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Abstract. Recursive domain equations have natural solutions. In particular there are
domains defined by strictly positive induction. The class of countably based domains gives
a computability theory for possibly non-countably based topological spaces. A qcb0 space
is a topological space characterized by its strong representability over domains.

In this paper, we study strictly positive inductive definitions for qcb0 spaces by means
of domain representations, i.e. we show that there exists a canonical fixed point of every
strictly positive operation on qcb0 spaces.

Introduction

The domains we consider in this paper are consistently complete, algebraic cpos, so called
Scott domains [19]. The initial motivation for these domains was to provide a denotational
semantic for the λ-calculus.

An important aspect of domain theory is the existence of solutions of recursive domain
equations, which are equalities between terms built from certain basic operations and a
finite list of parameters. Category theory is applied to solve recursive domain equations,
and the category Dome used has domains as objects and embedding-projection pairs as
morphisms. The canonical solution is a least fixed point of some functor over Dome [20]
and occurs as the limit of an inductively defined ω-chain of domains.

Some recursive domain equations can be solved iteratively within set theory [21]. These
solutions are referred to as positive inductive definitions. We will focus on definitions by
strictly positive induction, where all function spaces involved have fixed input domains.
This is a natural restriction from a computer science point of view, which is also technically
beneficial. A fundamental example is the domain D = A + [B → D], with A and B some
parameters.

A domain representation of a topological space X is a triple (D,DR, δ), where D is a
domain, DR is a subspace of the domain and δ : DR → X is a continuous representation
map. Countably based domains carry a natural notion of computability. Via domain
representations we get a computability theory for a wide range of topological spaces [7, 22].
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The topological T0 quotients of countably based spaces, the qcb0 spaces, form an inter-
esting class of topological spaces [4, 10]. The category QCB0 of qcb0 spaces with continuous
functions is Cartesian closed, so it admits finite products as well as an exponential. Qcb0
spaces have been characterised as the topological spaces with an admissible quotient TTE
representation [18]. This result has been generalised to admissible quotient domain repre-
sentations [13].

A quotient domain representation might as well be considered as a domain with a partial
equivalence relation. The class of domains with partial equivalence relations is also of great
interest in its own right [5, 15]. It is strongly related to domains with totality [6].

In this paper we show that we can define qcb0 spaces by strictly positive induction.
The fundamental example is X = A ⊎ [B ⇒s X], with A and B some parameters, · ⊎ · the
disjoint union and [· ⇒s ·] the exponential of QCB0.

The category QCB0 is known to have countable inductive limits [10, 4]. Still, our result
is highly non-trivial, as it is apparent that a transfinite and possibly uncountable inductive
construction is required.

Topological domains are qcb0 spaces with a domain-like structure. Many important
results for domains have already been generalised to topological domains, including solutions
of recursive domain equations [2, 3]. Our aim here, however, is to show that in the simple
case of a strictly positive induction, such solutions exist for all qcb0 spaces. If we restricted
ourselves to topological domains, we would also throw away most spaces of interest in
computable analysis. For this purpose, it is essential that we use some kind of representation
of the qcb0 spaces. We will choose to work with domain representations. Our result could
be regarded as a further justification for the utility of domain representations.

In brief, we proceed as follows: We first define a category clcDP of certain well-
structured partial equivalence relations on domains. This category will be designed to
fulfill the following requirements:

(1) It contains representations of all qcb0 spaces.
(2) Strictly positive operations are functorial.
(3) It admits transfinite inductive limits.

It is then possible to construct least fixed points of all strictly positive functors. We then
show that this least fixed point construction can be performed with dense partial equivalence
relations on domains and with a dense least fixed point as the outcome. We also prove that
this dense least fixed point induces an admissible domain representation if all the parameters
involved are admissible, and this is the main technical difficulty of the paper.

On the other hand, if we have a strictly positive operation Γ on qcb0 spaces, we can
represent it by a strictly positive endofunctor F over clcDP in a standard way. The
dense least fixed point of F gives us a fixed point of Γ which is independent of the actual
representing functor. This is a qcb0 space defined by strictly positive induction.

In section 1, we give a short introduction to domain theory, strictly positive induction,
qcb0 spaces and admissible domain representations. In section 2, we study domains with
partial equivalence relations, and in particular the category clcDP and its least fixed point
construction. In section 3 we apply the results from section 2 to prove our main result,
theorem 3.5, that a strictly positive operation on qcb0 spaces has a canonical fixed point.

Some of the results have very long and technical proofs. For the sake of readability,
the proof of all claims made in these proofs are moved to appendix A. An overview of the
notation used in different proofs can be found in appendix B.
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1. Background

We review some of the basic theory. Our only intention is to present the notation we
will use. For an introduction to domain theory, see [1, 12, 21], and in particular [21] for
background on inductive definitions and recursive domain equations. For more on qcb0
spaces, see [4, 10, 18]. For details on the theory of domain representations, we refer to
[7, 22]. The listed results concerning admissible domain representations are from [13].

1.1. Domain theory. A cpo is a partial order with a least element, D = (D;⊑,⊥), for
which every directed subset ∆ ⊆ D has a least upper bound

⊔

∆ ∈ D. A p ∈ D is compact
if whenever ∆ ⊆ D is directed and p ⊑

⊔

∆, there exists d ∈ ∆ with p ⊑ d. We denote
by Dc the set of compact elements. We let approx(x) := {p ∈ Dc : p ⊑ x}, the set of
compact approximations of x ∈ D. A cpo is algebraic if, for every x ∈ D, the set approx(x)
is directed with x =

⊔

approx(x).
A subset of a partial order is consistent if it has an upper bound. A cpoD is consistently

complete if every consistent A ⊆ D has a least upper bound
⊔

A. For a consistent pair of
elements x, y ∈ D, we usually denote the least upper bound by x ⊔ y. We let ↑x := {y ∈
D : x ⊑ y}.

A domain is a consistently complete, algebraic cpo. We will consider a domain D as a
topological space with the Scott topology. A base for this topology is given by {↑p : p ∈ Dc}
and a domain is separable or countably based if Dc is countable.

A function f : D → E is continuous if firstly it is monotone, i.e. x ⊑ y ⇒ f(x) ⊑ f(y)
for all x, y ∈ D, and secondly f(

⊔

∆) =
⊔

f [∆] whenever ∆ ⊆ D is directed. Every
monotone function f : Dc → E has a unique extension to a continuous function f : D → E
with f(x) =

⊔

f [approx(x)] for every x ∈ D. In fact, every continuous f : D → E can be
recovered from its restriction to Dc in this way. We let Dom be the category of domains
with continuous functions as morphisms, and we denote by ωDom its full subcategory of
countably based domains.

An embedding-projection pair (f, g) : D → E is a pair of continuous functions f : D →
E, the embedding, and g : E → D, the projection, such that g(f(x)) = x for every x ∈ D
and f(g(y)) ⊑ y for every y ∈ E. Each one of these functions is uniquely determined by the
other. Usually we will refer simply to the embedding f : D → E and denote the associated
projection by f−. We let Dome be the category of domains with embeddings as morphisms
and ωDome its full subcategory of countably based domains.

More generally, an adjunction pair (f, g) : D → E is a pair of continuous functions
f : D → E, the lower adjoint, and g : E → D, the upper adjoint, such that x ⊑ g(f(x)) for
every x ∈ D and f(g(y)) ⊑ y for every y ∈ E.

If D and E are cpos, we let the disjoint sum D + E be

{(0, x) : x ∈ D} ∪ {(1, y) : y ∈ E} ∪ {⊥},

with the separated partial order, i.e. (i, x) ⊑ (j, y) if and only if i = j and x ⊑ y, and
with ⊥ /∈ D ∪ E as a least element. The disjoint sum of two domains is itself a domain. If
{Di}i∈I is any finite, non-empty set of domains, we define the disjoint sum

⊎

i∈I Di in the
same way. Observe that the disjoint sum of just one domain D is the lifting D⊥ of D, that
is D with a new least element added. The strict sum D⊕E of cpos (or domains) D and E
is the disjoint sum D + E with (0,⊥D) and (1,⊥E) removed.
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If D and E are domains, we let the Cartesian product D × E be the domain obtained
from the Cartesian product of sets and the product order. The strict product D ⊗ E of D
and E is the Cartesian product D × E with all pairs (x, y) such that either x = ⊥D or
y = ⊥E removed.

If p ∈ Dc, q ∈ Ec, the step function [p; q] : D → E is the continuous function defined by

[p; q](x) =

{

q if p ⊑ x
⊥ otherwise

The function space [D → E], the set of continuous functions with the point-wise order,
is a domain with least upper bounds of finite consistent sets of step functions as compact
elements. So, an element of [D → E]c is written as

⊔

j∈J [p
j; qj ], with J a finite set and

pj ∈ Dc and qj ∈ Ec for every j ∈ J . We will occasionally refer to [D → E] as the
exponentiation of E by D.

A continuous function f : D → E is strict if f(⊥D) = ⊥E. The strict function space
[D →⊥ E] is the domain of strict continuous functions with point-wise order.

Each of the above-mentioned operations on domains give countably based domains from
countably based domains D and E.

If f : D → D′ and g : E → E′ are domain functions, there are natural definitions of
functions (f + g) : (D+E) → (D′ +E′) and (f × g) : (D×E) → (D′ ×E′). If f and g are
continuous (resp. embeddings), then f + g and f × g are continuous (resp. embeddings)
as well. If f : D′ → D (note that D and D′ have changed positions) and g : E → E′

are continuous functions, then the function (f → g) : [D → E] → [D′ → E′] defined by
(f → g)(x) = g ◦ x ◦ f is continuous. If f : D → D′ and g : E → E′ are embeddings, then
(f− → g) : [D → E] → [D′ → E′] is an embedding with f → g− as associated projection.

1.2. Strictly positive induction. An operation Γ on domains is strictly positive if it is
constructed from a finite list of fixed domains using the basic operations identity, disjoint
sum, Cartesian product and exponentiation by a fixed domain. We will refer to fixed
domains occurring as exponents, i.e. on the left hand side of a function space, as the non-
positive parameters of Γ and the remaining parameters in Γ as the positive ones. In our
fundamental example Γ(X) = A + [B → X], A is the positive parameter and B is the
non-positive parameter.

We have seen that the operations ·+ ·, ·× · and [· → ·] have strict counterparts ·⊕ ·, ·⊗ ·
and [· →⊥ ·]. It may seem natural to include these as well as the lifting operation ·⊥ as basic
operations above. However, our main concern here is the theory of domain representations
and not domain theory itself, and a domain representation (D,DR, δ) can always be chosen
such that ⊥D /∈ DR. Therefore, the lifting operation and the strict sum and product can
safely be omitted from our discussion, since they differ from the identity operation and the
respective non-strict operations on D\DR only. When we go from the function space to the
strict function space, we throw away many total elements, since total continuous functions
by no means have to be strict. However, under the assumption that least elements are not
total, the represented space remains unchanged. This explains why even the strict function
space is irrelevant for us here and therefore ignored.

If K is a category, an operation Γ : Obj(K) → Obj(K) is functorial in K if there exists a
functor F : K → K extending Γ, that is F(X) = Γ(X) for every X ∈ Obj(K). In particular,
it is easily verified that strictly positive operations on domains are functorial in Dome. A
functor F : Dome → Dome is said to be strictly positive if it is the functorial extension
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of a strictly positive operation on domains. This generalises to multivariate operations and
multifunctors.

Definition 1.1. Let K be a category and let F : K → K be a functor. A fixed point of
F is an X ∈ Obj(K) which is isomorphic to F(X) in K. An F-algebra is a pair (X, f),
where X is an object of K and f : F(X) → X is a morphism. If (X, f) and (Y, g) are
F-algebras, an F-morphism from (X, f) to (Y, g) is a morphism h : X → Y such that
h ◦ f = g ◦ F(h). An F-algebra (X, f) is initial if for every other F-algebra (Y, g), there
exists a unique F-morphism h from (X, f) to (Y, g).

Finally, X is a least fixed point of F if there exists some f such that (X, f) is an initial
F-algebra.

Note that initial F-algebras correspond to initial objects in the category of F-algebras
and F-morphisms (for a fixed F), thus initial F-algebras are unique up to isomorphism.
It can also be proved that if (X, f) is an initial F-algebra, then (F(X),F(f)) is an initial
F-algebra: If (Y, g) is another F-algebra and h : X → Y is the unique F-morphism from
(X, f) to (Y, g), then h ◦ f is the unique F-morphism from (F(X),F(f)) to (Y, g). As a
consequence, f is an isomorphism in K and the least fixed point is indeed a fixed point.
Moreover, a least fixed point is, when it exists, unique up to isomorphism.

If F is an endofunctor over Dome, a least fixed point of F is a fixed point D of F
with a natural and unique embedding h : D → E into every other fixed point E of F.
The categorical presentation using F-algebras makes it possible to generalise this concept
to other categories, and at the same time it guarantees that a least fixed point is unique up
to isomorphism.

Definition 1.2. Let K be a category and let (I,≤) be a directed partial order. A directed
system over I in K consists of a family {Xi}i∈I of objects from K and a family of morphisms
fi,j : Xi → Xj for all i ≤ j ∈ I satisfying

• fi,i = idXi
for every i ∈ I; and

• fi,k = fj,k ◦ fi,j for all i, j, k ∈ I with i ≤ j ≤ k.

An inductive limit over this directed system consists of an X ∈ Obj(K) and morphisms
fi : Xi → X for all i ∈ I such that fi = fj ◦ fi,j whenever i ≤ j. It is universal in the
sense that for every other such pair (Y, {gi}i∈I), there exists a unique mediating morphism
gI : X → Y such that gI ◦ fi = gi for every i ∈ I. In categorical terms, (X, {fi}i∈I) is a
co-limiting cocone in K.

If ({Di}i∈I , {fi,j}i≤j∈I) is a directed system in Dome, there exists an inductive limit
(D, {fi}i∈I), defined as follows: Let D = (D,⊑) be the domain with

D = {x ∈
∏

i∈I

Di : ∀i, j ∈ I(i ≤ j → f−i,j(xj) = xi)}

and x ⊑ y ⇔ ∀i ∈ I(xi ⊑Di
yi) Let fi : Di → D be the embedding such that f−i (x) = xi

for all x ∈ D. It is worth noting that fi(x)j = fi,j(x) whenever i ≤ j and x ∈ Di.
A directed system over a limit ordinal γ is also called an γ-chain and an endofunctor

is γ-continuous if it preserves inductive limits of γ-chains. A classical result from domain
theory says that every ω-continuous functor F : Dome → Dome has a least fixed point,
see [21]. For a sketch of the proof, consider the ω-chain ({Dn}n∈ω, {fm,n}m≤n∈ω) defined
inductively as follows:

• Let D0 = {⊥} and Dn+1 = F(Dn).
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• Let f0,n be the unique embedding from D0 into Dn and let

fm+1,n+1 := F(fm,n) : Dm+1 → Dn+1.

Let (Dω, {fn}n∈ω) be the inductive limit of this chain. Then there is an isomorphism
f : Dω → F(Dω), and Dω is a least fixed point of F. Since this least fixed point is obtained
as a countable limit, the result holds even for ω-continuous endofunctors over ωDome.

All strictly positive functors over Dome are ω-continuous, see [21]. This means that if
Γ is strictly positive, we obtain a least solution to the recursive domain equation X = Γ(X)
by a least fixed point construction. This is of course not set-theoretical equality, but equality
of domains up to isomorphism.

1.3. The category of qcb0 spaces. If X and Y are topological spaces, we let X ⊎ Y be
the disjoint union of X and Y , i.e. the set {(0, x) : x ∈ X} ∪ {(1, y) : y ∈ Y } provided with
the finest topology which makes both inclusion maps continuous.

If X is a topological space, then U ⊆ X is sequentially open in X if for every sequence
{xn}n converging to x ∈ U , there exists n0 such that {xn : n ≥ n0} ⊆ U . Every open set
is sequentially open, and we say that X is sequential if, conversely, every sequentially open
set is open. The family of sequentially open sets defines a sequential topology refining the
original topology on X. We denote this new topological space by SX, the sequentialisation
of X, see [11].

Let X and Y be topological spaces. A function f : X → Y is sequentially continuous
if it maps convergent sequences in X to convergent sequences in Y . In particular, every
continuous function is sequentially continuous, and if X is sequential, the two notions
coincide. Let [X →ω Y ] be the topological space with the set of sequentially continuous
functions f : X → Y as underlying set and topology generated from sub-basic open sets of
the form O(n0;U). Here,

O(n0;U) := {f : f [{xn : n0 ≤ n ≤ ∞}] ⊆ U},

with n0 some natural number, x∞ the limit of a convergent sequence {xn}n∈N in X and U
an open subset of Y .

A (sequential) pseudobase for a topological spaceX is a set P of non-empty subsets ofX,
containing X, closed under non-empty finite intersections and such that if limxn = x∞ ∈ U
and U is open in X, there exists B ∈ P and n0 ∈ N such that {xn : n0 ≤ n ≤ ∞} ⊆ B ⊆ U .
The closure under finite intersections of an arbitrary superset of P is a pseudobase for X as
well.

A topological space is said to be a qcb space if it is the topological quotient of some
countably based space. It is qcb0 if, in addition, it is T0, see [4]. It is well-known that a T0
space is qcb if and only if it is sequential and has a countable pseudobase, see [18].

Let QCB0 be the category with qcb0 spaces as objects and continuous functions as
morphisms. The category QCB0 admits countable products and coproducts and is Carte-
sian closed, see [4, 10]. The finite product in QCB0 is the sequentialisation of the usual
product, denoted by · ×s · in the binary case. The exponentiation in QCB0 is the sequen-
tialisation of [· →ω ·], denoted by [· ⇒s ·]. This topology can similarly be obtained as the
sequentialisation of the compact-open topology on the set of continuous functions. The
disjoint sum X ⊎ Y of qcb0 spaces X and Y is trivially qcb0.
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1.4. Admissible domain representations. A domain with totality is a pair (D,DR),
where D is a domain and DR is a subspace of D (with the Scott topology). For most
purposes, we may assume ⊥D /∈ DR. A domain with totality (D,DR) is dense if DR is
dense as a subspace of D.

A domain representation of a topological space X consists of a domain with totality
(D,DR) and a representation map δ : DR → X, which is a surjective, continuous function.
The representation is countably based if D is separable, and dense if (D,DR) is dense.

If (D,DR, δ) and (E,ER, ε) are domain representations of X and Y , respectively, a
map g : X → Y is (δ, ε)-representable if there exists some continuous function f : D → E
with f [DR] ⊆ ER and g ◦ δ = ε ◦ f |DR . Such an f : D → E is (δ, ε)-total, which means
that f [DR] ⊆ ER and δ(x) = δ(y) ⇒ ε(f(x)) = ε(f(y)) for all x, y ∈ DR. A (δ, ε)-total
function f : D → E represents a unique map g : X → Y . If δ is a quotient map, all
(δ, ε)-representable maps are continuous.

Definition 1.3. A countably based domain representation (D,DR, δ) of a topological space
X is admissible if every continuous map ϕ : ER → X, with (E,ER) a countably based,
dense domain with totality, factors through δ, i.e. there exists a continuous map ϕ̂ : E → D
such that ϕ̂[ER] ⊆ DR and δ ◦ ϕ̂(e) = ϕ(e) for every e ∈ ER.

Remark 1.4. This is actually the definition of ω-admissibility, but for countably based do-
main representations the notions of admissibility and ω-admissibility coincide, see [13]. The
general definition of admissibility, which is of no interest in this paper, is more restrictive.

Theorem 1.5. A topological space X has a countably based, admissible domain represen-
tation if and only if it is T0 and has a countable pseudobase.

Proof. We give a sketch of the proof. For details, see [13].
If P is a pseudobase for X, then (P,⊇) is a cusl, so let D = Idl(P,⊇), the domain

obtained by ideal completion. Define a relation →P as follows: If I ∈ D and x ∈ X, let
I →P x if firstly x ∈ B for every B ∈ I and secondly there exists B ∈ I with x ∈ B ⊆ U for
every open U ⊆ X with x ∈ U . Let DR be the set of ideals I such that I →P x for some
x ∈ X, and on condition that X is T0, define δ : DR → X by δ(I) = x. Then it can be
verified that (D,DR, δ) is an admissible domain representation of X.

Conversely, if (D,DR, δ) is an admissible domain representation of X, it can be verified
that {δ[↑p ∩DR] : p ∈ Dc} is a pseudobase for X and that X is T0.

Remark 1.6. The admissible domain representation of X constructed from P in the proof
above, is known as the standard representation of X w.r.t. P. An important aspect of this
representation is the existence of a greatest representative Ix = {B ∈ P : x ∈ B} for every
x ∈ X. Since every B ∈ P is non-empty, it is clear that the representation is dense.

Remark 1.7. An alternative approach to dense, admissible domain representations is via
continuous reductions, as defined in [8]. If (D,DR, δ) and (E,ER, ε) are domain repre-
sentations of X, a continuous reduction is a (δ, ε)-total map representing idX . A dense
representation of X is then admissible if and only if it is universal among all dense repre-
sentations of X w.r.t. continuous reductions.

An important motivation for admissible domain representations is the lifting of contin-
uous functions.

Lemma 1.8. Let (D,DR, δ) and (E,ER, ε) be admissible domain representations of X and
Y , respectively. If g : X → Y is (δ, ε)-representable, then it is sequentially continuous.
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Conversely, if DR is dense in D, then every sequentially continuous function g : X → Y
is (δ, ε)-representable.

Lemma 1.9. Let (D,DR, δ) and (E,ER, ε) be admissible representations of X and Y ,
respectively. Then there exist

• a representation map ̺ : DR ⊎ER → X ⊎Y such that (D+E,DR ⊎ER, ̺) is admissible;
• a representation map ̺ : DR×ER → X×Y such that (D×E,DR×ER, ̺) is admissible;
and

• a representation map ̺ : [D → E]R → [X →ω Y ], such that ([D → E], [D → E]R, ̺)
is admissible, on condition that DR is dense in D. Here, [D → E]R is set of (δ, ε)-total
continuous maps.

The representation maps ̺ in the lemma are the expected ones. In particular, in the latter
case, ̺(f) : X → Y is the sequentially continuous function represented by f .

For sequential spaces, the notions of continuity and sequential continuity coincide. This
is the situation when we consider quotient domain representations.

Lemma 1.10. Let (D,DR, δ) be an admissible domain representation of X. Then δ is a
quotient map if and only if X is a sequential space.

Corollary 1.11. A topological space X has a countably based, admissible quotient domain
representation if and only if it is a qcb0 space.

2. Domains with partial equivalence relations

We review the theory of partial equivalence relations on domains, as presented in [5]. We
introduce a new category of domains with partial equivalence relations and show by a
transfinite induction that a strictly positive functor over this category has a least fixed
point.

Furthermore, we make the connection between admissible quotient domain representa-
tions and domains with partial equivalence relations, and show how the least fixed point
obtained can be replaced by a dense one. Finally, we use the intuition acquired from the
fundamental example to show that this dense least fixed point induces an admissible domain
representation.

Least fixed points in similar categories have been studied previously [14, 17]. For our
purpose, however, the inductive construction of the least fixed point, as we know it from
domain theory, is crucial when we later will relate our result to qcb0 spaces through the
notion of admissibility.

2.1. Introduction. A partial equivalence relation (per) on a set X is a binary relation
which is symmetric and transitive. A per ≈ induces an equivalence relation on its domain,
i.e. there is a subset (X,≈)R := {x ∈ X : x ≈ x} of X such that ≈ restricted to (X,≈)R is
an equivalence relation.

A domain-per, short for a domain with a per, is a pair D = (D,≈), where D is a domain
and ≈ is a per on D. We will denote domain-pers by calligraphic letters D, E , . . . and the
respective underlying domains by D,E, . . ., unless stated otherwise. The per of D is usually
denoted by ≈, but with a subscript D if the domain-per is not clear from the context.
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If D is a domain-per, let DR be the topological space of {x ∈ D : x ≈ x}, the set of
D-total elements of D, with the subspace topology inherited from D. We say that D is
trivial if DR = ∅ and non-trivial otherwise. D is dense if DR is dense in D.

We let QD := DR/≈D
, i.e. the topological space with the underlying set {[x]D : x ∈

DR}, and with quotient topology generated from the equivalence relation ≈ on DR, where
[x]D := {y ∈ D : x ≈ y}, the partial equivalence class of x. If p ∈ Dc and x ∈ DR, we say
that p ≺D [x], if there exists some y ∈ [x]D with p ⊑ y.

If D and E are domain-pers, let [D → E ] be the domain-per with [D → E] as the
underlying domain and per defined by: f ≈ g if and only if

∀x, y ∈ D (x ≈D y ⇒ f(x) ≈E g(y)).

An equivariant mapping f : D → E is a continuous function f : D → E such that f ≈ f .
Thus, [D → E ]R is the set of equivariant mappings. An equivariant f : D → E induces a
unique continuous function fQ : QD → QE defined by fQ([x]D) = [f(x)]E , with f

Q = gQ

if and only if f ≈ g.
The following technical result will prove itself useful. The proof is straight-forward and

therefore omitted.

Lemma 2.1. If f : D → E is equivariant and g : D → E is continuous, then f ≈[D→E] g if

and only if f(x) ≈E g(x) for every x ∈ DR.

An equivariant map f : D → E is equi-injective if f(x) ≈E f(y) ⇒ x ≈D y for all
x, y ∈ D.

Let PER(Dom) be the category with domain-pers as objects and equivalence classes
of equivariant mappings as morphisms, as defined in [5]. It is easily verified that this is
a well-defined category; the identity function is equivariant and the composition of two
equivariant functions is always equivariant.

Note that D and E are isomorphic in PER(Dom) if and only if there exist equivariant
maps f : D → E and g : E → D such that g ◦ f ≈ idD and f ◦ g ≈ idE . It is immediate
that QD ∼= QE whenever such a pair exists. In this case, we say that D and E are weakly
isomorphic (and that (f, g) is a weak isomorphism pair), weakly in the sense that the
underlying domains are not, in general, isomorphic.

If (D,DR, δ) is a quotient domain representation of a topological space X, we may
define a domain-per Dδ = (D,≈δ) by letting x ≈δ y if x, y ∈ DR and δ(x) = δ(y). We
then have (Dδ)R = DR and X ∼= Q(Dδ). We will refer to Dδ as the domain-per associated
to (D,DR, δ). Conversely, an arbitrary domain-per induces a unique quotient domain rep-
resentation (D,DR, δD) of QD. Note that for the function space [D → E ] defined above,
[D → E ]R is exactly the set of (δD, δE )-total maps.

Definition 2.2. Let D and E be domain-pers.

• The disjoint sum of D and E , D+E , is the domain-per with D+E as underlying domain
and per ≈ defined by (i, x) ≈ (j, y) if and only if either i = j = 0 and x ≈D y or i = j = 1
and x ≈E y.

• The Cartesian product of D and E , D × E , is the domain-per with D × E as underlying
domain and per ≈ defined by (x, y) ≈ (x′, y′) if and only if x ≈D x′ and y ≈E y

′.
• The exponentiation of E by D is the domain-per [D → E ] defined above.

These constructed domain-pers have strict counterparts D ⊕ E , D ⊗ E and [D →⊥ E ].
We define these using the respective strict counterparts from domain theory as underlying
domains and the restrictions of the respective pers as pers.
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If D is a domain-per, the lifting of D is the lifting D⊥ of D with the extension of ≈D

as per.

We now have natural operations of binary sum, binary product and function space on
domain-pers. We say that an operation on domain-pers is strictly positive if the underlying
operation on domains is strictly positive.

Remark 2.3. It is easy to see that the binary sums and products defined above extend to
finite sums and products. In fact, PER(Dom) is a Cartesian closed category, with cate-
gorical finite product and exponentiation corresponding to the finite product and function
space defined above; see [5] for details.

Lemma 2.4. Let f : D → D′ and g : E → E ′ be equivariant. Then the following maps are
equivariant:

(f + g) : (D + E) → (D′ + E ′)

(f × g) : (D × E) → (D′ × E ′)

(f → g) : [D′ → E ] → [D → E ′]

Proof. The cases (f + g) and (f × g) are straight-forward and left for the reader.
If x ≈[D′→E] y, then g ◦ x ◦ f ≈[D→E ′] g ◦ y ◦ f , and this shows that that (f → g) is

equivariant.

2.2. A category with inductive limits. Embedding-projection pairs play a crucial role in
the least fixed point construction used to solve recursive domain equations. More precisely,
they are necessary for the construction of inductive limits of directed systems.

We now introduce a category of domain-pers which has inductive limits and for which
strictly positive operations are functorial.

Definition 2.5. An equiembedding is a map f : D → E such that

• f : D → E is an embedding;
• f : D → E is equivariant; and
• ∀x ∈ DR (f(x) ≈E y ⇒ x ≈D f−(y)).

First, we show that this is a valid choice of morphisms. The identity map on the
underlying domain of a domain-per is clearly an equiembedding, so it remains to prove that
equiembeddings are closed under composition.

Lemma 2.6. Let f : D → E and g : E → F be equiembeddings. Then g ◦ f is an
equiembedding.

Proof. Embedding-projection pairs and equivariant maps are both closed under composi-
tion, so it remains to verify the third requirement. Assume x ∈ DR and g(f(x)) ≈F y.
Then f(x) ∈ ER, so f(x) ≈E g

−(y), because g is an equiembedding. Moreover,

x ≈D f−(g−(y)) = (g ◦ f)−(y)

because f is an equiembedding.
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Proposition 2.7. Strictly positive operations are functorial w.r.t. equiembeddings.

Proof. The proof is by structural induction on strictly positive operations:

• Equiembeddings are closed under disjoint sums: Let f : D → D′ and g : E → E ′ be
equiembeddings. Then f + g is an embedding of domains and equivariant by lemma 2.4.
We need to verify the third requirement of definition 2.5.

Assume that (i, x) ∈ (D+ E)R and (f + g)(i, x) ≈D′+E ′ (i, y). If i = 0, then f(x) ≈D′ y
and, since f is an equiembedding, x ≈D f−(y). If i = 1, then g(x) ≈E ′ y and, since g is
an equiembedding, x ≈E g

−(y). Either way, we obtain (i, x) ≈D+E (f + g)−(i, y).
• Equiembeddings are closed under Cartesian products: Let f : D → D′ and g : E → E ′ be
equiembeddings. Then f × g is an embedding of domains and equivariant by lemma 2.4.
Again, we need to verify the last requirement of definition 2.5.

Assume that x ∈ (D × E)R and (f × g)(x) ≈D′×E ′ y. If we let x = (x1, x2) and
y = (y1, y2), then f(x1) ≈D′ y1 and g(x2) ≈E ′ y2. Since f and g both are equiembeddings,
we can conclude that x1 ≈D f−(y1) and x2 ≈E g

−(y2). This means that x ≈D×E f
−(y).

• Equiembeddings are closed under exponentiations by a fixed domain-per: Let f : D → D′

be an equiembedding and let B be a fixed domain-per. Then the embedding idB → f is
equivariant by lemma 2.4, and we need only verify the third condition in definition 2.5.

Assume x ∈ [B → D]R. We need to show that if (idB → f)(x) ≈[B→D′] y, then

x ≈[B→D] (idB → f)−(y). Put differently, we have f ◦x ≈[B→D′] y, and need to show that

this implies x ≈[B→D] f
− ◦ y. For an arbitrary b ∈ BR, we have f(x(b)) ≈D′ y(b). Since

f is an equiembedding, this implies x(b) ≈D f−(y(b)), and we are through.

For the inductive limits to be well-defined, we need to restrict ourselves to certain well-
structured domain-pers.

Definition 2.8. A domain-per D is weakly convex if x ≈ y ⇒ x ≈ x ⊔ p whenever x ⊑ y
and p ∈ approx(y), and convex if x ≈ y ⇒ x ≈ x ⊔ z whenever x, z ⊑ y.

A domain-per D is local if [x]D is consistent in D for every x ∈ DR, and strongly local
if [x]D is directed for every x ∈ DR.

A local domain-per D is complete if x ≈
⊔

[x]D for every x ∈ DR.

First, we look at a useful technical lemma:

Lemma 2.9. Let B be a dense domain-per and let D be a weakly convex and strongly local
domain-per. Let

⊔

j∈J [p
j; qj ] ∈ [B → D]c and let f ∈ [B → D]R.

If
⊔

j∈J{q
j : pj ⊑ x} ≺D [f(x)] for every x ∈ BR, then

⊔

j∈J [p
j ; qj ] ≺[B→D] [f ].

Proof. Let x ∈ BR and assume that
⊔

j∈J{q
j : pj ⊑ x} ≺D [f(x)]. By definition of ≺D,

there exists some y ∈ [f(x)] such that
⊔

j∈J{q
j : pj ⊑ x} is a compact approximation of

y, and we can assume f(x) ⊑ y since D is strongly local. Then f(x) is consistent with
{qj : pj ⊑ x}j∈J , and since D is weakly convex, we have

f(x) ≈D f(x) ⊔
⊔

j∈J

{qj : pj ⊑ x}.

Moreover, since BR is dense in B, f(p) and
⊔

j∈J{q
j : pj ⊑ p} are consistent for all p ∈

Bc, so g := f ⊔
⊔

j∈J [p
j ; qj ] exists. By lemma 2.1, f ≈[B→D] g, and this shows that

⊔

j∈J [p
j ; qj] ≺[B→D] [f ].
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Clearly, a local and complete domain-per is also strongly local, so in particular the
lemma holds for convex, local and complete D. The converse of this lemma holds trivially
and without any restrictions on B or D. Also note that for an arbitrary finite subset
{(pj , qj)}j∈J of Bc ×Dc, if

⊔

j∈J{q
j : pj ⊑ x} ≺D [f(x)] for all x ∈ BR, then {[pj ; qj]}j∈J is

[B → D]-consistent. This holds because B is dense.

Definition 2.10. Let clcDP be the category with convex, local and complete domain-pers
as objects and equiembeddings as morphisms.

Domain-pers D and E are isomorphic in clcDP if there exists an isomorphism pair
(f, g) : D → E such that both f and g are equivariant. As for domains, it is possible to
construct a pair of non-isomorphic domain-pers with equiembeddings in both directions.
Note that this is a stronger kind of isomorphism than what we have for PER(Dom). In
fact, the category clcDP is not even closed under weak isomorphisms. The notion of weak
isomorphism will still be useful for us at a later stage.

Remark 2.11. If F : clcDP → clcDP is a functor, there is a unique underlying functor
F̂ : Dome → Dome which maps the underlying domain of a domain-perD to the underlying
domain of F(D).

The following lemma shows that the restriction to convex, local and complete domain-
pers works well with strictly positive operations.

Lemma 2.12. Let Γ be a strictly positive operation on domain-pers. Assume that all non-
positive parameters in Γ are dense and that all positive parameters are convex, local and
complete.

If D is a convex, local and complete domain-per, then Γ(D) is convex, local and complete.

Proof. The proof is by structural induction on Γ. The base cases are trivial, and it is easily
verified that both the product and the sum of two convex, local and complete domain-pers
are again convex, local and complete, so we only prove the step involving exponentiation:

If B is an arbitrary domain-per and D is convex, then [B → D] is convex: Let f, g, h ∈
[B → D] and assume that f ⊑ g ⊑ h and f ≈[B→D] h. If x ∈ BR, we have f(x) ⊑ g(x) ⊑
h(x) and f(x) ≈D h(x), which implies f(x) ≈D g(x) since D is convex. This shows that
f ≈[B→D] g by lemma 2.1.

If B is dense and D is convex, local and complete, then [B → D] is local and complete:
Assume that f ≈[B→D] g. If x ∈ BR, then f(x) ≈D g(x), and since D is local, f(x) and g(x)

are consistent. This implies that f(p) and g(p) are consistent for every p ∈ Bc since BR is
dense in B, so f and g are consistent in [B → D]. Moreover, [f ][B→D] is a consistent set

and h :=
⊔

[f ][B→D] exists. If x ∈ BR, then h(x) =
⊔

{g(x) : f ≈[B→D] g}, and in particular
f(x) ⊑ h(x) ⊑

⊔

[f(x)]D. This shows that f(x) ≈D h(x) since D is convex, and f ≈[B→D] h
by lemma 2.1.

Proposition 2.13. Directed systems in clcDP admit inductive limits.

Proof. Let I = (I,≤) be a directed partial order and let ({Di}i∈I , {fi,j}i≤j∈I) be a directed
system over I in clcDP. Let ≈i be the per on Di.

({Di}i∈I , {fi,j}i≤j∈I) is a directed system in Dome, so let (DI , {fi}i∈I) be its inductive
limit. We define a binary relation ≈I on DI as follows: x ≈I x

′ if and only if there exists
i ∈ I such that xi ≈i x

′
i and such that

∀k ≥ i (fi,k(xi) ≈k xk ∧ fi,k(x
′
i) ≈k x

′
k).
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We then say that x ≈I x
′ is witnessed by i. This is clearly a symmetric relation, and it also

has a number of other nice properties:

• Let x ≈I x
′ be witnessed by i and let j ≥ i. Then x ≈I x

′ is witnessed by j: We have
xj ≈j fi,j(xi) ≈j fi,j(x

′
i) ≈j x

′
j because j ≥ i and fi,j is equivariant. Moreover, if k ≥ j,

then fj,k is equivariant, and it follows that

fj,k(xj) ≈k fj,k(fi,j(xi)) = fi,k(xi) ≈k xk.

This shows that fj,k(xj) ≈k xk and by symmetry, fj,k(x
′
j) ≈k x

′
k.

• ≈I is transitive: Assume that x ≈I x
′ is witnessed by i and that x′ ≈I x

′′ is witnessed by
j. We can then choose a common witness k ≥ i, j. The transitivity of ≈k gives xk ≈k x

′′
k.

If l ≥ k, then
fk,l(xk) ≈l fk,l(fi,k(xi)) = fi,l(xi) ≈l xl.

By symmetry, using j, we obtain fk,l(x
′′
k) ≈l x

′′
l . This shows that x ≈I x

′′, witnessed by
k.

• If x ≈I x is witnessed by i and x ≈I x
′, then x ≈I x

′ is witnessed by i: Choose j ≥ i
such that x ≈I x

′ is witnessed by j. We show that xk ≈k x
′
k for k ≥ i: Choose some

l ≥ j, k. Firstly, fk,l(xk) ≈l xl since l ≥ i is a witness that x ≈I x. Secondly, xl ≈l x
′
l

since l ≥ j is a witness that x ≈I x
′. Transitivity of ≈l gives fk,l(xk) ≈l x

′
l which implies

xk ≈k x
′
k since fk,l is an equiembedding.

In particular, xi ≈i x
′
i and fi,k(x

′
i) ≈k fi,k(xi) ≈k xk ≈k x

′
k for arbitrary k ≥ i.

We have now shown that ≈I is a partial equivalence relation. We denote the domain-per
(DI ,≈I) by DI . We have also seen that the equivalence classes formed by this per have
uniform witnesses, so we may choose representatives as we like.

We will now show that DI is convex, local and complete:

• DI is convex: Assume that x ≈I y is witnessed by i and that x, z ⊑ y, and let k ≥ i. By
projection xk ≈k yk and xk, zk ⊑ yk, and since Dk is convex this gives xk ≈k xk ⊔ zk. In
particular, xi ≈i xi ⊔ zi. Moreover, xk ≈k fi,k(xi), and fi,k(xi) ≈k fi,k(xi ⊔ zi) since fi,k
is equivariant. By transitivity of ≈k, this gives fi,k(xi ⊔ zi) ≈k xk ⊔ zk. This shows that
x ≈I x ⊔ z, witnessed by i.

• DI is local: Let x ∈ DR
I . We prove that [x]DI

is consistent by showing that an arbitrary
finite subset of [x]DI

is consistent:

Choose x′, x′′, . . . , x(n) ∈ [x]DI
. Then there exists some uniform witness i ∈ I such that

xi ∈ DR
i and x′i, x

′′
i , . . . , x

(n)
i ∈ [xi]Di

.

For an arbitrary j ∈ I, choose some k ≥ i, j. We have x′k, x
′′
k, . . . , x

(n)
k ∈ [xk]Dk

. Since

Dk is local, this means that {x′k, x
′′
k, . . . , x

(n)
k } is consistent in Dk. The set of projections,

{x′j , x
′′
j , . . . , x

(n)
j }, is then consistent in Dj . Since j was arbitrarily chosen, this shows that

{x′, x′′, . . . , x(n)} is consistent in DI .
• DI is complete: Assume that x ≈I x is witnessed by i. For each k ≥ i, we have

{x′k : x ≈I x
′} = {u ∈ Dk : xk ≈k u}.

Let x :=
⊔

{x′ : x ≈I x
′}. We show that x ≈I x, witnessed by i:

− xi =
⊔

{x′i : x ≈I x
′} =

⊔

{u : xi ≈i u} ≈i xi since Dk is complete; and
− for each k ≥ i, we have {fi,k(u) : xi ≈i u} ⊆ {v : xk ≈k v}, and

fi,k(xi) ⊑ fi,k(xi) =
⊔

{fi,k(u) : xi ≈i u} ⊑
⊔

{v : xk ≈k v} = xk.
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Since Dk is convex, this shows that fi,k(xi) ≈k xk.

It remains to show that (DI , {fi}i∈I) is an inductive limit:

• Each fi : Di → DI is an equiembedding: Trivially, fi is an equivariant embedding.
Assume that u ∈ DR

i and that fi(u) ≈I x is witnessed by some j ≥ i. Then fi,j(u) ≈j

xj, and since fi,j is an equiembedding, this implies that u ≈i xi.
• (DI , {fi}i∈I) is universal in clcDP: Let E be a convex, local and complete domain-per
and let {gi : Di → E}i∈I be a family of equiembeddings such that gi = gj ◦ fi,j whenever
i ≤ j. At domain level, there exists a unique embedding gI : DI → E such that gi = gI ◦fi
for all i ∈ I, and it is defined by gI(x) =

⊔

i∈I gi(xi). We show that gI : DI → E is an
equiembedding:
− If x ≈I x′ and this is witnessed by i, then xk ≈k x′k for all k ≥ i and gI(x) =

⊔

k≥i gk(xk) ≈E gi(xi), since E is convex. By symmetry, gI(x
′) ≈E gi(x

′
i). Moreover,

gi(xi) ≈E gi(x
′
i) since gi is equivariant. This shows that gI(x) ≈E gI(x

′), and that gI
is equivariant.

− Assume that x ∈ DR
I , witnessed by i, and that gI(x) ≈E y. Then, for each k ≥ i,

we have fik(xi) ≈k xk and gi(xi) ≈E gk(xk), since gk is equivariant. Thus, gI(x) =
⊔

i∈I gi(xi) ≈E gi(xi). It follows that gk(xk) ≈E y and xk ≈k g
−
I (y)k. This holds for

arbitrary k ≥ i, so it shows that x ≈I g
−
I (y).

Remark 2.14. In the case of (I,≤) being a well-order, we define

rankI(x) := min{i ∈ I : x ∈ fi(D
R
i )},

for an arbitrary x ∈ DR
I . If x ≈I y, then rankI(x) = rankI(y), since the fact that each fi,j

is an equiembedding ensures that equivalent elements are introduced at the same level.

Definition 2.15. Let (D, f) := ({Di}i∈I , {fi,j}i≤j∈I) and (E , g) := ({Ei}i∈I , {gi,j}i≤j∈I) be
directed systems over the same directed partial order (I,≤).

A uniform mapping from (D, f) into (E , g) is a a family ϕ = {ϕi : Di → Ei}i∈I of
equivariant maps such that gi,j ◦ ϕi = ϕj ◦ fi,j whenever i ≤ j ∈ I.

Lemma 2.16. Let ϕ : (D, f) → (E , g) be a uniform mapping.
Then there exists a unique equivariant ϕI : DI → EI such that ϕI ◦fi = gi ◦ϕi for every

i ∈ I. Moreover, if χ = {χi}i∈I : (E , g) → (D, f) is a uniform mapping such that (ϕi, χi) is
a weak isomorphism pair for every i ∈ I, then (ϕI , χI) is a weak isomorphism pair.

Proof. If i ≤ j, then gi ◦ ϕi ◦ f
−
i = gj ◦ gi,j ◦ ϕi ◦ f

−
i = gj ◦ ϕj ◦ fi,j ◦ f

−
i ⊑ gj ◦ ϕj ◦ f

−
j ,

so {gi ◦ ϕi ◦ f
−
i : i ∈ I} is a directed set in [DI → EI ]. Let ϕI be its least upper bound.

Furthermore, gj ◦ ϕj ◦ f
−
j ◦ fi = gj ◦ ϕj ◦ fi,j = gj ◦ gi,j ◦ ϕi = gi ◦ ϕi, whenever i ≤ j, thus

ϕI ◦ fi =
⊔

j≥i(gj ◦ ϕj ◦ f
−
j ) ◦ fi = gi ◦ ϕi for every i ∈ I.

ϕI is equivariant: Let x, y ∈ DI and assume that x ≈I y. Then there exists some i ∈ I
such that x = fi(xi), y = fi(yi) and xi ≈i yi. Both gi and ϕi are equivariant, so this gives

gI(x) = (gi ◦ ϕi)(xi) ≈I (gi ◦ ϕi)(yi) = gI(y).

Let χ = {χi}i∈I : (E , g) → (D, f) be a uniform mapping such that (ϕi, χi) is a weak
isomorphism pair for every i ∈ I. Let x ∈ DR

I and choose i ∈ I such that x = fi(xi) and
xi ∈ DR

i . Then

(χI ◦ ϕI)(x) = (χI ◦ gi ◦ ϕi)(xi) = (fi ◦ χi ◦ ϕi)(xi) ≈ fi(xi) = x.

This shows that χI ◦ ϕI , and ϕI ◦ χI ≈ idE by a symmetric argument.
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Isomorphism of domains is preserved under inductive limits of directed systems. This
means that if the weak isomorphism pairs are actual isomorphisms in clcDP, i.e. isomor-
phism pairs of the underlying domains, then the inductive limits are isomorphic as well. In
particular, the inductive limit of a directed system in clcDP is unique up to isomorphism.

2.3. A least fixed point. A functor F : clcDP → clcDP is strictly positive if it is the
functorial extension of a strictly positive operation on domain-pers. We will now show that
such a functor has a least fixed point. In domain theory, least fixed points are constructed
by the means of ω-chains. For domain-pers, we will need uncountable chains over clcDP.

Definition 2.17. Let F : clcDP → clcDP be a strictly positive functor and let β be a
limit ordinal. We construct a β-chain ({Dα}α∈β , {fα,α′}α≤α′∈β) from F as follows:

• Let D0 be the initial object in clcDP, i.e. the trivial domain {⊥} with the empty per.
• If α ∈ β, let Dα+1 := F(Dα) and let f0,α+1 be the unique equiembedding from D0 into
Dα+1.

• If α ≤ α′ ∈ β, let fα+1,α′+1 := F(fα,α′).
• If γ ∈ β is a limit ordinal, let (Dγ , {fα,γ}α∈γ) be the inductive limit of the γ-chain
({Dα}α∈γ , {fα,α′}α≤α′∈γ).

The underlying functor F̂ : Dome → Dome of a strictly positive F is obtained by re-
placing each parameter in F by its underlying domain and each basic operation by the
corresponding basic operation on domains, so clearly it is strictly positive as well. The
ω-chain ({Dn}n∈ω, {fm,n}m≤n∈ω) coincides with the ω-chain used in the least fixed point

construction for F̂, and Dω is a least fixed point of F̂. However, Dω is not in general a fixed
point of F, as the example below shows.

We have Dω
∼= Dα for all α ≥ ω, since isomorphisms are preserved under inductive

limits in Dome, so fα,α+1 is an isomorphism in clcDP if and only if f−α,α+1 is equivariant.

Example 2.18. Let A be some non-trivial domain-per and let N = (N⊥,= |N), with N⊥

the flat domain of natural numbers. Let F : clcDP → clcDP be defined by F(X) =
A+ [N → X].

We show that f−ω,ω+1 is not equivariant: Choose some a ∈ AR and let x0 := (0, a). If

xn ∈ DR
ω , let ϕn : N⊥ → Dω be the function constantly equal to xn and let xn+1 := (1, ϕn).

Let ϕ : N⊥ → Dω be the strict function defined by ϕ(n) = xn. Then ϕ ∈ F(Dω)
R. However,

f−ω,ω+1(ϕ) = (1, ϕ) /∈
⋃

n∈ω DR
n = DR

ω , since rankω(xn) = n for every n ∈ N.

Lemma 2.19. Let F : clcDP → clcDP be strictly positive.
Then there exists a limit ordinal γ0 such that if ({Dα}α∈γ0 , {fα,β}α≤β∈γ0) is the γ0-chain

constructed from F, then fα,α+1 is an isomorphism in clcDP for some α ∈ γ0.

Proof. Choose |γ0| > |Dω| and assume for contradiction that f−α,α+1 is not equivariant for

any α ∈ γ0. For every α ∈ γ0, there exists some x ∈ DR
α+1 such that f−α,α+1(x) /∈ DR

α and

rankγ0(x) = α+1. This shows that rankγ0 is a surjective function from DR
γ0

onto the set of

successor ordinals below γ0, so |γ0| ≤ |DR
γ0
|. On the other hand, |DR

γ0
| ≤ |Dγ0 | = |Dω| < |γ0|,

which is a contradiction.
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Proposition 2.20. If F : clcDP → clcDP is strictly positive, there is an initial F-algebra.

Proof. By lemma 2.19, we can choose γ0 ≥ ω such that (Dγ0 , f
−
γ0,γ0+1) is an F-algebra, but

it remains to prove that it is initial.
Let (E , g) be an arbitrary F-algebra. We will then show that there exists a unique

equiembedding h : Dγ0 → E satisfying h ◦ f−γ0,γ0+1 = g ◦F(h).

Claim 1. There exists a family {hβ : Dβ → E}β≤γ0 of equiembeddings such that, for each
β ∈ γ0, hβ = g ◦ F(hβ) ◦ fβ,β+1 = hβ+1 ◦ fβ,β+1.

The claim is proved by transfinite induction on β, see appendix A for details. In
particular, this gives us an equiembedding hγ0 : Dγ0 → E .

From domain theory, we see that (E, g) is an F̂-algebra and that hγ0 is an F̂-morphism
from (Dγ0 , f

−
γ0,γ0+1) into (E, g). It remains to prove that hγ0 ◦ f

−
γ0,γ0+1 = g ◦F(hγ0):

Claim 2. Let ω ≤ β ≤ γ0 and assume that fβ,β+1 is an isomorphism. Then hβ : Dβ → E

is the unique F̂-morphism from (Dβ , f
−
β,β+1) into (E, g).

The proof is by transfinite induction on β ≤ γ0, see appendix A. As a consequence
of uniqueness, we have hβ ◦ f−β,β+1 = g ◦ F(hβ) for all infinite β ≤ γ0. In particular,

hγ0 : Dγ0 → E is the unique embedding satisfying

hγ0 ◦ f
−
γ0,γ0+1 = g ◦ F(hγ0).

Then hγ0 : Dγ0 → E is the unique equiembedding for which this equality holds, and this
shows that the F-algebra (Dγ0 , f

−
γ0,γ0+1) is initial.

When we consider domain representations of qcb0 spaces, countably based domain-pers
are of particular interest. It is therefore important to note that if we start with countably
based parameters, then the least fixed point is countably based, even though we might have
to use an uncountable transfinite induction to construct it:

Observation 2.21. Let F : clcDP → clcDP be strictly positive and assume that all
parameters are countably based.

Then the least fixed point of F is countably based.

Proof. The parameters in the underlying functor F̂ are countably based, so the least fixed
point Dω of F̂ is countably based. If Dγ0 is the least fixed point of F, then Dγ0

∼= Dω and
Dγ0 is countably based.

In many examples of interest, e.g. for representation of a countably based regular space,
we can choose a domain-per D which is upwards-closed, i.e. a domain-per which satisfies

∀x, y ∈ D (x ∈ DR ∧ x ⊑ y ⇒ x ≈D y).

An upwards-closed domain-per is convex, local and complete. We verify that the property
of being upwards-closed is preserved under the least fixed point construction in clcDP:

Observation 2.22. Let F : clcDP → clcDP be strictly positive and assume that all
positive parameters are upwards-closed.

Then the least fixed point of F is upwards-closed.

Proof. It is sufficient to prove that if ({Di}i∈I , {fi,j}i≤j∈I) is a directed system in clcDP

and every Di is upwards-closed, then the inductive limit DI is upwards-closed.
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Let x, y ∈ DI and assume that x ∈ DR
I and x ⊑ y. Then xi ⊑ yi for every i ∈ I, so

if x ∈ DR
I is witnessed by i, then xi ≈i yi by the upwards-closedness of Di. If k ≥ i, then

fi,k(xi) = xk ≈k yk, and because fi,k is an equiembedding, this implies that yk = fi,k(yi).

For an arbitrary j ∈ I, choose k ≥ i, j. Then yj = f−j,k(yk) = f−j,k(fi,k(yi)) = fi(yi)j . This

shows that y = fi(yi) and that x ≈I y.

2.4. Admissible domain-pers. We say that a domain-per D is admissible if the associ-
ated domain representation (D,DR, δD) of QD is admissible. Our definition of admissibility
applies only to countably based domain representations, so it will be implicit that an admis-
sible domain-per is countably based in what follows, even though this is of no significance
for the results obtained.

We show that admissibility is preserved both under strictly positive operations and
under weak isomorphisms.

Lemma 2.23. Let Γ be a strictly positive operation on domain-pers with admissible positive
parameters and dense, admissible non-positive parameters.

If D is an admissible domain-per, then Γ(D) is admissible.

Proof. By lemma 1.9 and structural induction on Γ.

Lemma 2.24. Let D and E be weakly isomorphic domain-pers.
Then QD ∼= QE, and if D is admissible, then E is admissible.

Proof. Let (f, g) : D → E be a weak isomorphism pair, i.e. g ◦ f ≈ idD and f ◦ g ≈ idE.
Then fQ : QD → QE and gQ : QE → QD are continuous maps with gQ ◦ fQ = idQD

and fQ ◦ gQ = idQE . This shows that QD and QE are homeomorphic topological spaces.
Now, assume that D is admissible. Let F be a domain, let FR be a dense subset and let

ϕ : FR → QE be a continuous function. Then gQ ◦ ϕ : FR → QD is a continuous function
which factors through δD via χ : F → D, by the admissibility of D. Then f ◦ χ : F → E is
a continuous function which satisfies

(1) (f ◦ χ)[FR] ⊆ f [DR] ⊆ ER ; and
(2) if x ∈ FR, then δD(χ(x)) = gQ(ϕ(x)) and δE (f(χ(x))) = fQ(gQ(ϕ(x))) = ϕ(x).

This shows that ϕ factors through δE via f ◦ χ and that E is admissible.

The converse of this lemma is not true in general, but it does hold if we consider dense
domain-pers:

Lemma 2.25. If D and E are dense, admissible domain-pers and QD ∼= QE, then D and
E are weakly isomorphic.

Proof. Continuous functions between dense, admissible domain-pers are representable. In
particular, a homeomorphism pair (f, g) : QD → QE is represented by a pair of continuous

functions f̂ : D → E and ĝ : E → D. The composite functions ĝ ◦ f̂ and f̂ ◦ ĝ represent the
respective identities, and this shows that (f̂ , ĝ) is a weak isomorphism pair, i.e. ĝ ◦ f̂ ≈ idD
and f̂ ◦ ĝ ≈ idE.
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Remark 2.26. Lemma 2.25 is just a reformulation of a well-known result: All dense,
admissible domain representations of a given topological space are continuously equivalent,
see [8].

The following observation makes an important connection between equiembeddings and
admissible domain-pers. In particular, it implies that the inductive limit of a directed system
of domain-pers cannot be admissible unless all the domain-pers in the directed system are
admissible.

Observation 2.27. Let f : D → E be an equiembedding and let E be admissible.
Then D is admissible.

Proof. Let (F,FR) be a dense domain with totality and assume that ϕ : FR → QD is
continuous. Then χ := fQ ◦ ϕ : FR → QE is continuous, and by the admissibility of E ,
there exists a continuous χ̂ : F → E such that χ̂[FR] ⊆ ER and [χ̂(x)]E = χ(x) for every
x ∈ FR.

Let ϕ̂ := f− ◦ χ̂ : F → D. We will show that ϕ factors through δD via ϕ̂: Let
x ∈ FR, and choose some d ∈ DR such that [d]D = ϕ(x). Then fQ(ϕ(x)) = [χ̂(x)]E and
f(d) ≈E χ̂(x). Since f is an equiembedding, this implies that d ≈D f−(χ̂(x)) = ϕ̂(x).
Hence, ϕ̂[FR] ⊆ DR and [ϕ̂(x)]D = ϕ(x) for all x ∈ FR.

2.5. A dense least fixed point. Density is an important but problematic notion in the
study of domain representations and domain-pers, see [5, 6, 7, 9, 13]. One major advantage
is that it helps lifting of continuous functions, see lemma 1.8. A major issue with density
is that it is not preserved by the function space construction. We will now show how a
domain-per which is defined by a strictly positive induction with dense parameters, can be
replaced by a dense domain-per.

It is well-known that given any domain representation of a topological space X, there
is a dense domain representation of the same space, see [9, 13]. The following definition
is just a reformulation of this result. From a given domain-per D, we construct a dense
domain-per with the same set of total elements, using the topological closure of DR.

Definition 2.28. If D is a domain-per, we define Dd, the dense part of D, as follows:

• If D is trivial, let Dd = D0, the initial domain-per.
• If D is non-trivial, let Dd be the domain-per with

Dd = {x ∈ D : approx(x) ⊆ {p ∈ Dc :↑p ∩ DR 6= ∅}},

partially ordered by the restriction of ⊑D as the underlying domain, and with ≈D re-
stricted to Dd as the per.

Clearly, QD ∼= Q(Dd), as the topology on DR is the same when it is considered as a subspace
of Dd.

For each of the basic operations, there is a basic dense operation obtained by left
composition with the dense part construction. Let Γ be a strictly positive operation and let
Γd be the operation obtained by inductively replacing all parameters and basic operations
by their dense counter-parts. A simple structural induction on Γ then shows that Γd(D)
and Γ(D)d are equal up to isomorphism of domain-pers. Note here that density is preserved
under disjoint sum and Cartesian product, so it is only the function space construction
which demands extra attention.

We make some further important observations, but skip the proofs.
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Observation 2.29. Let D be a convex, local and complete domain-per. Then Dd is convex,
local and complete.

Observation 2.30. Let D be an admissible domain-per. Then Dd is admissible.

In fact, this is lemma 7.5 in [13]: The dense part of an admissible representation is itself
admissible.

Observation 2.31. Let ({Di}i∈I , {fi,j}i≤j∈I) be a directed system in clcDP and assume
that for every i ∈ I there exists some j ≥ i such that Dj is dense. If (DI , {fi}i∈I) is the
inductive limit, then DI is dense.

Unfortunately, our choice of morphisms in clcDP obstructs any restriction to a full
subcategory of domain-pers which are either dense or trivial. This is in contrast to the
case for PER(Dom), see [5]. The specific problem which cannot be overcome is that the
natural restriction of an equiembedding f : D → E to Dd is not in general an embedding
into the underlying domain of Ed. This means that the dense strictly positive operations
would not be functorial in such a category.

Nevertheless, proposition 2.34 below shows that the dense part of a strictly positive
functor F (or more precisely of the underlying operation Γ) produces a γ-chain in clcDP.
Moreover, the inductive limit coincides with the dense part of the inductive limit of the
γ-chain constructed from F.

For certain strictly positive functors, the γ-chain will contain trivial domain-pers only.
Then even the least fixed point is trivial, and it will be convenient to leave these trivial
cases aside. This motivates the following definition:

Definition 2.32. A strictly positive functor F : clcDP → clcDP is trivial if F(D0) is
trivial and non-trivial if F(D0) is non-trivial.

Non-trivial functors are characterized by the following lemma. The straight-forward
inductive proof by cases is omitted here.

Lemma 2.33. Let F : clcDP → clcDP be a strictly positive functor.
Then F is non-trivial if and only if at least one of the following statements hold:

• F is constantly equal to a non-trivial domain-per A.
• F is the disjoint sum of functors of which at least one is non-trivial.
• F is the Cartesian product of functors which both are non-trivial.
• F is the exponentiation of a non-trivial functor by a domain-per B.

The potential problem with trivial parameters is avoided by assuming that all parameters
are dense. This lemma will simplify some proofs by induction on the structure of a functor.

Proposition 2.34. Let F : clcDP → clcDP be a strictly positive functor with dense pa-
rameters and let γ be a limit ordinal. Let ({Dα}α∈γ , {fα,β}α≤β∈γ) be the γ-chain constructed
from F, and let (Dγ , {fα,γ}α∈γ) be its inductive limit.

Then ({Dd
α}α∈γ , {f

d
α,β}α≤β∈γ) is a γ-chain in clcDP with inductive limit (Dd

γ , {f
d
α,γ}α∈γ).

Proof. If F is trivial, then Dα is trivial for each α ∈ γ, and the result holds trivially.
Therefore, we may assume that F is non-trivial.

We can use the same underlying domain D of Dα for all α ∈ γ: If n ∈ ω, then Dn

is isomorphic to a subdomain of D, so we may assume that Dn has Dω as the underlying
domain. If α ≥ ω, then Dα is isomorphic to Dω. We let D = Dω. Moreover, we assume
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that fα,β = idD for all α, β ∈ γ. This is a valid assumption, since we simply can redefine
the directed system inductively if it does not hold.

We denote the per on Dα by ≈α for all α ≤ γ. If α ≤ β, x ∈ DR
α and x′ ∈ D, then

x ≈α x′ ⇔ x ≈β x′. If β is a limit ordinal, then x ≈β x′ ⇔ ∃α ∈ β (x ≈α x′) for all
x, x′ ∈ D.

We denote the underlying domain of Dd
α by Dd

α. Then f
d
α,β : Dd

α → Dd
β is the inclusion

map. It remains to show that it is an embedding of domains and that Dd
γ is the inductive

limit of {Dd
α}α∈γ in Dome.

Claim 3. There exists a family {∆n}n∈ω of closed subsets of D, closed under binary lubs,
such that

(1) ∆n ⊆ ∆n+1; and
(2) ∆n ∩DR

α = DR
n for every α ≥ ω.

We define the subsets ∆n ⊆ D by induction on n ∈ ω, see appendix A for the entire
proof. Note that Dd

n ⊆ ∆n since ∆n is a closed superset of DR
n and Dd

n is its closure.

Claim 4. Let n ≥ 1. Then there exists a continuous map rn : D → D such that

(1) ∆n = {x ∈ D : rn(x) = x}; and
(2) if α ≥ n, then rn : Dα → Dn is equivariant.

We prove the claim by induction on n, see appendix A.

These two claims together show that we, in a continuous way, can project the α-total
elements onto the n-total elements whenever 1 ≤ n ≤ α ∈ γ.

Claim 5. Let p ∈ Dc and assume that ↑p ∩ DR
α 6= ∅ for some α ∈ γ. Then p ∈

⋃

n∈ω ∆n.

The proof is by transfinite induction on α, see appendix A.

This shows that if a p ∈ Dc has a total extension at some arbitrary level α, then it has a
total extension at some finite level n.

This implies that fdα,β is an embedding whenever α ≤ β: Let p1, p2 be compact elements

of Dd
α, and assume that they are consistent inDd

β. Then there exists n ∈ ω such that p1, p2 ∈
∆n. Moreover, ∆n is by construction closed under binary lubs inD, so p1⊔Dp2 ∈ ∆n. On the
other hand, there exists (by the assumption that p1, p2 ∈ Dd

α) some x ∈ DR
β with p1, p2 ⊑ x.

Then p1 ⊔D p2 = rn(p1 ⊔D p2) ⊑ rn(x) ∈ DR
n . This shows that p1 ⊔D p2 ∈ Dd

n ⊆ Dd
α.

Moreover, Dd
γ is the inductive limit of {Dd

α}α∈γ : For an arbitrary α ≥ ω and p ∈ (Dd
α)c,

there exists n ∈ ω such that ↑p ∩ DR
n 6= ∅. This implies that (Dd

ω)c =
⋃

n∈ω(D
d
n)c and that

Dd
ω is the inductive limit of {Dd

n}n∈ω. Moreover, for α ≥ ω, it follows that ↑p∩DR
α 6= ∅ ⇔↑

p ∩ DR
ω 6= ∅, which means that Dd

α = Dd
ω.

Finally, fdα,β is an equiembedding if α ≤ β, since if x ∈ DR
α and x′ ∈ D, then x ≈α x

′ ⇔

x ≈β x
′. Moreover, Dd

γ is isomorphic to the inductive limit of {Dd
α}α∈γ , since x ≈γ x

′ ⇔
∃α ∈ γ (x ≈α x

′) for x, x′ ∈ D.

Thus, for every strictly positive operation Γ on domain-pers with dense parameters,
there exists a dense domain-per D such that Γ(D)d ∼= D. Moreover, if F : clcDP → clcDP

is the functorial extension of Γ, then D is the dense part of the least fixed point of F. By
abuse of notation, we refer to D as the dense least fixed point of F.
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Remark 2.35. A setback with the dense part construction is that it does not preserve
effectivity in general [9]. As a consequence, the dense least fixed point of F is not effective
just because the parameters of F are.

In fact, this is a returning problem with density. For a simple example of the difficulty
of obtaining an effective, dense subset in the set of continuous functionals, see Example 4.1
in [16].

2.6. An admissible least fixed point. We will now show that the dense least fixed point
of a strictly positive functor over clcDP is admissible if all the parameters involved are
dense, admissible. This will ensure that the resulting qcb space is T0 and that all continuous
functions are representable.

Example 2.36. Let F(X) = A+ [B → X], with A and B some dense, admissible parame-
ters, and let D be the dense least fixed point of F.

An x ∈ DR can be represented as a well-founded tree with branching in BR and leaf
nodes in AR. A branch {xn}n≤N is obtained by iterated evaluation of x over a sequence
{bn}n∈ω over BR, i.e. by starting with x0 = x(b0) and extending the branch with xn+1 =
xn(bn+1) while xn ∈ [B → D]R. Ultimately, this process yields an xN ∈ AR for some finite
N . From this we can construct an equivariant and equi-injective map

η : D → [Bω → A⊥ ⊗N ].

The example gives a rough idea of the method we will use more generally for a strictly
positive F with dense, admissible parameters. The domain-per of input sequences, B in
the example, will be constructed from the non-positive parameters of F. The domain-
per of evaluation results, A⊥ in the example, will be the disjoint union of all the positive
parameters of F.

We will then show that the dense least fixed point is weakly isomorphic to its dense
image under η, and that the dense image is admissible if the function space is admissible.
Before we start, we must explain what we mean by the image of an equivariant map:

Definition 2.37. If ϕ : D → E is equivariant, the image of D under ϕ is the domain E
with the partial equivalence relation ≈ϕ defined by

x ≈ϕ y ⇔ ∃u ∈ DR (x ≈E ϕ(u) ≈E y).

We denote (E,≈ϕ) by ϕ[D].

Lemma 2.38. Let ϕ : D → E be equivariant. Then idE : ϕ[D] → E is an equiembedding.

Proof. If x ≈ϕ y, then x ≈E y by definition. If x ∈ ϕ[D]R and x ≈E y, then there is some
u ∈ DR such that x ≈E ϕ(u). Hence, y ≈E ϕ(u) and x ≈ϕ y.

In order to show that the dense least fixed point is weakly isomorphic to its dense
image under η̄, we will define an equivariant lower adjoint ϑ̄ of F. The idea is to represent
iterated evaluation of elements of the dense least fixed point by the non-positive parame-
ters. Lemma 2.39 and lemma 2.40 will describe the situation for one-step evaluations. For
these results, we look at an arbitrary domain-per and not the dense least fixed point. In
lemma 2.41 and lemma 2.42, we define the maps η̄ and ϑ̄ using the results for one-step
evaluations.
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If F : clcDP → clcDP is a strictly positive functor, we let {Fk}k∈KF
be the set of

atomic subfunctors of F with repetition allowed. Then each Fk represents an occurrence
either of the identity functor or of some constant functor.

Lemma 2.39. Let F : clcDP → clcDP be a strictly positive functor with dense non-
positive parameters. Then there exists a dense domain-per TF, and for every convex, local
and complete domain-per D, an equivariant and equi-injective map

ηF : F(D)d → [TF →
⊎

k∈KF

Fk(D)].

If the non-positive parameters in F are admissible, then TF is admissible.

Proof. We fix a convex, local and complete domain-per D. Independently of D, we define
TF by structural induction on F. Simultaneously, we define a map

ηF : F(D) → [TF →
⊎

k∈KF

Fk(D)],

which is equivariant and equi-injective, i.e. such that for all x, y ∈ D,

x ≈D y ⇔ ηF(x) ≈[TF→
⊎

k∈K
F
Fk(D)] ηF(y).

• If F is atomic, let TF be the domain-per with TF = {t} as underlying domain and with

t ≈TF t. TF is trivially dense. Observe that
⊎

k∈KF
Fk(D) = F(D)⊥. If x ∈ F̂(D), let

ηF(x) be the map which sends t to (0, x) ∈ F̂(D)⊥. Then

x ≈F(D) y ⇔ (0, x) ≈F(D)⊥ (0, y) ⇔ ηF(x) ≈[TF→F(D)⊥] ηF(y).

• If F = F0 + F1, let TF = TF0 × TF1 , which is dense by induction. Note that
⊎

k∈KF

Fk(D) ∼= (
⊎

k∈KF0

Fk(D))⊕ (
⊎

k∈KF1

Fk(D)).

We define ηF as the strict map with ηF(i, x) = λt.Eval(ηFi
(x), ti) for all (i, x) ∈ F̂(D) \

{⊥}. By the induction hypothesis, we have

(i, x) ≈F(D) (j, y) ⇔ i = j ∧ ηFi
(x) ≈[TFi

→
⊎

k∈K
Fi

Fk(D)] ηFj
(y).

The right hand side implies directly that ηF(i, x) ≈ ηF(j, y). Moreover, ηF(i, x) ≈ ηF(j, y)
is possible only if i = j, since ηF(i, x) and ηF(j, y) then map every t ∈ T R

F
into the same

Fk(D) for some k ∈ KF, the disjoint union of KF0 and KF1 . If ¬((i, x) ≈F(D) (j, y)), we
must show that ¬(ηF(i, x) ≈ ηF(j, y)), and there are two cases to consider:
− If i 6= j, it follows from the observations above.
− If i = j, then ¬(ηFi

(x) ≈ ηFi
(y)) and there exist s, t ∈ TFi

with s ≈TFi
t such that

¬(Eval(ηFi
(x), s) ≈ Eval(ηF(y), t)). By the density of TF, there exist s′, t′ ∈ TF such

that s′i = s, t′i = t and s′ ≈TF t
′, and

¬(Eval(ηF(i, x), s
′) ≈(

⊎
k∈K

F
Fk(D)) Eval(ηF(i, y), t

′)).

• If F = F0 × F1, let TF = TF0 + TF1 , which is dense by induction. Once again, we have
⊎

k∈KF

Fk(D) ∼= (
⊎

k∈KF0

Fk(D))⊕ (
⊎

k∈KF1

Fk(D)).
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We define ηF(x) as the strict map such that Eval(ηF(x), (i, t)) = Eval(ηFi
(xi), t). Again

by the induction hypothesis, x ≈F(D y if and only if ηF0(x0) ≈ ηF0(y0) and ηF1(x1) ≈
ηF1(y1), and this is equivalent to ηF(x) ≈ ηF(y).

• If F = [B → F1], where B is a non-positive parameter, let TF = B × TF1 , which is dense
by induction since B is assumed to be dense. Then F has the same atomic subfunctors
as F1, so KF = KF1 .

For every x ∈ [B → F̂1(D)], we define ηF(x) by ηF(x) = λt.Eval(ηF1(x(t0)), t1). By
the induction hypothesis, x ≈F(D) y if and only if ηF1(x(b)) ≈ ηF1(y(c)) whenever b ≈B c,
or equivalently if

b ≈B c⇒ (s ≈TF1
t⇒ Eval(ηF1(x(b)), s) ≈ Eval(ηF1(y(c)), t)).

A simple paraphrasing is

(b, s) ≈TF (c, t) ⇒ Eval(ηF1(x(b)), s) ≈ Eval(ηF1(y(c)), t)),

which holds if and only if ηF(x) ≈ ηF(y).

It is a trivial inductive verification that TF is admissible if every non-positive parameter in
F is admissible, in the last induction step because B is admissible.

Note that the assumption that the domain-pers were convex, local and complete was
of no importance in this proof. However, this restriction must be made in what follows, so
we included it above for the sake of consistency in the presentation. As our next step, we
will now define the lower adjoint of ηF.

Lemma 2.40. Let F : clcDP → clcDP be a strictly positive functor with dense non-
positive parameters, and let D be a convex, local and complete domain-per. Let ηF :
F(D)d → [TF →

⊎

k∈KF
Fk(D)] be defined as in lemma 2.39. Let DF be the underlying

domain of F(D)d and let EF be the underlying domain of ηF[F(D)]d.
Then there exists a continuous map ϑF : EF → DF which is the lower adjoint of ηF

and such that for every x ∈ F(D)R and q ∈ EF
c ,

q ≺ηF[F(D)]d [ηF(x)] ⇒ ϑF(q) ≺F(D) [x].

Proof. First, observe that
⊎

k∈KF
Fk(D) is convex, local and complete since F(D) and all

the positive parameters are, and recall that TF is dense. The domain-per ηF[F(D)]d is
defined as the dense part of the image of ηF, which means that a

⊔

j∈J [p
j; qj ] ∈ [TF →

⊎

k∈KF
F̂k(D)]c is an element of EF

c if and only if there exists some x ∈ F(D)R such that
⊔

j∈J [p
j ; qj] ≺[TF→

⊎
k∈K

F
Fk(D)] [ηF(x)]. Moreover, by lemma 2.9, this is equivalent to

∀t ∈ T R
F (

⊔

j∈J

{qj : pj ⊑ t} ≺(
⊎

k∈K Fk(D)) [Eval(ηF(x), t)])

for the same choice of x ∈ F(D)R. In this case, we say that
⊔

j∈J [p
j ; qj ] ∈ EF

c is witnessed
by x.

Following the inductive definition of ηF given in the proof of lemma 2.39, we define by
structural induction on F a monotone map ϑF : EF

c → F̂(D)c which satisfies

(1) if
⊔

j∈J [p
j ; qj ] ∈ EF

c is witnessed by x ∈ F(D)R, then ϑF(
⊔

j∈J [p
j; qj ]) ≺F(D) [x] which

implies ϑF(
⊔

j∈J [p
j; qj ]) ∈ DF

c ; and

(2) if
⊔

j∈J [p
j ; qj] ∈ EF

c and r ∈ F(D)c, then ϑF(
⊔

j∈J [p
j ; qj]) ⊑ r ⇔

⊔

j∈J [p
j ; qj ] ⊑ ηF(r).
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This yields a monotone map ϑF : EF
c → DF satisfying ϑF(q) ⊑ r ⇔ q ⊑ ηF(r)) for all

q ∈ EF
c and r ∈ DF

c . The continuous extension to EF is then the lower adjoint of ηF with
q ≺ηF[F(D)]d [ηF(x)] ⇒ ϑF(q) ≺F(D) [x] for all x ∈ F(D)R and q ∈ EF

c .

Since ϑF by necessity is strict, we consider only those
⊔

j∈J [p
j ; qj ] ∈ EF

c for which J is

non-empty and qj 6= ⊥ for every j ∈ J .

• F atomic: If
⊔

j∈J [t; (0, q
j)] ∈ EF

c , let ϑF(
⊔

j∈J [t; (0, q
j)]) :=

⊔

j∈J q
j.

If x ∈ F(D)R is a witness, then Eval(ηF(x), t) = (0, x) and (0, qj) ≺(F(D)⊥) [(0, x)].

Since F(D) is local, it follows that {qj}j∈J is consistent with
⊔

j∈J q
j ≺F(D) [x]. Then ϑF

is clearly well-defined and monotone, and if r ∈ F̂(D)c, then

ϑF(
⊔

j∈J

[t; (0, qj)]) ⊑ r ⇔
⊔

j∈J

qj ⊑ r

⇔ ∀j ∈ J (qj ⊑ r)

⇔ ∀j ∈ J ((0, qj) ⊑ Eval(ηF(r), t))

⇔
⊔

j∈J

[t; (0, qj)] ⊑ ηF(r).

• F = F0 + F1: If
⊔

j∈J [p
j ; qj ] ∈ EF

c and this is witnessed by (i, x) ∈ F(D)R, let

ϑF(
⊔

j∈J

[pj; qj ]) := (i,
⊔

J ′⊆J

{ϑFi
(
⊔

j∈J ′

[pji ; q
j ]) : {pj}j∈J ′ consistent}).

If (i′, x′) is another witness that
⊔

j∈J [p
j ; qj ] ∈ EF

c and i 6= i′, then

qj ∈ (
⊎

k∈KF0

F̂k(D))
⋂

(
⊎

k∈KF1

F̂k(D)) = {⊥},

for any j ∈ J . This contradicts the assumption that qj 6= ⊥. Thus the index i is uniquely
determined by

⊔

j∈J [p
j ; qj ].

Choose j ∈ J and t ∈↑pji ∩ T R
Fi
. Both TF0 and TF1 are dense, so we may choose

t′ ∈↑pj ∩ T R
F

such that Eval(ηFi
(x), t) = Eval(ηF(i, x), t

′). Then qj ⊑ Eval(ηF(i, x), t
′),

and this shows that qj ≺F(D) [Eval(ηFi
(x), t)]. Hence,

⊔

j∈J [p
j
i ; q

j] ∈ EFi
c , and this is

witnessed by x ∈ Fi(D)R.

If J ′ ⊆ J , then ϑFi
(
⊔

j∈J ′ [p
j
i ; q

j ]) is bounded by ϑFi
(
⊔

j∈J [p
j
i ; q

j ]), since ϑFi
is monotone

by the induction hypothesis. This means that

{ϑFi
(
⊔

j∈J ′

[pji ; q
j]) : {pj}j∈J ′ consistent and J ′ ⊆ J}

is a consistent set and has a least upper bound.
Let

⊔

j∈J [p
j ; qj ],

⊔

k∈K [pk; qk] ∈ EF
c (where we assume that J and K are disjoint finite

index sets). If
⊔

j∈J [p
j ; qj ] ⊑

⊔

k∈K [pk; qk], we must show that

ϑF(
⊔

j∈J

[pj; qj ]) ⊑ ϑF(
⊔

k∈K

[pk; qk]).

For every J ′ ⊆ J with {pj}j∈J ′ consistent, we can construct a K ′ ⊆ K with {pk}k∈K ′

consistent such that ϑFi
(
⊔

j∈J ′ [p
j
i ; q

j]) ⊑ ϑFi
(
⊔

k∈K ′[pki ; q
k]): Let K ′ :=

⋃

j∈J ′{k ∈ K :
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pk ⊑ pj}. Then for every j ∈ J ′, we have

qj ⊑
⊔

k∈K

{qk : pk ⊑ pj} =
⊔

k∈K ′

{qk : pk ⊑ pj} ⊑
⊔

k∈K ′

{qk : pki ⊑ pji} .

This shows that
⊔

j∈J ′ [p
j
i ; q

j] ⊑
⊔

k∈K ′[pki ; q
k], and ϑFi

is monotone by the induction
hypothesis. Hence,

ϑF(
⊔

j∈J

[pj; qj ]) ⊑
⊔

J ′⊆J

{ϑFi
(
⊔

k∈K ′

[pki ; q
k]) : {pj}j∈J ′ consistent}) ⊑ ϑF(

⊔

k∈K

[pk; qk]).

Claim 6. Let p ∈ EF
c and r ∈ F̂(D)c. Then ϑF(p) ⊑ r ⇔ p ⊑ ηF(r).

This shows that (ϑF, ηF) is an adjunction pair. In the proof, we use the induction
hypothesis that (ϑFi

, ηFi
) is an adjunction pair for i = 0, 1. See appendix A for the full

details.
Let

⊔

j∈J [p
j ; qj ] ∈ EF

c be witnessed by (i, x). If J ′ ⊆ J with {pj}j∈J ′ consistent, then
⊔

j∈J ′[p
j
i ; q

j ] ∈ EFi
c is witnessed by x. In this case, ϑFi

(
⊔

j∈J ′ [p
j
i ; q

j ]) ≺Fi(D) [x] by the

induction hypothesis. This implies that ϑF(
⊔

j∈J [p
j; qj ]) ≺F(D) [(i, x)], since Fi(D) is

local.
• F = F0×F1: Let

⊔

j∈J [(ij , p
j); qj ] ∈ EF

c . Then there are complementary subsets J0 and
J1 of J such that

⊔

j∈J

[(ij , p
j); qj ] =

⊔

j∈J0

[(0, pj); qj ] ⊔
⊔

j∈J1

[(1, pj); qj ].

This decomposition is unique, because ηF(x) is a strict map for every x ∈ F(D).
We define ϑF on EF

c by

ϑF(
⊔

j∈J

[(ij , p
j); qj ]) := (ϑF0(

⊔

j∈J0

[pj; qj ]), ϑF1(
⊔

j∈J1

[pj ; qj ])).

By induction, ϑF is clearly well-defined and monotone.
If r ∈ F(D)c, then it is easily verified that

⊔

j∈J [(ij , p
j); qj ] ⊑ r if and only if

⊔

j∈Ji
{qj :

pj ⊑ t} ⊑ Eval(ηFi
(ri), t) for all t ∈ TFi

for i = 0 and for i = 1. It follows, from the
induction hypothesis, that (ϑF, ηF) is an adjunction pair.

Finally, assume that
⊔

j∈J [(ij , p
j); qj ] ∈ EF

c is witnessed by x ∈ F(D)R . Then, if

i = 0, 1, j ∈ Ji and t ∈↑p
j ∩ T R

Fi
, we have

qj ≺Fi(D) [Eval(ηF(x), (i, t))] = [Eval(ηFi
(xi), t)],

which shows that
⊔

j∈Ji
[pj; qj ] ∈ EFi

c is witnessed by xi ∈ Fi(D)R. By the induction

hypothesis, there exists x′i ∈ F̂i(D) with x′i ≈Fi(D) xi such that ϑFi
(
⊔

j∈Ji
[pj ; qj]) ⊑ x′i.

It follows that (x′0, x
′
1) ≈F(D) x and that

ϑF(
⊔

j∈J0

[(0, pj); qj ] ⊔
⊔

j∈J1

[(1, pj); qj ]) ≺F(D) [x].

• F = [B → F1]: If
⊔

j∈J [p
j; qj ] ∈ EF

c , we let

ϑF(
⊔

j∈J

[pj; qj ]) :=
⊔

j∈J

[pj0;ϑF1(
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0})].
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Note that in this case
⊔

j∈J [p
j ; qj ] ∈ [B×TF1 →

⊎

k∈KF
F̂k(D)], and {[pj1; q

j ] : pj0 ⊑ p}j∈J

is [TF1 →
⊎

k∈KF
F̂k(D)]-consistent for every p ∈ Bc.

Claim 7. Let b ∈ BR and p ∈ approx(b). Let
⊔

j∈J [p
j; qj ] ∈ EF

c be witnessed by

x ∈ [B → F1(D)]R.

Then
⊔

j∈J{[p
j
1; q

j ] : pj0 ⊑ p} ∈ EF1
c is witnessed by x(b).

In particular, this means that
⊔

k∈J{[p
k
1 ; q

k] : pk0 ⊑ pj0} ∈ EF1
c for every j ∈ J .

Claim 8. Let
⊔

j∈J [p
j ; qj] ∈ EF

c .

If J ′ is a subset of J such that {pj0}j∈J ′ is consistent in B, then {ϑF1(
⊔

k∈J{[p
k
1 ; q

k] :

pk0 ⊑ pj0})}j∈J ′ is consistent in F̂1(D).

This shows that {[pj0;ϑF1(
⊔

k∈J{[p
k
1 ; q

k] : pk0 ⊑ pj0})]}j∈J is a consistent set of step

functions in [B → F̂1(D)]. In particular, this means that
⊔

j∈J

[pj0;ϑF1(
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0})] ∈ [B → F̂1(D)].

Claim 9. Assume
⊔

j∈J [p
j ; qj] ⊑

⊔

k∈K [pk; qk] ∈ EF
c . Then

⊔

j∈J

[pj0;ϑF1(
⊔

l∈J

{[pl1; q
l] : pl0 ⊑ pj0})] ⊑

⊔

k∈K

[pk0 ;ϑF1(
⊔

m∈K

{[pm1 ; qm] : pm0 ⊑ pk0})].

This shows that ϑF is a well-defined and monotone map.

Claim 10. Let
⊔

j∈J [p
j; qj ] ∈ EF

c and let r ∈ DF
c . Then

⊔

j∈J [p
j; qj ] ⊑ ηF(r) if and only

if, for every j ∈ J ,
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0} ⊑ ηF1(r(p

j
0)).

The induction hypothesis is that (ϑF1 , ηF1) is an adjunction pair:
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0} ⊑ ηF1(r(p

j
0)) ⇔ ϑF1(

⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0}) ⊑ r(pj0)

for every j ∈ J , which again is equivalent to ϑF(
⊔

j∈J [p
j; qj ]) ⊑ r by the definition of ϑF.

This shows that (ϑF, ηF) is an adjunction pair:
Assume now that x ∈ [B → F1(D)]R is a witness that

⊔

j∈J [p
j ; qj] ∈ EF

c . Let b ∈ BR.

If j ∈ J and pj0 ⊑ b, then x(b) is a witness that
⊔

k∈J{[p
k
1 ; q

k] : pk0 ⊑ pj0} ∈ EF1
c . By the

induction hypothesis, this implies that

ϑF1(
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0}) ≺ [x(b)].

Then, since B is dense and F1(D)) is convex, local and complete, we have (by lemma 2.9)
⊔

j∈J

{[pj0;ϑF1(
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0})]} ≺ [x].

In example 2.36, the representation of a total element x of the dense least fixed point of
F as a well-founded tree used iterated evaluation of x over some input parameter. We will
now use the adjunction pair (ϑF, ηF), which represents one-step evaluations over the dense
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least fixed point D, to show that the situation of the example extends to the more general
case of a strictly positive functor with dense, admissible parameters. We do this by means
of an adjunction pair (ϑ̄, η̄).

Lemma 2.41. Let F : clcDP → clcDP be a strictly positive functor with dense, admissible
parameters. Let D be the dense least fixed point of F.

Then there exist dense, admissible domain-pers U and E, and an equivariant and equi-
injective map η̄ : D → [U → E ].

Proof. Let T be the dense, admissible domain-per TF as defined in the proof of lemma 2.39.
The domain-per U is defined as follows: Let U be the domain of sequences x = {xm}m∈N

over T , partially ordered by x ⊑U y ⇔ ∀m ∈ ω (xm ⊑T ym). Let ≈U be the partial
equivalence relation defined by x ≈U y ↔ ∀m ∈ ω(xm ≈T ym).

Claim 11. U is dense and admissible.

Let E be the domain-per (
⊎

n≤N An)⊗N , where A0, . . . ,AN are the positive parameters
of F. Clearly, E is admissible since A0, . . . ,AN are admissible. It is simply a matter of
convenience that we use the strict product in the definition of E .

In what follows, we will consider
⊎

n≤N An as a subdomain of the underlying domain of
⊎

k∈KF
Fk(D) in the obvious way. We observe that if z, z′ ∈

⊎

k∈KF
F̂k(D) and ⊥ 6= z ⊑ z′,

then z, z′ are either both in
⊎

n≤N An or both in its complement.

Let η : D → [T →
⊎

k∈K Fk(D)] be the equivariant and equi-injective map as defined

in the proof of lemma 2.39. This map exists because D ∼= F(D)d.
In order to define the map η̄, we must first describe the evaluation tree which η produces

from an x ∈ D. For a fixed (x, u) ∈ D × U , we define a (finite or infinite) sequence over
⊎

k∈KF
F̂k(D) as follows:

• Let z0(x,u) := Eval(η(x), u0) ∈
⊎

k∈KF
F̂k(D).

• If m ∈ ω and zm(x,u) = (km(x,u), d
m
(x,u)) /∈

⊎

n≤N An, let

zm+1
(x,u) := Eval(η(dm(x,u)), um+1) ∈

⊎

k∈KF

F̂k(D).

• Let M(x,u) := {m ∈ ω : zm(x,u) /∈
⊎

n≤N An}.

Note that the definition comes to a halt once zm(x,u) ∈
⊎

n≤N An. The sequence {d
m
(x,u)}m<M(x,u)

over D is the evaluation sequence of (x, u). The sequence {km(x,u)}m<M(x,u)
over KF is the

evaluation path of (x, u). If M(x,u) < ω, and σ is the finite evaluation path of (x, u), we let
n(x,u) := 〈σ〉, with 〈·〉 a fixed injective function from the set of finite sequences over KF into
N. We say that n(x,u) is the code for the evaluation path. In the case of a finite M(x,u), we

obtain an evaluation result z
M(x,u)

(x,u) ∈
⊎

n≤N An. If M(x,u) = ∅, then the evaluation sequence

and evaluation path of (x, u) are both empty.

We define a map ζ : D × U → E as follows: Let ζ(x, u) = (z
M(x,u)

(x,u)
, n(x,u)) ∈ E if

M(x,u) < ω and let ζ(x, u) = ⊥ if M(x,u) = ω.
Let η̄ := curry(ζ). We will show that ζ is continuous, equivariant and equi-injective,

and as a consequence η̄ will be well-defined, continuous, equivariant and equi-injective.
If the evaluation sequence of (x, u) is infinite, we get ζ(x, u) = ⊥. Note that, since we

used the strict product of
⊎

n≤N An and N , we get ζ(x, u) = ⊥ even when the evaluation
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sequence is finite with ⊥ as evaluation result. This is because the evaluation path is of no
interest if the evaluation result is ⊥.

Claim 12. Let (x, u), (x′, u′) ∈ D×U and assume (x, u) ⊑ (x′, u′). Then M(x,u) ≤M(x′,u′),
and zm(x,u) ⊑ zm(x′,u′) for every m ≤ M(x,u) finite. Moreover, if M(x,u) < M(x′,u′), then

z
M(x,u)

(x,u) = ⊥.

This follows from the fact mentioned above that comparable non-terminating elements

of
⊎

k∈KF
F̂k(D) are either both in

⊎

n≤N An or both in its complement. For the full proof,
see appendix A.

This is used below to show that ζ is a monotone map. Another consequence is that the
evaluation path over (x, u) is an initial segment of the evaluation path over (x′, u′) when
(x, u) ⊑ (x′, u′).

Claim 13. Let ∆ be a non-empty directed subset of D × U . For each m ∈ ω, let ∆m be
the subset {(x, u) ∈ ∆ :M(x,u) ≥ m}. If m ≤M⊔∆ is finite, then

(1) ∆m is directed with
⊔

∆m =
⊔

∆; and
(2) {zm(x,u) : (x, u) ∈ ∆m} is directed with least upper bound zm⊔∆.

Both parts of the claim is proved by a simultaneous induction on m, see appendix A.

If M⊔∆ < ω, then ∆M⊔∆ 6= ∅ and zM⊔∆
⊔∆ =

⊔

{zM⊔∆

(x,u) : (x, u) ∈ ∆M⊔∆}. Combining

this with the previous claim, we observe that the evaluation path of
⊔

∆ is identical to the
evaluation path of (x, u) for all (x, u) ∈ ∆M⊔∆, i.e. n⊔∆ = n(x,u).

We can now show that ζ : D × U → E is continuous:

• Assume that (x, u) ⊑ (x′, u′). Then either M(x,u) = M(x′,u′) or zM(x,u) = ⊥. If either

M(x,u) = ω or zM(x,u) = ⊥, then ζ(x, u) = ⊥. Otherwise, zM(x,u) ⊑ zM(x′,u′) and n(x,u) =

n(x′,u′), which means that ζ(x, u) ⊑ ζ(x′, u′).
• Let ∆ ⊆ D × U be non-empty, directed. If M⊔∆ = ω, then ζ(⊔∆) = ζ(x, u) = ⊥ for
all (x, u) ∈ ∆. If M⊔∆ < ω, then there exists (x, u) ∈ ∆ such that M(x,u) = M⊔∆ and

zM⊔∆
⊔∆ =

⊔

{zM⊔∆

(x,u) : (x, u) ∈ ∆M⊔∆}.

This also means that η̄ : D → [U → E] is well-defined and continuous.
Recall that the dense least fixed point D is constructed as the inductive limit of a γ-

chain of dense domain-pers with D as the underlying domain, for some ordinal γ. If x ∈ DR,
we let rank(x) := rankγ(x), the level of the induction at which x is introduced as a total
element.

Claim 14. Let x ∈ DR with rank(x) = α+ 1. Then η(x) ∈ [T →
⊎

k∈K Fk(Dα)]
R.

This shows that the evaluation under η of a total element will give a total element of
strictly lower rank, and hence that such an evaluation will proceed in a finite number of
steps.

Claim 15. Let (x, u), (x′, u′) ∈ D×U and assume that (x, u) ≈D×U (x′, u′). ThenM(x,u) =
M(x′,u′) < ω, and zm(x,u) ≈ zm(x′,u′) for every m ≤M(x,u).

An immediate consequence is that the evaluation paths of (x, u) and (x′, u′) are identical
and finite. Hence, n(x,u) = n(x′,u′), and the respective evaluation results are equivalent in
⊎

n≤N An, i.e. z
M(x,u)

(x,u) ≈ z
M(x,u)

(x′,u′) . In particular, this shows that ζ is equivariant, and therefore

also that η̄ is equivariant.



STRICTLY POSITIVE INDUCTION 29

Finally, we give a direct proof that η̄ is equi-injective since η is: Choose x, x′ ∈ D
and assume that η̄(x) ≈[U→E] η̄(x

′). Let u, u′ ∈ U and assume that u ≈U u′. Then

Eval(η̄(x), u) ≈E Eval(η̄(x′), u′). Firstly, this means that n(x,u) = n(x′,u′), so the evaluation
paths of (x, u) and (x′, u′) are identical, and the evaluation sequences are of the same length,
say M . Secondly, this means that zM(x,u) ≈ zM(x′,u′), and since um ≈T u′m for all m ≤ M and

η is equi-injective, we obtain zm(x,u) ≈ zm(x′,u′) by a backwards induction on m, and ultimately

x ≈D x′.

We will now define a lower adjoint of η̄ : D → η̄[D]d, and show that these two domain-
pers are weakly isomorphic.

Lemma 2.42. Let F : clcDP → clcDP be a strictly positive functor with dense, admissible
parameters, and let D be a dense least fixed point of F. Let the domain-pers U and E and
the equivariant and equi-injective map η̄ : D → [U → E ] be as defined in the proof of
lemma 2.41.

Then D and η̄[D]d are weakly isomorphic domain-pers.

Proof. We will define an equivariant map ϑ̄ : η̄[D]d → D such that ϑ̄ ◦ η̄ ≈[D→D] idD and

such that η̄ ◦ ϑ̄ ≈[η̄[D]d→η̄[D]d] idF , where F is the underlying domain of η̄[D]d.
By means of the map ϑF defined in lemma 2.40, we will first define a monotone map

ϑ̄ : Fc → Dc such that if q ∈ Fc, x ∈ DR and q ≺[U→E] [η̄(x)], then ϑ̄(q) ≺D [x]. This map

extends uniquely to a continuous map ϑ̄ : F → D, and we will then show that (ϑ̄, η̄) is an
adjunction pair.

The map ϑ̄ is constructed as follows: For each
⊔

j∈J [p
j ; (qj , nj)] ∈ Fc \ {⊥}, we will

define an evaluation tree T consisting of finite, decreasing sequences of non-empty subsets
of the index set J . This tree depends only on {(pj , nj)}j∈J which is a finite subset of Uc×N,
since we w.l.o.g. assume that (qj , nj) 6= ⊥ for all j ∈ J . In the next step, we decorate all
the leaf nodes of T using the finite subset {qj}j∈J of

⊎

n≤N An. Inductively we decorate
the rest of the tree with the help of ϑF. Ultimately, we decorate the empty node with an
element of Dc, which we take as ϑ̄(

⊔

j∈J [p
j; (qj , nj)]).

Let J be some finite index set. By a finite, decreasing sequence ς of length |ς| over J ,
we will mean a non-empty finite list of non-empty sets ς|ς|−1 ⊆ · · · ⊆ ς1 ⊆ ς0 ⊆ J .

For a finite subset {(pj , nj)}j∈J of Uc × N, let T ({(pj , nj)}j∈J ) be the set of finite,
decreasing sequences ς over J such that

• {pjm}j∈ςm is consistent in TF for every m < |ς|; and
• there exist natural numbers nς and Mς such that
− nj = nς for each j ∈ ς0; and
− nς codes a finite evaluation path of length Mς ≥ |ς| − 1.

Ordered by sequence extension, and with the empty sequence e added as a root, T ({(pj , nj)}j∈J)
is a tree.

The number nς is determined by ς0, the first entry of the sequence ς, and Mς depends
only on nς . This means that if ς ⊆ τ , then nς = nτ and Mς = Mτ . By definition of the
tree, we have |ς| ≤Mς +1 for every ς. If |ς| =Mς +1, then no further extension is possible.
If |ς| < Mς + 1, then ς has a trivial extension. Hence, a sequence ς is maximal if and only
if |ς| = Mς + 1. Moreover, Mς + 1 is the upper bound on the length of an extension of ς.
The tree is finite, since J is finite and there is a finite number of Mς to choose from.

For each ς ∈ T ({(pj , nj)}j∈J), we define pς ∈ Uc as follows:
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• pςm :=
⊔

j∈ςm
pjm for every m < |ς|; and

• pςm := ⊥ for m ≥ |ς|.

Claim 16. Let
⊔

j∈J [p
j ; (qj , nj)] ⊑

⊔

k∈K [pk; (qk, nk)] (with J ∩K = ∅).

Then there exists a function f : T ({(pj , nj)}j∈J) → T ({(pk, nk)}k∈K) such that

• pf(ς) ⊑ pς ;
• ς ⊆ τ ⇒ f(ς) ⊆ f(τ);
• |f(ς)| = |ς|; and
• ς is maximal in T ({(pj , nj)}j∈J) ⇔ f(ς) is maximal in T ({(pk, nk)}k∈K).

We define the sequence f(ς) inductively, starting with the first entry. For the details,
see appendix A. This shows that if

⊔

j∈J [p
j, (qj , nj)] ∈ [U → E]c, then the evaluation tree

T ({(pj , nj)}j∈J) is uniquely defined up to isomorphism of trees.
For a given

⊔

j∈J [p
j; (qj , nj)] ∈ Fc, we will now give a decoration qς for each non-empty

node ς of the evaluation tree, starting with the leaf nodes. For this purpose, we fix some
x ∈ DR such that

⊔

j∈J [p
j; (qj , nj)] ≺[U→E] [η̄(x)].

Claim 17. Let ς be maximal with |ς| = M + 1, and let j ∈ ςM . If u ∈↑pς ∩ UR, then
qj ≺(

⊎
n≤N An) [z

M
(x,u)], where z

M
(x,u) is the evaluation result of (x, u).

This shows that {qj : j ∈ ςMς} is consistent for a maximal ς, since
⊎

n≤N An is a local
domain-per. We let

qς :=
⊔

j∈ςMς

qj ∈
⊎

n≤N

An ⊆
⊎

k∈KF

F̂k(D).

For a non-maximal ς, let S(ς) be the set of immediate successors of ς in the evaluation
tree.

Claim 18. Let ς be non-maximal and non-empty, and assume that

∀τ ∈ S(ς) ∀v ∈ UR (pτ ⊑ v ⇒ qτ ≺(
⊎

k∈K
F
Fk(D)) [z

|τ |−1
(x,v) ]).

Then {[pτ|ς|; q
τ ] : τ ∈ S(ς)} is consistent and if u ∈↑pς ∩ UR, then

⊔

{[pτ|ς|; q
τ ] : τ ∈ S(ς)} ≺ηF[F(D)]d [ηF(d

|ς|−1
(x,u))].

This shows that we can apply ϑF on
⊔

τ∈S(ς)[p
τ
|ς|; q

τ ] if ς is non-maximal and non-empty

and qτ is well-defined for all τ ∈ S(ς). With the additional condition that ς is non-empty,
let

qς := (k|ς|−1
ς , ϑF(

⊔

τ∈S(ς)

[pτ|ς|; q
τ ])) ∈

⊎

k∈KF

F̂k(D),

where {kmς }m<Mς is the evaluation path coded by nς .

We now have a decoration qς ∈
⊎

k∈KF
F̂k(D) for all non-empty ς, with the additional

property that qς ≺(
⊎

k∈K
F
Fk(D)) [z

|ς|−1
(x,u) ] for all u ∈↑pς ∩ UR. Inductively, we see that

⊔

{[pς0; q
ς ] : ς ∈ S(e)} ≺[TF→

⊎
k∈K

F
Fk(D)] [ηF(x)].

We can now define:

ϑ̄(
⊔

j∈J

[pj, (qj , nj)]) := ϑF(
⊔

{[pς0; q
ς ] : ς ∈ S(e)}) ∈ Dc,
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where e is the empty sequence. By lemma 2.40, we even have ϑ̄(
⊔

j∈J [p
j, (qj , nj)]) ≺D [x].

We take ϑ̄(⊥F ) := ⊥D. We show that ϑ̄ : Fc → Dc is a well-defined and monotone map
by a leaf-to-root induction on the evaluation tree.

Claim 19. Let
⊔

j∈J [p
j; (qj , nj)] ⊑

⊔

k∈K [pk; (qk, nk)] ∈ Fc, and let f : T ({(pj , nj)}j∈J) →

T ({(pk, nk)}k∈K) be as in the claim above. If ς ∈ T ({(pj , nj)}j∈J) is non-empty, then

qς ⊑ qf(ς).

If
⊔

j∈J [p
j ; (qj , nj)] ⊑

⊔

k∈K [pk; (qk, nk)], then for each sequence σ ∈ T ({(pj , nj)}j∈J )

of length 1, there is a sequence f(ς) ∈ T ({(pk, nk)}k∈K) of length 1, with pf(ς) ⊑ pς and

qς ⊑ qf(ς). This shows that

ϑ̄(
⊔

j∈J

[pj; (qj , nj)]) ⊑ ϑ̄(
⊔

k∈K

[pk; (qk, nk)]).

We have a unique continuous extension ϑ̄ : F → D. We will now show that (ϑ̄, η̄) is an
adjunction pair.

Claim 20. Let
⊔

j∈J [p
j; (qj , nj)] ∈ Fc and let r ∈ Dc. Then

⊔

j∈J [p
j ; (qj , nj)] ⊑ η̄(r) if and

only if qς ⊑ z
|ς|−1
(r,pς) for every non-empty ς ∈ T .

The claim shows that
⊔

j∈J [p
j ; (qj , nj)] ⊑ η̄(r) if and only if qς ⊑ z0(r,pς0)

= Eval(ηF(r), p
ς
0)

for each ς ∈ S(e). This is again equivalent to
⊔

ς∈S(e)

[pς0; q
ς ] ⊑ ηF(r),

and furthermore to ϑF(
⊔

ς∈S(e)[p
ς
0; q

ς ]) ⊑ r since (ϑF, ηF) is an adjunction pair. This shows

that (ϑ̄, η̄) is an adjunction pair.
The monotone map ϑ̄ extends uniquely to a continuous map on η̄[D]d, and (ϑ̄, η̄) is an

adjunction pair with the required ≺-property.

Claim 21. Let y ∈ η̄[D]R. Then η̄(ϑ̄(y)) ≈[U→E] y.

In this proof, we use the fact that D is local and complete. See appendix A for details.
A direct consequence is that if η̄(x) ≈[U→E] y, then η̄(x) ≈[U→E] η̄(ϑ̄(y)) which implies

x ≈D ϑ̄(y), since η̄ is equi-injective. In particular, if x ∈ DR, then x ≈D ϑ̄(η̄(x)). This also
shows that ϑ̄ : η̄[D]d → D is equivariant: If y ≈η̄[D] y

′, then there is some x ∈ DR such that

y ≈[U→E] η̄(x) ≈[U→E] y
′ and therefore ϑ̄(y) ≈D x ≈D ϑ̄(y′). Hence, (ϑ̄, η̄) : η̄[D]d → D is a

weak isomorphism pair.

We can now prove our main result.

Theorem 2.43. Let F : clcDP → clcDP be a strictly positive functor with dense, admis-
sible parameters.

Then the dense least fixed point of F is admissible.

Proof. Let D be the dense least fixed point of F. By lemma 2.41 and lemma 2.42, we have
dense, admissible domain-pers U and E and an equivariant map η̄ : D → [U → E ] such that
D and η̄[D]d are weakly isomorphic.

We have that [U → E ] is admissible since U , E are dense, admissible by lemma 1.9. Then
id : η̄[D] → [U → E ] is an equiembedding by lemma 2.38. This shows that η̄[D] is admissible
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by observation 2.27. Admissibility is preserved under the dense part construction, see
observation 2.30, so η̄[D]d is admissible. Finally, since D and η̄[D]d are weakly isomorphic,
we can use lemma 2.24 and conclude that D is admissible.

3. Strictly positive induction in QCB0

We will now use the construction of a dense, admissible least fixed point of a strictly positive
functor F : clcDP → clcDP with dense, admissible parameters to define qcb0 spaces by
strictly positive induction.

First, we show that the choice of convex, local and complete domain-pers as the objects
in the category clcDP was adequate.

Lemma 3.1. Let X be a topological space. Then X is a qcb0 space if and only if there
exists a countably based, dense, admissible, convex, local and complete domain-per D such
that QD ∼= X.

Proof. Let X be a qcb0 space. Let (D,DR, δ) be the standard dense and admissible rep-
resentation of X w.r.t to some countable pseudobase P, see the proof of theorem 1.5 for
details, and let D be the associated domain-per.

If x ∈ DR, then Iδ(x) is a greatest representative for δ(x), so Iδ(x) =
⊔

[x]D. Hence, D
is local and complete.

For the convexity, let I, J,K be ideals over (P,⊇) and assume that I ⊆ J ⊆ K and
that I,K →P x. Then x ∈ B for all B ∈ J , since J ⊆ K. If x ∈ U and U ⊆ X is open,
then there exists B ∈ I ⊆ J with x ∈ B ⊆ U . This shows that J →P x.

For the converse, QD is a qcb space by since it is the quotient space of DR, a countably
based space. It is a qcb0 space by corollary 1.11, since D is an admissible domain-per.

The basic operations for qcb0 spaces are identity (id), disjoint sum (· ⊎ ·), sequential
product (· ×s ·), and QCB0-exponential ([· ⇒

s ·]), as defined in section 1. An operation on
qcb0 spaces is said to be strictly positive if it is constructed from a finite list of qcb0 spaces
(the positive parameters), using identity, disjoint sum, sequential product and QCB0-
exponentiation by a fixed qcb0 space (a non-positive parameter). The basic operations on
qcb0 spaces are representable by the corresponding basic operations on domain-pers:

Lemma 3.2. Let D and E be admissible domain-pers. Then

Q(D + E) ∼= (QD) ⊎ (QE);

Q(D × E) ∼= (QD)×s (QE).

If, in addition, D is dense, then Q[D → E ] ∼= [QD ⇒s QE ] .

Proof. As already observed in lemma 2.23, the domain representations induced by D+E and
D×E are admissible domain representations of (QD)⊎(QE) and (QD)×(QE), respectively.
On condition that D is dense, the domain representation induced by [D → E ] is an admissible
domain representation of [QD ⇒ω QE ].

This implies that Q(D+E), Q(D×E) andQ[D → E ] are homeomorphic to the respective
sequential closures (QD) ⊎ (QE), (QD)×s (QE) and [QD ⇒s QE ].
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For the domain-pers we took the categorical approach to the problem of definitions by
strictly positive induction, similar to the technique for solving recursive domain equations.
We then made a suitable choice of morphisms which were, in a sense, embeddings. For the
qcb0 spaces, there is no obvious choice of embeddings. We will therefore pass directly from
a strictly positive operation on qcb0 spaces to a functorial representation over clcDP.

If Γ is a strictly positive operation on qcb0 spaces, we obtain a strictly positive operation
on domain-pers by replacing

• each (positive or non-positive) parameter P in Γ by a countably based, dense, admissible,
convex, local and complete domain-per A with QA ∼= P ; and

• each occurrence of one of the basic operations id, ·⊎·, ·×s · or [· ⇒s ·] by the corresponding
domain-per operation id, ·+ ·, · × · or [· → ·].

Strictly positive operations are functorial in clcDP, and in combination with lemma 3.2
this implies that there exists a functor F : clcDP → clcDP such that for every domain-per
D and qcb space X, we have

QD ∼= X ⇒ Q(FD) ∼= ΓX.

We refer to F as the functorial representation of Γ over clcDP.

Proposition 3.3. Let Γ be a strictly positive operation on qcb0 spaces. Let F be a functorial
representation of Γ over clcDP, and let D be a least fixed point of F. Then QD is a qcb0
space and a fixed point of Γ, i.e. QD ∼= Γ(QD).

Proof. The functorial representation F of Γ has countably based, dense, admissible param-
eters by definition. Then D is countably based by observation 2.21. The dense part of D is
a dense least fixed point of F and therefore admissible by theorem 2.43. Since QD ∼= Q(Dd)
by the definition of dense part and Q(Dd) is a qcb0 space by lemma 3.1, this shows that
QD is a qcb0 space.

Since D is a least fixed point of F, we have D ∼= F(D) and QD ∼= Q(FD). Moreover,
Q(FD) ∼= Γ(QD) since F is a functorial representation of Γ. This shows that QD ∼= Γ(QD).

This shows that strictly positive operations on qcb0 spaces admit fixed points. Put
differently, we can construct a solution of the strictly positive ’recursive qcb0 equation’
X = Γ(X) by means of a functorial representation of Γ over clcDP. In order to say that
this is a definition by strictly positive induction, we need to show that it is a canonical
solution, i.e. independent of the chosen functorial representation of Γ.

Proposition 3.4. Let Γ be a strictly positive operation on qcb0 spaces. If F and G are
functorial representations of Γ over clcDP and D and E are least fixed points of F and G,
respectively, then QD ∼= QE.

Proof. We say that strictly positive endofunctors over clcDP are weakly equivalent if we can
obtain one from the other by replacing each parameter by a weakly isomorphic domain-per.

Claim 22. Let F and G be weakly equivalent strictly positive endofunctors over clcDP.
Then there exist assignments ϕ 7→ ϕF,G and ϕ 7→ ϕG,F from the class of equivariant maps
into itself with the following properties:

(1) if ϕ : D → E , then ϕF,G : F(D) → G(E) and ϕG,F : G(D) → F(E);
(2) if (ϕ,χ) is a weak isomorphism of domain-pers D and E , then (ϕF,G, χG,F) is a weak

isomorphism of F(D) and G(E); and
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(3) if ϕ, χ are equivariant maps and f, g are equiembeddings which satisfy g ◦ ϕ = χ ◦ f ,
then G(g) ◦ ϕF,G = χF,G ◦ F(f).

The proof is straight-forward. Some more details are given in appendix A.
Now, let F and G be functorial representations of Γ over clcDP. Then F and G are

weakly equivalent: A parameter in Γ is represented by a dense, admissible parameter in F

and by a dense, admissible parameter in G. By lemma 2.25, these parameters are weakly
isomorphic.

If β is an ordinal, let ({Dα}α∈β , {fα,α′}α≤α′∈β) be the β-chain constructed from F, and
let ({Eα}α∈β , {gα,α′}α≤α′∈β) be the β-chain constructed from G. Choose a limit ordinal γ
such that Dγ and Eγ are least fixed points of F and G, respectively.

Claim 23. There are families {ϕβ : Dβ → Eβ}β≤γ and {χβ : Eβ → Dβ}β≤γ of equivariant
maps such that each (ϕβ , χβ) is a weak isomorphism pair.

This proof is by transfinite induction on β ≤ γ and make use of the assignments
ϕ 7→ ϕF,G and ϕ 7→ ϕG,F defined above. We also need an extra induction hypothesis and
the notion of a uniform mapping ( definition 2.15) for the induction to go through. The
complete proof is given in appendix A.

In particular, the claim shows that (ϕγ , χγ) is a weak isomorphism pair of Dγ and Eγ .
By lemma 2.24, this implies that QDγ

∼= QEγ .

Now, we are ready to state and prove our main result.

Theorem 3.5. Let Γ be a strictly positive operation on qcb0 spaces. Then Γ has a fixed
point X ∼= Γ(X). Moreover, the fixed point is defined via a least fixed point construction in
domain theory, and it is is independent, up to homeomorphism, of the admissible standard
domain representations used for the parameters involved.

Proof. The fixed point of Γ exists by proposition 3.3. It is independent of the choice of
functorial representation of Γ by proposition 3.4.

Applications of interest in analysis usually concern Hausdorff spaces, so we include the
following important result.

Proposition 3.6. If X is a qcb0 space defined by a strictly positive induction in which all
positive parameters involved are Hausdorff, then X is Hausdorff.

Proof. Let Γ be the strictly positive operation used to define X and let A0, . . . , AN be the
positive parameters involved.

Let D be the dense least fixed point of some functorial representation of Γ. Consider
the equivariant and equi-injective map η : D → [U → E ] defined in lemma 2.41. Let ηQ be
the induced continuous, injective map from X to [QU → (

⊎

i≤N Ai) × N], which is the set

of continuous functions from QU into (
⊎

i≤N Ai) × N with a topology which is finer than
the compact-open topology.

Choose distinct points x, y ∈ X. Then ηQ(x) 6= ηQ(y), so they are evaluated differently
for some u ∈ QU , that is Eval(ηQ(x), u) 6= Eval(ηQ(y), u). Now, because (

⊎

i≤N Ai)× N is
Hausdorff, these evaluation results can be separated by open neighbourhoods Vx and Vy.
Then {f : f(u) ∈ Vx} and {f : f(u) ∈ Vy} are disjoint basic open sets in the compact-
open topology, thus separating ηQ(x) and ηQ(y). The inverse images are then disjoint open
neighbourhoods separating x and y.
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Remark 3.7. If f : D → E is an equiembedding, then fQ : QD → QE is an injective
map. Moreover, it has the property that a sequence is mapped to a convergent sequence if
and only if it is itself convergent. Note that these sequential embeddings are not necessarily
embeddings in the topological sense, unless the spaces are countably based.

Unfortunately, there is no obvious way to lift a sequential embedding f : X → Y of
qcb0 spaces to an equiembedding of representing domain-pers. Therefore, these embeddings
are of limited interest.

Remark 3.8. The fixed point of Γ can be constructed as an inductive limit: Let F be
a functorial representation of Γ over clcDP. By proposition 2.34, there exists a γ-chain
({Dα}α∈γ , {fα,β}α≤β∈γ) of dense domain-pers and equiembeddings such that the inductive
limit Dγ is a dense least fixed point of F. The dense least fixed point is admissible by
theorem 2.43 and so all the domain-pers are admissible by observation 2.27. This shows
that ({QDα}α∈γ , {f

Q
α,β}α≤β∈γ) is a directed system of qcb0 spaces and continuous functions.

Using the lifting of all continuous functions to dense, admissible domain representations
(lemma 1.8), we can show that QDγ is the inductive limit.

For what it is worth, the continuous functions of the directed system are sequential
embeddings as described in the previous remark.

The fixed point of Γ is an example of an inductive limit, possibly uncountable, of qcb0
spaces. The category QCB0 does not have uncountable inductive limits, so the existence
of the fixed point cannot be proved inductively within the class of qcb0 spaces. On the
contrary, the chain of qcb0 spaces is constructed from the limit and down and not from the
bottom and up. Furthermore, this means that we do not know whether the fixed point is a
least fixed point of some strictly positive endofunctor over QCB0. For examples of initial
algebras in QCB0, see [3].

A natural extension of this work would be to study positive inductive definitions in
general.

Appendix A. Proof of claims

Proposition 2.20.

Claim 1. There exists a family {hβ : Dβ → E}β≤γ0 of equiembeddings such that, for each
β ∈ γ0, hβ = g ◦ F(hβ) ◦ fβ,β+1 = hβ+1 ◦ fβ,β+1.

Proof. The proof is by transfinite induction on β.
Let h0 be the unique equiembedding from D0 into E . Since g ◦ F(h0) ◦ f0,1 is an

equiembedding from D0 into E , we have h0 = g ◦F(h0) ◦ f0,1.
Assume that hβ : Dβ → E is an equiembedding satisfying hβ = g ◦ F(hβ) ◦ fβ,β+1. Let

hβ+1 := g ◦ F(hβ). Then hβ = hβ+1 ◦ fβ,β+1 and

hβ+1 = g ◦F(hβ+1 ◦ fβ,β+1) = g ◦F(hβ+1) ◦ F(fβ,β+1) = g ◦F(hβ+1) ◦ fβ+1,β+2.

Assume that hα = hα+1 ◦ fα,α+1 for every α ∈ β, where β ≤ γ0 is some limit ordinal.
Let hβ : Dβ → E be the mediating morphism from (Dβ , {fα,β}α∈β) to (E , {hα}α∈β), i.e.
the unique equiembedding such that hα = hβ ◦ fα,β for every α ∈ β, which exists since
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(Dβ , {fα,β}α∈β) is the inductive limit. Then, for each α ∈ β, we have

hα = g ◦ F(hα) ◦ fα,α+1

= g ◦ F(hβ ◦ fα,β) ◦ fα,α+1

= g ◦ F(hβ) ◦F(fα,β) ◦ fα,α+1

= g ◦ F(hβ) ◦ fα,β+1

= g ◦ F(hβ) ◦ fβ,β+1 ◦ f
−
α,β

Together with the uniqueness of hβ, this implies that hβ = g ◦ F(hβ) ◦ fβ,β+1.

Claim 2. Let ω ≤ β ≤ γ0 and assume that fβ,β+1 is an isomorphism. Then hβ : Dβ → E

is the unique F̂-morphism from (Dβ , f
−
β,β+1) into (E, g).

Proof. The proof is by transfinite induction on β ≤ γ0. From domain theory, we know that
there exists an initial F̂-algebra (D, f). In fact, we can use D = Dω and f : F̂(Dω) → Dω

the unique embedding such that f ◦ F̂(fn,ω) = fn+1,ω for all n ∈ ω. In our notation, f is

f−ω,ω+1, an isomorphism, thus hω is an F̂-morphism and unique by the initiality of (Dω, f).

Assume that hβ : Dβ → E is the unique F̂-morphism from (Dβ , f
−
β,β+1) into (E, g), and

in particular that (Dβ , f
−
β,β+1) is an initial F̂-algebra. Then

(Dβ+1, f
−
β+1,β+2) = (F̂(Dβ), F̂(f

−
β,β+1))

is an initial F̂-algebra and hβ◦f
−
β,β+1 = hβ+1 is the unique F̂-morphism from (Dβ+1, f

−
β+1,β+2)

into (E, g).

Assume that hα : Dα → E is the unique F̂-morphism from (Dα, f
−
α,α+1) into (E, g)

for every α ∈ β, for some limit ordinal β ≤ γ0. Then fβ,β+1 is an isomorphism, since

every fα,α+1 is an isomorphism. This shows that hβ is an F̂-morphism. Now, assume that

h′ : Dβ → E is another F̂-morphism from (Dβ , f
−
β,β+1) into (E, g). If α ∈ β, we have

h′ ◦ fα,β = g ◦ F̂(h′) ◦ fβ,β+1 ◦ fα,β = g ◦ F̂(h′ ◦ fα,β) ◦ fα,α+1. This shows that h′ ◦ fα,β is

an F̂-morphism from (Dα, f
−
α,α+1) into (E, g) and that hα = h′ ◦ fα,β. By definition of hβ ,

we have hβ = h′, so hβ is unique.

Proposition 2.34.

Claim 3. There exists a family {∆n}n∈ω of closed subsets of D, closed under binary lubs,
such that

(1) ∆n ⊆ ∆n+1; and
(2) ∆n ∩DR

α = DR
n for every α ≥ ω.

Proof. We define ∆n ⊆ D by induction on n ∈ ω. We let ∆0 := ∅. Take as induction
hypothesis that ∆n ⊆ D is a closed subset, closed under binary lubs, such that ∆n ⊆ ∆n+1

and ∆n ∩ DR
α = DR

n for every α ≥ ω. By induction on the structure of a strictly positive

functor F′ with dense non-positive parameters, we define a closed subset ∆F′

n of F̂′(D),

closed under binary lubs, satisfying ∆F
′

n ∩ F′(Dα)
R = F′(Dn)

R for every α ≥ ω:

• If we have a constant functor, let ∆A
n := A. Clearly, A ∩ AR = AR.

• For the identity functor, let ∆id
n := ∆n. Then ∆id

n ∩DR
α = DR

n by the induction hypothesis
on n.
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• Let ∆F0+F1
n :=

⋃

i=0,1{(i, x) : x ∈ ∆Fi
n } ∪ {⊥}. The verification is straight-forward.

• Let ∆F0×F1
n := ∆F0

n ×∆F1
n . The verification is straight-forward.

• Let ∆
[B→F1]
n := {x ∈ [B → F̂1(D)] : x[B] ⊆ ∆F1

n }. We verify the set equality: If for

some α ≥ ω, we have x ∈ [B → F1(Dα)]
R ∩∆

[B→F1]
n and b1 ≈B b2, then x(b1) ≈α x(b2).

Furthermore x(b1), x(b2) ∈ ∆F1
n ∩ F1(Dα)

R = F1(Dn)
R, which implies x(b1) ≈n x(b2).

This shows that x ∈ [B → F1(Dn)]
R.

If x ∈ [B → F1(Dn)]
R, then x[BR] ⊆ F1(Dn)

R. This implies x[B] ⊆ cl(F1(Dn)
R) ⊆

∆F1
n , since BR is dense in B. Hence, x ∈ ∆

[B→F1]
n .

In particular, this holds for the functor F. We let ∆n+1 := ∆F
n . By the isomorphism of

F̂(D) and D, this can be considered as a closed subset of D which is also closed under
binary lubs. Then, for every α ≥ ω,

DR
n+1 = F(Dn)

R = ∆F

n ∩F(Dα)
R = ∆n+1 ∩DR

α+1 = ∆n+1 ∩ DR
α

since DR
n+1 ⊆ DR

α .

Claim 4. Let n ≥ 1. Then there exists a continuous map rn : D → D such that

(1) ∆n = {x ∈ D : rn(x) = x}; and
(2) if α ≥ n, then rn : Dα → Dn is equivariant.

Proof. We prove the claim by induction on n. In the beginning of the proof of proposi-
tion 2.34, we make the assumption that F is non-trivial. Therefore, we begin by construct-
ing a continuous map rF

′

0 : F′(D) → F′(D) satisfying ∆F′

0 = {x ∈ F̂′(D) : rF
′

0 (x) = x}, by
induction on the structure of a non-trivial, strictly positive F′. Non-triviality means that
we only have to consider the four induction steps of lemma 2.33.

• If F′ is atomic, it is a constant functor and equal to some dense A. Let rF
′

0 := idA.
Verification of the set-equality above is trivial.

• If F0 + F1 is non-trivial, then at least one of F0 and F1 is non-trivial. If both are non-
trivial, let rF0+F1

0 := rF0
0 + rF1

0 . Verification is straight-forward. If one of them, say F1,

is trivial, we fix x0 ∈ F0(D0)
R. Let rF0+F1

0 be the strict function which maps (0, x) to

(0, rF0
0 (x)) and (1, x) to (0, x0). This is a continuous function, since rF0

0 is continuous by

the induction hypothesis. Then rF0+F1
0 (0, x) = (0, x) if and only if rF0

0 (x) = x, again by

the induction hypothesis. Keeping in mind that ∆F1
0 = ∅ (because F1 is trivial), we see

that this verifies the set equality.
• If F0 × F1 is non-trivial, then both F0 and F1 are non-trivial, and we let rF0×F1

0 :=

rF0
0 × rF1

0 . Verification is again straight-forward.

• Finally, if [B → F1] is non-trivial then F1 is non-trivial, so let r
[B→F1]
0 := (idB → rF1

0 ).

Then x ∈ ∆
[B→F1]
0 if and only if x[B] ⊆ ∆F1

0 , which by the induction hypothesis is

equivalent to rF1
0 (x(b)) = x(b) for every b ∈ B, that is rF1

0 ◦ x = x.

It is easily verified by structural induction on F′ that rF
′

0 : F′(Dα) → F′(D0) is equivari-
ant. The only case for which it is not immediate is F′ = F0 + F1 with F1 trivial: If
(0, x) ≈F′(Dα) (0, y), then r

F0
0 (x) ≈ rF0

0 (y) by the induction hypothesis, and if x ∈ F1(D)R,

then rF0+F1
0 (1, x) = (0, x0).

In particular, this shows that we have a continuous map rF0 : D → D satisfying

∆1 = ∆F

0 = {x ∈ D : rF0 (x) = x}.
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For the induction start n = 1, we let r1 := rF0 . Then r1 : Dα → D1 is equivariant by
induction on α ≥ 1:

• Let α = α′ + 1. Then rF0 : F(Dα′) → F(D0) equivariant.
• Let α be a limit ordinal. If x ≈α y, then x ≈α′ y for some α′ ∈ α. By the induction
hypothesis, we have r1(x) ≈1 r1(y). This shows that r1 is equivariant.

For the induction step, assume that the claim holds for n. Recall that strictly positive
operations are functorial in Dom as well, so we may consider F̂ as a functor over Dom.
Then rn+1 := F(rn) is continuous, and ∆n+1 = {x ∈ D : rn+1(x) = x}, This can be verified
by an induction on the structure of a non-trivial, strictly positive F′ as for n = 1 above,
since F is assumed to be non-trivial, and all the induction steps of lemma 2.33 is covered
above. Moreover, rn+1 : Dα+1 → Dn+1 is equivariant for every α ≥ n, because F is a functor
over PER(Dom) as well, and this extends to every limit ordinal as it did for n = 1.

Claim 5. Let p ∈ Dc and assume that ↑p ∩ DR
α 6= ∅ for some α ∈ γ. Then p ∈

⋃

n∈ω ∆n.

Proof. We prove this claim by transfinite induction on α.

• Trivially true for α = 0, since DR
0 = ∅ .

• Assume that the claim holds for α. By induction on the structure of a strictly positive F′

with dense non-positive parameters, we prove that ↑p∩F′(Dα)
R 6= ∅ ⇒ p ∈

⋃

n∈ω ∆F′

n for

all p ∈ F̂′(D)c: All cases are trivially verified, except for the exponentiation: Assume that
↑
⊔

j∈J [p
j ; qj ] ∩ [B → F1(Dα)]

R 6= ∅. Then for each j ∈ J , we have ↑pj ∩ BR 6= ∅, since

B is dense. This implies that ↑qj ∩ F1(Dα)
R 6= ∅, for each j ∈ J , and by the induction

hypothesis, we then have {qj}j∈J ⊆
⋃

n∈ω ∆F1
n . Since J is finite, we have {qj}j∈J ⊆ ∆F1

n

for some n ∈ ω, and this shows that
⊔

j∈J [p
j; qj ] ∈ ∆

[B→F1]
n . In particular, we have

Dα+1 = F(Dα) and ↑p ∩ DR
α+1 6= ∅ ⇒ p ∈

⋃

n∈ω ∆n.

• Let α ∈ γ be a limit ordinal and assume that the claim holds for all α′ ∈ α If ↑p∩DR
α 6= ∅,

then ↑p ∩ DR
α′ 6= ∅ for some α′ ∈ α, so p ∈

⋃

n∈ω ∆n.

Lemma 2.40.

Claim 6. Let p ∈ EF
c and r ∈ F̂(D)c. Then ϑF(p) ⊑ r ⇔ p ⊑ ηF(r).

Proof. Observe that since ηF is a strict map, we have ϑF(p) = ⊥ if and only if p = ⊥, so

we prove the result for
⊔

j∈J [p
j ; qj] ∈ EF

c and (i, r) ∈ F̂(D)c \ {⊥}.

Let ϑF(
⊔

j∈J [p
j; qj ]) ⊑ (i, r). Then i is the index determined by

⊔

j∈J [p
j ; qj ] as above

and ϑFi
(
⊔

j∈J ′[p
j
i ; q

j ]) ⊑ r for every J ′ ⊆ J with {pj}j∈J ′ consistent. By the induction

hypothesis
⊔

j∈J ′[p
j
i ; q

j ] ⊑ ηFi
(r) for every such J ′ ⊆ J . In particular, if j ∈ J , then

qj ⊑ Eval(ηFi
(r), pji ) = Eval(ηF(i, r), p

j).

Hence,
⊔

j∈J [p
j; qj ] ⊑ ηF(i, r).

Let
⊔

j∈J [p
j ; qj ] ⊑ ηF(i, r). Then qj ⊑ Eval(ηFi

(r), pji ) for every j ∈ J . Moreover, i is

the index determined by
⊔

j∈J [p
j ; qj ], and

⊔

j∈J ′ [p
j
i ; q

j ] ⊑ ηFi
(r) for J ′ ⊆ J on condition

that {pj}j∈J ′ is consistent. This condition is essential, since it ensures that
⊔

j∈J ′′

qj ⊑
⊔

{Eval(ηF(i, r), p
j) : j ∈ J ′′} ⊑

⊔

{Eval(ηFi
(r), pji ) : j ∈ J ′′},
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whenever J ′′ ⊆ J ′. By the induction hypothesis, ϑFi
(
⊔

j∈J ′ [p
j
i ; q

j ]) ⊑ r for every such

J ′ ⊆ J , so ϑF(
⊔

j∈J [p
j ; qj ]) ⊑ (i, r).

Claim 7. Let b ∈ BR and p ∈ approx(b). Let
⊔

j∈J [p
j; qj ] ∈ EF

c be witnessed by x ∈ [B →

F1(D)]R.

Then
⊔

j∈J{[p
j
1; q

j ] : pj0 ⊑ p} ∈ EF1
c is witnessed by x(b).

Proof. Let j ∈ J and t ∈↑pj1 ∩ T R
F1
, and assume that pj ⊑ p. Then we have pj = (pj0, p

j
1) ⊑

(b, t). By assumption, we then have qj ≺ [Eval(ηF(x), (b, t))]. Since Eval(ηF(x), (b, t)) =
Eval(ηF1(x(b)), t), this implies qj ≺ [Eval(ηF1(x(b)), t)].

Claim 8. Let
⊔

j∈J [p
j ; qj] ∈ EF

c .

If J ′ is a subset of J such that {pj0}j∈J ′ is consistent in B, then {ϑF1(
⊔

k∈J{[p
k
1 ; q

k] :

pk0 ⊑ pj0})}j∈J ′ is consistent in F̂1(D).

Proof. Choose x ∈ [B → F1(D)]R witnessing that
⊔

j∈J [p
j; qj ] ∈ EF

c .

Assume that J ′ ⊆ J and that {pj0}j∈J ′ is consistent in B. Let j ∈ J and choose

b ∈↑
⊔

j∈J ′ p
j
0 ∩ BR. Then

⊔

k∈J{[p
k
1 ; q

k] : pk0 ⊑ pj0} ∈ EF1
c is witnessed by x(b) by the

previous claim. Moreover, by the induction hypothesis, we have ϑF1(
⊔

k∈J{[p
k
1 ; q

k] : pk0 ⊑

pj0}) ≺F1(D) [x(b)]. This is sufficient as F1(D) is local.

Claim 9. Assume
⊔

j∈J [p
j ; qj] ⊑

⊔

k∈K [pk; qk] ∈ EF
c . Then

⊔

j∈J

[pj0;ϑF1(
⊔

l∈J

{[pl1; q
l] : pl0 ⊑ pj0})] ⊑

⊔

k∈K

[pk0 ;ϑF1(
⊔

m∈K

{[pm1 ; qm] : pm0 ⊑ pk0})].

Proof. Fix j ∈ J . If l ∈ J with pl0 ⊑ pj0, then

ql ⊑
⊔

k∈K

{qk : pk ⊑ pl} ⊑
⊔

k∈K

{qk : pk0 ⊑ pj0 ∧ p
k
1 ⊑ pl1}.

This shows that
⊔

l∈J{[p
l
1; q

l] : pl0 ⊑ pj0} ⊑
⊔

k∈K{[pk1 ; q
k] : pk0 ⊑ pj0}, and we have

ϑF1(
⊔

l∈J

{[pl1; q
l] : pl0 ⊑ pj0}) ⊑

⊔

k∈K

{ϑF1([p
k
1 ; q

k]) : pk0 ⊑ pj0}

since ϑF1 is continuous.

Claim 10. Let
⊔

j∈J [p
j; qj ] ∈ EF

c and let r ∈ DF
c . Then

⊔

j∈J [p
j; qj ] ⊑ ηF(r) if and only

if, for every j ∈ J ,
⊔

k∈J

{[pk1 ; q
k] : pk0 ⊑ pj0} ⊑ ηF1(r(p

j
0)).

Proof. Assume
⊔

j∈J [p
j; qj ] ⊑ ηF(r). Fix j ∈ J and let J ′ := {k ∈ J : pk0 ⊑ pj0}. Then for

each k ∈ J ′, we have

qk ⊑ Eval(ηF(r), p
k) ⊑ Eval(ηF1(r(p

k
0)), p

k
1) ⊑ Eval(ηF1(r(p

j
0)), p

k
1).

Hence,
⊔

k∈J ′{[pk1 ; q
k] ⊑ ηF1(r(p

j
0)).

Let j ∈ J and assume that
⊔

k∈J{[p
k
1 ; q

k] : pk0 ⊑ pj0} ⊑ ηF1(r(p
j
0)). If k ∈ J and pk0 ⊑ pj0,

then qk ⊑ Eval(ηF1(r(p
j
0)), p

k
1). In particular, qj ⊑ Eval(ηF1(r(p

j
0)), p

j
1) = Eval(ηF(r), p

j).
This holds for all j ∈ J , so

⊔

j∈J [p
j ; qj] ⊑ ηF(r).
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Lemma 2.41.

Claim 11. U is dense and admissible.

Proof. U is obviously dense, since T is dense.
We can characterise U as the domain-per [N →⊥ T ], since strict functions x : N⊥ →

T are interchangeable with countable sequences over T . We know that N is dense and
admissible and that T is admissible. By lemma 1.9, this means that U is admissible.

Claim 12. Let (x, u), (x′, u′) ∈ D × U and assume (x, u) ⊑ (x′, u′).
Then M(x,u) ≤ M(x′,u′), and z

m
(x,u) ⊑ zm(x′,u′) for every m ≤ M(x,u) finite. Moreover, if

M(x,u) < M(x′,u′), then z
M(x,u)

(x,u) = ⊥.

Proof. The monotonicity of η gives zm(x,u) ⊑ zm(x′,u′) by an easy induction on m. This implies

that
zm(x′,u′) ∈

⊎

n≤N

An ⇒ zm(x,u) ∈
⊎

n≤N

An,

which shows that M(x,u) ≤M(x′,u′).

If M = M(x,u) < M(x′,u′), then zM(x,u) ∈
⊎

n≤N An and zM(x′,u′) /∈
⊎

n≤N An. Since

zM(x,u) ⊑ zM(x′,u′), this leaves z
M
(x,u) = ⊥ as the only possibility.

Claim 13. Let ∆ be a non-empty directed subset of D × U . For each m ∈ ω, let ∆m be
the subset {(x, u) ∈ ∆ :M(x,u) ≥ m}.

If m ≤M⊔∆ is finite, then

(1) ∆m is directed with
⊔

∆m =
⊔

∆; and
(2) {zm(x,u) : (x, u) ∈ ∆m} is directed with least upper bound zm⊔∆.

Proof. We have seen that (x, u) ⊑ (x′, u′) ⇒ M(x,u) ≤ M(x′,u′), which shows that ∆m is
an upwards-closed subset of ∆. Hence, ∆m is directed with

⊔

∆m =
⊔

∆ whenever it is
non-empty.

We prove ∆m 6= ∅ and the second part of the claim simultaneously by induction on m:

• Let m = 0. Then ∆0 = ∆ 6= ∅. Moreover, z0⊔∆ =
⊔

{z0(x,u) : (x, u) ∈ ∆}, since η is

continuous.
• Let m < M⊔∆ and assume ∆m 6= ∅ and zm⊔∆ =

⊔

{zm(x,u) : (x, u) ∈ ∆m}. Then zm⊔∆ /∈
⊎

n≤N An, and since
⊎

n≤N An is a closed subset, there exists some (x, u) ∈ ∆m such that

zm(x,u) /∈
⊎

n≤N An and m < M(x,u). This shows that ∆m+1 6= ∅. Furthermore,

zm+1
⊔∆ = Eval(η(

⊔

{dm(x,u) : (x, u) ∈ ∆m}),
⊔

{um+1 : (x, u) ∈ ∆m})

= Eval(η(
⊔

{dm(x,u) : (x, u) ∈ ∆m+1}),
⊔

{um+1 : (x, u) ∈ ∆m+1})

=
⊔

{Eval(η(dm(x,u)), um+1) : (x, u) ∈ ∆m+1}

=
⊔

{zm+1
(x,u) : (x, u) ∈ ∆m+1}.

Claim 14. Let x ∈ DR with rank(x) = α+ 1. Then η(x) ∈ [T →
⊎

k∈K Fk(Dα)]
R.

Proof. First note that the operation [T →
⊎

k∈K Fk(·)] is strictly positive and functorial
over clcDP. The equiembedding fα : Dα → D is the identity map on D, so this gives us
[T →

⊎

k∈KF
Fk(Dα)]

R ⊆ [T →
⊎

k∈KF
Fk(D)]R.
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Moreover, the domain function η is independent of the per ≈α. Thus, if rank(x) = α+1,
then x ∈ DR

α+1 = F(Dα)
R. This shows that η(x) ∈ [T →

⊎

k∈K Fk(Dα)]
R.

Claim 15. Let (x, u), (x′, u′) ∈ D×U and assume that (x, u) ≈D×U (x′, u′). ThenM(x,u) =
M(x′,u′) < ω, and zm(x,u) ≈ zm(x′,u′) for every m ≤M(x,u).

Proof. By induction on m, we have zm(x,u) ≈ zm(x′,u′) since η is equivariant. This means

that the respective evaluation sequences simultaneously reach
⊎

n≤N An, and that M(x,u) =
M(x′,u′).

Moreover, if m + 1 < M(x,u) and rank(dm(x,u)) = α + 1, then rank(dm+1
(x,u)) ≤ α. If

we assume M(x,u) = ω, we obtain an infinite evaluation sequence over DR and the rank
operation gives an infinite and strictly decreasing sequence of ordinals, which leads to a
contradiction. Hence, M(x,u) < ω.

Lemma 2.42.

Claim 16. Let
⊔

j∈J [p
j ; (qj , nj)] ⊑

⊔

k∈K [pk; (qk, nk)] (with J ∩K = ∅). Then there exists

a function f : T ({(pj , nj)}j∈J) → T ({(pk, nk)}k∈K) such that

• pf(ς) ⊑ pς ;
• ς ⊆ τ ⇒ f(ς) ⊆ f(τ);
• |f(ς)| = |ς|; and
• ς is maximal in T ({(pj , nj)}j∈J) ⇔ f(ς) is maximal in T ({(pk, nk)}k∈K).

Proof. Let ς ∈ T ({(pj , nj)}j∈J). We define a sequence ς ′ over K of length |ς| inductively:
Let ς ′0 := {k ∈ K : pk0 ⊑ pς0} and let ς ′m+1 := {k ∈ ς ′m : pkm+1 ⊑ pςm+1} for m+ 1 < |ς|.

We show that ς ′m 6= ∅: For each j ∈ J , there is some k ∈ K such that pk ⊑ pj, since
(qj , nj) 6= ⊥ by assumption. In particular, for each j ∈ ςm there is some k ∈ K such that

pkm ⊑ pjm ⊑ pςm and k ∈ ς ′m. By induction on m < |ς|, this shows that

∅ 6=
⋂

n≤m

{k ∈ K : pkn ⊑ pjn} ⊆ ς ′m.

Clearly, {pkm}k∈ς′m is bounded by pςm by definition of ς ′m. Moreover, nj = nk whenever

pk ⊑ pj, so if we take Mς′ =Mς and nς′ = nς , we see that ς ′ ∈ T ({(pk, nk)}k∈K).
Let f(ς) := ς ′. The inductive definition of ς ′ shows that f is monotone and that

|f(ς)| = |ς|. Since Mf(ς) =Mς , the function also preserves maximality.

Claim 17. Let ς be maximal with |ς| = M + 1, and let j ∈ ςM . If u ∈↑pς ∩ UR, then
qj ≺(

⊎
n≤N An) [z

M
(x,u)], where z

M
(x,u) is the evaluation result of (x, u).

Proof. Let u ∈↑pς ∩ UR. Choose some u′ ∈↑pj ∩ UR such that u′m = um for every m ≤ M ,

which is possible since pjm ⊑ pςm. By assumption, (qj , nj) ≺E [Eval(η̄(x), u′)], and since
nj = nς codes an evaluation path of length M , this implies that qj ≺(

⊎
n≤N An) [zM(x,u′)].

However, the evaluation result depends only on the firstM+1 entries of u′, so zM(x,u′) = zM(x,u).



42 P. K. KØBER

Claim 18. Let ς be non-maximal and non-empty, and assume that

∀τ ∈ S(ς) ∀v ∈ UR (pτ ⊑ v ⇒ qτ ≺(
⊎

k∈K
F
Fk(D)) [z

|τ |−1
(x,v) ]).

Then {[pτ|ς|; q
τ ] : τ ∈ S(ς)} is consistent and if u ∈↑pς ∩ UR, then

⊔

{[pτ|ς|; q
τ ] : τ ∈ S(ς)} ≺ηF[F(D)]d [ηF(d

|ς|−1
(x,u))].

Proof. Let u ∈↑pς ∩ UR. We must show that for each t ∈ T R
F

and each τ ∈ S(ς), we have
⊔

{qτ : pτ|ς| ⊑ t} ≺(
⊎

k∈K
F
Fk(D)) [Eval(ηF(d

|ς|−1
(x,u)), t)].

Let u′ ∈ UR be u with u|ς| replaced by t. If t ∈↑pτ|ς|, then u′ ∈↑pτ and qτ ≺(
⊎

k∈K
F
Fk(D))

[z
|τ |−1
(x,u′)] by assumption. On the other hand, z

|ς|
(x,u) = z

|ς|
(x,u′) and Eval(ηF(d

|ς|−1
(x,u)), t) = z

|ς|
(x,u′) =

z
|τ |−1
(x,u′).

Claim 19. Let
⊔

j∈J [p
j; (qj , nj)] ⊑

⊔

k∈K [pk; (qk, nk)] ∈ Fc, and let f : T ({(pj , nj)}j∈J) →

T ({(pk, nk)}k∈K) be as in the claim above. If ς ∈ T ({(pj , nj)}j∈J) is non-empty, then

qς ⊑ qf(ς).

Proof. Let ς be maximal with |ς| =M + 1. If j ∈ ςM , then

qj ⊑
⊔

k∈K

{qk : pk ⊑ pj} ⊑
⊔

k∈K

{qk : ∀m ≤M (pkm ⊑ pjm)} ⊑
⊔

k∈f(ς)M

qk .

This shows that qς =
⊔

j∈ςM
qj ⊑ qf(ς).

Let ς be non-maximal and take as induction hypothesis that qτ ⊑ qf(τ) for all τ ∈ S(ς).
Moreover, if τ ∈ S(ς), then f(τ) ∈ S(f(ς)) and qτ ⊑

⊔

υ∈S(f(ς)){q
υ : pυ|ς| ⊑ pτ|ς|}. This proves

that
⊔

{[pτ|ς|; q
τ ] : τ ∈ S(ς)} ⊑

⊔

{[pυ|ς|; q
υ] : υ ∈ S(f(ς))}.

Furthermore, ϑF is monotone, and nς = nf(ς) so the respective evaluation paths are identi-
cal. This shows that

(k|ς|−1
ς , ϑF(

⊔

τ∈S(ς)

[pτ|ς|; q
τ ])) ⊑ (k|ς|−1

ς , ϑF(
⊔

υ∈S(f(ς))

[pτ|ς|; q
τ ])) .

Claim 20. Let
⊔

j∈J [p
j; (qj , nj)] ∈ Fc and let r ∈ Dc. Then

⊔

j∈J [p
j ; (qj , nj)] ⊑ η̄(r) if and

only if qς ⊑ z
|ς|−1
(r,pς) for every non-empty ς ∈ T .

Proof. Assume that
⊔

j∈J [p
j ; (qj , nj)] ⊑ η̄(r) and let ς ∈ T be maximal. For each j ∈ J , we

have (qj , nj) ⊑ Eval(η̄(r), pj) = (zM(r,pj), n(r,pj)), with M the length of the evaluation path

of (r, pj), and this implies that qj ⊑ zM(r,pj) and nj = n(r,pj). Moreover, if j ∈ ςM , then

zM
(r,pj)

⊑ zM(r,pς) since pj ⊑ pς , and |ς| = M + 1 since nς = nj which codes the evaluation

path of (r, pj). This shows that qς ⊑ zM(r,pς) .

Assume that qς ⊑ z
|ς|−1
(r,pς) for every maximal ς ∈ T . If j ∈ J , there is some maximal ς with

ςM = {j}. Then qj = qς ⊑ zM(r,pς) and nj = nς = n(r,pj); in sum (qj , nj) ⊑ Eval(η̄(r), pj).

This shows that
⊔

j∈J [p
j; (qj , nj)] ⊑ η̄(r).
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Let ς ∈ T be non-maximal and assume that qς ⊑ z
|ς|−1
(r,pς). Then

ϑF(
⊔

τ∈S(ς)

[pτ|ς|; q
τ ]) ⊑ d

|ς|−1
(r,pς)

which, since ηF is the upper adjoint of ϑF implies that
⊔

τ∈S(ς)

[pτ|ς|; q
τ ] ⊑ ηF(d

|ς|−1
(r,pς )).

In particular, for each τ ∈ S(ς), we have qτ ⊑ Eval(ηF(d
|ς|−1
(r,pς)), p

τ
|ς|) = z

|ς|
(r,pτ ) = z

|τ |−1
(r,pτ ) .

Let ς ∈ T be non-maximal and assume that qτ ⊑ z
|τ |−1
(r,pτ ) for all extensions τ of ς and that

if τ is a maximal extension of ς, then nτ codes the evaluation path of (r, pτ ). Choose some

maximal extension τ of ς. Then nς = nτ and k
|ς|−1
ς = k

|ς|−1
(r,pς) since pςm = pτm for m < |ς|.

Moreover, for each τ ∈ S(ς), we have qτ ⊑ z
|τ |−1
(r,pτ ) = Eval(ηF(d

|ς|−1
(r,pς )), p

τ
|ς|). Thus,

⊔

τ∈S(ς)

[pτ|ς|; q
τ ] ⊑ ηF(d

|ς|−1
(r,pς )),

which since ϑF is the lower adjoint of ηF shows that

ϑF(
⊔

τ∈S(ς)

[pτ|ς|; q
τ ]) ⊑ d

|ς|−1
(r,pς).

Hence, qς ⊑ z
|ς|−1
(r,pς).

Claim 21. Let y ∈ η̄[D]R. Then η̄(ϑ̄(y)) ≈[U→E] y.

Proof. Fix some x ∈ DR such that η̄(x) ≈[U→E] y. Since D is local and complete and η̄ is

equivariant, we can assume that x =
⊔

[x]. If q ∈ approx(y), then ϑ̄(q) ≺D [x] which implies
ϑ̄(q) ⊑ x. This shows that ϑ̄(y) = ϑ̄(

⊔

approx(y)) ⊑ x.
Let u ∈ UR. Then Eval(η̄(x), u) ≈E y(u) and since (ϑ̄, η̄) is an adjunction pair,

y(u) ⊑ Eval(η̄(ϑ̄(y)), u) ⊑ Eval(η̄(x), u).

This implies that Eval(η̄(ϑ̄(y)), u) ≈E y(u) since E is convex.

Proposition 3.4.

Claim 22. Let F and G be weakly equivalent strictly positive endofunctors over clcDP.
Then there exist assignments ϕ 7→ ϕF,G and ϕ 7→ ϕG,F from the class of equivariant maps
into itself with the following properties:

(1) if ϕ : D → E , then ϕF,G : F(D) → G(E) and ϕG,F : G(D) → F(E);
(2) if (ϕ,χ) is a weak isomorphism of domain-pers D and E , then (ϕF,G, χG,F) is a weak

isomorphism of F(D) and G(E); and
(3) if ϕ, χ are equivariant maps and f, g are equiembeddings which satisfy g ◦ ϕ = χ ◦ f ,

then G(g) ◦ ϕF,G = χF,G ◦ F(f).

Proof. We define the assignments ϕ 7→ ϕF,G and ϕ 7→ ϕG,F by simultaneous induction on
the structure of F and G. The tedious but straight-forward verifications of properties 1-3
at each induction step are left for the reader.
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• If F = G = id, let ϕF,G := ϕG,F := ϕ.
• If F and G are constant functors, equal to A and A′, respectively, choose some weak
isomorphism pair (ψA,A′ , ψA′,A) : A → A′, and let ϕF,G := ψA,A′ and ϕG,F := ψA′,A for
all equivariant ϕ.

• If F = F0 + F1 and G = G0 +G1 with Fi and Gi weakly equivalent for i = 0 and for
i = 1, let ϕF,G := ϕF0,G0 + ϕF1,G1 and ϕG,F := ϕG0,F0 + ϕG1,F1 .

• If F = F0 × F1 and G = G0 ×G1 with Fi and Gi weakly equivalent for i = 0 and for
i = 1, let ϕF,G := ϕF0,G0 × ϕF1,G1 and ϕG,F := ϕG0,F0 × ϕG1,F1 .

• If F = [B → F1] and G = [B′ → G1] with F1 and G1 weakly equivalent, choose some
weak isomorphism pair (ψB,B′ , ψB′,B) : B → B′. Let ϕF,G := (ψB′,B → ϕF1,G1) and let

ϕG,F := (ψB,B′ → ϕG1,F1).

Claim 23. There are families {ϕβ : Dβ → Eβ}β≤γ and {χβ : Eβ → Dβ}β≤γ of equivariant
maps such that each (ϕβ , χβ) is a weak isomorphism pair.

Proof. We define families {ϕβ : Dβ → Eβ}β≤γ and {χβ : Eβ → Dβ}β≤γ of equivariant maps
such that

(1) each (ϕβ , χβ) is a weak isomorphism pair; and
(2) {ϕα}α∈β is a uniform mapping (see definition 2.15) from ({Dα}α∈β , {fα,α′}α≤α′∈β) to

({Eα}α∈β , {gα,α′}α≤α′∈β) if β ≤ γ is a limit ordinal.

The second point is necessary as part of the induction hypothesis for the definition of ϕβ

when β is a limit ordinal.
Since F and G are weakly equivalent, we can choose assignments ϕ 7→ ϕF,G and

ϕ 7→ ϕG,F as in the claim above.
First, we define ϕβ by transfinite induction on β:

• Let ϕ0 := idD0 = idE0 .

• If β is a successor ordinal, let ϕβ := ϕF,G
β−1.

• If β is a limit ordinal, then {ϕα}α∈β is a uniform mapping from ({Dα}α∈β , {fα,α′}α≤α′∈β)
to ({Eα}α∈β , {gα,α′}α≤α′∈β) by the induction hypothesis. Let ϕβ be the unique equivariant
map from Dβ into Eβ such that ϕβ ◦ fα,β = gα,β ◦ ϕα for all α ∈ β. This map exists by
lemma 2.16.

We define χβ symmetrically (just by swapping F and G).

(1) By a transfinite induction on β, we show that (ϕβ , χβ) is a weak isomorphism pair:

• For a successor ordinal β, this follows from the claim above since (ϕβ , χβ) = (ϕF,G
β−1, χ

G,F
β−1).

• If β is a limit ordinal, then it follows from the induction hypothesis by symmetry
that {χα}α∈β is a uniform mapping. Thus, (ϕβ , χβ) is a weak isomorphism pair by
lemma 2.16.

(2) Let β be a limit ordinal. It is sufficient to prove that gα,α′ ◦ ϕα = ϕα′ ◦ fα,α′ for all
α ≤ α′ ∈ β, since this implies that {ϕα}α∈β is a uniform mapping. We prove this by a
transfinite induction on α and α′:
• g0,α′ ◦ ϕ0 = ϕα′ ◦ f0,α′ trivially for all α′.
• If α,α′ both are successor ordinals, then

gα,α′ ◦ ϕα = G(gα−1,α′−1) ◦ ϕ
F,G
α−1 = ϕF,G

α′−1 ◦ F(fα−1,α′−1) = ϕα′ ◦ fα,α′ .

• If α′ is a limit ordinal, then ϕα′ ◦ fα,α′ = gα,α′ ◦ ϕα by definition of ϕα′ .
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• If α is a limit ordinal, choose arbitrary α′′ ∈ α. By the induction hypothesis, we have
ϕα′ ◦ fα′′,α′ = gα′′,α′ ◦ ϕα′′ . Then

(gα,α′ ◦ ϕα) ◦ fα′′,α = gα,α′ ◦ (gα′′,α ◦ ϕα′′)

= gα′′,α′ ◦ ϕα′′

= ϕα′ ◦ fα′′,α′

= (ϕα′ ◦ fα,α′) ◦ fα′′,α

which shows that gα,α′ ◦ ϕα = ϕα′ ◦ fα,α′ since α′′ was arbitrary.

Appendix B. Notation list

Notation which is repeated in different proofs is tentatively put together in this list.

• D0 is the trivial domain.
• D0 is the trivial domain-per.
• N⊥ is the flat domain of natural numbers.
• N is the domain-per with N⊥ as domain and equality restricted to N as partial equivalence
relation.

• Let D = (D,≈) be a domain-per.
− DR is the subspace {x ∈ D : x ≈ x} of D.
− If x ∈ DR, then [x] = {x′ ∈ D : x ≈ x′}.
− QD is the quotient space of DR under the equivalence relation ≈ |DR .
− (D,DR, δD) is a quotient domain representation of QD.
− If p ∈ Dc and x ∈ DR, then p ≺D [x], if there exists some x′ ∈ [x] with p ⊑ x′.
− Dd is the dense part of D, see definition 2.28.

• Let f : D → E be an equivariant map.
− fQ : QD → QE is the continuous map fQ([x]) = [f(x)].
− f [D] is the image of D under f , see definition 2.37.

• Let ({Di}i∈I , {fi,j}i≤j∈I) be a directed system over (I,≤) in clcDP.
− Di is the underlying domain of Di.
− DI is {x ∈

∏

i∈I Di : ∀i, j ∈ I(i ≤ j → f−i,j(xj) = xi)} with the product order.

− f−i : DI → Di is the projection f−i (x) = xi.
− x ≈I x

′, and this is witnessed by i, if

∃i ∈ I (xi ≈i x
′
i ∧ ∀k ≥ i (fi,k(xi) ≈k xk ∧ fi,k(x

′
i) ≈k x

′
k)).

− DI is DI with per ≈I .
• F̂ : Dome → Dome is the underlying functor of F : clcDP → clcDP, as described in
remark 2.11.

• Let F : clcDP → clcDP be a strictly positive functor. Assume that all non-positive
parameters are dense.

Let D be a convex, local and complete domain-per.
− F(D)d is the dense part of F(D) with underlying domain DF, see definition 2.28.
− TF is the dense domain-per defined in the proof of lemma 2.39. The underlying domain

is TF.
− {Fk}k∈KF

is the set of atomic subfunctors of F with repetition allowed.

− ηF : F(D)d → [TF →
⊎

k∈KF
Fk(D)] is the equivariant and equi-injective map defined

in the proof of lemma 2.39.
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− EF is the underlying domain of ηF[F(D)]d, the dense part of the image of F(D)d under
ηF, see definition 2.37.

− ϑF : EF → DF is the lower adjoint of ηF, defined in the proof of lemma 2.40.
• Let F : clcDP → clcDP be a strictly positive functor. Assume that all parameters are
dense and admissible.
− D is the dense least fixed point of F defined in subsection 2.5. The underlying domain

is D.
− T is the dense and admissible domain-per TF defined in the proof of lemma 2.39. The

underlying domain is T .
− η : D → [T →

⊎

k∈K Fk(D)] is the equivariant and equi-injective map ηF as defined in
the proof of lemma 2.39.

− U is the dense and admissible domain-per defined in the proof of lemma 2.41. The
underlying domain is U .

− A0, . . . ,AN are the positive parameters of F. The underlying domains are A0, . . . , AN .
− E is the domain-per (

⊎

n≤N An)⊗N . The underlying domain is E.

− η̄ : D → [U → E ] is the equivariant and equi-injective map defined in the proof of
lemma 2.41.

− If (x, u) ∈ D × U ,
∗ the evaluation sequence {dm(x,u)}m<M over D,

∗ the evaluation path {km(x,u)}m<M over KF and

∗ the evaluation result zM(x,u) ∈
⊎

n≤N An

are defined in the proof of lemma 2.41.
− η̄[D]d is the dense part of the image of D under η̄, see definition 2.37.
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