
Logical Methods in Computer Science
Vol. 10(3:17)2014, pp. 1–29
www.lmcs-online.org

Submitted Jan. 6, 2014
Published Sep. 10, 2014

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES

FOR MARKOV AUTOMATA ∗

DENNIS GUCK a, HASSAN HATEFI b, HOLGER HERMANNS c,
JOOST-PIETER KATOEN d, AND MARK TIMMER e

a,e Formal Methods and Tools, University of Twente, The Netherlands
e-mail address: {d.guck,m.timmer}@utwente.nl

b,c Dependable Systems and Software, Saarland University, Germany
e-mail address: {hhatefi,hermanns}@depend.cs.uni-saarland.de

d Formal Methods and Tools, University of Twente, The Netherlands
Software Modelling and Verification, RWTH Aachen University, Germany
e-mail address: katoen@cs.rwth-aachen.de

Abstract. Markov automata (MAs) extend labelled transition systems with random de-
lays and probabilistic branching. Action-labelled transitions are instantaneous and yield
a distribution over states, whereas timed transitions impose a random delay governed by
an exponential distribution. MAs are thus a nondeterministic variation of continuous-time
Markov chains. MAs are compositional and are used to provide a semantics for engineer-
ing frameworks such as (dynamic) fault trees, (generalised) stochastic Petri nets, and the
Architecture Analysis & Design Language (AADL). This paper considers the quantitative
analysis of MAs. We consider three objectives: expected time, long-run average, and
timed (interval) reachability. Expected time objectives focus on determining the minimal
(or maximal) expected time to reach a set of states. Long-run objectives determine the
fraction of time to be in a set of states when considering an infinite time horizon. Timed
reachability objectives are about computing the probability to reach a set of states within
a given time interval. This paper presents the foundations and details of the algorithms
and their correctness proofs. We report on several case studies conducted using a proto-
typical tool implementation of the algorithms, driven by the MAPA modelling language
for efficiently generating MAs.

2012 ACM CCS: [Mathematics of computing]: Probability and statistics—Stochastic processes—
Markov processes; [Theory of computation]: Models of computation; Formal languages and automata
theory.

Key words and phrases: Quantitative analysis, Markov automata, continuous time, expected time, long-
run average, timed reachability.
∗ This paper is the extended version of the QEST 2013 paper entitled “Modeling, Reduction, and Analysis

of Markov Automata” [19]. The current paper focuses on the quantitative analysis of Markov automata,
contains all full proofs, and has more extensive explanations.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(3:17)2014

c© D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen, and M. Timmer
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

p1 p3

p4

p5p2

t1

t3(w3)

t2(w2)

λ1

λ2

p6

p7

(a)

p1, p2

p2, p3

p1, p5

p4 p6

p3, p5 p3, p7

λ1

λ2

τ

τ
τ

w3

w2 + w3

w2

w2 + w3

τ

(b)

Figure 1: (a) Confused GSPN [1, Fig. 21] with partial weights and (b) its MA semantics.

1. Introduction

Markov automata (MAs, for short) have been introduced in [16] as a continuous-time version
of Segala’s probabilistic automata [31]. Closed under operators such as parallel composition
and hiding, they provide a compositional formalism for concurrent soft real time systems.
A transition in an MA is either labelled with a positive real number representing the rate
of a negative exponential distribution, or with an action. An action transition leads to
a discrete probability distribution over states. MAs can thus model action transitions as
in labelled transition systems, probabilistic branching as found in (discrete time) Markov
chains and Markov decision processes, as well as delays that are governed by exponential
distributions as in continuous-time Markov chains.

The semantics of MAs has been recently investigated in quite some detail. Weak and
strong (bi)simulation semantics have been presented in [16, 15], whereas it is shown in [13]
that weak bisimulation provides a sound and complete proof methodology for reduction
barbed congruence. A process algebra with data for the efficient modelling of MAs, ac-
companied with some reduction techniques using static analysis, has been presented in [35],
and model checking of MAs against Continuous Stochastic Logic (CSL) is discussed in [21].
Although the MA model raises several challenging theoretical issues, both from a semantical
and from an analytical point of view, our main interest is in their practical applicability.
As MAs extend Hermanns’ interactive Markov chains (IMCs) [23], they inherit IMC appli-
cation domains, ranging from GALS hardware designs [9] and dynamic fault trees [6] to
the standardised modelling language AADL [7, 22]. The additional feature of probabilistic
branching yields additional expressivity and thereby enriches the spectrum of application
contexts further. This expressivity also makes them a natural semantic model for other
formalisms. Among others, MAs are expressive enough to provide a natural operational
model for generalised stochastic Petri nets (GSPNs) [2] and stochastic activity networks
(SANs) [27], both popular modelling formalisms for performance and dependability analy-
sis. Let us briefly motivate this by considering GSPNs. Whereas in SPNs all transitions
are subject to an exponentially distributed delay, GSPNs also incorporate immediate tran-
sitions, transitions that happen instantaneously. The traditional GSPN semantics yields
a continuous-time Markov chain (CTMC), i.e., an MA without action transitions. How-
ever, that semantics is restricted to a subclass of GSPNs, namely those that are confusion
free. Confusion [1] is related to the presence of nondeterminism. Confused GSPNs are
traditionally considered as semantically ambiguous and thus precluded from any kind of

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 3

analysis. This gap is particularly disturbing because several published semantics for higher-
level modelling formalisms—e.g., UML, AADL, WSDL—map onto GSPNs without ensuring
the mapping to be free of confusion, therefore possibly inducing confused models.

It has recently been detailed in [24, 14] that MAs are a natural semantic model for
every GSPN. To give some intuitive insight into this achievement, consider the GSPN in
Fig. 1(a). This net is confused: In Petri net jargon, the transitions t1 and t2 are not in
conflict, but firing transition t1 leads to a conflict between t2 and t3, which does not occur
if t2 fires before t1. Though decisive, the firing order between t1 and t2 is not determined.
Transitions t2 and t3 are weighted so that in a marking {p2, p3} in which both transitions
are enabled, t2 fires with probability w2

w2+w3
and t3 with its complement probability. The

weight of transition t1 is not relevant; we assume t1 is not equipped with a weight. Classical
GSPN semantics and analysis algorithms cannot cope with this net due to the presence of
confusion (i.e., nondeterminism). Figure 1(b) depicts the MA semantics of this net. Here,
states correspond to sets of net places that contain a token. In the initial state, there is a
nondeterministic choice between the transitions t1 and t2. Note that the presence of weights
is naturally represented by discrete probabilistic branching as reflected in the outgoing
transition from state {p2, p3}. One can show that the MA semantics conservatively extends
the classical semantics, in the sense that the former and the latter are weakly bisimilar [14]
on confusion-free GSPNs. Thus, if transition t1 in our example is assigned some weight w1,
the GSPN has no confusion. This would be reflected in the MA semantics by replacing the
nondeterministic branching in state {p1, p2} by a single transition, yielding {p2, p3} with
probability w1

w1+w2
and state {p1, p5} with the complement probability.

This paper focuses on the quantitative analysis of MAs—and thus implicitly of (possibly
confused) GSPNs, of AADL specifications containing error models, and so on. We present
analysis algorithms for three objectives: expected time, long-run average, and timed (inter-
val) reachability. As the model exhibits nondeterminism, we focus on maximal and minimal
values for all three objectives. We show that expected-time and long-run average objectives
can be efficiently reduced to well-known problems on MDPs such as stochastic shortest path,
maximal end-component decomposition, and long-run ratio objectives. This generalises
(and slightly improves) the results reported in [18] for IMCs to MAs. Secondly, we present
a discretisation algorithm for timed interval reachability objectives which extends [38]. Fi-
nally, we present the MaMa tool chain, an easily accessible publicly available tool chain1

for the specification, mechanised simplification—such as confluence reduction [36], a form
of on-the-fly partial-order reduction—and quantitative evaluation of MAs. We describe the
overall architectural design, as well as the tool components, and report on empirical results
obtained with MaMa on a selection of case studies taken from different domains. The
experiments give insight into the effectiveness of the reduction techniques in MaMa and
demonstrate that MAs provide the basis of a very expressive stochastic timed modelling
approach without sacrificing the ability of time and memory efficient numerical evaluation.

Organisation of the paper. We introduce Markov automata in Section 2. Section 3 consid-
ers the evaluation of expected-time properties. Section 4 discusses the analysis of long-run
properties, and Section 5 focuses on timed reachability properties with time-interval bounds.

1Stand-alone download as well as web-based interface available from
http://fmt.cs.utwente.nl/~timmer/mama.

http://fmt.cs.utwente.nl/~timmer/mama

4 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

Implementation details of our tool, a compositional modelling formalism as well as exper-
imental results are discussed in detail in Section 6. Section 7 concludes the paper. We
provide the proofs for our main results in the appendix.

2. Preliminaries

2.1. Markov automata. An MA is a transition system with two types of transitions:
probabilistic (as in PAs) and Markovian transitions (as in CTMCs). Let Act be a countable
universe of actions with internal action τ ∈ Act , and Distr(S) denote the set of discrete
probability distribution functions over the countable set S. Let α, β range over Act and
µ, ν over Distr(S). Actions such as α can be used for interaction with other MAs [16]. This
does not apply to the internal action τ , which is executed autonomously.

Definition 2.1 (Markov automaton). AMarkov automaton (MA) is a tupleM = (S,A, −→ ,
=⇒, s0) where S is a nonempty, finite set of states with initial state s0 ∈ S, A ⊆ Act is a
finite set of actions with τ ∈ A, and

• −→ ⊆ S ×A× Distr(S) is the probabilistic transition relation, and
• =⇒ ⊆ S × R>0 × S is the Markovian transition relation.

We abbreviate (s, α, µ) ∈ −→ by s α−−→µ and (s, λ, s′) ∈ =⇒ by s
λ

=⇒ s′. An MA can
evolve via its probabilistic and Markovian transitions. If s α−−→µ, it can leave state s by
executing the action α, after which the probability of going to some state s′ ∈ S is given
by µ(s′). If s

λ
=⇒ s′ is the only transition emanating from s, a state transition from s to s′

can occur after an exponentially distributed delay with rate λ. That is to say, the expected
delay from s to s′ is 1

λ
. If s

λ
=⇒ s′ and s τ−→µ for some µ, however, always the τ -transition

is taken and never the Markovian one. This is the maximal progress assumption [16]. The
rationale behind this assumption is that internal (i.e., τ -labelled) transitions are not subject
to interaction and thus can happen immediately, whereas the probability of a Markovian
transition to immediately happen is zero. Thus, s

λ
=⇒ s′ almost never fires instantaneously.

Note that the maximal progress assumption does not apply in case s
λ

=⇒ s′ and s α−−→µ
with α 6= τ , as α-transitions – unlike τ -transitions – can be used for synchronisation and
thus be subject to a delay. In this case, the transition s

λ
=⇒ s′ may happen with positive

probability. The semantics of several Markovian transitions in a state is as follows. For a
state with one or more Markovian transitions, let R(s, s′) =

∑

{λ | s
λ

=⇒ s′} be the total
rate of moving from state s to state s′, and let E(s) =

∑

s′∈S R(s, s′) be the total outgoing
rate of s. If s has more than one outgoing Markovian transition, a competition between its
Markovian transitions exists. Then, the probability of moving from s to state s′ within d
time units is

R(s, s′)

E(s)
·
(

1− e−E(s)·d
)

.

After a delay of at most d time units (second factor) in state s, the MA moves to a direct

successor state s′ with probability P(s, s′) = R(s,s′)
E(s) . Note that also in this case, the maximal

progress assumption applies: if s τ−→µ and s has several Markovian transitions, only the
τ -transition can occur and no delay occurs in s. The behaviour of an MA in states with
only Markovian transitions is thus the same as in CTMCs [3]. Fig. 2 depicts a sample MA.
Note that this MA only contains τ -labelled probabilistic transitions; by maximal progress,
any state has only Markovian transitions or only τ -labelled transitions. In case several

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 5

0, 0, 0

1, 0, 0

0, 1, 0

0, 0, 1

1, 0, 1

0, 1, 1

1, 1, 1 1, 1, 0

λ1

λ2

9
10

1
10

τ

9
10

1
10τ

µ λ1

λ2

λ2

µ

µ

λ1

µ

9
10

1
10 τ

9
10

1
10

τ

Figure 2: A queueing system (taken from [35]), consisting of a server and two stations. Each
state is represented as a tuple (s1, s2, j), with si the number of jobs in station i,
and j the number of jobs in the server. The two stations have incoming requests
with rates λ1, λ2, which are stored until fetched by the server. If both stations
contain a job, the server chooses nondeterministically (in state (1,1,0)). Jobs are
processed with rate µ, and when polling a station, with probability 1

10 the job is
erroneously kept in the station after being fetched. For simplicity we assume that
each component can hold at most one job.

τ -transitions emanate from a state, a nondeterministic choice between these transitions
exists.

2.2. Actions. Actions different from τ can be used to compose MAs from smaller MAs
using parallel composition. For instance, M1 ||H M2 denotes the parallel composition of
MA M1 and M2 in which actions in the set H ⊆ Act with τ 6∈ H need to be executed by
both MAs simultaneously, and actions not in H are performed autonomously by Mi. In
this paper, we will not cover the details of such composition operation (see [16]); it suffices
to understand that the distinction between τ and α 6= τ is relevant when composing MAs
from component MAs. We assume in the sequel that the MAs to be analysed are single,
monolithic MAs. These MAs are not subject to any interaction with other MAs. Hence,
we assume that all transitions are labelled by τ -actions. (This amounts to the assumption
that prior to the analysis all actions needed to compose several MAs are explicitly turned
into internal actions by hiding.) Due to the maximal progress assumption, the outgoing
transitions of each state are either all probabilistic or all Markovian. We can therefore
partition the states into a set of probabilistic states, denoted PS ⊆ S, and a set of Markovian
states, denoted MS ⊆ S. We denote the set of enabled actions in s with Act(s), where
Act(s) = {α ∈ A | ∃µ ∈ Distr(S) . s α−−→µ} if s ∈ PS, and Act(s) = {⊥} otherwise.

2.3. Paths. A path in an MA is an infinite sequence π = s0
σ0,µ0,t0−−−−−−→ s1

σ1,µ1,t1−−−−−−→ . . .

with si ∈ S, σi = τ or σi = ⊥, µi ∈ Distr(S) and ti ∈ R≥0. For σi = τ , si
σi,µi,ti−−−−−→ si+1

denotes that after residing ti = 0 time units in si, the MA moved via action σi to si+1

with probability µi(si+1). In case σi = ⊥, si
⊥,µi,ti−−−−−→ si+1 denotes that after residing ti

time units in s, a Markovian transition led to si+1 with probability µi(si+1) = P(si, si+1).
For t ∈ R≥0, let π@t denote the sequence of states that π occupies at time t. Due to
instantaneous probabilistic transitions, π@t is a sequence of states, as an MA may occupy
various states at the same time instant. Let Paths denote the set of infinite paths and Paths∗

be the set of finite prefixes thereof (called finite paths). The time elapsed along the infinite

6 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

path π is given by
∑∞

i=0 ti. Path π is Zeno whenever this sum converges. As the probability
of a Zeno path in an MA that only contains Markovian transitions is zero [3, Prop. 1], an
MA is non-Zeno if and only if no SCC with only probabilistic states is reachable (with
positive probability). As such SCC contains no Markovian transitions, it can be traversed
infinitely often without any passage of time. In the rest of this paper, we assume MAs to
be non-Zeno.

2.4. Policies. Nondeterminism occurs when there is more than one probabilistic transition
emanating from a state. To define a probability space over sets of infinite paths, we adopt
the approach as for MDPs [30] and resolve the nondeterminism by a policy. A policy is a
function that yields for each finite path ending in state s a probability distribution over the
set of enabled transitions in s.

Formally, a policy is a function D : Paths∗ → Distr((Act ∪ {⊥})×Distr(S)). Of course,
policies should only choose from available transitions, so we require for each path π ending
in a state sn that D(π)(α, µ) > 0 implies sn

α−−→µ and D(π)(⊥, µ) > 0 implies that sn is
Markovian and µ = P(sn, ·). Let GM (generic measurable) denote the most general class
of such policies that are still measurable; see [28] for details on measurability. In general,
a policy randomly picks an enabled action and probability distribution in the final state
of a given path. This is also known as a history-dependent randomised policy. If a policy
always selects an action and probability distribution according to a Dirac distribution, it is
called a deterministic policy. Policies are also classified based on the level of information
they use for the resolution of nondeterminism. In the most general setting, a policy may use
all information in a finite path, e.g., the states along the path, their ordering in the path,
the amount of time spent in each state, and so forth. A stationary policy only bases its
decision on the current state, and not on anything else. That is, D is stationary whenever
D(π1) = D(π2) for any finite paths π1 and π2 that have the same last state. A stationary
deterministic policy can be viewed as a function D : PS → Act × Distr(S) that maps each
probabilistic state s to an action α ∈ Act and probability distribution µ ∈ Distr(S) such
that s α−−→µ; such policies always take the same decision every time they are in the same
state. A time-abstract policy resolves nondeterminism based on the alternating sequence of
states and transitions visited so far, but not on the state residence times. Let TA denote
the set of time-abstract policies. For more details on different classes of policies (and their
relationship) on models such as MAs, we refer to [28]. Like for MDPs [30], a stationary or
time-abstract policy on an MA induces a countable stochastic process that is equivalent to
a (continuous-time) Markov chain. Using a standard cylinder-set construction on infinite
paths in such Markov chains [3] we obtain a σ-algebra of subsets of Paths ; given a policy D
and an initial state s, a measurable set of paths is equipped with probability measure Prs,D.

To ease the development of the theory, and without loss of generality, we assume that
each internal action induces a unique probability distribution. Note that this is no restric-
tion: if there are multiple τ -transitions emerging from a state s ∈ PS, we may replace the
τ by internal actions τ1 to τn, where n is the out-degree of s.

2.5. Stochastic shortest path (SSP) problems. As some objectives on MAs can be
reduced to SSP problems, we briefly introduce them. An MDP is a tuple (S,A,P, s0) where
S is a finite set of states, A ⊆ Act is a set of actions, P : S×A×S → [0, 1] such that for each
state s and each α,

∑

s′∈S P(s, α, s′) ∈ { 0, 1 }, and s0 ∈ S is the initial state. It is assumed

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 7

that in each state at least one action is enabled, i.e., P(s, α, s′) > 0 for each s, for some α.
A non-negative SSP problem is a tuple (S,A,P, s0, G, c, g) where the first four elements
represent its underlying MDP accompanied by a set G ⊆ S of goal states, cost function
c : (S \ G) × A → R≥0 and terminal cost function g : G → R≥0. A path through an MDP
is an alternating sequence s0

α0−−→ s1
α1−−→ . . . such that P(si, αi, si+1) > 0, for all i. The

accumulated cost along a path π through the MDP before reaching G, denoted by CG(π), is
∑k−1

j=0 c(sj , αj)+ g(sk) where k is the state index of reaching G. If π does not reach G, then

CG(π) equals ∞. As standard in MDPs [30], nondeterminism between different actions in
a state is resolved using policies; similar to the notion for MAs, a stationary deterministic
policy is a function D : PS → Act . Let cRmin(s,♦G) denote the minimum expected cost
reachability of G in the SSP (under all policies) when starting from s. It is a well-known
result that stationary policies suffice to achieve cRmin(s,♦G). This expected cost can be
obtained by solving an LP (linear programming) problem [5].

3. Expected time objectives

Let M be an MA with state space S and G ⊆ S a set of goal states. Define the
(extended) random variable VG : Paths → R

∞
≥0 as the elapsed time before first visiting

some state in G. That is, for an infinite path π = s0
σ0,µ0,t0
−−−−−→s1

σ1,µ1,t1
−−−−−→· · · , let VG(π) =

min {t ∈ R≥0 | G ∩ π@t 6= ∅} where min(∅) = ∞. (With slight abuse of notation we use
π@t as the set of states occurring in the sequence π@t.) The minimal expected time to
reach G from s ∈ S is defined by

eTmin(s,♦G) = inf
D∈GM

Es,D(VG) = inf
D∈GM

∫

Paths

VG(π) · Prs,D(dπ)

where D is a generic measurable policy on M. (In the sequel, we assume that eTmin is
a function indexed by G.) Note that by definition of VG, only the amount of time before
entering the firstG-state is relevant. Hence, we may turn all G-states into absorbing without
affecting the expected time reachability. It is done via replacing all of their emanating
transitions by a single Markovian self loop (a Markovian transition to the state itself) with
an arbitrary rate. In the remainder of this section we assume all goal states to be absorbing.
Let µs

α be the distribution such that s α−−→µs
α. As we assume that all action labels of the

transitions emanating a state are unique (by numbering them), this distribution is unique.

Theorem 3.1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =



























1

E(s)
+

∑

s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · v(s′) if s ∈ PS \G

0 if s ∈ G,

where Act(s) = {τi | s
τi−−→µ} and µs

α ∈ Distr(S) is as formerly defined.

We will later see that eTmin is in fact the unique fixpoint of the Bellman operator. Let
us explain the above result. For a goal state, the expected time obviously is zero. For a
Markovian state s 6∈ G, the minimal expected time to reach some state in G is the expected
sojourn time in s (which equals 1

E(s)) plus the expected time to reach some state in G via

one of its successor states. For a probabilistic state, an action is selected that minimises

8 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

the expected time according to the distribution µs
α corresponding to α in state s. The

characterisation of eTmin(s,♦G) in Thm. 3.1 allows us to reduce the problem of computing
the minimum expected time reachability in an MA to a non-negative SSP problem [5, 12].
This goes as follows.

Definition 3.2 (SSP for minimum expected time reachability). The SSP of MA M =
(S,A, −→ ,=⇒, s0) for the expected time reachability of G ⊆ S is

sspet(M) = (S,A ∪ {⊥} ,P, s0, G, c, g)

where g(s) = 0 for all s ∈ G and

P(s, σ, s′) =











R(s,s′)
E(s) if s ∈ MS, σ = ⊥

µs
σ(s

′) if s ∈ PS, s σ−−→µs
σ

0 otherwise, and

c(s, σ) =

{

1
E(s) if s ∈ MS \G, σ = ⊥

0 otherwise.

Terminal costs are zero. Transition probabilities are defined in the standard way. The
cost of a Markovian state is its expected sojourn time, whereas that of a probabilistic one
is zero.

Theorem 3.3. Given an MA M, eTmin(s,♦G) equals cRmin(s,♦G) in sspet(M).

Thus there is a stationary deterministic policy on M yielding eTmin(s,♦G). Moreover,
the uniqueness of the minimum expected cost of an SSP [5, 12] now yields that eTmin(s,♦G)
is the unique fixpoint of L (see Thm. 3.1). This follows from the fact that the Bellman op-
erator defined in Thm 3.1 equals the Bellman operator for cRmin(s,♦G). The uniqueness
result enables the usage of standard solution techniques such as value iteration and linear
programming to compute eTmin(s,♦G). For maximum expected time objectives, a similar
fixpoint theorem is obtained, and it can be proven that those objectives correspond to the
maximal expected reward in the SSP problem defined above. Thus far, we have assumed
MAs to be non-Zeno, i.e., they do not contain a reachable cycle solely consisting of proba-
bilistic transitions. However, the above notions can all be extended to deal with such Zeno
cycles, by, e.g., setting the minimal expected time of states in Zeno BSCCs that do not
contain G-states to be infinite (as such states cannot reach G). Similarly, the maximal ex-
pected time of states in Zeno end components (that do not contain G-states) can be defined
as infinity, as in the worst case these states will never reach G.

4. Long-run objectives

Let M be an MA with state space S and G ⊆ S a set of goal states. Let 1G be the
characteristic function of G on finite sequences, i.e., 1G(π) = 1 if and only if s ∈ G for some
s in π. Following the ideas of [11, 26], the fraction of time spent in G on an infinite path π in

M up to time bound t ∈ R≥0 is given by the random variable AG,t(π) = 1
t

∫ t

0 1G(π@u) du.
Taking the limit t → ∞, we obtain the random variable

AG(π) = lim
t→∞

AG,t(π) = lim
t→∞

1

t

∫ t

0
1G(π@u) du.

The expectation of AG for policy D and initial state s yields the corresponding long-run
average time spent in G:

LRAD(s,G) = Es,D(AG) =

∫

Paths

AG(π) · Prs,D(dπ).

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 9

The minimum long-run average time spent in G starting from state s is then:

LRAmin(s,G) = inf
D∈GM

LRAD(s,G) = inf
D∈GM

Es,D(AG).

Note that 1G(π@u) = 1 if and only if π@u is a sequence containing at least one state in G.
For the long-run average analysis, we assume w.l.o.g. that G ⊆ MS, as the long-run average
time spent in any probabilistic state is always 0. This claim follows directly from the fact
that probabilistic states are instantaneous, i.e. their sojourn time is 0 by definition. Note
that in contrast to the expected time analysis, G-states cannot be made absorbing in the
long-run average analysis.

First we need to introduce maximal end components. A sub-MA of MA M is a pair
(S′,K) where S′ ⊆ S and K : S′ → 2A is a function such that: (i) K(s) 6= ∅, (ii) s ∈ S′ and
α ∈ K(s) and s α−−→µ with µ(s′) > 0 implies s′ ∈ S′, and (iii) s ∈ S′ and s

λ
=⇒ s′ implies

s′ ∈ S′. A sub-MA (S′,K) is contained in a sub-MA (S′′,K ′) if S′ ⊆ S′′ and K(s) ⊆ K ′(s)
for all s ∈ S′. An end component is a sub-MA whose underlying graph is strongly connected;
it is maximal w.r.t. K if it is not contained in any other end component (S′′,K ′) of M.

In the remainder of this section, we discuss in detail how to compute the minimum
long-run average fraction of time spent in G in an MA M with initial state s0. The general
idea is the following three-step procedure:

(1) Determine the maximal end components {M1, . . . ,Mk} of MA M.
(2) Determine LRAmin(G) in maximal end component Mj for all j ∈ {1, . . . , k}.
(3) Reduce the computation of LRAmin(s0, G) in MA M to an SSP problem.

The first phase can be performed by a graph-based algorithm [10, 8], whereas the last two
phases boil down to solving (distinct) LP problems.

4.1. Unichain MA. We first show that for unichain MAs computing LRAmin(s,G) can
be reduced to determining long-run ratio objectives in MDPs. The notion of unichain is
standard in MDPs [30] and is adopted to MAs in a straightforward manner. An MA is
unichain if for any stationary deterministic policy the induced stochastic process consists
of a single ergodic class plus a possibly non-empty set of transient states2. Let us first
explain the long-run ratio objectives. Let M = (S,A,P, s0) be an MDP. Assume w.l.o.g.
that for each s ∈ S there exists α ∈ A such that P(s, α, s′) > 0 for some s′ ∈ S. Let
c1, c2 : S×A → R≥0 be cost functions. The operational interpretation is that a cost c1(s, α)
is incurred when selecting action α in state s, and similar for c2. Our interest is the ratio
between c1 and c2 along a path. The long-run ratio R between the accumulated costs c1
and c2 along the infinite path π = s0

α0−−→ s1
α1−−→ . . . in the MDP M is defined by:

R(π) = lim
n→∞

∑n−1
i=0 c1(si, αi)

∑n−1
j=0 c2(sj , αj)

.

The minimum long-run ratio objective for state s of MDP M is defined by:

Rmin(s) = inf
D

Es,D(R) = inf
D

∑

π∈Paths

R(π) · Prs,D(π).

2State s is transient if and only if the probability of the set of paths that start from s but never return
back to it is positive, otherwise it is recurrent. An MA is ergodic if for all stationary deterministic policies
the induced stochastic process consists of a single recurrent class.

10 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

Here, Paths is the set of paths in the MDP, D is a stationary deterministic MDP-policy,
and Pr is the probability measure on MDP-paths. From [10, Th. 6.14], it follows that
Rmin(s) can be obtained by solving the following LP problem with real variables k and
non-negative xs for each s ∈ S: Maximise k subject to:

xs ≤ c1(s, α)− k · c2(s, α) +
∑

s′∈S

P(s, α, s′) · xs′ for each s ∈ S, α ∈ A.

We now transform an MA into an MDP with two cost functions as follows.

Definition 4.1 (From MA to 2-cost MDPs). Let M = (S,A, −→ ,=⇒, s0) be an MA and
G ⊆ S a set of goal states. The MDP mdp(M) = (S,A∪{⊥},P, s0), where P is defined as
in Def. 3.2, is extended with cost functions c1 and c2 defined by:

c1(s, σ) =

{

1
E(s) if s ∈ MS ∩G ∧ σ = ⊥

0 otherwise,
c2(s, σ) =

{

1
E(s) if s ∈ MS ∧ σ = ⊥

0 otherwise.

Observe that cost function c2 keeps track of the average residence time in state s whereas
c1 only does so for states in G. Furthermore, R is well-defined in this setting, since the cost
functions c1 and c2 are obtained from non-Zeno MA. In other words, the probability of the
set of paths with ill-defined long-run ratio is zero.

Theorem 4.2. For unichain MA M, LRAmin(s,G) equals Rmin(s) in mdp(M).

To summarise, computing the minimum long-run average fraction of time that is spent
in some goal state in G ⊆ S in a unichain MA M equals the minimum long-run ratio
objective in an MDP with two cost functions. The latter can be obtained by solving an
LP problem. Observe that for any two states s, s′ in a unichain MA, LRAmin(s,G) and
LRAmin(s′, G) coincide. We therefore omit the state and simply write LRAmin(G) when
considering unichain MAs.

4.2. Arbitrary MA. Let M be an MA with initial state s0 and maximal end components
{M1, . . . , Mk} for k > 0 where MA Mj has state space Sj.

Lemma 4.3. Let M be a maximal end component and D a stationary deterministic policy
inducing a multichain onM. Then there exists a stationary deterministic policyD′ inducing
a unichain on M such that the long-run ratio is at least as good as for D.

Therefore, we can say that each Mj induces a unichain MA for the optimal long-run
ratio. Using this decomposition ofM into maximal end components, we obtain the following
result:

Theorem 4.4. 3For MA M = (S,A, −→ ,=⇒, s0) with MECs {M1, . . . ,Mk} with state
spaces S1, . . . , Sk ⊆ S, and set of goal states G ⊆ S:

LRAmin(s0, G) = inf
D∈GM

k
∑

j=1

LRAmin
j (G) · Prs0,D(♦✷Sj),

where Prs0,D(♦✷Sj) is the probability to eventually reach and continuously stay in some

states in Sj from s0 under policy D and LRAmin
j (G) is the LRA of G∩Sj in unichain MAMj .

3This theorem corrects a small flaw in the corresponding theorem for IMCs in [18].

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 11

s0 s1

s3

s2

s5 s4

2

0.6

0.4

α

α, 1 β, 1
1

3

1

(a) A sample Markov automaton.

s0 u1 q1

u2 q2

⊥, 1 ⊥, 1

α, 1

⊥, 1

⊥, 1

⊥, 1

(b) Induced SSP for MA in Figure 3(a).

Figure 3: Example for Definition 4.5.

Computing the minimal LRA for arbitrary MAs is now reducible to a non-negative SSP
problem. This proceeds as follows. In MA M, we replace each maximal end component Mj

by two fresh states qj and uj. Intuitively, qj represents Mj whereas uj can be seen as the
gate to and from Mj . Thus, state uj has a Dirac transition to qj as well as all probabilistic
transitions leaving Sj. Let U denote the set of uj states and Q the set of qj states. For
simplicity of the definition we assume w.l.o.g. that each probabilistic state induces a τ -
transition with an index of the state. Further, the τ -transitions of each state sk ∈ PS are
numbered from 1 to nsk ∈ N, where nsk is the number of probability distributions induced
by τsk . Thus, we denote an action in state sk with τskl

with l ∈ {1 . . . nsk}.

Definition 4.5 (SSP for long-run average). The SSP of MA M for the LRA in G ⊆ S is
ssplra(M) = ((S \

⋃k
i=1Si) ∪ U ∪Q,A ∪ {⊥},P′, s0, Q, c, g), where g(qi) = LRAmin

i (G) for
qi ∈ Q and c(s, σ) = 0 for all s and σ ∈ A∪{⊥}. P′ is defined as follows. Let S′ = S\

⋃k
i=1Si.

P′(s, σ, s′) equals P(s, σ, s′) for all s, s′ ∈ S′ and σ ∈ A ∪ {⊥}. For the new states uj:

P′(uj , τskl
, s′) = P(sk, τskl

, s′) if s′ ∈ S′ ∧ sk ∈ Sj ∧ l ∈ {1 . . . nsk} and

P′(ui, τskl
, uj) = P(sk, τskl

, Sj) if sk ∈ Si ∧ l ∈ {1 . . . nsk} ∧ τski
6∈ Ai

Finally, we have: P′(qj,⊥, qj) = 1 = P′(uj ,⊥, qj) and P′(s, σ, uj) = P(s, σ, Sj).

Here, P(s, α, S′) is a shorthand for
∑

s′∈S′ P(s, α, s′) and Ai denotes the action set of

maximal end component Mi. The terminal costs of the new qi-states are set to LRAmin
i (G).

Example 4.6. Consider the MA M from Figure 3(a), having MECs M1 with S1 =
{s1, s2, s3, s4} and M2 with S2 = {s5}. For the simplification of the action notation, we
use α and β instead of τ . Let G = {s2}. By Definition 4.5, ssplra(M) is defined as fol-
lows. As k=2, U = {u1, u2} and Q = {q1, q2}. Hence, Sssp = {s0, u1, u2, q1, q2}. First

consider s, s′ ∈ S′. Since, S′ = {s0} and there exists no transition from s0 to s0 we can
omit the first rule. Now consider all outgoing transitions from MECs. For M1 there exists

a transition from s3
α,1−−−→ s5 in the underlying MA, where s3 ∈ S1 and s5 ∈ S2. It follows

that P′(u1, α, u2) = P(s3, α, S2) = 1. Now consider all states in U and Q and add new
transitions with P(ui,⊥, qi) = P(qi,⊥, qi) = 1 for i = 1, 2. Finally, consider all states
s ∈ Sssp ∩ S with a transition into a MEC. Hence, P′(s0,⊥, u1) = P(s0,⊥, s1) = 1. The
MDP of ssplra(M) is depicted in Figure 3(b).

Theorem 4.7. For MA M, LRAmin(s0, G) equals cRmin(s0,♦Q) in SSP ssplra(M).

12 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

To summarise, computing the minimum long-run average fraction of time that is spent
in some goal states in G ⊆ S in an arbitrary MA M starting in state s0 equals the minimum
expected cost of an SSP.

5. Timed reachability objectives

This section presents an algorithm that approximates time-bounded reachability proba-
bilities in MAs. We start with a fixpoint characterisation, and then explain how these
probabilities can be approximated using a discretisation technique.

5.1. Fixpoint characterisation. Our goal is to come up with a fixpoint characterisation
for the maximum (or minimum) probability to reach a set of goal states in a time interval.
Let I and Q be the set of all nonempty nonnegative real intervals with real and rational
bounds, respectively. For interval I ∈ I and t ∈ R≥0, let I ⊖ t = {x− t | x ∈ I ∧ x ≥ t}.
Given MA M, I ∈ I and a set G ⊆ S of goal states, the set of all paths that reach some goal
states within interval I is denoted by ♦I G. Let pMmax(s,♦

I G) be the maximum probability
of reaching G within interval I if starting in state s at time 0. Here, the maximum is taken
over all possible generic measurable policies. The next lemma provides a characterisation
of pMmax(s,♦

I G) as a fixpoint.

Lemma 5.1. Let M be an MA, G ⊆ S and I ∈ I with inf I = a and sup I = b. Then,
pMmax(s,♦

I G) is the least fixpoint of the higher-order operator Ω: (S×I → [0, 1]) → (S×I →
[0, 1]), which for s ∈ MS is given by:

Ω(F)(s, I) =



















∫ b

0
E(s)e−E(s)t

∑

s′∈S

P(s, s′)F (s′, I ⊖ t) dt s /∈ G

e−E(s)a +

∫ a

0
E(s)e−E(s)t

∑

s′∈S

P(s, s′)F (s′, I ⊖ t) dt s ∈ G

and for s ∈ PS is defined by:

Ω(F)(s, I) =

{

1 s ∈ G ∧ 0 ∈ I

maxα∈Act(s)
∑

s′∈S µs
α(s

′)F (s′, I) otherwise.

The proof of Lemma 5.1 is a slight adaptation of the proof of [17, Thm. 4], where it
has been also shown that pMmax(s,♦

I G) is Lipschitz continuous and thus measurable. The
characterisation is a simple generalisation of that for IMCs [38], reflecting the fact that
taking an action from a probabilistic state leads to a distribution over the states (rather
than a single state). The above characterisation yields a Volterra integral equation system
which is in general not directly tractable [3]. To tackle this problem, we approximate the
fixpoint characterisation using discretisation, extending ideas developed in [38].

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 13

5.2. Discretisation. We split the time interval into equally-sized discretisation steps, each
of length δ. The discretisation step is assumed to be small enough such that with high
probability it carries at most one Markovian transition. This allows us to construct a
discretised MA (dMA), a variant of a semi-MDP, obtained by summarising the behaviour
of the MA at equidistant time points. Paths in a dMA can be seen as time-abstract paths
in the corresponding MA, implicitly counting discretisation steps, and thus discrete time.

Definition 5.2. Given MA M = (S,A, −→ ,=⇒, s0) and discretisation step δ ∈ R>0, Mδ =
(S,A, −→ , =⇒δ, s0) is the dMA induced from M with respect to δ, with =⇒δ = { (s, µs) |
s ∈ MS }, where

µs(s′) =

{

(1− e−E(s)δ)P(s, s′) if s′ 6= s

(1− e−E(s)δ)P(s, s′) + e−E(s)δ otherwise.

Using the above fixpoint characterisation, it is now possible to relate reachability prob-
abilities in the MA M to reachability probabilities in its dMA Mδ.

Theorem 5.3. Given MA M = (S,A, −→ ,=⇒, s0), G ⊆ S, interval I = [0, b] ∈ Q with
b ≥ 0 and λ = maxs∈MSE(s). Let δ ∈ R>0 be such that b = kbδ for some kb ∈ N. Then, for
all s ∈ S it holds that

pMδ
max(s,♦

[0,kb]G) ≤ pMmax(s,♦
[0,b]G) ≤ pMδ

max(s,♦
[0,kb]G) + 1− e−λb

(

1 + λδ
)kb .

This theorem can be extended to intervals with non-zero lower bounds; for the sake of
brevity, the details are omitted here. The remaining problem is to compute pMδ

max(s,♦
[0,kb]G),

which is the maximum probability to reach some goal state in dMA Mδ within the step
bound kb from initial state s. Let ♦[0,kb]G be the set of infinite (time-abstract) paths
of Mδ that reach some state in G within kb steps; the objective is then formalised by
pMδ
max(s,♦

[0,kb]G) = supD∈TA Prs,D(♦
[0,kb]G) where we recall that TA denotes the set of

time-abstract policies. Our algorithm is now an adaptation (to dMA) of the well-known
value iteration scheme for MDPs.

The algorithm proceeds by backward unfolding of the dMA in an iterative manner,
starting from the goal states. Each iteration intertwines the analysis of Markovian states
and of probabilistic states. The key idea is that a path from probabilistic states to G is
split into two parts: reaching Markovian states from probabilistic states in zero time and
reaching goal states from Markovian states in interval [0, j], where j is the step count of the
iteration. The former computation can be reduced to an unbounded reachability problem
in the MDP induced by probabilistic states with rewards on Markovian states. For the
latter, the algorithm operates on the previously computed reachability probabilities from
all Markovian states up to step count j. We can generalise this recipe from step-bounded
reachability to step interval-bounded reachability; details are described in [21].

6. Tool chain and case studies

This section describes the implementation of the algorithms discussed, together with the
modelling features resulting in our MaMa tool chain. Also, we present two case studies
that provide empirical evidence of the strengths and weaknesses of the MaMa tool chain.

14 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

6.1. Modelling. As argued in the introduction, MAs can be used as a semantical model for
various modelling formalisms. We use the process-algebraic specification language MAPA
(Markov Automata Process Algebra) [35, 34]. This language contains the usual process
algebra operators, can treat data as first-class citizens, and supports several reduction
techniques for MA specifications. In fact, it turns out to be beneficial to map a language
(like GSPNs) to MAPA so as to profit from these reductions.

The MAPA language supports algebraic processes featuring data, nondeterministic
choice, action prefix with probabilistic choice, rate prefix, conditional behaviour and pro-
cess instantiation (allowing recursion). Using MAPA processes as basic building blocks, the
language also supports the modular construction of large systems via top-level parallelism,
encapsulation, hiding and renaming. The operational semantics of a MAPA specification
yields an MA; for a detailed exposition of the syntax and semantics we refer to [35, 34].

To enable state space reduction and generation, our tool chain uses a linearised normal
form of MAPA referred to as MLPE (Markovian Linear Probabilistic process Equation).
In this format, there is precisely one process which consists of a nondeterministic choice
between a set of symbolic transitions, making MLPEs easy to translate to MAs. Every
MAPA specification can be translated efficiently into an MLPE while preserving strong
bisimulation [35].

Reduction techniques. On MLPEs, several reduction techniques have been defined. Some
of them simplify the MLPE to improve readability and speed up state space generation,
while others really modify it in such a way that the underlying MA gets smaller. Being
defined on the specification, these reductions eliminate the need to ever generate the original
unreduced state space. We briefly discuss six such techniques.

• Maximal progress reduction removes Markovian transitions from states also having τ -
transitions (motivated by the maximal progress assumption).

• Constant elimination [25] replaces parameters that remain forever constant by their initial
(and hence permanent) value.

• Expression simplification [25] evaluates functions for which all parameters are constants
and applies basic laws from logic.

• Summation elimination [25] removes trivial nondeterministic choices often arising from
synchronisations.

• Dead-variable reduction [37] detects parts of the specification in which the value of some
variable is irrelevant: it will be overwritten before being used for all possible futures.
When reaching such a part, the variable is reset to its initial value.

• Confluence reduction [36] detects spurious nondeterminism resulting from parallel com-
position. It denotes a subset of the probabilistic transitions of a MAPA specification as
confluent, meaning that they can safely be given priority if enabled together with other
transitions.

6.2. MaMa tool chain. Our tool chain consists of several tool components: SCOOP [33,
35], IMCA [18], and GEMMA [4], see Figure 4. The tool chain comprises about 8,000 LOC
(without comments). SCOOP (written in Haskell) supports the generation of MAs from
MAPA specifications by a translation into the MLPE format. It implements all the reduc-
tion techniques described above. The capabilities of the IMCA tool component (written in
C++) have been lifted to expected time and long-run objectives for MAs, and extended with

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 15

timed reachability objectives. It also supports (untimed) reachability objectives which are
not treated further here. A prototypical translator from GSPNs to MAs, in fact MAPA spec-
ifications, has been realised (the GEMMA component, written in Haskell). We connected
the three components into a single tool chain, by making SCOOP export the (reduced) state
space of an MLPE in the IMCA input language. Additionally, SCOOP has been extended
to translate properties, based on the actions and parameters of a MAPA specification, to
a set of goal states in the underlying MA. That way, in one easy process, systems and
their properties can be modelled in MAPA, translated to an optimised MLPE by SCOOP,
exported to the IMCA tool and then analysed.

6.3. Case studies. This section presents experiments with MaMa. All experiments were
conducted on a 2.5 GHz Intel Core i5 processor with 4GB RAM, running Mac OS X 10.8.3.

Processor grid. First, we consider a model of a 2 × 2 concurrent processor architecture.
Using GEMMA [4], we automatically derived the MA model from the GSPN model in [1,
Fig. 11.7]. Previous analysis of this model required weights for all immediate transitions,
which necessitates having complete knowledge of the mutual behaviour of all these transi-
tions. We allow a weight assignment to just a (possibly empty) subset of the immediate
transitions—reflecting the practical scenario of only knowing the mutual behaviour for a
selection of the transitions. For this case study we indeed kept weights for only a few of the
transitions, obtaining probabilistic behaviour for them and nondeterministic behaviour for
the others.

Table 1 reports on the time-bounded and time-interval bounded probabilities for reach-
ing a state such that the first processor has an empty task queue. We vary the degree
of multitasking K, the error bound ǫ and the interval I. For each setting, we report the
number of states |S| and goal states |G|, and the generation time with SCOOP (both with
and without the reductions from Section 6.1).

The runtime demands grow with both the upper and lower time bound, as well as
with the required accuracy. The model size also affects the per-iteration cost and thus
the overall complexity of reachability computation. Note that the reductions speed-up the
analysis times by a factor between 1.8 and 2.5: even more than the reduction in state
space size. This is due to the fact that these techniques significantly reduce the degree of
nondeterminism.

Table 2 displays the results for expected time until an empty task queue, as well as
the long-run average that a processor is active. In contrast to [1], which fixes all non-
determinism and obtains, for instance, an LRA of 0.903 for K = 2, we are now able to
retain nondeterminism and provide the more informative interval [0.8810, 0.9953]. Again,
SCOOP’s reduction techniques significantly improve runtimes.

SCOOP IMCA Results

MAPA spec + Property

Goal states

MA

Reduce

GEMMA
Property

MAPA spec

GSPN + Property

Figure 4: Analysing Markov automata using the MaMa tool chain.

16 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

unreduced reduced
K |S| |G| time |S| |G| time ǫ I p

m
in (s0

,♦
I G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

p
m
ax (s

0
,♦

I G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

2 2,508 1,398 0.6 1,789 1,122 0.8

10−2 [0, 3] 0.91 58.5 31.0 0.95 54.9 21.7
10−2 [0, 4] 0.96 103.0 54.7 0.98 97.3 38.8
10−2 [1, 4] 0.91 117.3 64.4 0.96 109.9 49.0
10−3 [0, 3] 0.910 580.1 309.4 0.950 544.3 218.4

3 10,852 4,504 3.1 7,201 3,613 3.5

10−2 [0, 3] 0.18 361.5 202.8 0.23 382.8 161.1
10−2 [0, 4] 0.23 643.1 360.0 0.30 681.4 286.0
10−2 [1, 4] 0.18 666.6 377.3 0.25 696.4 317.7
10−3 [0, 3] 0.176 3,619.5 2,032.1 0.231 3,837.3 1,611.9

4 31,832 10,424 9.8 20,021 8,357 10.5 10−2 [0, 3] 0.01 1,156.8 614.9 0.03 1,196.5 486.4

Table 1: Interval reachability probabilities for the grid. (Time in seconds.)

K eT
m
in (s0

,✸
G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

eT
m
ax (s

0
,✸

G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

LR
A
m
in (s0

, G
)

tim
e(u

nr
ed
)

tim
e(r

ed
)

LR
A
m
ax (s

0
, G

)

tim
e(u

nr
ed
)

tim
e(r

ed
)

2 1.0000 0.3 0.1 1.2330 0.7 0.3 0.8110 1.3 0.7 0.9953 0.5 0.2
3 11.1168 18.3 7.7 15.2768 135.4 40.6 0.8173 36.1 16.1 0.9998 4.7 2.6
4 102.1921 527.1 209.9 287.8616 6,695.2 1,869.7 0.8181 505.1 222.3 1.0000 57.0 34.5

Table 2: Expected times and long-run averages for the grid. (Time in seconds.)

unreduced reduced
Q N |S| |G| time |S| |G| time ǫ I p

m
in (s0

,♦
I G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

p
m
ax (s

0
,♦

I G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

2 3 1,497 567 0.4 990 324 0.2
10−3 [0, 1] 0.277 4.7 2.9 0.558 4.6 2.5
10−3 [1, 2] 0.486 22.1 14.9 0.917 22.7 12.5

2 4 4,811 2,304 1.0 3,047 1,280 0.6
10−3 [0, 1] 0.201 25.1 14.4 0.558 24.0 13.5
10−3 [1, 2] 0.344 106.1 65.8 0.917 102.5 60.5

3 3 14,322 5,103 3.0 9,522 2,916 1.7
10−3 [0, 1] 0.090 66.2 40.4 0.291 60.0 38.5
10−3 [1, 2] 0.249 248.1 180.9 0.811 241.9 158.8

3 4 79,307 36,864 51.6 50,407 20,480 19.1
10−3 [0, 1] 0.054 541.6 303.6 0.291 578.2 311.0
10−3 [1, 2] 0.141 2,289.3 1,305.0 0.811 2,201.5 1,225.9

4 2 6,667 1,280 1.1 4,745 768 0.8
10−3 [0, 1] 0.049 19.6 14.0 0.118 19.7 12.8
10−3 [1, 2] 0.240 83.2 58.7 0.651 80.9 53.1

4 3 131,529 45,927 85.2 87,606 26,244 30.8
10−3 [0, 1] 0.025 835.3 479.0 0.118 800.7 466.1
10−3 [1, 2] 0.114 3,535.5 2,062.3 0.651 3,358.9 2,099.5

Table 3: Interval reachability probabilities for the polling system. (Time in seconds.)

Polling system. Second, we consider a polling system with two stations and one server,
similar to the one depicted in Figure 2 and inspired by [32]. There are incoming requests
of N possible types, each of them with a (possibly different) service rate. Additionally,
the stations each store these in a local queue of size Q. We vary the values of Q and N ,
analysing a total of six different settings. Since—as for the previous case—analysis scales
proportionally with the error bound, we keep this constant here.

Table 3 reports results for time-bounded and time-interval bounded properties, and
Table 4 displays probabilities and runtime results for expected times and long-run averages.
For all analyses, the goal set consists of all states for which both station queues are full.

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 17

Q N eT
m
in (s0

,✸
G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

eT
m
ax (s

0
,✸

G)

tim
e(u

nr
ed
)

tim
e(r

ed
)

LR
A
m
in (s0

, G
)

tim
e(u

nr
ed
)

tim
e(r

ed
)

LR
A
m
ax (s

0
, G

)

tim
e(u

nr
ed
)

tim
e(r

ed
)

2 3 1.0478 0.2 0.1 2.2489 0.3 0.2 0.1230 0.8 0.5 0.6596 0.2 0.1
2 4 1.0478 0.2 0.1 3.2053 2.0 1.0 0.0635 9.0 5.2 0.6596 1.3 0.6
3 3 1.4425 1.0 0.6 4.6685 8.4 5.0 0.0689 177.9 123.6 0.6600 26.2 13.0
3 4 1.4425 9.7 4.6 8.0294 117.4 67.2 0.0277 7,696.7 5,959.5 0.6600 1,537.2 862.4
4 2 1.8226 0.4 0.3 4.6032 2.4 1.6 0.1312 45.6 32.5 0.6601 5.6 3.9
4 3 1.8226 29.8 14.2 9.0300 232.8 130.8 – timeout (18 hours) – 0.6601 5,339.8 3,099.0

Table 4: Expected times and long-run averages for the polling system. (Time in seconds.)

7. Conclusion

This paper presented new algorithms for the quantitative analysis of Markov automata
(MAs) and proved their correctness. Three objectives have been considered: expected time,
long-run average, and timed reachability. The MaMa tool chain supports the modelling
and reduction of MAs, and can analyse these three objectives. It is also equipped with a pro-
totypical tool to map GSPNs onto MAs. The MaMa tool is accessible via its easy-to-use
web interface that can be found at http://fmt.cs.utwente.nl/~timmer/mama. Experi-
mental results on a processor grid and a polling system give insight into the accuracy and
scalability of the presented algorithms. Future work will focus on efficiency improvements
and reward extensions [20].

Acknowledgements

This work is funded by the EU FP7-projects SENSATION and MEALS, the STW project
ArRangeer (grant 12238), the NWO project SYRUP (grant 612.063.817), and the DFG
Sonderforschungsbereich AVACS.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley & Sons, 1995.

[2] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Transactions on Computer Systems, 2(2):93–
122, 1984.

[3] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for continuous-
time Markov chains. IEEE Transactions on Software Engineering, 29(6):524–541, 2003.

[4] R. Bamberg. Non-deterministic generalised stochastic Petri nets modelling and analysis. Master’s thesis,
University of Twente, 2012.

[5] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems. Mathematics of
Operations Research, 16(3):580–595, 1991.

[6] H. Boudali, P. Crouzen, and M. I. A. Stoelinga. A rigorous, compositional, and extensible framework
for dynamic fault tree analysis. IEEE Transactions on Dependable and Secure Computing, 7(2):128–143,
2010.

[7] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. Safety, dependability
and performance analysis of extended AADL models. The Computer Journal, 54(5):754–775, 2011.

[8] K. Chatterjee and M. Henzinger. Faster and dynamic algorithms for maximal end-component decom-
position and related graph problems in probabilistic verification. In SODA, pages 1318–1336. SIAM,
2011.

http://fmt.cs.utwente.nl/~timmer/mama

18 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

[9] N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe. Towards performance prediction of composi-
tional models in industrial GALS designs. In CAV, volume 5643 of LNCS, pages 204–218. Springer,
2009.

[10] L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University, 1997.
[11] L. de Alfaro. How to specify and verify the long-run average behavior of probabilistic systems. In LICS,

pages 454–465. IEEE, 1998.
[12] L. de Alfaro. Computing minimum and maximum reachability times in probabilistic systems. In CON-

CUR, volume 1664 of LNCS, pages 66–81. Springer, 1999.
[13] Y. Deng and M. Hennessy. On the semantics of Markov automata. Information and Computation,

222:139–168, 2013.
[14] C. Eisentraut, H. Hermanns, J.-P. Katoen, and L. Zhang. A semantics for every GSPN. In Petri Nets,

volume 7927 of LNCS, pages 90–109. Springer, 2013.
[15] C. Eisentraut, H. Hermanns, and L. Zhang. Concurrency and composition in a stochastic world. In

CONCUR, volume 6269 of LNCS, pages 21–39. Springer, 2010.
[16] C. Eisentraut, H. Hermanns, and L. Zhang. On probabilistic automata in continuous time. In LICS,

pages 342–351. IEEE, 2010.
[17] H. Fu. Maximal cost-bounded reachability probability on continuous-time Markov decision processes.

CoRR, abs/1310.2514, 2013.
[18] D. Guck, T. Han, J.-P. Katoen, and M. R. Neuhäußer. Quantitative timed analysis of interactive Markov

chains. In NFM, volume 7226 of LNCS, pages 8–23. Springer, 2012.
[19] D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen, and M. Timmer. Modelling, reduction and analysis of

Markov automata. In QEST, volume 8054 of LNCS, pages 55–71. Springer, 2013.
[20] D. Guck, M. Timmer, H. Hatefi, E. J. J. Ruijters, and M. I. A. Stoelinga. Modelling and analysis of

Markov reward automata. In ATVA, to appear in LNCS. Springer, 2014.
[21] H. Hatefi and H. Hermanns. Model checking algorithms for Markov automata. In ECEASST (AVoCS

proceedings), volume 53, 2012.
[22] B. R. Haverkort, M. Kuntz, A. Remke, S. Roolvink, and M. I. A. Stoelinga. Evaluating repair strategies

for a water-treatment facility using Arcade. In DSN, pages 419–424. IEEE, 2010.
[23] H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality, volume 2428 of LNCS.

Springer, 2002.
[24] J.-P. Katoen. GSPNs revisited: Simple semantics and new analysis algorithms. In ACSD, pages 6–11.

IEEE, 2012.
[25] J.-P. Katoen, J. C. van de Pol, M. I. A. Stoelinga, and M. Timmer. A linear process-algebraic format

with data for probabilistic automata. Theoretical Computer Science, 413(1):36–57, 2012.
[26] G. López, H. Hermanns, and J.-P. Katoen. Beyond memoryless distributions: Model checking semi-

Markov chains. In PAPM-PROBMIV, number 2165 in LNCS, pages 57–70. Springer, 2001.
[27] J. F. Meyer, A. Movaghar, and W. H. Sanders. Stochastic activity networks: Structure, behavior, and

application. In PNPM, pages 106–115. IEEE, 1985.
[28] M. R. Neuhäußer, M. I. A. Stoelinga, and J.-P. Katoen. Delayed nondeterminism in continuous-time

Markov decision processes. In FOSSACS, volume 5504 of LNCS, pages 364–379. Springer, 2009.
[29] J. Norris. Markov Chains. Cambridge University Press, 1997.
[30] M. L. Puterman. Markov Decision Processes. Wiley, 1994.
[31] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, Mas-

sachusetts Institute of Technology, 1995.
[32] M. M. Srinivasan. Nondeterministic polling systems. Management Science, 37(6):667–681, 1991.
[33] M. Timmer. SCOOP: A tool for symbolic optimisations of probabilistic processes. In QEST, pages

149–150. IEEE, 2011.
[34] M. Timmer. Efficient Modelling, Generation and Analysis of Markov Automata. PhD thesis, University

of Twente, 2013.
[35] M. Timmer, J.-P. Katoen, J. C. van de Pol, and M. I. A. Stoelinga. Efficient modelling and generation

of Markov automata. In CONCUR, volume 7454 of LNCS, pages 364–379. Springer, 2012.
[36] M. Timmer, M. I. A. Stoelinga, and J. C. van de Pol. Confluence reduction for Markov automata. In

FORMATS, volume 8053 of LNCS, pages 243–257, 2013.
[37] J. C. van de Pol and M. Timmer. State space reduction of linear processes using control flow recon-

struction. In ATVA, volume 5799 of LNCS, pages 54–68. Springer, 2009.

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 19

[38] L. Zhang and M. R. Neuhäußer. Model checking interactive Markov chains. In TACAS, volume 6015 of
LNCS, pages 53–68. Springer, 2010.

Appendix A. Proof of Theorem 3.1

Recall that the minimal expected time to reach G from s ∈ S is defined by

eTmin(s,♦G) = inf
D∈GM

Es,D(VG) = inf
D∈GM

∫

Paths

VG(π) Prs,D(dπ)

where D is a generic measurable policy on M. eTmin is a function indexed by G. Further,
VG : Paths → R

∞
≥0 is the elapsed time before visiting some state in G for the first time,

i.e., VG(π) = min {t ∈ R≥0 | G ∩ π@t 6= ∅} where min(∅) = ∞. Let ∆(π, k) =
∑k−1

i=0 ti be

the elapsed time on infinite path π = s0
σ0,µ0,t0−−−−−−→ s1

σ1,µ1,t1−−−−−−→ . . . after k steps. VG can be
therefore rewritten as

VG(π) =

{

∆(π, j) if π[j] ∈ G ∧ ∀i < j. π[i] 6∈ G

∆(π,∞) if ∀i. π[i] 6∈ G
(A.1)

Theorem 3.1. The function eTmin is a fixpoint of the Bellman operator

[L(v)] (s) =



























1

E(s)
+

∑

s′∈S

P(s, s′) · v(s′) if s ∈ MS \G

min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · v(s′) if s ∈ PS \G

0 if s ∈ G,

where Act(s) = {τi | s
τi−−→µ} and µs

α ∈ Distr(S) is as formerly defined.

Proof. We show that L(eTmin(s,♦G)) = eTmin(s,♦G), for all s ∈ S. Therefore, we will
distinguish three cases: s ∈ MS \G, s ∈ PS \G, and s ∈ G. Note that D ∈ GM.

20 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

(i) if s ∈ MS \G, we derive

eT
min(s,♦G) = inf

D
Es,D(VG) = inf

D

∫

Paths

VG(π) · Prs,D(dπ) = inf
D

∫

Paths

∆(π, k) · Prs,D(dπ)

= inf
D

∫

Paths

k−1
∑

i=0

ti · Prs,D(dπ) = inf
D

∫

Paths

(t0 +
k−1
∑

i=1

ti) · Prs,D(dπ)

= inf
D

∫ ∞

0

t ·E(s)e−E(s)t +
∑

s′∈S

P(s, s′) · E
s′,D[s

⊥,P(s,·),t−−−−−−−→ s′]
(VG) dt

= inf
D

(

∫ ∞

0

t ·E(s)e−E(s)t dt+

∫ ∞

0

∑

s′∈S

P(s, s′) · E
s′,D[s

⊥,P(s,·),t−−−−−−−→ s′]
(VG) dt

)

= inf
D

(

1

E(s)
+
∑

s′∈S

P(s, s′) ·

∫ ∞

0

E
s′,D[s

⊥,P(s,·),t−−−−−−−→ s′]
(VG) dt

)

=
1

E(s)
+ inf

D

∑

s′∈S

P(s, s′) ·

∫ ∞

0

E
s′,D[s

⊥,P(s,·),t−−−−−−−→ s′]
(VG) dt

=
1

E(s)
+ inf

D

∑

s′∈S

P(s, s′) · Es′,D(VG)

=
1

E(s)
+
∑

s′∈S

P(s, s′) · inf
D

Es′,D(VG)

=
1

E(s)
+
∑

s′∈S

P(s, s′) · eTmin(s′,♦G)

= L(eTmin(s,♦G)).

where D[s
⊥,P(s,·),t−−−−−−−→ s′] is the policy that resolves nondeterminism for path π′ starting

from s′ as D does it for s
⊥,P(s,·),t

−−−−−−−→π′, i.e. D(s
⊥,P(s,·),t

−−−−−−−→π′) =

D[s
⊥,P(s,·),t−−−−−−−→ s′](π′).

(ii) if s ∈ PS \G, we derive

eTmin(s,♦G) = inf
D

Es,D(VG) = inf
D

∫

Paths

VG(π)Prs,D(dπ)

= inf
D

∑

s
α,µ,0−−−−→ s′

D(s)(α) · E
s′,D[s

α,µ,0−−−−→ s′]
(VG).

where D[s α,µ,0−−−−→ s′] is the policy that resolves nondeterminism for path π′ starting

from s′ as D does it for s α,µ,0−−−−→π′, i.e. D(s α,µ,0−−−−→π′) = D[s α,µ,0−−−−→ s′](π′). Each
action α ∈ Act(s) uniquely determines a distribution µs

α, such that the successor

state s′, with s
α,µs

α,0−−−−−→ s′, satisfies µs
α(s

′) > 0:

α⋆ = argmin

{

inf
D

∑

s′∈S

µs
α(s

′) · Es′,D(VG) | α ∈ Act(s)

}

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 21

Hence, all optimal policies choose α⋆ with probability 1, i.e. D(s)(α⋆) = 1 and
D(s)(β) = 0 for all β 6= α⋆. Thus, we obtain

eTmin(s,♦G) = inf
D

min
s

α−−→µs
α

∑

s′∈S

µs
α(s

′) · E
s′,D[s

α,µsα,0−−−−−→ s′]
(VG)

= min
s

α−−→µs
α

inf
D

∑

s′∈S

µs
α(s

′) · E
s′,D[s

α,µsα,0−−−−−→ s′]
(VG)

= min
s

α−−→µs
α

inf
D

∑

s′∈S

µs
α(s

′) · Es′,D(VG)

= min
s

α−−→µs
α

∑

s′∈S

µs
α(s

′) · eTmin(s′,♦G)

= min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · eTmin(s′,♦G)

= L(eTmin(s,♦G)).

(iii) if s ∈ G, we derive

eTmin(s,♦G) = inf
D

∫

Paths

VG(π)Prs,D(dπ) = 0 = L(eTmin(s,♦G)).

Appendix B. Proof of Theorem 3.3

Theorem 3.3. Given an MA M, eTmin(s,♦G) equals cRmin(s,♦G) in sspet(M).

Proof. As shown in [5, 10], cRmin(s,♦G) is the unique fixpoint of the Bellman operator L′

defined as

[L′(v)](s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s′) · v(s′) +
∑

s′∈G

P(s, α, s′) · g(s′).

We show that the Bellman operator L for M defined in Theorem 3.1 equals L′ for sspet(M).
Note that by definition g(s) = 0 for all s ∈ G. Thus

[L′(v)](s) = min
α∈Act(s)

c(s, α) +
∑

s′∈S\G

P(s, α, s′) · v(s′).

We distinguish three cases, s ∈ MS \G, s ∈ PS \G, and s ∈ G.

(i) If s ∈ MS \G, then Act(s) = {⊥} and therefore minα∈Act(s) c(s, α) = c(s,⊥). Further

c(s,⊥) = 1
E(s) and for all s′ ∈ S,P(s,⊥, s′) = R(s,s′)

E(s) . Thus

[L′(v)](s) =
1

E(s)
+

∑

s′∈S

R(s, s′)

E(s)
· v(s′) = [L(v)](s).

(ii) If s ∈ PS \ G, for each action α ∈ Act(s) and successor state s′, with P(s, α, s′) > 0
it follows that P(s, α, s′) = µs

α(s
′). Further, c(s, α) = 0 for all α ∈ Act . Thus

[L′(v)](s) = min
α∈Act(s)

∑

s′∈S

P(s, α, s′) · v(s′) = min
α∈Act(s)

∑

s′∈S

µs
α(s

′) · v(s′) = [L(v)](s).

22 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

(iii) If s ∈ G, then by definition |Act(s)| = 1 with Act(s) = {⊥} and P(s,⊥, s) = 1 and
c(s,⊥) = 0. Thus

[L′(v)](s) =
∑

s′∈S

P(s, α, s′) · v(s′) = 0 = [L(v)](s).

Appendix C. Proof of Theorem 4.2

First we recall the definition of weak bisimulation for MAs [16]. Therefore, we have to
introduce some additional notation. A sub-distribution µ over a set S is a function µ : S →
[0, 1] with

∑

s∈S µ(s) ≤ 1. We define supp(µ) = {s ∈ S | µ(s) > 0} as the support of µ and
the probability of S′ ⊆ S with respect to µ as µ(S′) =

∑

s∈S′ µ(s). Let |µ| := µ(S) denote
the size of the sub-distribution µ. If |µ| = 1 then µ is a full distribution. Let Distr(S) and
Subdistr(S) denote the set of distributions and sub-distributions over S, respectively. We
write 1s for the Dirac distribution for s, determined by 1s(s) = 1. Let µ and µ′ be two
sub-distributions, then µ′′ := µ⊕ µ′ is defined by µ′′(s) = µ(s) + µ′(s), if |µ′′| ≤ 1. Further,
µ′′ can be split back into µ and µ′, where (µ, µ′) is defined as the splitting of µ′′.

Next we introduce the tree notation for weak transitions. For σ, σ′ ∈ N
∗
>0, let σ ≤ σ′ if

there exists a (possibly empty) Φ ∈ N
∗
>0 such that σΦ = σ′. Moreover, let σ < σ′ if σ ≤ σ′

and σ 6= σ′. A partial function T : N∗
>0 → L, which satisfies

• if σ ≤ σ′ and σ′ ∈ dom(T) then σ ∈ dom(T)
• if σi ∈ dom(T) for i > 1, then also σ(i− 1) ∈ dom(T)
• ǫ ∈ dom(T)

is called an (infinite) L-labelled tree. The root of the tree T is called ǫ and σ ∈ dom(T) is
a node of T . A node σ is called a leaf of T if there is no σ′ ∈ dom(T) such that σ < σ′.
We denote the set of all leaves of T by LeafT and the set of all inner nodes of T by InnerT .
Let L = S ×R≥0. A node in an L-labelled tree T is labelled by a state and the probability
of reaching this node from the root node of the tree. For a node σ we write StaT (σ) for the
first component of T (σ) and ProbT (σ) for the second component of T (σ).

Definition C.1 (Weak transition tree). Let M = (S,Act , −→ , =⇒, s0) be an MA. A weak
transition tree T is a S × R≥0-labelled tree that satisfies the following condition

(i) ProbT (ǫ) = 1,
(ii) ∀σ ∈ InnerT \ LeafT : ∃µ : StaT (σ)−→µ and

ProbT (σ) · µ = J(StaT (σ
′),ProbT (σ

′))|σ′ ∈ ChildrenT (σ)K
(iii)

∑

σ∈LeafT
Prob(σ) = 1.

A weak transition tree T corresponds to a probabilistic execution fragment. It starts
from StaT (ǫ), and resolves the nondeterministic choices at every inner node of the tree,
which represents the state in the MA it is labelled with. ProbT (σ) is the probability of
reaching a state StaT (σ) via immediate transitions in the MA, starting from state StaT (ǫ).
The distribution associated with T , denoted µT , is defined as

µT
def
=

⊕

σ∈LeafT

J(StaT (σ),ProbT (σ))K.

Now we can define a weak transition: For s ∈ S and µ ∈ Distr(S), let s µ if µ is induced
by some internal weak transition tree T with StaT (ǫ) = s. Let µ ∈ Distr(S). If for every
state si ∈ supp(µ), si µ′

i for some µ′
i, then we write µ

⊕

si∈supp(µ)
µ(si)µ

′
i.

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 23

Now a convex combination of weak transitions can be defined. Let µ C γ if there
exists a finite index set I, and weak transitions µ γi and a factor ci ∈ (0, 1] for every
i ∈ I, with

∑

i∈I ci = 1 and γ =
⊕

i∈I ciγi. Let the set of splittings of immediate successor
sub-distributions be defined as split(µ) = {(µ1, µ2)|∃µ

′ : µ C µ′ ∧ µ′ = µ1 ⊕ µ2}.

Definition C.2 (Weak bisimulation). A symmetric relationR on sub-distributions over S is
called a weak bisimulation if and only if whenever µ1Rµ2 then for all α ∈ R∪{ǫ} : |µ1| = |µ2|
and for all s ∈ supp(µ1) there exists µ−→2 , µ∆

2) ∈ split(µ2) and

(i) µ1(s)1sRµ−→2 and (µ1 ⊖ s)Rµ∆
2

(ii) whenever s a−→µ′
1 for some µ′

1 then µ−→2
a
 C µ′′ and (µ1(s) · µ

′
1)Rµ′′

Two sub-distributions µ and γ are weak bisimilar, denoted µ ≈ γ, if the pair (µ, γ) is
contained in some weak bisimulation.

MA M1,M2 are weak bisimilar, denoted M1 ≈ M2, if their initial (Dirac) distribu-
tions are bisimilar in the direct sum.

Lemma C.3. For every unichain MA and stationary deterministic policy D, the induced
stochastic process MD is weak bisimilar to an ergodic CTMC C.

Proof. Let MD be the stochastic process induced by a unichain MA M and stationary
deterministic policy D. As M is unichain it directly follows that MD is strongly connected.
The proof that MD is weakly bisimilar to a CTMC C goes along the same lines as in [14]
where it has been shown that the MA semantics of well-defined GSPNs is weakly bisimilar
to their CTMC semantics. As the stochastic process MD can be considered as a 1-safe
GSPN that by D is well-defined, the result follows.

Theorem 4.2. For unichain MA M, LRAmin(s,G) equals Rmin(s) in mdp(M).

Proof. Let M be a unichain MA with state space S and G ⊆ S a set of goal states. We
consider a stationary deterministic policy D on M. It follows that there exists an ergodic
CTMC C such that MD ≈ C. Note that G ⊆ MS; thus G can be represented by the union
of zero or more equivalence classes under ≈.

The long-run average for state s ∈ S and G ⊆ S is given by

LRAD(s,G) = Es,D(AG) = Es,D

(

lim
t→∞

1

t

∫ t

0
1G(Xu) du

)

where Xu is the random variable, denoting π@u. With the ergodic theorem from [29] we
obtain that almost surely

1

t

∫ t

0
1{si∈Xu} du →

1

miE(si)
as t → ∞

holds, where mi is the expected return time to state si. Therefore, in our induced ergodic
CTMC, almost surely

Esi

(

lim
t→∞

1

t

∫ t

0
1{si}(Xu) du

)

=
1

mi · E(si)
. (C.1)

Thus, almost surely the fraction of time to stay in si in the long-run is 1
mi·E(si)

. Let

µi be the probability to stay in si in the long-run in the embedded DTMC of C where

24 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

P(s, s′) = R(s,s′)
E(s) . Thus µ · P = µ where µ is the vector containing µi for all states si ∈ S.

Given the probability of µi of staying in state si the expected return time is given by

mi =

∑

sj∈S
µj ·E(sj)

−1

µi
. (C.2)

Gathering these results yields:

LRAD(s,G) = Es,D

(

lim
t→∞

1

t

∫ t

0
1G(Xu) du

)

= Es,D



 lim
t→∞

1

t

∫ t

0

∑

si∈G

1{si}(Xu) du





=
∑

si∈G

Es,D

(

lim
t→∞

1

t

∫ t

0
1{si}(Xu) du

)

(C.1)
=

∑

si∈G

1

mi ·E(si)

(C.2)
=

∑

si∈G

µi
∑

sj∈S
µj ·E(sj)−1

·
1

E(si)
=

∑

si∈G
µi · E(si)

−1

∑

sj∈S
µj ·E(sj)−1

=

∑

si∈S
1G(si) · µiE(si)

−1

∑

sj∈S
µj ·E(sj)−1

=

∑

si∈S
µi · (1G(si) ·E(si)

−1)
∑

sj∈S
µj ·E(sj)−1

=

∑

si∈S
µi · c1(si,D(si))

∑

sj∈S
µj · c2(sj,D(sj))

[11]
= Es,D(R)

Thus, by definition there exists a one-to-one correspondence between the policy D of
M and its corresponding MDP mdp(M). With the results from above this yields that
LRAmin(s,G) = infD LRAD(s,G) in MAM equals Rmin(s,♦G) = infD Es,D(R) in mdp(M).

Appendix D. Proof of Lemma 4.3

Lemma 4.3. Let M be a maximal end component and D a stationary deterministic policy
inducing a multichain onM. Then there exists a stationary deterministic policyD′ inducing
a unichain on M such that the long-run ratio is at least as good as for D.

Proof. (sketch). By the limit in the long-run ratio definition of R it follows that for every
i ≥ 0 the prefix of π up to i does not matter. Thus, R(π) = R(πi) where πi denotes the path
π from the i-th position onwards. Therefore, given a policy D, inducing a multichain on
maximal end component M, we can construct a unichain policy D′ as follows: Let D′ fixes
the recurrent class S′ of M with the minimal value induced by D (in case of the maximal
long-run ratio, the maximal value respectively). For states outside of S′, D′ is a policy that
reaches S′ with probability 1.

Appendix E. Proof of Theorem 4.4

Theorem 4.4. For MA M = (S,A, −→ ,=⇒, s0) with MECs {M1, . . . ,Mk} with state
spaces S1, . . . , Sk ⊆ S, and set of goal states G ⊆ S:

LRAmin(s0, G) = inf
D∈GM

k
∑

j=1

LRAmin
j (G) · Prs0,D(♦✷Sj),

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 25

where Prs0,D(♦✷Sj) is the probability to eventually reach and continuously stay in some

states in Sj from s0 under policy D and LRAmin
j (G) is the LRA of G∩Sj in unichain MAMj .

Proof. (sketch). Let M be a finite MA with maximal end components {M1, . . . ,Mk},
G ⊆ S a set of goal states, and π ∈ Paths(M) an infinite path in M. For all policies D,
each path π can be partitioned into finite and infinite paths of the form

πs0s = s0
α0,µ0,t0−−−−−−→ s1

α1,µ1,t1−−−−−−→ . . . αn,µn,tn−−−−−−→ s, and

πω
s = s αs,µs,ts−−−−−−→ . . . αi,µi,ti−−−−−→ s . . .

where πs0s is the path starting in initial state s0 and ends in s ∈ Mi for some 0 < i ≤ k.
Further, all states on path πω

s belong to maximal end component Mi. Note, that a state on
path πs0s can be part of another maximal end component Mj (as in Example 4.6). Hence,
it is not sufficient to only check if eventually a MEC is reached, as done in the corresponding
theorem for IMCs in [18]. Thus, the minimal LRA will be obtained when the LRA in each
MEC Mi is minimal and the combined LRA of all MECs is minimal according to their
persistence under policy D.

Appendix F. Proof of Theorem 4.7

Theorem 4.7. For MA M, LRAmin(s0, G) equals cRmin(s0,♦Q) in SSP ssplra(M).

Proof. Let π be an infinite path in the MDP ssplra(M) such that π[iQ] is the first visit of
a state in Q along π, i.e., for all j < iQ, π[j] 6∈ Q and π[iQ] ∈ Q. Similarly, we define iq for
a single state q. We define random variable CQ : Paths → R≥0 by CQ(π) = g(π[iQ]). Note
that D ∈ GM.

cRmin(s0,♦Q) = inf
D

Es0,D(CQ)

= inf
D

∑

π∈Paths

CQ(π) · Prs0,D(π) = inf
D

∑

π∈Paths

k
∑

i=1

C{qi}(π) · Prs0,D(π)

= inf
D

k
∑

i=1

∑

π∈Paths

C{qi}(π) · Prs0,D(π) = inf
D

k
∑

i=1

LRAmin
i (G) · Prs0,D(♦{qi})

(∗)
= inf

D

k
∑

i=1

LRAmin
i (G) · Prs0,D(♦✷Si) = LRAmin(s0, G).

Observe that in step (∗) we use the transformation from Definition 4.5 in reverse. Hence, if
Prs,D(♦qi) > 0, we eventually reach the maximal end component Mi and always stay in it.
Otherwise Prs,D(♦qi) = 0 and policy D chooses an action such that we leave Mi or never
even visit Mi.

26 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

Appendix G. Proof of Theorem 5.3

Let MA M = (S,A, −→ ,=⇒, s0), G ⊆ S and time interval I = [0, b] ∈ Q with b ≥ 0. Let
λ = maxs∈MSE(s) be the largest exit rate of any Markovian state and δ ∈ R>0 be the
discretisation step, chosen such that b = kbδ for some kb ∈ N. We recall the definition of
♦IG as the set of all paths that reach some goal state in G within interval I. Let random
variable #J : Paths → N, where J ∈ Q is a time interval. Intuitively #J counts the number
of Markovian jumps happened inside interval J . For example #[0,δ] = 1 denotes the set of
paths having exactly one Markovian transition in the first δ time units. Random vector
#I,δ : Paths → N

kb with I, δ and kb as explained before, is defined as the vector of kb
elements, each counting Markovian jumps occurred in the corresponding chunk of length

δ, i.e. #I,δ =
(

#[0,δ), . . . ,#[(kb−2)δ,(kb−1)δ),#[(kb−1)δ,b]

)T
. Moreover, let ‖ · ‖∞ denote the

maximum norm, which takes the maximum over the absolute value of the elements of the
given vector.

Lemma G.1. Let Mδ be the dMA induced by M with respect to discretisation constant δ.
Then for all s ∈ S:

pMδ
max(s,♦

[0,kb]G) = sup
D∈GM

Prs,D(♦
IG |

∥

∥

∥
#
I,δ

∥

∥

∥

∞
< 2).

Proof. As discussed in Section 5, paths of Mδ are essentially the paths from M that carry
only zero or one Markovian transitions in each discretisation step δ. Hence, for computing
reachability probabilities in step interval [0, kb] in Mδ, it is enough to consider paths in
M with at most one Markovian jumps in each δ time units. This set is described by
∥

∥#I,δ
∥

∥

∞
< 2.

Lemma G.2. For all s ∈ S and D ∈ GM in M: Prs,D(♦
IG | #[0,δ] < 2) ≤ Prs,D(♦

IG).

Proof. We assume b > 0, since for b = 0, Prs,D(♦
IG | #[0,δ] < 2) = Prs,D(♦

IG). We have

Prs,D(♦
IG) = Prs,D(♦

IG ∩ #[0,δ] > 0) + Prs,D(♦
IG ∩ #[0,δ] = 0)

= Prs,D(♦
IG ∩ #[0,δ] > 0) + Prs,D(♦

IG | #[0,δ] = 0) · Prs,D(#[0,δ] = 0). (G.1)

On the other hand we have

Prs,D(♦
IG | #[0,δ] < 2) = Prs,D(♦

IG | #[0,δ] < 2,#[0,δ] = 1) · Prs,D(#[0,δ] = 1 | #[0,δ] < 2)

+ Prs,D(♦
IG | #[0,δ] < 2,#[0,δ] = 0) · Prs,D(#[0,δ] = 0 | #[0,δ] < 2).

(G.2)

We distinguish between two cases:

(i) s ∈ MS \G: In this case, Eq. (G.1) gives

Prs,D(♦
IG) =

∫ δ

0
E(s)e−E(s)t

∑

s′∈S

P(s, s′)Prs′,D(♦
I⊖tG) dt+ Prs,D(♦

I⊖δG)e−E(s)δ .

(G.3)

and for Eq. (G.2) we have

Prs,D(♦
IG | #[0,δ] < 2) =

∫ δ

0
E(s)e−E(s)t

∑

s′∈S

P(s, s′)Prs′,D(♦
I⊖δG) dt

+ Prs,D(♦
I⊖δG)e−E(s)δ . (G.4)

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 27

Since Prs,D(♦
I⊖tG) is monotonically decreasing in t, we have Prs,D(♦

I⊖δG) ≤ Prs,D(♦
I⊖tG), t ≤

δ. Putting this in Eq. (G.3) and (G.4) leads to

Prs,D(♦
IG | #[0,δ] < 2) ≤ Prs,D(♦

IG).

(ii) s ∈ PS \ G: From the law of total probability, we split time bounded reachability
into two parts. First we compute the probability to reach the set of Markovian states
from s by only taking probabilistic transitions in zero time, and then we quantify
the probability to reach some goal state in G from Markovian states inside interval I.
Therefore:

Prs,D(♦
IG) =

∑

s′∈MS

Prs,D(♦
[0,0]{s′})Prs′,D(♦

IG)

(∗)

≥
∑

s′∈MS

Prs,D(♦
[0,0]{s′})Prs′,D(♦

IG | #[0,δ] < 2)

= Prs,D(♦
IG | #[0,δ] < 2),

where (∗) follows from case (i) above.

Lemma G.3. For all s ∈ S \G and D ∈ GM in M:

Prs,D(♦
IG |

∥

∥

∥
#
I,δ

∥

∥

∥

∞
< 2) ≤ Prs,D(♦

IG | #[0,δ] < 2).

Proof. The lemma holds for b = 0, since in this case, Prs,D(♦
IG |

∥

∥#I,δ
∥

∥

∞
< 2) =

Prs,D(♦
IG | #[0,δ] < 2). For b > 0, we decompose Prs,D(♦

IG |
∥

∥#I,δ
∥

∥

∞
< 2) as Eq. (G.2)

into:

Prs,D(♦
IG |

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2,#[0,δ] = 1) · Prs,D(#[0,δ] = 1 |

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2)

+ Prs,D(♦
IG |

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2,#[0,δ] = 0) · Prs,D(#[0,δ] = 0 |

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2). (G.5)

Now we prove the lemma by induction over kb.

• kb = 1: This case holds because interval I = [0, δ] contains one discretisation step and
then Prs,D(♦

IG |
∥

∥#I,δ
∥

∥

∞
< 2) = Prs,D(♦

IG | #[0,δ] < 2).
• kb − 1 ❀ kb: Let I be [0, b] and assume the lemma holds for interval [0, (kb − 1)δ] (i.e.
I ⊖ δ):

Prs,D(♦
I⊖δG |

∥

∥

∥
#
I⊖δ,δ

∥

∥

∥

∞
< 2) ≤ Prs,D(♦

I⊖δG | #[0,δ] < 2). (G.6)

In order to show that the lemma holds for I, we distinguish between two cases:
(i) s ∈ MS \G: From Eq. (G.4) we have:

Prs,D(♦
IG | #[0,δ] < 2) =

∑

s′∈S

P(s, s′)Prs′,D(♦
I⊖δG)(1 − e−E(s)δ) + Prs,D(♦

I⊖δG)e−E(s)δ .

(G.7)

28 D. GUCK, H. HATEFI, H. HERMANNS, J.-P. KATOEN, AND M. TIMMER

Similarly from Eq. (G.5) we have:

Prs,D(♦
IG |

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2) =

∑

s′∈S

P(s, s′)Prs′,D(♦
I⊖δG |

∥

∥

∥#
I⊖δ,δ

∥

∥

∥

∞
< 2)(1− e−E(s)δ)

+ Prs,D(♦
I⊖δG |

∥

∥

∥#
I⊖δ,δ

∥

∥

∥

∞
< 2)e−E(s)δ

(G.6)

≤
∑

s′∈S

P(s, s′)Prs′,D(♦
I⊖δG)(1 − e−E(s)δ)

+ Prs,D(♦
I⊖δG)e−E(s)δ

(G.7)
= Prs,D(♦

IG | #[0,δ] < 2)

(ii) s ∈ PS \G: This case utilises the previously discussed idea of splitting paths using
the law of total probabilities into two parts. The first part contains the set of paths
that reach Markovian states from s in zero time using probabilistic transitions,
while the second includes paths reaching some state in G from Markovian states.
Hence:

Prs,D(♦
IG |

∥

∥

∥
#
I,δ

∥

∥

∥

∞
< 2) =

∑

s′∈MS

Prs,D(♦
[0,0]{s′})Prs′,D(♦

IG |
∥

∥

∥
#
I,δ

∥

∥

∥

∞
< 2)

(∗)

≤
∑

s′∈MS

Prs,D(♦
[0,0]{s′})Prs′,D(♦

IG | #[0,δ] < 2)

= Prs,D(♦
IG | #[0,δ] < 2),

where (∗) follows from case (i) above.

Lemma G.4. For all s ∈ S \G: pMδ
max(s,♦

[0,kb]G) ≤ pMmax(s,♦
IG).

Proof.

pMδ
max(s,♦

[0,kb]G) = sup
D∈GM

Prs,D(♦
IG |

∥

∥

∥
#
I,δ

∥

∥

∥

∞
< 2) (Lemma G.1)

≤ sup
D∈GM

Prs,D(♦
IG | #[0,δ] < 2) (Lemma G.3)

≤ sup
D∈GM

Prs,D(♦
IG) = pMmax(s,♦

IG). (Lemma G.2)

Lemma G.5. For all s ∈ S \G:

pMmax(s,♦
IG) ≤ pMδ

max(s,♦
[0,kb]G) + 1− e−λb(1 + λδ)kb .

ANALYSIS OF TIMED AND LONG-RUN OBJECTIVES FOR MARKOV AUTOMATA 29

Proof.

pMmax(s,♦
IG) = sup

D∈GM

Prs,D(♦
IG)

= sup
D∈GM

(

Prs,D(♦
IG ∩

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2) + Prs,D(♦

IG ∩
∥

∥

∥#
I,δ

∥

∥

∥

∞
≥ 2)

)

≤ sup
D∈GM

Prs,D(♦
IG ∩

∥

∥

∥#
I,δ

∥

∥

∥

∞
< 2) + sup

D∈GM

Prs,D(♦
IG ∩

∥

∥

∥#
I,δ

∥

∥

∥

∞
≥ 2)

≤ sup
D∈GM

Prs,D(♦
IG |

∥

∥

∥
#
I,δ

∥

∥

∥

∞
< 2) + sup

D∈GM

Prs,D(♦
IG ∩

∥

∥

∥
#
I,δ

∥

∥

∥

∞
≥ 2)

(†)
= pMδ

max(s,♦
[0,kb]G) + sup

D∈GM

Prs,D(♦
IG ∩

∥

∥

∥#
I,δ

∥

∥

∥

∞
≥ 2)

≤ pMδ
max(s,♦

[0,kb]G) + sup
D∈GM

Prs,D(
∥

∥

∥
#
I,δ

∥

∥

∥

∞
≥ 2),

where (†) follows from Lemma G.1.
It remains to find an upper bound for supD∈GM Prs,D(

∥

∥#I,δ
∥

∥

∞
≥ 2) which is the maxi-

mum probability to have more than one Markovian jump in at least one time step among
kb time step(s) of length δ. Due to the independence of the number of Markovian jumps
in discretisation steps, this probability can be upper bounded by kb independent Poisson
processes, all parametrised with the maximum exit rate exhibited in M. In each Pois-
son process the probability of at most one Markovian jump in one discretisation step is
e−λδ(1 + λδ), therefore the probability of a violation of this assumption in at least one

discretisation step is 1− e−λb
(

1 + λδ
)kb . Hence

pMmax(s,♦
IG) ≤ pMδ

max(s,♦
[0,kb]G) + sup

D∈GM

Prs,D(
∥

∥

∥
#
I,δ

∥

∥

∥

∞
≥ 2)

≤ pMδ
max(s,♦

[0,kb]G) + 1− e−λb
(

1 + λδ
)kb .

Theorem 5.3. Given MA M = (S,A, −→ ,=⇒, s0), G ⊆ S, interval I = [0, b] ∈ Q with
b ≥ 0 and λ = maxs∈MSE(s). Let δ ∈ R>0 be such that b = kbδ for some kb ∈ N. Then, for
all s ∈ S it holds that

pMδ
max(s,♦

[0,kb]G) ≤ pMmax(s,♦
[0,b]G) ≤ pMδ

max(s,♦
[0,kb]G) + 1− e−λb

(

1 + λδ
)kb .

Proof. For s ∈ G we have that pMδ
max(s,♦

[0,kb]G) = pMmax(s,♦
[0,b]G) = 1. For s ∈ S \G, the

theorem follows from Lemma G.4 and G.5.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Markov automata
	2.2. Actions
	2.3. Paths
	2.4. Policies
	2.5. Stochastic shortest path (SSP) problems

	3. Expected time objectives
	4. Long-run objectives
	4.1. Unichain MA
	4.2. Arbitrary MA

	5. Timed reachability objectives
	5.1. Fixpoint characterisation
	5.2. Discretisation

	6. Tool chain and case studies
	6.1. Modelling
	6.2. MaMa tool chain
	6.3. Case studies

	7. Conclusion
	Acknowledgements
	References
	Appendix A. Proof of Theorem ??
	Appendix B. Proof of Theorem ??
	Appendix C. Proof of Theorem ??
	Appendix D. Proof of Lemma ??
	Appendix E. Proof of Theorem ??
	Appendix F. Proof of Theorem ??
	Appendix G. Proof of Theorem ??

