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ABSTRACT. We give an algorithm for solving stochastic parity gamethwvéilmost-sure winning
conditions onlossy channel systemander the constraint that both players are restricted ttefin
memory strategies. First, we describe a general framewdr&re we consider the class c;}-ZJIayer
games with almost-sure parity winning conditions on pdgsififinite game graphs, assuming that
the game contains finite attractor An attractor is a set of states (not necessarily absorbivag)is
almost surely re-visited regardless of the players’ denisi We present a scheme that characterizes
the set of winning states for each player. Then, we instentias scheme to obtain an algorithm for
stochastic game lossy channel systems

1. INTRODUCTION

Background. 2-player games can be used to model the interaction of aattemt(player 0) who
makes choices in a reactive system, and a malicious adydmayer 1) who represents an attacker.
To model randomness in the system (e.g., unreliabilitydoamzed algorithms), a third player
‘random’ is defined who makes choices according to a predé&fomebability distribution. The
resulting stochastic game is called %ﬁlayer game in the terminology af [CJHO3]. The choices
of the players induce a run of the system, and the winningitiond of the game are expressed in
terms of predicates on runs.

Most classic work on algorithms for stochastic games hassied on finite-state systems (e.g.,
[Sha53| Con92, dAHK98, CJHD3]), but more recently sevdeaslses of infinite-state systems have
been considered as well. Stochastic games on infinite-ptateabilistic recursive systems (i.e.,
probabilistic pushdown automata with unbounded stacksg wiidied in[[EY05, EY08, EWY08].
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A different (and incomparable) class of infinite-state egsd are channel systems, which use un-
bounded communication buffers instead of unbounded recurs

Channel Systemsonsist of nondeterministic finite-state machines thatroomicate by asyn-
chronous message passing via unbounded FIFO communiadicomels. They are also known
as communicating finite-state machines (CFSM) [BZ83]. @kfisystems are a very expressive
model that can encode the behavior of Turing machines, loygtthe content of an unbounded tape
in a channel[[BZ83]. Therefore, all verification questions andecidable on Channel Systems.

A Lossy Channel System (LJBY93,[Fin94] consists of finite-state machines that comimun
cate by asynchronous message passing via unboumdetiable(i.e., lossy) FIFO communication
channels, i.e., messages can spontaneously disappeaclieomels. The original motivation for
LCS is to capture the behavior of communication protocol&tvhare designed to operate correctly
even if the communication medium is unreliable (i.e., if sagges can be lost). Additionally (and
quite unexpectedly at the time), the lossiness assumptakesnsafety/reachability and termination
decidable[[AJ93, Fin94], albeit of non-primitive recuksiwsomplexity [Sch02]. However, other im-
portant verification problems are still undecidable for L.@3y., recurrent reachability (i.e., Biichi
properties), boundedness, and behavioural equivale Ad&§ [ Schoil, May(03].

A Probabilistic Lossy Channel System (PLJB$03, AR03] is a probabilistic variant of LCS
where, in each computation step, each message can be lepeimdkntly with a given probability.
This solves two limitations of LCS. First, from a modellinigwpoint, probabilistic losses are more
realistic than the overly pessimistic setting of LCS whdtaergessages can always be lost at any
time. Second, in PLCS almost-sure recurrent reachabititpgrties become decidable (unlike for
LCS) [BS03| ARO03]. Several algorithms for symbolic modetcking of PLCS have been presented
[ABRSO05,[Rab0B]. The only reason why certain questions aciddble for LCS/PLCS is that the
message loss induces a quasi-order on the configuratiomsh Was the properties of a simulation.
Similarly to Turing machines and CFSM, one can encode maassek of infinite-state probabilistic
transition systems into a PLCS. Some examples are:

e Queuing systems where waiting customers in a queue drop itutaveertain probability in ev-
ery time interval. This is similar to the well-studied clagsqueuing systems with impatient
customers which practiaeneging i.e., drop out of a queue after a given maximal waiting time;
see [WLJ10] section II.B. Like in some works cited in [WLJ1€je maximal waiting time in
our model is exponentially distributed. In basic PLCS, kmlin [WLJ10], this exponential dis-
tribution does not depend on the current number of waitirgfaruers. However, an extension
of PLCS with this feature would still be analyzable in oumfigvork (except in the pathological
case where a high number of waiting customers increaseatitergers patience exponentially,
because such a system would not necessarily have a so-iaitedttractor, see below).

e Probabilistic resource trading games with probabilidiffcuctuating prices. The given stores of
resources are encoded by counters (i.e., channels), wkinébitea probabilistic decline (due to
storage costs, decay, corrosion, obsolescence, etc).

e Systems modelling operation cost/reward, which is stanezbuinters/channels, but probabilisti-
cally discounted/decaying over time.

e Systems which are periodically restarted (though not reegig by a deterministic schedule),
due to, e.g., energy depletion or maintenance work.

Due to this wide applicability of PLCS, we focus on this mouethis paper. However, our main re-

sults are formulated in more general terms referring toitefiMarkov chains with a finite attractor;
see below.
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Previous work. In [BBSQ7], a non-deterministic extension of PLCS was idtrced where one
player controls transitions in the control graph and mess$agges are fully probabilistic. This yields
a Markov decision process (i.e., é-blayer game) on the infinite graphs induced by PLCS. It was
shown in [BBSO07] that %-player games witllmost-sureepeated reachability (Biichi) objectives
are decidable and pure memoryless determined.

In [AHdJA 7 08], 2%-p|ayer games on PLCS are considered, where the playersottnansi-
tions in the control graph and message losses are proliabilldmost-sure Biichi objectives are
decidable for this class, and pure memoryless strategifisestor both playerJAHdA *08]. Gener-
alized Buchi objectives are also decidable, and finite-orgratrategies suffice for the player, while
memoryless strategies suffice for the opponent [BS13].

On the other hand,%l—player games on PLCS withositive probabilityBiichi objectives, i.e.,
almost-sure co-Buchi objectives from the (here passipgpaoent’s point of view, can require infi-
nite memory to win and are also undecidable [BBS07]. Howef/dre player is restricted to finite-
memory strategies,?z;lplayer games with positive probabiliparity objectiveqeven the more gen-
eral Streett objectivgshecome decidable and memoryless strategies suffice falaler [BBSOY].
Note that the finite-memory case and the infinite-memory aaegriori incomparable problems,
and neither subsumes the other. Cf. Sedtion 6.

Non-stochastic (2-player) parity games on infinite graplesewstudied in [Zie98], where it is
shown that such games are determined, and that both playgssgs winning memoryless strategies
in their respective winning sets. Furthermore, a schemedimputing the winning sets and winning
strategies is given. Stochastic game%—fﬂayer games) with parity conditions dimite graphs are
known to be memoryless determined and effectively solva¢100,[CIJHO3, CdAHOB].

Our contribution. We give an algorithm to decide almost-syarity games for probabilistic lossy
channel systems in the case where the players are restticfaute memory strategies. We do
that in two steps. First, we give our result in general ter®esction[#): We consider the class
of 2%-p|ayer games with almost-sure parity wining conditionspmssibly infinite game graphs,
under the assumption that the game contaifisi# attractor. An attractor is a seh of states such
that, regardless of the strategies used by the players, ritmlpility measure of the runs which
visit A infinitely often is oné] Note that this means neither thatis absorbing, nor that every run
must visitA. We present a general scheme characterizing the set ofngistéates for each player.
The scheme is a generalization of the well-known schemedorstochastic games in [Zi€98]. In
fact, the constructions are equivalent in the case that obafilistic states are present. We show
correctness of the scheme for games where each player ligtaxbtto a finite-memory strategy.
The correctness proof here is more involved than in the mochastic case of [Zie98]; we rely on
the existence of a finite attractor and the restriction ofgilagrers to use finite-memory strategies.
Furthermore, we show that if a player is winning against aitd-memory strategies of the other
player then he can win usingraemorylesstrategy.

In the second step (Sectibh 5), we show that the scheme carstamtiated for lossy channel
systems. The above two steps yield an algorithm to decidiéypgames in the case when the
players are restricted to finite memory strategies. If tlaygis are allowed infinite memory, then
the problem is undecidable already falr—mlayer games with co-Blichi objectives (a special case
of 2-color parity objectives) [BBS07]. Note that even if tblayers are restricted to finite memory
strategies, such a strategy (even a memoryless one) on aiteirgame graph is still an infinite

Linthe game community (e.gk, [Zie98]) the waattractor is used to denote what we calfarce sein Sectior 8. In
the infinite-state systems community (e.Q.. [ABRS05, AHOthe word is used in the same way as we use it in this

paper.
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object. Thus, unlike for finite game graphs, one cannot salyame by just guessing strategies and
then checking if they are winning. Instead, we show how teai¥ely compute a finite, symbolic
representation of the (possibly infinite) set of winningesafor each player as a regular language
(Sectior 5.R), and a finite description of winning stratedteection 5.13).

2. PRELIMINARIES

Notation. Let O andN denote the set of ordinal resp. natural numbers. WjtB, andy we denote
arbitrary ordinals, while withh we denote limit ordinals. We usk: X — Y to denote thaf is a
total function fromX toY, and usef : X — Y to denote thaf is a partial function fronX toY. We
write f(x) = L to denote thaf is undefined orx, and definedom(f) := {x: f(x) # L}. We say
that f is anextensiorof g if g(x) = f(x) wheneveg(x) # L. ForX’ C X, we usef | X’ to denote the
restriction of f to X’. We will sometimes need to pick an arbitrary element fromtaBe simplify
the exposition, we letelectX) denote an arbitrary but fixed element of the nonemptyset

A probability distributionon a countable sé¢ is a functionf : X — [0, 1] such thaty ,.x f(X) =
1. For a seK, we useX* andX® to denote the sets of finite and infinite words oMerespectively.
The empty word is denoted lay

Games.A game(of rank ) is a tupleG = (S,S°, S, S}, — P, Co1) defined as followsSis a set of
states partitioned into the pairwise disjoint setsrahdom statesS statess® of Player 0, and states
St of Player 1.— C Sx Sis thetransition relation We writes—s to denote thats,s') € —.
We assume that for eachthere is at least one and at most countably mginyith s—s. The
probability function P. S* x S— [0, 1] satisfies botlvs€ S}.vs € S(P(s,s) > 0 +—= s—¢) and
Vse R y4csP(s S) = 1. (The sum is well-defined since we assumed that the numiseicoéssors
of any state is at most countable.) T¢wloring functionis defined a€ol : S— {0,...,n}, where
Col(s) is called thecolor of states.

Let Q C She a set of states. We useQ := S— Q to denote theeomplemenbf Q. Define
[Q°:=Qn&, [Q*:=QnS, [Q%L:=[Q°U[Q]}, and[Q]R:= QNS Forne Nand~ € {=,<},
let [Q]%~":= {s€ Q: Col(s) ~ n} denote the sets of states@with color ~ n.

A run pin G is an infinite sequencys; - -- of states s.ts—s1 for all i > 0; p(i) denotes
5. A pathTtis a finite sequencsy- - - s, of states s.ts—s 1 foralli:0<i<n. We say thap
(or m) visits sif s= s for somei. For anyQ C S we usellg to denote the set of paths that end in
some state Q. Intuitively, the choices of the players and the resoluttdmandomness induce a
run s - - -, starting in some initial statey € S, states, 1 is chosen as a successorsyfand this
choice is made by Player 0sf ¢ S, by Player 1 ifs € S, and it is chosen randomly according to
the probability distributiorP(s;,-) if § € SX.
Strategies.Forx € {0,1}, a strategy for Playex prescribes the next move, given the current prefix
of the run. Formally, atrategyof Playerx is a partial functionf* : Mg — Ss.t. 5.— f*(S - )
if fX(sp---s) is defined. The strateg§* prescribes for Playex the next move, given the current
prefix of the run. A rurp = 5051 - - - is said to beconsistentwith a strategyf* of Playerx if 5,1 =
fX(sos1---5) wheneverf*(sos---§) # L. We say thap is inducedby (s, f*, f17%) if s =sand
p is consistent with botif* and f1*. We useRungg,s, f*, f1X) to denote the set of runs ig
induced by(s, X, f1X). We say thatfX is total if it is defined for everyt € M.

A strategy f* of Playerx is memorylesd# the next state only depends on the current state and
not on the previous history of the run, i.e., for any path - s, € Mg, we havef*(sp---$,) = f¥(sn).

A finite-memory strategypdates a finite memory each time a transition is taken, andéRt
state depends only on the current state and memory. Formadlglefine anemory structurdor
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Playerx as a quadrupleM = (M, m, T, ) satisfying the following properties. The nonempty set
M is called thememoryandmy € M is theinitial memory configuration For a current memory
configurationm and a current statg the next state is given by: S‘x M — S wheres—1(s,m).
The next memory configuration is given py Sx M — M. We extenduto paths byu(e,m) = mand
M(So -+ Sn, M) = H(Sh, M(So- - - Sh—1,M)). The total strategsgtrat,, : Mg« — Sinduced by is given
by straty, (So---Sh) := T(Sh, (S0 - Sh—1,Mp)). A total strategyf* is said to haveinite memory
if there is a memory structur@/ = (M, mp, T, ) whereM is finite and f* = strat,,. Consider
arunp =S -+ € RunggG,s, fX, f1-X) where f1=* is induced by . We say thap visits the
configuration(s, m) if there is an such thas = sand(sS; - S-1,Mp) = m.

We useF;(G), Fii(G), andFg(G) to denote the set dll, finite-memory andmemoryless
strategies respectively of Playein G. Note that memoryless strategies and strategies in general
can be partial, whereas for simplicity we only define totatéimemory strategies.

Probability Measures.We use the standard definition of probability measures foetaobruns
[Bil86]. First, we define the measure for total strategieg] then we extend it to general (partial)
strategies. Consider a gange= (S ,SH, X, —,P,Col), an initial states, and total strategies
X and f1* of Playersx and 1- x. Let Q% = sS° denote the set of all infinite sequences of states
starting froms. For ameasurable s8&tC Q°, we define?; s x r1-x(R) to be the probability measure

of !¢ under the strategieg’, f1~*. This measure is well-defined [BilB6]. For (partial) stgies f
and f1% of Playersxand 1- x, ~ € {<,<,=,>,>}, areal numbec € |0,1], and any measurable
setR C Q°, we definePy ¢ ix j1-x(R) ~ ciff Py g qx(9R) ~ c for all total strategieg/ and gt
that are extensions df resp.f1 .

Winning Conditions. The winner of the game is determined by a predicate on infroits. We
assume familiarity with the syntax and semantics of the tmadgogic CTL* (see, e.g.[ [CGP99)).
Formulas are interpreted on the structyB—). We use[$]° to denote the set of runs starting
from s that satisfy theCTL" path-formula¢. This set is measurable [Var85], and we just write
Pg s tx,11-x(9) ~ cinstead ofP; s tx 11-x([$]°) ~ c.

We will consider games witparity winning conditions, whereby Player 1 wins if the largest
color that occurs infinitely often in the infinite run is odadaPlayer O wins if it is even. Thus, the
winning condition for Playek can be expressed TL" as

x-Parity := \/ (DQ[S]Colzi AOD[ﬂColgi) ‘
i€{0,...,n}A(i mod 2=x

Winning Sets.For a strategyf* of Playerx, and a seE1* of strategies of Player-1 x, we define
WX (Y (G,¢7°) 1= {s: VI X e FA X f1 X is total = P ¢ x () ~ ¢}

If there is a strategyf* such thats € W*(f*,F17%)(G,$~°), then we say thas is awinning state

for Playerx in G wrt. ¢~ (and f* is winning at §, provided that Player % x is restricted to

strategies ifF1~*. Sometimes, when the parametéfss, F1=* ¢, and~ c are known, we will

not mention them and may simply say thai$ a winning state” or thatf* is a winning strategy”,

etc. If se WX(fX F1%)(g,471), then we say that Playerwins froms almost surely (a.s.)If

se WX(fX F17)(G,$>0), then we say that Playerwins froms with positive probability (w.p.p.)
We also defin&/*(fX,F1=%)(G,¢) := {s: VI X c F1X RunggG,s, f*, f17%) C [¢]S}. If s€

VX(fX,F1X)(G,0), then we say that Playersurelywins froms. Notice that any strategy that is

surely winning from a stateis also winning fronsa.s., and any strategy that is winning a.s. is also

winning w.p.p., i.e V*(f* F1X)(G,0) CWX(fX F1X)(G,¢=1) CWX(FX F1%)(G,9>9).
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Determinacy and Solvability. A game is calleddeterminedwrt. an objectivep~° and two sets
FO F! of strategies of Player 0, resp. Player 1, if, for every staflayerx has a strategy* € F*
that is winning against all strategigse F1~* of the opponent, i.es € WX(f* F1=%)(g,cond,),
where cong = ¢~ and cond = ¢$7°. By solvinga determined game, we mean giving an algorithm
to compute symbolic representations of the sets of statéshvelne winning for either player and a
symbolic representation of the corresponding winningetjias.

Attractors. A setA C Sis said to be arattractor if, for each states € S and strategiesfo, fl of
Player 0 resp. Player 1, it is the case tifgts to 11(CA) = 1. In other words, regardless of where
we start a run and regardless of the strategies used by therplave will reach a state inside the
attractor a.s.. It is straightforward to see that this afeplies that?; s ro 11(0CA) =1, i.e., the
attractor will be visited infinitely often a.s.

Transition Systems.Consider strategie$* € Fy and f1™> € Ff#‘it’é of Playerx resp. Player 1 x,

where f* is memoryless and is finite-memory. Suppose thdt—X is induced by memory
structureM = (M, my, T, ). We define theransition systen¥ induced bygG, f1=*, f* to be the pair
(Sv,~) WhereSy = Sx M, and-.. € Sy x Sy such thafs;, My )« (S, mp) if My = p(s1,my), and
one of the following three conditions is satisfied: ¢i)c S* and eithers, = f*(s;) or f*(s1) = L,
(i) sy € S ands; = 1(s1,my), or (iii) 5 € ST andP(sy, ) > 0.

Consider the directed acyclic graph (DAG) of maximal stigrigpnnected components (SCCs)
of the transition system’. An SCC is called dottom SCC (BSCQa) no other SCC is reachable
from it. Observe that the existence of BSCCs is not guardnieen infinite transition system.
However, if G contains a finite attractgk andM is finite thenZ contains at least one BSCC, and in
fact each BSCC contains at least one elenfgqitm) with sy € A. In particular, for any statec S
any runp € Rungg,s, f*, f1-%) will visit a configuration(sa, m) infinitely often a.s. wheres € A
and(sa,m) € B for some BSC@.

3. REACHABILITY

In this section we present some concepts related to cheokaupability objectives in games. First,
we define basic notions. Then we recall a standard schemerifzis e.g. in[[Zie98]) for checking
reachability winning conditions, and state some of its praps that we use in the later sections. In
this section, we do not use the finite attractor property,dwowe restrict the class of strategies in
any way. Below, fix a gam¢ = (S L, SH, !, — P, Col).

Reachability Properties. Fix a states € Sand sets of state3,Q’ C S. LetPosi; (s) :={s :s—+s'}
denote the set duccessorsf s. Extend it to sets of states Bost; (Q) = Uscq Post; (s). Note

that for any given state € S, P(s,-) is a probability distribution ovePosf; (s). Let Preg (s) :=

{s : §—=s} denote the set giredecessorsf s, and extend it to sets of states as above. We define

Igr\eg (Q) :=% Preg (¢ Q), i.e., it denotes the set of states whose succestidpslong toQ. We say
thatQ is sink-freeif Post; (s) 1Q # 0 for all s € Q, andclosableif it is sink-free andPost; (s) € Q
for all s€ [Q]R. If Qis closable then each state[@]! has at least one successoQnand all the
successors of states[iQ)R are inQ.

Forx € {0,1}, we say thaQ is anx-trap if it is closable andPost; (s) € Q for all s [Q]*.
Notice thatSis both a O-trap and a 1-trap, and in particular it is both dieke and closable. The
following lemma states that, starting from a state insidetatstate<Q that is a trap for one player,
the other player can surely keep the run ingile
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Lemma 3.1. If Q is a (1— x)-trap, then there exists a memoryless strate¢ Fj(G) for Player x
such that QC V¥(f*,F;;7%(6))(G,0Q).

Proof. We define a memoryless stratef§of Playerx that is surely winning from any states Q,

e, Q C VXX FiX(G))(G,0Q). For a states € [Q, we definefX(s) = selectPost; (s) N Q).

This is well-defined sinc® is a (1— x)-trap. We can now show that any run that starts from a

states € Q and that is consistent with* will surely remain insideQ. Let 1% be any strategy of

Player 1- x, and letss; ... € Rungg,s, f%, f17X). We show, by induction o thats € Q for all

i > 0. The base case is clear sirgge= s Q. Fori > 1, we consider three cases depending;on

e 5 € [§*. By the induction hypothesis we know thgt Q, and hence by definition d we know
thats 1 = f*(s) € Q.

e 5 c [§1 X By the induction hypothesis we know thatc Q, and hences,; € Q sinceQ is a
(1—x)-trap.

e 5 ¢ [§R. By the induction hypothesis we know tlsat Q, and hence | 1 € QsinceQis closable.

L]

SchemeGiven a sefTarget C S we give a scheme for computing a partitioning ®into two
setsForce’(G, Target) and Avoid' (G, Target) s.t. 1) Playerx has a memoryless strategy on
Force!(G, Target) to force the game tBarget w.p.p., and 2) Player 4 x has a memoryless strat-
egy onAvoidl‘X(g,Target) to surely avoidTarget. The scheme and its correctness is adapted
from [Zie98] to the stochastic setting.

First, we characterize the states that are winning for Playlky defining an increasing set of
states each of which consists of winning states for Playas follows:

R :=Target
Ros1 = Ra U[Preg (Ra)|FU [Preg (Ro)[*U [Preg (R
Ry = Ra (for A a limit ordinal)

a<A

Clearly, the sequence is non-decreasing, i&,,C Rp whena < (B, and since the sequence is
bounded byg, it converges at some (possibly infinite) ordinal. We sthig s a lemma:

Lemma 3.2. There is ay € O such thatR , = Ugeco Rg-

Letybe the smallest ordinal s, = R, (it exists by the lemma above). We define
Force (G, Target) := R,
Avoid (G, Target) 1= % R,
Lemma 3.3. Avoid*( G, Target) is an x-trap.
Proof. Recall thatAvoidl‘X(g,Target) =5 RyandR,. 1 C R,. First, we prove that R is sink-
free. There are two cases to consider:
e se [ R ¥UIS R R First, Post; (s) C ¢ R,. Indeed, if not, we would havBost; (s) N R, #
0, and thuss e Ryr1 € Ry which is a contradiction. Second, singds sink-free, we have
Pos; (s) # 0, and thusPost; (s) N & R, # 0.

e se[% R,J7* We clearly havePost; (s)N % R, # 0, otherwisePost; (s) C K, and thuss
Ryr1 € Ry, which is a contradiction.
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Second, when proving sink-freeness above, we showedtsd (s) C ¢ R, for anyse [¢ R, R
which means that %, is closable. Finally, we also showed tiRatst; (s) € & R, for anyse [£ R, |,
which means that R, is anx-trap, thus concluding the proof. ]

The following lemma shows correctness of the constructionfact, it shows that a winning
player also has a memoryless strategy which is winning agaimarbitrary opponent.

Lemma 3.4. There are memoryless strategies fdf@g Target) € Fj(G) for Player x and
avoid' (G, Target) € F; %(G) for Playerl—x s.t.

Force'(G,Target) C WX(force'(G, Target),F1(G))(G, OTarget™0)

> L all

Avoid' (G, Target) C V1 *(avoid" (G, Target),FX (G))(G,0(E Target))

Proof. Let R = Force(G, Target). To prove the first claim, we define a memoryless strateigyf
Playerx that is winning fromg.. For anys € [R ], leta be the unique ordinal s.$.€ [R .1\ Rq]
Then, we definef*(s) := selectPosi; (s) N R,). We show thatf* forces the run to the target
setTarget W.p.p. against an arbitrary opponent. Fix a stratégy* for Player 1— x. We show
that 2 s ¢x j1-x(OTarget) > 0 by transfinite induction. 1§ € K, then the claim follows trivially.

If s€ Ry, then eithers € R, in which case the claim holds by the induction hypothesis, or
S€ Rai1\ Rq. Inthe latter case, there are three sub-cases:

o S€[Ryi1\Rq]* By definition of f*, we know thatf*(s) = s for somes’ € & . By the induction
hypothesis®; ¢ fo 11(CTarget) > 0, and hence; s ro 11(OTarget) > 0.

e S€[Ry1\ Ro]P X Lets be the successor sthosen byf1=*. By definition of R 4, 1, we know
thats € 4. Then, the proof follows as in the previous case.

e SE [Rqi1\ RoJR By definition of R, 4, there is as' € R, such thatP(s,s) > 0. By the
induction hypothesisp; s ro 11(CTarget) > P ¢ o 11(CTarget) - P(s,s) > 0.

Finally, if se€ R, for a limit ordinal A, thens € & , for somea < A, and the claim follows by the

induction hypothesis.

From Lemma 313 and Lemma 3.1 it follows that there is a styafég* for Player 1— x such
that Avoid (G, Target) C VI (1 FX) (G, D(Avoid' (G, Target))). The second claim fol-

s all

lows then from the fact thatarget N Avoid' (G, Target) = 0. O

4. PARITY CONDITIONS

We describe a scheme for solving stochastic parity gamésakiost-sure winning conditions on
infinite graphs, under the conditions that the game has a fatiitactor (as defined in Sectian 2), and
that the players are restricted to finite-memory strategies

We define a sequence of functiodg, (1, ... Each(, takes a single argument, a game of rank
at mostn, and it returns the set of states where Playwins a.s., withk = n mod 2. In other words,
the player that has the same parity as calains a.s. inGy(G). We provide a memoryless strategy
that is winning a.s. for Playerin G,(G) against any finite-memory strategy of Player &, and a
memoryless strategy that is winning w.p.p. for Playerxin ¢ G,(G) against any finite-memory
strategy of Playex.

The scheme is by induction anand is related tg [Zie98]. In the rest of the section, we make
use of the following notion of sub-game. For a closabl®, we define thesub-gameG © Q :=
(@,1Q1% Q11 [QIR, —,P',Col’), whereQ' :=9 Q s the new set of states;—' := — N (Q' x



STOCHASTIC PARITY GAMES ON LCS 9

gameg S\ Xu Xy —13 Up<a 98

gameG o Xy | S\ Xq \ Zq Zu _)‘_) [g xg}Col:n

gamegG © Xy © Zy Gr-1(G O Xa © Zu)

FIGURE 1. The construction of the various sets involved in the itigacstep. The
grey area ig)g.

Q), P :=P|([Q)Rx Q), Col’ := Col|Q. Notice thatP’(s) is a probability distribution for any
se [Q]Rsinceq is closable. We us€ © Q; © Q. to denote( G © Q1) © Qz.

For the base case, l€h(G) := Sfor any gameg of rank 0. Indeed, from any configuration
Player 0 trivially wins a.s. (even surely) because therenig color 0.

Forn> 1, let G be a game of rank. In the following, let

X=nmod 2

Ga(G) is defined with the help of two auxiliary transfinite sequenoésets of state§Xy }aco and
{9% }aco- The construction ensures th& C 95 C X3 C 97 C ---, and that the states ofy, 9%

are winning w.p.p. for Player 2 x. We use strong induction, i.e., to construgt we assume that
Xg has been constructed for 8ll< a, and it suffices to state one unified inductive step rather tha
distinguishing between base case, successor ordinalsamdeno limit ordinals. In the (unified)
inductive step, we have already constructgcand9g for all 3 < a. Our construction ofty and 95

is in three steps (cf. Figufé 1):

(1) Xq is the set of states where Player X can force the run to visltg.q 95 W.p.p.

(2) Find a set of states where Player £ wins w.p.p. in the sub-gamg & X.

(3) Take9q to be the union offy and the set constructed in step 2.

We next show how to find the winning states in the sub-gajee Xy in step 2. We first compute
the set of states where Playecan force the play iy © Xy to reach a state with colarw.p.p.We
call this setZy. The sub-gamé&; © Xy © Zy does not contain any states of coforTherefore, this
game can be completely solved, using the already constrdietestion G,—1(G © Xq © Zq). The
resulting winning set is winning a.s. i © Xy © Zq, hence it is winning w.p.p.We will prove that
the states where Player-Ix wins w.p.p. inG & Xq © Zy are winning w.p.p. also ig;. We thus take
Y% as the union of(g andG,_1(G © Xq © Zy).
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We define the sequences formally:
Xa 1= Forcelix(gaLJB«x yﬁ)
Zy = Force(G © Xa, [ Xo]®*=")
Y0 =X UGr-1(G O Xa © Zy)

Notice that the sub-gameg & Xy and G & Xy © Zy are well-defined, sincé Xy is closable inG
(by Lemmd3.B), and~® Z, is closable inG © Xg.

By the definition, fora < B we get9y C Xz € 94. As in Lemmd 3.2, we can prove that this
seguence converges:

Lemma 4.1. There exists § € O such thatXy = 9 = Uyco Ya-
Lety be the least ordinal s.X,.1 = X, (Which exists by the lemma above). We define
G(G) =5 % (4.1)

The following lemma shows the correctness of the constractRecall that we assume th@tis of
rankn and that it contains a finite attractor.

Lemma 4.2. There are memoryless strategies o FY(G) for Player x and % € Fy*(G) for
Player1— x such that the following two properties hold:

G(G) © WYX, FRinis(G))( G, x-Parity™) (4.2)
5 G(G) © WX R ie(6))(G, (1—x)-Parity™°) (4.3)

Proof. Using induction omn, we define the strategie§, f2~%, and prove that the strategies are

indeed winning.

Construction of fX. Forn > 1, recall thaty is the least ordinal s.tXy,; = X, (as defined above),

and defineX; :=¢ X, and zZ, :=¢ Z,. By definition, G,(G) = X,. For a states € X, we definefX(s)

depending on the membershipsifi one of the following three partitions of;;:

(1) se XyN Z,. DefineG’ := GO X,© Z,. By the definition ofy, we have tha 1 \ X, = 0. By the
construction of)g we have, for an arbitraryg, that Gv-1(G © Xa © Z4) = 94 \ Xa, and by the
construction ofXy 1, we have thapg \ Xqa C Xu+1\ Xo. By combining these facts, we obtain
Gr-1(G") € Xye1\ Xy = 0. SinceG © Xy © Z, does not contain any states of cofofor higher),
it follows by the induction hypothesis that there is a menfesy strategyf, € Fj(G’) such that
9 Gr1(G) € WX(f, R X(G)(G x-Parity™). We definefX(s) := fi(s). (Later, we will
prove that in factf; is winning a.s.)

(2) s€ XyN[z,)%r=". Definef¥(s) := force’(G & X, [2,]°*=")(s).

(3) se X;N[Zy]°*=". Lemmd3.B showBos{; (s) NX, # 0. Define fX(s) := selectPost; (s) N X).

Correctness of fX. Let f1* € Fi-%(G) be a finite-memory strategy for Player-X. We show that

Pg s 1x,11-x(x-Parity) = 1 for any states € Gy(G).

First, we give a straightforward proof that any regs; - -- € Rung@G,s, f%, 1) will always
stay insideX;, i.e.,s € X, for alli > 0. We use induction on The base case follows frosg=s€ X;.
For the induction step, we assume that X;, and show thas.; € X;. We consider the following
cases:

e 5 € [} XU[XJR. The result follows since is a (1- x)-trap in G (by Lemmd3.B).
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e 5 € [X,NZ]*. We know thats ;1 = fi(s). Sincef; € F{(G o X,© 2) it follows thats . €
XyN 2y, and in particulas.;1 € X,.

e 5 € [X,N[Z]%1<"*. We know thats ;1 = force'(G & X, [2,|°*=")(s). The result follows by
the fact thaforce'(G © X, [2,]°°*=") is a strategy inG © X;.

e 5 € [X,N[Z/]%="X. We haves 1 € Posf; (5) N X, and in particulas 1 € X.

We now prove the main claim. This is where we need the assampfifinite attractor and finite-

memory strategies. Let us again consider apunRunggG,s, fX, f1=%). We show thap is a.s.

winning for Playerx with respect tax-Parity in G. Let f1=* be induced by a memory structure

M = (M,mo,T,1). Let 7 be the transition system induced Iy fX, and f1=*. As explained in

Sectior 2p will a.s. visit a configuratior(sa, m) € B for some BSC@ in 7. Since there exists a

finite attractor, each state that occurdBinvill a.s. be visited infinitely often by. Let nyax be the

maximal color occurring among the statedBofThere are two possible cases:

e Nmax= N. Since each state i§ has color at most, Playerx will a.s. win.

® Nmax< N. Thisimplies thaf{sg : (sg,m) € B} C Zy and hence Playeruses the strategi to win
the game inG © X, © 2, w.p.p.Then, either (ifmax mod 2= xin which case all states insideare
almost sure winning for Playeg or (ii) nmax mod 2= 1— x in which case all states insidzare
almost sure losing for Player The result follows from the fact that case (ii) gives a cadiction
since all states iy © X, © Zy (including those irB) are winning for Playek w.p.p.

Construction of f1~*. We define a strateg§—* such that, for altx, the following inclusion holds:

Xa € 9% CWIX(FEX FX.(G))(G, (1—x)-Parity™®). The result then follows from the definition

of Gy(G). The inclusionXy C 9% holds by the definition of)g. For any states €% G,(G), we

define f1=%(s) as follows. Leta be the smallest ordinal such theat 9. Such am exists by the

well-ordering of ordinals and sincen(G) = Upeo X = Upeo 9. Now there are two cases:

o S€ Xy \Upo 9p- Definefi(s) := fi(s) := forcel‘x(g,UB<a M%)(9).

e sc (h-1(G S Xa © Zy). By the induction hypothesis (on), there is a memoryless strategy
fo € FiX(G © X © Zq) Of Player 1—x such thais € W (2, FX.(G © Xa © Za)) (G © Xa ©
Zy, (1—x)-Parity™). Define f1X(s) := fa(s).

Correctness of f&*. Let f* € F,,.(G) be a finite-memory strategy for Player We now use in-
duction ona to show thatP, ¢ 1-x ¢x((1—x)-Parity) > 0 for any states € 9. There are three cases:

(1) If s€ Up<q 93, thens € 9 for someP < a and the result follows by the induction hypothesis
onp.

(2) If s€ Xa \ Up<q 78, then we know that Player-1x can usef; to force the game w.p.p. to
Up<a 93 from which she wins w.p.p.

(3) If se Gi-1(G & Xu © Zy), then Player 1 x usesf,. There are now two sub-cases: either (i)
there is a run frons consistent withfX and f1~ that reaches(; or (i) there is no such run.

In sub-case (i), the run reach&s w.p.p. Then, by cases 1 and 2, Player Awins w.p.p.

In sub-case (ii), all runs stay forever outsidlg. So the game is in effect played cho Xy.
Notice then that any run fromthat is consistent withi* and f1~ stays forever inG © X5 © Zy.
The reason is that (by LemmhaBB)“ z, is anx-trap in G & Xy. Since all runs remain inside
G © Xq © Zy, Player 1-xwins w.p.p. (even a.s.) wrfl — x)-Parity using fz. O
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The following theorem follows immediately from the previolemmas.

Theorem 4.3. Stochastic parity games with almost sure winning condstion infinite graphs are
memoryless determined, provided there exists a finitea@tireand the players are restricted to
finite-memory strategies.

Remark. We can compute both the a.s. winning set and the w.p.p. wgnse for both players as
follows. Letnmax be the maximal color occurring in the game. Then:

e Playerxwins a.s. inGy,,,(G) and w.p.p. irf, Ghut 1(G);
e Player 1- xwins a.s. inG, ..+1(G) and w.p.p. ir¢ G, _ (G).

5. APPLICATION TO LOSSY CHANNEL SYSTEMS

5.1. Lossy channel systemsA lossy channel system (LCiS) finite-state machine equipped with
a finite number of unbounded fifo channels (queues) [AJ93]e 3ystem idossyin the sense
that, before and after a transition, an arbitrary number e$sages may be lost from the channels.
We considerstochastic game-LCS (SG-LC®8ach individual message is lost independently with
probability A in every step, wheré& > 0 is a parameter of the system. The set of control states is
partitioned into states belonging to Player 0 and 1. Thegulssho owns the current control state
chooses an enabled outgoing transition.

Formally, a SG-LCS of rank is a tuple£ = (S, 8°,s%,C,M, T,\,Col) wheres is a finite set of
control stategpartitioned into control stated”, s of Player 0 and 1¢ is a finite set othannelsM
is a finite set called thenessage alphabeT is a set oftransitions 0 < A < 1 is theloss rate and
Col: S8 — {0,...,n} is thecoloring function. Each transition € T is of the forms—=5s’, where
s,s’ € S andop is one of the following three forms:!m (send messagec M in channek € C), c?n
(receive messagefrom channek), or nop (do not modify the channels).

The SG-LCSL induces a gam& = (S,S°, S, S, —,P,Col), whereS= S x (M*)¢ x {0,1}.
That is, each state in the game (also callezbafiguratior) consists of a control state, a function
that assigns a finite word over the message alphabet to eadnealh and one of the symbols O or
1. States where the last symbol is 0 are rand&h= S x (M*)¢ x {0}. The other states belong
to a player according to the control sta®® = s* x (M*)° x {1}. Transitions out of states of the
form s= (s,x,1) model transitions iIT leaving control state. On the other hand, transitions leav-
ing configurations of the forns = (s,x,0) model message losses. More precisely, transitions are
defined as follows:

e If s=(s,x,1),5 = (s/,x,0) € S then we haves—s iff s—2s' is a transition inT and (i) if
op = nop, thenx = x/; (ii) if op = c!m, thenxc = wandx’ = x[c — w-m] (iii) if op = c?n, then
xc =m-w andx’ = x[c — w]|, where the notatiox|[c — w] represents the channel assignment
which is the same asexcept that it maps to the wordw € M*.

e To model message losses, we introduce the subword orderimmg words: x <y iff x is a word
obtained by removing zero or more messages from arbitrasitipos ofy. This is extended to
channel contents, x’ € (M*)€ by x < % iff x(c) < %/(c) for all channels: € ¢, and to configura-
tionss= (s,x,i),s = (s/,x/,i") e Sbhys<d'iff s =5/, x </, andi =i’. For anys= (s,x,0)
and anyx’ < x, there is a transitios—(s,x’,1). The probability of random transitions is given
by P((s,x,0),(s,x’,1)) = a-A°.(1—A)¢, wherea is the number of ways to obtait by losing
messages iR, b is the total number of messages in all channels, @ndc is the total number of
messages in all channels df(see [ABRSO05] for details).
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Every configuration of the fornfs,x,0) has at least one successor, namely,1). If a config-
uration (s,x,1) does not have successors according to the rules above, themdva transition
(s,x,1)—(s,x,0), to ensure that the induced game is sink-free.

Finally, for a configuratiors = (s, x,i), we defineCol(s) := Col(s). Notice that the graph of
the game is bipartite, in the sense that a configuratid@r inas only transitions to configurations in
[§91, and vice versa.

We say that a set of channel contedits (M*)° is regular if it is a finite union of sets of
the formy C (M*)€ whereY(c) is a regular subset of* for everyc € C (this coincides with the
notion of recognisable subset @f*)¢; cf. [Ber79]). We extend the notion of regularity to a set of
configurationd® C Shy saying thaP is regular iff, for every control state € S andi € {0,1}, there
exists a regular set of channel contexgs C (M*)¢ s.t.P={(s,x,i) : s € 8,i € {0,1},x € X5}

In the qualitativeparity game problenfior SG-LCS, we want to characterize the sets of config-
urations where Playetcan force thex-Parity condition to hold a.s., for both players.

5.2. From scheme to algorithm. We transform the scheme of Sectldn 4 into an algorithm for de-
ciding the a.s. parity game problem for SG-LCS. Consider@A8S £ = (8,5°%,8%,C,M,T,A,Col)

and the induced gamg = (S S, S', SR, —,P,Co1) of some rankn. Furthermore, assume that the
players are restricted to finite-memory strategies. We gheviollowing.

Theorem 5.1. The sets of winning configurations for Play€rand 1 are effectively computable as
regular sets of configurations. Furthermore, from each cpmfition, memoryless strategies suffice
for the winning player.

In the statement of the theorem, “effectively” means thahigfidescription of the regular sets
of winning configurations is computable. We give the proofaveral steps. First, we show that
the game induced by an SG-LCS contains a finite attractor (h&f.2). Then, we show that the
scheme in Sectidd 3 for computing winning configurations mdchability objectives is guaranteed
to terminate (Lemma5.4). Furthermore, we show that themsehie Sectioi ¥ for computing
winning configurations wrt. a.s. parity objectives is gudead to terminate (Lemnia 5.7). Notice
that Lemmag 514 arid 5.7 imply that for SG-LCS our transfinitestructions stabilize belows (the
first infinite ordinal). Finally, we show that each step in #i®ve two schemes can be performed
using standard operations on regular languages (Letnm#sbd5.1R).

Finite attractor. In JABRSO5] it was shown that any Markov chain induced by alfmlistic LCS
contains a finite attractor. The proof can be carried overstraightforward manner to the current
setting. More precisely, the finite attractor is givenAy- (S x € x {0,1}) whereg(c) = € for each

c € C. In other wordsA is given by the set of configurations in which all channelseargpty. The
proof relies on the observation that if the number of messagsome channel is sufficiently large,
it is more likely that the number of messages decreases fiadiit increases in the next step. This
gives the following.

Lemma 5.2. G contains a finite attractor.

Termination of Reachability Scheme.For a set of configuration® C S we define theupward
closureof Q by Q1:={s:35 € Q.5 <s}. AsetU C QC Sis said to beQ-upward-closedor
Q-u.c.for short) if (U 1) NQ=U. We say thaU is upward closedf it is S-u.c.

Lemma5.3.1fQpC Q1 C .-+, and for all i it holds that QC Q and Q is Q-u.c., then there is an
j € N'such that Q= Qj foralli > |.
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Proof. By Higman'’s lemmal[Hig52], there is pc N s.t. Qi 1= Q; 1 for all i > j. Hence Q1 NQ =
QjtNQforalli > j. Since allQ; areQ-u.c.,Q Tt NQ = Q; foralli > j. SoQ; = Qj foralli> j.[]

Now, we can show termination of the reachability scheme.

Lemma 5.4. There exists a finite ¢ N such that®; = R j foralli > j.

Proof. First, we show thaf®; \ Target|R is (¢ Target)-u.c. for alli € N. We use induction on
i. Fori =0 the result is trivial sinceR; \ Target = 0. Fori > 0, suppose thas = (s,x,0) €
[Ri]R\ Target. This means that—(s,x’,1) € R;_; for somex’ < x, and hence& —(s,x’, 1)
forall g s.t.s<¢.

By Lemmd5.3B, there is f € N such thaf® R\ Target = [R ;/]X\ Target for alli > j’. Since
R; 2 Target for alli > 0 it follows that[®;]R = [R ;R for alli > j'.

Since the graph of is bipartite (as explained in Sectibnb.1Breg (R,)]* = [Preg ([R;]R)]*
and[Preg (R;)]1* = [Preg ([Ri]F)]* . Since[®;]R = [R ;Rforalli > ', we havelPreg (R;)]* =

[Pre; ([9{]?)]* C Ry, and [Preg (R;)] = [Pre; ([x]ﬁ)]l—x C Ry, It then follows that
Ri =R, foralli>j:=j+1. O

Termination of Parity Scheme.We prove that the scheme from Sectidn 4 terminates under the
condition that the reachability sets are computable antttiese exists a finite attractor. This suf-
fices since, by the part above, the reachability schemenetes, thus yielding computability of the
reachability set. However, here we prove termination oftagty scheme with no further assump-
tion on the reachability sets other than their computabilit

We first prove two immediate auxiliary lemmas.

Lemma 5.5. A closable set intersects every attractor.

Proof. In any closable set, the players can choose strategiesticatthe game to remain in the set
surely. The lemma now follows since an attractor is visiteaost surely by any run, and this would
be impossible if the attractor did not have any element irstie L]

Lemma5.6. Gy(G) is a(1—x)-trap.

Proof. (o(G) is trivially a (1 —x)-trap. Fori > 1, the result follows immediately from the definition
of Gv(G) in Eq[4.1 as the complement of a force set (by Lerhmh 3.3). ]

Lemma 5.7. There is a finite £ N such thatX; = Xj for alli > .

Proof. We will prove the claim by showing thal,_1(G © X; © Z) in the definition of9; contains

an element from the attractor, and that he1(G © X © Z;) sets constructed in different steps
are disjoint. First(,-1(G © X © Z) is anx-trap by Lemma5]6. Hence it is closable, and therefore
Lemmal5.b implies that it contains an element from the attracSecond, by the definition of
the © operator,X; and G © X © Z are disjoint. Sinc&h-1(G© X © Z) C S\ X \ &, it follows
that 97 is thedisjoint union of X; and G,-1(G © X; © Z). Then, the definition of; implies that
Gr-1(GO X% 6 Z) € %\ Uj 9. Hence, ifj #i, Gi-i(GO X 6 4) andGi-1(G © X © Z;) are
disjoint. Since allG,-1(G © X © Z;) sets are disjoint, and each of them contains at least oneatem
of the attractor, and the attractor is finite, the algoritiemmtinates in at mos$#A\| steps. L]
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Computability. Regular languages of configurations are effectively closeder the operations
of upward-closure, predecessor, set-theoretic unioersattion, and complement [ABDO08]. For
completeness, we show these properties below.

Lemma 5.8. If P is a regular set of configurations, then its upward-cl@sB1 is effectively regular.
Proof. A regular seP of configurations is by definition of the form
P={(s,x,i):s€8,ie{0,1},x€Xs;}

where theXs;’s are regular sets of channel contents. It thus suffices tovshat X t:= {x :
Jx’ € X.x’ X x} is an effectively regular set of channel contents whies a regular set of chan-
nel contents. By definitior is a finite union of sets of the form C (M*)€ with Y(c) regular for
everyc € C. LetX1 be the union of th& 1, where, for everg € C, a finite automaton recognizing
Y1 (c) is obtained from a finite automaton recognizing:) by adding a self-loop labeled with
on every state thereof. L]

Lemma 5.9. If P,Q are regular sets of configurations, thenuR), PN Q, and S, P are effectively
regular sets of configurations.

Proof. The proof is very similar to the one in the previous lemma, Xpl@ting the fact that regular
languages are closed under the operations of union, icteyseand complement. L]

Lemma 5.10. If P is a regular set of configurations, then Rr€P) is an effectively regular set of
configurations.

Proof. Let P be a regular set of configurations. By a case analysis on wiaaokition is taken, we
can write

Preg (P) = | Preg (P,t) UPreZ (P)

teT

where
Preg (P, sn—op>s/> ={(s,x,1): (s',x,0) € P}
Preg (P, sﬂs') ={(s,x,1) : (¢',¥,0) e P.X'(C) =W m,x = x[c > W]}
Preg (P, sﬂs’) ={(s,x,1): (¢',%',0) e Px=x%'[c = m-x(c)]}
Prefl (P) :={(s,x,0): (s',¥,1) e Px' < x} = {(s,%,0) : (s',¥, 1) e P} 1

Then,Preg (P, sﬂs’) is clearly effectively regularPreg (P, sﬂs’) is regular, because regular

languages are effectively closed under (right) quotiePts,; (P, sﬂs’) is regular, because regu-

lar language are effectively closed under (left) concdtenawith single symbols, anEm‘rnge (P)is
effectively regular by Lemmia’5.8. ]

The lemmas above show that all operations used in compBEtrge (G, Target) effectively
preserve regularity. Thus we obtain the following lemma.

Lemma 5.11. If Target is regular, then Forc¥ G, Target) is effectively regular.
Lemma 5.12. For each n,(4(G) is effectively regular.

Proof. The setSis regular, and henc&(G) = Sis effectively regular. The result for> 0 follows
from Lemmd5.1l1 and from the fact that the rest of the operatised to build’(G) are those of
set complement and union. L]
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5.3. Construction of regular winning strategies. In this section, we show that the memoryless
winning strategies constructed in Theorem 5.1 can be finfepresented as a (finite) list of rules
with regular guards on the channel contents. This reprasentcan be easily turned in a more low-
level one, e.g., a finite automaton with output reading trenolel contents and outputting the rule
do be played next, but for the ease of presentation we hawsenlemore high-level description.
Preliminaries. Let £ = (S,8°,8,C,M, T,\,Col) be a SG-LCS. Amemoryless) regular SG-LCS
strategyf for Playerx is a finite list of guarded rule«ssi,xiﬂs{ n |, where theguard X C (M*)°

is a regular set of channel contents and™ss! is a transition irT s.t. s; € S* and:

e If op; = cm, everyx € X; hasm as the first symbol of(c).
e Guards for the same control state are disjoint; i.e., fohégg if s = s; thenX;NX; = 0.

Thedomainof a regular SG-LCS stratedyis
dom(f) = {(s,x) : there exists a guarded rueX —s’ € f s.t.x € X}

Intuitively, the rule(si,Xiﬂsi’) should be applied from control stagg if the channel contents
belong to the guarck;. Formally, letG = (S S, S, ¥, —,P,Col) be the game induced hy.
The (partial, memorylesshduced strateg¥ of a regular SG-LCS strategyis defined, for every
(s,x) € dom(£), asf(s,x,1) = (s/,x’,0), wheres;, X,—>s/ is the unique guarded rule ihsuch
thats; = s andx € X;, andx’ is the unique channel contents g4,x,1)—(s’,x/,0) in the game
G. If (s,x) ¢ dom(f), thenf(s,x,1) = L.

Given two regular SG-LCS strategiég, £1 with disjoint domains, theiunion foU £1 is the
regular SG-LCS strategy obtained by concatenating thedisguarded rules afp andf.

Given two sets of configuration®,Q C S, aselection functiorfrom Q to Q is any function
f:Q— Q@ s.t, for every(s,x) € Q,

f(s,x) € (Post; (s,x)NQ)
In other words, a selection function picks a legal succeiss®¥ for every configuration irQ.
Construction. The rest of this section is devoted to the construction ofilesgwinning strategies
for both players, as summarised by the following theorem.

Theorem 5.13. Memoryless winning strategies for both players are effetticomputable as regu-
lar SG-LCS strategies.

We begin by showing that, if the set of selection functionsda-empty, then there are simple
selection functions induced bggular SG-LCS strategies.

Lemma5.14.Let Q Q' C S be two regular sets of configurations. If there exists actiele function
from Q to @, then there exists a regular SG-LCS stratégyt. £ is a selection function from Q to'Q
Proof. Let f be a selection function fror@ to Q'; in particular, the sePosi; (s,x) N Q' is non-
empty for each(s,x) € Q. LetT = {sp—5sp,...,sk—ss|} be the finitely many transitions of.
For everyi € {0,...,k}, let P, be the set of predecessors@fin Q via transitionsiﬂsi’, ie.,

P = Preg (Q’, siﬂso NQ={(si,x) € Q: there existgs],x') € Q - (si,x)—5 (s, x')}
SinceQ,Q are regularPre; (Q’,sigso is regular (cf. Lemm&a5.10), and thisis regular too.

Consider the sequence of (regular) SQts= Po, and, for 0<i <k, Qi = B\ Up<- Qj, and let
Qi - - -, Qi,, be the subsequence of non-empty sets. Tf@n, ..., Q;, } is a (regular) partition of):
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The sets are disjoint by definition, and edehx) € Q belongs to som@);; sincePosy; (s,x) NQ' is
non-empty. Le{X,,..., X} C 207)° pe the set of regular channel contents s.t., fer P<h, Q;,
is of the form{(s;;,x) : x € X;; }. Let £ be the following regular SG-LCS strategy:

op; Opj
{Sig» Xio—2S15, - - - Sips Xin—S1, } (5.1)
By definition, f is a selection function from® to Q'. ]

In the next lemma, we show that regular SG-LCS strategidisubd keep the game in regular
traps.

Lemma 5.15. If Q is a (1— x)-trap and regular, then there exists a regular SG-LCS sgwtefor
Player x such that @& V*(£,F2(G))(G,0Q).

= "all

Proof. By Lemmal3.1, there exists a memoryless straté€ffor Playerx with the required prop-
erty. Moreover, by inspecting the proof of the lemma, we cam thatf* is defined asf*(s) =
selectPost; (s) N Q) for every configuratiors € [Q]*, i.e., f* is a selection function fronfQ[* to

Q, and, in fact, any such selection function can be taken. Bwrha[5.14, there exists a regular
SG-LCS strategy s.t. the induced stratedyis a selection function frofQ]* to Q. U]

The following lemma shows that there are regular SG-LCSesiras for the reachability and
safety objective (cf. Lemmnia 3.4).

Lemma 5.16. Let Target C S be a regular set of configurations. There exist regular &L
strategiesforceX( G, Target) for Player x andavoid! (G, Target) for Playerl—x s.t.

Force!( G, Target) C WX(forceX(G, Target),F1%(G))(G, OTarget™?)

> all

Avoid (G, Target) C V1 X (avoid! (G, Target),F%(G))(G,O(4 Target))

Proof. We first show a regular SG-LCS strategy for Playésr the reachability objective. Consider
the sequence of se®j, R ;,... constructed in Section 3. By Lemrha k.4, there exjstsN s.t.
Vi> |, R; = R;. Moreover, sinceg; is built starting from the regular s&arget and according to
regularity-preserving operations (union, predecessut,cmplement; cf. Lemmas 5.9 and 5.10),
R is regular for every X i < j. Consider the sequence of regular $&fs- Ry andR = R;\ R,;_1

for every 0< i < j. Recall the definition oforce’( G, Target) in the proof of Lemmaz3l4: For every
0<i < |, force€ (G, Target) was uniformly defined o as

forc€’(G, Target)(s) = selectPosi; () N R;_1).

Therefore, there exists a selection function fr&mo X;_4, for every 0< i < j. Since theR’s
and ®;’s are regular, by Lemmia 5.114, there exists a regular SG-Li&&&egy f; with domainR,
inducing such a selection function. Since fRé& are disjoint, and since any selection function is
correct, take agsorce*(G,Target) the union strategyip U - -- U f;. Since the actual choice of the
selection function is irrelevant, we conclude that

Force'( G, Target) C WX(force*(G, Target),Fli *(G))(G, OTarget ™)

a

We conclude the proof by providing the required regular SGslstrategy for Player 1 x for the
safety objective. By Lemmia 3.3void"*(G, Target) is anx-trap. SinceAvoid' (G, Target)
is regular, by LemmB&5.15 there exists a regular SG-LCSeglyatvoid! *(G, Target) such that
Avoid* (G, Target) C Vi ™(avoid' (G, Target),F%(G))(G,O(4 Target)). ]
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To conclude the proof of Theordm 5113, we show that regulat. 8S strategies suffice for the
parity objective (cf. Lemm@a4l2).

Lemma 5.17. There are regular SG-LCS strategig§for Player x andf .~ for Player1—x such
that

G(G) © WX(ES, Fis(G))(G, x-Parity™)
5 G(G) © WX Fiie(6))(G, (1—X)-Parity™®)

Proof. We define regular SG-LCS strategigisfor Playerx and £~ for Player 1- x by induction
onn > 1. By inspecting the proof of Lemnia 4.2, we note that winnitigtegies for both players
are constructed according to a case analysis on disjointaiedomains, for which winning regular
SG-LCS strategies exist either by induction hypothesibydremmd5.156 (for reachability). Recall
that, by Lemma 517, there exists N s.t. Xj = X; for every j > i. Moreover, all the set&;, 9], Z;
involved in the construction are regular for everx( < i since they are constructed starting from
regular sets and according to regularity-preserving djoers (boolean operations, cf. Leminal5.9;
force-sets, cf. LemmaX5.116).

Construction of £%. Define the two regular sets of configuratiatis:=9¢ X; and Z; ;= Z;. By

definition, G\(G) = Xj. Following Lemmd 4R, we defingk(s) depending on the membershipof
in one of the following three partitions ofj:

{ijzj’ Yjﬁ [ZJ‘]COl<n, ij[Zj]Colzn}
In the first case, note thaf © Xj © Z; does not contain any configurations of colarn (cf.
Lemmé&4.2). Thus, by the induction hypothesis, there is alae$G-LCS strategy; for Playerx
in G © Xj & Z; such that the induced strategy has dom#jm Z;. In the second case, &b be
the regular SG-LCS stratedyprce*(G © Xj, [Z]°°*="), for which the induced strategy has domain
XjN[Zj]%t<" (it exists by Lemm&5.16). Finally, in the third case, thatgtgyselectPost; (-) N.X;)
witnesses the existence of a selection function fogm [Z;]°*=" to X]. Letf3 be a regular SG-

LCS strategy inducing a selection function frolin [Z;]°°*=" to Xj (it exists by Lemma5.34).
Then,£¥ is defined as the union of the three previously constructadesfies:

fri=f1UfUf3

Since the actual choice of selection function is irrelevafiinduces a correct strategy by the same
arguments as in the proof of Lemmald.2, i@(G) C WX(£%,Fis(G))(G, x-Parity™1).
Construction of £5. Recall that] (y(G) = 9] = Xj, and, forevery i < j, % = XU G-1(G O
Xi© ). Forevery 1<i < |, let£! be the regular SG-LCS strategyrcel (G, 9_1) with domain

X\ 95_1 (it exists by Lemm& 5.16). By the induction hypothesis, ¢hisralso a regular SG-LCS
strategyf? such that the induced strategy has dom@in (G © X © ), which is winning a.s. for
Player 1-x on this domain. Thertl~* is defined as

fo X i=f{UfTU- UETUES
By reasoning as in the proof of Lemmal4 £ induces a correct strategy, i.€,,G\(G) C
WEX(E3, Fitiee(6)) (G (1—X)-Parity ™). O
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FIGURE 2. Finite attractor requirement.
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(A) W.p.p. winning condition (B) A.s. winning condition

FIGURE 3. Infinite memory helps Player 1.

6. CONCLUSIONS ANDDISCUSSION

We have presented a scheme for solving stochastic gamesusitand w.p.p. parity winning con-
ditions under the two requirements that (i) the game costaifinite attractor and (ii) both players
are restricted to finite-memory strategies. We have shoantltis class of games is memoryless
determined. The method is instantiated to prove decidgloifia.s. and w.p.p. parity games induced
by lossy channel systems.

The two above requirements are both necessary for our meffiogee why our scheme fails
if the game lacks finite attractor , consider the game in Figuré 2 (a variant of the Gambleris rui
problem). All states are random, i.&° = S' = 0, andCol(sp) = 1 andCol(s) = 0 wheni > 0.
The probability to go right from any state isfGand the probability to go left (or to make a self-loop
in 59) is 0.3. This game does not have any finite attractor. It can be shbatrthe probability to
reachs infinitely often is 0O for all initial states. However, our cgtruction will classify all states
as winning for Player 1. More precisely, the constructionCofG) converges after one iteration,
with Zq = Sand Xy = 94 = 0 for all a, andG1(G) = S Intuitively, the problem is that even if the
force-set of{ 55} (which is the entire set of states) is visited infinitely mainyes, the probability of
visiting {so} infinitely often is still zero, since the probability of reting to{s} gets smaller and
smaller. Such behavior is impossible in a game graph thaacena finite attractor.

Our scheme also fails when the players are not both restrictéinite-memory strategies
Solving a game under a finite-memory restriction is a difieggroblem from when arbitrary strate-
gies are allowed (not a sub-problem). In fact, it was showWBBSO07] that for arbitrary strategies,
the problem is undecidable. We show two simple examplesochsistic games on LCSs where the
two problems yield different results (see also [BBSO07])ohe case, we show that infinite memory
is more powerful for Player 1 with a w.p.p. objective (cf. &ig3&), while in the other case infinite
memory helps w.r.t. an a.s. objective (cf. Figlré 3b). Irhbmases, Player O does not play in the
game, thus the memory allowed to her is irrelevant.
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First, we show that infinite memory is more powerful for w.pgbjectives. In Figuré_3a,
Player 1 plays on control statgs g, andr. Player 1's objective is to visit stateinfinitely of-
ten w.p.p.. To ensure this, from stgbePlayer 1 pumps up the channel to a sufficiently large size
k (which can be done a.s. for akygiven enough time), and then she goes to the risk stalé
each message can be lost independently with probat%i]itl}ne probability that all messages are
lost, and thus that Player 1 is stuck forevenjris 2. Otherwise, with probability 1 2% Player
1 can visitr once, and then go back fo The strategy of Player 1 is to realise an infinite sequence
ko < ki < --- s.t. the probability of visiting stateinfinitely often, which is[];~q(1— 27k, can be
made strictly positive. Clearly, if Player 1 has infinite nany) then she can realize such a sequence
by distinguishing different visits to control stapeand same channel contents. On the other side,
if Player 1 is restricted to finite memory, then either the gaentually stays forever i (which
is losing), or the infinite sequendg, ky,... is upper-bounded by some finite which makes the
infinite product above equal to 0. In both cases, Player kldsde has only finite memory.

Notice that Player 1 wins not only w.p.p., but even limitesurthis example. In other words, for
everye > 0 there is an infinite-memory strategy s.t. the parity objeds satisfied with probability
> €. We don't know whether there are examples where a similanginenon can be reproduced
under finite-memory/memoryless strategies.

We now show that infinite memory is more powerful for a.s. otes. An example similar
to the previous case can be given for the a.s. winning mode avR-color parity condition. In
Figure[3b, Player 1 controls states 0, 1, and 2, whose col@lgtheir name. Thus, the objective of
Player 1 is to a.s. visit state 1 infinitely often and state [ @initely often. The strategy is similar
as in the previous example: Player 1 tries to pump up the @lanrstate O, and then she goes to
the risk state 1. From here, with low probability all messagee lost, and the penalty is to visit
state 2 once. Otherwise, the game can go back directly ® 8tatithout visiting state 2. In both
cases, the game restarts afresh from state 0. An analysistas previous example shows that, if
Player 1 is restricted to finite memory, then the probabihtyisiting state 2 from state 1 can be
bounded from below. This implies that, whenever state 1gged infinitely often, then so is state
2 a.s., and so Player 1 is losing. On the other hand, thereiidiaite-memory strategy for Player 1
s.t. the probability of visiting state 2 fartimes goes to 0 as goes to infinity, which implies that
the probability of visiting state 2 only finitely often is 1.

As future work, we will consider extending our framework fragments of) probabilistic ex-
tensions of other models such as Petri nets and noisy Turaapimes[AHMOY].
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