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Abstract. Is there any Cartesian-closed category of continuous domains that would be
closed under Jones and Plotkin’s probabilistic powerdomain construction? This is a major
open problem in the area of denotational semantics of probabilistic higher-order languages.
We relax the question, and look for quasi-continuous dcpos instead. We introduce a natural
class of such quasi-continuous dcpos, the omega-QRB-domains. We show that they form
a category omega-QRB with pleasing properties: omega-QRB is closed under the prob-
abilistic powerdomain functor, under finite products, under taking bilimits of expanding
sequences, under retracts, and even under so-called quasi-retracts. But. . . omega-QRB is
not Cartesian closed. We conclude by showing that the QRB domains are just one half of
an FS-domain, merely lacking control.

1. Introduction

1.1. The Jung-Tix Problem. A famous open problem in denotational semantics is whether
the probabilistic powerdomain V1(X) of an FS-domain X is again an FS-domain [JT98],
and similarly with RB-domains in lieu of FS-domains. V1(X) (resp. V≤1(X)) is the dcpo
of all continuous probability (resp., subprobability) valuations over X: this construction
was introduced by Jones and Plotkin to give a denotational semantics to higher-order prob-
abilistic languages [JP89].

More generally, is there a category of nice enough dcpos that would be Cartesian-closed
and closed under V1? We call this the Jung-Tix problem. By “nice enough”, we mean nice
enough to do any serious mathematics with, e.g., to establish definability or full abstraction
results in extensional models of higher-order, probabilistic languages. It is traditional to
equate “nice enough” with “continuous”, and this is justified by the rich theory of continuous
domains [GHK+03].

However, quasi-continuous dcpos (see [GLS83], or [GHK+03, III-3]) generalize contin-
uous dcpos and are almost as well-behaved. We propose to widen the scope of the problem,
and ask for a category of quasi-continuous dcpos that would be closed under V1. We show
that, by mimicking the construction of RB-domains [AJ94], with some flavor of “quasi”,
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Figure 1: Part of the Hasse Diagram of V1(X)

we obtain a category ωQRB of so-called ωQRB-domains that not only has many desired,
nice mathematical properties (e.g., it is closed under taking bilimits of expanding sequences,
and every ωQRB-domain is stably compact), but is also closed under V1.

We failed to solve the Jung-Tix problem: ωQRB is indeed not Cartesian-closed. In spite
of this, we believe our contribution to bring some progress towards settling the question,
and at least to understand the structure of V1(X) better. To appreciate this, recall what
is currently known about V1. There are two landmark results: V1(X) is a continuous dcpo
as soon as X is ([Eda95], building on Jones [JP89]), and V1(X) is stably compact (with
its weak topology) whenever X is [JT98, AMJK04]. Since then, no significant progress has
been made. When it comes to solving the Jung-Tix problem, we must realize that there
is little choice: the only known Cartesian-closed categories of (pointed) continuous dcpos
that may suit our needs are RB and FS [JT98]. I.e., all other known Cartesian-closed
categories of continuous dcpos, e.g., bc-domains or L-domains, are not closed under V1.
Next, we must recognize that little is known about the (sub)probabilistic powerdomain of
an RB or FS-domain. In trying to show that either RB or FS was closed under V1, Jung
and Tix [JT98] only managed to show that the subprobabilistic powerdomain V≤1(X) of a
finite tree X was an RB-domain, and that the subprobabilistic powerdomain of a reversed
finite tree was an FS-domain. This is still far from the goal.

In fact, we do not know whether V1(X) is an RB-domain when X is even the simple
poset {⊥, a, b,⊤} (a and b incomparable, ⊥ ≤ a, b ≤ ⊤, see Figure 1, right)—but it is
an FS-domain. For a more complex (arbitrarily chosen) example, take X to be the finite
pointed poset of Figure 2 (i): then V1(X) and V≤1(X) are continuous and stably compact,
but not known to be RB-domains or FS-domains (and they are much harder to visualize,
too).

No progress seems to have been made on the question since Jung and Tix’ 1998 attempt.
As part of our results, we show that for every finite pointed poset X, e.g. Figure 2 (i),
V1(X) is a continuous ωQRB-domain. This is also one of the basic results that we then
leverage to show that V1(X) is an ωQRB-domain for any ωQRB-domain, in particular
every RB-domain, not just every finite pointed poset, X.
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Figure 2: Poset Examples

One may obtain some intuition as to why this should be so, and at the same time give
an idea of what (ω)QRB-domains are. Let X be a finite pointed poset. In attempting
to show that V1(X) is an RB-domain, we are led to study the so-called deflations f :
V1(X) → V1(X), i.e., the continuous maps f with finite range such that f(ν) ≤ ν for
every continuous probability valuation ν on X, and we must try to find deflations f such
that f(ν) is as close as one desires to ν. All natural definitions of f fail to be continuous,
and in fact to be monotonic. (E.g., Graham’s construction [Gra88] is not monotonic, see
Jung and Tix.) Looking for maps f such that f(ν) is instead a finite, non-empty set of
valuations below ν shows more promise—the monotonicity requirements are slightly more
relaxed. Such a set-valued function is what we call a quasi-deflation below. For example,
one may think of fixing N ≥ 1 (N = 3 in Figure 1), and mapping ν to the collection of
all valuations ν ′ below ν such that the measure of any subset is a multiple of 1/N , keeping
only those ν ′ that are maximal. (Pick them from the left of Figure 1, in our example.) This
still does not provide anything monotonic, but we managed to show that one can indeed
approximate every element ν of V1(X), continuously in ν, using quasi-deflations. The proof
is non-trivial, and rests on deep properties relating QRB-domains and quasi-retractions,
all notions that we define and study.

1.2. Outline. We introduce most of the required notions in Section 2. Since we shall only
start studying the probabilistic powerdomain in Section 6, we shall refrain from defining
valuations, probabilities, and related concepts until then.

We introduce QRB-domains in Section 3. They are defined just as RB-domains are,
only with a flavor of “quasi”, i.e., replacing approximating elements by approximating
sets of elements. We establish their main properties there, in particular that they are
quasi-continuous, stably compact, and Lawson-compact. Much as RB-domains are also
characterized as the retracts of bifinite domains, we show that, up to a few details, the
QRB-domains are the quasi-retracts of bifinite domains in Section 4. This allows us to
parenthesize QRB as quasi-(retract of bifinite domain) or as (quasi-retract) of bifinite
domain. Quasi-retractions are an essential concept in the study of QRB-domains, and we
introduce them here, as well as the related notion of quasi-projections—images by proper
maps.

We also show that the category of countably-based QRB-domains is closed under finite
products (easy) and taking bilimits of expanding sequences (hard, but similar to the case
of RB-domains) in Section 5.

The core of the paper is Section 6, where we show that the category ωQRB of countably-
based QRB-domains is closed under the probabilistic powerdomain construction. This
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capitalizes on all previous sections, and will follow from a variant of Jung and Tix’ result
that V1(X) is an RB-domain whenever X is a finite tree, and applying suitable quasi-
projections and bilimits. The key result will then be Theorem 6.5, which shows that for
any quasi-projection Y of a stably compact space X, V1(Y ) is again a quasi-projection of
V1(X), again up to a few details.

We conclude in Section 7.

1.3. Other Related Work. Instead of solving the Jung-Tix problem, one may try to cir-
cumvent it. One of the most successful such attempts led to the discovery of qcb-spaces
[BSS07] and to compactly generated countably-based monotone convergence spaces [BSS06],
as Cartesian-closed categories of topological spaces where a reasonable amount of seman-
tics can be done. This provides exciting new perspectives. The category of qcb-spaces
accommodates two probabilistic powerdomains [BS09]. The observationally induced one is
essentially V1(X) (with the weak topology), but differs from the one obtained as a free
algebra.

2. Preliminaries

We refer to [AJ94, GHK+03, Mis98] for background material. A poset X is a set with a
partial ordering ≤. Let ↓A be the downward closure {x ∈ X | ∃y ∈ A · x ≤ y}; we write ↓x
for ↓{x}, when x ∈ X. The upward closures ↑A, ↑x are defined similarly. When x ≤ y, x
is below y and y is above x. X is pointed iff it has a least element ⊥. A dcpo is a poset X
where every directed family (xi)i∈I has a least upper bound supi∈I xi; directedness means
that I 6= ∅ and for every i, i′ ∈ I, there is an i′′ ∈ I such that xi, xi′ ≤ xi′′ .

Every poset, and more generally each preordered set X comes with a topology, whose
opens U are the upward closed subsets such that, for every directed family (xi)i∈I that has
a least upper bound in U , xi ∈ U for some i ∈ I. This is the Scott topology . When we see a
poset or dcpo X as a topological space, we will implicitly assume the latter, unless marked
otherwise.

There is a deep connection between order and topology. Given any topological space X,
its specialization preorder ≤ is defined by x ≤ y iff every open containing x also contains y.
X is T0 iff ≤ is an ordering, i.e., x ≤ y and y ≤ x imply x = y. The specialization preorder
of a dcpoX (with ordering ≤, and equipped with its Scott topology), is the original ordering
≤.

A subset A of a topological space X is saturated iff it is the intersection of all opens
U containing A. Equivalently, A is upward closed in the specialization preorder [Mis98,
Remark after Definition 4.34]. So we can, and shall often prove inclusions A ⊆ B where B
is upward closed by showing that every open U containing B also contains A.

A map f : X → Y between topological spaces is continuous iff f−1(V ) is open for every
open subset V of Y . Every continuous map is monotonic with respect to the underlying
specialization preorders. When X and Y are preordered sets, it is equivalent to require f
to be Scott-continuous, i.e., to be monotonic and to preserve existing directed least upper
bounds. A homeomorphism is a bijective continuous map whose inverse is also continuous.

Given a set X, and a family B of subsets of X, there is a smallest topology containing
B: then B is a subbase of the topology, and its elements are the subbasic opens. To show
that f : X → Y is continuous, it is enough to show that the inverse image of every subbasic
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open of Y is open in X. A subbase B is a base if and only if every open is a union of
elements of B. This is the case, for example, if B is closed under finite intersections.

The interior int(A) of a subset A of a topological space X is the largest open contained
in A. A is a neighborhood of x if and only if x ∈ int(A), and a neighborhood of a subset
B if and only if B ⊆ int(A). A subset Q of a topological space X is compact iff one can
extract a finite subcover from every open cover of Q. The important ones are the saturated
compacts. X is locally compact iff for each open U and each x ∈ U , there is a compact
saturated subset Q such that x ∈ int(Q) and Q ⊆ U . In any locally compact space, we
have the following interpolation property: whenever Q is a compact subset of some open
U , then there is a compact saturated subset Q1 such that Q ⊆ int(Q1) ⊆ Q1 ⊆ U .

X is sober iff every irreducible closed subset is the closure of a unique point; in the
presence of local compactness (and when X is T0), it is equivalent to require that X be
well-filtered [GHK+03, Theorem II-1.21], i.e., to require that, for every open U , for every

filtered family (Qi)i∈I of saturated compacts such that
⋂↓

i∈I Qi ⊆ U , Qi ⊆ U for some i ∈ I
already. We say that the family is filtered iff it is directed in the ⊇ ordering, and make it

explicit by using ↓ as superscript. (Symmetrically, we write
⋃↑ for directed unions.)

Given a topological space X, let Q(X) be the collection of all non-empty compact
saturated subsets Q of X. There are two prominent topologies one can put on Q(X). The
upper Vietoris topology has a subbase of opens of the form ✷U , U open inX, where we write
✷U for the collection of compact saturated subsets Q′ included in U . We shall write QV(X)
for the space Q(X) with the upper Vietoris topology, and call it the Smyth powerspace. The
specialization ordering of QV(X) is reverse inclusion ⊇. On the other hand, we shall reserve
the notation Qσ(X) for the Smyth powerdomain of X, which is equipped with the Scott
topology of ⊇ instead. When X is well-filtered, Q(X) is a dcpo, with least upper bounds
of directed families computed as filtered intersections, and ✷U is Scott-open for every open
subset U of X, i.e., the Scott topology is finer than the upper Vietoris topology. When X
is locally compact and sober (in particular, well-filtered), the two topologies coincide, and
Qσ(X) is then a continuous dcpo (see below), where Q ≪ Q′ iff Q′ ⊆ int(Q) [GHK+03,
Proposition I-1.24.2]. Schalk [Sch93, Chapter 7] provides a deep study of these spaces.

For every finite subset E of a topological space X, E is compact and ↑E is saturated
compact in X. We call finitary compact those subsets of the form ↑E with E finite, and let
Fin(X) be the subset of Q(X) consisting of the non-empty finitary compacts. Fin(X) can
be topologized with the subspace topology from QV(X), in which case we obtain a space
we write FinV(X), or with the Scott topology of reverse inclusion ⊇, yielding a space that
we write Finσ(X).

Given any poset X, any finite subset E of X, and any element x of X, we write E ≤ x
iff x ∈ ↑E, i.e., iff there is a y ∈ E such that y ≤ x. Given any upward closed subset
U of X, we shall write U Î x iff for every directed family (xi)i∈I that has a least upper
bound above x, then xi is in U for some i ∈ I. Then a finite set E approximates x iff
↑E Î x. This is usually written E ≪ x in the literature. We shall also write y ≪ x, when
y ∈ X, as shorthand for ↑ y Î x. This is the more familiar way-below relation, and a poset
is continuous if and only if the set ↓↓x of all elements y such that y ≪ x is directed and has
x as least upper bound. One should be aware that ↑E Î x means that the elements of E
approximate x collectively , while none in particular may approximate x individually. E.g.,
in the poset N2 (Figure 2 (ii)), the sets {(0,m), (1, n)} approximate ω, for all m,n ∈ N;
but (0,m) 6≪ ω, (1, n) 6≪ ω.
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It may be helpful to realize that Fin(X) can also be presented in the following equivalent
way. Given two finitary compacts ↑E and ↑E′, ↑E ⊇ ↑E′ if and only if for every x′ ∈ E′,
there is an x ∈ E such that x ≤ x′, and then we write E ≤♯ E′: this is the so-called Smyth
preorder . Then we can equate the finitary compacts ↑E with the equivalence classes of
finite subsets E, up to the equivalence ≡ defined by E ≡ E′ iff ↑E = ↑E′ iff E ≤♯ E′

and E′ ≤♯ E, declare that Fin(X) is the set of equivalence classes of non-empty finite sets,
ordered by ≤♯. But the approach based on finitary compacts is mathematically smoother.

Among the Cartesian-closed categories of continuous dcpos, one finds in particular
the B-domains (a.k.a., the bifinite domains), the RB-domains, i.e., the retracts of bifi-
nite domains [AJ94, Section 4.2.1], and the FS-domains [AJ94, Section 4.2.2][GHK+03,
Section II.2]. There are several equivalent definitions of the first two.

For our purposes, an RB-domain is a pointed dcpo X with a directed family (fi)i∈I
of deflations such that supi∈I fi = idX [AJ94, Exercise 4.3.11(9)]. A deflation f on X is
a continuous map from X to X such that f(x) ≤ x for every x ∈ X, and that has finite
image. We order deflations, as well as all maps with codomain a poset, pointwise: i.e.,
f ≤ g iff f(x) ≤ g(x) for every x ∈ X; knowing this, directed families and least upper
bounds of deflations make sense. Every RB-domain is a continuous dcpo, and fi(x) ≪ x
for every i ∈ I and every x ∈ X.

A B-domain is defined similarly, except the deflations fi are now required to be idem-
potent , i.e., fi ◦ fi = fi [AJ94, Theorem 4.2.6]. This implies that fi(x) ≪ fi(x), i.e., that
all the elements fi(x) are finite; hence all bifinite domains are also algebraic. Every bifinite
domain is an RB-domain. Conversely, the RB-domains are exactly the retracts of bifinite
domains: we shall define what this means and extend this in Section 4.

An FS-domain is defined similarly again, except the functions fi are no longer de-
flations, but continuous functions that are finitely separated from idX . That is, we now
require that there is a finite set Mi such that for every x ∈ X, there is an m ∈Mi such that
fi(x) ≤ m ≤ x. We say that Mi is finitely separating for fi on X.

Every deflation is finitely separated from idX : take Mi to be the image of fi. The
converse fails. E.g., for every ǫ > 0, the function x 7→ max(x − ǫ, 0) is finitely separated
from the identity on [0, 1], but is not a deflation [JT98, Section 3.2]. Every RB-domain is
an FS-domain. The converse is not known.

A quasi-continuous dcpo X (see [GLS83] or [GHK+03, Definition III-3.2]) is a dcpo
such that, for every x ∈ X, the collection of all ↑E ∈ Fin(X) that approximate x (↑E Î x)
is directed (w.r.t. ⊇) and their least upper bound in Q(X) is ↑x, i.e.,

⋂
↑E∈Fin(X)

↑EÎx

↑E = ↑x.

The theory of quasi-continuous dcpos is less well explored than that of continuous dcpos, but
quasi-continuous dcpos retain many of the properties of the latter. (Every continuous dcpo
is quasi-continuous, but not conversely. A counterexample is given by N2, see Figure 2 (ii).)
Every quasi-continuous dcpoX is locally compact and sober in its Scott topology [GHK+03,
III-3.7]. In a quasi-continuous dcpo X, for every ↑E ∈ Fin(X), the set ↑↑E defined as
{x ∈ X | ↑E Î x}, is open, and equals the interior int(↑E) [GHK+03, III-3.6(ii)]; every

open U is the union of all the subsets ↑↑E with ↑E ∈ Fin(X) contained in U [GHK+03,
III-5.6]; and for every compact saturated subset Q and every open subset U containing Q,

there is a finitary compact subset ↑E of X such that Q ⊆ ↑↑E and ↑E ⊆ U [GHK+03,

III-5.7]. In particular, Q =
⋂↓

↑E∈Fin(X), Q⊆↑↑E
↑E. Another consequence is interpolation:

writing ↑E Î ↑E′ for ↑E Î y for every y in E′ (equivalently, ↑E′ ⊆ ↑↑E), if ↑E Î x in a
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quasi-continuous dcpo X, for some ↑E ∈ Fin(X), and x ∈ X, then ↑E Î ↑E′
Î x for some

↑E′ ∈ Fin(X).

If X is a quasi-continuous dcpo, the formula Q =
⋂↓

↑E∈Fin(X), Q⊆↑↑E
↑E, valid for every

Q ∈ Q(X), shows that Q is the filtered intersection of its finitary compact neighborhoods,
equivalently the directed least upper bound of those non-empty finitary compacts ↑E (E ∈
Fin(X)) that are way-below Q. In other words, the finitary compacts form a basis of Q(X).

3. QRB-Domains

We modelQRB-domains after RB-domains, replacing single approximating elements fi(x),
where fi is a deflation, by finite subsets, as in quasi-continuous dcpos.

Definition 3.1 (QRB-Domain). A quasi-deflation on a poset X is a continuous map
ϕ : X → Finσ(X) such that x ∈ ϕ(x) for every x ∈ X, and imϕ = {ϕ(x) | x ∈ X} is finite.

A QRB-domain is a pointed dcpo X with a generating family of quasi-deflations, i.e.,

a directed family of quasi-deflations (ϕi)i∈I with ↑x =
⋂↓

i∈I ϕi(x) for each x ∈ X.

We order quasi-deflations pointwise, i.e., ϕ ≤ ψ iff ϕ(x) ⊇ ψ(x) for every x ∈ X. Above,

we write
⋂↓ instead of

⋂
to stress the fact that the family (ϕi(x))i∈I of which we are taking

the intersection is filtered , i.e., for any two i, i′ ∈ I, there is an i′′ ∈ I such that ϕi′′(x) is
contained in both ϕi(x) and ϕi′(x). It is equivalent to say that (ϕi(x))i∈I is directed in the
⊇ ordering of Fin(X).

One can see the finitary compacts ϕi(x) as being smaller and smaller upward closed sets

containing x. The intersection
⋂↓

i∈I ϕi(x) is then just the least upper bound of (ϕi(x))i∈I
in the Smyth powerdomain Q(X). On the other hand, X embeds into QV(X) by equating

x ∈ X with ↑x ∈ Q(X). Modulo this identification, the condition ↑x =
⋂↓

i∈I ϕi(x) requires
that x is the least upper bound of (ϕi(x))i∈I in Q(X).

That ϕ is continuous means that ϕ is monotonic (x ≤ y implies ϕ(x) ⊇ ϕ(y)), and that

for every directed family (xj)j∈J of elements of X, ϕ(supj∈J xj) is equal to
⋂↓

i∈I ϕ(xj)—this

implies that the latter is finitary compact, in particular.

Proposition 3.2. Every RB-domain is a QRB-domain.

Proof. Given a directed family of deflations (fi(x))i∈I , define ϕi(x) as ↑ fi(x). If fi ≤ fj,

then ϕi(x) ⊇ ϕj(x) for every x ∈ X, so (ϕi)i∈I is directed. Also,
⋂↓

i∈I ϕi(x) is the set of
upper bounds of (fi(x))i∈I , of which the least is x. So this set is exactly ↑x.

We shall improve on this in Theorem 7.3, which implies that not only the RB-domains,
but all FS-domains, are QRB-domains.

For any deflation f , and more generally whenever f is finitely separated from the
identity, f(x) is way-below x [GHK+03, Lemma II-2.16]. Similarly:

Lemma 3.3. Let X be a poset, and ϕ be a quasi-deflation on X. For every x ∈ X,
ϕ(x) Î x.

Proof. Let (xj)j∈J be a directed family having a least upper bound above x. Since ϕ is

continuous,
⋂↓

j∈J ϕ(xj) ⊆ ϕ(x). But since imϕ is finite, there are only finitely many sets

ϕ(xj), j ∈ J . So ϕ(xj) ⊆ ϕ(x) for some j ∈ J . Since xj ∈ ϕ(xj), xj ∈ ϕ(x).
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Corollary 3.4. Every QRB-domain is quasi-continuous.

In general, QRB-domains are not continuous. E.g., N2 (Figure 2 (ii)) is not continuous.
However, N2 is a QRB-domain: for all i, j ∈ N, take ϕij(ω) = ↑{(0, i), (1, j)}, ϕij(0,m) =
↑{(0,min(m, i)), (1, j)}, ϕij(1,m) = ↑{(0, i), (1,min(m, j))}. Then (ϕij)i,j∈N is the desired

directed family of quasi-deflations.
RB-domains, and more generally FS-domains, are not just continuous domains, they

are stably compact , i.e., locally compact, sober, compact and coherent (see, e.g., [AJ94,
Theorem 4.2.18]). We say that a topological space is coherent iff the intersection of any
two compact saturated subsets is compact (and saturated). In a stably compact space,
the intersection of any family of compact saturated subsets is compact. We show that
QRB-domains are stably compact as well.

Since every quasi-continuous dcpo is locally compact and sober [GHK+03, Proposi-
tion III-3.7], and also compact since pointed, only coherence remains to be shown. For this,
we need the following consequence of Rudin’s Lemma, a finitary form of well-filteredness:

Proposition 3.5 ([GHK+03, Corollary III-3.4]). Let X be a dcpo, (↑Ei)i∈I be a directed

family in Fin(X). For every open subset U of X, if
⋂↓

i∈I ↑Ei ⊆ U , then ↑Ei ⊆ U for some
i ∈ I.

It follows that, if X is a dcpo, then the Scott topology on Fin(X) is finer than the
upper Vietoris topology. Indeed, this reduces to showing that Fin(X)∩✷U is Scott-open in
Fin(X), for every open subset U of X. And this is Proposition 3.5, plus the easily checked
fact that ✷U is upward closed in ⊇.

Corollary 3.6. Let X be a dcpo. The Scott topology is finer than the upper Vietoris topology
on Fin(X), and coincides with it whenever X is quasi-continuous.

Proof. It remains to show that, if X is a quasi-continuous dcpo, then every Scott-open U
of Fin(X) is open in the upper Vietoris topology. Let ↑E ∈ Fin(X) be in U . It suffices to
show that there is an open subset U of X such that ↑E ∈ ✷U ⊆ U . Write E = {x1, . . . , xn}.
For each i, 1 ≤ i ≤ n, ↑xi is the filtered intersection of all finitary compacts ↑Ei Î xi.
The unions ↑E1 ∪ . . . ∪ ↑En = ↑(E1 ∪ . . . ∪ En), with ↑E1 Î x1, . . . , ↑En Î xn, also form
a directed family in Fin(X), and their intersection is ↑E. So there are finitary compacts
↑E1 Î x1, . . . , ↑En Î xn whose union is in U . Since ↑Ei Î xi for each i, each xi is in
the Scott-open ↑↑Ei, so ↑E ∈ ✷U with U = ↑↑E1 ∪ . . . ∪ ↑↑En. Moreover, ✷U ⊆ U : for each
↑E′ ∈ ✷U , ↑E′ is included in U ⊆ ↑E1 ∪ . . . ↑En; since ↑E1 ∪ . . . ↑En is in U and U is
upward-closed in ⊇, ↑E′ is in U .

Schalk [Sch93, Chapter 7] proved that QV defines a monad on the category of topology
spaces (see [Mog91] for an introduction to monads and their importance in programming
language semantics). This means first that there is a unit map ηX—here, ηX maps x ∈ X
to ↑x ∈ QV(X), and this is continuous because η−1

X (✷U) = U . That QV is a monad also

means that every continuous map h : X → QV(Y ) has an extension h† : QV(X) → QV(Y ),
i.e., h† is continuous and h† ◦ ηX = h. This is defined by h†(Q) =

⋃
x∈Q h(x) in our case.

Again, h† is continuous, because h†
−1

(✷U) = ✷h−1(✷U). And the monad laws are satisfied:

η†X = idQV (X), h
† ◦ ηX = h, and (g† ◦ h)† = g† ◦ h†. One should be careful here: QV is a

monad, but Qσ is not a monad, except on specific subcategories, e.g., sober locally compact
spaces X, where Qσ(X) = QV(X) anyway.

The continuity claims in the following lemma are then obvious.
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Lemma 3.7. Let X, Y be topological spaces. Given any continuous map ψ : X → FinV(Y ),
its extension ψ† restricts to a continuous map ψ† : FinV(X) → FinV(Y ). If imψ is finite,
then ψ† maps QV(X) continuously into FinV(Y ).

Proof. In each case, one only needs to show that ψ† maps relevant compacts to finitary com-
pacts. In the first case, for every finitary compact ↑E ∈ Fin(X), ψ†(↑E) =

⋃
x∈↑E ψ(x) =⋃

x∈E ψ(x) (because ψ is monotonic), and this is finitary compact. In the second case,

ψ†(Q) =
⋃

x∈Q ψ(x) is a finite union of finitary compacts since imψ is finite.

One would also like ψ† to be continuous from Qσ(X) to Finσ(Y ), in the face of the
importance of the Scott topology. This is a consequence of the above when X is sober and
locally compact, and Y is a quasi-continuous dcpo, since Qσ(X) = QV(X) and Finσ(Y ) =
FinV(Y ) in this case. However, one can also prove this in a more general setting, using the
following observation. For each topological space Z, write Zσ for Z with the Scott topology
of its specialization preorder. For short, we shall call quasi monotone convergence space
any space Z such that the (Scott) topology on Zσ is finer than that of Z, i.e., such that
every open subset of Z is open is Scott-open. This is a slight relaxation of the notion of
monotone convergence space, i.e., of a quasi monotone convergence space that is a dcpo
in its specialization preorder [GHK+03, Definition II-3.12]. E.g., every sober space is a
monotone convergence space, and in particular a quasi monotone convergence space.

Lemma 3.8. Let Z be a quasi monotone convergence space and Z ′ be a topological space.
Every continuous map f : Z → Z ′ is Scott-continuous, i.e., continuous from Zσ to Z ′

σ.

Proof. Since f is continuous, it is monotonic with respect to the underlying specialization
preorders. Let (zi)i∈I be any directed family of elements of Z, with least upper bound
z. Certainly f(z) is an upper bound of (f(zi))i∈I . Let us show that, for any other upper
bound z′, f(z) ≤ z′. It is enough to show that every open neighborhood V of f(z) contains
z′. Since f(z) ∈ V , z is in the open subset f−1(V ), which is Scott-open by assumption, so
zi ∈ f−1(V ) for some i ∈ I. It follows that f(zi) is in V , hence also z′ since V is upward
closed.

When X is sober and locally compact, the topology of Qσ(X) coincides with that
of QV(X). In particular, Z = QV(X) is a quasi-monotone convergence space. Taking
Z ′ = QV(Y ) in Lemma 3.8, one obtains the following corollary.

Corollary 3.9. Let X be a sober, locally compact space, and Y be a topological space. Every
continuous map from QV(X) to QV(Y ) is also Scott-continuous from Q(X) to Q(Y ).

Similarly, with Z ′ = FinV(Y ):

Corollary 3.10. Let Y be a topological space, Z be a quasi monotone convergence space.
Every continuous map from Z to FinV(Y ) is Scott-continuous, i.e., continuous from Zσ to
Finσ(Y ).

Lemma 3.11. Let X be aQRB-domain, and (ϕi)i∈I a generating family of quasi-deflations.

For every open subset U of X,
⋃↑

i∈I ϕ
−1
i (✷U) = U .

Proof. The union is directed, since ϕ−1
i (✷U) ⊆ ϕ−1

i′ (✷U) whenever ϕi is pointwise below

ϕi′ , i.e., when ϕi(x) ⊇ ϕi′(x) for all x ∈ X. For every i ∈ I, ϕ−1
i (✷U) ⊆ U : every element x

of ϕ−1
i (✷U) is indeed such that x ∈ ϕi(x) ⊆ U . Conversely, we claim that every element x of
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U is in ϕ−1
i (✷U) for some i ∈ I. Indeed, ↑x ⊆ U , so

⋂
i∈I ↑ϕi(x) ⊆ U . By Proposition 3.5,

ϕi(x) ⊆ U for some i ∈ I, i.e., ϕi(x) ∈ ✷U .

Lemma 3.12. Let X be aQRB-domain, and (ϕi)i∈I a generating family of quasi-deflations.

For every compact saturated subset Q of X, Q =
⋂↓

i∈I ϕ
†
i (Q).

Proof. Since x ∈ ϕi(x) for every x, ϕ
†
i (Q) contains Q for every i ∈ I. So Q ⊆

⋂↓
i∈I ϕ

†
i (Q).

Conversely, since Q is saturated, it is enough to show that every open U containing Q also

contains
⋂↓

i∈I ϕ
†
i (Q). Since Q ⊆ U , by Lemma 3.11, Q ⊆

⋃↑
i∈I ϕ

−1
i (✷U). By compactness,

Q ⊆ ϕ−1
i (✷U) for some i ∈ I, i.e., for every x ∈ Q, ϕi(x) ⊆ U . So ϕ†

i (Q) ⊆ U .

Proposition 3.13. For every QRB-domain X, Q(X) is an RB-domain.

Proof. AssumeX is aQRB-domain, with generating family of quasi-deflations (ϕi)i∈I . The

family (ϕ†
i )i∈I is directed, since if ϕi is below ϕj , i.e., if ϕi(x) ⊇ ϕj(x) for every x ∈ X, then

ϕ†
i (Q) =

⋃
x∈Q ϕi(x) ⊇

⋃
x∈Q ϕj(x) = ϕ†

j(Q). SinceX is quasi-continuous (Corollary 3.4), it

is sober and locally compact. So Corollary 3.9 applies, showing that ϕ†
i is Scott-continuous

from Q(X) to Q(X). Lemma 3.12 states that the least upper bound of (ϕ†
i )i∈I is the identity

on Q(X). Clearly, ϕ†
i has finite image. So Q(X) is an RB-domain.

Theorem 3.14. Every QRB-domain is stably compact.

Proof. Let X be a QRB-domain, with generating family of quasi-deflations (ϕi)i∈I . We
claim that, given any two compact saturated subsets Q and Q′ of X, Q∩Q′ is again compact
saturated. This is obvious if Q∩Q′ is empty. Otherwise, writing ↑Y y for the upward closure
of an element y of a poset Y , ↑Q(X)Q∩↑Q(X)Q

′ is an intersection of two finitary compacts in

QV(X). SinceX is a quasi-continuous dcpo by Corollary 3.4,X is sober and locally compact,
so QV(X) = Qσ(X). Moreover, Q(X) is an RB-domain (Proposition 3.13), so QV(X) is
coherent. Therefore ↑Q(X)Q∩↑Q(X)Q

′ is compact saturated inQV(X). It is also non-empty:

pick x ∈ Q∩Q′, then ↑X x is in ↑Q(X)Q∩↑Q(X)Q
′. So ↑Q(X)Q∩↑Q(X)Q

′ is in Q(QV(X)).

Now there is a (continuous) map µX : QV(QV(X)) → QV(X) defined as id†QV(X)—this is

the so-called multiplication of the monad—and µX(↑Q(X)Q ∩ ↑Q(X)Q
′) is then an element

of Q(X), i.e., a compact subset of X. We now observe that µX(↑Q(X)Q ∩ ↑Q(X)Q
′) =⋃

Q′′∈Q(X)
Q′′⊆Q,Q′

Q′′ is equal to Q∩Q′: the left to right inclusion is obvious, and conversely every

x ∈ Q ∩Q′ defines an element Q′′ = ↑X x of Q(X) that is included in Q and Q′. So Q ∩Q′

is compact saturated. We conclude that X is coherent.
X is compact since pointed, and also locally compact and sober, as a quasi-continuous

dcpo, hence stably compact.

The Lawson topology is the smallest topology containing both the Scott-opens and the
complements of all finitary compacts ↑E ∈ Fin(X). When X is a quasi-continuous dcpo,
since ↑E is compact saturated and every non-empty compact saturated subset is a filtered
intersection of such sets ↑E, the Lawson topology coincides with the patch topology , i.e., the
smallest topology containing the original Scott topology and all complements of compact
saturated subsets. Every stably compact space is patch-compact, i.e., compact in its patch
topology [GHK+03, Section VI-6]. So:

Corollary 3.15. Every QRB-domain is Lawson-compact.
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In the sequel, we shall need some form of countability:

Definition 3.16. An ωQRB-domain is a QRB-domain with a countable generating family
of quasi-deflations.

Proposition 3.17. A pointed dcpo X is an ωQRB-domain iff there is a generating se-
quence of quasi-deflations (ϕi)i∈N, i.e., for every i, i′ ∈ N, i ≤ i′, ϕi(x) ⊇ ϕi′(x) for every

x ∈ X, and ↑x =
⋂↓

i∈N ϕi(x) for every x ∈ X.

Proof. Let X be an ωQRB-domain, and (ψj)j∈N be a countable generating family of quasi-

deflations. Build a sequence (ji)i∈N by letting j0 = 0, and ji+1 be any j ∈ N such that ψj

is above ψi and ψji , by directedness. Then let ϕi = ψji for every i ∈ N. By construction,
whenever i ≤ i′, ϕi is below ϕi+1. And for every i ∈ N, ψi is below ϕi = ψji , so ↑x =⋂↓

i∈N ϕi(x) for every x ∈ X. So (ϕi)i∈N is the desired sequence.

Recall that a topological space is countably-based if and only if it has a countable
subbase, or equivalently, a countable base.

Proposition 3.18. A QRB-domain X is an ωQRB-domain iff it is countably-based.

Proof. Only if: let (ϕi)i∈N be a generating sequence of quasi-deflations onX. For each i ∈ N,
enumerate imϕi as {↑Ei1, . . . , ↑Eini

} ⊆ Fin(X), and let Ei be the finite set
⋃ni

j=1Eij . We

claim that the countably many subsets int(ϕi(y)), y ∈ Ej, i, j ∈ N, form a base of the
topology.

It is enough to show that, for every open U and every element x ∈ U , x ∈ int(ϕi(y)) for

some y ∈ Ej , i, j ∈ N, such that ϕi(y) ⊆ U : since ↑x =
⋂↓

j∈N ϕj(x) ⊆ U , use Proposition 3.5

to find j ∈ N such that ϕj(x) ⊆ U . Since x ∈ ϕj(x) and ϕj(x) = ↑Ejk for some k, there
is a y ∈ Ejk ⊆ Ej such that y ≤ x, and y ∈ U . Repeating the argument on y, we find
i ∈ N such that ϕi(y) ⊆ U . By Lemma 3.3, ϕi(y) Î y, i.e., y is in int(ϕi(y)) since X is
quasi-continuous. Since y ≤ x, x is in int(ϕi(y)).

If: let (ϕi)i∈I be a generating family of quasi-deflations on X, and assume that the
topology of X has a countable base {Uk | k ∈ N}. Assume without loss of generality that
Uk 6= ∅ for every k ∈ N. For every pair ℓ, k ∈ N such that Uℓ ⊆ ↑E ⊆ Uk for some
finite set E, pick one such finite set and call it Eℓk. One can enumerate all such pairs

as ℓm, km, m ∈ N. By Lemma 3.12,
⋂↓

i∈I ϕ
†
i (↑Eℓmkm) = ↑Eℓmkm . By Proposition 3.5,

ϕ†
i (↑Eℓmkm) ⊆ Ukm for some i ∈ I: pick such an i and call it im. By directedness, we

may also assume that ϕim is also above ϕin , 0 ≤ n < m. Define ψm as ϕim . This yields a
non-decreasing sequence of quasi-deflations (ψm)m∈N.

We claim that it is generating. On one hand, ↑x ⊆
⋂↓

k∈N ψk(x) since each ψk is a
quasi-deflation. Conversely, every open neighborhood U of x contains some Uk, k ∈ N,

with x ∈ Uk. Then ↑x =
⋂↓

i∈I ϕi(x) ⊆ Uk, so ϕi(x) ⊆ Uk for some i ∈ I. Write ϕi(x)

as ↑E, where E is finite. By Lemma 3.3, ϕi(x) Î x, so x ∈ ↑↑E ⊆ ↑E ⊆ Uk. As

↑↑E is open, x ∈ Uℓ ⊆ ↑↑E for some ℓ ∈ N. In particular, Uℓ ⊆ ↑E ⊆ Uk. So ℓ, k

is a pair of the form ℓm, km. By definition ψ†
m(↑Eℓk) ⊆ Uk. Since x ∈ Uℓ ⊆ ↑Eℓk,

ψm(x) = ψ†
m(↑x) ⊆ ψ†

m(↑Eℓk) ⊆ Uk ⊆ U . So every open neighborhood U of x contains

ψm(x) for some m ∈ N, hence
⋂↓

m∈N ψm(x). So
⋂↓

m∈N ψm(x) ⊆ ↑x, whence the equality.
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X

ς(y)

r−1(↑ y)

x

r

y = r(x)Y

ς

Figure 3: A quasi-retraction

4. Quasi-Retracts of Bifinite Domains

The RB-domains can be characterized as the retracts of bifinite domains. Recall that a
retraction of X onto Y is a continuous map r : X → Y such that there is continuous map
s : Y → X (the section) with r(s(y)) = y for every y ∈ Y .

We shall show that (ω)QRB-domains are not just closed under retractions, but under
a more relaxed notion that we shall call quasi-retractions. More precisely, our aim in this
section is to show that the ωQRB-domains are exactly the quasi-retracts of bifinite domains,
up to some details.

For each continuous r : X → Y , define Qr : QV(X) → QV(Y ) by Qr(Q) = ↑{r(x) |
x ∈ Q}. Qr is continuous, since Qr−1(✷V ) = ✷r−1(V ) for every open V . This is the
action of the QV functor of the Smyth powerspace monad [Sch93, Chapter 7], equivalently

Qr = (ηY ◦ r)†.

Definition 4.1 (Quasi-retract). A quasi-retraction r : X → Y of X onto Y is a continuous
map such that there is a continuous map ς : Y → QV(X) (the quasi-section) such that
Qr(ς(y)) = ↑ y for every y ∈ Y .

A topological space Y is a quasi-retract of X iff there is a quasi-retraction of X onto
Y .

In diagram notation, we require the bottom right triangle to commute, but not the top
left triangle—what the puncture+ indicates; the outer square always commutes:

X
r

//

ηX
��

Y

ηY
��

ςs
s
s
s
s
s

+
yyss
s
s

QV(X)
Qr

// QV(Y )

(4.1)

While a section s : Y → X picks an element s(y) in the inverse image r−1(y), continuously, a
quasi-section is only required to pick a non-empty compact saturated collection of elements
from r−1(↑ y) meeting r−1(y) (see Figure 3), continuously again.

Every retraction r (with section s) defines a canonical quasi-retraction: let ς(y) = ↑ s(y),
then Qr(ς(y)) = ↑{r(z) | s(y) ≤ z} = ↑ r(s(y)) = ↑ y.

The converse fails. For example, N2 is a quasi-retract of Nω + Nω (see Figure 2 (iii)):
r maps both (0, ω) and (1, ω) to ω ∈ N2, and ς(y) = r−1(↑ y) for every y. But Y is not a
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retract of X: X is a continuous dcpo, and every retract of a continuous dcpo is again one;
recall that N2 is not continuous.

Every quasi-retraction r : X → Y induces a continuous map ηY ◦r : X → QV(Y ), which
is then a retraction in the Kleisli category CCCQ. A retraction in a category is a morphism
r : X → Y such that there is a section morphism s : Y → X, i.e., one with r ◦ s = idY . It
is easy to see that the quasi-retractions are exactly those continuous maps r : X → Y such
that ηY ◦ r is a retraction in CCCQ.

Lemma 4.2. Every quasi-retraction r : X → Y onto a T0 space Y is surjective. More
precisely, if ς is a matching quasi-section, then every element y ∈ Y is of the form r(x) for
some x ∈ ς(y).

Proof. For every y ∈ Y , ↑ y = Qr(ς(y)). Since y ∈ Qr(ς(y)), r(x) ≤ y for some x ∈ ς(y).
But r(x) is then in Qr(ς(y)) = ↑ y, so y ≤ r(x). Therefore y = r(x).

The following is reminiscent of the fact that every retract of a stably compact space
is again stably compact [Law87, Proposition, bottom of p.153, and subsequent discussion]:
we shall show that any T0 quasi-retract of a stably compact space is stably compact. We
start with compactness.

Lemma 4.3. Every T0 quasi-retract Y of a compact space Y is compact.

Proof. The image of a compact set by a continuous map is compact. Now apply Lemma 4.2.

Lemma 4.4. Any quasi-retract Y of a well-filtered space X is well-filtered.

Proof. Let r : X → Y be the quasi-retraction, with quasi-section ς : Y → QV(X).
Let (Qi)i∈I be a filtered family of compact saturated subsets of Y , and assume that⋂↓

i∈I Qi ⊆ V , where V is open in Y . Let Q′
i = ς†(Qi). This is compact saturated, and

forms a directed family, since ς† is monotonic. We claim that
⋂

i∈I Q
′
i ⊆ r−1(V ). Indeed,

every x ∈
⋂

i∈I Q
′
i is such that, for every i ∈ I, there is a yi ∈ Qi such that x ∈ ς(yi); then

r(x) ∈ Qr(ς(yi)) = ↑ yi, so r(x) ∈ Qi, for every i ∈ I. Since
⋂↓

i∈I Qi ⊆ V , r(x) is in V ,
whence the claim.

Since X is well-filtered, Q′
i ⊆ r−1(V ) for some i ∈ I. Then, for every y ∈ Qi, ς(y) ⊆

ς†(Qi) = Q′
i ⊆ r−1(V ), so y ∈ Qr(ς(y)) ⊆ Qr(r−1(V )) ⊆ V . So Qi ⊆ V .

Lemma 4.5. Any T0 quasi-retract Y of a coherent space X is coherent.

Proof. Let r : X → Y be the quasi-retraction, with quasi-section ς : Y → QV(X).
We use the fact that Qr ◦ ς† is the identity on QV(Y ). This is a well-known identity on

monads: by the monad law (g† ◦h)† = g† ◦h†, and since Qr = (ηY ◦ r)†, Qr ◦ ς† = (Qr ◦ ς)†,

and this is η†Y = idQV(Y ) by the first monad law.

Let Q1, Q2 be two compact saturated subsets of Y . Then ς†(Q1) ∩ ς
†(Q2) is compact

saturated in X, using the fact that X is coherent. So Qr(ς†(Q1) ∩ ς†(Q2)) is compact
saturated in Y . We claim that Qr(ς†(Q1) ∩ ς

†(Q2)) = Q1 ∩Q2, which will finish the proof.
In one direction, every element y of Q1 ∩Q2 is in Qr(ς†(Q1)∩ ς

†(Q2)): by Lemma 4.2, pick
x ∈ ς(y) such that y = r(x), and observe that x ∈ ς†(Q1) (indeed x ∈ ς(y), where y ∈ Q1)
and x ∈ ς†(Q2). In the other direction, Qr(ς†(Q1) ∩ ς

†(Q2)) ⊆ Qr(ς†(Q1)) ∩ Qr(ς†(Q2)) =
Q1 ∩Q2, since Qr ◦ ς† is the identity on Q(Y ).
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Lemma 4.6. Any quasi-retract Y of a locally compact space X is locally compact.

Proof. Let r : X → Y be the quasi-retraction, with quasi-section ς : Y → QV(X). Let y be
any point of Y , and V be an open neighborhood of y. Since y ∈ V , Qr(ς(y)) = ↑ y ⊆ V ,
so ς(y) ⊆ r−1(V ). Observe that ς(y) is compact saturated and r−1(V ) is open in X. Use
interpolation in the locally compact space X: there is a compact saturated subset Q1 such
that ς(y) ⊆ int(Q1) ⊆ Q1 ⊆ r−1(V ).

In particular, ς(y) ∈ ✷int(Q1), so y is in the open subset ς−1(✷int(Q1)). The latter
is included in the compact subset Qr(Q1), since every element y′ of it is such that ς(y′) ⊆
int(Q1) ⊆ Q1, hence ↑ y′ = Qr(ς(y′)) ⊆ Qr(Q1). In particular, y is in the interior of
Qr(Q1). Finally, since Q1 ⊆ r−1(V ), Qr(Q1) ⊆ V .

Proposition 4.7. Every T0 quasi-retract Y of a stably compact space X is stably compact.

Proof. Y is T0 by assumption, and locally compact, well-filtered, compact, and coherent by
Lemma 4.3, Lemma 4.4, Lemma 4.5, and Lemma 4.6. In the presence of local compactness,
it is equivalent to require sobriety or to require the space to be T0 and well-filtered [GHK+03,
Theorem II-1.21].

Call a space X locally finitary if and only if for every x ∈ X and every open neighbor-
hood U of x, there is a finitary compact ↑E such that x ∈ int(↑E) and ↑E ⊆ U . This is the
same definition as for local compactness, replacing compact saturated subsets by finitary
compacts. The interpolation property of locally compact spaces refines to the following: In
a locally finitary space X, if Q is compact saturated and included in some open subset U ,
then there is a finitary compact ↑E such that Q ⊆ int(↑E) and ↑E ⊆ U . The proof is as
for interpolation in locally compact spaces: for each x ∈ Q, pick a finitary compact ↑Ex

such that x ∈ int(↑Ex) and ↑Ex ⊆ U . (int(↑Ex))x∈Q is an open cover of Q. Since Q is
compact, it has a finite subcover ↑E1, . . . , ↑En. Then take E = E1 ∪ . . . ∪ En.

We observe right away the following analog of Lemma 4.6.

Lemma 4.8. Any quasi-retract Y of a locally finitary space X is locally finitary.

Proof. As in the proof of Lemma 4.6, let y ∈ Y and V be an open neighborhood of y. By
interpolation between Q = ς(y) and U = r−1(V ) in the locally finitary space X, we find a
finitary compact subset Q1 = ↑E1 of X such that ς(y) ⊆ int(Q1) ⊆ Q1 ⊆ r−1(V ). The rest
of the proof is as for Lemma 4.6, only noticing that Qr(Q1) = ↑ r(E1) is finitary compact.

The importance of locally finitary spaces lies in the following result: see Banaschewski
[Ban77], or the equivalence between Items (6) and (11) in Lawson [Law85, Theorem 2]. See
also Isbell [Isb75] for the notion of locally finitary space, up to change of names.

Proposition 4.9. The locally finitary sober spaces are exactly the quasi-continuous dcpos
in their Scott topology.

We use this, in particular, in the following proposition.

Proposition 4.10. Every T0 quasi-retract of an (ω)QRB-domain is an (ω)QRB-domain.

Proof. Let X be a QRB-domain, Y be a T0 space, r : X → Y be a quasi-retraction, and
ς : Y → QV(X) be a matching quasi-section. We first note that Y is stably compact, by
Proposition 4.7, using the fact thatX is itself stably compact (Theorem 3.14). So Y is sober.
By Proposition 4.9, X is locally finitary, so Y is, too, by Lemma 4.8. By Proposition 4.9
again, Y is a quasi-continuous dcpo, and its topology is the Scott topology.
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Note that Y is pointed. Letting ⊥ be the least element of X, r(⊥) is the least element
of Y : for every y ∈ Y , pick some x ∈ X such that r(x) = y by Lemma 4.2, then r(⊥) ≤
r(x) = y.

For each quasi-deflation ϕ on X, ϕ is continuous from X to FinV(X): indeed it is
continuous from X to Finσ(X) and Finσ(X) = FinV(X) by Corollary 3.6, since X is quasi-
continuous (Corollary 3.4). So ϕ† makes sense. Let ϕ̂ : Y → FinV(Y ) map y toQr(ϕ†(ς(y)));
ϕ̂(y) is in Fin(Y ) because ϕ†(ς(y)) ∈ Fin(X) (Lemma 3.7, second part), and Qr(↑E) =
↑{r(z) | z ∈ E} is finitary compact for every finite set E.

Explicitly, ϕ̂(y) = ↑{r(z) | ∃x ∈ ς(y) · z ∈ ϕ(x)}.
For every open subset V of Y , ϕ̂−1(✷V ) is the set of all y ∈ Y such that for every

x ∈ ς(y), for every z ∈ ϕ(x), r(z) ∈ V . I.e., for every x ∈ ς(y), ϕ(x) ⊆ r−1(V ), that
is, ς(y) ⊆ ϕ−1(✷r−1(V )). So ϕ̂−1(✷V ) = ς−1(✷ϕ−1(✷r−1(V ))). Since the latter is open,
and the sets ✷V form a subbase of the topology of QV(Y ), ϕ̂ is continuous from Y to
FinV(Y ). Since Y is a quasi-continuous dcpo and its topology is Scott, by Corollary 3.6
Finσ(Y ) = FinV(Y ), so ϕ̂ is also Scott-continuous from Y to Fin(Y ). (Alternatively, apply
Corollary 3.10.)

We claim that y ∈ ϕ̂(y) for every y ∈ Y . Since Qr(ς(y)) = ↑ y, y ∈ Qr(ς(y)), so there
is an x ∈ ς(y) such that r(x) ≤ y. Now x ∈ ϕ(x), so taking z = x in the definition of ϕ̂(y),
y is in ϕ̂(y).

Let now (ϕi)i∈I be a generating family of quasi-deflations on X. Clearly, if ϕi is below
ϕj , then ϕ̂i is below ϕ̂j , so (ϕ̂i)i∈I is directed.

It remains to show that
⋂↓

i∈I ϕ̂i(y) = ↑ y for every y ∈ Y . Since y ∈ ϕ̂i(y), it remains

to show
⋂↓

i∈I ϕ̂i(y) ⊆ ↑ y: we show that every open V containing y contains
⋂↓

i∈I ϕ̂i(y).

Since y ∈ V and Qr(ς(y)) = ↑ y, Qr(ς(y)) ⊆ V , so ς(y) ∈ Qr−1(✷V ) = ✷r−1(V ), i.e.,

ς(y) ⊆ r−1(V ). By Lemma 3.11,
⋃↑

i∈I ϕ
−1
i (✷r−1(V )) = r−1(V ). Since ς(y) is compact,

ς(y) ⊆ ϕ−1
i (✷r−1(V )) for some i ∈ I. So y is in ς−1(✷ϕ−1

i (✷r−1(V ))), which is equal

to ϕ̂−1
i (✷V ) (see above). It follows that V contains ϕ̂i(y), hence

⋂↓
i∈I ϕ̂i(y). So Y is a

QRB-domain.
The case of ωQRB-domains is similar, where now (ϕi)i∈N is a generating sequence of

quasi-deflations.

Later, we shall need a refinement of the notion of quasi-retraction, which is to the latter
as projections are to retractions. Recall that a projection is a retraction r : X → Y , with
section s, such that additionally s ◦ r ≤ idX . Similarly, it is tempting to define a quasi-
projection as a quasi-retraction (with quasi-section ς) such that x ∈ ς(r(x)) for every x ∈ X.
If r is a retraction, with section s, and we see r as a quasi-retraction in the canonical way,
defining ς(y) as ↑ s(y), then the quasi-projection condition x ∈ ς(r(x)) is equivalent to the
projection condition (s ◦ r)(x) ≤ x.

The point x shown in Figure 3 satisfies the condition x ∈ ς(r(x)): x is in the gray area
ς(y), where y = r(x). However, Lemma 4.11 below shows that r is not a quasi-projection:
for this to be the case, the gray area ς(y) should fill the whole of r−1(↑ y).

There is no need to invent a new term, though: Lemma 4.11 shows that quasi-projections
are nothing else than proper surjective maps. A map r : X → Y is proper if and only if it
is continuous, ↓ r(F ) is closed in Y for every closed subset F of X, and r−1(↑ y) is compact
in X for every element y of Y [GHK+03, Lemma VI-6.21 (i)].
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Lemma 4.11. Let X be a topological space, and Y be a T0 topological space. For a map
r : X → Y , the following two conditions are equivalent:

(1) r is a quasi-retraction, with matching quasi-section ς : Y → QV(X), such that addition-
ally x ∈ ς(r(x)) for every x ∈ X;

(2) r is proper and surjective.

Then the quasi-section ς in (1) is unique, and it is defined by ς(y) = r−1(↑ y).

Proof. We first prove the following fact, which will serve in both directions of proof: (∗)
assume ς(y) = r−1(↑ y) for every y ∈ Y , then for every open subset U of X, the complement
of ς−1(✷U) in Y is ↓ r(F ), where F is the complement of U in X. Indeed, the complement
of ς−1(✷U) is the set of elements y ∈ Y such that ς(y) is not included in U , i.e., such that
there is an x ∈ ς(y) that is not in U , i.e., in F . Since ς(y) = r−1(↑ y), this is the set of
elements y such that there is an x ∈ F such that y ≤ r(x), namely, ↓ r(F ).

Assume r is a quasi-retraction, and ς is a matching quasi-section such that x ∈ ς(r(x))
for every x ∈ X. We have seen that r is surjective (Lemma 4.2).

Since Qr(ς(y)) = ↑ y, every element x of ς(y) is such that r(x) is in ↑ y, so ς(y) ⊆
r−1(↑ y). Conversely, for every x ∈ r−1(↑ y), i.e., if y ≤ r(x), then ς(y) ⊇ ς(r(x)) since
ς is monotonic. We have assumed that x was in ς(r(x)), so x ∈ ς(y). It follows that
ς(y) = r−1(↑ y), which proves the last claim in the Lemma.

It also follows that r−1(↑ y) is compact in X. And, using (∗), for every closed subset F
of X, with complement U , ↓ r(F ) is the complement of ς−1(✷(U)), which is open since ς is
continuous, so ↓ r(F ) is closed. Therefore r is proper.

Conversely, assume that r is proper and surjective. Define ς(y) as r−1(↑ y). Since r is
surjective, ς(y) is non-empty. It is saturated, i.e., upward closed, because r is monotonic.
Since r−1(↑ y) is compact, ς(y) is an element of Q(Y ). For every open subset U of X, with
complement F , ς−1(✷U) is the complement of ↓ r(F ) by (∗), hence is open since r is proper.
So ς is continuous.

The equation Qr(ς(y)) = ↑ y follows from Qr(ς(y)) = ↑{r(x) | x ∈ r−1(↑ y)} and the
fact that r is surjective. It is clear that x is in ς(r(x)) = r−1(↑ r(x)) for every x ∈ X.

Let us turn to bifinite domains, or rather to their countably-based variant. Countability
will be needed in a few crucial places.

A pointed dcpoX is an ωB-domain (a.k.a. an SFP-domain) iff there is a non-decreasing
sequence of idempotent deflations (fi)i∈N such that, for every x ∈ X, x = supi∈N fi(x). I.e.,
an ωB-domain is just like a B-domain, except that we take a non-decreasing sequence, not
a general directed family of idempotent deflations.

The key lemma to prove Theorem 4.13 below is the following refinement of Rudin’s
Lemma [GHK+03, III-3.3]. Note that Rudin’s Lemma would only secure the existence of a
directed family Z whose least upper bound is y, and which intersects each E0

i ; but Z may
intersect each E0

i in more than one element yi. We pick exactly one element yi in each E0
i ,

and for this countability seems to be needed.

Lemma 4.12. Let Y be a dcpo, y ∈ Y , and (↑E0
i )i∈N a non-decreasing sequence in Fin(Y )

(w.r.t. ⊇) such that ↑ y =
⋂↓

i∈N ↑E0
i . There is a non-decreasing sequence (yi)i∈N in Y such

that yi ∈ E0
i for every i ∈ N, and supi∈N yi = y.

Proof. Let Ei = E0
i ∩ ↓ y for every i ∈ N. (Ei)i∈N is a non-decreasing sequence in Fin(Y )

such that y ∈
⋂↓

i∈N ↑Ei, and Ei ⊆ ↓ y.
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Build a tree as follows. Informally, there is a root node, all (non-root) nodes at distance
i ≥ 1 from the root node are labeled by some element of Ei−1, and each such node N ,
labeled yi−1, say, has as many successors as there are elements yi in Ei such that yi−1 ≤ yi.
Formally, one can define the nodes as being the sequences y0, y1, . . . , yi−1, i ∈ N, where
y0 ∈ E0, y1 ∈ E1, . . . , yi−1 ∈ Ei−1, and y0 ≤ y1 ≤ . . . ≤ yi−1. Such a node is labeled yi−1

(if i ≥ 1), and its successors are all the sequences y0, y1, . . . , yi−1, yi with yi chosen in Ei,
and above yi−1 if i ≥ 1.

This tree has arbitrarily long branches (paths from the root). Indeed, for every i ∈ N,
pick an element yi ∈ Ei—this is possible since y ∈ ↑Ei, hence Ei is non-empty—, then an
element yi−1 ∈ Ei−1 below yi—since ↑Ei−1 ⊇ ↑Ei—, then an element yi−2 ∈ Ei−2 below
yi−1, . . . , and finally an element y0 ∈ E0 below y1. This is a node at distance i + 1 from
the root.

It follows that the tree is infinite. It is finitely-branching, meaning that every node has
only finitely many successors—because Ei is finite. Kőnig’s Lemma then states that this
tree must have an infinite branch. Reading the labels on non-root nodes in this branch, we
obtain an infinite sequence y0 ≤ y1 ≤ . . . ≤ yi ≤ . . . of elements yi ∈ Ei, i ∈ N. Clearly,

yi ∈ E0
i for each i ∈ N. In particular, supi∈N yi ∈

⋂↓
i∈N ↑E0

i = ↑ y, so y ≤ supi∈N yi. Since
Ei ⊆ ↓ y for every i ∈ N, the converse inequality holds. So supi∈N yi = y.

Theorem 4.13. The following are equivalent for a dcpo Y :

(i): Y is an ωQRB-domain;
(ii): Y is a quasi-retract of an ωB-domain;
(iii): Y is the image of an ωB-domain under a proper map.

Proof. (iii) ⇒ (ii). Because any proper surjective map is a quasi-retraction (Lemma 4.11).
(ii) ⇒ (i). Write Y as a quasi-retract of an ωB-domain X. X is trivially an ωQRB-

domain. Since Y , as a dcpo, is T0, Proposition 4.10 applies, so Y is an ωQRB-domain.
(i) ⇒ (iii). Let Y be an ωQRB-domain, with generating sequence of quasi-deflations

(ϕi)i∈N. Let imϕi = {↑Ei1, . . . , ↑Eini
}, and define Ei as the finite set

⋃ni

j=1Eij , for each

i ∈ N. Let X be the set of all non-decreasing sequences ~y = (yi)i∈N in Y such that
yi ∈

⋃
j≤iEj , and yi ∈ ϕi(supk∈N yk). Order X componentwise. As in [Jun88, Theorem 4.9,

Theorem 4.1], X is an ωB-domain: for each i0 ∈ N, consider the idempotent deflation fi0
defined by fi0(~y) = (ymin(i,i0))i∈N. To show that this is well-defined, we must show that

ymin(i,i0) ∈ ϕi(supk∈N ymin(k,i0)), i.e., that ymin(i,i0) ∈ ϕi(yi0). If i ≤ i0, then ymin(i,i0) = yi ∈
ϕi(supk∈N yk) ⊆ ϕi(yi0) since ~y ∈ X and ϕi is monotonic, else ymin(i,i0) = yi0 ∈ ϕi(y0) since
ϕi is a quasi-deflation. It is easy to see that fi0 is Scott-continuous.

Let now r : X → Y map ~y to supi∈N yi. This is evidently Scott-continuous. For any
fixed y ∈ Y , apply Lemma 4.12 with ↑E0

i = ϕi(y) to obtain a non-decreasing sequence
~y = (yi)i∈N such that yi ∈ ϕi(y) for every i ∈ N and supi∈N yi = y: in particular, ~y is in Y ,
and r(~y) = y. So r is surjective. Let us show that it is proper.

To this end, we first remark that r−1(↑ y) = {~y ∈ X | ∀i ∈ N · yi ∈ ϕi(y)}. Indeed, if
~y = (yi)i∈N is in r−1(↑ y), then y ≤ r(~y) = supk∈N yk, and since ~y ∈ X, yi ∈ ϕi(supk∈N yk) ⊆
ϕi(y), using the fact that ϕi is monotonic. Conversely, if yi ∈ ϕi(y) for every i ∈ N, then
r(~y) = supi∈N yi ∈

⋂
i∈N ϕi(y) = ↑ y.

This remark makes it easier for us to show that r−1(↑ y) is compact for every y ∈ Y .
For each i0 ∈ N, let Qi0 = {~y ∈ X | ∀i ≤ i0 · yi ∈ ϕi(y)}. Let Ki0 be the set of all elements
~y of Qi0 such that yi = yi0 for every i ≥ i0. Note that Ki0 is finite, (recall that each yi with
i ≤ i0 is taken from the finite set

⋃
j≤iEj), and that Qi0 = ↑Ki0 . Indeed, for every ~y ∈ Qi0 ,
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its image fi0(~y) by the idempotent deflation fi0 is in Ki0 , and is below ~y. So Qi0 is (finitary)
compact. Every ωB-domain is stably compact [AJ94, Theorem 4.2.18], and any intersection
of saturated compacts in a stably compact space is compact, so r−1(↑ y) =

⋂
i0∈N

Qi0 is
compact.

Let us now show that ↓ r(F ) is closed for every closed subset F ofX. Consider a directed
family (zj)j∈J of elements of ↓ r(F ), and let z = supj∈J zj . Since zj ∈ ↓ r(F ), F intersects

r−1(↑ zj). The family (r−1(↑ zj))j∈J is a filtered family of compact saturated subsets of X,

each of which intersects the closed set F . Since X is an ωB-domain, it is stably compact,

hence well-filtered: so
⋂↓

j∈J r
−1(↑ zj) intersects F . (Explicitly: if it did not, it would be

included in the open complement U of F , hence some r−1(↑ zj) would be included in U ,

contradicting the fact that it intersects F .) Let ~y be any element of
⋂↓

j∈J r
−1(↑ zj) ∩ F .

Then zj ≤ r(~y) for every j ∈ J , so z = supj∈J zj ≤ r(~y), hence z ∈ ↓ r(F ).

5. Products, Bilimits

We first show that finite products of QRB-domains are again QRB-domains.

Lemma 5.1. If (ϕi)i∈I (resp. (ψj)j∈J) is a generating family of quasi-deflations on X

(resp. Y ), then (χij)i∈I,j∈J is one on X × Y , where χij(x, y) = ϕi(x)× ψj(y).

Proof. Clearly, (x, y) ∈ χij(x, y), χij(x, y) is finitary compact, and imχij is finite. For all

i, j, χij is easily seen to be Scott-continuous, and
⋂↓

i∈I, j∈J χij(x, y) =
⋂↓

i∈I, j∈J(ϕi(x) ×

ψj(y)) =
⋂↓

i∈I ϕi(x)×
⋂↓

j∈J ψj(y) = ↑x× ↑ y = ↑(x, y).

So:

Lemma 5.2. For any two (ω)QRB-domains X, Y , X × Y , with the product ordering, is
an (ω)QRB-domain.

Recall that a retraction p : X → Y , with section e : Y → X, is a projection iff,
additionally, e(p(x)) ≤ x for every x ∈ X; then e is usually called an embedding , and is
determined uniquely from p. An expanding system of dcpos is a family (Xi)i∈I , where I is
a directed poset (with ordering ≤), with projection maps (pij)i,j∈I,i≤j where pij : Xj → Xi,

pii = idXi
, and pik = pij ◦pjk whenever i ≤ j ≤ k [AJ94, Section 3.3.2]. This is nothing else

than a projective system of dcpos, where the connecting maps pij must be projections. If
eij : Xi → Xj is the associated embedding, then one checks that eii = idXi

and eik = ejk◦eij
whenever i ≤ j ≤ k, so that (Xi)i∈I together with (eij)i,j∈I,i≤j forms an inductive system

of dcpos as well. In the category of dcpos, the projective limit of the former coincides with
the inductive limit of the latter (up to natural isomorphism), and is called the bilimit of the
expanding system of dcpos. We write this bilimit as limi∈I Xi, leaving the dependence on ≤,
pij, eij , implicit. This can be built as the dcpo of all those elements ~x = (xi)i∈I ∈

∏
i∈I Xi

such that pij(xj) = xi for all i, j ∈ I with i ≤ j, with the componentwise ordering.
General bilimits of countably-based dcpos will fail to be countably-based in general, so

we shall restrict to bilimits of expanding sequences of dcpos [AJ94, Definition 3.3.6]: these
are expanding systems of dcpos where the index poset I is N, with its usual ordering. To
make it clear what we are referring to, we shall call ω-bilimit of spaces any bilimit of an
expanding sequence (not system) of spaces.
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One can appreciate bilimits by realizing that the B-domains are (up to isomorphism)
the bilimits of expanding systems of finite, pointed posets [AJ94, Theorem 4.2.7]. Similarly,
the ωB-domains are the ω-bilimits of expanding sequences of finite, pointed posets.

Bilimits are harder to deal with than products. But the difficulty was solved by Jung
[Jun88, Section 4.1] in the case of RB-domains and deflations, and we proceed in a very
similar way. We first recapitulate the notion of bilimit.

Consider any set G of functions ψ fromX to Fin(X) such that ψ(x) ⊇ ↑x, i.e., x ∈ ψ(x),
for every x ∈ X. We say that G is qfs (for quasi-finitely separating) iff given any finitely
many pairs (↑Ek, xk) ∈ Fin(X) × X with ↑Ek Î xk, 1 ≤ k ≤ n, there is a ψ ∈ G that
separates the pairs, i.e., such that ↑Ek ⊇ ψ(xk) ⊇ ↑xk (equivalently, xk ∈ ψ(xk) ⊆ ↑Ek)
for every k, 1 ≤ k ≤ n.

Proposition 5.3. Let X be a poset. Then X is a QRB-domain iff X is a quasi-continuous
dcpo and the set G of quasi-deflations on X is qfs.

Proof. If X is a QRB-domain, then let (↑Ek, xk) ∈ Fin(X) × X be such that ↑Ek Î xk
for every k, 1 ≤ k ≤ n, and (ϕi)i∈I be a generating family of quasi-deflations. For each k,

1 ≤ k ≤ n, ↑xk =
⋂↓

i∈I ϕi(xk) ⊆ ↑↑Ek, so by Proposition 3.5 there is an i ∈ I such that

ϕi(xk) ⊆ ↑↑Ek ⊆ ↑Ek. And we may pick the same i for every k, by directedness. So ϕi is
the desired ψ ∈ G.

Also, X is a quasi-continuous dcpo by Corollary 3.4.
Conversely, assume that X is a quasi-continuous dcpo and G is qfs. We show that

H = {ϕ† ◦ ϕ | ϕ ∈ G} is a generating family of quasi-deflations. Using Corollary 3.6,
FinV(X) = Finσ(X). Write it Fin(X), for short. For each ϕ ∈ G, ϕ is continuous from
X to Fin(X), and ϕ† is continuous from Fin(X) to Fin(X) by Lemma 3.7, so ϕ† ◦ ϕ is
continuous from X to Fin(X). Since x ∈ ϕ(x), x is also in

⋃
x′∈ϕ(x) ϕ(x

′) = (ϕ† ◦ ϕ)(x).

Also, im(ϕ† ◦ ϕ) is finite, since all its elements are unions of elements of the finite set imϕ.
So ϕ† ◦ ϕ is a quasi-deflation.

Let us show that H is directed. Pick ϕ and ϕ′ from G. Let imϕ = {↑E1, . . . , ↑Em},
and E =

⋃m
i=1Ei. Similarly, let imϕ′ = {↑E′

1, . . . , ↑E
′
n} and E′ =

⋃n
j=1E

′
j. For each

y ∈ E, ϕ(y) Î y by Lemma 3.3. Since X is quasi-continuous, use interpolation, and pick a
finitary compact ↑Ey such that ϕ(y) Î ↑Ey Î y. Similarly, let ↑E′

y′ be a finitary compact

such that ↑E′
y′ Î y′ and ϕ′(y′) Î ↑E′

y′ for each y
′ ∈ E′.

Consider the finite collection of all pairs (↑Ey, y), (ϕ(y), z), (↑E
′
y′ , y

′), and (ϕ′(y′), z′),

where y ∈ E, z ∈ Ey, y
′ ∈ E′, z′ ∈ Ey′ . Since G is qfs, there is a ψ ∈ G such that

↑E′′ ⊇ ψ(x) ⊇ ↑x for all the above pairs (E′′, x). In particular, looking at the pair (↑Ey, y),
we get: (a) ↑Ey ⊇ ψ(y) for every y ∈ E. And looking at the pair (ϕ(y), z), ϕ(y) ⊇ ψ(z)

for all y ∈ E, z ∈ Ey. So ϕ(y) ⊇
⋃

z∈Ey
ψ(z) =

⋃
z∈↑Ey

ψ(z) = ψ†(↑Ey). We have proved:

(b) ϕ(y) ⊇ ψ†(↑Ey) for every y ∈ E. Then, for every x ∈ X, (ϕ† ◦ ϕ)(x) =
⋃

y∈ϕ(x) ϕ(y) ⊇⋃
y∈ϕ(x) ψ

†(↑Ey) (by (b)) ⊇
⋃

y∈ϕ(x)(ψ
† ◦ ψ)(y) (by (a)) = (ψ† ◦ ψ)†(ϕ(x)) ⊇ (ψ† ◦ ψ)†(↑x)

(since ϕ(x) ⊇ ↑x) = (ψ† ◦ ψ)†(ηX(x)) = (ψ† ◦ ψ)(x) (by one of the monad laws). So ϕ† ◦ ϕ

is below ψ† ◦ ψ. Similarly, ϕ′† ◦ ϕ′ is below ψ† ◦ ψ, so H is directed.
Finally, we claim that

⋂
ϕ∈G(ϕ

† ◦ ϕ)(x) = ↑x. In the ⊇ direction, this is because

ϕ† ◦ ϕ is a quasi-retraction. Conversely, let ↑E ∈ Fin(X) be such that ↑E Î x. By
interpolation, find ↑E′ ∈ Fin(X) such that ↑E Î ↑E′

Î x. Since G is qfs, applied to
the pairs (↑E′, x) and (↑E, y) for each y ∈ E′, there is an element ϕ ∈ G such that
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↑E′ ⊇ ϕ(x) and ↑E ⊇ ϕ(y) for every y ∈ E′. So ↑E ⊇ ϕ†(↑E′) ⊇ (ϕ† ◦ ϕ)(x). So⋂
ϕ∈G(ϕ

† ◦ ϕ)(x) ⊆
⋂↓

↑E∈Fin(X), ↑EÎx
↑E = ↑x, as X is quasi-continuous.

Theorem 5.4. Any (ω-)bilimit of (ω)QRB-domains is an (ω)QRB-domain.

Proof. Let (Xi)i∈I be an expanding system of QRB-domains, with projections pij : Xj →
Xi and embeddings eij : Xi → Xj, i ≤ j. Let X = limi∈I Xi. There is a projection
pi : X → Xi, given by pi(~x) = xi (where ~x = (xi)i∈I), and an embedding ei : Xi → X for
every i ∈ I.

We observe that: (a) if ↑E Î pi(~x) in Xi, then Qeij(↑E) Î pj(~x) for every j ≥ i.
Indeed, consider any directed family (yk)k∈K such that pj(~x) ≤ supk∈K yk. Then pi(~x) =
pij(pj(~x)) ≤ supk∈K pij(yk), so for some k ∈ K, there is a z ∈ E with z ≤ pij(yk). Then
eij(z) ≤ eij(pij(yk)) ≤ yk. We conclude since eij(z) ∈ Qeij(↑E).

We now claim that the family D~x of all finitary compacts of the form Qei(↑E), where
↑E ∈ Fin(Xi) and ↑E Î pi(~x), i ∈ I, is directed. Given Qei(↑E) and Qej(↑E

′) in D~x, find
some k ∈ I such that i, j ≤ k, by directedness. ThenQei(↑E) = Qek(Qeik(↑E)), and by (a)
Qeik(↑E) Î pk(~x), and similarly Qej(↑E

′) = Qek(Qejk(↑E
′)), with Qejk(↑E

′) Î pk(~x).
Replacing i by k, ↑E by the finitary compact Qeik(↑E), j by k, and ↑E′ by Qejk(↑E

′) if
necessary, we can therefore simply assume that i = j. Since Xi is quasi-continuous, there
is an E′′ ∈ Fin(Xi) such that ↑E, ↑E′

Î ↑E′′
Î pi(~x), and then Qei(↑E

′′) is an element of
Dx above both Qei(↑E) and Qei(↑E

′).
Moreover, we claim that

⋂
Qei(↑E)∈D~x

Qei(↑E) equals ↑ ~x. That it contains ~x is obvious:

whenever ↑E Î pi(~x), pick z ∈ E with z ≤ pi(~x), so that ei(z) ≤ ei(pi(~x)) ≤ ~x, hence
~x ∈ Qei(↑E). Conversely, every ~z ∈

⋂
Qei(↑E)∈D~x

Qei(↑E) must be such that zi = pi(~z) ∈

Qpi(
⋂

↑EÎpi(~x)
Qei(↑E)) ⊆

⋂
↑EÎpi(~x)

Qpi(Qei(↑E)) =
⋂

↑EÎpi(~x)
↑E = ↑ pi(~x) = ↑xi,

since Xi is quasi-continuous. As this holds for every i, ~x ≤ ~z. So
⋂

Qei(↑E)∈D~x
Qei(↑E) ⊆

↑~x.
In particular, X is a quasi-continuous dcpo.
We check that the set of quasi-deflations on X is qfs. Consider a finite collection of pairs

(↑ ~Dk, ~xk) ∈ Fin(X)×X with ↑ ~Dk Î ~xk, 1 ≤ k ≤ n. Recall that ↑ ~Dk Î ~xk can be rephrased

equivalently as: ~xk is in the open subset ↑↑~Dk. Since
⋂

Qei(↑E)∈D~xk
Qei(↑E) = ↑ ~xk, by

Proposition 3.5, for each k, pick Qei(↑Ek) ∈ D~xk
included in ↑↑~Dk, in particular above ↑ ~Dk.

I.e., pick i ∈ I and ↑Ek ∈ Fin(Xi) such that ↑Ek Î pi(~xk), and such that ↑ ~Dk ⊇ Qei(↑Ek).
(We can pick the same i for every k, by directedness, as above.) Since Xi is a QRB-domain,
and ↑Ek Î pi(~xk), using Proposition 3.5, there is a quasi-deflation ϕ on Xi such that

ϕ(pi(~xk)) ⊆ ↑↑Ek. So ϕ(pi(~xk)) ⊆ ↑Ek, for every k, 1 ≤ k ≤ n. Consider ψ : X → Fin(X)
defined asQei◦ϕ◦pi. Qei, restricted to Fin(Xi), takes its values in Fin(X), using Lemma 3.7

and the fact that Qei = (ηX ◦ ei)
†. Moreover, ψ is continuous from X to FinV(X), hence to

Finσ(X) since X is quasi-continuous, by Corollary 3.6. For every ~x ∈ X, pi(~x) ∈ ϕ(pi(~x)),
since ϕ is a quasi-deflation. Then ei(pi(~x)) is below ~x, and is in ψ(~x), so ~x ∈ ψ(~x). So ψ is
a quasi-deflation.

Moreover, by construction, for each k, 1 ≤ k ≤ n, ϕ(pi(~xk)) ⊆ ↑Ek, so ψ(~xk) ⊆

Qei(↑Ek), so ψ(~xk) ⊆ ↑ ~Dk, since ↑ ~Dk ⊇ Qei(↑Ek). So the set of quasi-deflations on X is
qfs.

By Proposition 5.3, X is then a QRB-domain.
To deal with ω-bilimits of ωQRB-domains, observe that any bilimit of a countable ex-

panding system (in particular, an expanding sequence) of countably-based quasi-continuous
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Figure 4: Discretizations of V1(X), X = {⊥, a, b,⊤}

dcpos is countably-based. Indeed, a countably based quasi-continuous dcpo Xi has a count-
able base of sets of the form ↑↑Eik, ↑Eik ∈ Fin(Xi), k ∈ N. The D~x construction above,

suitably modified, shows that the sets ↑↑ ~E′
ik, where ↑ ~E′

ik = Qei(Eik), i, k ∈ N, form a,
necessarily countable, base of the topology on X. By Proposition 3.18, X is an ωQRB-
domain.

6. The Probabilistic Powerdomain

Let X be a fixed topological space, and let O(X) be the lattice of open subsets of X. A
continuous valuation ν on X [JP89] is a map from O(X) to R

+ such that ν(∅) = 0, which is
monotonic (ν(U) ≤ ν(V ) whenever U ⊆ V ), modular (ν(U∪V )+ν(U∩V ) = ν(U)+ν(V ) for

all opens U, V ), and continuous (ν(
⋃↑

i∈I Ui) = supi∈I ν(Ui) for every directed family (Ui)i∈I
of opens). A (sub)probability valuation ν is additionally such that ν is (sub)normalized ,
i.e., that ν(X) = 1 (ν(X) ≤ 1). Let V1(X) (V≤1(X)) be the dcpo of all (sub)probability
valuations on X, ordered pointwise, i.e., ν ≤ ν ′ iff ν(U) ≤ ν ′(U) for every open U . V1 (V≤1)
defines a endofunctor on the category of dcpos, and its action is defined on morphisms f
by V1f(ν)(U) = ν(f−1(U)).

We write δx for the Dirac valuation at x, a.k.a., the point mass at x. This is the
continuous valuation such that δx(U) = 1 if x ∈ U , δx(U) = 0 otherwise.

The probabilistic powerdomain construction V1 is an elusive one, and natural intuitions
are often wrong. For example, one might imagine that if X has all binary least upper
bounds, then so has V1(X). This was dispelled by Jones and Plotkin [JP89]. Consider
X = {⊥, a, b,⊤}, with a and b incomparable, ⊥ below every element and ⊤ above every
element (see Figure 1, right). Then the upper bounds of 1

2δ⊥+ 1
2δa and 1

2δ⊥+ 1
2δb in V1(X)

are the probability valuations of the form (1−αa−αb−α⊤)δ⊥+αaδa+αbδb+α⊤δ⊤ where
αa + α⊤ ≥ 1

2 , αb +α⊤ ≥ 1
2 , and αa +αb +α⊤ ≤ 1. The minimal upper bounds are those of

the form αδ⊥ + (12 − α)δa + (12 − α)δb + αδ⊤, α ∈ [0, 1]. So there is no unique least upper
bound; in fact, there are uncountably many of them, even on this small example.

It is unknown whether V1(X), with X = {⊥, a, b,⊤} is an RB-domain, although it is
an FS-domain, as a consequence of [JT98, Theorem 17]. Again, some of the most natural
ideas one can have about V1(X) are flawed. It seems obvious indeed that V1(X) should be

the bilimit of the sequence of finite posets V
1

n

1 (X), defined as those probability valuations
(1 − αa − αb − α⊤)δ⊥ + αaδa + αbδb + α⊤δ⊤ where αa, αb, α⊤ are integer multiples of 1

n .
See Figure 4 for Hasse diagrams of a few of these posets, for n small.

That V1(X) is such a bilimit is necessarily wrong, because any bilimit of finite posets
is an ωB-domain, hence is algebraic, but V1(X) is not algebraic, since no element except
δ⊥ is finite.
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1
3δa +

1
3δb +

1
3δ⊤

Best discretizations:

Figure 5: Largest discretizations below ν fail to be unique

However, one may imagine to define (non-idempotent) deflations fn on V1(X) directly,

which would send ν ∈ V1(X) to some discretized probability valuation inV
1

n
1 (X). However,

all known attempts fail. A careful study of [JT98] will make this precise. Let us only note
that if we decide to define fn(ν) through its values on open sets, typically letting fn(ν)(U)
be the largest integer multiple of 1

n that is zero-or-strictly-below ν(U), we obtain a set
function that is not modular. If we decide to define fn(

∑
x∈X αxδx) as

∑
x∈X βxδx where

for each x 6= ⊥ βx is the largest integer multiple of 1
n that is zero-or-strictly-below αx, then

fn is not monotonic. If we decide to define fn(ν) as the largest probability valuation way-

below ν in V
1

n
1 (X), we run into the problem that there is no unique such largest probability

valuation. For example, ν = 1
3δa +

1
3δb +

1
3δ⊤ admits four largest probability valuations in

V
1

3

1 (X) way-below it: 1
3δ⊥ + 2

3δa,
1
3δ⊥ + 1

3δa +
1
3δb,

2
3δ⊥ + 1

3δ⊤, and
1
3δ⊥ + 2

3δb, see Figure 5.

Observe that the number of largest discretizations of ν in V
1

n
1 (X) is always finite,

provided X is finite. This was our original intuition that replacing deflations by quasi-
deflations, hence moving from RB-domains to QRB-domains, might provide a nice enough
category of domains that would be stable under the probabilistic powerdomain functor
V1. However, defining quasi-deflations directly, as hinted above, does not work either:
monotonicity fails again. This is where the characterization of QRB-domains as quasi-
retracts of bifinite domains (up to details we have already mentioned) will be decisive.

If Y is a retract of X, then V1(Y ) is easily seen to be a retract of V1(X), using the
V1 endofunctor. We wish to show a similar result for quasi-retracts. We have not managed
to do so. Instead we shall rely on the stronger assumptions that X is stably compact, that
Y is a quasi-projection of X, not just a quasi-retract (i.e., the image of X under a proper
map).

Moreover, we shall need to replace the Scott topology on V1(X) by the weak topology ,
which is the smallest one containing the subbasic opens [U > a], defined as {ν ∈ V1(X) |
ν(U) > a}, for each open subset U of X and a ∈ R. When X is a continuous pointed dcpo,
the Kirch-Tix Theorem states that it coincides with the Scott topology (see [AMJK04], who
attribute it to Tix [Tix95, Satz 4.10], who in turn attributes it to Kirch [Kir93, Satz 8.6]).

However, the weak topology is better behaved in the general case. For example, writing

R
+
σ for R+ ∪ {+∞} with the Scott topology, and [X → R

+
σ ]i for the space of all continuous

maps from X to R
+
σ with the Isbell topology, there is a natural homeomorphism between

the space of linear continuous maps from [X → R
+
σ ]i to R

+
σ and the space of of (extended,

i.e., possibly taking the value +∞) continuous valuations on X, with the weak topology
[Hec96, Theorem 8.1]. This is an analog of the Riesz Representation Theorem in measure
theory, of which one can find variants in [Tix95, Gou07b] among others, and which we shall
use silently in the proof of Theorem 6.5. Let V1 wk(X) be V1(X) with its weak topology.



QRB-DOMAINS 23

V1 wk defines an endofunctor on the category of topological spaces, byV1 wk(f)(ν)(V ) =
ν(f−1(V )), where f : X → Y , ν ∈ V1 wk(X), and V ∈ O(Y ). That V1 wk(f) is continu-
ous for every continuous f , in particular, is obvious, since for every open subset V of Y ,
V1 wk(f)

−1[V > a] = [f−1(V ) > a].
As we have said above, we shall also require X to be stably compact. If this is so, then

the cocompact topology on X consists of all complements of compact saturated subsets.
Write Xd, the de Groot dual of X, for X with its cocompact topology. Then Xd is again
stably compact, and Xdd = X (see [AMJK04, Corollary 12] or [GHK+03, Corollary VI-
6.19]). The patch topology on X, mentioned earlier, is nothing else than the join of the two
topologies of X and Xd.

Write Xpatch for X equipped with its patch topology. If X is stably compact, then
Xpatch is not only compact Hausdorff, but the graph of the specialization preorder ≤ of X
is closed in Xpatch: one says that (Xpatch,≤) is a compact pospace. The study of compact
pospaces originates in Nachbin’s classic work [Nac65]. Conversely, given a compact pospace
(Z,�), i.e., a compact space with a closed ordering � on it, the upwards topology on Z
consists of those open subsets of Z that are upward closed in �. The space Z↑, obtained
as Z with the upwards topology, is then stably compact. Moreover, the two constructions
are inverse of each other. (See [GHK+03, Section VI-6].)

If X and Y are stably compact, then f : X → Y is proper if and only if f : Xpatch →
Y patch is continuous, and monotonic with respect to the specialization orderings of X and
Y [GHK+03, Proposition VI.6.23], i.e., if and only if f is a morphism of compact pospaces.

Now, the structure of the cocompact topology on V1 wk(X), when X is stably compact,
is as follows. For every continuous valuation ν on X, following Tix [Tix95], define ν†(Q) as
infU∈O(X),U⊇Q ν(U), for every compact saturated subset Q of X. Define 〈Q ≥ a〉 as the set

of probability valuations ν such that ν†(Q) ≥ a. The sets 〈Q ≥ a〉 are compact saturated in
V1 wk(X), and Proposition 6.8 of [Gou10] even states that they form a subbase of compact
saturated subsets. This means that the complements of the sets of the form 〈Q ≥ a〉, Q
compact saturated in X, a ∈ R, form a base of the topology of V1 wk(X)d. A similar claim
was already stated in [Jun04, last lines].

Lemma 6.1. Let X, Y be stably compact spaces, and r be a proper surjective map from X
to Y . Then V1 wk(r)(ν)

†(Q) = ν†(r−1(Q)), for every compact saturated subset Q of Y .

Proof. We must show that infV⊇Q ν(r
−1(V )) = infU⊇r−1(Q) ν(U), where V ranges over

opens in Y and U over opens in X.
For every open V containing Q, U = r−1(V ) is an open subset of X containing the

compact saturated subset r−1(Q), so infV⊇Q ν(r
−1(V )) ≥ infU⊇r−1(Q) ν(U).

Conversely, for every open U containing r−1(Q), we shall build an open subset V con-
taining Q such that r−1(V ) ⊆ U . This will establish infV⊇Q ν(r

−1(V )) ≤ infU⊇r−1(Q) ν(U),
hence the equality.

Recall from Lemma 4.11 that r forms a quasi-retraction, with a unique matching quasi-
section ς : Y → QV(X) such that x ∈ ς(r(x)) for every x ∈ X, and such that ς(y) = r−1(↑ y)
for every y ∈ Y . We let V = ς−1(✷U). Since r−1(Q) ⊆ U , r−1(Q) is in ✷U . For every
y ∈ Q, ς(y) = r−1(↑ y) ⊆ r−1(Q) is then also in ✷U , so y is in ς−1(✷U) = V . So Q ⊆ V .
On the other hand, for every element x of r−1(V ), r(x) is in V = ς−1(✷U), so ς(r(x)) is in
✷U . Then x ∈ ς(r(x)) ⊆ U . So r−1(V ) ⊆ U , and we are done.
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Similarly to the formula V1 wk(f)
−1[V > a] = [f−1(V ) > a], which allowed us to

conclude that V1 wk(f) was continuous for every continuous f , we obtain:

Lemma 6.2. Let X, Y be stably compact spaces, and r be a proper surjective map from X
to Y . Then V1 wk(r)

−1〈Q ≥ a〉 = 〈r−1(Q) ≥ a〉 for every compact saturated subset Q of Y ,
and a ∈ R.

Proof. Using Lemma 6.1, V1 wk(r)
−1〈Q ≥ a〉 = {ν ∈ V1 wk(X) | V1 wk(r)(ν)

†(Q) ≥ a} =
{ν ∈ V1 wk(X) | ν†(r−1(Q)) ≥ a} = 〈r−1(Q) ≥ a〉.

Proposition 6.3. Let X be a stably compact space, Y be a T0 space, and r be a proper
surjective map from X to Y . Then V1 wk(r) is a proper map from V1 wk(X) to V1 wk(X).

Proof. First, since r is proper and surjective, r is a quasi-retraction (Lemma 4.11), so Y
is stably compact by Proposition 4.7. V1 wk(r) is continuous from V1 wk(X) to V1 wk(Y ).
Lemma 6.2 implies that V1 wk(r) is also continuous from V1 wk(X)patch to V1 wk(Y )patch: it
suffices to check that the inverse images of subbasic patch-open subsets, of the form [U > a]
or whose complements are of the form 〈Q ≥ a〉, are patch-open. Also, V1 wk(r) is monotonic
with respect to the specialization orderings of V1 wk(X) and V1 wk(Y ), being continuous.
So V1 wk(r) is proper.

Let us establish surjectivity. One possible proof goes as follows. Let M1(Z) denote
the space of all Radon probability measures on the space Z. If X is stably compact,
then M1(X

patch) is compact in the vague topology, and forms a compact pospace with the
stochastic ordering, where µ is below µ′ if and only if µ(U) ≤ µ′(U) for every open subset U
of X [AMJK04, Theorem 31]. By [AMJK04, Theorem 36], there is an isomorphism between

V1 wk(X) and M↑
1(X

patch).
Now assume a second stably compact space Y . For two measurable spaces A and B, and

f : A → B measurable, let M(f) map the Radon measure µ to its image measure, whose
value on the Borel subset E of B is µ(f−1(E)). A standard result [Bou69, 2.4, Lemma 1]
states that for any two compact Hausdorff spaces A and B, if r is continuous surjective from
A to B, then M(r) is surjective. The desired result follows, up to a few technical details,
by taking A = Xpatch, B = Y patch, remembering that since r is proper from X to Y , it is
continuous from Xpatch to Y patch.

Instead of working out the—technically subtle but boring—technical details, let us
give a direct proof, similar to the above cited Lemma 1, 2.4 [Bou69]. Instead of using
the Hahn-Banach Theorem, we rest on the following Keimel Sandwich Theorem [Kei06,

Theorem 8.2]: let C be a topological cone, q : C → R
+
σ be a continuous superlinear

map, p : C → R
+
σ be a sublinear map, and assume q ≤ p; then there is a continuous

linear map Λ : C → R
+
σ such that q ≤ Λ ≤ p. Here, a cone is an additive commutative

monoid, with a scalar multiplication by elements of R
+ satisfying a(x + y) = ax + ay,

(a + b)x = ax + bx, (ab)x = a(bx), 1x = x, 0x = 0 for all a, b ∈ R
+, x, y ∈ C. A cone is

topological if and only if addition and multiplication are continuous. The continuous maps

f : C → R
+
σ are sometimes called lower semi-continuous in the literature. Such a map is

superlinear (resp., sublinear, linear) if and only if f(ax) = af(x) for all a ∈ R
+, x ∈ C

and f(x + y) ≥ f(x) + f(y) for all x, y ∈ C (resp., ≤, =). It is easy to see that the space

[X → R
+
σ ] of all continuous maps from X to R

+
σ , equipped with the obvious addition and

scalar multiplication and with the Scott topology of the pointwise ordering, is a topological
cone.
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Proposition 6.4. Let X, Y be stably compact spaces, and r be a proper surjective map
from X to Y . Then V1 wk(r) is surjective.

Proof. Fix some continuous probability valuation ν on Y . Let C be [X → R
+
σ ]. Since

r is proper, it has an associated quasi-section ς, with x ∈ ς(r(x)) for every x ∈ X, by

Lemma 4.11. Define q : C → R
+
σ by q(h) =

∫
y∈Y h∗(ς(y))dν, where h∗(Q) = minx∈Q h(x),

and integration of continuous maps from Y to R
+
σ is defined by a Choquet formula [Tix95,

Gou07a], or equivalently by Heckmann’s general construction [Hec96].
Note that h∗(Q) is well-defined as minQh(Q), since Qh(Q) is compact saturated hence

of the form [a,+∞] for some a ∈ R
+
σ—then h∗(Q) = a. Moreover, h∗ is continuous from

QV(X) to R
+
σ , because h−1

∗ (a,+∞] = ✷h−1(a,+∞]. So h∗ ◦ ς is continuous, whence the
integral defining q makes sense. We now claim that the map h 7→ h∗ is (Scott-)continuous.

First, h 7→ h∗ is clearly monotonic. Now let (hi)i∈I be a directed family in [X → R
+
σ ]

with a least upper bound h. By monotonicity, for every Q ∈ Q(X), hi∗(Q) ≤ h∗(Q), so
supi∈I hi∗(Q) exists and is below h∗(Q). Conversely, we must show that for every a ∈ R

+

such that a < h∗(Q), a < supi∈I hi∗(Q). The elements Q ∈ Q(X) such that a < h∗(Q) are
those such that for every x ∈ Q, there is an i ∈ I such that hi(x) ∈ (a,+∞), i.e., they are
the elements of ✷

⋃
i∈I h

−1
i (a,+∞). Since ✷ commutes with directed unions, if a < h∗(Q)

then Q ∈ ✷h−1
i (a,+∞) for some i ∈ I, i.e., hi∗(Q) > a, and we are done. Since h 7→ h∗ is

continuous, and since the Choquet integral is Scott-continuous in the integrated function
(see [Tix95, Satz 4.4], or [Hec96, Theorem 7.1 (3)]), we obtain that q is (Scott-)continuous.

For every a ∈ R
+, q(ah) = aq(h). Moreover, since (h1+h2)∗ ≥ h1∗+h2∗, and integration

is linear, q is superlinear.

Define p(h) as inf
{∫

y∈Y h
′(y)dν

∣∣∣ h′ ∈ [Y → R
+
σ ], h ≤ h′ ◦ r

}
. Clearly, p is sublinear.

Notably,

p(h1) + p(h2) = inf
{∫

y∈Y [h′1(y) + h′2(y)] dν
∣∣∣ h′1 ∈ [Y → R

+
σ ], h1 ≤ h′1 ◦ r,

h′2 ∈ [Y → R
+
σ ], h2 ≤ h′2 ◦ r

}

≥ inf
{∫

y∈Y h
′(y) dν

∣∣∣ h′ ∈ [Y → R
+
σ ], h1 + h2 ≤ h′ ◦ r

}
= p(h1 + h2).

Whenever h ≤ h′ ◦r, we claim that h∗(ς(y)) ≤ h′(y). Indeed, since y = r(x) for some x ∈ X
(Lemma 4.2), and since x ∈ ς(r(x)) = ς(y), h∗(ς(y)) ≤ h(x) ≤ h′(r(x)) = h′(y).

It follows that q(h) =
∫
y∈Y h∗(ς(y))dν ≤

∫
y∈Y h

′(y)dν. By taking infs over h′, q ≤ p.

So Keimel’s Sandwich Theorem applies. There is a continuous linear map Λ : C →

R
+
σ such that q ≤ Λ ≤ p. Define ν0 : O(X) → R

+
σ by ν0(U) = Λ(χU ), where χU is

the characteristic function of U . Then ν0 is a continuous valuation on X; in particular,
ν0(U ∪ V ) + ν0(U ∩ V ) = ν0(U) + ν0(V ) because χU∪V + χU∩V = χU + χV .

Now, given an open subset V of Y , take h = χr−1(V ). Then h∗(Q) = 1 iff Q ⊆ r−1(V ),

so h∗ = χ✷r−1(V ), and therefore h∗(ς(y)) = χ✷r−1(V )(r
−1(↑ y)) = χV (y), using the fact that

r is surjective. It follows that q(h) =
∫
y∈Y χV dν = ν(V ). On the other hand, take h′ = χV

in the definition of p, and check that h ≤ h′ ◦ r. It follows that p(h) ≤
∫
y∈Y χV (y)dν =

ν(V ). Since q(h) ≤ ν0(r
−1(V )) ≤ p(h), ν0(r

−1(V )) = ν(V ). This holds for every open
subset V of Y . In particular, taking V = Y , we obtain that ν0 is a probability valuation:
ν0(X) = ν0(r

−1(Y )) = ν(Y ) = 1. And finally, that ν0(r
−1(V )) = ν(V ) holds for every open

V of Y means that ν = V1 wk(ν0).
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Figure 6: The path space of Figure 2 (i)

Putting together Proposition 6.3 and Proposition 6.4, we obtain:

Theorem 6.5 (Key Claim). Let X be a stably compact space, and Y be a T0 space. If
r is a proper surjective map from X to Y , then V1 wk(r) is a proper surjective map from
V1 wk(X) to V1 wk(X).

In particular, if Y is a quasi-projection of X, then V1 wk(Y ) is a quasi-projection of
V1 wk(X).

We shall apply this theorem twice, and first, to finite pointed posets. Let < be the
strict part of ≤.

Definition 6.6 (Path Space). Let Y be any finite pointed poset. Write y → y′ iff y is
immediately below y′, i.e., y < y′ and there is no z ∈ Y such that y < z < y′. A path π in
Y is any set {y0, y1, . . . , yn} ⊆ Y with y0 = ⊥ → y1 → . . . → yn. The path space Π(Y ) is
the set of paths in Y , ordered by ⊆.

Alternatively, the ordering on paths y0 → y1 → . . . → yn is the prefix ordering on
sequences y0y1 . . . yn.

Note that Π(Y ) is always a finite tree, i.e., a finite pointed poset such that the downward
closure of a point is always totally ordered. Up to questions of finiteness, this is exactly
how we built a tree from an ordering in the proof of Lemma 4.12, by the way.

We observe that every finite pointed poset Y is a quasi-projection of its path space
Π(Y ).

Lemma 6.7. For every finite pointed poset Y , the map r : Π(Y ) → Y defined by r(π) =
maxπ is proper and surjective.

Proof. See Figure 6, which displays the path space of the space Y of Figure 2 (i). Each
gray region is labeled with an element from Y , which is the image by r of every point in
the region; e.g., the top right, 5-element region is mapped to j in Y .

Formally, let X = Π(Y ), and define r : X → Y by r(π) = max π, i.e., r(y0 → y1 →
. . . → yn) = yn. The map r is surjective, and monotonic. Since X and Y are finite, r is
then trivially proper.

Y is certainly not a retract of Π(Y ) in general: it is, if and only if Y is a tree. Indeed,
if Y is a tree, then Y is isomorphic to Π(Y ), and conversely, every retract of a tree is a tree.

Finite trees are very special. Jung and Tix proved that V≤1(T ) is an RB-domain
[JT98, Theorem 13] for every finite tree T . They noted (comment after op.cit.) that
V≤1(T ) is even a bc-domain in this case, i.e., a pointed continuous dcpo in which every
pair of elements with an upper bound has a least upper bound. It is well-known that every
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bc-domain is an RB-domain: given any finite subset A of a basis B of a bc-domain X, the
map fA(x) = sup(A∩ ↓↓x) is a deflation, the family of these deflations is directed, and their
least upper bound is the identity map.

Lemma 6.8. For every finite tree T , V1(T ) is a countably-based bc-domain.

Proof. Since T is a finite tree, it is trivially a continuous pointed dcpo, so V1(T ) is again
continuous [Eda95, Section 3]. A basis is given by the valuations of the form

∑
t∈T atδt

with at ∈ [0, 1],
∑

t∈T at = 1 and each at rational. Since V1(T ) has a countable basis

B, its topology has a countable base consisting of the subsets ↑↑b, b ∈ B. So V1(T ) is
countably-based.

To show that V1(T ) is a bc-domain, we observe that every probability valuation ν on
T is entirely characterized by the values ν(↑ t), t ∈ T . Indeed, for every open subset U of T ,
let MinU be the (finite) set of minimal elements of U ; the sets ↑ t, t ∈ MinU , are pairwise
disjoint, so ν(U) =

∑
t∈MinU ν(↑ t). The map f : T → [0, 1] defined by f(t) = ν(↑ t) satisfies

f(⊥) = 1 and f(t) ≥
∑

t′∈T,t→t′ f(t
′) for every t ∈ T . Let us call such maps admissible.

Given any admissible map f , there is a unique probability valuation ν such that f(t) = ν(↑ t)
for every t ∈ T , namely

∑
t∈T atδt with at = f(t) −

∑
t′∈T,t→t′ f(t

′). So V1(T ) is order-
isomorphic to the poset of admissible maps, with the pointwise ordering. Therefore we only
have to show that any two admissible maps f1, f2 below a third one f0 have a least upper
bound f . As a least upper bound, f(t) must be above f1(t), f2(t), and

∑
t′∈T,t→t′ f(t

′), so

define f(t) by descending induction on t by f(t) = max(f1(t), f2(t),
∑

t′∈T,t→t′ f(t
′)). (By

descending induction, we mean induction on the largest length n of a sequence t0 → t1 →
. . . → tn in T such that t0 = t.) This is admissible if and only if f(⊥) = 1, and in this
case will be the least upper bound of f1, f2. By definition f(⊥) ≥ 1. It is easy to see that
f(t) ≤ f0(t) for every t, by descending induction on t: so f(⊥) ≤ f0(⊥) = 1, hence f is
admissible.

We retrieve the Jung-Tix result that V≤1(T ) is a bc-domain for every tree T : let T⊥
be T with an extra bottom element added below all elements of T , and apply Lemma 6.8
to V1(T⊥) ∼= V≤1(T ).

Proposition 6.9. For every finite pointed poset Y , V1(Y ) is a continuous ωQRB-domain.

Proof. Y is trivially a continuous pointed dcpo. Then we know that V1(Y ) is again con-
tinuous [Eda95, Section 3], and that V1(Y ) = V1 wk(Y ) by the Kirch-Tix Theorem. Sim-
ilarly for V1(Π(Y )). Π(Y ) is clearly stably compact, since finite. By Theorem 6.5, using
Lemma 6.7, V1(Y ) is the image of V1(Π(Y )) under some proper surjective map. But Π(Y )
is a tree, so V1(Π(Y )) is a countably-based bc-domain by Lemma 6.8, hence a countably-
based RB-domain, hence an ωQRB-domain, by Proposition 3.2 and Proposition 3.18. By
Proposition 4.10, V1(Y ) must also be an ωQRB-domain.

We can finally prove the main theorem of this paper.

Theorem 6.10. The probabilistic powerdomain of any ωQRB-domain is an ωQRB-domain.

Proof. Let Y be an ωQRB-domain. By Theorem 4.13, Y is the image of some ωB-domain
X = limi∈NXi under some proper surjective map. Since V1 is a locally continuous functor
on the category of dcpos, (as mentioned in proof of [JT98, Lemma 11]), V1(X) is also
a bilimit of the spaces V1(Xi), i ∈ I. Each V1(Xi) is a continuous ωQRB-domain by
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Figure 7: Plotkin’s Domain T

Proposition 6.9, hence so is V1(X), by Theorem 5.4 and since bilimits of continuous dcpos
are continuous [AJ94, Theorem 3.3.11].

Since X is bifinite, it is stably compact, (use, e.g., Theorem 3.14), and V1(X) =
V1 wk(X) because X is continuous and pointed, using the Kirch-Tix Theorem. So V1 wk(Y )
is the image of V1(X) under a proper surjective map, by Theorem 6.5. It is clear that
V1 wk(Y ) is T0, so by Proposition 4.10 V1 wk(Y )) is an ωQRB-domain in its specialization
preorder �, and its topology must be the Scott topology of �.

But it is easy to see that � is the usual ordering on V1(Y ), i.e., ν � ν ′ iff ν(U) ≤ ν ′(U)
for every open U of Y : note that if ν � ν ′, then ν ′ ∈ [U > r] for every r < ν(U). So
V1 wk(Y )) = V1(Y ), and we conclude.

Using the fact that V1(X) is continuous whenever X is continuous and pointed [Eda95,
Section 3], it also follows:

Corollary 6.11. The probabilistic powerdomain of any continuous ωQRB-domain (in par-
ticular, every RB-domain) is again a continuous ωQRB-domain.

7. Conclusion, Failures and Perspectives

We have shown that the category ωQRB of ωQRB-domains and continuous maps is a
category of quasi-continuous, stably compact dcpos that is closed, not only under finite
products, bilimits of expanding sequences, retracts (and even quasi-retracts), but also under
the probabilistic powerdomain functor V1. It is thus reasonably well-behaved.

But ωQRB is not Cartesian-closed. Consider the space T of [AJ94, Figure 12], see
Figure 7. This is an ωQRB-domain: define the quasi-deflations ϕi, i ∈ N, as mapping ⊥
to ↑{⊥}, any element (j, n) to ↑{(j, n)} if n < i, and any other element to ↑{(0, i), (1, i)}.

However, [T → T ] is not an ωQRB-domain.
Assume (ϕi)i∈N were a generating sequence of quasi-deflations on [T → T ]. For each

function f : N → {0, 1}, there is a continuous map f̂ : T → T that sends ⊥ to ⊥, ⊤ to
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⊤, (0, n) to (f(n), n) and (1, n) to (1 − f(n), n) (f̂ exchanges (0, n) and (1, n) if f(n) = 1,

leaves them unswapped if f(n) = 0). Write ϕi(f̂) as ↑Ei,f , where Ei,f is finite.

We claim that: (∗) for each f : N → {0, 1}, there is an index i ∈ N such that f̂ ∈ Ei,f . If

there were an element g of ϕi(f̂) such that g(0, 0) = ⊥, for infinitely many values of i ∈ N,
then this would hold for every i; but the map sending ⊥ and (0, 0) to ⊥, and all other

elements to ⊤ would be in
⋂

i∈N ϕi(f̂) = ↑ f̂ , which is impossible. So, for i large enough,

no element g of ϕi(f̂) maps (0, 0) to ⊥. Similarly, for i large enough, no element g of ϕi(f̂)

maps (1, 0) to ⊥. Since f̂ ∈ ϕi(f̂), for i large enough we find g ∈ Ei,f with g(0, 0) 6= ⊥,

g(1, 0) 6= ⊥, and g ≤ f̂ .

We check that g = f̂ . First, g(⊥) ≤ f̂(⊥) = ⊥ so g(⊥) = f̂(⊥). Next, g(0, 0) is an

element below f̂(0, 0) = (f(0), 0) and different from ⊥, and the only element satisfying this

is f̂(0, 0). Similarly, g(1, 0) = f̂(1, 0). By induction on n ∈ N, we show that g(j, n) = f̂(j, n).

At rank n+1, g(0, n+1) is an element below f̂(0, n+1) = (f(n+1), n+1) and above both

g(0, n) = f̂(0, n) = (f(n), n) and g(1, n) = f̂(1, n) = (1 − f(n), n). The only such element

is (f(n + 1), n + 1) = f̂(0, n + 1). Similarly, g(1, n + 1) = f̂(1, n + 1). Finally, g(⊤) is an

element above all g(j, n), hence must equal ⊤ = f̂(⊤).

Since g ∈ Ei,f , and g = f̂ , Claim (∗) is proved.

However, there are uncountably many functions of the form f̂ , and only countably many
elements of

⋃
i∈N

f :N→{0,1}
Ei,f , since each set Ei,f is finite, and for each i ∈ N, there are only

finitely many distinct sets Ei,f with f : N → {0, 1}. We have reached a contradiction.
Since exponentials in any full subcategory of the category of dcpos must be isomorphic

to the ordinary continuous function space [Smy83], it follows:

Proposition 7.1. ωQRB is not Cartesian-closed.

The above argument also shows that, although T is both continuous (even algebraic)
and an ωQRB-domain, T is not an RB-domain: so Corollary 6.11 is not enough to settle
the Jung-Tix problem in the positive either.

One might hope that countability would be the problem. However, we required count-
ability in at least two places. The first one is Lemma 4.12, which would fail in case we
allowed for directed families (E0

i )i∈I instead of non-decreasing sequences. The second one
is in the (i) ⇒ (iii) direction of Theorem 4.13, where we need countability to obtain Y
as a quasi-projection, and not just a quasi-retract. (This is similar to an open problem
in the theory of RB-domains, see [Jun88, Remark after Theorem 4.9].) In turn, we need
quasi-projections, not just quasi-retracts, in the Key Claim, Theorem 6.5.

To get around the Jung-Tix problem using our results, one might shift the focus to-
wards the Kleisli category ωQRBQ, for example. This is a full subcategory of Jung, Kegel-
mann and Moshier’s pleasing category SCSSCSSCS∗ of stably compact spaces and closed relations
[JKM01].

On the other hand, we would like to point out the following deep connection between
QRB-domains and FS-domains.

Definition 7.2. A controlled quasi-deflation on a poset X is a pair of a Scott-continuous
map f : X → X and of a quasi-deflation ϕ : X → Fin(X) such that ϕ(x) ⊆ ↑ f(x) for every
x ∈ X. The map f is the control .
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A controlled QRB-domain is a pointed dcpo X with a generating family of controlled
quasi-deflations, i.e., a directed family of controlled quasi-deflations (in the pointwise or-
dering) (fi, ϕi)i∈I such that x = supi∈I fi(x) for every x ∈ X.

So a controlled quasi-deflation is a pair (f, ϕ) with the property that ↑ f(x) ⊇ ϕ(x) ⊇ ↑x
for every x ∈ X. Every controlled QRB-domain is a QRB-domain: given a generating

family of controlled quasi-deflations (fi, ϕi)i∈I ,
⋂↓

i∈I ϕi(x) ⊆
⋂↓

i∈I ↑ fi(x) = ↑ supi∈I fi(x) =

↑x, and the converse inclusion ↑x ⊆
⋂↓

i∈I ϕi(x) is obvious; so (ϕi)i∈I is a generating family
of quasi-deflations.

Theorem 7.3. The controlled QRB-domains are exactly the FS-domains, and hence form
a Cartesian-closed category.

Proof. If (fi, ϕi)i∈I is a generating family of controlled quasi-deflations on a pointed dcpo
X, then fi is finitely separated from idX : indeed, let imϕi = {Ei1, . . . , Eini

} and Mi =⋃ni

j=1Eij, then for every x ∈ X, since x ∈ ϕi(x), there is a pointm ∈ Eij where ↑Eij = ϕi(x)

such that m ≤ x, and since ↑Eij ⊆ ↑ fi(x), we have fi(x) ≤ m; soMi is a finitely separating
set for fi on X.

Conversely, assumeX is an FS-domain, and let (gi)i∈I be a directed family of continuous
maps, finitely separated from idX , and whose pointwise least upper bound is idX . Let
fi = gi ◦ gi. By [Jun90, Lemma 2], fi is strongly finitely separated from idX , i.e., there is
a finite set Ei of pairs of elements m ≪ m′ such that for every x ∈ X, one can find a pair
(m,m′) ∈ Ei such that fi(x) ≤ m≪ m′ ≤ x. Moreover, the pointwise least upper bound of
(fi)i∈I is again idX .

For each pair (m,m′) ∈ Ei with m ≪ m′, ↑m′ ⊆ ↑↑m ⊆
⋃

j∈I f
−1
j (↑↑m). Indeed,

for every x ∈ ↑↑m, since x = supj∈I fj(x) and ↑↑m is Scott-open, fj(x) ∈ ↑↑m for some

j ∈ I. Since ↑m′ is compact, and the family (f−1
j (↑↑m))

j∈I
is directed, ↑m′ ⊆ f−1

j (↑↑m)

for some j ∈ I. By directedness again, we can take the same j for all pairs m ≪ m′ in
Ei. But now ↑m′ ⊆ f−1

j (↑↑m) implies that whenever m′ ≤ x, then m ≪ fj(x). Using

the separation property of Ei, for every x ∈ X, one can find a pair (m,m′) ∈ Ei such
that fi(x) ≤ m ≪ fj(x). In particular, letting Mi be the set of elements m such that
(m,m′) ∈ Ei for some m′ ∈ X, fi is finitely separated from fj, with separating set Mi, with
the obvious meaning: for every x ∈ X, there is an m ∈Mi such that fi(x) ≤ m ≤ fj(x). In
this case, we write fi ≺Mi

fj.
We now define ϕi(x) as ↑(Mi ∩ ↑ fi(x)). Since Mi is finite, ϕi is a map from X to

Fin(X). It is monotonic, and we claim it is Scott-continuous. Let (xk)k∈K be a directed
family in X. Then ϕi(supk∈K xk) = ↑(Mi ∩ ↑ supk∈K fi(xk)) (since fi is continuous) =
↑(Mi ∩

⋂
k∈K ↑ fi(xk)) = ↑

⋂
k∈K(Mi ∩ ↑ fi(xk)). The latter intersection is an intersection

of finite sets, hence there is a k ∈ K such that ϕi(supk∈K xk) = ϕi(xk), from which Scott-
continuity is immediate.

We must now check that (ϕi)i∈I is directed. Given i, i′ ∈ I, one can find j, j′ ∈ I so
that fi ≺Mi

fj and fi′ ≺Mi′
fj′. By directedness, there is an ℓ ∈ I such that fj, fj′ ≤ fℓ.

We claim that for every x ∈ X, ϕi(x), ϕi′(x) ⊇ ϕℓ(x). For every y ∈ ϕℓ(x), fℓ(x) ≤ y. So
fj(x) ≤ y. Since fi ≺Mi

fj, there is an element m ∈ Mi such that fi(x) ≤ m ≤ fj(x) ≤ y.
So m is in Mi ∩ ↑ fi(x), and below y, whence y ∈ ϕi(x). Similarly, y is in ϕi′(x).

Finally, x ∈ ϕi(x) for every x ∈ X: by definition, there is a pair (m,m′) ∈ Ei such

that fi(x) ≤ m ≪ m′ ≤ x; so m ∈ Mi, m ∈ ↑ fi(x), and m is below x. And
⋂↓

i∈I ϕi(x) ⊆
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⋂↓
i∈I ↑ fi(x) = ↑x, while the converse inclusion is obvious. So (ϕi)i∈I is a generating family

of quasi-deflations.

Defining the controlled ωQRB-domains as the ωQRB-domains, except with sequences
of controlled quasi-deflations instead of directed families, and similarly for the ωFS-domains
(a.k.a., the countably-based FS-domains, again a Cartesian-closed category [Jun90, Theo-
rem 11]), we prove similarly:

Theorem 7.4. The controlled ωQRB-domains are exactly the ωFS-domains, and hence
form a Cartesian-closed category.

Using this last observation, Corollary 6.11 settles half of the conjecture that the prob-
abilistic powerdomain of an ωFS-domain would be an ωFS-domain again. We are only
lacking control .

Open Problems

(1) Is countability necessary in Theorem 4.13? Precisely, can one show that the QRB-
domains are exactly the quasi-retracts of B-domains? The main difficulty seems to lie
in the fact that a non-countable analog of Lemma 4.12 is missing—and Rudin’s Lemma
does not quite give us what we need, as discussed before the statement of the lemma.

(2) If Y is a quasi-retract of X, X is stably compact, and Y is T0, then is V1 wk(Y ) a
quasi-retract of V1 wk(X)? This would be the analog of Theorem 6.5, only with quasi-
retractions instead of quasi-projections.

(3) Is stable compactness necessary to derive Theorem 6.5?
(4) One way of trying to prove that the probabilistic powerdomain of an ωFS-domain is

again an ωFS-domain would be by inventing a new notion, say of good maps, and show
that the ωFS-domains, or alternatively the controlled ωQRB-domains, are exactly the
images under good maps of ωB-domains. Good maps should intuitively be intermediate
between projections and proper surjective maps, in the sense that every projection
should be good, and that every good map should be proper and surjective. Indeed
surjective proper maps preserve the QRB part, but not the control, while projections
preserve too much, in the sense that not all ωQRB-domains, only the ωRB-domains,
are retracts of ωB-domains. Such a characterization of ωFS-domains would be of
independent interest, too.
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