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Abstract. In this paper we revise and simplify the notion of observationally induced

algebra introduced by Simpson and Schröder for the purpose of modelling computational

effects in the particular case where the ambient category is given by classical domain
theory.

As examples of the general framework we consider the various powerdomains. For
the particular case of the Plotkin powerdomain the general recipe leads to a somewhat
unexpected result which, however, makes sense from a Computer Science perspective. We
analyze this “deviation” and show how to reobtain the original Plotkin powerdomain
by imposing further conditions previously considered by R. Heckmann and J. Goubault-
Larrecq.

Introduction

E. Moggi in his seminal paper [19] described how to model computational effects via so-called
“computational monads”. Later Power and Plotkin suggested to model computational effects
as free algebras which after all give rise to monads. Though some effects like continuations
cannot be modeled this way their approach covers most examples of computational effects
as described in [20]. In their account the algebras of interest are specified by equational
and inequational laws. As an alternative A. Simpson and M. Schröder in [22] suggested to
specify classes of algebras not in an axiomatic way but instead by exhibiting a prototypical
such algebra R. For such an algebra R one may define a notion of R-complete algebra. In
[22, 2, 3, 4] it is shown how to construct for every object X of the ambient category (of
domains) a free R-complete algebra R(X) over X, called the repletion of X.

The notion of R-complete algebra is defined in analogy with M. Hyland’s notion of
replete object as introduced in [11] for the purpose of providing an appropriate notion of
completeness within Synthetic Domain Theory. Actually, in case of an empty signature
R-complete algebras coincide with R-replete objects in the sense of [11]. The definition
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of R-completeness in [22, 2, 3, 4] appears as somewhat convoluted because categories of
algebras are typically not cartesian closed and, moreover, in some of the cases considered
in loc.cit. the ambient category was not cartesian closed as e.g. the category of topological
spaces and continuous maps. We assume our ambient category to be cartesian closed and
the category of algebras to be enriched over this ambient category. This allows us to come
up in section 1 with a notion of completeness which is closer in spirit to Hyland’s original
notion of repleteness. Moreover, as shown in section 2 the complete algebras form a full
reflective subcategory when the ambient category are directed complete partial orders and
Scott continuous maps as studied e.g. in [1].

In the remaining sections we study particular cases of computational effects correspond-
ing to the various notions of powerdomains. If the computational effect is given by the
computational monad T then the corresponding prototypical algebra R is chosen to be
T (Σ) where Σ is the Sierpiński domain. In most cases R(X) turns out to coincide with
the respective powerdomain of X. A notable exception is the Plotkin powerdomain P in
which case A = P(Σ) is the 3-element chain ⊥ ❁ m ❁ ⊤ whose elements stand for “must
diverge”, “may diverge or converge” and “must converge”, respectively. It turns out that
for (reasonable) domains X their repletion A(X) consists of “formal lenses” (C,Q) where
C is Scott closed in X, Q is compact saturated in X and C ∩Q is nonempty. Obviously, in
general such formal lenses (C,Q) are not determined by the “real lens” C ∩Q. We also give
characterizations of the “real” lenses as particular “formal” lenses using and adapting ideas
from [10, 8, 9]. However, formal lenses (C,Q) appear as quite natural from a Computer
Science perspective since C may be understood as a “safety” predicate and Q as a “liveness”
predicate on X.

1. Complete algebras in cartesian closed categories

We assume C to be a cartesian closed category and Ω a finitary algebraic signature, that
is, a collection of operation symbols ω each coming with a finite arity n = nω ∈ N. A
CΩ-algebra in C is an object A of C together with C-morphisms ωA : Anω → A, one for
each operation symbol ω ∈ Ω. We denote CΩ-algebras by A, B, . . . and by A, B, . . . the
underlying C-objects. A CΩ-homomorphism between CΩ-algebras A and B is a C-morphism
h : A → B such that h ◦ ωA = ωB ◦ hn for every ω ∈ Ω of arity n. We denote by CΩ the
category of CΩ-algebras and CΩ-homomorphisms.

As C is cartesian closed, the category CΩ has C-powers, i.e. for A in CΩ and X in C the
power AX is the algebra whose underlying object is AX and whose operations are defined
pointwise as ωAX (~u) = λx:X. ωA(~u(x)).

Moreover, we assume CΩ to be C-enriched in the sense that for CΩ-algebras A and B

there is an object hom(A,B) in C with CΩ(A,BX) ∼= C(X, hom(A,B) naturally in X. If C
has enough limits hom(A,B) arises as subobject of the exponential BA via an appropriate
equalizer.

Finally, we fix a CΩ-algebra R as computational prototype. As originally suggested by
A. Simpson and M. Schröder [22] we will define notions of R-complete algebras which in
case of empty signature coincide with the notion of an R-replete object [11]. We present
two such notions which, however, give rise to the same construction when reflecting free
algebras to the R-complete ones.

First we give the definitions originally suggested in [22, 2, 3, 4] but formulated in a way
making use of the assumption that CΩ is enriched over C.
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Definition 1.1. Let X be an object of C and A and C be algebras in C. A morphism
e : X → A is called C-equable, if the restriction of the C-morphism Ce : CA → CX to
hom(A,C), i.e. Ce : hom(A,C) → CX : h 7→ h ◦ e is an isomorphism in C.

Next, we identify our class of computation types as R-complete algebras in the following
sense.

Definition 1.2. A weakly R-complete algebra is a CΩ-algebra C such that every R-equable
morphism is also C-equable. We denote the category of CΩ-homomorphisms between weakly
R-complete algebras by wCR.

Next we give the second stronger version of R-completeness which has been proposed
recently by Battenfeld in [3] (following a suggestion on p.64 of [24]) and is closer in spirit
to Hyland’s original definition of R-replete objects, see [11].

Definition 1.3. For CΩ-algebras A, B and C, a CΩ-homomorphism e : A → B is called
C-equable, if the C-map hom(e, C) : hom(B,C) → hom(A,C) : h 7→ h ◦ e is an isomorphism
in C.

Definition 1.4. A CΩ-algebra C is called R-complete if every R-equable homomorphism
e : A → B is also C-equable. We denote the category of R-complete CΩ-algebras and CΩ-
homomorphisms by CR.

We now discuss why R-completeness is presumably stronger than weak R-completeness
and why the difference doesn’t matter too much for our purposes. For this, we suppose that
for every object X in the category C there is an (absolutely) free Ω-algebra over X in C, i.e.
a CΩ-algebra FΩ(X) together with a C-map iX : X → FΩ(X) such that for every algebra A
the map AiX : hom(FΩ(X), A) → AX : h 7→ h ◦ iX is an isomorphism in C. This amounts
to an internalization to C of the requirement that for every morphism e : X → A there is a
unique homomorphic extension ê : FΩ(X) → A along iX as depicted in

X
iX✲ FΩ(X)

A

ê
❄

e ✲

Thus, a morphism e : X → A is C-equable in the sense of Def. 1.1 iff the homomorphic
extension ê : FΩ(X) → A is C-equable in the sense of Definition 1.3. For this reason, an
R-complete algebra according to Definition 1.4 is in particular also weakly R-complete in
the sense of Definition 1.2.

The notion of completeness has the advantage that for interesting instances of C, as
e.g. the category Dcpo of directed complete posets, the R-complete algebras form a full
reflective subcategory of CΩ. But, as we will show later, in the category Dcpo for every
object X the free weakly R-complete algebra over X coincides with the reflection of FΩ(X)
to the category CR of R-complete algebras.

We recall for later use that the forgetful functor CΩ → C creates limits. It turns out
that the same holds for both of the subcategories of weakly R-complete and also R-complete
algebras.

Lemma 1.5. The forgetful functor U : wCR → C creates limits. The same holds for the
category of R-complete algebras.
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Proof. Clearly, the forgetful functor factors as CR → CΩ → C. The forgetful functor CΩ → C
is known to create limits. Thus, if D is a diagram in CR, and the limit of U ◦D exists in C,
then its limit Lim(D) carries a canonical Ω-algebra structure, making (Lim(D), {ωLim(D)})
the corresponding limit in CΩ. It only remains to show that (Lim(D), {ωLim(D)}) is (weakly)
R-complete, which follows from a straightforward calculation.

2. Complete algebras in Classical Domain Theory

We now study the notions of the previous section for the classical case where C is the category
Dcpo of directed complete partial orders and Scott continuous maps between them. We start
by fixing our notation.

Recall that a partially ordered set is directed complete if every directed family (xi)i∈I

of elements has a supremum that we denote by
∨↑

i∈I xi in order to indicate that it is the
supremum of a directed family. A map f between dcpos is continuous (in the sense of Scott)
if it preserves the order and suprema of directed families. It is well-known that the category
Dcpo is cartesian closed, complete and cocomplete (see e.g. [1]). The exponential, denoted
by Y X and alternatively by [X → Y ], is given by the set of Scott-continuous functions
u : X → Y ordered pointwise. Suprema of directed families in Y X are computed pointwise.
A subset Y of a dcpo X is said to be a sub-dcpo if, for every directed family (yi)i∈I of

elements in Y , the supremum
∨↑

i∈I yi (taken in X) belongs to Y .
As in the previous section, we fix a finitary algebraic signature Ω. A DcpoΩ-algebra A

is a dcpo A together with continuous operations ωA : An → A for every ω ∈ Ω with arity n.
A map h : A→ B between DcpoΩ-algebras is an Ω-homomorphism if

h(ωA(a1, . . . , an)) = ωB(h(a1), . . . , h(an))

for every ω ∈ Ω of arity n and all a1, . . . , an ∈ A. We write DcpoΩ for the category of
DcpoΩ-algebras and continuous Ω-homomorphisms.

For a directed family of continuous Ω-homomorphisms {hi : A → B}i∈I , their (point-

wise) supremum h(x) =
∨↑

i∈I hi(x) is again a continuous Ω-homomorphism h : A → B.
Hence, the continuous homomorphisms from A to B give rise to a sub-dcpo hom(A,B) of
the exponential BA in Dcpo for which reason the category DcpoΩ is Dcpo-enriched.

For a dcpo X and a DcpoΩ-algebra A, the exponential AX in Dcpo can be endowed
with the structure of a DcpoΩ-algebra by defining the operations ω on AX as

ωAX (u1, . . . , un) = λx:X.ωA(u1(x), . . . , un(x))

where n is the arity of ω.
It is well-known (see [1]) that for every dcpo X there is an (absolutely) free DcpoΩ-

algebra over X, i.e. a DcpoΩ-algebra FΩ(X) together with a continuous map iX : X →
FΩ(X) such that for every continuous map f from X to a DcpoΩ-algebra A there is a
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unique continuous homomorphic extension f̃ : FΩ(X) → A of f along iX as in

X
iX✲ FΩ(X)

A

f̃

❄

f

✲

Moreover, the map f 7→ f̃ : AX → hom(FΩ(X), A) is not only bijective but an isomorphism
of dcpos (see, e.g. [1]).

We now fix a DcpoΩ-algebra R as computational prototype and identify our class of
computation types as R-complete algebras as in Section 1.

Definition 2.1. For DcpoΩ-algebras A, B and C, a continuous homomorphism e : A → B

is called C-equable, if every continuous homomorphism h : A→ C has a unique continuous

homomorphic extension ĥ : B → C along e as in

A
e ✲ B

C

ĥ

❄

h

✲

such that the map

h 7→ ĥ : hom(A,C) → hom(B,C)

is an isomorphism.

This definition of “equable” fits under the general scheme of Definition 1.3. First notice
that the map hom(e, C) : hom(B,C) → hom(A,C) is always continuous. It is surjective
if and only if every continuous homomorphism h : A → C has at least one continuous

homomorphic extension ĥ : B → C along e. It is bijective if and only if every continuous

homomorphism h : A → C has a unique continuous homomorphic extension ĥ : B → C

along e. Then the map hom(e, C) : hom(B,C) → hom(A,C) is an isomorphism within Dcpo

iff the inverse map h 7→ ĥ preserves the order (since isomorphisms in Dcpo are bijective
maps which both preserve and reflect the partial order). Thus, the map e is C-equable if
and only if hom(e, C) is an isomorphism of dcpos.

Definition 2.2. A DcpoΩ-algebra C is said to be R-complete, if every R-equable DcpoΩ-
homomorphism e : A → B is also C-equable. We denote by DcpoR the category of R-
complete DcpoΩ-algebras and DcpoΩ-homomorphisms.

It is our aim in this section to prove the following theorem.

Theorem 2.3. For every finitary algebraic signature Ω and every computational prototype
R, the category DcpoR of all R-complete DcpoΩ-algebras is a full reflective subcategory of
the category DcpoΩ of all DcpoΩ-algebras.

Recall that for a dcpo X and DcpoΩ-algebras A and B the canonical isomorphism
(BA)X ∼= (BX)A restricts to a dcpo-isomorphism hom(A,B)X ∼= hom(A,BX) which obser-
vation will be useful when proving the following lemma.
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Lemma 2.4. A Scott-continuous homomorphism e : A → B is C-equable if and only if it
is CX-equable for all dcpos X.

Proof. Obviously, the backward direction is trivial. For the forward direction suppose that
e : A → B is a C-equable homomorphism and X is an object of C. First notice that the
diagram

hom(B,C)X
tB
∼=
✲ hom(B,CX)

hom(A,C)X

hom(e, C)X

❄ ∼=

tA
✲ hom(A,CX)

hom(e, CX)

❄

commutes where tA and tB are the canonical isomorphisms which “swap arguments”. Since
e is C-equable the left vertical arrow is an isomorphism from which it follows that the right
vertical arrow is an isomorphism as well.

From the previous lemma it follows that R-complete algebras are closed under arbitrary
Dcpo-powers. Since R clearly is R-complete, it follows that all Dcpo-powers RX are R-
complete.

Corollary 2.5. The category DcpoR inherits Dcpo-powers from DcpoΩ.

For the next result, let us fix DcpoΩ-algebras A and B. There is a canonical continuous

map η : A→ BBA

, namely the transposition of the identity on BA, which in λ-notation can
be written as λx.λf. f(x). Writing ι for the inclusion of hom(A,B) into BA we can define
the map Bι ◦η : A→ Bhom(A,B) which we also denote by η and in λ-notation can be written
as λx.λh. h(x).

Lemma 2.6. For all DcpoΩ-algebras A and B, the map η : A → Bhom(A,B) is an Ω-
homomorphism.

Proof. For ω ∈ Ω with arity n we have

η(ωA(a1, . . . , an)) = (λx.λh. (h(x))(ωA(a1, . . . , an))
= λh. h(ωA(a1, . . . , an))
= λh. ωA(h(a1), . . . , h(an))
= ωBhom(A,B)(λh. h(a1), . . . , λh. h(an))
= ωBhom(A,B)(η(a1), . . . , η(an))

for all a1, . . . , an ∈ A.

Thus, in particular, for every DcpoΩ-algebra A, we obtain a canonical DcpoΩ-homomor-

phism ηA : A→ Rhom(A,R). Let J be the collection of all R-complete DcpoΩ-subalgebras of

Rhom(A,R) containing the image of A under ηA. By Corollary 2.5, the algebra Rhom(A,R) is R-
complete and hence a member of J , so that J is nonempty. We can form the DcpoΩ-algebra
R(A) =

⋂
J and write rA : A→ R(A) for the corestriction of ηA : A→ Rhom(A,R).

Proposition 2.7. For every DcpoΩ-algebra A we have that

(1) R(A) is R-complete
(2) rA : A→ R(A) is R-equable.
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Proof. By construction R(A) is a DcpoΩ-subalgebra of Rhom(A,R) containing the image of
A under ηA. By Lemma 1.5, R(A) is R-complete, since the intersection of a collection of
R-complete DcpoΩ-subalgebras is the limit of the corresponding DcpoΩ-subalgebra embed-
dings.

It remains to show that rA : A → R(A) is R-equable. For h ∈ hom(A,R) let ℓ(h) :
R(A) → R be given by λf :R(A). f(h) which is easily seen to be a homomorphism. More-
over, the map ℓ : hom(A,R) → hom(R(A), R) is continuous since it is given by the λ-
term λh.λf. f(h). The homomorphism ℓ(h) extends h along rA since (ℓ(h) ◦ rA)(a) =
ℓ(h)(rA(a)) = ℓ(h)(ηA(a)) = ηA(a)(h) = h(a) for all a ∈ A.

We show now that ℓ(h) : R(A) → R is the unique continuous homomorphic extension of
h along rA. For this purpose suppose g, g

′ ∈ hom(R(A), R) with g ◦ rA = h = g′ ◦ rA. Then
the equalizer of g and g′ contains the image ofA under rA and thus under ηA. SinceR(A) and
R are R-complete, the equalizer is an R-complete DcpoΩ-subalgebra of R(A) by Lemma 1.5.

By construction, R(A) is the smallest R-complete DcpoΩ-subalgebra of R
hom(A,R) containing

the image of ηA. Thus, the equalizer of g and g′ must be an isomorphism from which it
follows that g = g′ as desired.

Thus, the map ℓ is the continuous inverse of hom(rA, R), i.e. rA is R-equable as claimed.

Remark 2.8. More generally, for a homomorphism e : A→ B there is a natural correspon-
dence between homomorphisms h making the diagram

A
ηA ✲ Rhom(A,R)

B

e

❄
h

✲

commute and continuous sections s of the C-map hom(e,R) : hom(B,R) → hom(A,R) given
by h(y)(p) = s(p)(y) for y ∈ B and p ∈ hom(A,R).

Obviously, such e are R-equable iff hom(e,R) is monic.

Having Proposition 2.7 available we can easily give now the

Proof of Theorem 2.3 :
Let A be a DcpoΩ-algebra. Then R(A) is R-complete and, since rA : A → R(A) is R-
equable, for every homomorphism h from A to an R-complete algebra B there exists a

unique homomorphism ĥ : R(A) → B with ĥ ◦ rA = h. ✷

Definition 2.9. For a DcpoΩ-algebra A we call R(A) the R-repletion of A and rA : A →
R(A) the reflection map for A.

One can give the following characterization of R-repletion which avoids any reference
to R-completeness.

Proposition 2.10. For a DcpoΩ-algebra A, up to isomorphism rA : A→ R(A) is the unique
R-equable homomorphism such that for every R-equable homomorphism h : A→ B there is

a unique homomorphism ĥ : B → R(A) with ĥ ◦ h = rA.
Alternatively, one may characterize rA as the up to isomorphism unique R-equable

homomorphism from A to an R-complete algebra.
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Proof. Obviously, the condition of the first characterization determines rA uniquely up to
isomorphism. That rA has the required property is an immediate consequence of the fact
that R(A) is R-complete.

The second characterization follows from the fact that R(A) is R-complete and that
every R-equable homomorphism h from A to an R-complete algebra satisfies the condition
of the first characterization.

According to the alternative Definition 1.1 of R-equability, for an algebra A a map
e : X → A is R-equable iff every continuous map f : X → R has a unique continuous

homomorphic extension f̂ : A → R such that f 7→ f̂ : RX → hom(A,R) is continuous.
Obviously, a map e : X → A is R-equable in the sense of Definition 1.1 if and only if its
homomorphic extension ê : FΩ(X) → A is R-equable in the sense of Definition 1.3.

For a dcpo X we consider the map ηX : X → RRX
defined as ηX(x) = λf. f(x). Let

wR(X) be the least weakly R-complete DcpoΩ-subalgebra of RRX

containing the image of
ηX and rwX : X → wR(X) be the corestriction of ηX .1 We call it the weak repletion of
X. Again one can prove that rwX is R-equable. Moreover, one easily proves the following
analogue of Proposition 2.10.

Proposition 2.11. For a dcpo X up to isomorphism rwX : X → wR(X) is the unique
weakly R-equable map such that for every weakly R-equable map f : X → A there is a

unique homomorphism f̂ : A→ wR(X) with f̂ ◦ f = rwX .
Alternatively, one may characterize rwX as the up to isomorphism unique weakly R-

equable map to a weakly R-complete algebra.

We do not know whether the weakly R-complete algebras form a full reflective subcat-
egory of DcpoΩ. But weak repletion can be understood as repletion of free algebras as we
show next.

Proposition 2.12. For every dcpo X the weak repletion wR(X) is isomorphic to the re-
pletion R(FΩ(X)) of the free DcpoΩ-algebra FΩ(X) generated by X. Moreover, the isomor-
phism h : R(FΩ(X)) → wR(X) can be chosen in such a way that h ◦ rFΩ(X) ◦ iX = rwX .

Proof. Since hom(FΩ(X), R) → RX : h 7→ h ◦ iX is an isomorphism in Dcpo the maps iX
and rFΩ(X) ◦ iX : X → wR(FΩ(X)) are weakly R-equable. Moreover, since R(FΩ(X)) is
R-complete it is in particular weakly R-complete. Thus, by Proposition 2.11 there is an
isomorphism h : R(FΩ(X)) → wR(X) with h ◦ rFΩ(X) ◦ iX = rwX .

3. Free dcpo-algebras

For semantics, computational effects are mostly modelled by monads (see [19]). For al-
gebraic effects, monads can be specialized to free constructions, an aspect advocated by
Plotkin and Power [20]. In the category of dcpos this comes down to consider Dcpo-algebras
that are free with respect to a collection of equational and inequational laws that are con-
sidered to be characteristic of the computational effect under consideration. This approach
is quite different to the observationally-induced approach, to which we want to compare it
in this paper.

1Such a subalgebra exists by an argument analogous to the one in Proposition 2.7.



OBSERVATIONALLY-INDUCED ALGEBRAS IN DOMAIN THEORY 9

Let Ω be a finitary signature. If t1 and t2 are two terms, a DcpoΩ-algebra R is said
to satisfy the inequational law t1 ≤ t2 (resp., the equational law t1 = t2), if this inequality
(resp. equality) holds for every instantiation of the variables by elements of R. For a given
collection E of equational and inequational laws, denote by DcpoΩ,E the class of DcpoΩ-
algebras that satisfy all the laws in E .

It is well-known that over every dcpo X there is a free DcpoΩ,E-algebra, that is, a
DcpoΩ,E-algebra FΩ,E(X) together with a continuous map ιX : X → FΩ,E(X) such that,
for every continuous map f from X to some DcpoΩ,E -algebra A, there is a unique DcpoΩ-

homomorphism f̃ : FΩ,E(X) → A such that f = f̃ ◦ ιX . This is usually proved using the
adjoint functor theorem (see, e.g. [1, Theorem 6.1.2]).

It is desirable for free algebras to be free in the enriched sense as well, namely that
AιX : hom(FΩ,E(X), A) → AX is an isomorphism of dcpos. For this it is necessary and

sufficient that the extension operator f 7→ f̃ : AX → hom(FΩ,E(X), A) preserves the order.
We do not believe that all free dcpo-algebras are free in this enriched sense, although we
have no counterexample. But restricting the attention to continuous dcpos and using the
description of FΩ,E(X) presented in [1, Section 6.1.2] one can show:

Proposition 3.1. For continuous dcpos X, the free DcpoΩ,E -algebra FΩ,E(X) always is
internally free.

If FΩ,E(X) is internally free, then ιX : X → FΩ,E(X) is R-equable for every DcpoΩ,E -
algebra R. Using the characterization of repletion in Proposition 2.11 we obtain the fol-
lowing criterion for the free algebra construction to agree with the observationally induced
approach of repletion:

Proposition 3.2. Let R be a DcpoΩ-algebra satisfying a collection E of equational and
inequational laws. If the free algebra ιX : X → FΩ,E(X) is internally free and FΩ,E(X) is
R-complete, then it is (isomorphic to) the R-repletion of X.

The repletion rX : X → R(X) of a dcpo X with respect to a computational prototype
algebra R has some features in common with the free construction ιX : X → FΩ,E(X) with
respect to a collection E of equational and inequational laws. Indeed, the repletion R(X)
is a subalgebra of a dcpo-power of R. Since directed suprema in dcpo powers are formed
pointwise, R(X) satisfies all equational and inequational laws that hold in R. Thus, a first
necessary condition for R(X) and FΩ,E(X) to agree is that all equational and inequational
laws that hold in R can be derived from those in E . But this condition is by no means
sufficient. It is not easy to illustrate these phenomena. Already the free algebras are
difficult to describe explicitly, while it is even more difficult to put one’s hands on the
repletion.

We will illustrate these phenomena in the relatively simple situation of the classical
powerdomains often named after Hoare, Smyth and Plotkin which model angelic, demonic
and erratic nondeterminism, respectively. We will see that the Hoare and Smyth powerdo-
mains agree with the repletion with respect to the natural domains of observation, while
there is a big gap between both for the Plotkin powerdomain. There seems to be an in-
triguing connection to the fact that the inequational theories used in the case of angelic and
demonic nondeterminism are complete in the sense that adding any inequational law that
is not derivable leads to inconsistency; the inequational theory used in the erratic case has
exactly two consistent extensions, namely the inequational theories used for the angelic and
demonic cases. But we do not want to develop this observation any further here.
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4. Examples: Powerdomain Constructions

We now examine whether the classical powerdomain constructions can be recovered by the
observationally-induced approach. We restrict ourselves to ordinary nondeterminism (an-
gelic, demonic and erratic) and compare our approach to the upper (Hoare), lower (Smyth)
and convex (Plotkin) powerdomains. In these cases we are indeed in a position to describe
the repletion explicitly which is a rare phenomenon. While in the angelic and demonic case
we obtain the same result as classically, in the erratic case there is a big gap between the
two approaches.

In a topological setting, the results for the Hoare and Smyth powerdomains have been
worked out in [4, 5]. The proof strategy is the same in the cases at hand, so we only sketch
the proofs, as the reader should have no problems filling in the details by consulting loc. cit.
The erratic case will be worked out in detail.

A nondeterministic (binary) choice operator ∪ is reasonably supposed to satisfy the
following equational laws:

x ∪ x = x idempotency
x ∪ y = y ∪ x commutativity

x ∪ (y ∪ z) = (x ∪ y) ∪ z associativity

These laws characterize semilattices. A dcpo together with a continuous semilattice opera-
tion ∪ is called a dcpo-semilattice.

One must be careful: In a dcpo-semilattice, x ∪ y need not be the least upper bound
nor greatest lower bound of x and y with respect to the dcpo order ≤. A paradigmatic
example is Heckmann’s domain A [10], the three element chain

A = {⊥ < m < ⊤}

with the semilattice operation

a ∪ b =

{
a if a = b

m else

where ⊤ can be read as ’must’, m stands for ’may’ and ⊥ stands for ’impossible’. For
constructing the Plotkin powerdomain in the observationally-induced approach, Simpson
[23] has suggested to use Heckmann’s domain A as computational prototype.

A dcpo-semilattice in which x ∪ y is the least upper bound of x and y will be called a
dcpo-join-semilattice and, in this case, we will usually denote the semilattice operation by ∨.
Among dcpo-semilattices the dcpo-join-semilattices are characterized by the inequational
law

(J) x ≤ x ∪ y.

A dcpo-semilattice in which x ∪ y is the greatest lower bound of x and y will be called a dcpo-
meet-semilattice2 and, in this case, we will usually denote the semilattice operation by ∧.
Among dcpo-semilattices the dcpo-meet-semilattices are characterized by the inequational
law

(M) x ∪ y ≤ x.

2Let us point out that our terminology deviates from the one mostly used in earlier texts, where the
terms inflationary and deflationary are used for join- and meet-semilattices, respectively.
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The paradigmatic examples are obtained from the two element chain

Σ = {0 < 1}

by considering the operation x∨y = max(x, y) in the first and the operation x∧y = min(x, y)
in the second case. We will write

Σ∨ = (Σ,∨) and Σ∧ = (Σ,∧)

for the dcpo Σ considered as a join-semilattice and meet-semilattice, respectively.
Semantically, dcpo-join-semilattices are modelling angelic nondeterminism: having a

choice is considered to be preferable to an optimistic observer, since it opens the possibility
to make the best choice; dcpo-meet-semilattices are modelling demonic nondeterminism:
having a choice is considered to be undesirable to a pessimistic observer, since it opens the
possibility to make the worst possible choice. General dcpo-semilattices are combining the
angelic with the demonic point of view.

Indeed, if A is a dcpo-join-semilattice and B a dcpo-meet-semilattice, the direct product
A×B with the operation (x1, y1) ∪ (x2, y2) = (x1∨x2, y1∧y2) is a dcpo-semilattice which is
neither a dcpo-join- nor a dcpo-meet-semilattice. Note that in particular A may be viewed
as a subsemilattice of Σ∨×Σ∧ with the identifications ⊥ = (0, 0), m = (1, 0) and ⊤ = (1, 1).

(1, 1) = ⊤

(0, 1)) (1, 0) = m

(0, 0) = ⊥

As one does not want to ask for any more than just the equational and inequational
laws indicated above, the classical powerdomains over a dcpo X are defined to be the free
dcpo-semilattice P(X), the Plotkin powerdomain, the free dcpo-join-semilattice H(X), the
Hoare powerdomain, and the free dcpo-meet-semilattice S(X), the Smyth powerdomain.

For applying the previously developed concepts to powerdomains, we place ourselves
in the situation where the signature Ω consists of a single binary operation symbol. The
DcpoΩ-algebras are simply dcpos with a continuous binary operation. The dcpo-semilattices
form a full subcategory.

For the category of dcpo-semilattices we are in an exceptional situation: For two Scott-
continuous semilattice homomorphisms f, f ′ : A → B, we may define f ∪ f ′ pointwise by
(f ∪ f ′)(x) = f(x) ∪ f ′(x) for all x ∈ A and we see that f ∪ f ′ is again a continuous
semilattice homomorphism. Thus, the dcpo of all continuous semilattice homomorphisms
f : A→ B is a dcpo-subsemilattice of BA; we denote it by hom(A,B). If B has a bottom or
a top element, the same holds for hom(A,B) – consider the constant functions with value
top and bottom, respectively. If A and B both have a bottom and a top element, we may
restrict our attention to the dcpo-subsemilattice hom0,1(A,B) of all continuous semilattice
homomorphisms that preserve bottom and top. We note that hom0,1(A,B) will not have a
bottom or a top element, in general.

Lemma 4.1. For every dcpo-semilattice R with bottom and top and every dcpo X, the
dcpo-semilattices hom(RX , R) and hom0,1(R

X , R) are R-complete.
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Indeed, RRX

is R-complete by Cor. 2.5. The dcpo-subsemilattices hom(A,B) and
hom0,1(A,B) are carved out from BA as intersections of equalizers of homomorphisms
(which to check requires the associativity, commutativity and idempotence of ∪). Thus
hom(A,B) and hom0,1(A,B) are R-complete, since the category DcpoR of R-complete alge-
bras is limit closed by Lemma 1.5.

Convention. For a dcpo X, we identify continuous maps f : X → Σ with the corre-
sponding Scott-open subsets U := f−1({1}) ⊆ X. In this way, the dcpo ΣX of continuous
functions u : X → Σ with the pointwise order is identified with the dcpo O(X) of Scott-open
subsets of X ordered by inclusion.

4.1. Angelic nondeterminism. The prototype algebra for angelic nondeterminism is
H(S), i.e. the algebra Σ∨. We will see that in this case the observationally-induced power-
domains agree with the classical Hoare powerdomains.

First we reproduce the standard representation of the Hoare powerdomain (see, e.g.
[7]):

Proposition 4.2. The Hoare powerdomain over a dcpo X is (isomorphic to) the dcpo H(X)
of nonempty Scott-closed subsets of X ordered by inclusion, the join-semilattice operation
being binary union; the natural embedding ηHX : X → H(X) sends every x ∈ X to its Scott
closure ↓x.

Indeed, if f is a continuous map from X to some dcpo-join-semilattice B, then f̃(C) =∨
x∈C f(x) is the unique continuous homomorphic extension of f along ηH . From this

definition of the extension it follows immediately that f ≤ f ′ implies f̃ ≤ f̃ ′. This implies
that the Hoare powerdomain is internally free over X.

For our purposes we want to pass to a functional representation:

Lemma 4.3. The Hoare powerdomain over a dcpo X is (isomorphic to) the dcpo-join-
semilattice hom0,1(Σ

X
∨ ,Σ∨) of all continuous semilattice homomorphism from ΣX

∨ to Σ∨

preserving bottom and top. The embedding ηHX : X → hom0,1(Σ
X
∨ ,Σ∨) is given by evaluation

ηHX (x)(u) = u(x).

The isomorphism from the ∪-semilattice of nonempty closed subsets ofX to the function
space hom0,1(Σ

X
∨ ,Σ∨) is given by assigning to every nonempty closed subset C of X the

map ϕ : ΣX
∨ → Σ∨ defined by ϕ(U) = 0 if and only if U ∩ C = ∅. hom0,1(Σ

X
∨ ,Σ∨) is

Σ∨-complete by Lemma 4.1; it is not only a dcpo-subsemilattice of ΣΣX

∨ but even the

smallest dcpo-subsemilattice of ΣΣX

∨ containing the point evaluations ηHX (x), x ∈ X, since

hom0,1(Σ
X
∨ ,Σ∨) is the free dcpo-join-semilattice over X. Hence ηHX : X → hom0,1(Σ

X
∨ ,Σ∨)

is the Σ∨-repletion of X. Altogether we have:

Theorem 4.4. The dcpo-join-semilattice hom0,1(Σ
X
∨ ,Σ∨) is the Σ∨-repletion of X. Up

to isomorphism, the Hoare powerdomain ηHX : X → H(X) over a dcpo X agrees with the
Σ∨-repletion of X.
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4.2. Demonic nondeterminism. The prototype for demonic nondeterminism is S(S), i.e.
the algebra Σ∧.

There is no explicit description available for the free dcpo-meet-semilattice over an
arbitrary dcpo X. However, for continuous dcpo’s X the free dcpo-meet-semilattice over X
will give rise to the classical Smyth powerdomain S(X).

The standard representation of the Smyth powerdomain over a continuous dcpo is the
following ([7]):

Proposition 4.5. The Smyth powerdomain over a continuous dcpo X is (isomorphic to)
the dcpo S(X) of nonempty compact saturated subsets Q of X ordered by reverse inclusion ⊇,
the ‘meet’-semilattice operation being binary union; the natural embedding ηSX : X → S(X)
sends every x ∈ X to its upper closure ↑x.

Indeed, if f is a continuous map from a continuous dcpo X to some dcpo-meet-semi-

lattice B, its unique extension to a meet-semilattice homomorphism is given by f̃(Q) =∨↑

F∈F

∧
x∈F f(x), where F ranges over the collection F of finite subsets F of X such that

Q is contained in the Scott-interior of ↑F . From the definition of the extension it follows

directly that, if f ≤ f ′, then f̃ ≤ f̃ ′. Thus, the Smyth powerdomain over a continuous dcpo
is internally free.

For any dcpo X, the dcpo-meet-semilattice hom0,1(Σ
X
∧ ,Σ∧) is isomorphic to the collec-

tion OF(X) of all Scott-open (proper) filters of the dcpo O(X) of all Scott-open subsets of
X ordered by inclusion with binary intersection as semilattice operation. The isomorphism
is given by assigning to ϕ ∈ hom0,1(Σ

X
∧ ,Σ∧) the inverse image ϕ−1(1).

If the dcpo X is sober, OF(X) is isomorphic to the collection of all nonempty compact
saturated subsets Q of X ordered by reverse inclusion ⊇ with binary union as semilattice
operation by [7, Theorem II-1.20]. The isomorphism is given by assigning to every U ∈
OF(X) its intersection Q =

⋂
U . Since every continuous dcpo is sober, we have the

functional representation:

Lemma 4.6. The Smyth powerdomain over a continuous dcpo X is (isomorphic to) the
dcpo-meet-semilattice hom0,1(Σ

X
∧ ,Σ∧) of all continuous semilattice homomorphism from ΣX

∧

to Σ∧ preserving bottom and top. The embedding ηSX : X → hom0,1(Σ
X
∧ ,Σ∧) is given by

evaluation ηSX(x)(u) = u(x).

By Lemma 4.1, hom0,1(Σ
X
∧ ,Σ∧) is Σ∧-complete. If X is continuous, then it is the free

dcpo-meet-semilattice over X by 4.6. Thus, there is no proper dcpo-meet-subsemilattice
containing the evaluation maps ηSX(x), x ∈ X. We conclude:

Theorem 4.7. For every continuous dcpo X, the dcpo-meet-semilattice hom0,1(Σ
X
∧ ,Σ∧) is

the Σ∧-repletion of X. Thus up to isomorphism, the Smyth powerdomain ηSX : X → S(X)
over a continuous dcpo X agrees with the Σ∧-repletion of X.

4.3. Erratic nondeterminism. The prototype algebra for erratic nondeterminism is P(S),
i.e. the algebra whose underlying dcpo is the three element chain A with the semilattice
operation ∪ as defined at the beginning of this section.

Erratic nondeterminism seems to be much more complicated to handle than angelic
or demonic nondeterminism. In contrast to the angelic and demonic case we arrive at
the conclusion that the Plotkin powerdomain does not agree with A-repletion; it is in fact
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properly contained in the repletion. The following theorem is expressing this claim. In this
theorem we need the additional hypothesis that the dcpo is compact for its Scott topology.
This is equivalent to the requirement that there is a finite subset F such that every element
is above some element in F . In particular, if the dcpo has a bottom element, then it is
Scott-compact.

Theorem 4.8. (a) For a compact continuous dcpo X, the dcpo-semilattice hom0,1(A
X ,A)

of all continuous semilattice homomorphisms ϕ : AX → A preserving bottom and top is the

A-repletion of X, that is, hom0.1(A
X ,A) is the least A-complete dcpo-subsemilattice of AAX

containing all the evaluation maps ηPX(x) = (u 7→ u(x)), x ∈ X.
(b) For a continuous dcpo X, the Plotkin power domain P(X) is (isomorphic to) the

least dcpo-subsemilattice of AAX
containing all the evaluation maps ηPX(x) = (u 7→ u(x)), x ∈

X.

Let us indicate, how big the gap between the Plotkin powerdomain and the repletion
hom0.1(A

X ,A) really is: As we will see in 4.3.2, the elements of the repletion ofX correspond
to ‘formal lenses’, that is, pairs (C,Q) of a closed set C and a compact saturated set
Q in X with nonempty intersection. Each of this formal lenses determines a ‘real lens’
L = C ∩Q. The same real lens can be represented by many different formal lenses. If the
dcpo is continuous and coherent, the real lenses correspond to the elements of the Plotkin
powerdomain as we recall later in 4.3.2.

A first step towards a proof of Theorem 4.8 is a consequence of Lemma 4.1:

Proposition 4.9. For any dcpo X, the dcpo-semilattice hom0,1(A
X ,A) of all top and bottom

preserving semilattice homomorphisms ϕ : AX → A is A-complete.

For ηPX : X → hom0,1(A
X ,A) being the A-repletion of X, it suffices to show now that ηPX

is A-equable, i.e. that for every continuous f : X → A there exists a unique Scott-continuous

homomorphism f̂ : hom0,1(A
X ,A) → A with f̂ ◦ ηPX = f and f 7→ f̂ is continuous. Actually,

existence and continuity of f̂ is not the problem since one may take f̂(ϕ) = ϕ(f). The
question rather is uniqueness. For answering this question positively we prove an auxiliary
result.

4.3.1. An auxiliary observation.

(1) Let A1 and B1 be dcpo-join-semilattices and A2 and B2 dcpo-meet-semilattices.

The direct product A1 ×A2 (and similarly B1 ×B2) is a dcpo-semilattice with the product
order

(a1, a2) ≤ (a′1, a
′
2) ⇐⇒ a1 ≤ a′1, a2 ≤ a′2

and the semilattice operation

(a1, a2) ∪ (a′1, a
′
2) = (a1 ∨ a

′
1, a2 ∧ a

′
2).

We denote by πi : A1 × A2 → Ai, i = 1, 2, the canonical projections onto the factors. We
use the same notation for the projections of B1 ×B2 onto its factors.

(2) We suppose in addition that B1 has a top element 1 and B2 a bottom element 0.

Then we have embeddings εi : Bi → B1×B2 defined by ε1(b1) = (b1, 0) and ε2(b2) = (1, b2),
respectively, which are semilattice homomorphisms.

(3) Suppose that B is a dcpo-subsemilattice of B1 ×B2 containing (b1, 0) and (1, b2) for all
b1 ∈ B1, b2 ∈ B2.
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B1 ×B2

B1
✛ π1

ε1
✲

ε 1

✲

B
∪

✻

π2 ✲✛
ε2

B2

✛

ε
2

A1

Φ1

❄
✛

π1
A1 ×A2

Φ

❄

π2
✲ A2

Φ2

❄

Observation 4.10. For a continuous semilattice homomorphism Φ: B → A1×A2 consider
the continuous semilattice homomorphisms Φi = πiΦεi : Bi → Ai, i = 1, 2, that is, Φ1(b1) =
π1(Φ(b1, 0)) and Φ2(b2) = π2(Φ(1, b2)) for all b1 ∈ B1, b2 ∈ B2. Then the above diagram
commutes, that is, Φ(b1, b2) = (Φ1(b1),Φ2(b2)) for all b = (b1, b2) ∈ B.

Proof. Let Φ: B → A1 × A2 be a semilattice homomorphism. The composed maps ψi =
πiΦ: B → Ai are semilattice homomorphisms, too. We claim that ψ1 does not depend on
the second and ψ2 not on the first argument.

Indeed, for (b1, b2), (b1, b
′
2) ∈ B we have: ψ1(b1, b2), ψ1(b1, b

′
2) ≤ ψ1(b1, b2)∨ψ1(b1, b

′
2) =

ψ1((b1, b2) ∪ (b1, b
′
2)) = ψ1(b1, b2 ∧ b′2) ≤ ψ1(b1, b2), ψ1(b1, b

′
2). Thus ψ1(b1, b2) = ψ1(b1, b

′
2).

The order dual argument yields the analogous statement for ψ2.
It follows that the maps Φi : Bi : → Ai, i = 1, 2, defined by Φ1(b1) = ψ1(b1, 0) =

π1Φ(b1, 0) and Φ2(b2) = ψ2(1, b2) = π2Φ(1, b2) have the desired properties.

4.3.2. Formal lenses and real lenses. Our aim in this subsection is to develop a more con-
ceptual understanding of the elements of hom0,1(A

X ,A) as so-called formal lenses in a dcpo
X.

Recall that A can be seen as the subsemilattice of Σ∨×Σ∧ consisting of those elements
(a1, a2) with a1 ≥ a2.

Consequently, every f ∈ A
X can be written uniquely as a pair (u1, u2) ∈ ΣX

∨ ×ΣX
∧ such

that u1 ≥ u2 or, alternatively, as a pair (U1, U2) of open subsets of X with U1 ⊇ U2.

Lemma 4.11. hom0,1(A
X ,A) agrees with the dcpo-subsemilattice of all pairs (ϕ1, ϕ2) in

hom0,1(Σ
X
∨ ,Σ∨)× hom0,1(Σ

X
∧ ,Σ∧) such that ϕ1 ≥ ϕ2.

Proof. We want to apply Observation 4.10: A
X is the dcpo-subsemilattice of ΣX

∨ × ΣX
∧

of all u = (u1, u2) such that u1 ≥ u2. In particular (u1, 0) ∈ A
X and (1, u2) ∈ A

X for all
u1, u2 ∈ ΣX , where 0 and 1 denote also the constant functions with value 0 and 1 respectively.
Thus the hypotheses of 4.10 are satisfied. We conclude that the continuous semilattice homo-
morphisms ϕ : AX → Σ∨×Σ∧ are those maps for which there are continuous semilattice ho-
momorphisms ϕ1 : Σ

X
∨ → Σ∨ and ϕ2 : Σ

X
∧ → Σ∧ such that ϕ(u1, u2) = (ϕ1(u1), ϕ2(u2)). The

maps ϕ and ϕ1, ϕ2 are related by the formulas ϕ1(u1) = π1ϕ(u1, 0) and ϕ2(u2) = π2ϕ(1, u2).
Clearly, ϕ preserves bottom and top if and only if both ϕ1 and ϕ2 preserve bottom and top.
Finally, ϕ maps AX into A if and only if ϕ1 ≥ ϕ2.
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According to Lemma 4.3 and Lemma 4.6, the elements ϕ1 of hom0,1(Σ
X
∨ ,Σ∨) correspond

to nonempty closed subsets C of X, namely C = X \
⋃
ϕ−1
1 (0), and the elements ϕ2 of

hom0,1(Σ
X
∧ ,Σ∧) correspond to Scott-open filters U of O(X), namely U = ϕ−1

2 (1). The condi-
tion ϕ1 ≥ ϕ2 corresponds to the requirement C ∩U 6= ∅ for all U ∈ U . Hence hom0,1(A

X ,A)
is the functional representation of the dcpo-semilattice of formal lenses according to the
following definition:

Definition 4.12. A formal lens of a dcpo X consists of a pair (C,U) of a nonempty closed
subset C of X and a Scott-open filter U of O(X) such that C ∩ U 6= ∅ for all U ∈ U .

The formal lenses form a dcpo-subsemilattice of C(X) × OF〉l⊔(X), where C(X) is
the dcpo-∪-semilattice of nonempty closed subsets of X and OF〉l⊔(X) is the dcpo-∩-
semilattice of Scott-open filters of O(X).

In the case where the dcpo X is sober w.r.t. its Scott topology, under assumption of
AC the Scott-open filters U can be replaced by their intersections Q =

⋂
U which are the

nonempty Scott-compact saturated subsets of X. Thus the formal lenses of a sober dcpo
X are the pairs (C,Q) of closed subsets C and compact saturated subsets Q of X such that
C ∩Q 6= ∅. But remember that the dcpo of nonempty compact saturated sets is ordered by
reverse inclusion ⊇ and the meet-operation is ∪.

Notice that formal lenses (C,Q) are not determined by the intersection L := C ∩ Q

which can be considered as the real lens corresponding to the formal lens (C,Q). This
real lens L can be represented by the “normalized” formal lens (CL, QL) where CL is the
closure of L for the Scott topology and QL = ↑L.

In most cases the dcpo of formal lenses is much bigger than the dcpo of real lenses. As
an example consider the two element set X = {0, 1} with the discrete order. There are
three real lenses, the nonempty subsets. But there are four more formal lenses. The real
lens {1} has three representations by formal lenses, namely {1} = {1}∩{1} = {1}∩{0, 1} =
{0, 1} ∩ {1}, and so has {0}. Thus, for flat dcpos X with more than one element A(X) is
different from the Plotkin powerdomain P(X) and the same applies to their liftings X⊥.

4.3.3. The A-repletion of a compact continuous dcpo. Since hom0,1(A
X ,A) is A-complete

by Proposition 4.9, the question now is whether the map ηP : X → hom0,1(A
X ,A) : x 7→

λϕ.ϕ(x) is A-equable. I. Battenfeld in his 2013 paper has shown that this is actually true for
X = 2, the discrete poset. In this section we give a positive answer for compact continuous
dcpos X.

As before, we consider A to be a dcpo-subsemilattice of Σ∨ × Σ∧. We write π1 : Σ∨ ×
Σ∧ → Σ∨ and π2 : Σ∨ × Σ∧ → Σ∧ for the respective canonical projections.

By Lemma 4.11, hom0,1(A
X ,A) agrees with the dcpo-subsemilattice of all (ϕ1, ϕ2) ∈

hom0,1(Σ
X
∨ ,Σ∨)× hom0,1(Σ

X
∧ ,Σ∧) such that ϕ1 ≥ ϕ2. We write πH and πS for the projec-

tions from hom0,1(A
X ,A) to hom0,1(Σ

X
∨ ,Σ∨) and hom0,1(Σ

X
∧ ,Σ∧), respectively. The maps

ηP : X → hom0,1(A
X ,A), ηH : X → hom0,1(Σ

X
∨ ,Σ∨) and ηS : X → hom0,1(Σ

X
∧ ,Σ∧) are all
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three given by λx.λu.u(x) as usual and one easily checks that the diagram

X

hom0,1(Σ
X
∨ ,Σ∨) ✛

πH

✛

η
H

hom0,1(A
X ,A)

ηP

❄

πS
✲ hom0,1(Σ

X
∧ ,Σ∧)

η S

✲

commutes. In order to apply Observation 4.10, we need the hypothesis that hom0,1(Σ
X
∧ ,Σ∧)

has a least and hom0,1(Σ
X
∨ ,Σ∨) a greatest element. While hom0,1(Σ

X
∨ ,Σ∨) always has a

greatest element — the map ϕ⊤ that maps all open sets to top except for the empty
set, we have to suppose X to be compact for the Scott topology so that hom0,1(Σ

X
∧ ,Σ∧)

has a least element. Indeed, the map ϕ⊥ mapping all open sets to bottom except for
the whole space is a meet-semilattice homomorphism, and it is continuous if and only
if X is compact. Thus, we assume X to be Scott-compact. We now have continuous
maps εH : hom0,1(Σ

X
∨ ,Σ∨) → hom0,1(A

X ,A) : ϕ1 7→ (ϕ1, ϕ⊥) with πH ◦ εH = id, and

εS : hom0,1(Σ
X
∧ ,Σ∧) → hom0,1(A

X ,A) : ϕ2 7→ (ϕ⊤, ϕ2) with πS ◦ εS = id.
Now we can apply the decomposition Observation 4.10 and we obtain:

Lemma 4.13. Let X be a compact dcpo and Φ: hom0,1(A
X ,A) → A a continuous semi-

lattice homomorphism. Then there exist unique continuous semilattice homomorphisms
ΦH : hom0,1(Σ

X
∨ ,Σ∨) → Σ∨ and ΦS : hom0,1(Σ

X
∧ ,Σ∧) → Σ∧ such that the following diagram

commutes:

hom0,1(Σ
X
∨ ,Σ∨)

✛πH

εH
✲ hom0,1(A

X ,A)
πS✲✛
εS

hom0,1(Σ
X
∧ ,Σ∧)

Σ∨

ΦH

❄
✛

π1
A

Φ

❄

π2
✲ Σ∧

ΦS

❄

Now we are ready to show the result that we were aiming for.

Proposition 4.14. For compact continuous dcpos X the map ηPX : X → hom0,1(A
X ,A) is

A-equable.

Proof. Given u : X → A, a continuous homomorphic extension Φ: hom0,1(A
X ,A) → A of u

along ηPX is given by Φ(ϕ) = ϕ(u). Clearly, Φ is a continuous semilattice homomorphism

and we have Φ(ηPX(x)) = ηPX(x)(u) = u(x) for all x ∈ X, that is, Φ extends u along ηPX .
The extension operator u 7→ Φ is continuous since it is λ-definable as λu.λϕ. ϕ(u).

From Lemma 4.13 it follows that Φ is uniquely determined by the semilattice homomor-
phisms ΦH and ΦS . We have ΦH ◦ηHX = π1 ◦u and ΦS ◦ηSX = π2 ◦u. Since ηHX : X → H(X)

is internally free it is also Σ∨-equable. Since ηSX : X → S(X) is internally free it is also
Σ∧-equable. Thus, the maps ΦH and ΦS are uniquely determined in a continuous way by
π1 ◦u and π2 ◦u, respectively. Thus, the map Φ is uniquely determined by u in a continuous
way.



18 I. BATTENFELD, K. KEIMEL, AND T. STREICHER

The previous proposition together with Proposition 4.9 finishes the proof of part (a) of
our main theorem 4.8.

4.3.4. The Plotkin powerdomain and A-valuations. We proceed to a proof of assertion (b)
in our Main Theorem 4.8. We could give a direct proof. But we prefer to use R. Heckmann’s
work in [10] on A-valuations and the Plotkin powerdomain.

Heckmann has called a continuous map α : ΣX → A an A-valuation on the dcpo X, if
it preserves bottom and top and, moreover, satisfies the following two conditions:

(H1) if α(U) = ⊥ then α(U ∪ V ) = α(V ),
(H2) if α(U) = ⊤ then α(U ∩ V ) = α(V ).

The collection H-Aval(X) of Heckmann’s A-valuations is a dcpo-subsemilattice of AΣX
.

We want to adapt Heckmann’s A-valuations to our setting. We can identify the semilat-
tice H-Aval of Heckmann’s A-valuations with a dcpo-subsemilattice of hom0,1(A

X ,A). For
this purpose we consider A as a join- and as a meet-semilattice with the operations

a ∨ b = max(a, b), a ∧ b = min(a, b)

where max and min refer do the dcpo-ordering of A.

Definition 4.15. A continuous map ϕ : AX → A will be called an A-valuation on the dcpo
X, if it preserves 0 and 1 and satisfies the conditions

(H1) if ϕ(u) = ⊥ then ϕ(u ∨ v) = ϕ(v),
(H2) if ϕ(u) = ⊤ then ϕ(u ∧ v) = ϕ(v).

We denote by Aval(X) the collection of these A-valuations.

An easy calculation shows that one can pass from Heckmann’s A-valuations α to our
A-valuations by defining α(U1, U2) = α(U1) ∪ α(U2). Conversely, from an A-valuation ϕ in
our sense on obtains an A-valuation in the sense of Heckmann by defining ϕ(U) = ϕ(U,U).
(Here we have used that the elements of A

X can be represented as pairs of open sets
u = (U1, U2) with U1 ⊇ U2.)

For working with A-valuations in our sense, another characterization is useful: As
before, we consider A to be a subsemilattice of Σ∨ × Σ∧ and we denote by πi, i = 1, 2,
the canonical projections onto the two factors. Similarly, we represent hom0,1(A

X ,A) as
the dcpo-subsemilattice of all ϕ = (ϕ1, ϕ2) ∈ hom0,1(Σ

X
∨ ,Σ∨) × hom0,1(Σ

X
∧ ,Σ∧) such that

ϕ1 ≥ ϕ2.

Lemma 4.16. Let X be any dcpo.

(a) For every Heckmann A-valuation α : ΣX → A, let αi = πi ◦ α : ΣX → Σ, i = 1, 2, and
α = (α1, α2). Then α ∈ hom0,1(A

X ,A).
(b) A ϕ = (ϕ1, ϕ2) ∈ hom0,1(A

X ,A) is of the form α for some Heckmann A-valuation α if
and only if it satisfies the following two conditions:
(H1’) if ϕ1(U) = ⊥ then ϕ2(V ) = ϕ2(U ∪ V )
(H2’) if ϕ2(U) = ⊤ then ϕ1(V ) = ϕ1(U ∩ V )

(c) The elements ϕ = (ϕ1, ϕ2) ∈ hom0,1(A
X ,A) satisfying (H1’) and (H2’) are exactly

the A-valuations according to the definition above. They form a dcpo-subsemilattice of
hom0,1(A

X ,A) and α 7→ α is a dcpo-semilattice isomorphism of H-Aval onto Aval(X).
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Proof. (a) It is clear that the αi are continuous and that they preserve bottom and top. We
check that α1 is a join-semilattice homomorphism. It suffices to show: if α1(U) = α1(V ) = 0
then α1(U ∪ V ) = 0, and this is a direct consequence of Heckmann’s condition (H1). One
uses condition (H2) in a similar way to show that α2 is a meet-semilattice homomorphism.
Since π1 ≥ π2, we also have α1 = π1 ◦ α ≥ π2 ◦ α ≥ α2.

(b) For every Heckmann A-valuation α, α1 and α2 satisfy the conditions (H1’) and
(H2’). Indeed, if α1(U) = π1(α(U)) = 0, then α(U) = 0, whence α(U ∪ V ) = α(V ) by
condition (H1); thus, α2(U ∪ V ) = π2α(U ∪ V ) = π2α(U) = α2(V ), which proves condition
(H1’). Similarly one proceeds for (H2’).

Conversely, for every ϕ = (ϕ1, ϕ2) ∈ hom0,1(A
X ,A) we define a map ϕ : ΣX → A

by ϕ(U) = (ϕ1(U), ϕ2(U)). Clearly ϕ is continuous and preserves bottom and top. If ϕ
satisfies (H1’) and (H2’), then ϕ is a Heckmann A-valuation. Indeed, suppose ϕ(U) = ⊥.
Then (ϕ1(U), ϕ2(U)) = ⊥ = (0, 0). Thus, firstly, ϕ1(U) = 0 which implies that ϕ1(U ∪V ) =
ϕ1(U) ∨ ϕ1(V ) = ϕ1(V ), where we have used that ϕ1 is a join-homomorphism. Secondly,
ϕ1(U) = 0 also implies ϕ2(U ∪ V ) = ϕ2(V ) by condition (H1’). Thus ϕ(U ∪ V ) = (ϕ1(U ∪
V ), ϕ2(U ∪V )) = (ϕ1(V ), ϕ2(V )) = ϕ(V ). Thus ϕ satisfies (H1). Similarly, ϕ satisfies (H2).

(c) Clearly α = α and ϕ = ϕ. Thus, α 7→ α and ϕ 7→ ϕ are mutually inverse bi-
jections. These bijections are order preserving by their very definition. Hence they are
dcpo-isomorphisms. It is immediate from the definition that α 7→ α is a semilattice homo-
morphism from Aval(X) to hom0,1(A

X ,A).

There is a natural map δ : X → H-Aval(X) which to every x ∈ X assigns the map
δ(x) : ΣX → A defined as follows:

δ(x)(U) =

{
⊤ if x ∈ U,

⊥ else .

Clearly, δ(x) is a Heckmann A-valuation and δ depends continuously on x. For every
nonempty finite subset F of X, we can form the A-valuation δ(F ) =

⋃
x∈F δ(x) which can

be defined by

δ(F )(U) =





⊤ if F ⊆ U,

⊥ if F ∩ U = ∅,

m else.

Moreover, the following diagram commutes:

X

H-Aval(X)
α 7→ α

✲
✛

δ

Aval(X)

η P

✲

⊆ hom0,1(A
X ,A)

For continuous dcpos Heckmann has shown [10, Theorem 6.1] that H-Aval(X) is (iso-
morphic to) the Plotkin powerdomain over X and that the δ(F ) for nonempty finite subsets
F of X form a basis. Using the preceding commuting diagram we have:

Theorem 4.17. For any continuous dcpo X, the dcpo-semilattice Aval(X) of A-valuations
is (isomorphic to) the Plotkin powerdomain P(X), the canonical map being ηP : X →
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Aval(X). Moreover, Aval(X) is a continuous dcpo. The A-valuations ηP (F ) form a ba-
sis, when F ranges over the nonempty finite subsets of X.

We now can finish the proof of part (b) of Theorem 4.8:

Proposition 4.18. For a continuous dcpo X, the Plotkin powerdomain is (isomorphic to)

the least dcpo-subsemilattice of AAX

containing all the point evaluations ηPX(x) = λu. u(x),
x ∈ X.

Proof. From Heckmann’s Theorem 4.17 we know that H-Aval(X) is the free dcpo-semilattice
over X. Thus H-Aval(X) has no proper dcpo-subsemilattice containing all the δ(x), x ∈
X. By the isomorphism established in the preceding lemma, there is a dcpo-semilattice

isomorphism from H-Aval(X) onto the dcpo-subsemilattice Aval(X) of AAX

mapping δ(x) to
the evaluation map ηPX(x), x ∈ X. Thus this subsemilattice is the least dcpo-subsemilattice

of AAX
containing all the ηPX(x), x ∈ X.

Problem 4.19. In this context it seems appropriate to recall Birkhoff’s theorem [6, pages
143f.] from universal algebra (in the category of sets): For a finitary signature Ω, consider

an Ω-algebra R. For any set X let η : X → RRX

denote the canonical map defined by
η(x)(f) = f(x) for x ∈ X and f : X → R. Then the Ω-subalgebra F (X) of the product

algebra RRX

generated by the ‘projections’ η(x), x ∈ X, is free in the equational class of
Ω-algebras satisfying all the equational laws that hold in R.

One would like to transpose this result into the context of DcpoΩ-algebras. Our last
proposition seems to indicate that this is not an hopeless effort. Instead of equational laws
one will also have to consider inequational laws, too. Thus one can ask the question: Given

a DcpoΩ-algebra R and a dcpo X. Is the least DcpoΩ-subalgebra of RRX

containing all the
evaluation maps η(x) = λu. u(x) free in the class of DcpoΩ-algebras satisfying all equational
and inequational laws that hold in R?

Remark 4.20. We have seen that, in general, A-valuations are more general than lenses.
In order to describe A-valuations in general, J. Goubault-Larrecq [9] has introduced the
notion of a quasilens. This is a formal lens (C,U) where C is a nonempty closed set and U
an open filter of open sets such that C ⊆ cl(C ∩ U) for all U ∈ U . In sober dcpos, formal
lenses are given by pairs (C,Q) where C is a closed and Q a compact saturated set with
nonempty intersection. Such a formal lens is a quasilens if C ⊆ cl(C ∩ U) for all open sets
U containing Q.

4.3.5. The Heckmann conditions and real lenses. The Heckmann conditions look amazing.
But they arise in a natural way from the point of view of real lenses in a dcpo X.

Let us fix some notation for this section. Firstly suppose that X is a sober dcpo. Recall
that a formal lens is a pair (C,Q) consisting of a closed subset C and a compact saturated
subset Q such that C ∩Q 6= ∅. We denote by V the open set X \C and by L = C ∩Q the
‘real’ lens associated with the formal lens.

The formal lenses are in a one-to-one correspondence with the ϕ ∈ hom0,1(A
X ,A).

If we represent ϕ as a pair ϕ = (ϕ1, ϕ2) ∈ hom0,1(Σ
X
∨ ,Σ∨) × hom0,1(Σ

X
∧ ,Σ∧) such that

ϕ1 ≥ ϕ2 according to Lemma 4.11, then the corresponding formal lens (C,Q) is obtained
as C = X \ V , where V =

⋃
{U | ϕ1(U) = 0} is the greatest open set with ϕ1(V ) = 0, and

Q =
⋂
{U | ϕ2(U) = 1}. Let L be the real lens L = C ∩Q.
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A real lens L has many representations by formal lenses. Among them there is a
‘least’ one, namely (cl(L), ↑L). We would like to characterize those ϕ ∈ hom0,1(A

X ,A) that
correspond to these minimal representations. This leads to the Heckmann conditions.

Lemma 4.21. Given a lens L in a dcpo X, define maps ϕ1 and ϕ2 from ΣX to Σ by

ϕ1(U) = 0 iff L ∩ U = ∅ and ϕ2(U) = 1 iff L ⊆ U,

then ϕL = (ϕ1, ϕ2) is an A-valuation . Moreover ϕL corresponds to the minimal formal
lens (cl(L), ↑L) representing L.

Proof. One easily checks that ϕ1 and ϕ2 are join- and meet-semilattice homomorphisms,
respectively, preserving bottom and top. For continuity we have to use the compactness of
L. Moreover the Heckmann conditions are satisfied. (H1’) holds since if U ∩ L = ∅ then
L ⊆W iff L ⊆ U ∪W and (2) holds since if L ⊆ U then W ∩L = ∅ iff W ∩U ∩L = ∅. Each
of the conditions (H1’) and (H2’) implies that ϕ1 ≥ ϕ2. Indeed ϕ2(U) = 1, by (H2’), implies
ϕ1(U) = ϕ1(U ∩X) = ϕ1(X) = 1. Thus, ϕL = (ϕ1, ϕ2) is an element of hom0,1(A

X ,A).
Since X \ cl(L) is the greatest open set disjoint from L, the definition of ϕ1 yields⋃

{U | ϕ1(U) = 0} = X \ cl(L) and, since the intersection of the open neighborhoods of a
set is its saturation, we have

⋂
{U | ϕ2(U) = 1} = ↑L.

Of course, one will ask now, whether lenses correspond bijectively to the ϕ = (ϕ1, ϕ2) ∈
hom0,1(A

X ,A) satisfying the Heckmann conditions. We have seen in 4.3.2 that this is not
so, in general, even for algebraic dcpos. Let us try to find sufficient conditions for this to
hold.

Lemma 4.22. Let X be a sober dcpo and suppose that ϕ = (ϕ1, ϕ2) ∈ hom0,1(A
X ,A)

satisfies the Heckmann condition (H1’). For the formal lens (C,Q) associated with ϕ we
have Q = ↑(C ∩Q) = ↑L.

Proof. We have to show that Q =
⋂
{U | ϕ2(U) = 1} = ↑L. For this, it suffices to show

that if L = Q ∩ C ⊆ U , then Q ⊆ U . Since ϕ1(V ) = 0, condition (H1’) tells us that
ϕ2(U) = ϕ2(U ∪ V ). Now Q ∩ C ⊆ U implies Q ⊆ U ∪ V . Thus ϕ2(U ∪ V ) = 1, whence
ϕ2(U) = 1, which implies Q ⊆ U as desired.

Starting with a ϕ = (ϕ1, ϕ2) satisfying the Heckmann condition (H2’), we would like
to show that C = cl(L). For this, it suffices to show that if W ∩ L = W ∩ C ∩Q = ∅ then
W ∩C = ∅.

If we can find an open set U containing Q such that W ∩ U ⊆ V , then we are on the
safe side. Then indeed ϕ2(U) = 1. Using (H2’) we then have ϕ1(W ∩ U) = ϕ1(W ). Since
W ∩ U ⊆ V , we have ϕ1(W ∩ U) = 0 and hence, ϕ1(W ) = 0, whence W ⊆ V .

But to find an open neighborhood U of Q such that U ∩W ⊆ V is a real problem. We
can solve this problem if X is locally compact (for the Scott topology) and coherent. Recall
that a topological space is coherent if the intersection of any two compact saturated subsets
is compact.

Lemma 4.23. Suppose that ϕ = (ϕ1, ϕ2) ∈ hom0,1(A
X ,A) satisfies the Heckmann condition

(H2’). If X is a locally compact coherent sober dcpo, then C = cl(L) for the formal lens
(C,Q) and the real lens L = C ∩Q associated with ϕ.

Proof. Let x 6∈ cl(L). We will show: there are an open neighborhoodW of x withW ∩L = ∅
and an open set U containing Q such that W ∩ U ∩ C = ∅.
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We then can argue that ϕ1(W ∩ U) = 0. Since ϕ2(U) = 1, condition (H2’) yields
ϕ1(W ) = ϕ1(W ∩ U) = 0, whence W ∩ C = ∅, which implies x 6∈ C.

Thus let x 6∈ cl(L). By local compactness we can find a compact saturated neighborhood
H of x disjoint from cl(L). By local compactness, not only every point but also every
compact saturated subset Q has a neighborhood basis of compact saturated neighborhoods
(Ki)i. The intersections H ∩Ki are compact by coherence, and they form a down-directed
family such that

⋂
i(H ∩Ki ∩ C) ⊆ H ∩ Q ∩ C = H ∩ L = ∅. Thus, H ∩Ki ∩ C = ∅ for

some i by [7, Theorem II.1.21(3)]. If W denotes the interior of H and U the interior of Ki,
we have open sets with W ∩ U ∩ C = ∅.

Each quasicontinuous dcpo (see [7, Section III-3]) is locally compact and sober according
to [7, Proposition III-3.7]. Thus, we can apply the previous results 4.22, 4.23 to coherent
quasicontinuous dcpos.

Proposition 4.24. For coherent quasicontinuous dcpos, in particular for coherent continu-
ous dcpos, there is a one-to-one correspondence between (real) lenses and A-valuations given
by L 7→ ϕL as in Lemma 4.21.

The preceding proposition covers most of the relevant cases since all FS-domains and, in
particular, all retracts of bifinite domains are coherent. According to an unpublished result
obtained independently by J. Goubault-Larrecq and A. Jung and by J. D. Lawson and Xi
Xiaoyong, the generalizations of FS-domains and retracts of bifinite domains to QFS- and
QRB-domains agree with the compact coherent quasicontinuous dcpos, and our previous
proposition applies to them, too. The result in the preceding Lemma can be strengthened
by means of the following lemma that is well known (see e.g. [7, p. 370] or [1]):

Lemma 4.25. For every lens L in a coherent sober dcpo, ↓L is closed.

This Lemma together with the previous one allows one to describe the Plotkin power-
domain over a quasicontinuous coherent dcpo in the classical way as the collection of all
(real) lenses L with the Egli-Milner order L ≤EM L′ iff L ⊆ ↓L′ and L′ ⊆ ↑L (see, e.g. [1]
or [7, Theorem IV-8.18]).

There is a second class of dcpos where the Plotkin powerdomain consists of the (real)
lenses, the countably based continuous dcpos (see [1, ] or [7, Theorem IV-8.18]). Also in this
case the A-valuations are in a one-to-one correspondence with the (real) lenses. It would
be desirable to have a proof of the statement in Lemma 4.23 that would cover both the
countably based and the coherent case.

5. Final remarks

We conclude with some comments on possible extensions of our results and limitations of
our methods.

Plotkin powerdomain via different computational prototypes. We have seen that when choos-
ing the computational prototype A as P(S), the Plotkin powerdomain of S, then A(X) will
in general be different from P(X), the Plotkin powerdomain of X. However, what happens
if we choose A as P(A) for some dcpo A more complex than S, e.g. the domain T of lifted
booleans? Does there exist an A such that for A = P(A) the repletion A(X) always gives
rise to P(X)?
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Combining probability with nondeterminism. There are other algebraic effects where the
methods developed above can be applied. Battenfeld [3] has looked at probabilistic effects.
He chooses the extended nonnegative reals R+ with addition and multiplication by nonneg-
ative scalars λ ∈ R+ as computational prototype. Using known results about the extended
probabilistic powerdomain V(X) (C. Jones [14], R. Tix [26]) he shows that V(X) is the
repletion of X for any continuous dcpo X. Thus, here again we have the phenomenon that
the repletion agrees with the free dcpo-algebra with respect to some natural equational laws
for probabilistic choice operators.

There have been extensive investigations on combining probabilistic and nondetermin-
istic effects by Tix, Keimel, Plotkin [27], Mislove [18], Goubault-Larrecq [9]. The free
dcpo-algebras have been characterized from an equational point of view. As in Section 4
there is an angelic, a demonic and an erratic case to consider. We conjecture that in the
angelic and demonic cases the observationally induced approach leads to the same result as
the equational approach, while there is a big gap between the two in the erratic case as in
the case of nondeterminism without probability considered in Section 4.

Limitations. In the example of nondeterministic effects considered in Section 4 we make use
of the phenomenon that the semilattice homomorphisms between two semilattices A and B
form again a semilattice hom(A,B), the semilattice operation for homomorphisms being de-
fined pointwise. The repletion of a (continuous) dcpoX was always given by hom0,1(R

X , R),
where R was the computational prototype. An analogous phenomenon occurs when dealing
with probabilities and when combining probability with nondeterminism. This is a quite
exceptional situation. For example, when dealing with noncommutative monoids, the col-
lection of all homomorphisms between two monoids does not carry any natural monoid
structure. Thus, if our computational proptotype is a dcpo with a continuous noncommu-
tative monoid structure, the repletion cannot be hom(RX , R). We will pursue this topic
elsewhere.

Predicate transformers. For a dcpo X a predicate is usually meant to be a continuous
function u : X → Σ or, equivalently, an open subset U of X. If our computational prototyp
is R, we will consider R-valued predicates, that is continuous functions u : X → R. Thus,
RX is the dcpo of all R-valued predicates on X. For dcpos X and Y , a predicate transformer
will be a continuous map s : RY → RX .

Since in all our considerations the computational monads were kind of ‘submonads’

of the continuation monad RR(−)
we consider state transformers to be continuous maps

t : X → RRY

(transforming an input x ∈ X to an output t(x) ∈ RRY

.
Exponential transpose establishes a one-to-one correspondence between state transform-

ers and predicate transformers:

(RRY

)X ∼= (RX)R
Y

.

If R is a DcpoΩ-algebra, hom(RX , R) is a subdcpo of RRX

. The state transformers
t : X → hom(RY , R) correspond to the predicate transformers s ∈ hom(RY , RX) through
exponential transpose:

hom(RY , R)X ∼= hom(RY , RX)

We apply this to the particular cases of repletion considered in Section 4.
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Angelic case: For all dcpos X and Y , the state transformers t : X → hom0,1(Σ
Y
∨ ,Σ∨)

are in one-to-one correspondence with those predicate transformers s : ΣY
∨ → ΣX

∨ that
preserve binary join, bottom and top:

hom0,1(Σ
Y
∨ ,Σ∨)

X ∼= hom0,1(Σ
Y
∨ ,Σ

X
∨ ).

In terms of open sets, these predicate transformers s are characterized by the properties

s(Y ) = X, s(∅) = ∅, s(U ∪ V ) = s(U) ∪ s(V ).

Demonic case: For all continuous dcpos X and Y , the state transformers t : X →
hom0,1(Σ

Y
∧ ,Σ∧) are in one-to-one correspondence with those predicate transformers s : ΣY

∧ →
ΣX
∧ that preserve binary meets (intersections), bottom and top:

hom0,1(Σ
Y
∧ ,Σ∧)

X ∼= hom0,1(Σ
Y
∧ ,Σ

X
∧ ).

In terms of open sets, these predicate transformers s are characterized by the properties

s(Y ) = X, s(∅) = ∅, s(U ∩ V ) = s(U) ∩ s(V ).

Erratic case: For all compact continuous dcpos X and Y , the state transformers
t : X → hom0,1(A

Y ,A) are in one-to-one correspondence with those predicate transformers

s : AY → A
X that preserve ∪, bottom and top:

hom0,1(A
Y ,A)X ∼= hom0,1(A

Y ,AX).

While in the angelic and demonic case the predicates are Σ-valued, this is not so in the
erratic case. But we can represent an A-valued predicate u as a pair u = (u1, u2) of
Σ-valued predicates with u1 ≥ u2. Recall that the members ϕ ∈ hom0,1(A

Y ,A) can be

represented as pairs ϕ = (ϕ1, ϕ2) ∈ hom0,1(Σ
Y
∨ ,Σ∨) × hom0,1(Σ

Y
∧ ,Σ∧) such that ϕ1 ≥ ϕ2.

Consequently, the state transformers t : X → hom0,1(A
Y ,A) can be seen as pairs t = (t1, t2)

of state transformers t1 : X → hom0,1(Σ
Y
∨ ,Σ∨) and t2 : X → hom0,1(Σ

Y
∧ ,Σ∧) such that

t1 ≥ t2. Thus, state transformers for the erratic case consist of an angelic and a demonic
state transformer, the angelic one dominating the demonic one.

Similarly, using Observation 4.10, every semilattice homomorphism s : AY → A
X can

be seen as a pair s = (s1, s2) ∈ hom0,1(Σ
Y
∨ ,Σ

X
∨ )× hom0,1(Σ

Y
∧ ,Σ

X
∧ ) such that s1 ≥ s2. Thus,

predicate transformers for the erratic case consist of an angelic and a demonic predicate
transformer, the angelic one dominating the demonic one.

Plotkin powerdomain: The functional representation of the Plotkin powerdomain
P(X) for continuous dcpos X through the Heckmann conditions allows one to characterize
the predicate transformers A

Y → A
X corresponding to the state transformers X → P(Y )

as the continuous maps s : AY → A
X that satisfy:

(H1) if s(u)(x) = ⊥ then s(u ∨ v)(x) = s(v)(x)
(H2) if s(u)(x) = ⊤ then s(u ∧ v)(x) = s(v)(x).

If one represents s as a pair (s1, s2) of maps ΣX → Σ these conditions read: s1 and s2 are
continuous maps preserving bottom, top and binary union, resp., intersection, and satisfy:

(H1’) if s1(u)(x) = 0 then s2(u ∨ v)(x) = s2(v)(x)
(H2’) if s2(u)(x) = 1 then s1(u ∧ v)(x) = s1(v)(x)

Thus, these predicate transformers consist of an angelic component s1 and a demonic com-
ponent s2 which are related by the conditions (H1’) and (H2’).
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