
: Then, there exist Γ−−1 , Γ−−2 , U−−1 , U−−2 and A such that

Γ−− = Γ−−1 ∩ Γ−−2 , U−− = U−−1 ∩ U−−2 , Γ−−1 , x :U−−1 `̀̀∩⊆ M :A→ F and Γ−−2 , x :

U−−2 `̀̀∩⊆ N : A. By the first point, A → F is of the form B−. Therefore, A

is of the form A+. Hence, A+ → G− is of the form C−. By induction hypo-
thesis, there exist V −−1 such that Γ−−1 , x : V −−1 `̀̀∩⊆ M : A+ → G−. Therefore,

Γ, x :V −−1 ∩ U−−2 `̀̀∩⊆ MN :G−.

Lemma 5.17 (Typability of a normal term).
If M is a normal form, then there exists Γ and F such that Γ `̀̀opt M :F .

Proof. By induction on M . Since M is a normal form, we are in one of the following cases:

• M is of the form λx.N ; by the induction hypothesis we can type N so we can type λx.N ;
• There exists x such as Acc(M,x) and
− either M = x, which can trivially be typed;
− or M = M1M2 with Acc(M1, x), and by the induction hypothesis we can type M1 and
M2; therefore we can give any type to M1 so we can type M1M2.

Lemma 5.18 (Anti-substitution lemma). If Γ `̀̀∩⊆ M{x := N} :A, then there exist Γ1, Γ2

and U such that Γ1 `̀̀∩⊆ N :U , Γ2 `̀̀∩⊆ M :A and Γ1 ∩ Γ2 ≈ Γ.

Proof. First by induction on M then by induction on A. We adapt the proof of Lemma 3.2.
Notice that if x /∈ fv(M) we take U = ω. Therefore, N might not be typable by an A-type.

As we have seen for λS, proving completeness relies on the Subject Expansion property
for a notion of reduction that can reduce any term in SNλ to a normal form (which we know
to be typed).

In the pure λ-calculus, not all β-reductions satisfy Subject Expansion. For example, in
the following reduction:

(λz.(λy.a)(zz))(λy.yy) −→β (λz.a)(λy.yy)

the second term is typable, but not the first one (because it is not strongly normalising).
As in λS, it is erasure that breaks the Subject Expansion ((λx.M)N −→ M with

x /∈ fv(M)).
The problem here is that we cannot just study Subject Expansion for β-reductions

that do not erase, because forbidding erasure can block a reduction sequence (for example,
(λx.(λy.y))ab).

So we have to define a restricted version of β-reduction that satisfies Subject Expansion,
but that is still general enough to reach β-normal forms (which can be easily typed).

If M and N are λ-terms and E a finite set of variables then we define the judgements
M E N and M ⇒E N with the rules of Fig. 7.

These may not seem natural on a syntactic point of view. However, they are quite
intuitive if you consider that they satisfy the following lemma:

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 27

x ∈ fv(M)

(λx.M)N ø M{x := N}

x /∈ fv(M) N is a β-normal form

(λx.M)N fv(N) M

x /∈ fv(M) N ⇒E N
′

(λx.M)N E (λx.M)N ′

M E M
′

MN E M
′N

N E N
′

MN E MN ′

M E M
′ x /∈ E

λx.M E λx.M
′

M E M
′

M ⇒E M
′

M ⇒E M
′

λx.M ⇒E−{x} λx.M
′

Acc(M,x) N ⇒E N
′

MN E∪{x} MN ′

Figure 7: Restricted β-reduction

Theorem 5.19 (Subject Expansion).
Assume E = {x1, . . . , xn} and Γ, x1 :U1, . . . , xn :Un `̀̀∩⊆ M ′ :A.

• If M ⇒E M
′ then there exist B, Γ′, V1, . . . , Vn such that Γ′, x1 :V1, . . . , xn :Vn `̀̀∩⊆ M :B

and Γ ≈ Γ′.
• If M E M

′ then there exists Γ′, V1, . . . , Vn, such that Γ′, x1 :V1, . . . , xn :Vn `̀̀∩⊆ M :A
and Γ ≈ Γ′.

Moreover, if the typing of M ′ is optimal, then the typing of M ′ can be required to be
optimal.

Proof. First by induction on M E M
′ and M ⇒E M

′ then by induction on A. We adapt
the proof of Subject Reduction (Theorem 3.3).

Lemma 5.20 (Safe execution of a term). If M can be reduced by −→β then there exist M ′

and E such that M ⇒E M
′ and if M is not of the form λx.M then M E M

′.

Proof. By induction on M .

• M cannot be a variable.
• If M is of the form λx.N . Then N reduced by −→β . By induction hypothesis there exist

N ′ and E such that N ⇒E N
′. Therefore λx.N ⇒E−{x} λx.N

′.
• If M is of the form M1M2. We are in one of the following cases:
− M1 is of the form λx.M3. Then we have (λx.M3)M2 E M3{x := M2} with E = ∅ or
E = fv(M2).

− M1 is not of the form λx.M3 and M1 reduced by −→β . By induction hypothesis, there

exist M ′1 and E such that M1 E M
′
1. Therefore M1M2 E M

′
1M2.

− M1 is not of the form λx.M3 and M1 is a β-normal form. Therefore there exists x such
that Acc(M1, x) and M2 reduced by −→β . By induction hypothesis, there exist M ′2
and E such that M2 ⇒E M

′
2. Hence M1M2 E∪{x} M1M

′
2.

Theorem 5.21 (Completeness). If M ∈ SNλ then there exists Γ and A such that Γ `̀̀opt M :
A.

Proof. By induction on the longest reduction sequence of M .

28 A. BERNADET AND S. GRAHAM-LENGRAND

We can notice that to prove the completeness of the pure λ-calculus we only need a
fragment of and ⇒ but by dealing with all and ⇒ we have the following result without
extra difficulties:

Corollary 5.22. If M ⇒E M
′ and M ′ ∈ SNλ then M ∈ SNλ.

This result is purely syntactic. However, it is very hard to prove without intersection
types (if we consider all and ⇒ and not just the head reduction fragment).

5.4. λlxr. In this section we provide the guidelines to obtain a similar completeness theorem
for λlxr, leaving the details for further work. The methodology is similar to the cases of the
λ-calculus and λS: we identify a notion of reduction for which Subject Expansion holds,
and whose notion of normal forms can be easily typed.

As in the λ-calculus, some of the rules do not satisfy Subject Expansion:

Wx(M)[x := N] −→ Wfv(N)(M)
MWx(N) −→ Wx(MN)
M [x := Wy(N)] −→ Wy(M [x := N])
Cy,zx (Wy(M)) −→ M{z := x}

Subject Expansion for the other reduction rules should be straightforward.
The fact that the last 3 rules above do not satisfy Subject Expansion is not problematic

for the completeness theorem: like rule W in λS, we should prove that they can be postponed
after the other rules, and that removing them from the system defines a new notion of
normal forms that can still be typed.

On the other hand, the first rule above is more problematic: if we forbid it, the reduction
can be blocked (like forbidding erasure can block a reduction in the pure λ-calculus). So a
Subject Expansion result without that rule is not enough to prove the completeness of λlxr.
Hence, we have two possibilities to achieve that goal:

• We adapt the proof of the pure λ-calculus. We have to define E and ⇒E in λlxr.
• We adapt the proof of λS. We cannot do this in the usual λlxr: if we forbid erasure,

reduction can be blocked. So we have to add the rules that move Wx(M)[x := N] (like
M [x := N] with x /∈ fv(M) in λS). These added rules respect Subject Reduction, so we
still have soundness.

Both approaches would provide Completeness (strong normalisation implies typability).
Moreover, as in the pure λ-calculus and λS, the proof would provide an algorithm that
constructs an optimal typing tree from a strongly normlising term in λlxr.

6. Complexity results

With the Subject Reduction theorems of the different calculi, we have proved that for every
β- (or B-) reduction, the measure of the typing tree strictly decreases. Hence, more than
strong normalisation, this gives us a bound on the number of β- (or B-) reductions in a
reduction sequence. So we have a complexity result which is an inequality. We would like
to refine this result and have an equality instead. The main idea is to only perform β- (or
B-) reductions that decreases the measure of the typing tree by exactly one. Given a term
M and any typing tree for it, it is not always possible to find such a reduction step. But
it is always possible provided the typing tree is optimal. Fortunately, every term M that
is typable is typable with an optimal typing tree: with soundness we can prove that M is

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 29

strongly normalising, and then, with completeness, we can prove that M is typable with an
optimal typing tree. This is the main reason for introducing the notion of optimality. As in
Section 5, the case of λS is simpler than the case of pure λ-calculus, so we will deal with it
first.

6.1. λS. In λS, we take advantage of the fact that −→W can be postponed w.r.t. to −→B,S

steps. This allows us to concentrate on −→B,S and the normal forms for it.

Lemma 6.1 (Refined Subject Reduction). If Γ `̀̀nopt M :A then:

• If M −→B M ′, then there exist Γ′ and m such that Γ ≈ Γ′, m < n and Γ′ `̀̀mopt M ′ :A
• If M −→S M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀nopt M ′ :A
Moreover the degree of the typing tree does not change, and the principality property is
preserved.

Proof. We simply check that, in the proof of of Subject Reduction (Theorem 3.7), the
optimality property, the degree and the principality property are preserved, as already
mentioned in the proof of Subject Expansion (Theorem 5.10).

Lemma 6.2 (Most inefficient reduction). Assume Γ `̀̀nopt M :A. If M can be reduced by
−→B and not by −→S , then there exist M ′ and Γ′ such that Γ ≈ Γ′, M −→B M ′ and

Γ′ `̀̀n−1
opt M ′ :A.

Proof. Again, we adapt the proof of Subject Reduction (Theorem 3.7). More precisely, see
appendix C.

Lemma 6.3 (Resources of a normal term). If Γ `̀̀nopt M :A, and M cannot be reduced by
−→B,S , then n is the number of applications in M .

Moreover, if the typing tree is principal, then n is the degree of the typing tree.

Proof. Straightforward.

Theorem 6.4 (Complexity result). If Γ `̀̀nopt M :A, then n = n1 + n2 where

• n1 is the maximum number of −→B in a B,S-reduction sequence from M
• n2 is the number of applications in the B,S normal form of M .

Moreover, if the typing tree is principal, then n2 is the degree of the typing tree.

Proof. The previous lemmas give us a B,S-reduction sequence with n− n2 B-steps, from
M to the normal form of M . In this reduction sequence every reduction B decreases the
measure of the typing tree by exactly one.

Assume we have a B,S-reduction sequence, from M to the normal form of M (λS
is confluent), with m B-steps. By Subject Reduction (Theorem 3.7), the measure of the
derivation typing the normal form of M is smaller than n − m, but is also n2. Hence
m ≤ n− n2.

Assume we have a B,S-reduction sequence, from M to any term M1. It can be completed
into a B,S-reduction sequence with more B-steps, from M to the normal form of M1.

30 A. BERNADET AND S. GRAHAM-LENGRAND

6.2. λlxr. In this section we suppose that we have reductions to move Wx(M)[x := N].
Therefore, it is reasonable to consider −→rev which is all reductions except the 5 ones

that cause a problem for subject expansion.
Hence we can adapt the proofs of λS and obtain the following theorem:

Theorem 6.5 (Complexity result). If Γ `̀̀nopt M :A, then n = n1 + n2 with n1 the maximum
number of B in a −→rev sequence, and n2 the number of applications in the −→rev normal
form.

Moreover, if the typing tree is principal, then n2 is the degree of the typing tree.

6.3. Pure λ-calculus. The case of λ-calculus is harder because we cannot ignore erasure
(β-reductions that erase sub-terms cannot always be postponed). Therefore:

• We will need to use the results we have for λS.
• We will have to use degrees and principal typing trees. This is why we defined those two

notions in the first place.

We produce and measure the longest β-reduction sequences by simply using the perpetual
strategy from [vRSSX99], shown in Fig. 8.

x ∈ fv(M) or M ′ is a β-normal form

(λx.M) M ′
−→
Mj ⇒head M{x := M ′}

−→
Mj

M ′ ⇒head M
′′ x /∈ fv(M)

(λx.M) M ′
−→
Mj ⇒head (λx.M) M ′′

−→
Mj

M ⇒head M
′

x
−→
Mj M

−→
Nj ⇒head x

−→
Mj M

′ −→Nj

M ⇒head M
′

λx.M ⇒head λx.M
′

Figure 8: A perpetual reduction strategy for λ

Remark 6.6. Notice that this restricted reduction relation is a fragment of that defined in
Fig. 7:

⇒head⊆⇒∅⊆−→β

Moreover, if M is not a β-normal form, then there is a λ-term M ′ such that M ⇒head M
′.

Although we do not need it here, it is worth mentioning that ⇒head defines a perpetual
strategy w.r.t. β-reduction, i.e. if M is not β-strongly normalising and M ⇒head M

′, then
neither is M ′ [vRSSX99]. In that sense it can be seen as the worst strategy (the least
efficient). We show here that it is the worst in a stronger sense: it maximises the lengths of
reduction sequences.

Lemma 6.7 (Resources of a normal term).
If Γ `̀̀nopt M :A with a principal typing tree of degree d, and M cannot be β-reduced, then

n = d.

Proof. If M is a normal form for β, then M is also a normal form for B,S, so we can apply
Lemma 6.3.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 31

Lemma 6.8 (Most inefficient reduction).
If Γ `̀̀nopt M :A a principal typing tree with a degree d1 and M ⇒head M

′, then there
exist m, Γ, A′ and d2 such that Γ′ `̀̀mopt M ′ :A′ a principal typing tree with a degree d2 and
n− d1 = m− d2 + 1.

Proof. By induction on M ⇒head M
′. The proof is an adaptation of Lemma 6.2. But, in

Lemma 6.2 we had d1 = d2, because there was no erasure. To control how the degree changes
when there is erasure, we use Lemma 6.7. We can use it because ⇒head only erases normal
terms.

Lemma 6.9 (Relating λ and λS). If M −→n
β M ′, then M(−→B −→∗S)n −→∗W M ′.

Proof. We proceed as follows:

• Given two pure λ-terms M and N , note that M{x := N} is a pure λ-term, and it is
easy to show, by induction on M and using erasure postponement (Lemma 5.7), that
M [x := N] −→∗S −→∗W M{x := N}.
• Then we show, again by induction on M , that if M −→β M ′, then M −→B −→∗S −→∗W
M ′.

The result is a direct corollary, obtained by induction on n and using Lemma 5.7.

Theorem 6.10 (Complexity result). If Γ `̀̀nopt M :A with a principal typing tree of degree d,
then the length of the longest β-reduction sequence from M is n− d.

Proof. Two previous lemmas give us a β-reduction sequence of size n− d. Let L be another
β-reduction sequence from M of size m. So there exists M1 such that M −→m

β M1. By the

previous lemma, there exists M2 such that M(−→B −→∗S)mM2 and M2 −→∗W M1. From
the complexity result for λS we have m ≤ n− d.

Contrary to λS, we cannot have a complexity result on the weaker assumption of
optimality, relating the measure to the number of applications in the normal form: This was
possible in λS because we considered normal forms for a system that never erases, while
here we cannot forbid β-reduction to erase terms.

7. Other measures of complexity

In the pure λ-calculus we measure the (maximal) number of β-steps. The equivalent result
for λS and λlxr naturally counts the number of −→B -steps if we do not change the measure
on the typing trees. But there are many other reduction rules for λS and λlxr, for which
we may want similar complexity results. For some of these rules we can obtain such results
without changing the typing system, by changing what we count in the typing trees.

7.1. Number of replacements. To get the number of replacements we measure in the
typing tree the number of use of the variable rule.

Theorem 7.1 (Complexity result on the number of replacements). The longest reduction
sequence from M by measuring the number of −→B is the longest reduction sequence from
M by measuring −→SR (head reduction strategy).

And the number of use of −→SR in this sequence plus the number of variables in the
normal form (without weakening) is equal to the number of use of the variable rule in an
optimal typing tree.

32 A. BERNADET AND S. GRAHAM-LENGRAND

7.2. Number of duplications. By measuring the number of use of the Intersection rule
in the typing tree we get a bound on the number of duplications (the number of use of rules
that duplicate a term).

However, contrary to the other measures, we cannot have an equality result.
Here is a counter example :

(λx.xx)(λy.ayy)
If we reduce this term to its normal form we have two duplications. However, if we type

this term, we have at least 3 uses of the intersection rule.

7.3. The other measures.

• If we measure the number of uses of the Abstraction rule we get a result on the maximum
number of −→B in a reduction sequence again. We just have to change the definition of
degree of a principal typing tree.
• The explicit substitution rule can be produced or destroyed by the subject reduction. So

we cannot use it to get a complexity result.

8. Conclusion

We have defined a typing system with non-idempotent intersection types. We have shown
that it characterises strongly normalising terms, in the pure λ-calculus as well as in the
explicit substitution calculi λS and λlxr. This characterisation has been achieved in each case
by strong versions of Subject Reduction and Subject Expansion, enriched with quantitative
information:

• By identifying a measure on typing derivations that is decreased by Subject Reduction,
we have obtained a simple proof of strong normalisation that also provides upper bounds
on longest reduction sequences.
• By either proving postement of erasures (λS) or identifying appropriate sub-reduction

relations (λ), we have shown how Subject Expansion garantees the existence of typing
derivations satisfying extra properties (optimality and principality), where the bounds are
refined into an exact measure of longest reduction sequences.

In the case of λ-calculus, obtaining this exact equality departs from the issues addressed
in e.g. [KW99, NM04] whose technology is similar to ours (as we found out a posteriori).
Indeed, one of the concerns of this line of research is how the process of type inference
compares to that of normalisation, in terms of complexity classes (these two problems being
parametrised by the size of terms and a notion of rank for types). Here we have shown
how such a technology can actually provide an exact equality specific to each λ-term and
its typing tree. Of course this only emphasises the fact that type inference is as hard as
normalisation, but type inference as a process is not a concern of this paper.

Moreover, we have extended those results to λS and λlxr, and the technology can be
adapted to other calculi featuring e.g. combinators, or algebraic constructors and destructors
(to handle integers, products, sums,. . .).

We have seen how the use of non-idempotent intersection types simplifies the methodology
from [CS07] by cutting a second use of reducibility techniques to prove strong normalisation
properties of standard systems (here illustrated by the examples of simple types, System F ,

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 33

and idempotent intersections). We extended the methodology to prove strong normalisation
results for λS and λlxr, providing the first direct proofs that we are aware of.

We have seen how the corresponding filter model construction can be done by orthogon-
ality techniques; for this we have defined an abstract notion of orthogonality model which
we have not seen formalised in the literature. As illustrated in Section 4.5.3, this notion
allows a lot of work (e.g. proving the Adequacy Lemma) to be factorised, while building
models like M⊥⊥SN , M⊥⊥∩ and M⊥⊥F . Comparing such instances of orthogonality models, we

have seen the superiority of M⊥⊥F for proving the strong normalisation results of λS and

λlxr. Note that, while M⊥⊥F and Mi
F share the same ingredients E , D, @ and J K , they are

different in the way types are interpreted; see the discussion in Appendix A.
In [BL11b] we also compared the models in the way they enlighten the transformation

of infinite polymorphism into finite polymorphism. We leave this aspect for another paper,
as more examples should be computed to illustrate (and better understand) the theoretical
result; in particular we need to understand how and why the transformation of polymorphism
does not require to reduce terms to their normal forms. An objective could be to identify
(and eliminate), in the interpretation of a type from System F , those filters that are not the
interpretation of any term of that type. What could help this, is to force filters to be stable
under type instantiation, in the view that interpretations of terms are generated by a single
F -type, i.e. a principal type.

Another aspect of this future work is to use the filter models to try to lift the complexity
results that we have in the target system back into the source system, and see to what extent
the quantitative information can be already read in the typing trees of the source system.
One hope would be to recover for instance results that are known for the simply-typed
calculus [Sch82, Bec01], but with our methodology that can be adapted to other source
systems such as System F .

Finally, the appropriate sub-reduction relation for the λ-calculus, which we have used to
prove Subject Expansion as generally as possible, also helps understanding how and when the
semantics J K of terms is preserved, see Appendix B. This is similar to [ABDC06], and future
work should adapt their methodology to accommodate our non-idempotent intersections.

Acknowledgement. The authors are grateful to the anonymous referees for their
numerous constructive remarks (and for pointing out references).

References

[ABDC06] F. Alessi, F. Barbanera, and M. Dezani-Ciancaglini. Intersection types and lambda models.
Theoret. Comput. Sci., 355(2):108–126, 2006.

[Abr93] S. Abramsky. Computational interpretations of linear logic. Theoret. Comput. Sci., 111:3–57,
1993.

[AC98] R. Amadio and P.-L. Curien. Domains and lambda-calculi. Cambridge University Press, 1998.
[Bai02] P. Baillot. Checking polynomial time complexity with types. In R. A. Baeza-Yates, U. Montanari,

and N. Santoro, editors, IFIP TCS, volume 223 of IFIP Conference Proceedings, pages 370–382.
Kluwer, 2002.

[Bar84] H. P. Barendregt. The Lambda-Calculus, its syntax and semantics. Studies in Logic and the
Foundation of Mathematics. Elsevier, 1984. Second edition.

[BBdH93] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term calculus for intuitionistic linear
logic. In J. F. G. Groote and M. Bezem, editors, Proc. of the 1st Int. Conf. on Typed Lambda
Calculus and Applications, volume 664 of LNCS, pages 75–90. Springer-Verlag, 1993.

[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit substitutions
which preserves strong normalisation. J. Funct. Programming, 6(5):699–722, 1996.

34 A. BERNADET AND S. GRAHAM-LENGRAND

[BCDC83] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the complete-
ness of type assignment. J. of Symbolic Logic, 48(4):931–940, 1983.

[BCL99] G. Boudol, P.-L. Curien, and C. Lavatelli. A semantics for lambda calculi with resources. Math.
Structures in Comput. Sci., 9(4):437–482, 1999.

[Bec01] A. Beckmann. Exact bounds for lengths of reductions in typed lambda-calculus. J. of Symbolic
Logic, 66(3):1277–1285, 2001.

[BEM10] A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Categorical models for simply typed resource
calculi. ENTCS, 265:213–230, 2010.

[BET10] R. Blute, T. Ehrhard, and C. Tasson. A convenient differential category. CoRR, abs/1006.3140,
2010.

[BL96] G. Boudol and C. Lavatelli. Full abstraction for lambda calculus with resources and convergence
testing. In H. Kirchner, editor, Trees in Algebra and Programming, 21st Int. Colloquium
(CAAP’96), volume 1059 of LNCS, pages 302–316. Springer-Verlag, 1996.

[BL11a] A. Bernadet and S. Lengrand. Complexity of strongly normalising λ-terms via non-idempotent
intersection types. In M. Hofmann, editor, Proc. of the 14th Int. Conf. on Foundations of Software
Science and Computation Structures (FOSSACS’11), volume 6604 of LNCS. Springer-Verlag,
2011.

[BL11b] A. Bernadet and S. Lengrand. Filter models: non-idempotent intersection types, orthogonality
and polymorphism. In M. Bezem, editor, Proc. of the 20th Annual Conf. of the European
Association for Computer Science Logic (CSL’11), LIPIcs. Schloss Dagstuhl LCI, 2011.

[BM03] P. Baillot and V. Mogbil. Soft lambda-calculus: a language for polynomial time computation.
CoRR, cs.LO/0312015, 2003.

[Böh68] C. Böhm. Alcune proprietà delle forme β-η-normali nel λK-calcolo. Technical report, IAC,
Roma, 1968.

[BR95] R. Bloo and K. H. Rose. Preservation of strong normalisation in named lambda calculi with
explicit substitution and garbage collection. In J. van Vliet, editor, Computing Science in the
Netherlands (CSN ’95), pages 62–72, 1995.

[CD78] M. Coppo and M. Dezani-Ciancaglini. A new type assignment for lambda-terms. Arch. Math.
Log., 19:139–156, 1978.

[CDS79] M. Coppo, M. Dezani, and P. Sallé. Functional characterization of some semantic equalities
inside λ-calculus. In H. A. Maurer, editor, Proc. of the 6th Intern. Col. on Automata, Languages
and Programming (ICALP), volume 71 of LNCS, pages 133–146. Springer-Verlag, 1979.

[CS07] T. Coquand and A. Spiwack. A proof of strong normalisation using domain theory. Logic.
Methods Comput. Science, 3(4), 2007.

[dC05] D. de Carvalho. Intersection types for light affine lambda calculus. ENTCS, 136:133–152, 2005.
[dC09] D. de Carvalho. Execution time of lambda-terms via denotational semantics and intersection

types. CoRR, abs/0905.4251, 2009.
[DCGL04] M. Dezani-Ciancaglini, S. Ghilezan, and S. Likavec. Behavioural Inverse Limit Models. Theoret.

Comput. Sci., 316(1–3):49–74, 2004.
[DCHM05] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama. Compositional characterisations of

lambda-terms using intersection types. Theoret. Comput. Sci., 340(3):459–495, 2005.
[DK00] V. Danos and J.-L. Krivine. Disjunctive tautologies as synchronisation schemes. In P. Clote

and H. Schwichtenberg, editors, Proc. of the 9th Annual Conf. of the European Association for
Computer Science Logic (CSL’00), volume 1862 of LNCS, pages 292–301. Springer-Verlag, 2000.

[DL03] D. Dougherty and P. Lescanne. Reductions, intersection types, and explicit substitutions. Math.
Structures in Comput. Sci., 13(1):55–85, 2003.

[ER03] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoret. Comput. Sci., 309(1-3):1–
41, 2003.

[Gal98] J. Gallier. Typing untyped lambda terms, or reducibility strikes again. Ann. Pure Appl. Logic,
91:231–270, 1998.

[Ghi96] S. Ghilezan. Strong normalization and typability with intersection types. Notre Dame J. Formal
Loigc, 37(1):44–52, 1996.

[GILL11] S. Ghilezan, J. Ivetic, P. Lescanne, and S. Likavec. Intersection types for the resource control
lambda calculi. In A. Cerone and P. Pihlajasaari, editors, Proc. of the 8th Int. Colloquium on

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 35

Theoretical Aspects of Computing (ICTAC’11), volume 6916 of LNCS, pages 116–134. Springer-
Verlag, 2011.

[Gir72] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. Thèse d’état, Université Paris 7, 1972.

[Gir87] J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–101, 1987.
[GR07] M. Gaboardi and S. R. D. Rocca. A soft type assignment system for lambda -calculus. In Proc.

of the 16th Annual Conf. of the European Association for Computer Science Logic (CSL’07),
volume 4646 of LNCS, pages 253–267. Springer-Verlag, 2007.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages
479–490. Academic Press, 1980. Reprint of a manuscript written 1969.

[Kes07] D. Kesner. The theory of calculi with explicit substitutions revisited. In Proc. of the 16th Annual
Conf. of the European Association for Computer Science Logic (CSL’07), volume 4646 of LNCS,
pages 238–252. Springer-Verlag, 2007.

[Kes09] D. Kesner. A theory of explicit substitutions with safe and full composition. Logic. Methods
Comput. Science, 5(3), 2009.

[KL05] D. Kesner and S. Lengrand. Extending the explicit substitution paradigm. In J. Giesl, editor,
Proc. of the 16th Int. Conf. on Rewriting Techniques and Applications(RTA’05), volume 3467 of
LNCS, pages 407–422. Springer-Verlag, 2005.

[KL07] D. Kesner and S. Lengrand. Resource operators for the λ-calculus. Inform. and Comput.,
205:419–473, 2007.

[KR11] D. Kesner and F. Renaud. A prismoid framework for languages with resources. Theoret. Comput.
Sci., 412(37):4867–4892, 2011.

[Kri90] J.-L. Krivine. Lambda-calcul Types et modèles. Masson, 1990.
[Kri01] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log.,

40(3):189–205, 2001.
[KW99] A. J. Kfoury and J. B. Wells. Principality and decidable type inference for finite-rank intersection

types. In Proc. of the 26th Annual ACM Symp. on Principles of Programming Languages
(POPL’99), pages 161–174. ACM Press, 1999.

[Laf04] Y. Lafont. Soft linear logic and polynomial time. Theoret. Comput. Sci., 318(1-2):163–180, 2004.
[Lei86] D. Leivant. Typing and computational properties of lambda expressions. Theoret. Comput. Sci.,

44(1):51–68, 1986.
[LLD+04] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection

types for explicit substitutions. Inform. and Comput., 189(1):17–42, 2004.
[LM08] S. Lengrand and A. Miquel. Classical Fω, orthogonality and symmetric candidates. Ann. Pure

Appl. Logic, 153:3–20, 2008.
[Mel95] P.-A. Melliès. Typed λ-calculi with explicit substitution may not terminate. In M. Dezani-

Ciancaglini and G. Plotkin, editors, Proc. of the 2nd Int. Conf. on Typed Lambda Calculus and
Applications (TLCA’95), volume 902 of LNCS, pages 328–334. Springer-Verlag, 1995.

[MM09] G. Munch-Maccagnoni. Focalisation and classical realisability. In E. Grädel and R. Kahle,
editors, Proc. of the 18th Annual Conf. of the European Association for Computer Science Logic
(CSL’09), volume 5771 of LNCS, pages 409–423. Springer-Verlag, 2009.

[MV05] P.-A. Melliès and J. Vouillon. Recursive polymorphic types and parametricity in an operational
framework. In P. Panangaden, editor, 20th Annual IEEE Symp. on Logic in Computer Science,
pages 82–91. IEEE Computer Society Press, 2005.

[NM04] P. M. Neergaard and H. G. Mairson. Types, potency, and idempotency: why nonlinearity and
amnesia make a type system work. In C. Okasaki and K. Fisher, editors, Proc. of the 9th ACM
Intern. Conf. on Functional Programming, pages 138–149. ACM Press, 2004.

[Par97] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J. of
Symbolic Logic, 62(4):1461–1479, 1997.

[Ren11] F. Renaud. Les ressources explicites vues par la théorie de la réécriture. PhD thesis, Université
Paris 7, 2011.

[Sch82] H. Schwichtenberg. Complexity of normalization in the pure typed lambda calculus. In A. S.
Troelstra and D. V. Dalen, editors, The L. E. J. Brouwer Centenary Symposium. North-Holland,
1982.

36 A. BERNADET AND S. GRAHAM-LENGRAND

[Tai75] W. W. Tait. A realizability interpretation of the theory of species. In Logic Colloquium, volume
453 of LNM, pages 240–251. Springer-Verlag, 1975.

[vB92] S. van Bakel. Complete restrictions of the Intersection Type Discipline. Theoretical Computer
Science, 102(1):135–163, 1992.

[vB95] S. van Bakel. Intersection Type Assignment Systems. Theoret. Comput. Sci., 151(2):385–435,
1995.

[vRSSX99] F. van Raamsdonk, P. Severi, M. H. B. Sørensen, and H. Xi. Perpetual reductions in λ-calculus.
Inform. and Comput., 149(2):173–225, 1999.

[Wel02] J. B. Wells. The essence of principal typings. In P. Widmayer, F. T. Ruiz, R. M. Bueno,
M. Hennessy, S. Eidenbenz, and R. Conejo, editors, Proc. of the 29th Intern. Col. on Automata,
Languages and Programming (ICALP), volume 2380 of LNCS, pages 913–925. Springer-Verlag,
2002.

Appendix A. Filter models: classical vs. intuitionistic realisability

The orthogonality method comes from the denotational and operational semantics of sym-
metric calculi, such as proof-term calculi for classical or linear logic.

In some sense, orthogonality only builds semantics in a continuation passing style, and
(as we have seen) this still makes sense for typed λ-calculi that are purely intuitionistic. While
this is sufficient to prove important properties of typed λ-terms such as strong normalisation,
the models are unable to reflect some of their purely intuitionistic features.

This phenomenon could be seen in presence of a “positive” type (i.e. datatype) P,

for which JPK is not closed under bi-orthogonal and [P] is defined as JPK⊥. Model M⊥⊥F
provides the interpretation

JP→PK = (JPK :: [P])⊥ = {u ∈ D | ∀v ∈ JPK,∀~v′ ∈ [P], u ⊥⊥ v :: ~v′}
= {u ∈ D | ∀v ∈ JPK, ∀~v′ ∈ [P], u@v ⊥⊥ ~v′}
= {u ∈ D | ∀v ∈ JPK, u@v ∈ JPK⊥⊥}

while model Mi
F would provide

JP→PK = {u ∈ D | ∀v ∈ JPK, u@v ∈ JPK}

Appendix B. Preservation of semantics by reduction

When models are built for a typed λ-calculus, it is sometimes expected that the interpretation
of terms is preserved under β-reduction (or even β-equivalence). It is not always necessary
for the purpose of the model construction (here: proving normalisation properties), and
it is clearly not the case for the term models M⊥⊥SNand M⊥⊥∩ , where terms are interpreted
as themselves (at least in the case of the pure λ-calculus). The case of the filter models
M⊥⊥F and Mi

F (which heavily rely on Theorem 4.9) is less obvious. Still we can prove the
following:

Theorem B.1.

(1) If M −→β M ′, then for all ρ, JMKρ ⊆ JM ′Kρ.
(2) If M E M

′, then for all ρ, JMKρ = JM ′Kρ.
(3) If M −→B,S M ′, then for all ρ, JMKρ = JM ′Kρ.

Proof.

(1) Corollary of Subject Reduction (Theorem 3.3).

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 37

(2) One inclusion is the previous case and the other is a corollary of Subject Expansion
(Theorem 5.19).

(3) Same argument, with Subject reduction and Subject Expansion of λS (Theorems 3.7
and 5.10).

Example B.2. There are cases where JMKρ 6= JM ′Kρ:
an obvious example is when M /∈ SNλ but M ′ ∈ SNλ (e.g. M := (λy.z)((λx.xx)(λx.xx))
and M ′ := z); there exists ρ such that JMKρ = ⊥ and JM ′Kρ 6= ⊥.

We can also find an example where M −→β M ′, JMKρ 6= ⊥, and JMKρ 6= JM ′Kρ:

Example B.3. Take M := (λz.(λy.a)(zz)) and M ′ := λz.a.

Proof. Suppose that JMKρ = JM ′Kρ with ρ = (a 7→ >). Then:

• N = λx.xx ∈ SNλ and closed, so JNKρ 6= ⊥.

• JMKρ@JNKρ = J(λy.a)(zz)Kρ,z 7→JNKρ
= J(λy.a)Kρ,z 7→JNKρ

@JzzKρ,z 7→JNKρ
= Jλy.aKρ@JNNKρ = Jλy.aKρ@⊥ = ⊥
• JM ′Kρ@JNKρ = JaKρ,z 7→JNKρ

= >
Hence > = ⊥, which is a contradiction.

Notice that this proof only uses the properties expected from the model (Theorem 4.9

and the characterisation of SNλ) and not the construction of the model itself.

Appendix C. Full proofs

Lemma 2.6 (Properties of ≈). For all U , V , W , F , U ′, V ′,

(1) ≈ is an equivalence relation.
(2) If U ≈ ω, then U = ω and if U ≈ F , then U = F .
(3) U ∩ V ≈ V ∩ U and (U ∩ V) ∩W ≈ U ∩ (V ∩W).
(4) If U ≈ U ′ and V ≈ V ′, then U ∩ V ≈ U ′ ∩ V ′.
(5) For all U and V , if U ∩ V ≈ U , then V = ω.

Proof. The first four points are proved by straightforward inductions on derivations. The
last point is more subtle. We define φ(U) by induction on U as follows:

φ(ω) := 0
φ(F) := 1
φ(A ∩B) := φ(A) + φ(B)

So for all U and V we have φ(U ∩ V) = φ(U) + φ(V). Also, for all A, φ(A) > 0. So for
all U , if φ(U) = 0, then U = ω.

Moreover, for all U and V , if U ≈ V , then φ(U) = φ(V) (by induction on U ≈ V).
Now if U ∩ V ≈ U , then

φ(U ∩ V) = φ(U) + φ(V) = φ(U)

So we have φ(V) = 0, from which we get V = ω.

38 A. BERNADET AND S. GRAHAM-LENGRAND

Lemma 2.13 (Typing of explicit substitution). Assume Γ, x :A `̀̀n∩⊆ M :B and ∆ `̀̀m∩⊆ N :A.

Then, there exists Γ′ such that Γ′ ≈ Γ ∩∆ and Γ′ `̀̀n+m
∩⊆ M [x := N] :B.

Proof. By induction on B:

• If B = F , then the result is trivial : we use the (Subst) rule.
• If B = B1 ∩B2, then, by Lemma 2.12.1, there exist Γ1, Γ2, A1, A2, n1 and n2 such that

Γ = Γ1 ∩ Γ2, A = A1 ∩ A2, n = n1 + n2, Γ1, x :A1 `̀̀n1
∩⊆ M :B1 and Γ2, x :A2 `̀̀n2

∩⊆ M :B2.

By hypothesis, ∆ `̀̀m∩⊆ N :A. Hence, by Lemma 2.12.1, there exist ∆1, ∆2, m1 and m2

such that ∆ = ∆1 ∩∆2, m = m1 +m2, ∆1 `̀̀m1
∩⊆ N :A1 and ∆2 `̀̀m2

∩⊆ N :A2.

By induction hypothesis, there exist Γ′1 and Γ′2 such that Γ′1 ≈ Γ1 ∩ ∆1, Γ′2 ≈
Γ2 ∩ ∆2, Γ′1 `̀̀

n1+m1
∩⊆ M [x := N] : B1 and Γ′2 `̀̀

n2+m2
∩⊆ M [x := N] : B2. So we have Γ′1 ∩

Γ′2 `̀̀
n1+m1+n2+m2
∩⊆ M [x := N] : B1 ∩B2 with n1 + m1 + n2 + m2 = n + m, Γ′1 ∩ Γ′2 ≈

(Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) ≈ Γ ∩∆ and B = B1 ∩B2.

Lemma 3.2 (Typing of implicit substitutions). If Γ, x : U `̀̀n∩⊆ M :A and ∆ `̀̀m∩⊆ N : U ,

then there exists Γ′ such that Γ′ ≈ Γ ∩∆ and Γ′ `̀̀n+m
∩⊆ M{x := N} :A.

Proof. By induction on the derivation of Γ, x : U `̀̀∩⊆ M :A.

• x : F `̀̀∩⊆ x :F
Here Γ = (), x = M , n = 0, A = F and U = F . Therefore, M{x := N} = N and
Γ ∩∆ = ∆. By hypothesis, ∆ `̀̀m∩⊆ N :U . So we have Γ ∩∆ `̀̀n+m

∩⊆ M{x := N} :A with
Γ ∩∆ ≈ Γ ∩∆.

• y : F `̀̀∩⊆ y :F with y 6= x

Here Γ = (y : F), A = F , U = ω, M = y, n = 0. Since ω = U and ∆ `̀̀m∩⊆ N :U , we have

∆ = () and m = 0. Then, we have, Γ ∩∆ `̀̀n+m
∩⊆ M{x := N} :A because M{x := N} = y.

•
Γ1, x : U1 `̀̀n1

∩⊆ M :A1 Γ2, x : U2 `̀̀n2
∩⊆ M :A2

Γ1 ∩ Γ2, x : U1 ∩ U2 `̀̀n1+n2
∩⊆ M :A1 ∩A2

Here A = A1∩A2, n = n1 +n2, U = U1∩U2 and Γ = Γ1∩Γ2. By hypothesis, ∆ `̀̀m∩⊆ N :U .
So, by Lemma 2.12.1, there exist ∆1, ∆2, m1, m2 such that ∆ = ∆1 ∩∆2, ∆1 `̀̀m1

∩⊆ N :U1

and ∆2 `̀̀m2
∩⊆ N :U2. By induction hypothesis, there exists Γ′1 such that Γ′1 ≈ Γ1 ∩∆1 and

Γ′1 `̀̀
n1+m1
∩⊆ M{x := N} :A1. We also have the existence of Γ′2 such that Γ′2 ≈ Γ2 ∩∆2 and

Γ′2 `̀̀
n2+m2
∩⊆ M{x := N} :A2.

Therefore we have Γ′1 ∩ Γ′2 `̀̀
n1+m1+n2+m2
∩⊆ M :A with n1 +m1 + n2 +m2 = n+m and

Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) ≈ Γ ∩∆.

•
Γ1, x : U1 `̀̀n1

∩⊆ M1 :A1 → A Γ2, x : U2 `̀̀n2
∩⊆ M2 :A1

Γ1 ∩ Γ2, x : U1 ∩ U2 `̀̀n1+n2+1
∩⊆ M :A

Here M = M1M2, n = n1 + n2 + 1, U = U1 ∩ U2 and Γ = Γ1 ∩ Γ2. By hypothesis,
∆ `̀̀m∩⊆ N :U . So, by Lemma 2.12, there exist ∆1, ∆2, m1, m2 such that ∆ = ∆1 ∩∆2,
m = m1 +m2, ∆1 `̀̀m1

∩⊆ N :U1 and ∆2 `̀̀m2
∩⊆ N :U2. By induction hypothesis, there exists Γ′1

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 39

such that Γ′1 ≈ Γ1 ∩∆1 and Γ′1 `̀̀
n1+m1
∩⊆ M1{x := N} :A1 → A. We also have the existence

of Γ′2 such that Γ′2 ≈ Γ2 ∩∆2 and Γ′2 `̀̀
n2+m2
∩⊆ M2{x := N} :A1.

Therefore we have Γ′1 ∩ Γ′2 `̀̀
n1+m1+n2+m2+1
∩⊆ M1M2{x := N} :A with n1 + m1 + n2 +

m2 + 1 = n+m and Γ′1 ∩ Γ′2 ≈ (Γ1 ∩∆1) ∩ (Γ2 ∩∆2) ≈ (Γ1 ∩ Γ2) ∩ (∆1 ∩∆2) ≈ Γ ∩∆.

•
Γ, x :U, y :V `̀̀n∩⊆ M1 :F A1 ⊆ V

Γ, x :U `̀̀n∩⊆ λy.M1 :A1 → F
with x 6= y and y /∈ fv(N).

By induction hypothesis, there exist Γ′ such that (Γ, y :V)∩∆ ≈ Γ′ and Γ′ `̀̀n+m
∩⊆ M1{x := N} :

F . y /∈ fv(N), so there exist Γ′′ and V ′ such that Γ′ ≈ (Γ′′, y :V ′), V ≈ V ′, and Γ′′ ≈ Γ∩∆.
Then we can conclude.

• We do not have to deal with the other rules because they cannot be used for a pure λ-term.

Theorem 3.3 (Subject Reduction for λ). If Γ `̀̀n∩⊆ M :A and M −→β M ′, then there exist

m and ∆ such that m < n, Γ ⊆ ∆ and ∆ `̀̀m∩⊆ M ′ :A.

Proof. First by induction on M −→β M ′, then by induction on A.

• If there exist A1 and A2 such that A = A1∩A2, then, by Lemma 2.12.1, there exist Γ1, Γ2,
n1, n2 such that Γ = Γ1∩Γ2, n = n1+n2, Γ1 `̀̀n1

∩⊆ M :A1 and Γ2 `̀̀n2
∩⊆ M :A2. By induction

hypothesis (on (M −→β M ′, A1) and (M −→β M ′, A2)), there exist ∆1 and m1 such

that Γ1 ⊆ ∆1, m1 < n1 and ∆1 `̀̀m1
∩⊆ M

′ :A1. We also have the existence of ∆2 and m2

such that m2 < n2, Γ2 ⊆ ∆2 and ∆2 `̀̀m2
∩⊆ M

′ :A2. Then we have ∆1 ∩∆2 `̀̀m1+m2
∩⊆ M ′ :A

with m1 +m2 < n and Γ ⊆ ∆1 ∩∆2.

• (λx.M1)M2 −→β M1{x := M2} and A = F

Then there exist Γ1, Γ2, n1, n2 and B such that Γ = Γ1∩Γ2, n = n1+n2+1, Γ1 `̀̀n1
∩⊆ λx.M1 :

B → F and Γ2 `̀̀n2
∩⊆ M2 :B. So there exists U such that B ⊆ U and Γ1, x : U `̀̀n1

∩⊆ M1 :

F . Then, by Lemma 2.12.4, there exist Γ′2 and n′2 such that Γ2 ⊆ Γ′2, n′2 ≤ n2 and

Γ′2 `̀̀
n′2
∩⊆ M2 : U . Therefore, by the substitution lemma (Lemma 3.2), there exists Γ′

such that Γ′ ≈ Γ1 ∩ Γ′2 and Γ′ `̀̀n1+n′2
∩⊆ M1{x := M2} :F with A = F , n1 + n′2 < n and

Γ = Γ1 ∩ Γ2 ⊆ Γ1 ∩ Γ′2 ≈ Γ′.

•
M1 −→β M ′1

λx.M1 −→β λx.M ′1
and A = F

Here, there exist B, G and U such that A = B → G, B ⊆ U and Γ, x : U `̀̀n∩⊆ M1 :G.
By induction hypothesis, there exist Γ′, U ′ and m such that Γ ⊆ Γ′, U ⊆ U ′, m < n and
Γ′, x : U ′ `̀̀m∩⊆ M ′1 :G. So we have B ⊆ U ′. Hence Γ′ `̀̀m∩⊆ M ′ :A.

•
M1 −→β M ′1

M1M2 −→β M ′1M2

and A = F

Then there exist B, Γ1, Γ2, n1, n2 such that n = n1 + n2 + 1, Γ = Γ1 ∩ Γ2, Γ1 `̀̀n1
∩⊆ M1 :

B → A and Γ2 `̀̀n2
∩⊆ M2 : B. By induction hypothesis there exist Γ′1 and n′1 such that

Γ1 ⊆ Γ′1, n′1 < n1 and Γ′1 `̀̀
n′1
∩⊆ M

′
1 :B → F . Therefore Γ′1 ∩ Γ2 `̀̀

n′1+n2+1
∩⊆ M ′1M2 :A with

n′1 + n2 + 1 < n and Γ ⊆ Γ′1 ∩ Γ2.

40 A. BERNADET AND S. GRAHAM-LENGRAND

•
M2 −→β M ′2

M1M2 −→β M1M
′
2

and A = F

Then there exist B, Γ1, Γ2, n1, n2 such that n = n1 + n2 + 1, Γ = Γ1 ∩ Γ2, Γ1 `̀̀n1
∩⊆ M1 :

B → A and Γ2 `̀̀n2
∩⊆ M2 : B. By induction hypothesis there exist Γ′2 and n′2 such that

Γ2 ⊆ Γ′2, n′2 < n2 and Γ′2 `̀̀
n′2
∩⊆ M

′
2 : B. Therefore, Γ1 ∩ Γ′2 `̀̀

n1+n′2+1
∩⊆ M1M

′
2 : A with

n1 + n′2 + 1 < n and Γ ⊆ Γ1 ∩ Γ′2.

Lemma 3.6. −→S,W terminates.

Proof. By a polynomial argument. We define mx(M) as follow: if x /∈ fv(M), then
mx(M) = 1. Otherwise we have:

mx(x) = 1
mx(λy.M) = mx(M)
mx(M1M2) = mx(M1) +mx(M2) x ∈ fv(M1), x ∈ fv(M2)
mx(M1M2) = mx(M1) x /∈ fv(M2)
mx(M1M2) = mx(M2) x /∈ fv(M1)
mx(M [y := N]) = mx(M) +my(M)× (mx(N) + 1) x ∈ fv(M), x ∈ fv(N)
mx(M [y := N]) = my(M)× (mx(N) + 1) x /∈ fv(M), x ∈ fv(N)
mx(M [y := N]) = mx(M) x /∈ fv(N)

We also define S(M) as follow:

S(x) = 1
S(M1M2) = S(M1) + S(M2)
S(λx.M) = S(M)
S(M [x := N]) = S(M) +mx(M)× S(N)

Finally, we define I(M) as follow:

I(x) = 2
I(λx.M) = 2I(M) + 2
I(M1M2) = 2I(M1) + 2I(M2) + 2
I(M [x := N]) = I(M)× (I(N) + 1)

If we consider n = (S(M), I(M)) in lexical order, then −→S,W strictly decreases n and ≡
does not change it.

Hence −→S,W terminates. This lemma and proof are a special case of [KR11].

Theorem 3.7 (Subject Reduction for λS).
Assume Γ `̀̀n∩⊆ M :A. We have the following properties:

• If M −→B M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m < n and Γ′ `̀̀m∩⊆ M ′ :A
• If M −→S M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M ′ :A
• If M −→W M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m ≤ n and Γ′ `̀̀m∩⊆ M ′ :A
• If M ≡M ′, then there exists Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M ′ :A

Proof. First by induction on M −→E M ′ and M ≡M ′, then by induction on A.
For modularity, the triplet (−→E , R, r) can be one of the following triplets:

(−→B ,≈, <), (−→S ,≈,=), (−→W ,⊆,≤)), (≡,≈,=).

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 41

• If A = A1 ∩ A2, then there exist Γ1, Γ2, n1 and n2 such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
Γ1 `̀̀n1

∩⊆ M :A1 and Γ2 `̀̀n2
∩⊆ M :A2.

By induction hypothesis (on (M −→E M ′, A1) and (M −→E M ′, A2)), there exist
Γ′1, Γ′2, m1 and m2 such that Γ1 R Γ′1, Γ2 R Γ′2, m1 r n1, m2 r n2, Γ′1 `̀̀

m1
∩⊆ M

′ :A1 and

Γ′2 `̀̀
m2
∩⊆ M

′ :A2.

Hence, Γ′1 ∩ Γ′2 `̀̀
m1+m2
∩⊆ M ′ :A1 ∩A2 with A = A1 ∩A2, m1 +m2 r n, Γ R Γ′1 ∩ Γ′2.

• (λx.M1)M2 −→B M1[x := M2] and A = F : There exist Γ1, Γ2, n1, n2 and B such that
Γ = Γ1 ∩ Γ2, n = n1 + n2 + 1, Γ1 `̀̀n1

∩⊆ λx.M1 :B → F and Γ2 `̀̀n2
∩⊆ M2 :B. Hence, there

exists U such that B ⊆ U and Γ1, x :U `̀̀n1
∩⊆ M1 :F .

− If U = C, then by using Lemma 2.12.4 there exist ∆ and m such that m ≤ n2, Γ2 ⊆ ∆
and ∆ `̀̀m∩⊆ M2 :C. Hence Γ1 ∩∆ `̀̀n1+m

∩⊆ M1[x := M2] :F with n1 +m < n, F = A and
Γ ⊆ Γ1 ∩∆.

− If U = ω, then Γ1∩Γ2 `̀̀n1+n2
∩⊆ M1[x := M2] :F with n1+n2 < n, A = F and Γ ⊆ Γ1∩Γ2.

• y[x := N] −→W y, x 6= y and A = F : there exist Γ1, Γ2, n1, n2 and B such that
Γ = Γ1 ∩ Γ2, n = n1 + n2, Γ1 `̀̀n1

∩⊆ N :B and Γ2, x :ω `̀̀n2
∩⊆ y :F . So we have Γ2 `̀̀n2

∩⊆ y :A

with Γ ⊆ (Γ2, x :ω) and n2 ≤ n.
• x[x := N] −→S N and A = F : there exist Γ1, Γ2, n1, n2 and B such that Γ = Γ1 ∩ Γ2,
n = n1 + n2, Γ1 `̀̀n1

∩⊆ N :B and Γ2, x :B `̀̀n2
∩⊆ x :F . Hence Γ2 = () and B = F and n2 = 0.

Therefore Γ = Γ1 and n1 = n. So we have Γ `̀̀n∩⊆ N :A with Γ ≈ Γ.
• (M1M2)[x := N] −→S M1[x := N]M2[x := N] with x ∈ fv(M1), x ∈ fv(M2) and A = F :

Then there exist Γ1, Γ2, Γ3, Γ4, A1, A2, B, n1, n2, n3 and n4 such that: Γ1, x :A1 `̀̀n1
∩⊆ M1 :

B → F Γ2, x :A2 `̀̀n2
∩⊆ M2 :B, Γ3 `̀̀n3

∩⊆ N :A1, Γ4 `̀̀n4
∩⊆ N :A2, n = n1+n2+n3+n4 and Γ =

(Γ1∩Γ2)∩ (Γ3∩Γ4). Hence (Γ1∩Γ3)∩ (Γ2∩Γ4) `̀̀n1+n3+n2+n4
∩⊆ M1[x := N]M2[x := N] :F .

• (M1M2)[x := N] −→S M1[x := N]M2 with x /∈ fv(M2) and A = F : Then there exist Γ1,
Γ2, Γ3, U , A1, B, n1, n2, and n3 such that: Γ1, x :U `̀̀n1

∩⊆ M1 :B → F Γ2, x :ω `̀̀n2
∩⊆ M2 :B,

Γ3 `̀̀n3
∩⊆ N : A1, n = n1 + n2 + n3, Γ = (Γ1 ∩ Γ2) ∩ Γ3, U = A1 or U = ω. Hence

(Γ1 ∩ Γ3) ∩ Γ2 `̀̀n1+n3+n2
∩⊆ M1[x := N]M2 :F .

• (M1M2)[x := N] −→S M1M2[x := N] with x /∈ fv(M1), x ∈ fv(M2) and A = F :
Then there exist Γ1, Γ2, Γ3, A1, B, n1, n2 and n3 such that Γ1, x :ω `̀̀n1

∩⊆ M1 :B → F ,

Γ2, x : A1 `̀̀n2
∩⊆ M2 : F , Γ3 `̀̀n3

∩⊆ N : A1, n = n1 + n2 + n3, Γ = (Γ1 ∩ Γ2) ∩ Γ3, Hence

Γ1 ∩ (Γ2 ∩ Γ3) `̀̀n1+n2+n3
∩⊆ M1M2[x := N] :F .

• For M [x := N1][y := N2] ≡ M [y := N2][x := N1] with x 6= y, x /∈ fv(N2), y /∈ fv(N1)
and A = F : There exist Γ1, Γ2, n1, n2, U and B such that Γ = Γ1 ∩ Γ2, n = n1 + n2,
U = B or U = ω, Γ1, y :U `̀̀n1

∩⊆ M [x := N1] :F and Γ2 `̀̀n2
∩⊆ N2 :B. Therefore, there exist

Γ3, Γ4, n3, n4, V and C such that Γ1, y :U = Γ3 ∩ Γ4, n1 = n3 + n4, V = C or V = ω,
Γ3, x :V `̀̀n3

∩⊆ M :F and Γ4 `̀̀n4
∩⊆ N1 :C. By the fact that y /∈ fv(N1) and by Lemma 2.12.2,

we have Γ4 = Γ4, x :ω. Hence, there exists Γ5 such that Γ3 = Γ5, x :U and Γ1 = Γ5 ∩ Γ4.
So, Γ5, y :U, x :V `̀̀n3

∩⊆ M :F . Hence, (Γ5, x :V) ∩ Γ2 `̀̀n3+n2
∩⊆ M [y := N2] :F . By the fact

that x /∈ fv(N2) and by Lemma 2.12, Γ2 = Γ2, x :ω. Hence, (Γ5, x :V)∩Γ2 = Γ5∩Γ2, x :V .
Therefore, (Γ5 ∩ Γ2)Γ4 `̀̀n3+n2+n4

∩⊆ M [y := N2][x := N1] : F with n3 + n2 + n4 = n and

(Γ5 ∩ Γ2) ∩ Γ4 ≈ Γ.
• The other rules follow the same patterns, especially for the propagation of an explicit

substitution over another explicit substitution. Now concerning the congruent closure of
the rules, all cases are straightforward but for the following one:

42 A. BERNADET AND S. GRAHAM-LENGRAND

• M [x := N] −→W M ′[x := N] with M −→W M ′, x ∈ fv(M), x ∈ fv(M ′) and A = F :
Then there exist Γ1, Γ2, B, n1, n2 such that: Γ1, x : B `̀̀n1

∩⊆ M : F and Γ2 `̀̀n2
∩⊆ N : B,

n = n1 + n2 and Γ = Γ1 ∩ Γ2. By induction hypothesis, there exist Γ′1, C and n′1 such

that Γ1 ⊆ Γ′1, B ⊆ C, n′1 ≤ n1 and Γ′1, x :C `̀̀n
′
1
∩⊆ M

′ :A. Then there exist Γ′2 and n′2

such that Γ2 ⊆ Γ′2, n′2 ≤ n2 and Γ′2 `̀̀
n′2
∩⊆ N :C. Hence Γ′1 ∩ Γ′2 `̀̀

n′1+n′2
∩⊆ M ′[x := N] :F with

n′1 + n′2 ≤ n and Γ ⊆ Γ′1 ∩ Γ′2.

Theorem 5 (Subject Reduction for λlxr). If Γ `̀̀n∩⊆ M :A then:

• If M −→B M ′, then there exist Γ′ and m such that Γ ⊆ Γ′, m < n, and Γ′ `̀̀m∩⊆ M ′ :A
• If M −→E M ′ and B /∈ E, then there exist Γ′ and m such that Γ ⊆ Γ′, m ≤ n and

Γ′ `̀̀m∩⊆ M ′ :A.
• If M ≡M ′ then there exist Γ′ such that Γ ≈ Γ′ and Γ′ `̀̀n∩⊆ M ′ :A.

Proof. First by induction on M −→B M ′ (resp. M −→E M ′, M ≡M ′) then by induction
on A. The proof is similar to the proof of Subject reduction. Here we will only detail the
cases of rules D, W , B and Merge:

• For Cy,zx (M)[x := N] −→ CY,ZX (M [y := N1][z := N2]) with A = F : There exist n1, n2, n3,

B1, C1, ∆, ~B and ~C such that Γ = ∆, ~X : ~B∩ ~C, n = n1+n2+n3, ∆, y :B1, z :C1 `̀̀n1
∩⊆ M :F ,

~X : ~B `̀̀n2
∩⊆ N :B1 and ~X : ~C `̀̀n3

∩⊆ N :C1. Hence, ~Y : ~B `̀̀n2
∩⊆ N1 :B1 and ~Z : ~C `̀̀n3

∩⊆ N2 :C1.

Therefore, ∆, ~Y : ~B, ~Z : ~C `̀̀n∩⊆ M [y := N1][z := N2] :F . Then we can conclude.
• For Wx(M)[x := N] −→ Wfv(N)(M) with X = fv(N) and A = F : Then, there exist n1,

n2, ∆, ~B and B1 such that n = n1 + n2, Γ = ∆, ~X : ~B, ∆ `̀̀n1
∩⊆ M :F , x /∈ Dom(∆), and

~X : ~B `̀̀n2
∩⊆ N :B1. Hence, for all y ∈ X, y /∈ Dom(∆). Then we can conclude.

• For (λx.M)N −→B M [x := N], the proof is exactly as the proof for the rule B in λS.
• For Cy,zw (Wy(M)) −→ Rzw(M) with A = F : Then, there exist Γ1, A and B such that

Γ = Γ1, w :A∩B and Γ1, y :A, z :B `̀̀n∩⊆ Wy(M) :F . Hence, Γ1, z :B `̀̀n∩⊆ M :F . Therefore,
Γ1, w :B `̀̀n∩⊆ Rzw(M) :F with Γ ⊆ (Γ1, w :B).

• For Cx,vw (Cy,zx (M)) ≡ Cx,yw (Cz,vx (M)) with F = A: Then, there exist Γ1, A1, A2, A3,
such that Γ = Γ1, w : (A1 ∩ A2) ∩ A3 and Γ1, y :A1, z :A2, v :A3 `̀̀n∩⊆ M : F . Therefore

Γ1, w : (A2 ∩A3) ∩A1 `̀̀n∩⊆ C
x,y
w (Cz,vx (M)) :F .

Theorem 4.9 (Inductive characterisation of the interpretation).

(1) JxKρ = ρ(x)

(2) JMNKρ = JMKρ@JNKρ
(3) Jλx.MKρ@u = JMKρ,x7→u if u 6= ⊥.

(4) JM [x := N]Kρ = JMKρ,x7→JNKρ
if JNKρ 6= ⊥

(5) JWx(M)Kρ = JMKρ if ρ(x) 6= ⊥.

(6) JCy,zx (M)Kρ = JMKρ,y 7→ρ(x),z 7→ρ(x).

Proof. To prove equalities between I-filters, we only have to prove that they have the same
F -types.

(1) If F ∈ JxKρ, then there exists Γ ∈ ρ such that Γ `̀̀∩⊆ x :F , so Γ = (x :F) so F ∈ ρ(x).

Conversely, if F ∈ ρ(x), then (x :F) ∈ ρ and x :F `̀̀∩⊆ x :F . So JxKρ = ρ(x).

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 43

(2) Let F ∈ JMNKρ. There exists Γ ∈ ρ such that Γ `̀̀∩⊆ MN :F . Hence, there exist Γ1, Γ2

and A such that Γ1 `̀̀∩⊆ M :A→ F and Γ2 `̀̀∩⊆ N :A and Γ = Γ1 ∩ Γ2. So Γ ⊆ Γ1, and
Γ1 ∈ ρ. Hence, A→ F ∈ JMKρ. We also have A ∈ JNKρ. So we have F ∈ JMKρ@JNKρ.

Conversely, let F ∈ JMKρ@JNKρ. There exists A such that A → F ∈ JMKρ and

A ∈ JNKρ. So there exists Γ ∈ ρ such that Γ `̀̀∩⊆ M :A→ F and there exists ∆ ∈ ρ
such that ∆ `̀̀∩⊆ N :A. Hence, Γ ∩∆ ∈ ρ and Γ ∩∆ `̀̀∩⊆ MN :F . So F ∈ JMNKρ.

(3) Let F ∈ Jλx.MKρ@u. There exists A ∈ u such that A→ F ∈ Jλx.MKρ. So there exists

Γ ∈ ρ such that Γ `̀̀∩⊆ λx.M :A→ F . Hence, there exists U such that A ⊆ U and
Γ, x :U `̀̀∩⊆ M :F .
• If U = ω, then (Γ, x :U) = Γ ∈ ρ. Since ρ ⊆ (ρ, x 7→ u), we have (Γ, x :U) ∈ (ρ, x 7→ u).
• If not, then U ∈ u, and we have (Γ, x :U) ∈ (ρ, x 7→ u).
So we have F ∈ JMKρ,x7→u.

Conversely, let F ∈ JMKρ,x 7→u. There exists Γ ∈ (ρ, x 7→ u) such that Γ `̀̀∩⊆ M :F .

• If x ∈ fv(M), then there exist Γ1 ∈ ρ and A ∈ u such that Γ = Γ1, x : A (using
Lemma 2.12.1). So we have Γ1 `̀̀∩⊆ λx.M : A→ F , and then A → F ∈ Jλx.MKρ.
Hence, we have F ∈ Jλx.MKρ@u.

• If x /∈ fv(M), then for all y ∈ Dom(Γ), y 6= x (using Lemma 2.12.1). So Γ ∈ ρ and
Γ, x :ω `̀̀∩⊆ M :F . Since u is a value, there exist A ∈ u and Γ `̀̀∩⊆ λx.M :A→ F .
Hence, A→ F ∈ Jλx.MKρ and finally F ∈ Jλx.MKρ@u.

(4) Let F ∈ JM [x := N]Kρ. So there exists Γ ∈ ρ such that Γ `̀̀∩⊆ M [x := N] :F . Hence

there exist Γ1, Γ2, A and U such that Γ = Γ1 ∩ Γ2, Γ1 `̀̀∩⊆ N :A, Γ2, x :U `̀̀∩⊆ M :F
and U = A or U = ω. Hence Γ1 ∈ ρ and then A ∈ JNKρ. Therefore because Γ2 ∈ ρ
we also have (Γ2, x : A) ∈ (ρ, x 7→ JNKρ) and (Γ2, x : ω) ∈ (ρ, x 7→ JNKρ). Hence

(Γ2, x :U) ∈ (ρ, x 7→ JNKρ). So we have F ∈ JMKρ,x 7→JNKρ
.

Conversely, if F ∈ JMKρ,x7→JNKρ
then there exists Γ ∈ (ρ, x 7→ JNKρ) such that

Γ `̀̀∩⊆ M :F . Hence there exist Γ′ and U such that Γ′ ∈ ρ and U ∈ JNKρ or U = ω.

bullet If U ∈ JNKρ there exist A and ∆ such that ∆ `̀̀∩⊆ N :A and A = U .

bullet If U = ω, then because JNKρ 6= ⊥ there exists A ∈ JNKρ. Therefore there exist

∆ ∈ ρ such that ∆ `̀̀∩⊆ N :A.
Hence ∆ ∩ Γ′ `̀̀∩⊆ M [x := N] :F with (∆ ∩ Γ′) ∈ ρ. Therefore F ∈ JM [x := N]Kρ.

(5) Let F ∈ JWx(M)Kρ. So there exists Γ ∈ ρ such that Γ `̀̀∩⊆ Wx(M) :F . So there exist Γ′,

U and A such that Γ = (Γ′, x :U ∩A) and Γ′, x :U `̀̀∩⊆ M :F . Therefore, Γ ⊆ (Γ′, x :U).
Hence (Γ′, x :U) ∈ ρ. Therefore F ∈ JMKρ.

Conversely, if F ∈ JMKρ, then there exists Γ ∈ ρ such that Γ `̀̀∩⊆ M :F . ρ(x) 6= ⊥,

so there exists A ∈ ρ(x). Also, there exist Γ′ and U such that Γ = (Γ′, x : U) and
U = ω or U ∈ ρ(x). So we have U ∩A ∈ ρ(x) and Γ′ ∈ ρ. Hence (Γ, x :U ∩A) ∈ ρ and
Γ, x :U ∩A `̀̀∩⊆ Wx(M) :F . Therefore F ∈ JWx(M)Kρ.

(6) Let F ∈ JCy,zx (M)Kρ. So there exists Γ ∈ ρ such that Γ `̀̀∩⊆ C
y,z
x (M) :F . Hence there

exist Γ′, U , V1 and V2 such that Γ = (Γ′, x :U∩(V1∩V2)) and Γ′, x :U, y :V1, z :V2 `̀̀∩⊆ M :
F . Therefore Γ′ ∈ ρ and U ∩ (V1 ∩ V2) ∈ ρ(x) or U ∩ (V1 ∩ V2) = ω. So U , V1 and V2 are
either equal to ω or are in ρ(x). Hence (Γ′, x :U, y :V1, z :V2) ∈ (ρ, y 7→ ρ(x), z 7→ ρ(x)).
Therefore F ∈ JMKρ,y 7→ρ(x),z 7→ρ(x).

Conversely, if F ∈ JMKρ,y 7→ρ(x),z 7→ρ(x) , then there exists Γ ∈ (ρ, x 7→ ρ(x), y 7→ ρ(y)).

So there exist Γ′, U , V1 and V2 such that Γ = (Γ′, x :U, y :V1, z :V2) and U , V1 and V2

44 A. BERNADET AND S. GRAHAM-LENGRAND

are either equal to ω or are in ρ(x). Hence (U ∩ (V1 ∩ V2)) ∈ ρ(x) or is equal to ω. So
we have Γ′, x :U ∩ (V1 ∩ V2) `̀̀∩⊆ C

y,z
x (M) :F with (Γ′, x :U ∩ (V1 ∩ V2)) ∈ ρ. Therefore

F ∈ JCy,zx (M)Kρ.

Lemma 4.24 (Adequacy Lemma).
If G `̀̀S M : A, then for all valuations σ and for all mappings ρ ∈ JGKσ we have

JMKρ ∈ JAKσ.

Proof. By induction on the derivation of G `̀̀S M :A, using the axioms (A1),. . . ,(A6) from
Definition 4.18. Let σ be a valuation.

•
G, x :A `̀̀∩⊆ x :A

Let ρ ∈ JG, x :AKσ and let −→v ∈ [A]σ. By definition, ρ(x) ∈ JAKσ so ρ(x) ⊥⊥ −→v , and by
axiom (A1) we have JxKρ ⊥⊥

−→v . Hence, JxKρ ∈ JAKσ.

•
G, x :A `̀̀∩⊆ M :B

G `̀̀∩⊆ λx.M :A→B

Let ρ ∈ JGKσ and let w ::−→v ∈ [A→B]σ = JAKσ :: [B]σ. As w ∈ JAKσ, we have (ρ, x 7→
w) ∈ JG, x :AKσ, so by induction hypothesis we have JMKρ,x 7→w ∈ JBKσ. From this we

get JMKρ,x 7→w ⊥⊥
−→v and by axiom (A3) we have Jλx.MKρ ⊥⊥ w ::−→v . Hence, Jλx.MKρ ∈

JA→BKσ.

•
G `̀̀∩⊆ M :A→B G `̀̀∩⊆ N :A

G `̀̀∩⊆ M N :B

Let ρ ∈ JGKσ and let −→v ∈ [B]σ. By induction hypothesis we have JNKρ ∈ JAKσ and

JMKρ ∈ JA→BKσ. We thus get JNKρ :: v ∈ JAKσ :: [B]σ = [A→B]σ. So JMKρ ⊥⊥ JNKρ ::v

and by axiom (A2) we have JM NKρ ⊥⊥ v. Hence JM NKρ ∈ JBKσ.

•
G `̀̀∩⊆ M :A G `̀̀∩⊆ M :B

G `̀̀∩⊆ M :A ∩B

Let ρ ∈ JGKσ and let −→v ∈ [A ∩B]σ = [A]σ ∪ [B]σ. By induction hypothesis we have
JMKρ ∈ JAKσ and JMKρ ∈ JBKσ so in any case JMKρ ⊥⊥ v. Hence JMKρ ∈ JA ∩BKσ.

•
G `̀̀∩⊆ M :A ∩B

G `̀̀∩⊆ M :A

Let ρ ∈ JGKσ and let −→v ∈ [A]σ ⊆ [A ∩B]σ. By induction hypothesis we have JMKρ ∈
JA ∩BKσ so JMKρ ⊥⊥ v. Hence JMKρ ∈ JAKσ.

•
G `̀̀∩⊆ M :A ∩B

G `̀̀∩⊆ M :B

Let ρ ∈ JGKσ and let −→v ∈ [B]σ ⊆ [A ∩B]σ. By induction hypothesis we have JMKρ ∈
JA ∩BKσ so JMKρ ⊥⊥ v. Hence JMKρ ∈ JBKσ.

NON-IDEMPOTENT INTERSECTION TYPES AND STRONG NORMALISATION 45

•
G `̀̀∩⊆ M :A

α /∈ ftv(G)
G `̀̀∩⊆ M :∀αA
Let ρ ∈ JGKσ and let −→v ∈ [∀αA]σ =

⋃
Y⊆D∗ [A]σ,α7→Y . By induction hypothesis we have

JMKρ ∈ JAKσ,α7→Y ′ for all Y ′ ⊆ D∗, so in any case JMKρ ⊥⊥ v. Hence JMKρ ∈ J∀αAKσ.

•
G `̀̀∩⊆ M :∀αA

G `̀̀∩⊆ M :A{α := B}
Let ρ ∈ JGKσ and let −→v ∈ [A{α := B}]σ = [A]σ,α7→[B]σ

⊆ [∀αA]σ. By induction hypothesis

we have JMKρ ∈ J∀αAKσ so JMKρ ⊥⊥ v. Hence JMKρ ∈ JA{α := B}Kσ.

•
G `̀̀∩⊆ N :A G, x :A `̀̀∩⊆ M :B

G `̀̀∩⊆ M [x := N] :B

Let ρ ∈ JGKσ and let −→v ∈ [B]σ. By induction hypothesis we have JNKρ ∈ JAKσ;

therefore JNKρ is a value and (ρ, x 7→ JNKρ) ∈ JG, x :AKσ. By induction hypothesis

again we have JMKρ,x 7→JNKρ
∈ JBKσ. So JMKρ,x7→JNKρ

⊥⊥ −→v and by axiom (A4) we have

JM [x := N]Kρ ⊥⊥
−→v .

•
G `̀̀∩⊆ M :B x /∈ dom(G)

G, x :A `̀̀∩⊆ Wx(M) :B

Let (ρ, x 7→ u) ∈ JG, x :AKσ and let −→v ∈ [B]σ. We have ρ ∈ JGKσ and by induc-
tion hypothesis we have JMKρ ∈ JBKσ. So JMKρ ⊥⊥

−→v and by axiom (A5) we have

JWx(M)Kρ,x 7→u ⊥⊥
−→v .

•
G, y :A, z :A `̀̀∩⊆ M :B

G, x :A `̀̀∩⊆ Cy,zx (M) :B

Let (ρ, x 7→ u) ∈ JG, x :AKσ and let −→v ∈ [B]σ. We have (ρ, y 7→ u, z 7→ u) ∈ JGKσ and
by induction hypothesis we have JMKρ,y 7→u,z 7→u ∈ JBKσ. So JMKρ,y 7→u,z 7→u ⊥⊥

−→v and by

axiom (A6) we have JWx(M)Kρ,x 7→u ⊥⊥
−→v .

Lemma 6.2 (Most inefficient reduction). Assume Γ `̀̀nopt M :A. If M can be reduced by
−→B and not by −→S , then there exist M ′ and Γ′ such that Γ ≈ Γ′, M −→B M ′ and

Γ′ `̀̀n−1
opt M ′ :A.

Proof. We follow the induction given in the proof of Subject Reduction (Theorem 3.7). In
this induction, n can be decreased by more than 1 by a −→B in two cases:

• In the case where the type is an intersection, then n will be decreased by at least 2.
• When we build a typing ofM [x := N] from a typing of (λx.M)N : if there were subsumption

in the typing the λ-abstraction, then the proof calls Lemma 2.12.4 which might decrease
n by more than 1.

Those two cases are never encountered when optimality is assumed, as we prove the result
by induction on M . Since M cannot be reduced by −→S , it is of one of the following forms:

• λx.M1. It is clear that M1 satisfies the necessary conditions to apply the induction
hypothesis.

46 A. BERNADET AND S. GRAHAM-LENGRAND

• (λx.M1)N1 . . . Np (with p ≥ 1). We reduce to M1[x := N1] N2 . . . Np. By the optimality
property, A is not an intersection, and none of the types of ((λx.M1)N1 . . . Ni)1≤i≤p−1

are intersections either (since they are applied to an argument). Also by the optimality
property, there is no subsumption in the typing of the λ-abstraction, and therefore the
call to Lemma 2.12.4 is replaced by a call to Lemma 2.12.4 and therefore n is decresed by
exactly 1.
• x[y1 := N1]...[yp := Np]Np+1...Mm. Therefore there exists i such that Ni can be reduced by
−→B . Moreover, optimality requires the type of x to be of the form A+

1→· · ·→A+
p→B−,

and therefore the sub-derivation typing Ni is also optimal: we can apply the induction
hypothesis on it.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The calculus
	2.1. Terms
	2.2. Types
	2.3. Typing contexts
	2.4. Typing judgements

	3. Soundness
	3.1. Pure -calculus
	3.2. S
	3.3. lxr

	4. Denotational semantics for strong normalisation
	4.1. I-filters
	4.2. Semantics of terms as I-filters
	4.3. An example: System F and the likes
	4.4. An intuitionistic realisability model
	4.5. Orthogonality models

	5. Completeness
	5.1. Two properties of typing trees: Optimality and Principality
	5.2. S
	5.3. Pure -calculus
	5.4. lxr

	6. Complexity results
	6.1. S
	6.2. lxr
	6.3. Pure -calculus

	7. Other measures of complexity
	7.1. Number of replacements
	7.2. Number of duplications
	7.3. The other measures

	8. Conclusion
	References
	Appendix A. Filter models: classical vs. intuitionistic realisability
	Appendix B. Preservation of semantics by reduction
	Appendix C. Full proofs

